WO2010038748A1 - 界磁極用磁石体、この界磁用磁石体の作製方法、及び永久磁石型回転電機 - Google Patents

界磁極用磁石体、この界磁用磁石体の作製方法、及び永久磁石型回転電機 Download PDF

Info

Publication number
WO2010038748A1
WO2010038748A1 PCT/JP2009/066967 JP2009066967W WO2010038748A1 WO 2010038748 A1 WO2010038748 A1 WO 2010038748A1 JP 2009066967 W JP2009066967 W JP 2009066967W WO 2010038748 A1 WO2010038748 A1 WO 2010038748A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
field pole
pieces
pole magnet
fractured
Prior art date
Application number
PCT/JP2009/066967
Other languages
English (en)
French (fr)
Inventor
村上 亮
英樹 西村
木野 伸郎
橋本 富仁
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN200980138614.3A priority Critical patent/CN102171908B/zh
Priority to US13/122,032 priority patent/US8510933B2/en
Priority to EP09817780.1A priority patent/EP2333935B1/en
Priority to JP2010531862A priority patent/JP5429178B2/ja
Publication of WO2010038748A1 publication Critical patent/WO2010038748A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • Y10T29/49798Dividing sequentially from leading end, e.g., by cutting or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49815Disassembling
    • Y10T29/49817Disassembling with other than ancillary treating or assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a magnet for field pole disposed on a rotor or stator of an electric motor, a generator or the like, a method of manufacturing the magnet for field pole, and a permanent magnet type rotary electric machine.
  • Japanese Patent Application Laid-Open No. 11-252833 discloses a field pole magnet for use in a permanent magnet type motor.
  • the whole of the magnet pieces divided in plural in the axial direction or circumferential direction of the iron core in order to suppress heat generation is covered with the insulating layer in a state where the respective magnet pieces are insulated from each other It is used by being inserted and embedded in a plurality of mounting holes provided at a plurality of places spaced apart from each other in the circumferential direction of the iron core outer peripheral portion of the permanent magnet type motor.
  • the conventionally known field pole magnet has the following problems. 1) Since the insulating layer is inserted between the magnet pieces, the adhesive strength of the magnet pieces is likely to be reduced. 2) Since the dimensional error of the thickness of the insulating layer is integrated with the shape and dimension when the field pole magnet body is inserted into the iron core, the dimensional tolerance can not be reduced. 3) In order to solve the problem shown in the above 2), after integrating each magnet piece, a finishing process for dimension adjustment is required again, resulting in an increase in cost. 4) Since insulating layers are required between the magnet pieces, the cost for providing the insulating layers is required. 5) Since the fractured surface is exposed, rust tends to occur on each fractured surface.
  • the manufacturing cost can be reduced by simplifying the process of integrating the magnet pieces, and the field pole magnet body that does not need to be subjected to anticorrosion treatment on the fracture surface, the field pole It is an object of the present invention to provide a method of manufacturing a magnet body and a permanent magnet type rotary electric machine.
  • a first aspect of the present invention is a field pole magnet body disposed on a rotor or a stator of a permanent magnet type rotating electrical machine, comprising a plurality of magnet pieces formed by breaking and dividing one permanent magnet; A field pole magnet body having one or more magnet piece holding members for holding a plurality of magnet pieces.
  • a second aspect of the present invention is a method of manufacturing a field pole magnet, wherein a plurality of magnet pieces formed by breaking and dividing one permanent magnet are arranged in parallel with each other. It is a manufacturing method of the field pole magnet for breaking and dividing while holding a permanent magnet by one or more magnet piece holding members.
  • a third aspect of the present invention is a permanent magnet type rotary electric machine in which the field pole magnet body described above is disposed on a rotor or a stator.
  • FIG. 1 shows a schematic configuration of a main part of a permanent magnet type motor to which the field pole magnet according to the first embodiment of the present invention is applied, wherein (A) is a front view thereof and (B) is I
  • FIG. 7 is a cross-sectional view of a rotor taken along line I.
  • FIG. 2 is a perspective view of a permanent magnet having a breaking notch formed on the top surface.
  • FIG. 3 is a perspective view of the field pole magnet according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a divided surface of the broken and divided magnet.
  • FIG. 5 is a perspective view of a field pole magnet according to a second embodiment of the present invention.
  • FIG. 6 is a perspective view of a field pole magnet according to a third embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of a method of manufacturing the field pole magnet according to Comparative Example 2.
  • FIG. 8 is an explanatory diagram of a method of manufacturing the field pole magnet according to the first embodiment.
  • FIG. 9 is an explanatory diagram of a method of manufacturing the field pole magnet according to the second embodiment.
  • FIG. 10 is an explanatory diagram of a method of manufacturing the field pole magnet according to the third embodiment.
  • FIG. 11 is an explanatory diagram of a method of manufacturing the field pole magnet according to the fourth embodiment.
  • FIG. 12 is an explanatory view showing the main parts of a resistance measuring device for measuring the electric resistance value of the field pole magnet body.
  • FIG. 13 is an explanatory view showing the configuration of a heat generation measuring device for measuring the heat generation of the field pole magnet body.
  • FIG. 1 shows a schematic configuration of a main part of a permanent magnet type motor to which the field pole magnet according to the first embodiment of the present invention is applied, wherein (A) is a front view thereof and (B) is I
  • FIG. 7 is a cross-sectional view of a rotor taken along line I.
  • a permanent magnet type motor will be described as an example of the permanent magnet type rotary electric machine.
  • a permanent magnet type motor (hereinafter simply referred to as "motor") A according to an embodiment of the present invention is disposed coaxially with an annular stator 10 constituting a part of a casing (not shown) and the stator 10 And a cylindrical rotor 20 as a main component.
  • the stator 10 is configured to have a stator main body 11 and a plurality of coils 12...
  • coil holes 13 that are substantially trapezoidal in a front view for disposing the coils 12.
  • the coils 12 are arranged at equal angular intervals on the same circumference around the axis O.
  • the rotor 20 is configured to include a rotor main body 21 and a plurality of field pole magnets (hereinafter simply referred to as “field pole magnets”) 30... According to the first embodiment.
  • the rotor main body 21 is formed at equal angular intervals on the same circumference with the axial center O as a center, with the fitting holes 22 having a rectangular shape in a front view and a horizontal shape for inserting and fitting the field pole magnet body 30. It is a thing.
  • the field pole magnets 30 are arranged at equal angular intervals on the same circumference centering on the axis O.
  • Reference numeral 23 denotes a rotary shaft that is connected to the rotor main body 21 in agreement with the axial center O, and 24 denotes end plates disposed on both sides of the stator 10.
  • FIG. 2 is a perspective view of a permanent magnet in which a breaking notch is formed on the upper surface
  • FIG. 3 is a perspective view of a field pole magnet according to an embodiment of the present invention.
  • the permanent magnet 30 'shown in FIG. 2 is a neodymium-iron-boron (NdFeB) magnet having a relatively low electrical resistance, and is formed in a predetermined shape in advance for being disposed on the rotor 20 of the motor A described above.
  • the cross-sectional shape of the fitting hole 22 described above is formed into a rectangular parallelepiped having the same shape and the same large cross section. In other words, it is formed in a size that can be inserted into and fitted to the fitting hole 22.
  • the NdFeB magnet is shown as an example, the present invention is not limited to this, and it is a matter of course that, for example, a SmCo magnet or the like can be adopted.
  • the fracture notches 30b are formed on the top surface 30a 'of the permanent magnet 30' at a position to be fracture-split.
  • the fracture notches 30b are formed at intervals dividing the long sides 30c 'and 30c' of the permanent magnet 30 'into four equal parts.
  • processing is performed by cutting the glass.
  • the field pole magnet body 30 is, as shown in FIG. 3, for holding four magnet pieces 31 to 34 formed by breaking and dividing one permanent magnet 30 ', and these magnet pieces 31 to 34.
  • One magnet piece holding member 40 is provided.
  • the magnet pieces 31 to 34 cause the fractured surfaces 31a to 34a exposed by breaking the above-described permanent magnet 30 'to face each other.
  • the broken surfaces 31a to 34a of the adjacent magnet pieces 31 to 34 which are broken and divided are directly in contact with each other.
  • the cut surface of the magnet piece differs from the cut surface of the cut and divided magnet piece, and the surface has an uneven shape.
  • the cutting portion is not removed as cutting powder as in the case of cutting and dividing using, for example, a rotary blade, and for this reason, the breaking surfaces which are the dividing faces between magnet pieces are Almost corresponds to those bonded before breaking.
  • the electrical resistance value at the fracture surfaces 31a and 32a is set to be five or more times the electrical resistance value of the magnet piece per unit length 1 cm in the direction perpendicular to the fracture surfaces 31a and 32a. doing. Specifically, the electric resistance value at the fracture surfaces 31a and 32a is 0.5 m ⁇ or more.
  • the electric resistance values at the fracture surfaces 31a and 32a are set as follows. First, since the fracture surfaces 31a and 32a of the adjacent magnet pieces 31 and 32, for example, in connection with fracture division are brought into direct contact with each other, these fracture surfaces are in direct contact with some or all of these regions Do.
  • the contact resistance value when the fractured surfaces are in direct contact depends on the true contact area of the fractured surfaces, and the contact resistance value is considered to be proportional to the reciprocal of the true contact area.
  • the true contact area is represented by the average curvature of the micro-protrusions present on the surface and the contact area x the number of contacts, which varies with the load.
  • the electric resistance value in the torn surface 31a, 32a is set by changing the load which acts on a torn surface to increase or decrease.
  • the "direction perpendicular to the fracture surfaces 31a and 32a" is the direction indicated by ⁇ in FIGS. In other words, it is a direction parallel to the long sides 30c 'and 30c' shown in FIG.
  • the electrical resistance value in the fracture surface of the magnet pieces arranged in parallel may be 50 or more times the electrical resistance value of the magnet piece per unit length 1 cm in the direction perpendicular to the fracture surface. Specifically, the electrical resistance value at the fracture surface is 5 m ⁇ or more. In this case, the same heat generation suppressing effect as when completely insulated is obtained.
  • the magnet piece holding member 40 is a strip having a length and a width to be attached to the magnet pieces 31 to 34, and is attached to portions other than the broken surfaces 31a to 34a of the magnet pieces 31 to 34. The magnet pieces 31a to 34a are held.
  • the rectangular prism shaped magnet pieces 31 to 34 are formed by breaking and dividing the rectangular parallelepiped permanent magnet 30 ′ as described above, the fracture surfaces 31 a to 34 a of the magnet pieces 31 to 34 are obtained.
  • the magnet piece holding member 40 is attached to one of the surfaces perpendicular to the surface (the lower surface in the drawing) 31b to 34b.
  • the magnet piece holding member 40 is a stretchable and water repellent tape having an adhesive layer formed on the upper surface, and is formed in the same shape as the contour of one surface (lower surface in the drawing) 31b to 34b. In other words, it is adhered to the entire area of one surface (lower surface in the drawing) 31b to 34b.
  • the tape having stretchability and water repellency fluorine resin, polyphenylene sulfide (PPS), polypropylene, polyester or the like can be used.
  • the following effects can be obtained. -The process of integrating the magnet pieces can be simplified, and the manufacturing cost can be reduced.
  • the magnet piece holding member such as the adhesive tape
  • the magnet piece can be handled as an integral magnet, and the insertion to the rotor or the stator can be easily performed.
  • the field pole magnet 30 can be maintained at the same size as the permanent magnet 30 'before breaking and dividing, that is, since the field pole magnet 30 is divided into a plurality of magnet pieces by breaking and dividing,
  • the fractured surfaces after division substantially correspond to those bonded before fracture. That is, when the fractured surfaces in one divided surface are joined in the same direction as before fracture, the substantially same state as before fracture is restored. Then, by coupling the fractured surfaces, the shape of the field pole magnet after coupling can be made substantially the same as the shape of the field pole magnet before division. For this reason, it is possible to reduce the cost because it is unnecessary to finish the field pole permanent magnet after integrating the plurality of divided magnet pieces.
  • the concavo-convex portion of the fractured faces exerts the positioning action of the magnet pieces to each other, and the joining operation becomes easy. Furthermore, as in the prior art, the dimensional error due to the insertion of the insulating layer or the division into a plurality is not integrated and increased. Further, as described above, the permanent magnet 30 'is formed into a rectangular parallelepiped having the same shape and the same cross section as the cross sectional shape of the fitting hole 22 so that the permanent magnet 30' is broken and divided to produce a field pole magnet body Also in the case of 30, it is possible to easily insert and fit into the fitting hole 22.
  • the electrical resistance value at the fracture surface of the magnet piece is made five or more times the electrical resistance value of the magnet piece itself per 1 cm unit length in the direction perpendicular to the fracture surface. Since the electric resistance value in the cross section is 0.5 m ⁇ or more, the current value flowing through the field pole magnet body 30 can be reduced and heat generation can be suppressed. Therefore, it is not necessary to completely insulate the irregular fracture surface.
  • the plurality of divided magnet pieces may be integrated by being coupled with an insulating member.
  • the insulating member has an adhesive and nonconductive particles (for example, glass beads or ceramic particles) which are insulating inclusions mixed with the adhesive and have a function of a spacer.
  • the adhesive is, for example, an epoxy resin or a silicone resin, and the particles are mixed with this adhesive and used after being stirred. Thus, the particles are dispersed throughout the adhesive and become substantially uniformly mixed. As described above, the contact resistance between the magnet pieces is increased, so that the eddy currents can be more reliably divided between the magnet pieces, and the eddy currents are divided. It turns only in the magnet piece. As a result, the heat generation suppressing effect by dividing into a plurality of magnet pieces can be further enhanced.
  • the interface contact resistance value between the magnet pieces can be kept large, so that the heat generation due to the eddy current generated in the magnet in the motor can be effectively suppressed. Can.
  • the magnet piece holding member 40 is adhered to the entire area of the above-described one surface 31b to 34b, a plurality of magnet pieces can be handled as an integral magnet, and at least one surface can be made water repellant. . Thereby, since it is possible to prevent the infiltration of water or the like that promotes corrosion from the one surface to the fracture surface, it is possible to provide an anticorrosion performance.
  • FIG. 5 is a perspective view of the field pole magnet according to the second embodiment of the present invention
  • FIG. 6 is a perspective view of the field pole magnet according to the second embodiment of the present invention.
  • symbol same as them is attached
  • subjected and description is abbreviate
  • the field pole magnet body 30A includes four magnet pieces 31 to 34 formed by breaking and dividing one permanent magnet, and these magnet pieces There are two magnet piece holding members 40 and 41 for holding 31-34.
  • the magnet piece holding member 41 is equivalent to the magnet piece holding member 40 described above, and is attached to one surface (upper surface in the figure) 31c to 34c of the surfaces perpendicular to the broken surfaces 31a to 34a of the magnet pieces 31 to 34. I'm wearing it. That is, the magnet piece holding members 40 and 41 are attached to two surfaces of the lower surfaces 31b to 34b in the drawing and the upper surfaces 31c to 34c in the drawing.
  • the magnet piece holding members 40 and 41 are provided over the entire area of the lower surfaces 31b to 34b and the upper surfaces 31c to 34c. Since it adhere
  • the field pole magnet body 30B includes four magnet pieces 31 to 34 formed by breaking and dividing one permanent magnet, and And one magnet piece holding member 42 for holding the magnet pieces 31 to 34.
  • the magnet piece holding member 42 is formed of a cylindrical heat-shrinkable film, and is in close contact with all the surfaces perpendicular to the fracture surfaces 31a to 34a.
  • thermoplastic resins such as olefin type, ester type and imide type, rubber, fluorine resin and the like can be used.
  • the film since all the surface perpendicular to the fracture surface is covered, the film may be broken due to excessive stress applied to the film when the rotor is inserted, and the gaps between the magnet pieces may be uneven, etc. Disappears and handling becomes easy.
  • a stretchable film By covering the entire surface perpendicular to the fracture surface with a stretchable film, it is possible to handle a plurality of magnet pieces as an integral magnet, and further, by having water repellency, corrosion to the fracture surface is caused. In addition, it can prevent the entry of moisture and the like that promote Furthermore, the connection of the magnet pieces can be simplified by using the heat shrinkable film.
  • the manufacturing method of the field pole magnet body 30 according to one embodiment of the present invention described above is configured by arranging four magnet pieces 31 to 34 formed by breaking and dividing one permanent magnet 30 'in parallel with one another.
  • the field pole magnet body 30 is characterized in that one permanent magnet 30 'is broken while being held by, for example, one magnet piece holding member 40.
  • the magnet pieces 31 to 34 may be magnetized before breaking and dividing.
  • the magnet pieces 31 to 34 after breaking and division held by the magnet piece holding member 40 may be magnetized. In this case, even when the magnet pieces 31 to 34 are inserted into the rotor, for example, the magnetic attachment to the rotor is not performed, so the insertion work can be easily performed.
  • the field pole magnet body is broken and divided to form a plurality of magnet pieces, and the plurality of broken and divided magnet pieces are combined to be integrated.
  • one field pole magnet body may be broken and divided into a plurality of magnet pieces, which may be collected to produce the original field pole magnet body, or may be previously broken.
  • a plurality of divided magnet pieces may be collected to form one field pole magnet body.
  • the fractured surface of the magnet piece has an appropriate roughness unlike the plane shape of the cut surface cut by a rotary blade etc., and the surface is uneven.
  • the plurality of magnet pieces are The fractured surfaces need to be connected so as to abut each other. In this case, it is preferable that the plurality of magnet pieces are coupled such that the fractured surfaces of one divided surface abut each other in the same direction as that before the division.
  • the field pole magnet body When the field pole magnet body is divided into individual magnet pieces by cutting with a rotary blade or the like, it is necessary to grind the division faces of the magnet pieces in order to reduce the dimensional error of the magnet pieces. Thereby, the smoothness of the divided surfaces of the magnet pieces is improved, and the contact area between the adjacent magnet pieces is increased to reduce the contact resistance, so that the heat generation suppressing effect due to the division of the magnet body is reduced.
  • the fracture surfaces which are division surfaces between the magnet pieces substantially correspond to those which were joined before fracture, for example, as in the case of division by cutting using a rotary blade.
  • the contact resistance between the magnet pieces is increased, and the division of the eddy current between the magnet pieces can be performed more reliably.
  • the heat generation suppressing effect by dividing into a plurality of magnet pieces can be further enhanced.
  • the eddy current loss of the field pole magnet body 30 generated at the time of use of the motor A is suppressed using an inexpensive permanent magnet formed by breaking and dividing. , And can provide the motor A with high efficiency at low cost.
  • by suppressing heat generation due to magnet eddy current loss it is possible to suppress demagnetization of the permanent magnet and to allow a higher current to flow to the stator, thereby obtaining a motor exhibiting high output at a lower cost.
  • Comparative Example 1 a plate-like sample of length 10 ⁇ width 30 ⁇ thickness 5 mm is cut out from a commercially available NdFeB sintered magnet, and four of them are adhered by an adhesive while sandwiching an insulating paper between magnets, A magnet of length 40 ⁇ width 30 ⁇ thickness 5 mm was produced.
  • FIG. 7 to 11 are explanatory views respectively showing the manufacturing method of Comparative Example 2 and Examples 1 to 4.
  • the manufacturing method of the field pole magnet according to Comparative Example 2 shown in FIG. 7 is as follows. First, as shown in (A), the permanent magnet 30 'is sandwiched by the upper and lower guides 90 and 91, and the portion to be divided into pieces is struck and punched by the punch 92. After that, as shown in (B), the adhesive s is applied to the fractured surfaces of the divided magnet pieces 31 to 34, and as shown in (C), the fractures of the magnet pieces 31 to 34 are adhered to each other By doing this, the field pole magnet body according to Comparative Example 2 is manufactured.
  • non-conductive particles for example, glass beads or ceramic particles which are insulating inclusions and have a spacer function in addition to an adhesive and a plurality of divided magnet pieces And so on
  • non-conductive particles for example, glass beads or ceramic particles which are insulating inclusions and have a spacer function in addition to an adhesive and a plurality of divided magnet pieces And so on
  • the manufacturing method of the field pole magnet according to Example 1 shown in FIG. 8 is as follows. First, as shown in (A), the permanent magnet 30 'is held between the upper and lower guides 90 and 91, and a portion to be made into a magnet piece is hit and broken with a punch 92 to break it. After that, as shown in (B), after the broken surfaces of the magnet pieces 31 to 34 related to division are brought into contact with each other, as shown in (C), the magnet pieces are held on the upper and lower surfaces of the magnet pieces 31 to 34 By sticking the members 40 and 41, the field pole magnet body according to the first embodiment is manufactured.
  • the method of manufacturing the field pole magnet of the second embodiment shown in FIG. 9 is as follows. First, as shown in (A), after the magnet piece holding member 40 is attached to the lower surface of the permanent magnet 30 ', as shown in (B), it is held by upper and lower guides 90 and 91 to form magnet pieces. The portion to be cut is broken by hitting with a punch 92. Thereafter, as shown in (C), the magnet piece holding member 41 is attached to the upper surfaces of the magnet pieces 31 to 34, thereby producing a field pole magnet body according to the second embodiment.
  • the method of manufacturing the field pole magnet of the third embodiment shown in FIG. 10 is as follows. First, as shown in (A), notches 30b are formed on the upper surface 30a 'of the permanent magnet 30' at predetermined intervals by cutting the glass 93 or the like. As shown to (B), after sticking the magnet piece holding member 40 on the lower surface of permanent magnet 30 ', as shown to (C), it clamps with the upper and lower guides 90 and 91, and it is going to make it a division piece. The part is broken with a punch 92 by hitting. Thereafter, as shown in (D), the magnet piece holding member 41 is attached to the upper surfaces of the magnet pieces 31 to 34, thereby producing a field pole magnet body according to the third embodiment.
  • the method of manufacturing the field pole magnet of the fourth embodiment shown in FIG. 11 is as follows. First, as shown in (A), notches 30b are formed on the upper surface 30a 'of the permanent magnet 30' at predetermined intervals by cutting the glass 93. The notch may be formed by laser processing or wire cut electric discharge processing. As shown in (B), after the permanent magnet 30 'is covered with the cylindrical magnet piece holding member 42, as shown in (C), it is sandwiched by the upper and lower guides 90 and 91 to make it into divided pieces The part to be cut is hit by a punch 92 to break it.
  • the broken pieces of the magnet pieces 31 to 34 are restored to the state in which the broken surfaces of the magnet pieces 31 to 34 abut each other by the elastic force of the magnet piece holding member 42. Do. In other words, it has almost the same size as the permanent magnet 30 '.
  • Example 1 a load of 350 kg was required for one division, and the division surface was also irregular, so many chips were observed. Although it took time for the step of aligning the divided fractured surfaces, the adhesive tape was not used to apply the adhesive, so the working time was shortened and the work was completed in 10 minutes.
  • Example 2 a load of 350 kg was required for one division, and the division surface was also irregular, so many chips were observed. However, since one surface was fixed with adhesive tape before division, placing the divided magnet pieces on a flat surface matched the fractured surface in the same manner as before division, and it was enough to put the tape on the opposite surface. The work time was significantly reduced and the work was finished in 3 minutes.
  • Example 3 since the notch was introduced, the load applied to one division was reduced to 70 kg of about 1/5, and the fractured surface was also broken along the notch so that almost no chipping was observed. . Moreover, since one surface was fixed with the adhesive tape before division
  • FIG. 3 since one surface was fixed with the adhesive tape before division
  • Example 4 since the notch was introduced, the load applied to one division was reduced to 70 kg of about 1/5 as in Example 3, and the fractured surface was also broken along the notch, so it was almost linear. I did not see any omissions.
  • a tubular heat-shrinkable rubber was used to cover the four sides perpendicular to the fracture surface, and was shrunk at a temperature of 100 ° C. or higher to bring it into close contact with the magnet. As a result, the rubber stretched at the time of magnet breakage is contracted, and the fractured surface is automatically aligned sequentially from the broken surface to the original position, so that the magnet integration work becomes unnecessary.
  • Comparative Example 1 the contact resistance value was ⁇ , and it was confirmed that the insulation was performed.
  • the contact resistance between the magnets of Comparative Example 2 is 1.5 m ⁇ , which is higher than that of Comparative Example 1, probably because the contact pressure between the magnets is increased due to the contraction of the adhesive.
  • the value is 5 m ⁇ or more, and the result of checking the heat generation state by applying an AC magnetic field in the air core coil is also equivalent to Comparative Example 1 in which the magnets are completely insulated.
  • FIG. 12 is an explanatory view showing the main part of a resistance measuring device for measuring the electric resistance value of each field pole magnet body
  • FIG. 13 is a heat generation for measuring the heat generation of each field pole magnet body. It is an explanatory view showing composition of a measuring device.
  • the resistance measurement apparatus B shown in FIG. 12 performs measurement according to a four-terminal method using an AC milliohm tester (manufactured by HIOKI), and the resistance measurement apparatus B is used for the field pole magnet 70 sandwiched between the jigs 50 and 51.
  • the load is applied in the direction ⁇ orthogonal to the fracture surface.
  • the load can be set to an arbitrary value.
  • the jigs 50 and 51 and the field pole magnet body 30 are insulated.
  • the lead terminals 52 and 53 are connected to the magnet piece 31 and the magnet piece 34.
  • the heat generation measuring device C shown in FIG. 13 is disposed in a cylindrical air core induction coil 60 in a state where the field pole magnet 30 is sandwiched and fixed between the heat insulators 61 and 62, and the field pole magnet 30 is arranged.
  • the temperature rise of the surface of the sample (field pole magnet body 30) is measured by applying an alternating magnetic field of 5 kHz and 6 mT to the
  • the signal generator 80 generates a required signal to be sent to the air core induction coil 60, and the amplifier 81 amplifies the required signal generated by the signal generator 80.
  • the bottomed cylindrical case 82 accommodates the air core induction coil 60, the field pole magnet 70 and the heat insulators 61 and 62.
  • the magnet for field pole according to Comparative Examples 1 and 2 and Examples 1 to 4 corresponding to the present invention shown in Table 2 were made to have cut surfaces or fracture surfaces facing each other. In the state, it fixed to the said jig etc. and performed.
  • the embodiments and examples described above are merely examples that are described to facilitate the understanding of the present invention.
  • the present invention is not limited to those embodiments and examples, and can be variously modified within the technical scope of the present invention.
  • IPM embedded motor
  • SPM surface magnet structure
  • the field pole magnet body according to the present invention is not limited to the rotor, but may be disposed on the stator, and, of course, can also be applied to a generator.
  • the manufacturing cost can be reduced by simplifying the process of integrating the magnet pieces, and the field pole magnet body that does not need to be subjected to anticorrosion treatment on the fractured surface, and this field A manufacturing method of a magnetic pole magnet body and a permanent magnet type rotating electric machine are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 永久磁石型回転電機のロータ又はステータに配設する界磁極用磁石体であり、一の永久磁石を破断分割することにより形成した複数の磁石片31~34と、これらの磁石片31~34を保持するための一又は二以上の磁石片保持部材40と、を有している界磁極用磁石体。

Description

界磁極用磁石体、この界磁用磁石体の作製方法、及び永久磁石型回転電機
 本発明は、電動機,発電機等のロータやステータに配設する界磁極用磁石体、この界磁極用磁石体の作製方法、及び永久磁石型回転電機に関する。
 特開平11-252833号公報は、永久磁石型電動機に用いる界磁極用磁石体を開示している。当該界磁極用磁石体は、発熱抑制を図るために鉄心の軸方向又は周方向に複数に分割された磁石片の全体が、その各磁石片相互間を絶縁した状態で絶縁層により被覆されているものであり、永久磁石型電動機の鉄心外周部の周方向であって、互いに間隔をあけた複数箇所に設けた複数の取付け孔にそれぞれ挿入埋設して使用される。
 上記文献には、各磁石片の作製方法に関しては記述されていないが、従来においては、回転刃物を用いて切断分割するか、圧粉成形するかのいずれかによって作製された磁石切片を、絶縁層を介して接着剤等により接着することにより界磁極用磁石体を得る方法が知られている。
 しかしながら、従来から知られている界磁極用磁石体では、次のような問題点があった。
1)磁石片間に絶縁層が挿入されることから、磁石片同士の接着強度の低下が起こりやすい。
2)絶縁層厚み分の寸法誤差が、界磁極用磁石体を鉄心に挿入するときの形状寸法に積算されるため、寸法公差を小さく取れない。
3)上記2)に示す問題を解決するためには、各磁石片を一体化した後に寸法調整のための仕上げ加工が再度必要となって、コスト高となる。
4)磁石片間にそれぞれ絶縁層が必要とされているため、絶縁層を設けるためのコストが必要となる。
5)破断面が露出しているので各破断面に錆が生じやすい。
 そこで本発明は、磁石片を一体化する工程を簡素化することにより、製造コストの低減を図ることができるとともに、破断面に防錆処理を施す必要がない界磁極用磁石体、この界磁極用磁石体の作製方法、及び永久磁石型回転電機の提供を目的としている。
 本発明の第1の態様は、永久磁石型回転電機のロータ又はステータに配設する界磁極用磁石体であって、一の永久磁石を破断分割することにより形成した複数の磁石片と、上記複数の磁石片を保持するための一又は二以上の磁石片保持部材と、を有する界磁極用磁石体である。
 本発明の第2の態様は、一の永久磁石を破断分割することにより形成した複数の磁石片同士を、互いに並列させて構成している界磁極用磁石体の作製方法であって、一の永久磁石を、一又は二以上の磁石片保持部材により保持しながら破断分割する界磁極用磁石体の作製方法である。
 本発明の第3の態様は、上記した界磁極用磁石体を、ロータ又はステータに配設した永久磁石型回転電機である。
図1は、本発明の第一の実施形態に係る界磁極用磁石体を適用した永久磁石型電動機の主要部の概略構成を示し、(A)は、その正面図、(B)は、I-I線に沿うロータの断面図である。 図2は、上面に破断用切欠きを形成した永久磁石の斜視図である。 図3は、本発明の第一の実施形態に係る界磁極用磁石体の斜視図である。 図4は、破断分割した磁石の分割面を示す断面図である。 図5は、本発明の第二の実施形態に係る界磁極用磁石体の斜視図である。 図6は、本発明の第三の実施形態に係る界磁極用磁石体の斜視図である。 図7は、比較例2に係る界磁極用磁石体の作製方法の説明図である。 図8は、実施例1に係る界磁極用磁石体の作製方法の説明図である。 図9は、実施例2に係る界磁極用磁石体の作製方法の説明図である。 図10は、実施例3に係る界磁極用磁石体の作製方法の説明図である。 図11は、実施例4に係る界磁極用磁石体の作製方法の説明図である。 図12は、界磁極用磁石体の電気抵抗値を測定するための抵抗測定装置の要部を示す説明図である。 図13は、界磁極用磁石体の発熱を測定するための発熱測定装置の構成を示す説明図である。
 以下に、本発明を実施するための最良の形態について、図面を参照して説明する。図1は、本発明の第一の実施形態に係る界磁極用磁石体を適用した永久磁石型電動機の主要部の概略構成を示し、(A)は、その正面図、(B)は、I-I線に沿うロータの断面図である。なお、本実施形態においては、永久磁石型回転電機として永久磁石型電動機を例として説明する。
 本発明の一実施形態に係る永久磁石型電動機(以下、単に「電動機」という。)Aは、図示しないケーシングの一部を構成する円環形のステータ10と、このステータ10と同軸的に配置された円柱形のロータ20とを主要の構成としている。
 ステータ10は、ステータ本体11と、複数のコイル12…とを有して構成されており、そのステータ本体11には、コイル12…を配設するための正面視略台形にしたコイル孔13…が、軸心Oを中心とした同一円周上に等角度間隔で形成されている。換言すると、コイル12…が、上記軸心Oを中心とした同一円周上に等角度間隔で配列されている。
 ロータ20は、ロータ本体21と、第一の実施形態に係る複数の界磁極用磁石体(以下、単に「界磁極用磁石体」という。)30…とを有して構成されている。
 ロータ本体21は、界磁極用磁石体30を挿入嵌合するための正面視横長方形にした嵌合孔22…を、上記軸心Oを中心とした同一円周上に等角度間隔で形成したものである。
 換言すると、界磁極用磁石体30…が、上記軸心Oを中心とした同一円周上に等角度間隔で配列されている。
 なお、23は、軸心Oに一致してロータ本体21に連結された回転軸、24は、ステータ10の両面に配設されたエンドプレートである。
 図2は、上面に破断用切欠きを形成した永久磁石の斜視図、図3は、本発明の一実施形態に係る界磁極用磁石体の斜視図である。
 図2に示す永久磁石30´は、比較的電気抵抗の低いネオジウム‐鉄‐ホウ素(NdFeB)磁石であり、上記した電動機Aのロータ20に配設するために予め所定の形状に成形されている。
 本実施形態においては、上記した嵌合孔22の断面形状と同形同大の断面にした直方体形に形成している。換言すると、嵌合孔22に挿入嵌合できる大きさに成形されている。
 なお、NdFeB磁石を例として示しているが、これに限るものではなく、例えばSmCo磁石等を採用することができることは勿論である。
 永久磁石30´の上面30a´には、破断分割しようとする位置に破断用切欠き30b…が形成されている。
 本実施形態においては、永久磁石30´の長辺30c´,30c´を四等分する間隔に破断用切欠き30bを形成している。本実施形態においては、ガラス切りによって加工形成している。
 上記のような破断用切欠き30bを永久磁石30´に形成することにより、破断分割時に加えられる応力を集中させることができるようになり、所望の位置において所望の個数に破断分割することが容易となる。
 界磁極用磁石体30は、図3に示すように、一の永久磁石30´を破断分割することにより形成した四つの磁石片31~34と、これらの磁石片31~34を保持するための一の磁石片保持部材40とを有している。
 磁石片31~34は、上記した永久磁石30´を破断することにより表出した破断面31a~34a同士を互いに対向させている。本実施形態においては、破断分割された、隣り合う磁石片31~34の各破断面31a~34a同士を直接当接している。
 磁石片は破断分割されることで、図4に示すように、破断面の表層部に微細なクラックが多数生じる。また、磁石片の破断面は、切断分割された磁石片の切断面と異なり、表面が凹凸形状となる。このように破断分割する場合は、例えば回転刃物を用いて切断分割する場合のように切断部分を切断粉として除去することがなく、このため、磁石片相互間の分割面である破断面同士は、破断前に結合していたものにほぼ相当するものとなる。
 また、上記例えば破断面31a,32aにおける電気抵抗値が、当該破断面31a,32aに垂直な方向における単位長さ1cmあたりの磁石片自体の電気抵抗値に対し、5倍以上となるように設定している。
 具体的には、破断面31a,32aにおける電気抵抗値を0.5mΩ以上にしている。
 上記破断面31a,32aにおける電気抵抗値は、次のようにして設定している。
 まず、破断分割に係る隣接する例えば磁石片31,32の破断面31a,32a同士を直接当接させているので、それらの破断面同士は、これらの一部の領域又は全部の領域が直接接触する。
 破断面同士が直接接触する場合の接触抵抗値は、それらの破断面同士の真実接触面積に左右され、また、接触抵抗値は上記真実接触面積の逆数に比例すると考えられる。
 真実接触面積は、表面に存在するミクロな突起の平均曲率と荷重によって変化する接触面積×接触点数で表される。
 そこで、本実施形態においては、破断面に作用する荷重を増減変化させることにより、破断面31a,32aにおける電気抵抗値を設定している。
 「破断面31a,32aに垂直な方向」は、図2,3にαで示す方向である。換言すると、図2に示す長辺30c´,30c´に平行な方向である。
 なお、並列した磁石片の破断面における電気抵抗値は、当該破断面に垂直な方向における単位長さ1cmあたりの磁石片自体の電気抵抗値に対し、50倍以上にしてもよい。具体的には、破断面における電気抵抗値を5mΩ以上にする。この場合、完全に絶縁したときと同等の発熱抑制効果が得られる。
 磁石片保持部材40は、磁石片31~34に貼着する長さ及び幅にした帯状のものであり、磁石片31~34の破断面31a~34a以外の部分に貼着することにより、各磁石片31a~34aを保持している。
 本実施形態においては、上記のように直方体形の永久磁石30´を破断分割することにより四角柱状の磁石片31~34を形成しているので、それら磁石片31~34の破断面31a~34aに垂直な面のうちの一面(図中下面)31b~34bに磁石片保持部材40を貼着している。
 磁石片保持部材40は、上面に接着剤層を形成した伸縮性及び撥水性を有するテープであり、一面(図中下面)31b~34bの輪郭と同形にして形成されている。換言すると、一面(図中下面)31b~34bの全領域に接着されている。
 伸縮性及び撥水性を有するテープとしては、フッ素樹脂,ポリフェニレンサルファイド(PPS),ポリプロピレン,ポリエステル等を用いることができる。
 本実施形態に係る界磁極用磁石体によれば、次の効果を得ることができる。
・磁石片を一体化する工程を簡素化し、製造コストの低減を図ることができる。
・破断面に垂直な1面を接着テープ等の磁石片保持部材により保持しているので、磁石片を一体の磁石として取り扱うことができ、ロータ又はステータへの挿入を容易に行うことができる。
・界磁極用磁石体30を、破断分割前の永久磁石30´と同じ寸法に保持できるため、すなわち、界磁極用磁石体30を破断分割することによって複数の磁石片に分割しているので、分割した後の破断面同士としては、破断前に結合していたものにほぼ相当する。すなわち、一の分割面における破断面同士を、破断前と同じ向きで接合すれば、破断前と略同じ状態が復元される。そして、この破断面同士を結合することで、結合後の界磁極用磁石体の形状を、分割前の界磁極用磁石体とほぼ同等の形状とすることができる。このため、複数に分割した磁石片を一体化した後の界磁極用永久磁石に対する仕上げ加工を不要としてコスト低下を図ることができる。また、複数の磁石片相互を、破断面同士を突き合わせて結合するときに、破断面の凹凸部が磁石片相互の位置決め作用を発揮して、結合作業が容易となる。さらに、従来のように絶縁層を挿入することや複数に分割することによる寸法誤差が積算されて大きくなるということもない。
 また、上記のように、永久磁石30´を、嵌合孔22の断面形状と同形同大の断面にした直方体形に形成しておくことにより、これを破断分割して界磁極用磁石体30としたときにも、その嵌合孔22への挿入嵌合を容易に行うことができる。
 さらに、磁石片の破断面における電気抵抗値を、その破断面に垂直な方向における単位長さ1cmあたりの磁石片自体の電気抵抗値に対して5倍以上にし、また、具体的には、破断面における電気抵抗値を0.5mΩ以上としているので、界磁極用磁石体30を流れる電流値を減少させられるとともに、発熱を抑制することができる。従って、不定形な破断面を完全に絶縁する必要がない。
 なお、破断面を完全に絶縁する場合には、分割した複数の磁石片同士を、絶縁性部材により結合することで一体化してもよい。絶縁性部材は、接着剤と、この接着剤に混合する絶縁介在物であってスペーサの機能を有する非導電性の粒子(例えばガラスビーズやセラミックス粒子など)とを有している。接着剤としては、例えばエポキシ樹脂やシリコーン樹脂であり、この接着剤に粒子を配合し攪拌してから使用する。したがって、粒子は、接着剤全体に分散してほぼ均等に混合した状態となる。以上、説明したように、各磁石片相互間の接触抵抗が増大することになって、各磁石片相互間での渦電流の分割をより確実に行うことができ、渦電流は分割された各磁石片の中だけで回ることになる。この結果、複数の磁石片に分割することによる発熱抑制効果をより高めることができる。 
 並列した分割片間に直接圧力が加わらない構成にすることにより、磁石片間の界面接触抵抗値を大きく保つことができるため、モータ内で磁石に発生する渦電流による発熱を効果的に抑えることができる。
 また、上記した一面31b~34bの全領域に磁石片保持部材40を接着しているので、複数の磁石片を一体の磁石として取り扱うことができ、少なくとも当該一面に撥水性を持たせることができる。これにより、その一面から破断面へ腐食を促進させる水分等の浸入を防ぐことができることから、防錆性能を付与することができる。
 次に、図5,6を参照して、本発明の第二,第三の実施形態に係る界磁極用磁石体について説明する。図5は、本発明の第二の実施形態に係る界磁極用磁石体の斜視図、図6は、本発明の第二の実施形態に係る界磁極用磁石体の斜視図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
 本発明の第二の実施形態に係る界磁極用磁石体30Aは、図5に示すように、一の永久磁石を破断分割することにより形成した四つの磁石片31~34と、これらの磁石片31~34を保持するための二つの磁石片保持部材40,41とを有している。
 磁石片保持部材41は、上記した磁石片保持部材40と同等のものであり、磁石片31~34の破断面31a~34aに垂直な面のうちの一面(図中上面)31c~34cに貼着している。
 すなわち、図中下面31b~34bと、図中上面31c~34cとの二面に磁石片保持部材40,41を貼着している。
 本実施形態によれば、第一の実施形態に係る界磁極用磁石体で得られる効果に加え、上記した下面31b~34bと、上面31c~34cの全領域に磁石片保持部材40,41を接着しているので、複数の磁石片を一体の磁石として取り扱うことができ、少なくとも当該二面にそれぞれ撥水性を持たせることができる。
 これにより、当該二面から破断面へ腐食を促進させる水分等の浸入を防ぐことができることから、防錆性能を付与することができる。
 次に、本発明の第三の実施形態に係る界磁極用磁石体30Bは、図6に示すように、一の永久磁石を破断分割することにより形成した四つの磁石片31~34と、これらの磁石片31~34を保持するための一つの磁石片保持部材42とを有している。
 磁石片保持部材42は、筒状の熱収縮フィルムで形成されており、破断面31a~34aに垂直な全ての面に密着して被覆されている。
 熱収縮フィルムとしては、オレフィン系、エステル系、イミド系等の熱可塑性樹脂、ゴム、フッ素樹脂等を用いることができる。
 本実施形態によれば、破断面に垂直な面の全てを被覆しているので、ロータ挿入時にフィルムにかかる応力過大によってフィルムが破損し、また、磁石片の隙間が不均一になる等の恐れがなくなり、取扱いが容易になる。
 また、破断面に垂直な面の全てを伸縮性のある膜で覆っていることにより、複数の磁石片を一体の磁石として取り扱うことができ、さらにまた、撥水性を持つことで破断面へ腐食を促進させる水分等の浸入を防ぐことができ、防錆性能を付与することができる。
 さらに、熱収縮フィルムを用いることにより、磁石片の連結を簡素化できる。
 上述した本発明の一実施形態に係る界磁極用磁石体30の作製方法は、一の永久磁石30´を破断分割することにより形成した四つの磁石片31~34同士を、互いに並列させて構成している界磁極用磁石体30に係り、一の永久磁石30´を、例えば一つの磁石片保持部材40により保持しながら破断分割することを特徴としている。
 この場合、磁石片31~34は、破断分割前に着磁したものでもよい。また、磁石片保持部材40により保持された破断分割後の各磁石片31~34に着磁するようにしてもよい。この場合、例えばロータに磁石片31~34を挿入するときにも、当該ロータに磁着することがないので、挿入作業を容易に行うことができる。
 また、上記界磁極用磁石体30の作製方法では、界磁極用磁石体を破断分割することによって複数の磁石片とし、破断分割した複数の磁石片を結合することで一体化している。
 本実施例の作成方法のように1つの界磁極用磁石体を破断分割して複数の磁石片とし、これらを集めて元の界磁極用磁石体を作成するようにしてもよいし、予め破断分割されてある複数の磁石片を集めて1つの界磁極用磁石体としてもよい。
 ただし、この場合に重要なのは、例えば回転刃物を用いて切断による分割する場合には複数の磁石片を自由に集めて交互に並べることによって1つの界磁極用磁石体とすることが可能であるが、破断分割の場合には、図4に示すように、磁石片の破断面は、回転刃物などによって切断した切断面の平面形状と異なり、適度な粗さを有しており、表面が凹凸形状となり、また、その表層部には、微細なクラックが多数生じるため、破断分割した複数の磁石片を集めて並べる際には、自由に交互に並べることはできず、それら複数の磁石片を、破断面同士が互いに当接するように結合する必要がある。この場合、当該複数の磁石片は、一の分割面にかかる破断面同士が、分割前と同じ向きで互いに当接するように結合することが好ましい。
 また、界磁極用磁石体を回転刃物などによって切断することで個々の磁石片に分割した場合には、磁石片の寸法誤差を低減するために磁石片の分割面を研削する必要がある。これにより、磁石片の分割面の平滑度が向上するので、隣接する磁石片間の接触面積が増大して接触抵抗が小さくなるため、磁石体の分割による発熱抑制効果が低下してしまう。
 一方、上記方法によれば、磁石片相互間の分割面である破断面同士が、破断前に結合していたものにほぼ相当するものとなり、例えば回転刃物を用いて切断により分割する場合のように、切断部分を切断粉として除去することがなく、各磁石片相互間の接触抵抗が増大することになって、各磁石片相互間での渦電流の分割をより確実に行うことができる。この結果、複数の磁石片に分割することによる発熱抑制効果をより高めることができる。
 上述した本発明の一実施形態に係る電動機Aによれば、破断分割してなる安価な永久磁石を用いて、当該電動機Aの使用時に発生する界磁極用磁石体30の渦電流損失を抑えることができ、高い効率の電動機Aを安価に提供することができる。
 また、磁石渦電流損失による発熱を抑制することにより、永久磁石の減磁を抑制して、より高い電流をステータに流すことができるようになり、高出力を発揮する電動機をさらに安価に得ることができる。
 市販されているNdFeB焼結磁石(電気抵抗率:約150μΩm)を用いて、表1,図2~5に示す実施例1~4、比較例1,2を作製した。表1は、比較例1,2と本発明に相当する実施例1~4とを対比したものである。
Figure JPOXMLDOC01-appb-T000001
 比較例1として、市販されているNdFeB焼結磁石から長さ10×幅30×厚さ5mmの板状サンプルを切り出し、それら4個を磁石間に絶縁紙を挟み込みながら接着剤によって接着を行い、長さ40×幅30×厚さ5mmの磁石を作製した。
 また、市販されているNdFeB焼結磁石から長さ40×幅30×厚さ5mmの板状サンプルを切り出し、それぞれ長さ方向に10mmずつ破断により四分割を行った。分割及び一体化の作業は、表1に示す比較例2,実施例1~4の5種類の方法を試した(図7~11参照)。
 図7~11は、比較例2及び実施例1~4の作製方法をそれぞれ示す説明図である。 図7に示す比較例2に係る界磁極用磁石体の作製方法は、次のとおりである。
 まず、(A)に示すように、永久磁石30´を上下ガイド90,91で挟持しておき、分割片にしようとする部分をパンチ92で衝打して破断分割する。
 その後、(B)に示すように、分割に係る磁石片31~34の破断面に接着剤sを塗布し、そして、(C)に示すように、それら磁石片31~34の破断同士を接着させることにより、比較例2に係る界磁極用磁石体を作製する。なお、破断面を完全に絶縁する場合には、分割した複数の磁石片同士を、接着剤に加えて絶縁介在物であってスペーサの機能を有する非導電性の粒子(例えばガラスビーズやセラミックス粒子など)を混合した絶縁性部材により結合することで一体化してもよい。 
 図8に示す実施例1に係る界磁極用磁石体の作製方法は、次のとおりである。
 まず、(A)に示すように、永久磁石30´を上下ガイド90,91で挟持しておき、磁石片にしようとする部分をパンチ92で衝打して破断分割する。
 その後、(B)に示すように、分割に係る磁石片31~34の破断面同士を当接させた後、(C)に示すように、それら磁石片31~34の上下面に磁石片保持部材40,41を貼着することにより、実施例1に係る界磁極用磁石体を作製する。
 図9に示す実施例2に係る界磁極用磁石体の作製方法は、次のとおりである。
 まず、(A)に示すように、永久磁石30´の下面に磁石片保持部材40を貼着した後、(B)に示すように、上下ガイド90,91で挟持して、磁石片にしようとする部分をパンチ92で衝打して破断分割する。
 その後、(C)に示すように、それら磁石片31~34の上面にも磁石片保持部材41を貼着することにより、実施例2に係る界磁極用磁石体を作製する。
 図10に示す実施例3に係る界磁極用磁石体の作製方法は、次のとおりである。
 まず、(A)に示すように、ガラス切り93…等により永久磁石30´の上面30a´に所要の間隔で切欠き30b…を形成する。
 (B)に示すように、永久磁石30´の下面に磁石片保持部材40を貼着した後、(C)に示すように、上下ガイド90,91で挟持して、分割片にしようとする部分をパンチ92で衝打して破断分割する。
 その後、(D)に示すように、それら磁石片31~34の上面にも磁石片保持部材41を貼着することにより、実施例3に係る界磁極用磁石体を作製する。
 図11に示す実施例4に係る界磁極用磁石体の作製方法は、次のとおりである。
 まず、(A)に示すように、ガラス切り93…により永久磁石30´の上面30a´に所要の間隔で切欠き30b…を形成する。また切り欠きはレーザー加工やワイヤカット放電加工によって形成してもよい。
 (B)に示すように、永久磁石30´を筒状の磁石片保持部材42に被装した後、(C)に示すように、上下ガイド90,91で挟持して、分割片にしようとする部分をパンチ92で衝打して破断分割する。
 その後、(D)に示すように、破断分割された磁石片31~34同士は、磁石片保持部材42の弾性力によって、各磁石片31~34の各破断面同士が当接した状態に復帰する。換言すると、永久磁石30´とほぼ同じ寸法になる。
 表1に示す比較例2に係る界磁極用磁石体では、一回の分割に350kgの荷重を要し、分割面も不定形になったため、欠けが多く見られた。また、エポキシ系二液接着剤を用いて接着を行ったが、不定形の破面に接着剤を塗る工程と分割された破面をあわせる工程に時間がかかり、20分を要した。一方で、複数の磁石片を、破断面同士で突き合わせて絶縁性部材で結合するときには、粒子が破断面の凹凸の凹部内に入り込んだ状態を確保し、互いに隣接する磁石片同士が横ずれしにくくなるので、磁石片相互の位置合わせ性が向上する。
 実施例1では一回の分割に350kgの荷重を要し、分割面も不定形になったため、欠けが多く見られた。分割された破面をあわせる工程に時間がかかったが、粘着テープを使用することにより、接着剤塗布を行わなかったため、作業時間は短縮され、作業は10分で終了した。
 実施例2では一回の分割に350kgの荷重を要し、分割面も不定形になったため、欠けが多く見られた。しかし、分割前に粘着テープにて一面を固定していたため、分割された磁石片を平面に置くことで分割前の状態と同じくは破断面が合い、反対面にテープを貼るだけで済んだ為に作業時間は大幅に短縮され、作業は3分で終了した。
 実施例3では切欠きを導入したため、一回の分割にかかる荷重が約1/5の70kgに低減し、破断面も切欠きに沿って割れた為に直線的でほとんど欠けは見られなかった。
 また、分割前に粘着テープにて一面を固定していたため、実施例2と同じく、磁石一体化の作業は3分で終了した。
 実施例4では切欠きを導入したため、実施例3と同様に一回の分割にかかる荷重が約1/5の70kgに低減し、破断面も切欠きに沿って割れた為に直線的でほとんど欠けは見られなかった。
 また、管状の熱収縮ゴムを使用して破断面に垂直な四面を覆い、100℃以上の温度で収縮させて磁石と密着させた。これにより、磁石破断時に伸びたゴムが縮むことで、割った面から順に自動的にもとの位置へ破断面が合わさったことで、磁石一体化作業は不要となった。
 また、それぞれの方法で作製した磁石を高温高湿槽にて80℃、90%湿度で1000時間放置する耐候試験を行ったところ、比較例1では表面部分全体に赤錆の発生が確認された。
 さらに、比較例2は接着剤の塗布が十分でなかった破面と露出していた表面部分全体に赤錆の発生が確認された。
 実施例1、2、3では、表面積の広い二面が粘着テープにて保護されていたため、残りの面と破断面に軽微な錆が見られる程度であった。
 実施例4ではゴムに覆われていなかった二面のみ軽微な錆が見られたが、破断面やゴムに覆われていた面積の広い四面には錆が見られなかった。
 比較例1,2および実施例1~4の磁石について分割された磁石界面の接触抵抗値を測定した(表2参照)。表2は、比較例1,2と、本発明に相当する実施例1~4に示す界磁極用磁石体の抵抗測定と発熱評価を対比したものである。
Figure JPOXMLDOC01-appb-T000002
 比較例1は接触抵抗値が∞を示し、絶縁されていることが確認された。比較例2は接着剤の収縮により磁石間の接触圧力が高くなったためか、接触抵抗は1.5mΩとなり、比較例1よりも若干の発熱上昇が見られた。
 実施例1~4については、いずれも5mΩ以上となっており、空芯コイル内で交流磁場をかけて発熱状況を試験により確かめた結果も磁石間を完全に絶縁した比較例1と同等になった。
 図12は、上記各界磁極用磁石体の電気抵抗値を測定するための抵抗測定装置の要部を示す説明図であり、図13は、上記各界磁極用磁石体の発熱を測定するための発熱測定装置の構成を示す説明図である。
 図12に示す抵抗測定装置Bは、ACミリオームテスタ(HIOKI社製)を用いた4端子法による測定を行うものであり、冶具50,51の間に挟み込んだ界磁極用磁石体70に対して、破断面に直交する方向αに荷重を付与するものである。当該荷重は、任意値に設定可能である。冶具50,51と界磁極用磁石体30との間は絶縁されている。リード端子52,53は、磁石片31と磁石片34に接続されている。
 図13に示す発熱測定装置Cは、円筒形の空芯誘導コイル60内に、界磁極用磁石体30を断熱材61,62に挟持固定した状態で配置して、その界磁極用磁石体30に5kHz、6mTの交番磁界をかけることにより、サンプル(界磁極用磁石体30)表面の温度上昇を測定するものである。なお、信号発生器80は、空芯誘導コイル60に向けて送出する所要の信号を発生させ、増幅器81は、信号発生器80で発生した所要の信号を増幅する。有底円筒形のケース82は、空芯誘導コイル60、界磁極用磁石体70及び断熱材61,62を収容している。
 上述の電気抵抗値と発熱の測定は、表2に示す比較例1,2および本発明に相当する実施例1~4に係る界磁極用磁石体を、それぞれ切断面または破断面を対向させた状態で上記冶具等に固定して行った。
 以上説明した実施形態および実施例は、本発明の理解を容易にするために記載された単なる例示に過ぎない。本発明は、それらの実施形態および実施例に限定されるものではなく、本発明の技術的範囲内において種々改変することができる。例えば、上記においては、本発明を、界磁極用磁石体をロータに埋設した所謂埋設構造の電動機(IPM)に適用した例について説明したが、本発明は、表面磁石構造(SPM)の電動機についても適用できる。本発明に係る界磁極用磁石体は、ロータに限らず、ステータに配設してもよく、さらには、発電機にも適用できることは勿論である。
 また、上記においては、一の永久磁石を四つの磁石片に破断分割した例について説明したが、例えば、一の永久磁石を五つ以上に破断分割してもよい。また、上記においては、長方体形の永久磁石を破断分割する例について示したが、これに限らず、例えば、C型若しくは他の異型に形成した永久磁石等であってもよい。
 さらに、上記においては、並列させた磁石片同士を、それらの破断面を対向当接したものについて説明したが、それら破断面同士を接着剤によって接着した構成にしてもよい。これにより、破断分割した磁石片を一体化することができ、ロータ等への挿入や着磁を容易に行うことができる。
 本出願は、2008年10月2日に出願された日本国特許願第2008-257261号に基づく優先権を主張しており、これらの出願の全内容が参照により本明細書に組み込まれる。
 本発明によれば、磁石片を一体化する工程を簡素化することにより、製造コストの低減を図ることができるとともに、破断面に防錆処理を施す必要がない界磁極用磁石体、この界磁極用磁石体の作製方法、及び永久磁石型回転電機が提供される。
10         ステータ
20         ロータ
30,30A,30B 界磁極用磁石体
30´        一の永久磁石
31~34      磁石片
40~42      磁石片保持部材
A          永久磁石型回転電機

Claims (18)

  1.  永久磁石型回転電機のロータ又はステータに配設する界磁極用磁石体において、
     一の永久磁石を破断分割することにより形成した複数の磁石片と、
     前記複数の磁石片を保持するための一又は二以上の磁石片保持部材と、を有していることを特徴とする界磁極用磁石体。
  2.  前記磁石片の破断面同士を互いに対向させていることを特徴とする請求項1に記載の界磁極用磁石体。
  3.  前記磁石片保持部材は、前記複数の磁石片に貼着する長さの帯状に形成されており、
     前記磁石片の破断面以外の部分に前記磁石片保持部材を貼着することにより、それら磁石片同士を連結していることを特徴とする請求項2に記載の界磁極用磁石体。
  4.  前記磁石片は、直方体形の永久磁石を所定の間隔で破断分割することにより形成されており、
     前記磁石片の破断面に垂直な面のうちの少なくとも一面に、前記磁石片保持部材を貼着していることを特徴とする請求項3に記載の界磁極用磁石体。
  5.  前記磁石片の破断面に垂直な全ての面に、前記磁石片保持部材を貼着していることを特徴とする請求項4に記載の界磁極用磁石体。
  6.  前記磁石片保持部材が伸縮性及び撥水性を有することを特徴とする請求項1~5のいずれか1項に記載の界磁極用磁石体。
  7.  前記磁石片保持部材が筒状の熱収縮フィルムで形成されていることを特徴とする請求項1に記載の界磁極用磁石体。
  8.  前記磁石片の破断面同士が直接接触しており、その破断面における電気抵抗値が、当該破断面に垂直な方向における単位長さ1cmあたりの磁石片自体の電気抵抗値に対し、5倍以上であることを特徴とする請求項1~7のいずれか1項に記載の界磁極用磁石体。
  9.  前記破断面における電気抵抗値が0.5mΩ以上であることを特徴とする請求項8に記載の界磁極用磁石体。
  10.  並列させた前記磁石片の破断面同士が直接接触しており、その破断面における電気抵抗値が、当該破断面に垂直な方向における単位長さ1cmあたりの磁石片自体の電気抵抗値に対して、50倍以上であることを特徴とする請求項1~7のいずれか1項に記載の界磁極用磁石体。
  11.  前記破断面における電気抵抗値が5mΩ以上であることを特徴とする請求項10に記載の界磁極用磁石体。
  12.  前記磁石片同士を接着していること又は絶縁性部材で一体化していることを特徴とする請求項1~11のいずれか1項に記載の界磁極用磁石体。
  13.  請求項1~12のいずれか1項に記載した界磁極用磁石体を、ロータ又はステータに配設していることを特徴とする永久磁石型回転電機。
  14.  一の永久磁石を破断分割することにより形成した複数の磁石片同士を、互いに並列させて構成している界磁極用磁石体の作製方法であって、
     一の永久磁石を、一又は二以上の磁石片保持部材により保持しながら破断分割することを特徴とする界磁極用磁石体の作製方法。
  15.  前記破断分割された複数の磁石片を、破断面が互いに当接するように結合することを特徴とする請求項14に記載の界磁極用磁石体の作製方法。
  16.  前記破断分割された複数の磁石片同士を接着すること又は絶縁性部材で一体化することを特徴とする請求項14又は15に記載の界磁極用磁石体の作製方法。
  17.  前記磁石片保持部材により保持された磁石片に着磁することを特徴とする請求項14に記載の界磁極用磁石体の作製方法。
  18.  永久磁石型電動機のロータ又はステータに配設される複数の磁石片から構成される界磁極用磁石体の作成方法であって、
     破断された複数の磁石片を、破断面が互いに当接するように一列に結合することを特徴とする界磁極用磁石体の作成方法。
PCT/JP2009/066967 2008-10-02 2009-09-29 界磁極用磁石体、この界磁用磁石体の作製方法、及び永久磁石型回転電機 WO2010038748A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980138614.3A CN102171908B (zh) 2008-10-02 2009-09-29 场磁极用磁铁体、该场磁极用磁铁体的制作方法以及永久磁铁式旋转电机
US13/122,032 US8510933B2 (en) 2008-10-02 2009-09-29 Method of manufacturing a field pole magnet
EP09817780.1A EP2333935B1 (en) 2008-10-02 2009-09-29 Field pole magnet, field pole magnet manufacturing method, and permanent magnet rotary machine
JP2010531862A JP5429178B2 (ja) 2008-10-02 2009-09-29 界磁極用磁石体、この界磁用磁石体の作製方法、及び永久磁石型回転電機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-257261 2008-10-02
JP2008257261 2008-10-02

Publications (1)

Publication Number Publication Date
WO2010038748A1 true WO2010038748A1 (ja) 2010-04-08

Family

ID=42073509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066967 WO2010038748A1 (ja) 2008-10-02 2009-09-29 界磁極用磁石体、この界磁用磁石体の作製方法、及び永久磁石型回転電機

Country Status (5)

Country Link
US (1) US8510933B2 (ja)
EP (1) EP2333935B1 (ja)
JP (1) JP5429178B2 (ja)
CN (1) CN102171908B (ja)
WO (1) WO2010038748A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244608A1 (en) * 2007-12-06 2010-09-30 Toyota Jidosha Kabushiki Kaisha Permanent magnet, manufacturing method thereof, and rotor and ipm motor
FR2976423A1 (fr) * 2011-06-08 2012-12-14 Bayerische Motoren Werke Ag Dispositif et procede pour garnir un paquet de toles d'un rotor de machine electrique avec des aimants
JP2013143455A (ja) * 2012-01-10 2013-07-22 Daido Steel Co Ltd 永久磁石の製造方法
WO2013115238A1 (ja) * 2012-01-31 2013-08-08 日産自動車株式会社 界磁極用磁石体を構成する磁石片の製造装置及びその製造方法
WO2013115224A1 (ja) * 2012-02-01 2013-08-08 日産自動車株式会社 界磁極用磁石体を構成する磁石片の製造方法
WO2013125513A1 (ja) * 2012-02-21 2013-08-29 日産自動車株式会社 界磁極用磁石体を構成する磁石片の製造方法および製造装置
JP2013176261A (ja) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd 界磁極用磁石体
AU2011256564B2 (en) * 2010-05-19 2014-03-06 Nissan Motor Co., Ltd. Permanent magnet provided to dynamo-electric machine, and method for manufacturing same
JP2015015381A (ja) * 2013-07-05 2015-01-22 大同特殊鋼株式会社 永久磁石の製造方法
WO2015052976A1 (ja) * 2013-10-09 2015-04-16 日産自動車株式会社 回転電機に配設される界磁極用磁石体を構成する磁石片を製造する製造方法及び製造装置
KR101528698B1 (ko) * 2011-05-19 2015-06-12 도요타지도샤가부시키가이샤 로터의 제조 방법 및 할단 장치
JP2015133812A (ja) * 2014-01-10 2015-07-23 トヨタ自動車株式会社 永久磁石の製造方法
KR101560993B1 (ko) 2011-09-26 2015-10-15 닛산 지도우샤 가부시키가이샤 계자극용 자석체의 제조 장치 및 그 제조 방법
JP2015204693A (ja) * 2014-04-14 2015-11-16 株式会社三井ハイテック 回転子積層鉄心及び回転子積層鉄心の製造方法
JP5850152B2 (ja) * 2012-07-02 2016-02-03 日産自動車株式会社 界磁極用磁石体を構成する磁石片の製造装置及びその製造方法
JP2018101490A (ja) * 2016-12-19 2018-06-28 ニチコン株式会社 ヒーターユニットおよびその製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105006A1 (ja) * 2011-02-02 2012-08-09 トヨタ自動車株式会社 永久磁石、モータ用ロータ又はステータ、回転電機
CN104578616B (zh) * 2011-02-14 2017-05-03 丰田自动车株式会社 转子制造方法
DK2498267T3 (en) * 2011-03-09 2017-08-28 Siemens Ag Layered magnet
US9796150B2 (en) * 2011-07-27 2017-10-24 Nissan Motor Co., Ltd. Apparatus and method for manufacturing field-pole magnet
US10773420B2 (en) * 2011-11-10 2020-09-15 LatticeGear, LLC Device and method for cleaving a substrate
JP5867036B2 (ja) * 2011-12-07 2016-02-24 日産自動車株式会社 界磁極用磁石体の製造装置およびその製造方法
JP5929153B2 (ja) * 2011-12-14 2016-06-01 日産自動車株式会社 界磁極用磁石体の製造装置およびその製造方法
FR2985085B1 (fr) * 2011-12-23 2014-02-21 Alstom Technology Ltd Actionneur electromagnetique a aimants permanents et interrupteur-sectionneur mecanique actionne par un tel actionneur
EP2874288B1 (en) * 2012-07-13 2017-08-09 Nissan Motor Co., Ltd Device for producing field-pole magnetic body
CN103683602A (zh) * 2013-12-04 2014-03-26 安徽巨一自动化装备有限公司 低涡流损耗的永磁电机转子
EP2999089B1 (de) * 2014-09-19 2017-03-08 Siemens Aktiengesellschaft Reluktanzläufer
JP6753233B2 (ja) * 2016-09-08 2020-09-09 Tdk株式会社 磁石、磁石積層体およびモータ
FR3064423B1 (fr) * 2017-03-22 2019-11-15 Whylot Sas Rotor pour moteur ou generatrice electromagnetique a structure alveolaire comportant des alveoles pour le logement d'aimants respectifs
FR3077413B1 (fr) * 2018-01-26 2022-03-11 Whylot Sas Aimant unitaire avec formes en retrait destinees a faire partie de zones de contact entre des aimants adjacents
DE112019007108T5 (de) * 2019-03-27 2021-12-16 Mitsubishi Electric Corporation Rotierende elektrische maschine
US11894719B2 (en) 2020-09-10 2024-02-06 Ford Global Technologies, Llc Permanent magnet of multiple pieces having different easy axes
JP2022121915A (ja) * 2021-02-09 2022-08-22 信越化学工業株式会社 希土類磁石接合体の製造方法及び希土類磁石接合体
US11658530B2 (en) * 2021-07-15 2023-05-23 Stoneridge, Inc. Modular brushless DC (BLDC) motor construction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136692A (ja) * 1999-11-04 2001-05-18 Nippon Densan Corp インナーロータモータおよびそれのロータの製造方法
JP2005354899A (ja) * 2005-09-09 2005-12-22 Mitsubishi Electric Corp 永久磁石型モータ
JP2008043124A (ja) * 2006-08-09 2008-02-21 Mitsubishi Electric Corp 磁石発電機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB859862A (en) * 1958-02-20 1961-01-25 Goodrich Co B F Elongated flexible magnet systems
NL7907115A (nl) * 1979-09-25 1981-03-27 Philips Nv Werkwijze voor het vervaardigen van een permanente magneet ter plaatsing in een luchtspleet van een transformatorkern.
US5315244A (en) * 1989-11-17 1994-05-24 Visi-Trak Corporation Magnetic sensor with laminated field concentrating flux bar
US6335623B1 (en) * 1992-12-18 2002-01-01 Fonar Corporation MRI apparatus
US5654603A (en) * 1995-09-29 1997-08-05 Reliance Electric Industrial Magnetic top stick apparatus and method for making same
US7127802B1 (en) * 1997-11-21 2006-10-31 Fonar Corporation Method of fabricating a composite plate
JP3089470B2 (ja) 1998-03-05 2000-09-18 本田技研工業株式会社 永久磁石式電動機
JP2953659B1 (ja) * 1998-08-06 1999-09-27 住友特殊金属株式会社 Mri用磁界発生装置およびその組立方法並びにそれに用いる磁石ユニットの組立方法
EP0996212A1 (en) 1998-10-21 2000-04-26 Technische Universiteit Eindhoven Method for fabricating a permanent magnet rotor, and rotor obtained by said method
EP1069575B1 (en) * 1999-07-15 2008-05-14 Neomax Co., Ltd. Dismantling method for magnetic field generator
US6662434B2 (en) * 2001-04-03 2003-12-16 General Electric Company Method and apparatus for magnetizing a permanent magnet
EP1808126B1 (en) * 2004-09-30 2012-12-26 Hitachi Metals, Ltd. Magnetic field generator for mri
CN100576701C (zh) * 2004-11-30 2009-12-30 株式会社日立制作所 永磁式旋转电机
EP1786085B1 (en) * 2005-11-15 2016-08-03 Shin-Etsu Chemical Co., Ltd. Permanent magnet rotating electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136692A (ja) * 1999-11-04 2001-05-18 Nippon Densan Corp インナーロータモータおよびそれのロータの製造方法
JP2005354899A (ja) * 2005-09-09 2005-12-22 Mitsubishi Electric Corp 永久磁石型モータ
JP2008043124A (ja) * 2006-08-09 2008-02-21 Mitsubishi Electric Corp 磁石発電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2333935A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497613B2 (en) * 2007-12-06 2013-07-30 Toyota Jidosha Kabushiki Kaisha Permanent magnet, manufacturing method thereof, and rotor and IPM motor
US20100244608A1 (en) * 2007-12-06 2010-09-30 Toyota Jidosha Kabushiki Kaisha Permanent magnet, manufacturing method thereof, and rotor and ipm motor
AU2011256564B2 (en) * 2010-05-19 2014-03-06 Nissan Motor Co., Ltd. Permanent magnet provided to dynamo-electric machine, and method for manufacturing same
EP2573916A4 (en) * 2010-05-19 2017-01-04 Nissan Motor Co., Ltd Permanent magnet provided to dynamo-electric machine, and method for manufacturing same
US8819921B2 (en) 2010-05-19 2014-09-02 Nissan Motor Co., Ltd. Manufacturing method of a permanent magnet dispoded in a rotating electrical machine
KR101528698B1 (ko) * 2011-05-19 2015-06-12 도요타지도샤가부시키가이샤 로터의 제조 방법 및 할단 장치
FR2976423A1 (fr) * 2011-06-08 2012-12-14 Bayerische Motoren Werke Ag Dispositif et procede pour garnir un paquet de toles d'un rotor de machine electrique avec des aimants
KR101560993B1 (ko) 2011-09-26 2015-10-15 닛산 지도우샤 가부시키가이샤 계자극용 자석체의 제조 장치 및 그 제조 방법
JP2013143455A (ja) * 2012-01-10 2013-07-22 Daido Steel Co Ltd 永久磁石の製造方法
JP2013158183A (ja) * 2012-01-31 2013-08-15 Nissan Motor Co Ltd 界磁極用磁石体を構成する磁石片の製造装置及びその製造方法
WO2013115238A1 (ja) * 2012-01-31 2013-08-08 日産自動車株式会社 界磁極用磁石体を構成する磁石片の製造装置及びその製造方法
WO2013115224A1 (ja) * 2012-02-01 2013-08-08 日産自動車株式会社 界磁極用磁石体を構成する磁石片の製造方法
US9251951B2 (en) 2012-02-01 2016-02-02 Nissan Motor Co., Ltd. Method of manufacturing magnet segment of field pole magnet body
EP2811628A4 (en) * 2012-02-01 2014-12-24 Nissan Motor METHOD OF MANUFACTURING MAGNET PARTS TO FORM MAGNET-PIECE PIECES
EP2811628A1 (en) * 2012-02-01 2014-12-10 Nissan Motor Co., Ltd Method for manufacturing magnet pieces for forming field-pole magnets
WO2013125513A1 (ja) * 2012-02-21 2013-08-29 日産自動車株式会社 界磁極用磁石体を構成する磁石片の製造方法および製造装置
JP2013172553A (ja) * 2012-02-21 2013-09-02 Nissan Motor Co Ltd 界磁極用磁石体を構成する磁石片の製造方法および製造装置
JP2013176261A (ja) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd 界磁極用磁石体
JP5850152B2 (ja) * 2012-07-02 2016-02-03 日産自動車株式会社 界磁極用磁石体を構成する磁石片の製造装置及びその製造方法
JP2015015381A (ja) * 2013-07-05 2015-01-22 大同特殊鋼株式会社 永久磁石の製造方法
WO2015052976A1 (ja) * 2013-10-09 2015-04-16 日産自動車株式会社 回転電機に配設される界磁極用磁石体を構成する磁石片を製造する製造方法及び製造装置
JPWO2015052976A1 (ja) * 2013-10-09 2017-03-09 日産自動車株式会社 回転電機に配設される界磁極用磁石体を構成する磁石片を製造する製造方法及び製造装置
US10279504B2 (en) 2013-10-09 2019-05-07 Nissan Motor Co., Ltd. Manufacture method and manufacturing device for manufacturing magnet piece constituting magnet body for field pole disposed on rotating electric machine
JP2015133812A (ja) * 2014-01-10 2015-07-23 トヨタ自動車株式会社 永久磁石の製造方法
JP2015204693A (ja) * 2014-04-14 2015-11-16 株式会社三井ハイテック 回転子積層鉄心及び回転子積層鉄心の製造方法
JP2018101490A (ja) * 2016-12-19 2018-06-28 ニチコン株式会社 ヒーターユニットおよびその製造方法

Also Published As

Publication number Publication date
EP2333935A1 (en) 2011-06-15
EP2333935A4 (en) 2013-05-22
US8510933B2 (en) 2013-08-20
EP2333935B1 (en) 2016-01-06
CN102171908A (zh) 2011-08-31
JP5429178B2 (ja) 2014-02-26
CN102171908B (zh) 2014-05-28
JPWO2010038748A1 (ja) 2012-03-01
US20120036696A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
WO2010038748A1 (ja) 界磁極用磁石体、この界磁用磁石体の作製方法、及び永久磁石型回転電機
EP1786085B1 (en) Permanent magnet rotating electric machine
TWI732384B (zh) 積層鐵芯及旋轉電機
US9906083B2 (en) Rotors with segmented magnet configurations and related dynamoelectric machines and compressors
KR20240052877A (ko) 스테이터용 접착 적층 코어 및 회전 전기 기기
KR101618717B1 (ko) 자기폴 및 관련 로터를 설치하는 방법
JPWO2012007984A1 (ja) アモルファスコア、及びそれを用いた電磁部材と回転電機、並びにその製造方法
JP6135770B2 (ja) 永久磁石埋め込み式回転電機およびその製造方法
JP2005198365A (ja) モータ用希土類永久磁石とその製造方法
JP5429515B2 (ja) 永久磁石型回転電機のロータ又はステータに配設する界磁極用磁石体、及び永久磁石型回転電機
CN107636936A (zh) 设置有形成多个磁极的永久磁体的机动车辆起动器的定子
US11601024B2 (en) Rotating electrical machine
JP5360224B2 (ja) 電動機の回転子の製造方法
JP2021083221A (ja) Ipmロータ製造方法
US20200059140A1 (en) Production method and disassembly method for a rotary permanently excited electrical machine
JP4238588B2 (ja) モーター、モーター用ロータ及び複合異方性磁石
JP5692105B2 (ja) Ipmモータ用ロータの製造方法
JP6251900B2 (ja) 永久磁石式回転電機
JP2000184637A (ja) 無刷子電動機およびその製造方法
US20240039349A1 (en) Rotary electric machine and manufacturing method therefor
WO2023042639A1 (ja) ロータの製造装置
JP2010148309A (ja) 界磁子及び界磁子の製造方法
KR20240045320A (ko) 적층 코어 및 회전 전기 기기
Lee et al. Magnetic field analysis of polar anisotropic ferrite bonded magnet to outer rotor type brushless dc motor considering magnetizing process
JP2019088119A (ja) 永久磁石接合時の応力緩和方法、永久磁石式回転電機の回転子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138614.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817780

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531862

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009817780

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13122032

Country of ref document: US