RU2483097C2 - Способ получения твердого топлива и твердое топливо, полученное данным способом - Google Patents

Способ получения твердого топлива и твердое топливо, полученное данным способом Download PDF

Info

Publication number
RU2483097C2
RU2483097C2 RU2011118379/04A RU2011118379A RU2483097C2 RU 2483097 C2 RU2483097 C2 RU 2483097C2 RU 2011118379/04 A RU2011118379/04 A RU 2011118379/04A RU 2011118379 A RU2011118379 A RU 2011118379A RU 2483097 C2 RU2483097 C2 RU 2483097C2
Authority
RU
Russia
Prior art keywords
coal
low
oil
suspension
solid fuel
Prior art date
Application number
RU2011118379/04A
Other languages
English (en)
Other versions
RU2011118379A (ru
Inventor
Сеиити ЯМАМОТО
Такуо СИГЕХИСА
Ютака МИТОУ
Сатору СУГИТА (умер)
Сигеру КИНОСИТА
Original Assignee
Кабусики Кайся Кобе Сейко Се
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кабусики Кайся Кобе Сейко Се filed Critical Кабусики Кайся Кобе Сейко Се
Publication of RU2011118379A publication Critical patent/RU2011118379A/ru
Application granted granted Critical
Publication of RU2483097C2 publication Critical patent/RU2483097C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/08Methods of shaping, e.g. pelletizing or briquetting without the aid of extraneous binders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/26After-treatment of the shaped fuels, e.g. briquettes
    • C10L5/32Coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/043Kerosene, jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/14Function and purpose of a components of a fuel or the composition as a whole for improving storage or transport of the fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/28Cutting, disintegrating, shredding or grinding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/30Pressing, compressing or compacting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

Изобретение относится к способу получения улучшенного твердого топлива. Предложен способ получения улучшенного твердого топлива, путем измельчения низкосортного угля, смешивания измельченного низкосортного угля с масляным растворителем с получением суспензии, нагрева суспензии до, по меньшей мере, точки кипения воды для испарения воды с испарением влаги, содержащейся в суспензии, отделения масляного растворителя от суспензии с получением угольной пыли, причем масло, полученное разделением твердое вещество-жидкость, может быть возвращено как циркуляционное масло, брикетирования мелкодисперсного угля и нагревания суспензии до, по меньшей мере, точки кипения воды, нелетучие компоненты, содержащиеся в низкосортном угле, экстрагируются масляным растворителем, а наружная поверхность низкосортного угля и внутренние поверхности пор низкосортного угля покрываются экстрагированными нелетучими компонентами, а содержание добавленного извне тяжелого масла будет составлять менее 0,5 мас.% и предпочтительно по существу 0% относительно массы твердого топлива после сушки. Технический результат-снижение производственных затрат и нагрузки на окружающую среду, высокая прочность для транспортировки и улучшенное твердое топливо. 1 з.п. ф-лы, 2 пр., 5 ил.

Description

Область техники
Настоящее изобретение относится к способу получения улучшенного твердого топлива, в котором в качестве сырья используется уголь, в частности, низкосортный уголь, а улучшенное твердое топливо получают данным способом.
Предыстория создания изобретения
Твердое топливо соответствующим образом используется в качестве топлива для, например, тепловых генераторов и тому подобных.
В настоящее время битуминозный уголь используется в качестве топлива для производства тепловой энергии. Однако добыча битуминозного угля возрастает год от года, и возникла проблема истощения запасов битуминозного угля. Соответственно, актуальным вопросом является эффективное использование низкосортного угля в качестве альтернативы битуминозному углю.
Низкосортный уголь имеет низкую теплотворную способность и свойство самовозгорания, и, как следствие, области использования низкосортного угля ограничены. В качестве средства эффективного использования низкосортного угля был использован способ улучшения сортности бурого угля (здесь и далее - UBC способ). К сегодняшнему дню разработано несколько способов для улучшения низкосортного угля. Тем не менее представляется затруднительным практическое использование большинства из них из-за условий переработки, предполагающих высокую температуру или высокое давление, что приводит к высокой стоимости оборудования, или из-за того, что низкосортный уголь химически изменяется с получением сточных вод, содержащих большое количество пиролитических веществ, что приводит к высокой стоимости очистки сточных вод.
Авторы настоящего изобретения описали такой UBS способ, в котором в качестве сырья используется низкосортный уголь, а масляная смесь, состоящая из тяжелого масла и растворного масла, находится в порах низкосортного угля, чтобы таким образом обеспечить твердое топливо, в котором содержание тяжелого масла в процентах по массе относительно обезвоженного угля составляло от 0,5% до 30% (Патентная литература 1). В твердом топливе патентного документа 1 воду в порах низкосортного угля удаляют и обеспечивают адгезию тяжелого масла к внутренним поверхностям пор с покрытием активных центров. Таким образом, подавляется самовозгорание низкосортного угля, а тяжелое масло, содержащееся в низкосортном угле, обеспечивает высокую теплотворную способность. Растворяя тяжелое масло в растворном масле с достижением высокой вязкости, обеспечивают достаточное импрегнирование пор тяжелым маслом и, как результат, покрытия активных центров в порах и высокой теплотворной способности.
Порошкообразный улучшенный уголь используется в качестве топлива почти без обработки. В общем, порошкообразный улучшенный уголь спрессовывается в брикеты, а брикеты транспортируются к месту сжигания (например, теплоэлектростанция или тому подобные). Когда такие брикеты имеют низкую прочность, они рассыпаются или образуют пыль при транспортировке или во время операций загрузки/выгрузки. Таким образом, помимо потери части продукта добавляется проблема увеличения вероятности самовозгорания. Таким образом, брикеты должны обладать высокой прочностью.
Помимо этого, для снижения производственных затрат и для снижения нагрузки на окружающую среду доля добавляемых извне компонентов желательно должна быть как можно ниже или быть сведена к нулю.
Патентная литература 1: Патент Японии № 2776278
Существо изобретения
Проблемы, решаемые настоящим изобретением
Настоящее изобретение осуществлено в свете того, что рассмотрено выше. Задачей настоящего изобретения является обеспечение способа производства улучшенного твердого топлива, для которого снижена стоимость производства, снижена нагрузка на окружающую среду, достигнута высокая прочность для транспортировки и тому подобного, и предотвращено самовозгорание; и такого улучшенного твердого топлива.
Средства решения проблем
Авторы настоящего изобретения подробно изучили проблему в свете решения вышеописанной задачи. Как результат, авторы обнаружили, что при погружении низкосортного угля в масло с высокой температурой из низкосортного угля не только может испаряться вода, но также экстрагируется высокотемпературным маслом нелетучий компонент, первоначально содержащийся в низкосортном угле, и компонент может действовать как альтернатива тяжелому маслу. Также как и тяжелое масло, компонент имеет функцию покрытия активных центров в низкосортном угле с подавлением самовозгорания. Таким образом, доля добавленного извне тяжелого масла может быть снижена.
Дальнейшее изучение привело к обнаружению того, что когда тяжелое масло не пристает к поверхностям порошкообразного низкосортного угля, адгезия между мелкими частицами угля до брикетирования увеличивается, и прочность брикетированного твердого вещества может быть увеличена.
Настоящее изобретение было осуществлено на основе установления данных фактов. В одном из аспектов настоящее изобретение относится к способу получения твердого топлива, способ включает стадию измельчения низкосортного угля; стадию приготовления суспензии путем смешения измельченного низкосортного угля с масляным растворителем; стадию выпаривания воды из суспензии путем нагрева суспензии до точки кипения воды или более; стадию получения мелкодисперсного угля путем отделения масляного растворителя от суспензии; и стадию брикетирования мелкодисперсного угля, в которой путем нагрева суспензии до точки кипения воды или выше, нелетучий компонент, содержащийся в низкосортном угле, экстрагируются масляным растворителем, и экстрагированный нелетучий компонент покрывает наружную поверхность низкосортного угля и внутренние поверхности пор низкосортного угля, а содержание добавленного извне тяжелого масла составляет менее 0,5 мас.%, предпочтительно по существу 0 мас.% относительно осушенного твердого топлива.
Настоящее изобретение также относится к твердому топливу, полученному брикетированием порошкообразного низкосортного угля, в котором наружная поверхность низкосортного угля и внутренние поверхности пор низкосортного угля покрыты нелетучим компонентом, содержащимся в низкосортном угле, а содержание тяжелого масла составляет менее 0,5 мас.%, предпочтительно, по существу 0 мас.% относительно твердого топлива.
Полезные эффекты настоящего изобретения
Согласно настоящему изобретению, нелетучий компонент, изначально содержащийся в низкосортном угле, растворяется в высокотемпературном масле, и этот компонент может действовать как альтернатива тяжелому маслу. Таким образом, может быть снижена доля добавленного извне тяжелого масла; могут быть снижены производственные затраты; может быть уменьшено отрицательное влияние на окружающую среду. Кроме того, согласно настоящему изобретению, как описано выше, доля добавленного тяжелого масла может быть снижена, так как тяжелое масло снижает адгезию между мелкими частицами угля. Как результат, прочность брикетированного твердого топлива может быть увеличена.
Соответственно, настоящее изобретение может обеспечить способ получения улучшенного твердого топлива, для которого снижены производственные затраты, снижена нагрузка на окружающую среду, а прочность твердого топлива увеличена для транспортировки или тому подобного; и улучшенное твердое топливо, полученное согласно способу.
Краткое описание чертежей
[Фиг.1]. На фиг.1 показана схема способа получения улучшенного твердого топлива согласно настоящему изобретению.
[Фиг.2]. На фиг.2 представлена схема, иллюстрирующая пример устройства для получения улучшенного твердого топлива, в котором используется способ получения улучшенного твердого топлива согласно настоящему изобретению.
[Фиг.3]. На фиг.3 дан график изменения содержания нелетучего компонента угля, растворенного в керосине.
[Фиг.4]. На фиг.4 показана схема способа в установившемся состоянии.
[Фиг.5]. На фиг.5 представлен график, показывающий зависимость между массовой долей (в процентах относительно обезвоженного угля) (мас.%) тяжелого масла (в частности, асфальта) и прочностью брикета (кг-вес).
Перечень ссылок
1. Бак для смешивания
2. Насос
3. Подогреватель
4. Подогреватель
5. Газожидкостной сепаратор
6. Насос
7. Испаритель
8. Компрессор
9. Сепаратор масло-вода
10. Центробежный сепаратор
11. Винтовой пресс
12. Сушка
13. Конденсатор
14. Насос
15. Охладитель
16. Нагреватель
Наилучшие пути осуществления настоящего изобретения
Здесь и далее будет подробно рассмотрен способ получения улучшенного твердого топлива согласно настоящему изобретению и улучшенное твердое топливо, полученное данным способом, с ссылкой на чертежи. Однако варианты осуществления изобретения, описанные ниже, являются примерами настоящего изобретения и не могут рассматриваться как ограничивающие настоящее изобретение. Следует отметить, что общие части или компоненты в чертежах обозначены согласно перечню ссылок, а дополнительные описания опущены.
(Первый вариант осуществления настоящего изобретения)
Способ получения улучшенного твердого топлива согласно настоящему изобретению включает измельчение низкосортного угля; получение суспензии смешением размельченного низкосортного угля с масляным растворителем; выпаривание воды из суспензии путем нагрева суспензии до точки кипения воды или выше; получение мелкодисперсного угля путем отделения масляного растворителя от суспензии и брикетирование мелкодисперсного угля, где при нагреве суспензии до точки кипения воды или выше нелетучий компонент, содержащийся в низкосортном угле, экстрагируется масляным растворителем, и экстрагированный нелетучий компонент покрывает наружную поверхность низкосортного угля и внутреннюю поверхность пор низкосортного угля, а содержание добавленного извне тяжелого масла составляет менее 0,5 мас.%, предпочтительно по существу 0 мас.% относительно осушенного твердого топлива (то есть в процентах относительно обезвоженного угля).
В способе получения твердого топлива согласно настоящему изобретению масло, смешанное с размельченным низкосортным углем, выступает в качестве масляного растворителя; нелетучий компонент, первоначально содержащийся в низкосортном угле, экстрагируется маслом при высокой температуре; и нелетучий компонент действует как альтернатива тяжелому маслу. Соответственно, доля добавленного извне тяжелого масла может быть снижена. Помимо этого, несмотря на то, что количество добавленного тяжелого масла снижено, нелетучий компонент, содержащийся в низкосортном угле, используется в качестве альтернативы, и нелетучий компонент покрывает активные центры в порах низкосортного угля. Таким образом, может предотвращаться самовозгорание, как и в случаях, когда добавлено тяжелое масло. Кроме того, по способу получения твердого топлива согласно настоящему изобретению, доля такого добавленного тяжелого масла может быть снижена, так как тяжелое масло уменьшает адгезию между мелкими частицами угля. Таким образом, может быть увеличена прочность брикетов твердого вещества.
На фиг.1 представлена схема способа получения улучшенного твердого топлива согласно настоящему изобретению. Способ получения улучшенного твердого топлива согласно настоящему изобретению будет подробно рассмотрен со ссылкой на фиг.1. Фиг.2 является схемой, иллюстрирующей пример устройства для получения улучшенного твердого топлива, в котором осуществляется способ получения улучшенного твердого топлива согласно настоящему изобретению. Способ получения улучшенного твердого топлива согласно настоящему изобретению включает стадию измельчения низкосортного угля и приготовления суспензии; стадию обезвоживания; стадию разделения твердое вещество - жидкость и стадию брикетирования. Помимо этого, данный способ может дополнительно включать стадию охлаждения для охлаждения осушенного твердого содержимого между стадией разделения твердое вещество - жидкость и стадией брикетирования.
Стадия получения суспензии из размельченного низкосортного угля соответствует секции смешения на схеме, показанной на фиг.1, и проводится в смесительной емкости 1 в устройстве для получения улучшенного твердого топлива на фиг.2. Стадия обезвоживания соответствует секции обезвоживания на схеме, показанной на фиг.1, и проводится в испарителе 7 и газожидкостном сепараторе 5 в производственном устройстве на фиг.2. Стадия разделения твердое вещество - жидкость соответствует секциям разделения твердое вещество - жидкость (механическое разделение и тепловое разделение) на схеме, показанной на фиг.1, и проводится в механическом сепараторе твердое вещество - жидкость (центробежный сепаратор) 10, винтовом прессе 11 и сушке 12 в производственном устройстве на фиг.2. Стадия брикетирования соответствует секции брикетирования на схеме, показанной на фиг.1, и проводится в устройстве для брикетирования (не показано) в производственном устройстве. Устройство для получения улучшенного твердого топлива, в котором осуществляется способ получения улучшенного твердого топлива согласно настоящему изобретению, включает смесительную емкость 1, в которой масляная смесь, содержащая масляный растворитель, смешивается с низкосортным углем с получением суспензии из сырья; испаритель 7 и газожидкостной сепаратор 5, в котором суспензия из сырья подвергается обработке для испарения воды; механический сепаратор твердое вещество - жидкость (центробежный сепаратор) 10, винтовой пресс 11 и сушка 12, в которых суспензия, подвергшаяся обработке для испарения воды, подвергается разделению твердое вещество - жидкость; и устройство для брикетирования (не показано), в котором сухое твердое топливо в форме порошка брикетируется с получением брикетов твердого топлива.
Здесь и далее стадии будут рассмотрены в деталях.
1. Стадия измельчения низкосортного угля и получения суспензии
Как показано на фиг.1 и 2, низкосортный уголь, используемый в качестве сырья, измельчают и затем доставляют в секцию смешения, то есть в смесительную емкость 1. Измельченный низкосортный уголь смешивают с маслом, содержащим масляный растворитель, в смесительной емкости 1 с получением суспензии сырья. Могут использоваться различные масла в качестве масляного растворителя, смешанного с низкосортным углем, если из низкосортного угля этими маслами может быть экстрагирован нелетучий компонент, содержащийся в низкосортном угле. Масляным растворителем, предпочтительно, является легкокипящее масло в виду совместимости с нелетучим компонентом и тяжелым маслом, легкости обращения с суспензией, легкости проникновения в поры и тому подобного. В виду стабильности температуры испарения воды масляным растворителем подходящим образом является минеральное масло, имеющим точку кипения 100°С и выше, а более предпочтительно 400°С или меньше. Примеры данного минерального масла включают керосин, светлое масло и тяжелое масло. Как альтернатива, может использоваться угольная жидкость. Предпочтительно, может быть использован керосин.
Несмотря на то что масляный растворитель может содержать тяжелое масло, важно, чтобы количество тяжелого масла, добавленного путем загрузки масла в смесительную емкость 1, было отрегулировано таким образом, чтобы адгезивное количество тяжелого масла в твердом топливе (то есть полученного испарительной обработкой остатка, образующегося при разделении твердое вещество - жидкость, в сушке) составляет менее 0,5 мас.%, предпочтительно по существу 0 мас.% относительно высушенного низкосортного угля (улучшенного угля) в твердом топливе, то есть процентное содержание относительно обезвоженного угля.
Как показано на фиг.1, масло и тому подобные, извлеченные в секции обезвоживания, в секции разделения твердое вещество - жидкость (механическое разделение) и в секции разделения твердое вещество - жидкость (термическое разделение) могут быть рециркулированы в виде циркуляционного масла в секцию смешения. Масляный растворитель и тяжелое масло могут быть добавлены к циркуляционному маслу. В этом случае, как и в вышеописанном случае, также важно, чтобы количество добавленного тяжелого масла было отрегулировано таким образом, чтобы адгезионное количество тяжелого масла в твердом топливе (то есть полученном при испарительной обработке остатка, образующегося при разделении твердое вещество - жидкость, в сушке) составляет менее 0,5 мас.%, предпочтительно по существу 0 мас.% относительно высушенного низкосортного угля (улучшенного угля) в твердом топливе, то есть процентное содержание относительно обезвоженного угля.
В настоящем изобретении термин «низкосортный уголь» относится к углю, который содержит большое количество воды и желательно обезвожен, например, уголь, который содержит, по меньшей мере, 20 мас.% воды относительно высушенного угля. Естественно данный низкосортный уголь может содержать высокосортный уголь и тому подобное. Примеры данного низкосортного угля включают бурый уголь, лигнит и суббитуминозный уголь. Примеры бурого угля включают уголь Victoria, уголь North Dakota и уголь Beluga. Примеры суббитуминозного угля включают уголь West Banko, уголь Binungan и уголь Samarangau. Низкосортный уголь не ограничивается вышеописанными примерами, а низкосортный уголь согласно настоящему изобретению охватывает любой уголь с большим содержанием воды и желательно обезвоженный.
В настоящем изобретении термин «нелетучий компонент» обозначает нелетучее масло, которое первоначально содержится в низкосортном угле и после экстрагирования покрывает наружную поверхность низкосортного угля и внутреннюю поверхность пор низкосортного угля. Таким образом, нелетучий компонент покрывает активные центры в порах низкосортного угля и, следовательно, подавляет явление самовозгорания. Примером такого нелетучего компонента является ароматическое органическое полимерное соединение.
В настоящем изобретении термин «тяжелое масло» обозначает тяжелую фракцию, которая по существу не имеет давления паров при, например, 400°С, такую как остаточное масло вакуумной перегонки или масло, содержащее такую тяжелую фракцию. Равно как и нелетучий компонент, тяжелое масло имеет функцию покрытия активных центров в порах низкосортного угля и, следовательно, предотвращения самовозгорания. Примеры такого тяжелого масла включают нефтяной битум, природный асфальт, алифатические органические полимерные соединения и ароматические органические полимерные соединения.
В настоящем изобретении термин «масляный растворитель» обозначает масло, которое может растворять тяжелое масло со снижением вязкости тяжелого масла, таким образом облегчая введение тяжелого масла в поры низкосортного угля, и которое может экстрагировать нелетучий компонент из низкосортного угля. Такой масляный растворитель может также растворять нелетучий компонент со снижением вязкости нелетучего компонента, чтобы, таким образом, облегчить введение нелетучего компонента в поры низкосортного угля.
Однако когда твердое топливо в форме порошка брикетируется, данное тяжелое масло снижает механическую прочность брикетированного твердого топлива. Соответственно, количество тяжелого масла предпочтительно должно быть насколько возможно малым. Как описано выше, количество добавленного тяжелого масла предпочтительно регулируется таким образом, чтобы адгезионное количество тяжелого масла в твердом топливе (то есть полученного испарительной обработкой остатка, полученного при разделении твердое вещество - жидкость, в сушке) составляло менее 0,5 мас.%, предпочтительно по существу 0 мас.% относительно высушенного низкосортного угля (улучшенного угля) в твердом топливе (в процентах относительно обезвоженного угля). Фиг.5 показывает зависимость между массовой долей (процентным содержанием относительно обезвоженного угля) (мас.%) тяжелого масла (в частности, битума) и прочностью брикетов (кг-масс). Ось абсцисс показывает массовую долю (процентное содержание относительно обезвоженного угля) (мас.%) тяжелого масла (в частности, битума). Ось ординат показывает прочность брикетов (кг-масс). Как показано на фиг.5, при адгезионном количестве тяжелого масла в твердом топливе от 0 до 0,5 мас.% прочность брикетированного твердого топлива может составлять от приблизительно 68 кг-масс до приблизительно 87 кг-масс. В частности, когда адгезионное количество составляет 0 мас.%, прочность брикетированного твердого топлива самая высокая и составляет приблизительно 87 кг-масс, что является предпочтительным. Когда брикетированное твердое топливо образует порошок, вероятность контакта между активными центрами твердого топлива и воздухом возрастает, и возникает проблема увеличения риска самовозгорания. Однако, как описано выше, когда прочность брикетированного твердого топлива увеличивается при доведении адгезионного количества тяжелого масла от 0 до 0,5 мас.%, самовозгорание может быть подавлено.
Тип смесительной емкости согласно настоящему изобретению ничем конкретно не ограничен, и могут применяться различные смесительные емкости. Однако, в целом, предпочтительно использовать осевой смеситель или тому подобные.
На стадии измельчения низкосортного угля и изготовления суспензии суспензия из сырья может быть получена путем смешения измельченного низкосортного угля с маслом, содержащим масляный растворитель.
2. Стадия обезвоживания
Приготовленная таким образом суспензия сырья подается в подогреватели 3 и 4 насосом 2 и предварительно нагревается подогревателями 3 и 4. После этого суспензия сырья нагревается в испарителе 7. В испарителе 7 протекает обезвоживание масла под давлением от 1 до 40 атмосфер (предпочтительно, от 2 до 5 атмосфер) и при нагреве до температуры от 100°С до 250°С (предпочтительно, от 120°С до 160°С). В испарителе 7 суспензия сырья нагревается до точки кипения воды или выше, как описано выше, и, в результате, влага удаляется, а нелетучий компонент, содержащийся в низкосортном угле, экстрагируется масляным растворителем, содержащимся в суспензии сырья. Таким образом, нелетучий компонент, содержащийся в низкосортном угле, экстрагируется, и нелетучий компонент работает как альтернатива тяжелому маслу. Соответственно, как описано выше, количество добавленного тяжелого масла может быть снижено.
Таким образом, суспензия сырья поступает в газожидкостной сепаратор 5, и вода из суспензии сырья удаляется в форме влаги в газожидкостном сепараторе 5. После отделения влаги суспензия выводится из нижней части и подается в центробежный сепаратор 10 насосом 6. Часть ответвляется в промежуточном положении транспортной линии, нагревается при прохождении через испаритель 7 и затем поступает обратно в газожидкостной сепаратор 5. Давление паровой фазы фракции, полученной при отделении влаги, образованной в испарителе 7, в газожидкостном сепараторе, увеличивается при прохождении через компрессор 8, a образовавшаяся тепловая энергия используется для нагрева суспензии в испарителе 7, чтобы таким образом обезводить суспензию в масле. Паровая фаза фракции затем поступает в подогреватель 3, используемый как источник предварительного нагрева суспензии сырья, а затем подвергается разделению масло-вода в сепараторе 9 масло-вода. Полученную воду сливают. Масло, собранное при разделении масло-вода, возвращается в смесительную емкость 1 и используется повторно.
На стадии обезвоживания, поскольку проводят обработку по обезвоживанию, суспензию сырья необходимо нагреть до точки кипения воды или выше. Помимо этого, поскольку необходимо экстрагировать и экстрагировать нелетучий компонент с масляным растворителем, содержащийся в суспензии сырья, суспензию сырья предпочтительно нагревают до 100°С или выше. Для испарения воды при нормальном давлении требуется нагрев до, по меньшей мере, 100°С. Однако для уменьшения размера устройства операция может быть проведена при давлении выше нормального. В результате, снижается объем паровой фазы. Чтобы сделать размер компрессора разумным, способ может осуществляться при давлении выше нормального. Когда давление возрастает, поскольку возрастает и точка кипения воды, температура нагрева должна составлять 100°С или выше. Например, когда операция проводится при давлении 0,4 МПа, требуется нагрев до 145°С или выше для испарения воды. Однако когда температура увеличивается до необязательно высокой величины, испаряется не только вода, но и масляный растворитель. В способе требуется снизить испарение масляного растворителя насколько возможно. Соответственно, является разумным проводить операцию при температуре на несколько градусов по Цельсию выше точки кипения воды при рабочем давлении. Следует отметить, что ввиду экстрагирования нелетучего компонента угля предпочтительна более высокая температура.
Тип испарителя 7 согласно настоящему изобретению ничем конкретно не ограничен, и могут использоваться различные испарители: например, нагревательный испаритель, декомпрессионный испаритель, нагревательно-декомпрессионный испаритель и тому подобные. Например, могут использоваться испаритель мгновенного испарения, винтовой испаритель, вертикальный трубчатый испаритель с принудительной циркуляцией или тому подобные. В общем, например, предпочтительно использовать испаритель с принудительной циркуляцией, оснащенный теплообменником.
Как описано выше, на стадии обезвоживания вода, содержащаяся в низкосортном угле, испаряется с удалением в результате влаги, а нелетучий компонент, содержащийся в низкосортном угле, экстрагируется масляным растворителем, содержащимся в суспензии сырья.
3. Стадия разделения твердое вещество - жидкость
Как описано выше, после проведения обработки с выпариванием воды суспензия, обработанная с выпариванием воды, поступает в секцию разделения твердое вещество - жидкость (механическое разделение) и подвергается разделению на твердое вещество и жидкость на механическом сепараторе твердое вещество - жидкость. Тип данного механического сепаратора твердое вещество - жидкость ничем конкретно не ограничен, и могут использоваться различные сепараторы: например, центробежный сепаратор, компрессор, отстойник, фильтр и тому подобные. В настоящем варианте осуществления изобретения сначала проводится концентрирование на первом центробежном сепараторе 10, а затем производится сжатие винтовым прессом 11. Однако может быть использован только центробежный сепаратор или винтовой пресс. Вместо центробежного сепаратора может быть применена седиментация. Вместо компрессии может быть использована вакуумная фильтрация. Масло, полученное разделением твердое вещество - жидкость, может быть возвращено как циркуляционное масло в смесительную емкость 1.
Отделенное таким образом твердое вещество (остаток) поступает в секцию разделения твердое вещество - жидкость (тепловое разделение) и нагревается в сушке 12 в токе газа-носителя, чтобы таким образом выпарить масло. В результате образуется твердое топливо.
На стадии теплового разделения поверхность угля и поры угля покрываются нелетучим компонентом. В частности, когда испаряется масляный растворитель, нелетучий компонент (тяжелое масло), содержащийся в угле, не испаряется и поэтому остается на поверхности угля и в порах угля.
Сушку, предпочтительно, осуществляют процессом в псевдоожиженном слое или процессом с использованием барабанной сушилки. Масло, которое поступило и было разделено газом-носителем, может быть загружено в конденсатор 13, собрано как масло, а затем возвращено в качестве смазочного масла в смесительную емкость 1.
Как описано выше, на стадии разделения твердое вещество -жидкость суспензия разделяется на твердое вещество и жидкость в механическом сепараторе твердое вещество - жидкость, а масло, содержащееся в твердом веществе, испаряется в сушилке. В результате, может быть получено твердое топливо в форме порошка.
4. Стадия брикетирования
Полученное таким образом твердое топливо в форме порошка поступает из сушилки в секцию брикетирования и брикетируется при помощи устройства для брикетирования (не показано) в брикеты твердого топлива. Примеры данных устройств для брикетирования включают устройства для таблетирования (таблетирование) и двухвалковое устройство для брикетирования (валковый пресс). В общем, предпочтительно использовать двухвалковое устройство для брикетирования. На стадии брикетирования возможно получение брикетированного твердого топлива.
Согласно вышеописанному способу, несмотря на то, что количество добавленного тяжелого масла снижено, самовозгорание может быть подавлено, как и в случаях, когда добавляется тяжелое масло, и может быть увеличена прочность брикетированного твердого вещества.
Примеры
Пример 1: рассматриваемые свойства нелетучего компонента, содержащегося в низкосортном угле
Как было сообщено, когда уголь обезвоживают в масле путем введения нелетучего тяжелого масла, такой как битум, в уголь, битум эффективно прилипает к порам угля, и подавляется самовозгорание (патент Японии №2776278).
Авторы настоящего изобретения считают, что поскольку нелетучий компонент, являющийся частью угля, растворяется в высокотемпературном масле и экстрагируется, то растворенный нелетучий компонент действует как альтернатива битуму.
Затем измеряли растворимость угля (индонезийский бурый уголь) в высокотемпературном масляном растворителе (керосин). Были осуществлены следующие действия.
1) Измельченный в порошок уголь (количество частиц, имеющих диаметр 1 мм и более, составляло 10 мас.% или менее) смешивали с керосином в круглодонной колбе при комнатной температуре.
2) Круглодонную колбу помещали в нагреватель, и образец постепенно нагревали до 140°С в течение 2 часов. Одновременно, чтобы атмосфера в круглодонной колбе была инертной, подавали газообразный азот со скоростью 200 см3/мин. Помимо того, одновременно воду, выпаренную из угля, отводили в форме влаги из верхней части круглодонной колбы, конденсировали в трубчатом холодильнике и выводили в форме жидкости (воды) из системы. Образец в круглодонной колбе выдерживали при температуре 140°С в течение часа.
3) Затем образец из круглодонной колбы фильтровали под давлением (под давлением газообразного азота 0,1 МПа) при высокой температуре, чтобы разделить образец на твердую фазу и жидкую фазу.
4) Отделенную жидкую фазу постепенно охлаждали, помещали в колбу дистилляционного оборудования, подвергали дистилляции при пониженном давлении в условиях, описанных ниже, с испарением и выводом керосина из системы. Собирали остаток после выпаривания, то есть нелетучий компонент угля, растворенный в керосине.
Давление: 10 mmHg
Скорость нагрева: 2°С/мин
Конечная температура: 159°С (после достижения конечной температуры температуру поддерживали до прекращения появления влаги: 60 минут)
На фиг.3 показаны результаты измерений: s/c показывает соотношение массы залитого керосина к массе угля (высушенного); и процент снижения массы угля показывает массовую долю компонента, растворенного в керосине, относительно сухой массы загруженного угля. Как показано на фиг.3, установлено, что, по меньшей мере, 1% угольного сырья растворяется в керосине при 140°С.
Для другого угля также было установлено, что, по меньшей мере, 1% угольного сырья растворяется в керосине при 140°С.
Угольный компонент, растворяемый в керосине, представлял нелетучее тяжелое масло и имел свойства, очень похожие на свойства таких тяжелых масел, как битум, которые добавляют извне в существующих технологиях. Соответственно, было установлено, что способ улучшения низкосортного угля может быть проведен без добавления тяжелого масла извне.
Пример 2: касающийся технологической схемы
Далее, на фиг.4 показан пример технологической схемы в стационарном режиме вместе с материальным балансом. Цифровые значения на фиг.4 обозначают массовый расход. DC обозначает обезвоженный уголь; SC представляет нелетучий компонент, содержащийся в угле; W обозначает воду и О обозначает керосин. В керосине может раствориться приблизительно 1% угольного сырья, и со временем концентрация возрастает в циркулирующем керосине. В секции обезвоживания в высокотемпературном керосине растворяется 1% угля. В секции разделения твердое вещество - жидкость (механическое разделение) часть керосина остается на поверхности и в порах угля. Керосин содержит приблизительно 3% угольного компонента, который может растворяться в керосине, то есть нелетучего компонента, содержащегося в угле. Таким образом, в следующей секции разделения твердое вещество - жидкость (термическое разделение), пока керосин испаряется и сепарируется, нелетучий компонент угля, который может растворяться в керосине, остается на поверхности и в порах угля.
По существующим технологиям тяжелый компонент (битум) добавляют с целью предотвращения самовозгорания угольного продукта. Соответственно, например, массовая доля оставшегося в продукте компонента составляет менее 1 мас.%. Затем, чтобы обеспечить другой продукт, имеющий такое же качество, в продукте оставляют 1 мас.% угольного нелетучего компонента, который может растворяться в керосине.
Чтобы достичь этого, стадию механического разделения твердое вещество - жидкость (центробежное разделение) на фиг.4 проводят таким образом, чтобы в твердой фазе массовое отношение обезвоженного угля (DC) к нелетучему компоненту (SC), который может растворяться в керосине, составляло 99:1. В это же время массовое отношение нелетучего компонента к керосину в суспензии, поданной на стадию механического разделения твердое вещество - жидкость (центробежное разделение) составляло 4,5:157, то есть приблизительно 3:100. Соответственно, когда отношение обезвоженного угля к керосину в твердой фазе составляет приблизительно 99:33 (99:34,5 на фиг.4), массовое отношение обезвоженного угля, керосина и угольного нелетучего компонента составляет 99:33:1. Для твердой фазы, содержащейся в керосине, когда почти весь керосин испаряется и отделяется на следующей стадии нагревания (стадия сушки), нелетучий компонент, который может растворяться в керосине, является тяжелым и, следовательно, не отделяется и остается на поверхности угля. В центробежном сепараторе непрерывного действия параметрами, которые главным образом определяют способность к разделению твердой фазы и жидкой фазы друг от друга, являются число оборотов и среднее время пребывания. Чем больше число оборотов и чем больше среднее время пребывания, тем меньшее количество жидкой фазы остается в твердой фазе. Центробежные сепараторы непрерывного действия могут быть различных размеров и типов, а число оборотов и среднее время пребывания для достижения желаемой степени разделения твердое вещество - жидкость, меняются и не могут быть определены в общем порядке. Однако в настоящем изобретении при проведении разделения твердое вещество - жидкость, как описано выше, приблизительно 1 мас.% нелетучего компонента может остаться в обезвоженном угле, и добавление тяжелого масла можно предпочтительно исключить.
Пример 3: прочность брикетированного твердого топлива
По существующей технологии (патент Японии № 2776278) добавляют, по меньшей мере, 0,5 мас.% тяжелого масла в процентах по массе относительно обезвоженного угля.
В качестве тяжелого масла выбирали битум, а улучшали низкосортный уголь (индонезийский бурый уголь), меняя массовую долю битума (проценты относительно обезвоженного угля). После этого получали твердые топлива в форме брикетов с использованием двухвалкового устройства для брикетирования (К-205, произведенного Furukawa Otsuka Co., Ltd.). Число оборотов двухвалкового брикетирующего устройства устанавливали на уровне 8 об/мин. Прочность измеряли измерителем прочности на раздавливание (XA-500, произведенный Otsuka Co., Ltd.).
Результаты показаны на фиг.5. На фиг.5 представлен график, показывающий зависимость между массовой долей (процентом относительно обезвоженного угля) (мас.%) тяжелого масла (в частности, битума) и прочностью брикетов (кг-масс). Ось абсцисс показывает массовую долю (в процентах относительно обезвоженного угля) (мас.%) тяжелого масла (в частности, битума). По оси ординат показана прочность брикетов (кг-масс). Как показано на фиг.5, при установлении адгезионного количества тяжелого масла в твердом топливе на уровне от 0 до 0,5 мас.% прочность брикетированного твердого топлива может составлять от приблизительно 68 кг-масс до приблизительно 87 кг-масс. В частности, когда адгезионное количество составляет 0 мас.%, прочность брикетированного твердого топлива составляет приблизительно 87 кг-масс. Когда брикетированное твердое топливо образует порошок, вероятность контакта между активными центрами твердого топлива и воздухом возрастает, и возникает проблема увеличения риска самовозгорания. Однако, как описано выше, когда прочность брикетированного твердого топлива увеличивается путем установления количества тяжелого масла от 0 до 0,5 мас.%, самовозгорание может быть подавлено. По фиг.5 установлено, что чем меньше массовая доля битума, тем выше прочность брикетов; и, в частности, наибольшая прочность достигается при 0 мас.%, когда битум не добавляется. Для увеличения прочности брикетов адгезия между мелкими частицами угля, подлежащими брикетированию, должна быть предпочтительно высокой. Однако битум прилипает к поверхности угля, и, в результате, адгезия, вероятно, снижается. Хотя подробный механизм не ясен, можно предположить, что битум является основанным на нефти (алифатический класс) и, следовательно, имеет низкую совместимость (адгезию) с углем (ароматический класс).

Claims (2)

1. Способ получения твердого топлива, включающий:
стадию измельчения низкосортного угля;
стадию получения суспензии смешением измельченного низкосортного угля с масляным растворителем;
стадию испарения воды из суспензии нагреванием суспензии до точки кипения воды и выше;
стадию получения мелкодисперсного угля отделением масляного растворителя от суспензии, причем масло, полученное разделением твердое вещество-жидкость, может быть возвращено как циркуляционное масло на стадию смешения; и
стадию брикетирования мелкодисперсного угля,
в котором при нагревании суспензии до точки кипения воды или выше нелетучий компонент, содержащийся в низкосортном угле, экстрагируется масляным растворителем, и экстрагированный нелетучий компонент покрывает наружную поверхность низкосортного угля и внутренние поверхности пор низкосортного угля, и
содержание добавленного масляного растворителя составляет менее 0,5 мас.% относительно высушенного твердого топлива.
2. Способ получения твердого топлива по п.1, где масляный растворитель, по существу, не добавляется.
RU2011118379/04A 2008-10-09 2009-09-29 Способ получения твердого топлива и твердое топливо, полученное данным способом RU2483097C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008-262513 2008-10-09
JP2008262513A JP4580011B2 (ja) 2008-10-09 2008-10-09 固形燃料の製造方法及び該製造方法により作製された固形燃料
PCT/JP2009/066927 WO2010041572A1 (ja) 2008-10-09 2009-09-29 固形燃料の製造方法及び該製造方法により作製された固形燃料

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2012152898/04A Division RU2525401C1 (ru) 2008-10-09 2012-12-07 Способ получения твердого топлива и твердое топливо, полученное данным способом

Publications (2)

Publication Number Publication Date
RU2011118379A RU2011118379A (ru) 2012-11-20
RU2483097C2 true RU2483097C2 (ru) 2013-05-27

Family

ID=42100524

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2011118379/04A RU2483097C2 (ru) 2008-10-09 2009-09-29 Способ получения твердого топлива и твердое топливо, полученное данным способом
RU2012152898/04A RU2525401C1 (ru) 2008-10-09 2012-12-07 Способ получения твердого топлива и твердое топливо, полученное данным способом

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2012152898/04A RU2525401C1 (ru) 2008-10-09 2012-12-07 Способ получения твердого топлива и твердое топливо, полученное данным способом

Country Status (7)

Country Link
US (2) US9005317B2 (ru)
JP (1) JP4580011B2 (ru)
CN (1) CN102171315A (ru)
AU (1) AU2009301710B2 (ru)
DE (1) DE112009002398B4 (ru)
RU (2) RU2483097C2 (ru)
WO (1) WO2010041572A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671204C1 (ru) * 2014-12-08 2018-10-30 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Способ получения твердого топлива и установка для получения твердого топлива

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580011B2 (ja) 2008-10-09 2010-11-10 株式会社神戸製鋼所 固形燃料の製造方法及び該製造方法により作製された固形燃料
KR101966481B1 (ko) * 2011-09-07 2019-04-05 클린 콜 테크놀로지스, 아이엔씨. 석탄의 처리
KR101304977B1 (ko) * 2011-10-06 2013-09-17 한국에너지기술연구원 건조석탄의 자연발화 억제를 위한 중질유 기상흡착 방법 및 이를 위한 장치
JP5839567B2 (ja) * 2012-02-01 2016-01-06 株式会社神戸製鋼所 溶剤分離方法
JP5868832B2 (ja) * 2012-11-27 2016-02-24 株式会社神戸製鋼所 改質石炭の貯蔵方法
JP5985433B2 (ja) * 2013-04-24 2016-09-06 株式会社神戸製鋼所 成型固形燃料の製造方法
JP6062316B2 (ja) * 2013-04-24 2017-01-18 株式会社神戸製鋼所 成型固形燃料の製造方法
JP2017057252A (ja) * 2015-09-15 2017-03-23 株式会社神戸製鋼所 改質石炭の製造方法
JP6632496B2 (ja) * 2016-08-24 2020-01-22 株式会社神戸製鋼所 固形燃料の製造方法
CN109746110A (zh) * 2019-01-22 2019-05-14 王勇 一种节能环保的煤粉制备方法
CN110184082B (zh) * 2019-06-17 2020-12-18 浙江中法农业科技发展有限公司 一种无污染木炭生产设备
CN110484324A (zh) * 2019-08-29 2019-11-22 深圳市洁鑫环保科技有限公司 一种园林绿化树枝树叶废弃物处理生产微米生物质燃料
CN111518599B (zh) * 2020-05-14 2021-05-28 太原理工大学 一种废油脂煮煤优质化加工的装置及工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503461A (ja) * 1986-04-04 1988-12-15 シモンス,ジヨン ジエー. 低品位炭及び泥炭の利用
JPH10158666A (ja) * 1996-11-27 1998-06-16 Kobe Steel Ltd 脱水多孔質炭
JP2776278B2 (ja) * 1993-12-27 1998-07-16 株式会社神戸製鋼所 多孔質炭を原料とする固形燃料及びその製造方法
RU2185421C2 (ru) * 2000-04-17 2002-07-20 Зао "Сибиус" Порошково-угольное топливо и способ его получения
JP2005139342A (ja) * 2003-11-07 2005-06-02 Kobe Steel Ltd 低品位炭を原料とする固形燃料の製造方法および製造装置
JP2005206695A (ja) * 2004-01-22 2005-08-04 Kobe Steel Ltd 低品位炭を原料とする固形燃料の製造装置および製造方法
US20070062103A1 (en) * 2005-09-22 2007-03-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method and apparatus for manufacturing solid fuel from raw material coal

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588438B2 (ja) * 1977-03-12 1983-02-16 株式会社神戸製鋼所 褐炭の加熱脱水処理法
AU514167B2 (en) 1977-03-12 1981-01-29 Kobe Steel Limited Thermal dehydration of brown coal
JPS5718794A (en) * 1980-07-10 1982-01-30 Mitsui Cokes Kogyo Kk Dehydration of water-containing coal
US4800015A (en) 1986-04-04 1989-01-24 Simmons John J Utilization of low rank coal and peat
GB8707223D0 (en) * 1987-03-26 1987-04-29 Coal Industry Patents Ltd Coal briquetting process
AU668328B2 (en) 1993-12-27 1996-04-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Solid fuel made from porous coal and production process and production apparatus therefore
JP2000290673A (ja) * 1999-04-09 2000-10-17 Kobe Steel Ltd 改質低品位炭及びその製造方法並びに石炭−水スラリー
JP4369779B2 (ja) * 2004-03-18 2009-11-25 株式会社神戸製鋼所 低品位炭を原料とする固形燃料の製造装置および製造方法
JP3920304B1 (ja) * 2005-11-22 2007-05-30 株式会社神戸製鋼所 低品位炭を原料とする固形燃料の製造方法および製造装置
JP4805802B2 (ja) * 2006-12-13 2011-11-02 株式会社神戸製鋼所 固形燃料の製造方法および製造装置
JP4231090B1 (ja) * 2008-01-09 2009-02-25 株式会社神戸製鋼所 固形燃料の製造装置および製造方法
JP4580011B2 (ja) 2008-10-09 2010-11-10 株式会社神戸製鋼所 固形燃料の製造方法及び該製造方法により作製された固形燃料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503461A (ja) * 1986-04-04 1988-12-15 シモンス,ジヨン ジエー. 低品位炭及び泥炭の利用
JP2776278B2 (ja) * 1993-12-27 1998-07-16 株式会社神戸製鋼所 多孔質炭を原料とする固形燃料及びその製造方法
JPH10158666A (ja) * 1996-11-27 1998-06-16 Kobe Steel Ltd 脱水多孔質炭
RU2185421C2 (ru) * 2000-04-17 2002-07-20 Зао "Сибиус" Порошково-угольное топливо и способ его получения
JP2005139342A (ja) * 2003-11-07 2005-06-02 Kobe Steel Ltd 低品位炭を原料とする固形燃料の製造方法および製造装置
JP2005206695A (ja) * 2004-01-22 2005-08-04 Kobe Steel Ltd 低品位炭を原料とする固形燃料の製造装置および製造方法
US20070062103A1 (en) * 2005-09-22 2007-03-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method and apparatus for manufacturing solid fuel from raw material coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671204C1 (ru) * 2014-12-08 2018-10-30 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Способ получения твердого топлива и установка для получения твердого топлива

Also Published As

Publication number Publication date
RU2525401C1 (ru) 2014-08-10
DE112009002398B4 (de) 2013-05-29
WO2010041572A1 (ja) 2010-04-15
RU2011118379A (ru) 2012-11-20
US20120011766A1 (en) 2012-01-19
AU2009301710A1 (en) 2010-04-15
DE112009002398T5 (de) 2012-01-19
JP4580011B2 (ja) 2010-11-10
US20150135584A1 (en) 2015-05-21
US9005317B2 (en) 2015-04-14
JP2010090296A (ja) 2010-04-22
RU2012152898A (ru) 2014-06-20
CN102171315A (zh) 2011-08-31
AU2009301710B2 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
RU2483097C2 (ru) Способ получения твердого топлива и твердое топливо, полученное данным способом
CN101535452B (zh) 固体燃料的制造方法及制造装置
RU2482167C2 (ru) Способ получения брикетированного твердого топлива с использованием пористого угля в качестве исходного материала
CN1300285C (zh) 使用低级煤制造固体燃料的装置和方法
JP2776278B2 (ja) 多孔質炭を原料とする固形燃料及びその製造方法
WO2007060852A1 (ja) 石炭を原料とする固形燃料の製造方法および製造装置
CN103998585B (zh) 无灰煤的制造方法
US20070062103A1 (en) Method and apparatus for manufacturing solid fuel from raw material coal
JP5444151B2 (ja) 固形燃料
JP4913574B2 (ja) 固形燃料の製造方法および製造装置
JP3787192B2 (ja) 高濃度多孔質炭スラリーの製造方法
JP2009286959A (ja) 固形燃料の製造方法および製造装置
JPH07233384A (ja) 熱改質炭、その製造方法及び製造装置
JP2011111529A (ja) 耐発火性石炭およびその製造方法
JP6026367B2 (ja) 改質石炭の製造方法
JPH0141678B2 (ru)
WO2017047270A1 (ja) 改質石炭の製造方法