WO2010035788A1 - Substrate for mounting light-emitting element and method for producing same - Google Patents

Substrate for mounting light-emitting element and method for producing same Download PDF

Info

Publication number
WO2010035788A1
WO2010035788A1 PCT/JP2009/066661 JP2009066661W WO2010035788A1 WO 2010035788 A1 WO2010035788 A1 WO 2010035788A1 JP 2009066661 W JP2009066661 W JP 2009066661W WO 2010035788 A1 WO2010035788 A1 WO 2010035788A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
light emitting
convex portion
metal
insulating layer
Prior art date
Application number
PCT/JP2009/066661
Other languages
French (fr)
Japanese (ja)
Inventor
博和 佐野
吉村 栄二
Original Assignee
デンカAgsp株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカAgsp株式会社 filed Critical デンカAgsp株式会社
Priority to JP2010530872A priority Critical patent/JPWO2010035788A1/en
Publication of WO2010035788A1 publication Critical patent/WO2010035788A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Definitions

  • the present invention relates to a light emitting element mounting substrate for mounting a light emitting element such as a light emitting diode chip, and a manufacturing method thereof.
  • This light emitting element mounting substrate is useful as a light emitting element mounting substrate such as a light emitting element panel or a light emitting element package of a lighting device.
  • ceramic substrates have been widely used as substrates for LED packages equipped with chip LEDs and the like.
  • Resin substrates for mounting LED packages and the like have also been developed, and several techniques for improving heat dissipation and heat transfer are known.
  • a metal protrusion is formed on the upper surface of a metal substrate by etching, an insulating resin layer having the same height as the metal protrusion is formed around the metal protrusion, and the metal protrusion is formed.
  • a light emitting element mounting substrate in which a heat radiation pattern is plated on the upper surface of the part and a power supply pattern is plated on the upper surface of the insulating resin layer so that the light emitting element can be mounted on the upper surface of the metal convex part via the heat radiation pattern .
  • Patent Document 1 uses etching when forming the metal protrusions on the upper surface of the metal substrate, the manufacturing process becomes complicated, and there is a problem that chemicals, secondary materials, and processing costs are considerable. there were. Further, since the metal having a thickness corresponding to the height of the metal protrusion is eroded and removed by etching, the metal is wasted, which is disadvantageous in terms of cost.
  • an object of the present invention is to provide a substrate for mounting a light emitting element and a method for manufacturing the same, which can cost-effectively manufacture a substrate having a convex portion for heat dissipation by a simple process.
  • the light-emitting element mounting substrate of the present invention includes a metal plate having a convex portion formed by pressing at least at a light-emitting element mounting position, an insulating layer formed at least in the vicinity of the convex portion, and the insulating layer. And a power supply pattern provided on the upper surface of the substrate.
  • the “pressing process” of the present invention includes a pressing process (roll forming process) performed between rolls having a groove having a shape corresponding to the convex part, in addition to the pressing process using the press surface.
  • the “metal plate” may partially have an opening, and includes, for example, a metal lead frame.
  • the convex portion of the metal plate is formed by pressing that is a dry process, the manufacturing process is simplified compared to the case of forming by etching or the like, Sub-materials and metals are not wasted, and the yield is improved by simplification of the process, so that a substrate having a convex portion for heat dissipation can be advantageously manufactured in a simple process.
  • each height can be easily changed between several convex parts, and also the convex part of the shape where the front-end
  • the convex portion having a sharp tip can have a structure in which resin or the like hardly remains on the upper surface of the convex portion when the insulating layer is formed.
  • a heat radiation pattern is formed in contact with the upper surface of the convex portion.
  • effective heat conduction in the surface direction and the thickness direction is enabled by the thicknesses of both the heat radiation pattern and the convex portion, so that heat radiation from the light emitting element becomes better.
  • heat dissipation can be further improved by using a high thermal conductive material for the insulating layer.
  • the heat radiation is further improved.
  • the heat radiation effect in the surface direction can be further enhanced.
  • the said convex part is formed in the continuous protruding item
  • the amount of heat radiated from the continuous ridges to the surface side is increased as compared with the convex portions formed in the form of dots, so that the heat radiation effect is further increased.
  • the light emitting elements are arranged in a line shape, the heat dissipation characteristics are uniform and good, and there is an effect of reducing luminance unevenness, color unevenness and the like, and further improving the LED light emission efficiency.
  • a heat pipe is provided on the back surface of the convex portion, and in particular, a heat pipe having a concave portion on the back surface of the convex portion and a part of which is inserted in the concave portion is provided. More preferred.
  • a heat pipe is provided on the back surface of the convex portion, the heat radiation effect of the heat pipe is very large, and thus heat radiation from the light emitting element becomes better.
  • the heat transfer effect to the heat pipe is further increased, and the heat radiation from the light emitting element is further improved.
  • a metal plate is pressed to form a convex portion at least at the light emitting element mounting position, and an insulating layer is formed at least in the vicinity of the convex portion. And a step of forming a power feeding pattern on an upper surface of the insulating layer.
  • the metal plate is pressed to form a convex part at least at the mounting position of the light emitting element. Therefore, the convex part can be formed by a dry process and formed by etching or the like. Compared to the case, the manufacturing process is simplified and the waste of metal is eliminated, so that a substrate having a convex portion for heat dissipation can be manufactured advantageously in a simple process.
  • a metal plate, an insulating layer forming material, and a laminate including the metal layer forming material are hot-pressed, and at least a light emitting element mounting position on the metal plate.
  • this method for manufacturing a light emitting element mounting substrate by performing hot pressing, it is possible to form the convex portion of the metal plate and simultaneously form the insulating layer and the metal layer on the surface. At this time, since the convex portion can be formed on the metal layer on the surface, the convex portion of the metal plate is exposed by removing the convex portion of the laminated body, or the thickness of the insulating layer on the upper surface of the convex portion is reduced. be able to. By mounting the light emitting element in that portion, heat radiation from the light emitting element to the metal plate through the convex portion of the metal plate becomes good.
  • the manufacturing process is simplified and the metal is not wasted compared to the case where the convex part of the metal plate is formed by etching or the like, so that the substrate having the convex part for heat dissipation can be reduced in a simple process. Can be advantageously produced.
  • substrate for light emitting element mounting of this invention The figure which shows an example of the manufacturing process flow of the light emitting element mounting substrate of this invention.
  • the figure which shows an example of the manufacturing process flow of the light emitting element mounting substrate of this invention The figure which shows an example of the manufacturing process flow of the light emitting element mounting substrate of this invention.
  • FIG. 1 is a diagram showing an example of a light-emitting element mounting substrate according to the present invention.
  • 2 to 4 are drawings showing an example of a manufacturing process flow of the light emitting element mounting substrate of the present invention.
  • the light emitting element mounting substrate of the present invention is formed at least in the vicinity of the convex portion 10 a and the metal plate 10 having the convex portion 10 a formed by pressing at the mounting position of the light emitting element 30. And an insulating layer 16 and a power feeding pattern 20 a provided on the upper surface of the insulating layer 16.
  • the substantially circular convex part 10a is formed in the metal plate 10, and the example which is formed in the state which the pattern 20b for thermal radiation contacted on the upper surface is shown. .
  • the light emitting element 30 is mounted on the light emitting element mounting substrate of the present invention.
  • the light emitting element 30 used include a light emitting diode chip (flip chip, bare chip) having electrodes on the bottom surface and / or the top surface, a packaged surface mount type light emitting diode (LED package, chip LED), and a semiconductor laser chip.
  • a light emitting diode chip having one electrode on the bottom surface there are two types of the bottom surface, a cathode type and an anode type, either of which can be used.
  • the light emitting element 30 when the light emitting element 30 is a packaged LED, it is preferable to provide a heat radiation pad 32 on the bottom surface, and the pad 32 is bonded to the upper surface of the convex portion 10a of the metal plate 10 or the heat radiation pattern 20b. It is preferable to do this. Moreover, when using a bare chip etc., it is preferable to die-bond this to the upper surface of the convex part 10a of the metal plate 10, or the upper surface of the pattern 20b for thermal radiation. Thereby, heat can be efficiently transferred from the pad 32 or the like to the convex portion 10a of the metal plate 10, and heat radiation from the LED can be performed satisfactorily. In the present embodiment, an example is shown in which a package LED having a heat radiation pad 32 on the bottom surface is used as the light emitting element 30 and bonding is performed on the upper surface of the heat radiation pattern 20b.
  • the electrode 31 of the light emitting element 30 is electrically connected to the power feeding pattern 20a.
  • the connection with the power supply pattern 20 reflow connection by solder or the like is possible in the case of a surface mount type package LED, but in the case of a bare chip or the like, wire bonding or the like is used.
  • the convex portion 10a may be formed in a continuous ridge, and the rear surface of the convex portion 10a has a concave portion.
  • the back surface of the continuous ridge has a groove portion 10b and a heat pipe 40 partially inserted into the groove portion 10b is provided, and a ridge 41 having a trapezoidal cross section is formed on the upper surface. Has been.
  • the convex part 10a of the metal plate 10 in a continuous protruding item
  • the virtual line in a figure has shown the mounting position of the light emitting element 30. FIG. Such ridges may be provided in a plurality of rows.
  • the heat pipe 40 has a structure in which a heat medium is sealed inside a pipe made of a heat transfer material such as metal, and a function of quickly transferring local heat to other parts by evaporation / condensation of the heat medium.
  • a heat transfer material such as metal
  • the ridges 41 of the heat pipe 40 can be provided by joining the ridges 41 made of metal by welding or the like, or by bonding with a heat conductive adhesive. It is also possible to make the heat pipe 40 with a metal having the ridges 41 in advance.
  • the protrusion 41 of the heat pipe 40 may have any cross-sectional shape such as a semicircular shape or a square shape, but a shape inscribed in the groove portion 10b of the metal plate 10 is preferable, and a shape in contact with almost the entire surface is more preferable.
  • a heat transfer material such as a thermal sheet.
  • a dam 201 having a reflector function may be formed around the mounting position of the light emitting element 30 as shown in FIG.
  • a bare chip as the light emitting element 30 is bonded to the upper surface of the heat radiation pattern 20b, and is further electrically connected to the power supply pattern 20a by wire bonding.
  • wire bonding a fine metal wire such as gold or a ribbon lead can be used, and the wire can be connected by a method using ultrasonic waves or heating together.
  • the upper surface of the convex portion 10a and the heat radiation pattern 20b may not be in contact with each other and the resin constituting the insulating layer 16 may be interposed.
  • the dam 201 is bonded to the upper surface of the power feeding pattern 20a with an adhesive 202.
  • the dam 201 can be formed, for example, by applying a dam-shaped hole to an Al plate having a predetermined thickness.
  • the reflective surface of the dam 202 can be further plated with Ni, Ag, Cu, or the like.
  • the inside of the dam 201 can be covered with a transparent resin, a fluorescent color resin, or the like.
  • a convex transparent resin lens can be provided above the surface. Since the transparent resin lens has a convex surface, light can be efficiently emitted upward from the substrate.
  • the transparent resin lens may be colored.
  • the transparent resin lens or the like can be directly formed on the substrate by a known method such as insert molding or potting without providing the dam 201.
  • the inside of the dam 201 can be covered (sealed) with a transparent resin, and a transparent resin lens can be provided to constitute a light emitting element package or a light emitting element panel.
  • the light emitting element package generally has a package configuration in which one light emitting element is mounted on a substrate on which a wiring pattern is formed.
  • the light emitting element package is mounted on a circuit board.
  • a light emitting element panel generally has a configuration in which a plurality of light emitting elements are mounted on a substrate on which a wiring pattern is formed.
  • an insulating resin dam can be formed by interposing an adhesive on the upper surface of the power supply pattern 20a, and that the reflecting surface is plated with, for example, Ni, Ag or the like to exhibit the reflector function.
  • the insulating resin dam can be formed by forming a dam-shaped hole in an insulating resin plate having a predetermined thickness.
  • a circuit board whose base is an insulating resin may be used as the insulating resin plate.
  • step S1 A step of pressing the metal plate 10 to form the convex portion 10a at least at the mounting position of the light emitting element 30 (step S1).
  • a metal plate 10 is prepared.
  • the metal plate 10 may be either a single layer or a laminate, and any metal may be used as a constituent metal.
  • any metal may be used as a constituent metal.
  • copper, copper alloy, aluminum, stainless steel, nickel, iron, other alloys, and the like can be used.
  • copper, copper alloy, and aluminum are preferable from the viewpoint of thermal conductivity and electrical conductivity.
  • the thickness of the metal plate 10 is preferably 70 to 3000 ⁇ m and more preferably 70 to 1000 ⁇ m from the viewpoint of further improving the heat dissipation.
  • the strength of the convex portion 10a of the metal plate 10 is high. In this case, the thickness of the metal plate 10 is 100 ⁇ 1000 ⁇ m is preferred.
  • the lower mold 42 and the upper mold 41 can be used as attachments if the convex portions 42a and the concave portions 41a can be positioned when the press device is operated, and are interposed in the press surface of the press device. May be used.
  • type 41 may be reversed up and down, and the convex-shaped convex part 10a is formed in the lower side in that case.
  • the shape, size, and the like of the convex portion 10a of the obtained metal plate 10 are determined by the shape and size of the concave portion 41a of the upper die 41 and the convex portion 42a of the lower die 42.
  • the height of the convex portion 10a (height from the upper surface of the metal plate 10) is preferably 60 to 150 ⁇ m, and preferably 60 to 100 ⁇ m, from the viewpoint of heat dissipation from the convex portion 10a, the thickness of the insulating layer, and thermal conductivity. More preferred.
  • the size of the upper surface of the convex portion 10a may be smaller or larger than the light emitting element 30 to be mounted.
  • the diameter of the upper surface is preferably 400 ⁇ m to 10 mm.
  • the shape of the upper surface of the convex portion 10a may be any of a square, a circle, an ellipse, etc., or may be formed in a continuous ridge.
  • the metal plate 10 is pressed to form the convex portion 10 a at least at the mounting position of the light emitting element 30.
  • the conditions such as the pressing pressure at that time are the same as in the case of normal metal processing.
  • demolding is performed.
  • the lower mold 42 having the convex portions 42a it is preferable to demold only the upper mold 41.
  • the metal plate 10 is removed from both the upper mold 41 and the lower mold 42.
  • step S2 A step of forming the insulating layer 16 at least in the vicinity of the convex portion 10a (step S2).
  • this process is performed by pressing a laminate including the metal plate 10, the insulating layer forming material 16 a, and the metal layer forming material 19 a, so that the metal layer 19 formed on the surface via the insulating layer 16 is formed.
  • the example implemented by the process of obtaining the laminated body which has the convex part A is shown.
  • a copper foil with resin in which an insulating resin material that is the insulating layer forming material 16a and a copper foil that is the metal layer forming material 19a are laminated and integrated is used.
  • the metal plate 10 is heated and pressed with a pressing surface, whereby the insulating layer 16 and the metal layer 19 are simultaneously laminated and the convex portion 10 a of the metal plate 10.
  • a sheet material for example, a cushion material
  • the above-mentioned insulating resin material and copper foil are commercially available, and any of them can be used. Further, the insulating resin material forming material and the copper foil forming material may be arranged separately. In this process, since the sheet material is deformed in a concave shape at the time of hot pressing due to the presence of the convex portion 10a of the metal plate 10, the corresponding convex portion A is formed in the laminate.
  • a heating / pressurizing device vacuum hot press, thermal laminator, heating press
  • the atmosphere is set to a vacuum (vacuum laminator, etc.) in order to avoid air contamination. May be.
  • Conditions such as heating temperature and pressure may be appropriately set according to the material and thickness of the insulating layer forming material and the metal layer forming material, but the pressure is preferably 0.5 to 30 MPa.
  • any material may be used as long as it is deformed at the time of lamination and cured by heating or the like and has heat resistance required for the wiring board.
  • Specific examples include various reaction curable resins such as polyimide resins, phenol resins, and epoxy resins, and composites (prepregs) of the same with glass fibers, ceramic fibers, aramid fibers, and the like.
  • the insulating layer forming material of the insulating layer 16 is preferably made of a material having high thermal conductivity, and examples thereof include a resin containing a thermal conductive filler.
  • the insulating layer 16 in this case has a thermal conductivity of 1.0 W / mK or higher, preferably has a thermal conductivity of 1.2 W / mK or higher, and has a thermal conductivity of 1.5 W / mK or higher. It is more preferable. Thereby, the heat from the convex part 10a can be efficiently radiated to the metal plate 10 side.
  • the thermal conductivity of the insulating layer 16 is appropriately determined by selecting a formulation in consideration of the blending amount and particle size distribution of the thermally conductive filler, but the coating property of the insulating adhesive before curing is determined. In consideration, generally, the upper limit is preferably about 10 W / mK.
  • the insulating layer 16 is preferably composed of a thermally conductive filler that is a metal oxide and / or a metal nitride and a resin (insulating adhesive).
  • Metal oxides and metal nitrides are preferably excellent in thermal conductivity and electrically insulating.
  • Aluminum oxide, silicon oxide, beryllium oxide, and magnesium oxide are selected as the metal oxide, and boron nitride, silicon nitride, and aluminum nitride are selected as the metal nitride. These can be used alone or in combination of two or more. .
  • aluminum oxide can easily obtain an insulating adhesive layer having good electrical insulation and thermal conductivity, and can be obtained at low cost.
  • boron nitride is preferable because it is excellent in electrical insulation and thermal conductivity and has a low dielectric constant.
  • the thermally conductive filler those containing a small diameter filler and a large diameter filler are preferable.
  • the heat transfer function by the large-diameter filler itself and the function of increasing the heat transfer property of the resin between the large-diameter fillers by the small-diameter filler can be further improved.
  • the median diameter of the small filler is preferably 0.5 to 2 ⁇ m, and more preferably 0.5 to 1 ⁇ m.
  • the median diameter of the large filler is preferably 10 to 40 ⁇ m, more preferably 15 to 20 ⁇ m.
  • the resin constituting the insulating layer 16 includes a metal oxide and / or a metal nitride, but has excellent bonding strength with the metal plate 10 in a cured state and does not impair withstand voltage characteristics. Is selected.
  • a resin an epoxy resin, a phenol resin, a polyimide resin, and various engineering plastics can be used singly or as a mixture of two or more, but among them, the epoxy resin is excellent in bonding strength between metals. preferable.
  • epoxy resins bisphenol A-type epoxy resins, bisphenol F-type epoxy resins, hydrogenated bisphenol A-type epoxy resins, hydrogenated, which have high fluidity and excellent mixing properties with the above metal oxides and metal nitrides.
  • the sheet material may be any material that allows concave deformation at the time of heating press, such as cushion paper, rubber sheet, elastomer sheet, nonwoven fabric, woven fabric, porous sheet, foam sheet, metal foil, and composites thereof. Can be mentioned. In particular, those that can be elastically deformed, such as cushion paper, rubber sheets, elastomer sheets, foam sheets, and composites thereof, are preferable.
  • step S3 A step of forming the power feeding pattern 20a on the upper surface of the insulating layer 16 (step S3).
  • This step is performed, for example, by removing the convex portion A above the convex portion 10a of the metal plate 10 to expose the convex portion 10a and etching the metal foil (metal layer 19) with a predetermined pattern. can do.
  • the convex portion A is removed, the convex portion 10a is exposed, and a flat surface B is formed.
  • a method for removing the convex portion A a method by grinding or polishing is preferable.
  • the upper surface can be flattened by moving the hard rotary blade along the upper surface of the fixedly supported wiring board while rotating the hard rotary blade.
  • polishing method the method of lightly grind
  • the protrusion A is formed on the laminate as in the present invention, it becomes easy to grind only that portion, and the entire flattening can be performed more reliably.
  • the metal layer 19 is etched.
  • the exposed protrusions 10a and the metal layer 19 are metal-plated to form a metal-plated layer 20 before the etching.
  • the method of metal-plating the convex part 10a exposed at least may be used.
  • the metal species for metal plating for example, copper, silver, Ni and the like are preferable.
  • the method for forming the metal plating layer 20 include a panel plating method in which a pattern is formed using an etching resist, a pattern plating method in which a pattern plating resist is used for plating, and the like.
  • the metal plating layer 20 and the metal layer 19 are etched in a predetermined pattern, so that the pad 20b and the power supply pattern 20a are formed.
  • An upper surface metal layer is formed.
  • the size of the pad 20b may be larger or smaller than the size of the light emitting element 30, but for example, the upper surface has a diameter of 400 ⁇ m to 10 mm.
  • the shape of the upper surface of the pad 20b may be any of a quadrangle and a circle.
  • the removal of the etching resist M may be appropriately selected according to the type of the etching resist M, such as removal of chemicals and removal of peeling. For example, in the case of photosensitive ink formed by screen printing, it is removed with chemicals such as alkali.
  • the pad 20b and the power supply pattern 20a are preferably plated with a noble metal such as gold, nickel, silver, etc. in order to improve the reflection efficiency and the bonding property.
  • a solder resist may be formed as in the case of a conventional wiring board, or solder plating may be partially performed.
  • another method for manufacturing a substrate for mounting a light-emitting element includes heating and pressing a laminate including a metal plate 10, an insulating layer forming material 16a, and a metal layer forming material 19a.
  • the step of forming the convex portion 10a at least on the mounting position of the light emitting element 30 on the plate 10 and simultaneously obtaining the laminate in which the metal layer 19 formed on the surface via the insulating layer 16 has the convex portion A;
  • the difference between the manufacturing method of another invention and the manufacturing method shown in FIG. 3 is that the latter is pressed in two steps, and the convex portion 10a is formed on the metal plate 10 by the first press work. 5 is formed on the metal layer 19 on the surface, whereas the manufacturing method of another invention shown in FIG. 5 forms the protrusion 10a on the metal plate 10 by one press.
  • the point that the convex portion A is formed on the metal layer 19 on the surface is different. Accordingly, both the steps after the step shown in FIG. 5D are the same.
  • a metal plate 10, an insulating layer forming material 16a, and a metal layer forming material 19a are prepared.
  • the convex part 42a of the lower mold 42 is designed according to the shape and size of the convex part 10a of the metal plate 10 to be formed.
  • the concave portion 41 a of the upper mold 41 is designed according to the shape and size of the convex portion A formed on the surface of the metal layer 19.
  • the cushion material may be interposed by using the upper mold 41 having a flat bottom surface.
  • a metal plate for example, a stainless steel plate
  • the cushion material it is not necessary to produce the upper mold 41 having the concave portions 41a, and the convex portion formation and the insulating layer formation can be carried out integrally by one heating press, and the alignment can be performed. Problems are less likely to occur.
  • the laminate including the metal plate 10, the insulating layer forming material 16 a, and the metal layer forming material 19 a is hot-pressed to mount at least the light emitting element 30 mounting position on the metal plate 10.
  • a laminate in which the metal layer 19 formed on the surface via the insulating layer 16 has the convex portion A is obtained.
  • the power supply pattern 20a can be formed.
  • the metal plate may be formed in a circuit with a predetermined pattern.
  • a pattern may be formed in which a plurality of light emitting elements are mounted and the interlayer connection portions below the adjacent light emitting elements are connected so that they can be connected in series.
  • the cathode electrode is connected to one interlayer connection, and the anode electrode is connected to the other interlayer connection.
  • the example in which the light emitting element mounting substrate is configured by the light emitting element mounting and the electrode has been described.
  • other electronic circuits may be formed on the same substrate. .
  • wiring, lands, pads for bonding, pads for electrical connection to the outside, etc. are patterned in the periphery of the substrate, particularly in the corner and the vicinity thereof, and components such as chip capacitors, chip resistors and printing resistors, A transistor, a diode, an IC, or the like may be provided.
  • the insulating layer is formed by laminating the insulating layer forming material and heat-pressing.
  • the insulating layer is formed by a method of applying a resin such as curtain coating. Good.
  • the upper surface of the convex part of a metal plate can be exposed by cutting or grind
  • a power supply pattern can be formed by forming a metal layer by plating or the like and etching the metal layer.
  • the surface thereof may be covered or sealed with a light-resistant film of one or more layers.
  • a resin composition containing a fluororesin and a methacrylic ester resin can be used.
  • fluororesin examples include homopolymers and copolymers of polyvinylidene fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyhexafluoropropylene, and polyvinyl fluoride.
  • the methacrylic ester resin refers to a homopolymer of methyl methacrylate (MMA), a copolymer of a monomer copolymerizable with methyl methacrylate, a blend of polymethyl methacrylate and acrylic rubber, or the like.
  • copolymerizable monomers examples include methacrylic acid esters having 2 to 4 carbon atoms, acrylate esters having 1 to 8 carbon atoms such as butyl acrylate, styrene, ⁇ -methylstyrene, acrylonitrile, acrylic acid, and the like. Examples include ethylenically unsaturated monomers.
  • a phosphor may be contained in at least one layer constituting the light-resistant film.
  • YAG Ce phosphor in which the activator cerium is introduced into the phosphor matrix yttrium aluminate, and the activator europium is introduced in the phosphor matrix strontium barium silicate (Sr, Ba) 2 SiO 4 : Eu.
  • oxide phosphors such as phosphors, nitride phosphors such as ⁇ -sialon phosphors and ⁇ -sialon phosphors, and zinc sulfide activated by copper, copper, aluminum, and magnesium.
  • the particle size of the phosphor can vary within a wide range, for example, 0.001 to 20 ⁇ m. Since light scattering can increase in direct proportion to the particle size, particles of the order of 1 to 2 ⁇ m or less are preferred, and particles of the order of 0.01 to 0.4 ⁇ m or less are more desirable.
  • an ultraviolet absorber, antioxidant, a dispersing agent, a coupling agent, etc. can also be used for at least 1 layer which comprises a light-resistant film.
  • a thicker metal plate may be laminated on the back surface side, or a layer made of a highly heat conductive material may be formed on the back surface side. In that case, it is good also as a structure which filled the said material in the recessed part of the back surface side of a convex part.
  • a metal matrix composite (MMC) that can enhance the radiation effect as well as heat transfer is preferable.
  • the MMC examples include a composite of aluminum and silicon carbide, a composite of aluminum and carbon, and the like.
  • the metal plate 10 having a convex portion 10a having a sharper tip as shown in FIG. 7 (a) or (b). Can be used.
  • the convex portion 10a having a sharp tip can have a structure in which resin or the like hardly remains on the upper surface of the convex portion 10a when the insulating layer 16 is formed.
  • the insulating layer 16 is formed on the metal plate 10 by a method of laminating the insulating layer forming material 16a and heating and pressing, or a method of applying a resin such as curtain coat, a sharp convex portion The tip of 10a can be exposed or almost exposed from the insulating layer 16. Then, if the upper surface of the convex part 10a of the metal plate 10 is flattened by cutting or polishing the tip part of the convex part 10a, the light emitting element can be mounted on the part by bonding or the like.

Abstract

Disclosed is a substrate for mounting a light-emitting element, which has a projected part for heat dissipation and can be produced by a simple process at an advantageous cost.  Also disclosed is a method for producing the substrate for mounting a light-emitting element.  The substrate for mounting a light-emitting element comprises a metal plate (10) having a projected part (10a) which is formed by pressing at least in a position where a light-emitting element (30) is to be mounted, an insulating layer (16) formed at least near the projected part (10a), and a power feeding pattern (20a) formed on the upper surface of the insulating layer (16).

Description

発光素子搭載用基板及びその製造方法Light-emitting element mounting substrate and manufacturing method thereof
 本発明は、発光ダイオードチップなどの発光素子を実装するための発光素子搭載用基板、及びその製造方法に関する。この発光素子搭載用基板は、照明装置の発光素子パネル、発光素子パッケージ等の発光素子搭載用基板に有用である。 The present invention relates to a light emitting element mounting substrate for mounting a light emitting element such as a light emitting diode chip, and a manufacturing method thereof. This light emitting element mounting substrate is useful as a light emitting element mounting substrate such as a light emitting element panel or a light emitting element package of a lighting device.
 従来、チップLED等を搭載したLEDパッケージ用の基板として、セラミックス基板が幅広く使用されてきた。また、LEDパッケージ等を実装するための樹脂製基板も開発されており、放熱性や伝熱性を改良するための技術が幾つか知られている。 Conventionally, ceramic substrates have been widely used as substrates for LED packages equipped with chip LEDs and the like. Resin substrates for mounting LED packages and the like have also been developed, and several techniques for improving heat dissipation and heat transfer are known.
 例えば、下記の特許文献1には、金属基板の上面に金属凸部をエッチングで形成し、この金属凸部の周囲に金属凸部の高さと同じ高さの絶縁樹脂層を形成し、金属凸部上面に放熱用パターンと絶縁樹脂層上面に給電用パターンをメッキ形成して、金属凸部の上面に放熱用パターンを介して発光素子を実装可能とした発光素子搭載用基板が知られている。 For example, in Patent Document 1 below, a metal protrusion is formed on the upper surface of a metal substrate by etching, an insulating resin layer having the same height as the metal protrusion is formed around the metal protrusion, and the metal protrusion is formed. There is known a light emitting element mounting substrate in which a heat radiation pattern is plated on the upper surface of the part and a power supply pattern is plated on the upper surface of the insulating resin layer so that the light emitting element can be mounted on the upper surface of the metal convex part via the heat radiation pattern .
特開2005-167086号公報Japanese Patent Laying-Open No. 2005-167086
 しかしながら、特許文献1の基板は、金属基板の上面に金属凸部を形成する際に、エッチングを利用するため、製造工程が煩雑になり、薬品、副資材、加工費も少なからずかかるという問題があった。また、金属凸部の高さに対応する厚みの金属をエッチングで浸食・除去するため、金属が無駄になり、コスト的に不利であった。 However, since the substrate of Patent Document 1 uses etching when forming the metal protrusions on the upper surface of the metal substrate, the manufacturing process becomes complicated, and there is a problem that chemicals, secondary materials, and processing costs are considerable. there were. Further, since the metal having a thickness corresponding to the height of the metal protrusion is eroded and removed by etching, the metal is wasted, which is disadvantageous in terms of cost.
 なお、現在まで、発光素子搭載用基板のリフレクタ(反射板)部分を、プレス成形により凹状に形成する技術は知られていたが、放熱のための金属凸部をプレス成形する方法は、これまで知られていなかった。 Up to now, the technology for forming the reflector (reflector) portion of the light emitting element mounting substrate into a concave shape by press molding has been known, but the method of press molding the metal convex portion for heat dissipation has been hitherto. It was not known.
 そこで、本発明の目的は、放熱のための凸部を有する基板を、簡易な工程でコスト的に有利に製造することができる発光素子搭載用基板、及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a substrate for mounting a light emitting element and a method for manufacturing the same, which can cost-effectively manufacture a substrate having a convex portion for heat dissipation by a simple process.
 上記目的は、下記の如き本発明により達成できる。 The above object can be achieved by the present invention as described below.
 即ち、本発明の発光素子搭載用基板は、少なくとも発光素子の搭載位置にプレス加工により形成された凸部を有する金属板と、少なくとも前記凸部の近傍に形成された絶縁層と、その絶縁層の上面に設けられた給電用パターンと、を備えることを特徴とする。ここで、本発明の「プレス加工」には、プレス面を用いたプレス加工の他、凸部に対応した形状の溝を有するロール間で行うプレス加工(ロールフォーミング加工)も包含される。ここで「金属板」は、一部開口を有するものでもよく、例えば、金属製リードフレーム等も含まれる。 That is, the light-emitting element mounting substrate of the present invention includes a metal plate having a convex portion formed by pressing at least at a light-emitting element mounting position, an insulating layer formed at least in the vicinity of the convex portion, and the insulating layer. And a power supply pattern provided on the upper surface of the substrate. Here, the “pressing process” of the present invention includes a pressing process (roll forming process) performed between rolls having a groove having a shape corresponding to the convex part, in addition to the pressing process using the press surface. Here, the “metal plate” may partially have an opening, and includes, for example, a metal lead frame.
 本発明の発光素子搭載用基板によると、ドライプロセスであるプレス加工により金属板の凸部が形成されているため、エッチング等で形成する場合と比較して、製造工程が簡易になり、薬品、副資材、金属の無駄も無くなり、プロセス簡易化で歩留りも向上するため、放熱のための凸部を有する基板を、簡易な工程でコスト的に有利に製造できるようになる。また、プレス加工による凸部では、複数の凸部間で各々の高さを容易に変えることができ、更に先端が尖った形状の凸部を形成することができる。先端が尖った形状の凸部は、絶縁層の形成時に、凸部の上面に樹脂等が残存しにくい構造とすることができる。 According to the light emitting element mounting substrate of the present invention, since the convex portion of the metal plate is formed by pressing that is a dry process, the manufacturing process is simplified compared to the case of forming by etching or the like, Sub-materials and metals are not wasted, and the yield is improved by simplification of the process, so that a substrate having a convex portion for heat dissipation can be advantageously manufactured in a simple process. Moreover, in the convex part by press work, each height can be easily changed between several convex parts, and also the convex part of the shape where the front-end | tip sharpened can be formed. The convex portion having a sharp tip can have a structure in which resin or the like hardly remains on the upper surface of the convex portion when the insulating layer is formed.
 上記において、前記凸部の上面には、放熱用パターンが接触した状態で形成されていることが好ましい。これにより、放熱用パターンと凸部の両者の厚みで面方向及び厚み方向の効果的な熱伝導が可能となるため、発光素子からの放熱がより良好になる。また、絶縁層に高熱伝導材を使用することで、さらに放熱性も向上できる。特に、放熱用パターンがメッキにより凸部の上面に形成されていると、放熱が更に良好になる。また、放熱用パターンの面積を広げる(例えば給電用パターンを避けながら放熱用パターンを設けた構造)ことで、面方向の放熱効果をより高めることができる。 In the above, it is preferable that a heat radiation pattern is formed in contact with the upper surface of the convex portion. Thereby, effective heat conduction in the surface direction and the thickness direction is enabled by the thicknesses of both the heat radiation pattern and the convex portion, so that heat radiation from the light emitting element becomes better. Moreover, heat dissipation can be further improved by using a high thermal conductive material for the insulating layer. In particular, when the heat radiation pattern is formed on the upper surface of the convex portion by plating, the heat radiation is further improved. Further, by increasing the area of the heat radiation pattern (for example, a structure in which the heat radiation pattern is provided while avoiding the power feeding pattern), the heat radiation effect in the surface direction can be further enhanced.
 また、前記凸部は、連続する凸条に形成されていることが好ましい。この構成によると、散点状に形成された凸部と比較して、連続する凸条から表面側に放熱する熱量が増加するため、より放熱効果が大きくなる。また、ライン状に発光素子を配列するため、放熱特性が均一で良好となり、輝度ムラ、色ムラなどを少なくし、LED発光効率をより高める効果がある。 Moreover, it is preferable that the said convex part is formed in the continuous protruding item | line. According to this configuration, the amount of heat radiated from the continuous ridges to the surface side is increased as compared with the convex portions formed in the form of dots, so that the heat radiation effect is further increased. In addition, since the light emitting elements are arranged in a line shape, the heat dissipation characteristics are uniform and good, and there is an effect of reducing luminance unevenness, color unevenness and the like, and further improving the LED light emission efficiency.
 また、前記凸部の裏面にはヒートパイプを設けていることが好ましく、特に、前記凸部の裏面には凹部を有すると共に、その凹部に一部が挿入されたヒートパイプを設けていることがより好ましい。凸部の裏面にヒートパイプを設けると、ヒートパイプの放熱効果が非常に大きいため、発光素子からの放熱がより良好になる。特に、ヒートパイプの一部が金属板の凹部に挿入されている場合、ヒートパイプへの伝熱効果がより大きくなり、発光素子からの放熱が更に良好になる。なお、凸部をプレス成形した際の裏面の凹部には、メッキ、ハンダ接合、その他の方法で、金属等を充填することが可能である。 Further, it is preferable that a heat pipe is provided on the back surface of the convex portion, and in particular, a heat pipe having a concave portion on the back surface of the convex portion and a part of which is inserted in the concave portion is provided. More preferred. When a heat pipe is provided on the back surface of the convex portion, the heat radiation effect of the heat pipe is very large, and thus heat radiation from the light emitting element becomes better. In particular, when a part of the heat pipe is inserted into the concave portion of the metal plate, the heat transfer effect to the heat pipe is further increased, and the heat radiation from the light emitting element is further improved. In addition, it is possible to fill the concave portion on the back surface when the convex portion is press-molded with metal or the like by plating, solder bonding, or other methods.
 一方、本発明の発光素子搭載用基板の製造方法は、金属板をプレス加工して、少なくとも発光素子の搭載位置に凸部を形成する工程と、少なくとも前記凸部の近傍に絶縁層を形成する工程と、その絶縁層の上面に給電用パターンを形成する工程と、を含むことを特徴とする。 On the other hand, in the method for manufacturing a light emitting element mounting substrate of the present invention, a metal plate is pressed to form a convex portion at least at the light emitting element mounting position, and an insulating layer is formed at least in the vicinity of the convex portion. And a step of forming a power feeding pattern on an upper surface of the insulating layer.
 本発明の発光素子搭載用基板の製造方法によると、金属板をプレス加工して、少なくとも発光素子の搭載位置に凸部を形成するため、ドライプロセスで凸部が形成でき、エッチング等で形成する場合と比較して、製造工程が簡易になり、金属の無駄も無くなるので、放熱のための凸部を有する基板を、簡易な工程でコスト的に有利に製造できるようになる。 According to the method for manufacturing a substrate for mounting a light emitting element of the present invention, the metal plate is pressed to form a convex part at least at the mounting position of the light emitting element. Therefore, the convex part can be formed by a dry process and formed by etching or the like. Compared to the case, the manufacturing process is simplified and the waste of metal is eliminated, so that a substrate having a convex portion for heat dissipation can be manufactured advantageously in a simple process.
 また、本発明の別の発光素子搭載用基板の製造方法は、金属板、絶縁層形成材、及び金属層形成材を含む積層物を加熱プレスして、前記金属板の少なくとも発光素子の搭載位置に凸部を形成すると同時に、絶縁層を介して表面に形成された金属層が凸部を有する積層体を得る工程と、前記積層体の凸部を除去する工程と、前記金属層をエッチングして給電用パターンを形成する工程と、を含むことを特徴とする。 In another method for manufacturing a light emitting element mounting substrate according to the present invention, a metal plate, an insulating layer forming material, and a laminate including the metal layer forming material are hot-pressed, and at least a light emitting element mounting position on the metal plate. A step of obtaining a laminate in which a metal layer formed on the surface via an insulating layer has a projection, a step of removing the projection of the laminate, and etching the metal layer Forming a power feeding pattern.
 この発光素子搭載用基板の製造方法によると、加熱プレスを行うことにより、金属板の凸部を形成すると同時に、絶縁層と表面の金属層を形成することができる。その際、表面の金属層にも凸部を形成できるため、積層体の凸部を除去することにより、金属板の凸部を露出させたり、その凸部の上面の絶縁層の厚みを小さくすることができる。その部分に発光素子を搭載することで、発光素子から金属板の凸部を経て金属板への放熱が良好になる。その結果、金属板の凸部をエッチング等で形成する場合と比較して、製造工程が簡易になり、金属の無駄も無くなるので、放熱のための凸部を有する基板を、簡易な工程でコスト的に有利に製造できるようになる。 According to this method for manufacturing a light emitting element mounting substrate, by performing hot pressing, it is possible to form the convex portion of the metal plate and simultaneously form the insulating layer and the metal layer on the surface. At this time, since the convex portion can be formed on the metal layer on the surface, the convex portion of the metal plate is exposed by removing the convex portion of the laminated body, or the thickness of the insulating layer on the upper surface of the convex portion is reduced. be able to. By mounting the light emitting element in that portion, heat radiation from the light emitting element to the metal plate through the convex portion of the metal plate becomes good. As a result, the manufacturing process is simplified and the metal is not wasted compared to the case where the convex part of the metal plate is formed by etching or the like, so that the substrate having the convex part for heat dissipation can be reduced in a simple process. Can be advantageously produced.
本発明の発光素子搭載用基板の例を示す図The figure which shows the example of the board | substrate for light emitting element mounting of this invention 本発明の発光素子搭載用基板の製造工程フローの一例を示す図The figure which shows an example of the manufacturing process flow of the light emitting element mounting substrate of this invention 本発明の発光素子搭載用基板の製造工程フローの一例を示す図The figure which shows an example of the manufacturing process flow of the light emitting element mounting substrate of this invention 本発明の発光素子搭載用基板の製造工程フローの一例を示す図The figure which shows an example of the manufacturing process flow of the light emitting element mounting substrate of this invention 本発明の発光素子搭載用基板の製造工程フローの他の例を示す図The figure which shows the other example of the manufacturing process flow of the light emitting element mounting substrate of this invention. 本発明の発光素子搭載用基板の要部の他の例を示す図The figure which shows the other example of the principal part of the light emitting element mounting substrate of this invention.
 以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明の発光素子搭載用基板の一例を示す図である。図2から図4は、本発明の発光素子搭載用基板の製造工程フローの一例を示す図面である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an example of a light-emitting element mounting substrate according to the present invention. 2 to 4 are drawings showing an example of a manufacturing process flow of the light emitting element mounting substrate of the present invention.
 本発明の発光素子搭載用基板は、図1に示すように、少なくとも発光素子30の搭載位置にプレス加工により形成された凸部10aを有する金属板10と、少なくとも凸部10aの近傍に形成された絶縁層16と、その絶縁層16の上面に設けられた給電用パターン20aと、を備える。本実施形態では、図1(a)に示すように、ほぼ円形の凸部10aが金属板10に形成され、その上面には、放熱用パターン20bが接触した状態で形成されている例を示す。 As shown in FIG. 1, the light emitting element mounting substrate of the present invention is formed at least in the vicinity of the convex portion 10 a and the metal plate 10 having the convex portion 10 a formed by pressing at the mounting position of the light emitting element 30. And an insulating layer 16 and a power feeding pattern 20 a provided on the upper surface of the insulating layer 16. In this embodiment, as shown to Fig.1 (a), the substantially circular convex part 10a is formed in the metal plate 10, and the example which is formed in the state which the pattern 20b for thermal radiation contacted on the upper surface is shown. .
 本発明の発光素子搭載用基板には、発光素子30が搭載される。用いられる発光素子30としては、底面及び/又は上面に電極を有する発光ダイオードチップ(フリップチップ、ベアチップ)、パッケージ化された表面実装タイプの発光ダイオード(LEDパッケージ、チップLED)、半導体レーザチップ等が挙げられる。底面に1つの電極を有する発光ダイオードチップとしては、その底面が、カソードタイプとアノードタイプの2種類があり、いずれを使用することも可能である。 The light emitting element 30 is mounted on the light emitting element mounting substrate of the present invention. Examples of the light emitting element 30 used include a light emitting diode chip (flip chip, bare chip) having electrodes on the bottom surface and / or the top surface, a packaged surface mount type light emitting diode (LED package, chip LED), and a semiconductor laser chip. Can be mentioned. As a light emitting diode chip having one electrode on the bottom surface, there are two types of the bottom surface, a cathode type and an anode type, either of which can be used.
 本発明では、発光素子30がパッケージされたLEDである場合、放熱用のパッド32を底面に備えることが好ましく、パッド32を金属板10の凸部10aの上面又は放熱用パターン20bの上面にボンディングするのが好ましい。また、ベアチップ等を用いる場合、これを金属板10の凸部10aの上面又は放熱用パターン20bの上面にダイボンドするのが好ましい。これにより、パッド32等から金属板10の凸部10aに効率良く伝熱が行え、LEDからの放熱を良好に行うことができる。本実施形態では、発光素子30として、放熱用のパッド32を底面に備えるパッケージLEDを用い、放熱用パターン20bの上面にボンディングする例を示す。 In the present invention, when the light emitting element 30 is a packaged LED, it is preferable to provide a heat radiation pad 32 on the bottom surface, and the pad 32 is bonded to the upper surface of the convex portion 10a of the metal plate 10 or the heat radiation pattern 20b. It is preferable to do this. Moreover, when using a bare chip etc., it is preferable to die-bond this to the upper surface of the convex part 10a of the metal plate 10, or the upper surface of the pattern 20b for thermal radiation. Thereby, heat can be efficiently transferred from the pad 32 or the like to the convex portion 10a of the metal plate 10, and heat radiation from the LED can be performed satisfactorily. In the present embodiment, an example is shown in which a package LED having a heat radiation pad 32 on the bottom surface is used as the light emitting element 30 and bonding is performed on the upper surface of the heat radiation pattern 20b.
 本発明では、発光素子30の電極31は、給電パターン20aに電気的に接続される。給電パターン20との接続は、表面実装タイプのパッケージLEDの場合、ソルダによるリフロー接続などが可能であるが、ベアチップ等の場合には、ワイヤボンディング等が使用される。 In the present invention, the electrode 31 of the light emitting element 30 is electrically connected to the power feeding pattern 20a. For the connection with the power supply pattern 20, reflow connection by solder or the like is possible in the case of a surface mount type package LED, but in the case of a bare chip or the like, wire bonding or the like is used.
 本発明の発光素子搭載用基板は、図1(b)に示すように、凸部10aが、連続する凸条に形成されていてもよく、また、前記凸部10aの裏面には凹部を有すると共に、その凹部に一部が挿入されたヒートパイプ40を設けているのが好ましい。図示した例では、連続する凸条の裏面には溝部10bを有すると共に、その溝部10bに一部が挿入されたヒートパイプ40を設けてあり、その上面に、断面が台形の凸条41が形成されている。 In the light emitting element mounting substrate of the present invention, as shown in FIG. 1 (b), the convex portion 10a may be formed in a continuous ridge, and the rear surface of the convex portion 10a has a concave portion. At the same time, it is preferable to provide a heat pipe 40 partially inserted into the recess. In the illustrated example, the back surface of the continuous ridge has a groove portion 10b and a heat pipe 40 partially inserted into the groove portion 10b is provided, and a ridge 41 having a trapezoidal cross section is formed on the upper surface. Has been.
 このように、金属板10の凸部10aを連続する凸条に形成する場合、複数の発光素子30を、凸条に沿って搭載するのが好ましい。なお、図中の仮想線は、発光素子30の搭載位置を示している。このような凸条は、複数列設けてもよい。 Thus, when forming the convex part 10a of the metal plate 10 in a continuous protruding item | line, it is preferable to mount the some light emitting element 30 along a protruding item | line. In addition, the virtual line in a figure has shown the mounting position of the light emitting element 30. FIG. Such ridges may be provided in a plurality of rows.
 ヒートパイプ40は、金属等の伝熱性材料からなるパイプの内部に熱媒体を封入した構造を有し、局所的な熱を熱媒体の蒸発・凝縮作用によって、他の部分に素早く伝熱させる機能を有する。このようなヒートパイプ40は、各種のサイズ、形状のものが市販されている。 The heat pipe 40 has a structure in which a heat medium is sealed inside a pipe made of a heat transfer material such as metal, and a function of quickly transferring local heat to other parts by evaporation / condensation of the heat medium. Have Such heat pipes 40 are commercially available in various sizes and shapes.
 ヒートパイプ40の凸条41は、金属からなる凸条41を溶接等で接合したり、伝熱性の接着剤による接着等で、設けることができる。また、予め凸条41を有する金属でヒートパイプ40を作製することも可能である。 The ridges 41 of the heat pipe 40 can be provided by joining the ridges 41 made of metal by welding or the like, or by bonding with a heat conductive adhesive. It is also possible to make the heat pipe 40 with a metal having the ridges 41 in advance.
 ヒートパイプ40の凸条41は、半円形、四角形など何れの断面形状でもよいが、金属板10の溝部10bに内接する形状が好ましく、ほぼ全面で接触する形状がより好ましい。凸条41と溝部10bとの間に隙間を有する場合、サーマルシートなどの伝熱性材料を介在させることが好ましい。 The protrusion 41 of the heat pipe 40 may have any cross-sectional shape such as a semicircular shape or a square shape, but a shape inscribed in the groove portion 10b of the metal plate 10 is preferable, and a shape in contact with almost the entire surface is more preferable. When there is a gap between the ridge 41 and the groove 10b, it is preferable to interpose a heat transfer material such as a thermal sheet.
 本発明の発光素子搭載用基板は、図1(c)に示すように、発光素子30の搭載位置の周囲に、リフレクタ機能を備えたダム201を形成してもよい。この例では、発光素子30であるベアチップが放熱用パターン20bの上面にボンディングされ、更にワイヤボンディングによって給電用パターン20aと電気的に接続されている。ワイヤボンディングには、金等の金属細線やリボンリードを使用することができ、超音波やこれと加熱を併用する方法で結線することが可能である。なお、本発明では、この例のように、凸部10aの上面と放熱用パターン20bとが接触せずに、絶縁層16を構成する樹脂等が介在した状態であってもよい。 In the light emitting element mounting substrate of the present invention, a dam 201 having a reflector function may be formed around the mounting position of the light emitting element 30 as shown in FIG. In this example, a bare chip as the light emitting element 30 is bonded to the upper surface of the heat radiation pattern 20b, and is further electrically connected to the power supply pattern 20a by wire bonding. For wire bonding, a fine metal wire such as gold or a ribbon lead can be used, and the wire can be connected by a method using ultrasonic waves or heating together. In the present invention, as in this example, the upper surface of the convex portion 10a and the heat radiation pattern 20b may not be in contact with each other and the resin constituting the insulating layer 16 may be interposed.
 ダム201は、給電用パターン20aの上面に接着剤202によって接着されている。ダム201は、例えば、所定の厚みのAl板にダム形状の孔加工を施すことで形成できる。ダム202の反射面にはさらに、Ni、Ag、Cu等のメッキを施すことができる。そして、ダム201の内側を透明樹脂、蛍光色樹脂等で被覆することができる。さらに、その上方に、凸面の透明樹脂レンズを設けることができる。透明樹脂レンズが凸面を有することで、効率良く基板から上方に光を発射させることができる。なお、透明樹脂レンズは着色されたものでもよい。透明樹脂レンズ等は、ダム201を設けずに、インサート成形、ポッティングなどの公知の方法で、直接基板に形成することも可能である。 The dam 201 is bonded to the upper surface of the power feeding pattern 20a with an adhesive 202. The dam 201 can be formed, for example, by applying a dam-shaped hole to an Al plate having a predetermined thickness. The reflective surface of the dam 202 can be further plated with Ni, Ag, Cu, or the like. The inside of the dam 201 can be covered with a transparent resin, a fluorescent color resin, or the like. Furthermore, a convex transparent resin lens can be provided above the surface. Since the transparent resin lens has a convex surface, light can be efficiently emitted upward from the substrate. The transparent resin lens may be colored. The transparent resin lens or the like can be directly formed on the substrate by a known method such as insert molding or potting without providing the dam 201.
 このようにダム201の内部を透明樹脂で被覆(封し)し、透明樹脂レンズを設けて発光素子パッケージあるいは発光素子パネルを構成することができる。発光素子パッケージは、一般的に、配線パターンが形成された基板に1個の発光素子が実装されたパッケージ構成であり、この発光素子パッケージは回路基板上に実装される。また、発光素子パネルは、一般的に、配線パターンが形成された基板に複数の発光素子が実装されている構成である。 Thus, the inside of the dam 201 can be covered (sealed) with a transparent resin, and a transparent resin lens can be provided to constitute a light emitting element package or a light emitting element panel. The light emitting element package generally has a package configuration in which one light emitting element is mounted on a substrate on which a wiring pattern is formed. The light emitting element package is mounted on a circuit board. A light emitting element panel generally has a configuration in which a plurality of light emitting elements are mounted on a substrate on which a wiring pattern is formed.
 また、給電用パターン20aの上面に接着剤を介在させて、絶縁樹脂製のダムを形成でき、その反射面を例えばNi、Ag等でメッキ処理して、リフレクタ機能を発揮させることが好ましい。絶縁樹脂製のダムは、所定厚みの絶縁樹脂板にダム形状の孔加工を施すことで形成できる。この絶縁樹脂板としてベースが絶縁樹脂の回路基板を用いてもよい。 Further, it is preferable that an insulating resin dam can be formed by interposing an adhesive on the upper surface of the power supply pattern 20a, and that the reflecting surface is plated with, for example, Ni, Ag or the like to exhibit the reflector function. The insulating resin dam can be formed by forming a dam-shaped hole in an insulating resin plate having a predetermined thickness. A circuit board whose base is an insulating resin may be used as the insulating resin plate.
 次に、図2から図4に示す製造工程フローに従って、本発明の発光素子搭載用基板、およびその製造方法の一例について説明する。 Next, according to the manufacturing process flow shown in FIGS. 2 to 4, an example of the light emitting element mounting substrate of the present invention and an example of a manufacturing method thereof will be described.
 (1)金属板10をプレス加工して、少なくとも発光素子30の搭載位置に凸部10aを形成する工程(ステップS1)。 (1) A step of pressing the metal plate 10 to form the convex portion 10a at least at the mounting position of the light emitting element 30 (step S1).
 まず、図3(a)に示すように、金属板10を用意する。金属板10は、単層または積層体の何れでもよく、構成する金属としては、何れの金属でもよく、例えば銅、銅合金、アルミニウム、ステンレス、ニッケル、鉄、その他の合金等が使用できる。なかでも、熱伝導性や電気伝導性の点から、銅、銅合金、アルミニウムが好ましい。上記のような、放熱が良好な金属基板を備える構造により、発光素子30の温度上昇を防止できるため、熱抵抗が小さく駆動電流をより多く流せ、発光量を増加させることができる。 First, as shown in FIG. 3A, a metal plate 10 is prepared. The metal plate 10 may be either a single layer or a laminate, and any metal may be used as a constituent metal. For example, copper, copper alloy, aluminum, stainless steel, nickel, iron, other alloys, and the like can be used. Of these, copper, copper alloy, and aluminum are preferable from the viewpoint of thermal conductivity and electrical conductivity. With the structure including the metal substrate with good heat dissipation as described above, the temperature rise of the light emitting element 30 can be prevented, so that the thermal resistance is small and more driving current can be supplied, and the amount of light emission can be increased.
 金属板10の厚みとしては、放熱性をより向上させる観点から、70~3000μmが好ましく、70~1000μmがより好ましい。但し、図3(f)に示す工程で、フラットな下型を使用する場合には、金属板10の凸部10aの強度が高いことが望ましく、その場合、金属板10の厚みとしては、100~1000μmが好ましい。 The thickness of the metal plate 10 is preferably 70 to 3000 μm and more preferably 70 to 1000 μm from the viewpoint of further improving the heat dissipation. However, when a flat lower mold is used in the step shown in FIG. 3F, it is desirable that the strength of the convex portion 10a of the metal plate 10 is high. In this case, the thickness of the metal plate 10 is 100 ˜1000 μm is preferred.
 次いで、図3(b)に示すように、少なくとも発光素子30の搭載位置に対向する位置に凸部42aを有する下型42と、搭載位置に対向する位置に凹部41aを有する上型41とを用意する。下型42と上型41とは、プレス装置を作動させる際に、凸部42aと凹部41aの位置決めが可能であれば、アタッチメントとして使用することも可能であり、プレス装置のプレス面に介在させて使用してもよい。なお、下型42と上型41とは、上下を逆転させてもよく、その場合、下側に凸状の凸部10aが形成される。 Next, as shown in FIG. 3B, at least a lower mold 42 having a convex portion 42a at a position facing the mounting position of the light emitting element 30, and an upper mold 41 having a concave portion 41a at a position facing the mounting position. prepare. The lower mold 42 and the upper mold 41 can be used as attachments if the convex portions 42a and the concave portions 41a can be positioned when the press device is operated, and are interposed in the press surface of the press device. May be used. In addition, the lower mold | type 42 and the upper mold | type 41 may be reversed up and down, and the convex-shaped convex part 10a is formed in the lower side in that case.
 得られる金属板10の凸部10aは、上型41の凹部41aと、下型42の凸部42aの形状、サイズなどにより、その形状、サイズなどが決定される。凸部10aの高さ(金属板10の上面からの高さ)は、凸部10aからの放熱性や、絶縁層の厚み、熱伝導性の観点から、60~150μmが好ましく、60~100μmがより好ましい。 The shape, size, and the like of the convex portion 10a of the obtained metal plate 10 are determined by the shape and size of the concave portion 41a of the upper die 41 and the convex portion 42a of the lower die 42. The height of the convex portion 10a (height from the upper surface of the metal plate 10) is preferably 60 to 150 μm, and preferably 60 to 100 μm, from the viewpoint of heat dissipation from the convex portion 10a, the thickness of the insulating layer, and thermal conductivity. More preferred.
 また、凸部10aの上面のサイズは、実装される発光素子30より小さくても大きくてもよく、例えば円形の場合、その上面の直径が400μm~10mmであるのが好ましい。凸部10aの上面の形状は、四角形、円形、楕円形など何れでもよく、また、連続する凸条に形成されていてもよい。 Further, the size of the upper surface of the convex portion 10a may be smaller or larger than the light emitting element 30 to be mounted. For example, in the case of a circular shape, the diameter of the upper surface is preferably 400 μm to 10 mm. The shape of the upper surface of the convex portion 10a may be any of a square, a circle, an ellipse, etc., or may be formed in a continuous ridge.
 次いで、図3(c)に示すように、金属板10をプレス加工して、少なくとも発光素子30の搭載位置に凸部10aを形成する。その際のプレス圧等の条件は、通常の金属加工の場合と同様である。 Next, as shown in FIG. 3 (c), the metal plate 10 is pressed to form the convex portion 10 a at least at the mounting position of the light emitting element 30. The conditions such as the pressing pressure at that time are the same as in the case of normal metal processing.
 次いで、図3(d)に示すように、脱型を行うが、以後の工程で、凸部42aを有する下型42を使用する場合、上型41のみを脱型するのが好ましい。以後の工程で凸部42aを有する下型42を使用しない場合、両方の上型41、下型42から、金属板10が脱型される。 Next, as shown in FIG. 3D, demolding is performed. However, in the subsequent steps, when the lower mold 42 having the convex portions 42a is used, it is preferable to demold only the upper mold 41. When the lower mold 42 having the convex portions 42 a is not used in the subsequent processes, the metal plate 10 is removed from both the upper mold 41 and the lower mold 42.
 (2)少なくとも前記凸部10aの近傍に絶縁層16を形成する工程(ステップS2)。 (2) A step of forming the insulating layer 16 at least in the vicinity of the convex portion 10a (step S2).
 本実施形態では、この工程を、金属板10、絶縁層形成材16a、及び金属層形成材19aを含む積層物を加熱プレスして、絶縁層16を介して表面に形成された金属層19が凸部Aを有する積層体を得る工程により、実施する例を示す。図3(e)に示す例では、絶縁層形成材16aである絶縁樹脂材料と金属層形成材19aである銅箔とが積層一体化された樹脂付き銅箔を用いている。 In this embodiment, this process is performed by pressing a laminate including the metal plate 10, the insulating layer forming material 16 a, and the metal layer forming material 19 a, so that the metal layer 19 formed on the surface via the insulating layer 16 is formed. The example implemented by the process of obtaining the laminated body which has the convex part A is shown. In the example shown in FIG. 3E, a copper foil with resin in which an insulating resin material that is the insulating layer forming material 16a and a copper foil that is the metal layer forming material 19a are laminated and integrated is used.
 図3(f)に示すように、これを金属板10に対して、プレス面により加熱プレスすることで、絶縁層16と金属層19とを同時に積層形成すると共に、金属板10の凸部10aに対応する位置に凸部Aを形成した積層体を得る。このとき、プレス面と被積層体との間に、少なくとも、凹状変形を許容するシート材(例えばクッション材)を配置しておくのが好ましい。また、金属板10の凸部10aに対応する位置に、凹部を有するプレス面を使用してもよい。 As shown in FIG. 3 (f), the metal plate 10 is heated and pressed with a pressing surface, whereby the insulating layer 16 and the metal layer 19 are simultaneously laminated and the convex portion 10 a of the metal plate 10. To obtain a laminate in which convex portions A are formed at positions corresponding to the above. At this time, it is preferable to arrange at least a sheet material (for example, a cushion material) that allows concave deformation between the press surface and the laminated body. Moreover, you may use the press surface which has a recessed part in the position corresponding to the convex part 10a of the metal plate 10. FIG.
 上記の絶縁樹脂材料と銅箔は、各種のものが市販されており、それらをいずれも使用できる。また、絶縁樹脂材料の形成材と、銅箔の形成材とは各々を別々に配置してもよい。この工程では、シート材が、金属板10の凸部10aの存在によって加熱プレス時に凹状変形するため、それに対応する凸部Aが積層体に形成される。 Various types of the above-mentioned insulating resin material and copper foil are commercially available, and any of them can be used. Further, the insulating resin material forming material and the copper foil forming material may be arranged separately. In this process, since the sheet material is deformed in a concave shape at the time of hot pressing due to the presence of the convex portion 10a of the metal plate 10, the corresponding convex portion A is formed in the laminate.
 加熱プレスの方法としては、加熱加圧装置(真空ホットプレス、熱ラミネータ、加熱プレス)などを用いて行えばよく、その際、空気の混入を避けるために、雰囲気を真空(真空ラミネータ等)にしてもよい。加熱温度、圧力など条件等は、絶縁層形成材と金属層形成材の材質や厚みに応じて適宜設定すればよいが、圧力としては、0.5~30MPaが好ましい。 As a heating press method, a heating / pressurizing device (vacuum hot press, thermal laminator, heating press) or the like may be used. In this case, the atmosphere is set to a vacuum (vacuum laminator, etc.) in order to avoid air contamination. May be. Conditions such as heating temperature and pressure may be appropriately set according to the material and thickness of the insulating layer forming material and the metal layer forming material, but the pressure is preferably 0.5 to 30 MPa.
 絶縁層形成材16aとしては、積層時に変形して加熱等により硬化すると共に、配線基板に要求される耐熱性を有するものであれば何れの材料でもよい。具体的には、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂等の各種反応硬化性樹脂や、それとガラス繊維、セラミック繊維、アラミド繊維等との複合体(プリプレグ)などが挙げられる。 As the insulating layer forming material 16a, any material may be used as long as it is deformed at the time of lamination and cured by heating or the like and has heat resistance required for the wiring board. Specific examples include various reaction curable resins such as polyimide resins, phenol resins, and epoxy resins, and composites (prepregs) of the same with glass fibers, ceramic fibers, aramid fibers, and the like.
 また、絶縁層16の絶縁層形成材として、熱伝導性の高い材料で構成されることが好ましく、例えば、熱伝導性フィラーを含む樹脂等が例示される。 Further, the insulating layer forming material of the insulating layer 16 is preferably made of a material having high thermal conductivity, and examples thereof include a resin containing a thermal conductive filler.
 この場合の絶縁層16は、1.0W/mK以上の熱伝導率を有し、1.2W/mK以上の熱伝導率を有することが好ましく、1.5W/mK以上の熱伝導率を有することがより好ましい。これによって、凸部10aからの熱を効率良く金属板10側に放熱することができる。ここで、絶縁層16の熱伝導率は、適宜、熱伝導性フィラーの配合量および粒度分布を考慮した配合を選択することで決定されるが、硬化前の絶縁性接着剤の塗工性を考慮すると、一般的には10W/mK程度が上限として好ましい。 The insulating layer 16 in this case has a thermal conductivity of 1.0 W / mK or higher, preferably has a thermal conductivity of 1.2 W / mK or higher, and has a thermal conductivity of 1.5 W / mK or higher. It is more preferable. Thereby, the heat from the convex part 10a can be efficiently radiated to the metal plate 10 side. Here, the thermal conductivity of the insulating layer 16 is appropriately determined by selecting a formulation in consideration of the blending amount and particle size distribution of the thermally conductive filler, but the coating property of the insulating adhesive before curing is determined. In consideration, generally, the upper limit is preferably about 10 W / mK.
 上記の絶縁層16は金属酸化物及び/又は金属窒化物である熱伝導性フィラーと樹脂(絶縁性接着剤)とで構成されることが好ましい。金属酸化物並びに金属窒化物は、熱伝導性に優れ、しかも電気絶縁性のものが好ましい。金属酸化物としては酸化アルミニウム、酸化珪素、酸化ベリリウム、酸化マグネシウムが、金属窒化物としては窒化硼素、窒化珪素、窒化アルミニウムが選択され、これらを単独または2種以上を混合して用いることができる。特に、前記金属酸化物のうち、酸化アルミニウムは電気絶縁性、熱伝導性ともに良好な絶縁接着剤層を容易に得ることができ、しかも安価に入手可能であるという理由で、また、前記金属窒化物のうち窒化硼素は電気絶縁性、熱伝導性に優れ、更に誘電率が小さいという理由で好ましい。 The insulating layer 16 is preferably composed of a thermally conductive filler that is a metal oxide and / or a metal nitride and a resin (insulating adhesive). Metal oxides and metal nitrides are preferably excellent in thermal conductivity and electrically insulating. Aluminum oxide, silicon oxide, beryllium oxide, and magnesium oxide are selected as the metal oxide, and boron nitride, silicon nitride, and aluminum nitride are selected as the metal nitride. These can be used alone or in combination of two or more. . In particular, among the metal oxides, aluminum oxide can easily obtain an insulating adhesive layer having good electrical insulation and thermal conductivity, and can be obtained at low cost. Of these materials, boron nitride is preferable because it is excellent in electrical insulation and thermal conductivity and has a low dielectric constant.
 熱伝導性フィラーとしては、小径フィラーと大径フィラーとを含むものが好ましい。このように2種以上の大きさの異なる粒子(粒度分布の異なる粒子)を用いることで、大径フィラー自体による伝熱機能と、小径フィラーにより大径フィラー間の樹脂の伝熱性を高める機能により、絶縁層16の熱伝導率をより向上させることができる。このような観点から、小径フィラーのメディアン径は、0.5~2μmが好ましく0.5~1μmがより好ましい。また、大径フィラーのメディアン径は、10~40μmが好ましく15~20μmがより好ましい。 As the thermally conductive filler, those containing a small diameter filler and a large diameter filler are preferable. Thus, by using two or more kinds of particles having different sizes (particles having different particle size distributions), the heat transfer function by the large-diameter filler itself and the function of increasing the heat transfer property of the resin between the large-diameter fillers by the small-diameter filler. In addition, the thermal conductivity of the insulating layer 16 can be further improved. From such a viewpoint, the median diameter of the small filler is preferably 0.5 to 2 μm, and more preferably 0.5 to 1 μm. The median diameter of the large filler is preferably 10 to 40 μm, more preferably 15 to 20 μm.
 上記の絶縁層16を構成する樹脂としては、金属酸化物及び/又は金属窒化物を含みながらも、硬化状態下において、金属板10との接合力に優れ、また耐電圧特性等を損なわないものが選択される。このような樹脂として、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂の他、各種のエンジニアリングプラスチックが単独または2種以上を混合して用いることができるが、このうちエポキシ樹脂が金属同士の接合力に優れるので好ましい。特に、エポキシ樹脂のなかでは、流動性が高く、前記の金属酸化物及び金属窒化物との混合性に優れるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂構造を両末端に有するトリブロックポリマー、ビスフェノールF型エポキシ樹脂構造を両末端に有するトリブロックポリマーが一層好ましい樹脂である。 The resin constituting the insulating layer 16 includes a metal oxide and / or a metal nitride, but has excellent bonding strength with the metal plate 10 in a cured state and does not impair withstand voltage characteristics. Is selected. As such a resin, an epoxy resin, a phenol resin, a polyimide resin, and various engineering plastics can be used singly or as a mixture of two or more, but among them, the epoxy resin is excellent in bonding strength between metals. preferable. In particular, among epoxy resins, bisphenol A-type epoxy resins, bisphenol F-type epoxy resins, hydrogenated bisphenol A-type epoxy resins, hydrogenated, which have high fluidity and excellent mixing properties with the above metal oxides and metal nitrides. Bisphenol F type epoxy resins, triblock polymers having bisphenol A type epoxy resin structures at both ends, and triblock polymers having bisphenol F type epoxy resin structures at both ends are more preferred resins.
 シート材は、加熱プレス時に凹状変形を許容する材料であればよく、クッション紙、ゴムシート、エラストマーシート、不織布、織布、多孔質シート、発泡体シート、金属箔、これらの複合体、などが挙げられる。特に、クッション紙、ゴムシート、エラストマーシート、発泡体シート、これらの複合体などの、弾性変形可能なものが好ましい。 The sheet material may be any material that allows concave deformation at the time of heating press, such as cushion paper, rubber sheet, elastomer sheet, nonwoven fabric, woven fabric, porous sheet, foam sheet, metal foil, and composites thereof. Can be mentioned. In particular, those that can be elastically deformed, such as cushion paper, rubber sheets, elastomer sheets, foam sheets, and composites thereof, are preferable.
 (3)絶縁層16の上面に給電用パターン20aを形成する工程(ステップS3)。 (3) A step of forming the power feeding pattern 20a on the upper surface of the insulating layer 16 (step S3).
 この工程は、例えば、金属板10の凸部10aの上方の凸部Aを除去し、凸部10aを露出させる工程と、金属箔(金属層19)を所定のパターンでエッチングする工程とにより実施することができる。 This step is performed, for example, by removing the convex portion A above the convex portion 10a of the metal plate 10 to expose the convex portion 10a and etching the metal foil (metal layer 19) with a predetermined pattern. can do.
 図3(g)に示す例では、凸部Aが除去されて凸部10aが露出し平坦面Bが形成されている。この凸部Aの除去の際、金属層19の高さと凸部10aの高さが一致するように除去して平坦化するのが好ましい。 In the example shown in FIG. 3G, the convex portion A is removed, the convex portion 10a is exposed, and a flat surface B is formed. When removing the projection A, it is preferable to remove and flatten the metal layer 19 so that the height of the metal layer 19 coincides with the height of the projection 10a.
 凸部Aの除去方法としては、研削や研磨による方法が好ましく、ダイヤモンド製等の硬質刃を回転板の半径方向に複数配置した硬質回転刃を有する研削装置を使用する方法や、サンダ、ベルトサンダ、グラインダ、平面研削盤、硬質砥粒成形品などを用いる方法などが挙げられる。研削装置を使用すると、当該硬質回転刃を回転させながら、固定支持された配線基板の上面に沿って移動させることによって、上面を平坦化することができる。また、研磨の方法としては、ベルトサンダ、バフ研磨等により軽く研磨する方法が挙げられる。本発明のように積層体に凸部Aが形成されていると、その部分のみを研削するのが容易になり、全体の平坦化がより確実に行える。 As a method for removing the convex portion A, a method by grinding or polishing is preferable. A method using a grinding device having a hard rotating blade in which a plurality of hard blades made of diamond or the like are arranged in the radial direction of the rotating plate, a sander, a belt sander , A method using a grinder, a surface grinder, a hard abrasive molded article, or the like. When the grinding apparatus is used, the upper surface can be flattened by moving the hard rotary blade along the upper surface of the fixedly supported wiring board while rotating the hard rotary blade. Moreover, as a grinding | polishing method, the method of lightly grind | polishing by a belt sander, buff grinding | polishing, etc. is mentioned. When the protrusion A is formed on the laminate as in the present invention, it becomes easy to grind only that portion, and the entire flattening can be performed more reliably.
 次いで、金属層19のエッチングを行うが、図3(h)に示すように、エッチングの前に、露出された凸部10aおよび金属層19を金属メッキし、金属メッキ層20を形成するのが好ましい。また、少なくとも露出された凸部10aを金属メッキする方法でもよい。金属メッキの金属種としては、例えば銅、銀、Ni等が好ましい。金属メッキ層20の形成の方法としては、例えば、エッチングレジストを使用してパターン形成するパネルメッキ法や、パターンメッキ用レジストを使用してメッキで形成するパターンメッキ法等が挙げられる。 Next, the metal layer 19 is etched. As shown in FIG. 3H, the exposed protrusions 10a and the metal layer 19 are metal-plated to form a metal-plated layer 20 before the etching. preferable. Moreover, the method of metal-plating the convex part 10a exposed at least may be used. As the metal species for metal plating, for example, copper, silver, Ni and the like are preferable. Examples of the method for forming the metal plating layer 20 include a panel plating method in which a pattern is formed using an etching resist, a pattern plating method in which a pattern plating resist is used for plating, and the like.
 次いで、図4(i)~(j)に示すように、エッチングレジストMを使用して、所定のパターンで金属メッキ層20および金属層19をエッチングすることで、パッド20bと給電用パターン20aを有する上面金属層を形成する。パッド20bのサイズは、発光素子30のサイズより大きくても小さくてもよいが、例えばその上面の直径が400μm~10mmである。パッド20bの上面の形状は、四角形、円形など何れでもよい。 Next, as shown in FIGS. 4I to 4J, by using the etching resist M, the metal plating layer 20 and the metal layer 19 are etched in a predetermined pattern, so that the pad 20b and the power supply pattern 20a are formed. An upper surface metal layer is formed. The size of the pad 20b may be larger or smaller than the size of the light emitting element 30, but for example, the upper surface has a diameter of 400 μm to 10 mm. The shape of the upper surface of the pad 20b may be any of a quadrangle and a circle.
 エッチングレジストMの除去としては薬剤除去、剥離除去など、エッチングレジストMの種類に応じて適宜選択すればよい。例えば、スクリーン印刷により形成された感光性のインクである場合、アルカリ等の薬品にて除去される。 The removal of the etching resist M may be appropriately selected according to the type of the etching resist M, such as removal of chemicals and removal of peeling. For example, in the case of photosensitive ink formed by screen printing, it is removed with chemicals such as alkali.
 また、チップを直接搭載する場合などは、パッド20bと給電パターン20aには、反射効率およびボンディング性を高めるために金、ニッケル、銀などの貴金属によるメッキを行うのが好ましい。また、従来の配線基板と同様にソルダレジストを形成したり、部分的に半田メッキを行ってもよい。 When the chip is directly mounted, the pad 20b and the power supply pattern 20a are preferably plated with a noble metal such as gold, nickel, silver, etc. in order to improve the reflection efficiency and the bonding property. Further, a solder resist may be formed as in the case of a conventional wiring board, or solder plating may be partially performed.
 (別発明の実施形態)
 本発明の別の発光素子搭載用基板の製造方法は、図5に示すように、金属板10、絶縁層形成材16a、及び金属層形成材19aを含む積層物を加熱プレスして、前記金属板10の少なくとも発光素子30の搭載位置に凸部10aを形成すると同時に、絶縁層16を介して表面に形成された金属層19が凸部Aを有する積層体を得る工程と、前記積層体の凸部Aを除去する工程と、前記金属層19をエッチングして給電用パターン20aを形成する工程と、を含む。
(Embodiment of another invention)
As shown in FIG. 5, another method for manufacturing a substrate for mounting a light-emitting element according to the present invention includes heating and pressing a laminate including a metal plate 10, an insulating layer forming material 16a, and a metal layer forming material 19a. The step of forming the convex portion 10a at least on the mounting position of the light emitting element 30 on the plate 10 and simultaneously obtaining the laminate in which the metal layer 19 formed on the surface via the insulating layer 16 has the convex portion A; A step of removing the protrusion A, and a step of etching the metal layer 19 to form a power feeding pattern 20a.
 つまり、別発明の製造方法と図3に示す製造方法との相違は、後者が2回に分けてプレスが行われ、1回目のプレス加工で金属板10に凸部10aが成形され、2回目のプレス加工で表面の金属層19に凸部Aが成形されるのに対して、図5に示す別発明の製造方法は、1回のプレス加工で金属板10に凸部10aが成形されると共に、表面の金属層19に凸部Aが成形される点が相違する。従って、図5(d)に示す工程より以降の工程は、両者とも同じである。以下、相違点についてのみ説明するが、他の部分については、図2~図4に示す発光素子搭載用基板の製造方法の説明がそのまま該当する。 That is, the difference between the manufacturing method of another invention and the manufacturing method shown in FIG. 3 is that the latter is pressed in two steps, and the convex portion 10a is formed on the metal plate 10 by the first press work. 5 is formed on the metal layer 19 on the surface, whereas the manufacturing method of another invention shown in FIG. 5 forms the protrusion 10a on the metal plate 10 by one press. In addition, the point that the convex portion A is formed on the metal layer 19 on the surface is different. Accordingly, both the steps after the step shown in FIG. 5D are the same. Hereinafter, only the differences will be described, but the description of the method for manufacturing the light emitting element mounting substrate shown in FIGS.
 まず、図5(a)に示すように、金属板10、絶縁層形成材16a、及び金属層形成材19aを用意する。次に、図5(b)に示すように、少なくとも発光素子30の搭載位置に対向する位置に凸部42aを有する下型42と、搭載位置に対向する位置に凹部41aを有する上型41とを用意する。下型42の凸部42aは、形成する金属板10の凸部10aの形状・大きさに合わせて設計される。また、上型41の凹部41aは、金属層19の表面に形成する凸部Aの形状・大きさに合わせて設計される。 First, as shown in FIG. 5A, a metal plate 10, an insulating layer forming material 16a, and a metal layer forming material 19a are prepared. Next, as shown in FIG. 5B, at least a lower mold 42 having a convex portion 42a at a position facing the mounting position of the light emitting element 30, and an upper mold 41 having a concave portion 41a at a position facing the mounting position. Prepare. The convex part 42a of the lower mold 42 is designed according to the shape and size of the convex part 10a of the metal plate 10 to be formed. Further, the concave portion 41 a of the upper mold 41 is designed according to the shape and size of the convex portion A formed on the surface of the metal layer 19.
 凹部41aを有する上型41を用いる代わりに、下面が平坦な上型41を用いて、クッション材を介在させてもよい。また、単層のクッション材の代わりに、クッション材で挟みこんだ金属板(例えばステンレス板)を使用してもよい。このように、クッション材を用いることによって、凹部41aを有する上型41を作製する必要がなくなり、1回の加熱プレスで凸部形成と絶縁層形成を一体化で実施でき、また、位置合わせの問題も生じにくくなる。 Instead of using the upper mold 41 having the recess 41a, the cushion material may be interposed by using the upper mold 41 having a flat bottom surface. Further, instead of a single-layer cushion material, a metal plate (for example, a stainless steel plate) sandwiched between cushion materials may be used. Thus, by using the cushion material, it is not necessary to produce the upper mold 41 having the concave portions 41a, and the convex portion formation and the insulating layer formation can be carried out integrally by one heating press, and the alignment can be performed. Problems are less likely to occur.
 次いで、図5(c)に示すように、金属板10、絶縁層形成材16a、及び金属層形成材19aを含む積層物を加熱プレスして、前記金属板10の少なくとも発光素子30の搭載位置に凸部10aを形成すると同時に、絶縁層16を介して表面に形成された金属層19が凸部Aを有する積層体を得る。 Next, as shown in FIG. 5C, the laminate including the metal plate 10, the insulating layer forming material 16 a, and the metal layer forming material 19 a is hot-pressed to mount at least the light emitting element 30 mounting position on the metal plate 10. At the same time as forming the convex portion 10a, a laminate in which the metal layer 19 formed on the surface via the insulating layer 16 has the convex portion A is obtained.
 更に、図5(d)に示すように、金属板10の凸部10aの上方の凸部Aを除去し、凸部10aを露出させる工程と、金属箔(金属層19)を所定のパターンでエッチングする工程とにより、給電用パターン20aを形成することができる。これらの工程は、図3~図4に示す工程と同様である。 Further, as shown in FIG. 5D, the step of removing the convex portion A above the convex portion 10a of the metal plate 10 to expose the convex portion 10a, and the metal foil (metal layer 19) in a predetermined pattern. By the etching step, the power supply pattern 20a can be formed. These steps are the same as the steps shown in FIGS.
 (別実施形態)
 (1)前述の実施形態では、下面側金属板がパターン形成されておらずパネル状の下面側金属板である例を示したが、金属板は、所定のパターンに回路形成されていてもよい。その場合、複数の発光素子を実装して、直列に接続可能なように、隣接する発光素子の下方の層間接続部同士を接続するパターンを形成してもよい。その場合、一方の層間接続部には、カソード側電極が接続され、他方の層間接続部には、アノード側電極が接続される。また、直列接続と並列接続を併用してもよい。
(Another embodiment)
(1) In the above-described embodiment, an example in which the lower surface side metal plate is not a pattern and is a panel-like lower surface side metal plate is shown, but the metal plate may be formed in a circuit with a predetermined pattern. . In that case, a pattern may be formed in which a plurality of light emitting elements are mounted and the interlayer connection portions below the adjacent light emitting elements are connected so that they can be connected in series. In that case, the cathode electrode is connected to one interlayer connection, and the anode electrode is connected to the other interlayer connection. Moreover, you may use together serial connection and parallel connection.
 (2)前述の実施形態では、発光素子搭載用基板が発光素子搭載と電極とで構成されている例を示したが、本発明では、その他の電子回路を同じ基板上に形成してもよい。例えば、発光ダイオードの駆動回路などを形成するのが好ましい。この場合、基板の周辺、特に角部およびその近傍に配線、ランド、ボンディング用のパッド、外部との電気的接続パッド等がパターニングされ、配線間はチップコンデンサ、チップ抵抗および印刷抵抗等の部品、トランジスタ、ダイオード、IC等を設ければよい。 (2) In the above-described embodiment, the example in which the light emitting element mounting substrate is configured by the light emitting element mounting and the electrode has been described. However, in the present invention, other electronic circuits may be formed on the same substrate. . For example, it is preferable to form a drive circuit for a light emitting diode. In this case, wiring, lands, pads for bonding, pads for electrical connection to the outside, etc. are patterned in the periphery of the substrate, particularly in the corner and the vicinity thereof, and components such as chip capacitors, chip resistors and printing resistors, A transistor, a diode, an IC, or the like may be provided.
 (3)前述の実施形態では、金属層19の上面にメッキを行う例を示したが、本発明は、金属層16の上面にメッキを行わずに、そのまま、金属層19をエッチングして、給電用パターン20a等を形成することも可能である。 (3) In the above-described embodiment, the example in which the upper surface of the metal layer 19 is plated has been described. However, the present invention etches the metal layer 19 as it is without plating the upper surface of the metal layer 16, It is also possible to form the power supply pattern 20a and the like.
 (4)前述の実施形態では、絶縁層形成材を積層して加熱プレスすることで絶縁層を形成する例を示したが、カーテンコートなどの樹脂を塗布する方法により絶縁層を形成してもよい。その場合、形成された樹脂層の表面全体又は表面の一部を、切削又は研磨することで、金属板の凸部の上面を露出させることができる。その後、メッキ等により金属層を形成し、これをエッチングすることで、給電用パターンを形成することができる。 (4) In the above-described embodiment, the example in which the insulating layer is formed by laminating the insulating layer forming material and heat-pressing has been shown. However, even if the insulating layer is formed by a method of applying a resin such as curtain coating. Good. In that case, the upper surface of the convex part of a metal plate can be exposed by cutting or grind | polishing the whole surface or a part of surface of the formed resin layer. Thereafter, a power supply pattern can be formed by forming a metal layer by plating or the like and etching the metal layer.
 (5)本発明では、発光素子を基板に実装した後に、又はリフレクタを形成した後に、1層又は複数層の耐光性フィルムを用いて、その表面を被覆又は封止してもよい。耐光性フィルムとしては、フッ素系樹脂とメタクリル酸エステル系樹脂を含有する樹脂組成物等を用いることができる。 (5) In the present invention, after the light emitting element is mounted on the substrate or after the reflector is formed, the surface thereof may be covered or sealed with a light-resistant film of one or more layers. As the light-resistant film, a resin composition containing a fluororesin and a methacrylic ester resin can be used.
 フッ素系樹脂としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリヘキサフルオロプロピレン、ポリフッ化ビニルのホモポリマー及び共重合体が挙げられる。メタクリル酸エステル系樹脂とはメタクリル酸メチル(MMA)のホモポリマー又はメタクリル酸メチルと共重合可能な単量体との共重合体及びポリメタクリル酸メチルとアクリル系ゴムとのブレンド物等をいう。共重合可能な単量体としては炭素数2~4のメタクリル酸エステル、アクリル酸ブチルをはじめとする炭素数1~8のアクリル酸エステル、スチレン、α-メチルスチレン、アクリロニトリル、アクリル酸、その他のエチレン性不飽和モノマー等がある。 Examples of the fluororesin include homopolymers and copolymers of polyvinylidene fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyhexafluoropropylene, and polyvinyl fluoride. The methacrylic ester resin refers to a homopolymer of methyl methacrylate (MMA), a copolymer of a monomer copolymerizable with methyl methacrylate, a blend of polymethyl methacrylate and acrylic rubber, or the like. Examples of copolymerizable monomers include methacrylic acid esters having 2 to 4 carbon atoms, acrylate esters having 1 to 8 carbon atoms such as butyl acrylate, styrene, α-methylstyrene, acrylonitrile, acrylic acid, and the like. Examples include ethylenically unsaturated monomers.
 耐光性フィルム構成する少なくとも1層には、蛍光体を含有させることも可能である。蛍光体としては、蛍光体母体アルミン酸イットリウムに付活剤セリウムを導入したYAG:Ce蛍光体,蛍光体母体珪酸ストロンチウム・バリウムに付活剤ユーロピウムを導入した(Sr,Ba)SiO:Eu蛍光体などの酸化物蛍光体、α―サイアロン蛍光体、β―サイアロン蛍光体などの窒化物蛍光体、および、銅、銅及びアルミニウム、マグネシウムで付活した硫化亜鉛等がある。蛍光体の粒径は、広い範囲、例えば、0.001~20μmの範囲内で変化することができる。光散乱は、粒径に正比例して増加し得るので、1~2μm以下のオーダーの粒子が好ましく、0.01~0.4μm以下のオーダーの粒子がより望ましい。 A phosphor may be contained in at least one layer constituting the light-resistant film. As the phosphor, YAG: Ce phosphor in which the activator cerium is introduced into the phosphor matrix yttrium aluminate, and the activator europium is introduced in the phosphor matrix strontium barium silicate (Sr, Ba) 2 SiO 4 : Eu. There are oxide phosphors such as phosphors, nitride phosphors such as α-sialon phosphors and β-sialon phosphors, and zinc sulfide activated by copper, copper, aluminum, and magnesium. The particle size of the phosphor can vary within a wide range, for example, 0.001 to 20 μm. Since light scattering can increase in direct proportion to the particle size, particles of the order of 1 to 2 μm or less are preferred, and particles of the order of 0.01 to 0.4 μm or less are more desirable.
 また、耐光性フィルム構成する少なくとも1層には、紫外線吸収剤、酸化防止剤、分散剤、カツプリング剤等を使用することもできる。
 (6)本発明では、ヒートパイプを使用する代わりに、より厚みの大きい金属板を裏面側に積層したり、高熱伝導性の材料からなる層を裏面側に形成してもよい。その際、凸部の裏面側の凹部に、当該材料を充填した構造としてもよい。
 高熱伝導性の材料としては、伝熱とともに輻射効果を高めることができる、金属マトリックス複合体(MMC)が好ましい。MMCとしては、例えばアルミニウムと炭化珪素の複合体、アルミニウムと炭素の複合体などが挙げられる。
 (7)本発明では、凸部の上面がフラットな金属板を用いる代わりに、図7(a)又は(b)に示すように、更に先端が尖った形状の凸部10aを有する金属板10を用いることができる。先端が尖った形状の凸部10aは、絶縁層16の形成時に、凸部10aの上面に樹脂等が残存しにくい構造とすることができる。
 具体的には、絶縁層形成材16aを積層して加熱プレスする方法、又はカーテンコートなどの樹脂を塗布する方法により、金属板10に絶縁層16を形成する際に、尖った形状の凸部10aの先端を絶縁層16から露出又はほぼ露出させることができる。その後、凸部10aの先端部を切削又は研磨等することで、金属板10の凸部10aの上面を平坦化すれば、その部分に発光素子をボンディング等して搭載することができる。
Moreover, an ultraviolet absorber, antioxidant, a dispersing agent, a coupling agent, etc. can also be used for at least 1 layer which comprises a light-resistant film.
(6) In the present invention, instead of using a heat pipe, a thicker metal plate may be laminated on the back surface side, or a layer made of a highly heat conductive material may be formed on the back surface side. In that case, it is good also as a structure which filled the said material in the recessed part of the back surface side of a convex part.
As a material having high thermal conductivity, a metal matrix composite (MMC) that can enhance the radiation effect as well as heat transfer is preferable. Examples of the MMC include a composite of aluminum and silicon carbide, a composite of aluminum and carbon, and the like.
(7) In the present invention, instead of using a metal plate having a flat top surface, the metal plate 10 having a convex portion 10a having a sharper tip as shown in FIG. 7 (a) or (b). Can be used. The convex portion 10a having a sharp tip can have a structure in which resin or the like hardly remains on the upper surface of the convex portion 10a when the insulating layer 16 is formed.
Specifically, when the insulating layer 16 is formed on the metal plate 10 by a method of laminating the insulating layer forming material 16a and heating and pressing, or a method of applying a resin such as curtain coat, a sharp convex portion The tip of 10a can be exposed or almost exposed from the insulating layer 16. Then, if the upper surface of the convex part 10a of the metal plate 10 is flattened by cutting or polishing the tip part of the convex part 10a, the light emitting element can be mounted on the part by bonding or the like.
 10  金属板
 16  絶縁層
 19  金属層
 20  金属メッキ層
 20a 給電用パターン
 20b パッド
 30  発光素子
 A   凸部
 B   平坦面
DESCRIPTION OF SYMBOLS 10 Metal plate 16 Insulating layer 19 Metal layer 20 Metal plating layer 20a Power supply pattern 20b Pad 30 Light emitting element A Convex part B Flat surface

Claims (7)

  1.  少なくとも発光素子の搭載位置にプレス加工により形成された凸部を有する金属板と、
     少なくとも前記凸部の近傍に形成された絶縁層と、
     その絶縁層の上面に設けられた給電用パターンと、
    を備える発光素子搭載用基板。
    A metal plate having a convex portion formed by press processing at least at the mounting position of the light emitting element;
    An insulating layer formed at least in the vicinity of the convex portion;
    A power feeding pattern provided on the upper surface of the insulating layer;
    A substrate for mounting a light emitting element.
  2.  前記凸部の上面には、放熱用パターンが接触した状態で形成されている請求項1記載の発光素子搭載用基板。 The light emitting element mounting substrate according to claim 1, wherein a heat radiation pattern is in contact with the upper surface of the convex portion.
  3.  前記凸部は、連続する凸条に形成されている請求項1又は2記載の発光素子搭載用基板。 The light emitting element mounting substrate according to claim 1, wherein the convex portion is formed in a continuous convex line.
  4.  前記凸部の裏面にはヒートパイプを設けている請求項1~3いずれかに記載の発光素子搭載用基板。 The light-emitting element mounting substrate according to any one of claims 1 to 3, wherein a heat pipe is provided on a back surface of the convex portion.
  5.  前記凸部の裏面には凹部を有すると共に、その凹部に一部が挿入されたヒートパイプを設けている請求項1~3いずれかに記載の発光素子搭載用基板。 The light-emitting element mounting substrate according to any one of claims 1 to 3, wherein a concave portion is provided on a rear surface of the convex portion, and a heat pipe partially inserted into the concave portion is provided.
  6.  金属板をプレス加工して、少なくとも発光素子の搭載位置に凸部を形成する工程と、
     少なくとも前記凸部の近傍に絶縁層を形成する工程と、
     その絶縁層の上面に給電用パターンを形成する工程と、
    を含む発光素子搭載用基板の製造方法。
    Pressing the metal plate to form a convex portion at least at the mounting position of the light emitting element; and
    Forming an insulating layer at least in the vicinity of the convex portion;
    Forming a power feeding pattern on the upper surface of the insulating layer;
    Manufacturing method of the light emitting element mounting substrate containing this.
  7.  金属板、絶縁層形成材、及び金属層形成材を含む積層物を加熱プレスして、前記金属板の少なくとも発光素子の搭載位置に凸部を形成すると同時に、絶縁層を介して表面に形成された金属層が凸部を有する積層体を得る工程と、
     前記積層体の凸部を除去する工程と、
     前記金属層をエッチングして給電用パターンを形成する工程と、
    を含む発光素子搭載用基板の製造方法。
    A metal plate, an insulating layer forming material, and a laminate including the metal layer forming material are heated and pressed to form a convex portion at least on the mounting position of the light emitting element on the metal plate, and at the same time, formed on the surface through the insulating layer. Obtaining a laminate in which the metal layer has convex portions;
    Removing the protrusions of the laminate;
    Etching the metal layer to form a power feeding pattern;
    Manufacturing method of the light emitting element mounting substrate containing this.
PCT/JP2009/066661 2008-09-25 2009-09-25 Substrate for mounting light-emitting element and method for producing same WO2010035788A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010530872A JPWO2010035788A1 (en) 2008-09-25 2009-09-25 Light-emitting element mounting substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-246278 2008-09-25
JP2008246278 2008-09-25

Publications (1)

Publication Number Publication Date
WO2010035788A1 true WO2010035788A1 (en) 2010-04-01

Family

ID=42059786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066661 WO2010035788A1 (en) 2008-09-25 2009-09-25 Substrate for mounting light-emitting element and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2010035788A1 (en)
TW (1) TW201019514A (en)
WO (1) WO2010035788A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228705A (en) * 2010-04-14 2011-11-10 Bang Ming Huang Housing for light-emitting diode with surface coating of fluorinated polymer and light-emitting diode structure therefor
JP4887529B1 (en) * 2011-04-12 2012-02-29 国立大学法人九州工業大学 LED package manufacturing method
JP4904604B1 (en) * 2011-02-17 2012-03-28 国立大学法人九州工業大学 LED module device and manufacturing method thereof
JP4910157B1 (en) * 2010-12-20 2012-04-04 国立大学法人九州工業大学 LED package manufacturing method
JP4914998B1 (en) * 2010-11-17 2012-04-11 国立大学法人九州工業大学 LED module device and manufacturing method thereof
WO2012053550A1 (en) * 2010-10-19 2012-04-26 国立大学法人九州工業大学 Led module device, method for manufacturing same, led package used for led module device, and method for manufacturing same
KR101175093B1 (en) 2011-01-04 2012-08-21 이명희 Mounting method of metal substrate
JP2013543277A (en) * 2010-11-19 2013-11-28 コーニンクレッカ フィリップス エヌ ヴェ Interspersed carriers for light emitting devices
JP2014093463A (en) * 2012-11-06 2014-05-19 Fuji Xerox Co Ltd Surface emitting semiconductor laser array device, light source and light source module
TWI462351B (en) * 2010-07-19 2014-11-21 Interlight Optotech Corp Led light module and manufacturing method thereof
KR20160057039A (en) * 2014-11-12 2016-05-23 삼성전자주식회사 Printed circuit board and method for manufacturing the same
CN106784245A (en) * 2016-12-28 2017-05-31 安徽连达光电科技有限公司 A kind of LED package supports of high-air-tightness and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881780B (en) 2011-07-15 2015-04-01 展晶科技(深圳)有限公司 Luminous module and manufacturing method thereof
CN102956758B (en) * 2011-08-22 2015-03-25 赛恩倍吉科技顾问(深圳)有限公司 Method for manufacturing LED packaging structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094122A (en) * 2000-07-13 2002-03-29 Matsushita Electric Works Ltd Light source and its manufacturing method
JP2005167086A (en) * 2003-12-04 2005-06-23 Daiwa Kogyo:Kk Substrate for mounting light emitting element and fabrication method thereof
JP2008166081A (en) * 2006-12-27 2008-07-17 Toshiba Lighting & Technology Corp Lighting device, and lighting apparatus having lighting device
JP2008199057A (en) * 2006-06-02 2008-08-28 Nec Lighting Ltd Electronic equipment and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002094122A (en) * 2000-07-13 2002-03-29 Matsushita Electric Works Ltd Light source and its manufacturing method
JP2005167086A (en) * 2003-12-04 2005-06-23 Daiwa Kogyo:Kk Substrate for mounting light emitting element and fabrication method thereof
JP2008199057A (en) * 2006-06-02 2008-08-28 Nec Lighting Ltd Electronic equipment and method of manufacturing the same
JP2008166081A (en) * 2006-12-27 2008-07-17 Toshiba Lighting & Technology Corp Lighting device, and lighting apparatus having lighting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000463B2 (en) 2010-04-14 2015-04-07 Pang-Ming Huang LED housing with fluoropolymer surface coating layer and LED structure having the same
JP2011228705A (en) * 2010-04-14 2011-11-10 Bang Ming Huang Housing for light-emitting diode with surface coating of fluorinated polymer and light-emitting diode structure therefor
TWI462351B (en) * 2010-07-19 2014-11-21 Interlight Optotech Corp Led light module and manufacturing method thereof
WO2012053550A1 (en) * 2010-10-19 2012-04-26 国立大学法人九州工業大学 Led module device, method for manufacturing same, led package used for led module device, and method for manufacturing same
JP4914998B1 (en) * 2010-11-17 2012-04-11 国立大学法人九州工業大学 LED module device and manufacturing method thereof
JP2013543277A (en) * 2010-11-19 2013-11-28 コーニンクレッカ フィリップス エヌ ヴェ Interspersed carriers for light emitting devices
US9997686B2 (en) 2010-11-19 2018-06-12 Lumileds Llc Islanded carrier for light emitting device
JP4910157B1 (en) * 2010-12-20 2012-04-04 国立大学法人九州工業大学 LED package manufacturing method
KR101175093B1 (en) 2011-01-04 2012-08-21 이명희 Mounting method of metal substrate
JP4904604B1 (en) * 2011-02-17 2012-03-28 国立大学法人九州工業大学 LED module device and manufacturing method thereof
JP4887529B1 (en) * 2011-04-12 2012-02-29 国立大学法人九州工業大学 LED package manufacturing method
JP2014093463A (en) * 2012-11-06 2014-05-19 Fuji Xerox Co Ltd Surface emitting semiconductor laser array device, light source and light source module
KR20160057039A (en) * 2014-11-12 2016-05-23 삼성전자주식회사 Printed circuit board and method for manufacturing the same
KR102268781B1 (en) * 2014-11-12 2021-06-28 삼성전자주식회사 Printed circuit board and method for manufacturing the same
CN106784245A (en) * 2016-12-28 2017-05-31 安徽连达光电科技有限公司 A kind of LED package supports of high-air-tightness and preparation method thereof

Also Published As

Publication number Publication date
TW201019514A (en) 2010-05-16
JPWO2010035788A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2010035788A1 (en) Substrate for mounting light-emitting element and method for producing same
JP5372653B2 (en) Light emitting element mounting substrate and light emitting device
JP4747265B2 (en) Light-emitting element mounting substrate and manufacturing method thereof
JP5323501B2 (en) Light emitting diode package and manufacturing method thereof
JP4255367B2 (en) Light-emitting element mounting substrate and manufacturing method thereof
KR102141422B1 (en) Method of manufacturing light emitting device
EP1890340B1 (en) Method for producing a porcelain enameled substrate for light-emitting device mounting.
JP2004039691A (en) Heat conduction wiring board for led lighting device, led lighting device using the same, and method of manufacturing them
JP2008244285A (en) Light-emitting element mounting substrate and manufacturing method therefor
TW201030937A (en) Light-emitting device, light-emitting module, and method for manufacturing light-emitting device
JP2014120529A (en) Circuit board, led module and led package, and method of manufacturing circuit board
JP2011040715A (en) Led mounting substrate and method of manufacturing the same
JP5063555B2 (en) Light-emitting element mounting substrate
JP5084693B2 (en) Light emitting device and light emitting element mounting substrate
JP2010123606A (en) Substrate with through electrode, and methods of manufacturing light-emitting device and substrate with through electrode
JP2010123606A5 (en)
US20160233401A1 (en) Substrate for light emitting device, light emitting device, and method for manufacturing substrate for light emitting device
JP2014103354A (en) Circuit board, led module, and manufacturing method for circuit board
JP6121099B2 (en) Light-emitting element mounting substrate and manufacturing method thereof
JP2017228658A (en) Optical semiconductor device with phosphor layer and manufacturing method of the same
JP2010021420A (en) Substrate for mounting light-emitting element, light-emitting element panel, light-emitting element package, and method of manufacturing substrate for mounting light-emitting element
JP2006351666A (en) Light emitting device mounting board and its manufacturing method, light emitting device module, lighting device, display device, and traffic signal
JP2011165737A (en) Light-emitting element carrying board and method for manufacturing the same
JP2010123605A (en) Light-emitting device and method of manufacturing the same
JP2011146739A (en) Substrate for mounting light emitting element and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010530872

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09816203

Country of ref document: EP

Kind code of ref document: A1