WO2012053550A1 - Led module device, method for manufacturing same, led package used for led module device, and method for manufacturing same - Google Patents

Led module device, method for manufacturing same, led package used for led module device, and method for manufacturing same Download PDF

Info

Publication number
WO2012053550A1
WO2012053550A1 PCT/JP2011/074050 JP2011074050W WO2012053550A1 WO 2012053550 A1 WO2012053550 A1 WO 2012053550A1 JP 2011074050 W JP2011074050 W JP 2011074050W WO 2012053550 A1 WO2012053550 A1 WO 2012053550A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
metal foil
led package
pair
led chip
Prior art date
Application number
PCT/JP2011/074050
Other languages
French (fr)
Japanese (ja)
Inventor
政道 石原
勉 豊嶋
行信 杉村
中村 邦彦
横澤 舜哉
佳嗣 松浦
Original Assignee
国立大学法人九州工業大学
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学, 日立化成工業株式会社 filed Critical 国立大学法人九州工業大学
Publication of WO2012053550A1 publication Critical patent/WO2012053550A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/021Components thermally connected to metal substrates or heat-sinks by insert mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09072Hole or recess under component or special relationship between hole and component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09909Special local insulating pattern, e.g. as dam around component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10969Metallic case or integral heatsink of component electrically connected to a pad on PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components

Definitions

  • the present invention relates to an LED module device using an LED package substrate formed by bending a metal plate and a manufacturing method thereof, and an LED package used in the LED module device and a manufacturing method thereof.
  • LED Light Emitting Diode
  • a package on which such an LED chip is mounted is mounted on a wiring board, and is used for a large display, a backlight of an electronic device such as a mobile phone, a digital video camera, or a PDA, road illumination, general illumination, and the like. Since the LED itself is a light emitting element and emits heat, the LED package basically includes a heat dissipation device for cooling.
  • a ceramic substrate, a silicon substrate, or a metal substrate is used as the LED package substrate.
  • the heat conduction of ceramic or silicon is higher than that of a metal such as copper.
  • problems such as being unable to dissipate heat well, expensive, and difficult to process.
  • FIG. 22 is a diagram illustrating a conventionally known light emitting device (see Patent Document 1).
  • a copper foil pattern constituting a lead electrode is formed on the surface of a stainless steel substrate via an insulating film.
  • a through hole is formed in the stainless steel substrate, and a copper support is fitted into the through hole.
  • the LED chip is placed in a recess formed at the tip of the copper support.
  • Each electrode of the LED chip and a copper foil pattern provided on the surface of the substrate are wire-bonded.
  • a lens is formed by potting and curing a translucent resin such as a silicon resin.
  • the silicon resin functioning as a lens is provided so as to cover the protrusions of the support, the light emitting elements, and even the wires bonded to the electrodes.
  • FIG. 23 is a side cross-sectional view showing the light emitting device disclosed in Patent Document 2.
  • the substrate uses an electrically insulating material such as a liquid crystal polymer, and forms an insulating substrate by injection molding. Then, a three-dimensional three-dimensional insulating base material is formed, for example, by providing a recess in the LED chip mounting location. After the metal film is formed on the surface of the insulating substrate, the metal film other than the portion where the circuit portion is formed is removed.
  • the LED chip is mounted in the recess of the substrate, and the circuit portion and the LED chip are electrically joined with a conductive adhesive. Thereafter, the upper electrode of the LED chip and the circuit part are joined with a gold wire. Next, the recess is filled with a transparent resin to seal the LED chip. Finally, a diffusion plate made of a transparent resin or the like is attached to the surface of the substrate to complete the LED lighting module.
  • the light-emitting device disclosed in Patent Document 2 has a problem that the process is complicated and the cost is high because a substrate serving as a package base is formed three-dimensionally and wiring is formed later. There is.
  • FIG. 24 is a view showing the LED lighting apparatus disclosed in Patent Document 3, wherein (A) shows a top view and (B) shows a partial cross-sectional view.
  • the insulating metal substrate has a recess for installing the LED chip provided by squeezing.
  • the insulating metal substrate includes a metal substrate layer, an electrical insulating layer made of an insulating material layer, an electrode pattern made of a conductive metal, and a lead pattern. Adjacent LED chips are electrically connected by a bonding wire via an electrode pattern.
  • Patent Document 3 discloses a module in which a plurality of LED chips are mounted on a single insulating metal substrate.
  • a product including a plurality of chips (illustrated as 6 chips) constitutes one product.
  • the product will be defective.
  • one defective chip is sacrificed together with other chips. That is, a product becomes a non-defective product only after all the lights are turned on. Even if the LED chip is determined to be a non-defective product by the bare chip inspection in the same manner as the IC chip, it may become defective due to the establishment of the assembly process.
  • Patent Document 3 discloses an individual package that is divided into individual pieces for each LED chip, and an individual package that is divided into a wiring board and an individual package. There is no disclosure about mounting on a radiator. Therefore, no consideration has been given to heat dissipation.
  • an LED chip is mounted on a bottom of a recess formed by bending an insulating metal substrate, and a connection by bonding is provided in the middle (or upper) of the recess.
  • the bottom area of the metal substrate is slightly larger than the LED chip area, and it is not considered to utilize the bottom surface for heat dissipation.
  • the electrical insulating layer located on the lower surface of the LED chip is usually about 80 ⁇ m thick and has poor thermal conductivity, so that there is a problem that good heat dissipation characteristics cannot be obtained. is there.
  • an insulating layer polyimide layer
  • Patent Document 3 discloses only application of a white material and metal deposition as a retrofit. Using a transparent insulating layer and using the underlying metal surface as a reflecting surface increases the cost of the gloss treatment on the transparent insulating layer and the underlying metal surface.
  • the white resist coating increases the additional material costs and the coating process costs.
  • Deposition of metal film means that metal is evaporated at low pressure (vacuum) and high temperature, and a metal film is formed on the object.
  • the apparatus is large and requires a high apparatus, and it takes time and effort to draw a vacuum, and the throughput is long. As a result, process costs also increase. In addition, the cost of the target metal is also increased. There is a demand for the formation of a reflective surface that can exhibit reflective performance at low cost without any additional process.
  • FIG. 25 is a cross-sectional view showing a lighting fixture disclosed in Patent Document 6.
  • the illustrated metal core printed circuit board includes a metal core and a printed circuit obtained by processing a copper foil over the insulating layer on the metal core.
  • a heat-resistant thermoplastic resin having a thickness of about 100 ⁇ m made of any one of polyether ether ketone, polyether imide, and polyether sulfone is used.
  • a light emitting diode is mounted and fixed on the bottom surface of the recess of the metal core printed circuit board, and each terminal is connected to the printed circuit.
  • the hollow of the metal core printed circuit board is filled with a transparent acrylic resin.
  • thermoplastic resin As described above, it is known to use a heat-resistant thermoplastic resin as the insulating layer, however, it cannot be said that the resin is usually excellent in heat dissipation. There is a need for an insulating layer with good thermal conductivity that can dissipate heat generated by a light emitting diode while achieving electrical insulation.
  • FIG. 26 is a cross-sectional view illustrating a light emitting device disclosed in Patent Document 7.
  • a Cu substrate on which an LED element is mounted integrally has a thin-film Cu wiring layer using an insulating layer made of SiO 2 as an adhesive.
  • the surface of the Cu wiring layer is Ag-plated and has light reflectivity.
  • the Cu wiring layer and the insulating layer in the element mounting portion are partially removed to expose the Cu substrate, and are bonded and fixed to the exposed surface of the Cu substrate.
  • a pair of electrodes of the LED element is connected to a corresponding Cu wiring layer through a wire.
  • a sealing resin which is a translucent resin material, is sealed in the element mounting portion of the Cu substrate.
  • the process of partially removing the Cu wiring layer and the insulating layer to expose the Cu substrate is not easy. Conventionally, such partial removal is performed by an etching technique.
  • SiO 2 used as an insulating layer is difficult to etch with a normal acid or alkali, and hydrofluoric acid, which is an extremely dangerous chemical in handling, is used. Need to use.
  • Cu reacts with hydrofluoric acid to form CuF 2 , there is a problem that the surface Cu foil is damaged. There is a need for a simpler partial removal process of the insulating layer.
  • a polyimide resin layer is used as an insulating layer.
  • a metal foil is etched and opened as a first step, and the opened metal foil is used as a mask. Even if the polyimide resin layer is opened by etching in the second stage, toxic hydrazine is required to etch the polyimide resin layer.
  • the resin layer is a polyimide precursor, the precursor is formed after the opening step by alkali etching. The process is complicated because it requires imidization of the body.
  • the etching so that the size of the resin layer opening is the same as or smaller than the size of the metal foil opening, and there is a risk that the resin layer end face may recede from the metal foil end face in the opening. There is a concern that reliability may be reduced due to short circuit between the metal plate and the metal plate.
  • the present invention solves such problems and is an LED module device in which an LED package in which an LED chip is attached to an LED package substrate formed by processing a metal plate is attached to a wiring substrate and a radiator is attached.
  • the purpose is to improve the heat dissipation characteristics.
  • the present invention uses a metal plate having good processability and thermal conductivity as an LED package substrate, and uses an insulating layer that ensures insulation from the connection wiring of the LED chip mounted thereon, while insulating the same.
  • the aim is to improve the thermal conductivity through the layers.
  • the present invention is such that the electrical connection portion of the LED package connected to the wiring board is positioned on the upper surface of the LED chip, while the heat dissipator for mounting the LED package board is positioned below to separate the two.
  • the cost performance of each of the heat dissipation and electrical connection is optimized, and overall, low-cost and high-efficiency exhaust heat is realized. It is aimed.
  • An LED module device and a manufacturing method thereof according to the present invention comprise an LED package substrate for an LED chip by bending a metal plate made of a plate material having a predetermined plate thickness, and an LED package using the substrate. Attached to the wiring board.
  • the LED package substrate is bent so as to integrally form a flat bottom portion for mounting the LED chip, a wall portion rising from both sides of the bottom end, and a connection electrode portion where the upper portion of the wall portion is bent outward.
  • a laminated structure in which two insulating layers composed of a resin layer and an adhesive layer are sandwiched between the metal plate and the metal foil.
  • a metal foil at the upper end of the connection electrode portion where the upper portion of the wall portion is bent outward is configured as at least one of the pair of external connection electrodes.
  • the LED chip is mounted on the upper surface of the flat bottom of the LED package substrate, at least one of the pair of electrodes of the LED chip is connected to the metal foil on the upper surface of the flat bottom, and the transparent resin is sandwiched between the walls.
  • An LED package is formed by filling the recess.
  • the flat bottom surface of the LED package is fixed or brought into contact with the heat sink, and the LED package is mounted in the opening of the wiring board arranged with a space between the heat sink and placed inside the end of the metal plate.
  • the paired external connection electrodes are connected to the wiring of the wiring board.
  • a metal foil provided with a metal surface treatment that functions as a reflective material on a metal plate, and an end portion of the metal foil configured as an external connection electrode can be disposed inside the metal plate end.
  • the metal foil on the upper surface of the flat bottom portion is insulated and separated on both sides so that the metal foil on the upper end of the wall portion functions as a pair of external connection electrodes, and the pair of electrodes of the LED chip are insulated and separated. Can be connected to each of.
  • An LED chip is electrically and mechanically bonded to the upper surface of the flat bottom of the metal plate without using an insulating layer using a conductive die-bonding material, and one of the pair of electrodes of the LED chip is attached.
  • the wire foil is connected to the metal foil, while the other electrode is connected to the metal plate by a conductive die bond material, and the metal foil on the upper end side of the wall portion is connected to one of the pair of connection electrodes. It can function as a connection electrode, and the other connection electrode can be configured by a metal plate on the upper end side of the wall portion.
  • the LED package substrate has an area sufficient to form on the upper surface a pair of connection portions for connecting the LED chip mounting portion and the pair of electrodes of the LED chip. It consists of a resin layer on a metal plate that is bent so as to integrally form a flat bottom, a wall that rises from both sides of the bottom edge, and a connection electrode that is bent outwardly from the top of the wall.
  • a laminated structure in which metal foils are bonded with an insulating layer interposed therebetween, and the resin layer constituting the insulating layer is a polyimide resin having a film thickness in the range of 5 ⁇ m to 40 ⁇ m.
  • the polyimide resin spherical spacer particles, a thermally conductive filler smaller than the diameter of the spacer particles, or both can be mixed in a polyimide resin containing thermoplastic polyimide.
  • the long side of the flat bottom portion of the LED package in contact with the heat dissipator can be twice to 20 times as long as the short side of the LED chip.
  • the laminate can be formed by applying a polyimide resin solution to a metal foil or a metal plate and drying it, followed by thermocompression bonding to the metal plate or metal foil.
  • the laminate is formed by applying at least one polyimide precursor resin layer that can be converted into a thermoplastic polyimide resin on a metal foil or a metal plate, and then heat-treating the precursor resin layer, thereby thermoplasticity.
  • a polyimide-based resin layer is formed, and a metal plate or a metal foil can be bonded to the thermoplastic polyimide-based resin layer by heating and pressing.
  • a laminated body can be formed by bonding a material obtained by sandwiching a thermoplastic polyimide film between a metal foil and a metal plate under heat and pressure.
  • the LED The package substrate shape is devised to secure a large area on the flat bottom and to transfer heat to the radiator through this large area, thereby improving the thermal conductivity from the LED chip to the radiator. be able to.
  • the LED package substrate of the present invention has a metal-two-layer insulating layer (polyimide + adhesive layer) -metal four-layer structure, so that the insulating resin layer (polyimide) can be made very thin and the adhesive material has a low heat By mixing a resistance filler, the thermal conductivity can be improved by an order of magnitude over the insulating layer, and the total thermal resistance can be reduced.
  • the LED package substrate of the present invention has a very thin insulating resin layer (polyimide) by devising a method for manufacturing a laminate comprising an insulating layer sandwiched between a metal plate and a metal foil. , Thermal resistance can be reduced.
  • the electrical connection between the LED package substrate and the wiring board can be easily performed by separating the electrical connection portion between the LED package board and the wiring board from the heat radiating body on which the LED package board is mounted. At the same time, by optimizing the cost performance of heat dissipation and electrical connection, it is possible to achieve low-cost and high-efficiency exhaust heat overall.
  • the manufacturing process can be simplified by forming the opening for mounting the LED chip on the metal plate by punching instead of etching.
  • FIG. 1 It is side surface sectional drawing which shows the 1st example of the LED module apparatus which actualizes this invention. It is a figure explaining the bending process of a 1st LED package board
  • FIG. 4 is a view showing only the LED package substrate taken out
  • C is a cross-sectional view taken along line AA ′ shown in (B)
  • D is a line BB ′ shown in (B). It is sectional drawing cut
  • A is a figure which shows the state which connected several LED package board
  • FIG. It is a figure explaining the 5th example of the LED module device which embodies this invention, (A) shows the sectional view, and (B) is the upper surface shown in the state where three LED packages were attached to the wiring board.
  • FIG. It is a figure explaining the 6th example of the LED module device which actualizes this invention, (A) shows the top view of a connection structure LED package, (B) attached this connection structure LED package to the wiring board. A sectional view taken along the line AA ′ in the state is shown. It is a graph which shows the film thickness dependence of LED junction temperature. (A) is a graph which shows heat dissipation performance (thermal resistance ratio), (B) is a figure which shows the LED package structure with which a heat sink is mounted
  • FIG. 10 is a side cross-sectional view showing a light emitting device disclosed in Patent Document 2. It is a figure which shows the LED lighting fixture disclosed by patent document 3, (A) shows the top view, (B) has shown the fragmentary sectional view. It is sectional drawing which shows the lighting fixture of the patent document 6.
  • FIG. 10 is a cross-sectional view illustrating a light emitting device disclosed in Patent Document 7.
  • FIG. 1 is a side sectional view showing a first example of an LED module device embodying the present invention.
  • the exemplary LED module device includes an LED package, a wiring board having an opening for mounting the LED package, and a heat sink fixed to the back surface of the LED package.
  • the LED package is attached to the opening of the wiring board by filling a gap between the LED package side surface and the wiring board with an adhesive (heat-resistant adhesive), and on the adhesive, a pair of connection electrodes ( The external connection electrodes for connecting to the wiring board are connected to the wiring on the upper surface of the wiring board by soldering or the like.
  • the LED chip light emitting surface is directed to the upper surface side in the figure, and emits light toward the upper surface without being blocked by the wiring board.
  • the back surface of the LED package on which the wiring board is mounted is fixed on the heat sink by solder connection. Alternatively, instead of this solder connection, it is possible to bond using a highly heat conductive adhesive.
  • the LED package is assembled on the LED package substrate.
  • the LED package substrate used in the first example of the LED module device is, for example, a metal plate bent into a predetermined shape so as to have a recess for mounting an LED chip, as will be described later with reference to FIG.
  • a laminated film made of a resin-attached metal foil is attached onto the metal foil using an adhesive, and silver plating that functions as a reflector is applied on the metal foil.
  • a slit for insulating and separating a pair of connection electrodes both ends of the metal foil
  • a transparent resin is filled to configure the LED package.
  • the LED package substrate includes an insulating layer sandwiched between a metal plate and a metal foil, which is composed of two layers of a resin layer (polyimide film) and an adhesive layer. Since it is responsible for electrical insulation and the adhesive material is responsible for adhesion, each can be optimized, resulting in improved heat transfer characteristics.
  • the LED package substrate is formed of a polyimide resin with an insulating layer formed on a metal plate (for example, a copper foil) on the metal plate with the insulating layer made of the polyimide resin interposed therebetween.
  • the LED chip mounting part and the connection part for connecting the pair of electrodes are formed on the flat bottom surface by bending the laminated body joined together into a predetermined shape.
  • the LED package substrate has a flat bottom portion having an area sufficient to mount the LED chip and form a connection portion connecting the pair of electrodes, and the flat bottom portion having this large area. Since the radiator is mounted on the lower surface of the LED, the heat radiation from the LED chip is efficiently transferred to the radiator. Moreover, since the rigidity after singulation can be held by a metal plate thicker than the metal foil, the reliability is remarkably improved. There is no need to ensure rigidity with transparent resin, and there are many choices of resin materials, resulting in cost reduction. Hereinafter, the production method will be described in detail.
  • FIG. 2 is a diagram for explaining bending of the first LED package substrate.
  • FIG. 2A is a side view showing a metal plate to be processed (a plate metal member having high thermal conductivity such as copper or aluminum).
  • a laminated film made of a metal foil with a resin for example, a copper foil with a polyimide film attached thereto: for example, MCF-5000IR manufactured by Hitachi Chemical Co., Ltd., this material, as shown in FIG.
  • the polyimide film has a thickness of only 5 ⁇ m, which is a very advantageous material in terms of heat resistance, and is attached using an adhesive. By making the thickness of the resin layer thinner than that of the adhesive layer, it is advantageous in terms of both cost and heat dissipation.
  • This adhesive is preferably filled with a heat conductive filler.
  • a two-layer insulating layer composed of a resin layer (polyimide film) and an adhesive layer is sandwiched between the metal plate and the metal foil.
  • the polyimide film and the adhesive layer can not only provide insulation between the pair of connection electrodes of the LED chip, but also can utilize a copper foil as the connection wiring of the LED chip.
  • metal foil metal layer with high heat conductivity like aluminum can be used.
  • the insulating layer by using a two-layer structure of the resin layer and the adhesive layer as the insulating layer, it is possible to greatly improve the heat dissipation of the insulating layer.
  • polyimide when only one layer of polyimide film is used as an insulating layer between an 18 ⁇ copper foil and a copper plate (metal plate) of around 125 ⁇ m, polyimide can be used to take into account both tolerances and also serve as an adhesive force between them. For example, a film thickness of about 20 to 30 ⁇ m is required.
  • the polyimide film thickness can be made as thin as possible. This can be realized by thinly applying polyimide on the copper foil.
  • a polyimide film thickness of 5 ⁇ m is realized.
  • An adhesive is further used to attach a laminate of this copper foil and a thin polyimide film. Since it is assumed that it is applied to a relatively thick plate (metal plate) of about 125 ⁇ m, the thickness of the adhesive layer is set to about 25 ⁇ m for the same reason as described above. Simply speaking, the ratio of thickness is 25 ⁇ m in the case of one insulating layer, and 25 ⁇ m + 5 ⁇ m in the case of two layers of a polyimide film and an adhesive layer, which is disadvantageous for two insulating layers. However, in the case of two insulating layers, the 5 ⁇ m polyimide film has insulation resistance, so the adhesive layer can easily increase heat conduction.
  • thermally conductive filler ceramic or metal such as aluminum nitride
  • the thermal conductive filler As the thermal conductive filler is filled, the electrical insulation resistance decreases, but the electrical insulation resistance does not have to be considered by the lamination with the polyimide film.
  • the total thermal conductivity can be improved by about three times compared to a single-layer adhesive having substantially the same thickness.
  • the presence of the resin layer makes it easy to etch the copper foil on the top surface. There is no concern that the adhesive layer is eroded by the etchant during etching. However, if the heat conduction is improved only by the adhesive layer, the insulation resistance is easily sacrificed, and it is difficult to achieve both the heat conduction and the insulation resistance by a single adhesive layer.
  • the attached metal foil is processed to form slit openings and copper foil removal portions.
  • photolithography technology is used for this processing.
  • a resist is applied on the metal layer (copper foil), the pattern is exposed and developed, and etching is further performed to remove the resist, thereby completing the slit opening and the copper foil removing portion.
  • the slit is opened in the metal foil of the laminated film with the laminated film attached on the metal plate.
  • the processed laminated film can also be attached on the metal plate using an adhesive.
  • the slit opening can be made by punching in the state of the laminated film alone.
  • the slit is opened not only to the metal foil but also to the polyimide layer.
  • the metal plate to which the metal foil with resin is attached is bent. This bending process is performed by pressing using a mold so as to form a recess for mounting the LED chip and a connection electrode with the upper part bent outward.
  • the copper foil is removed by partially removing the connection electrode tip in order to prevent the solder from electrically shorting the connection electrode and the metal plate.
  • the connection electrode end is disposed inside the metal plate end.
  • the copper foil removing portion can be provided by a slit opening step shown in FIG.
  • metal (for example, silver) plating metal surface treatment
  • metal surface treatment metal surface treatment
  • the metal foil as a plating electrode for the plating process, it is possible to plate only on the upper surface of the metal foil except for the slit and the copper foil removing portion.
  • a glossy surface is formed by applying an ink jet to a portion requiring metal surface treatment using silver ink and baking.
  • FIG. 3 is a view showing a completed first LED package substrate
  • (A) is a view showing a state in which a plurality of LED package substrates are connected
  • (B) is a single LED package substrate.
  • (C) is a cross-sectional view taken along the line AA ′ shown in (B)
  • (D) is a view taken along the line BB ′ shown in (B). It is sectional drawing.
  • 5 ⁇ 14 LED package substrates are illustrated as being simultaneously formed on a single metal plate.
  • individualization is performed by dividing into individual packages or arbitrary plural connected packages. The singulation is performed along the dividing line shown in FIG.
  • the connected LED package can be provided with flexibility, and can be mounted on a heat sink or housing having an arbitrary outer surface shape such as a convex shape or a concave shape (see FIG. 19 described later).
  • a recess for mounting the LED chip is formed.
  • Left and right wall portions are provided on both sides of the recess, and front and rear wall portions connected to and orthogonal to the left and right wall portions are provided to perform a function of confining the sealing resin from the left and right front and rear.
  • the metal foils on the upper surfaces of the left and right wall parts (and the silver plating thereon) function as a pair of connection electrodes.
  • slits for electrically separating the pair of connection electrodes are formed in the metal foil (and silver plating thereon).
  • An LED chip is mounted on one of the metal foils divided by the slit as described later.
  • the illustrated first LED package substrate includes a flat bottom portion on which the LED chip is to be mounted, and LED lamps in a direction that rises by bending from the bottom end located on the left and right front and back of the bottom portion.
  • Left and right and front and rear wall portions extending on the same side as the light emitting direction of the chip are provided.
  • the metal foils on the pair of left and right wall tip surfaces function as connection electrodes.
  • the directions in which the left and right front and rear walls rise from the bottom end do not necessarily have to be orthogonal to each other.
  • the connection electrode can be raised linearly or curved upward at an angle so that the connection electrode can be positioned above the flat bottom. May be.
  • the pair of connection electrodes are separated from each other by dividing the metal foil of the flat bottom portion and the front and rear wall portions into two by slits.
  • an LED chip is mounted on one of the two divided bottom metal foils to make one wire bond connection, while the other of the two divided bottom metal foils has the other wire bond connection. do.
  • FIG. 4 is a view showing another example of the first LED package substrate different from FIG. 3,
  • (A) is a view showing a state in which a plurality of LED package substrates are connected, and (B) is It is a figure which takes out and shows only the one LED package board
  • FIG. 6 is a cross-sectional view taken along line ⁇ B ′. In the illustrated example, as in FIG. 3, 5 ⁇ 14 LED package substrates are illustrated as being simultaneously formed on one metal plate. The first LED package substrate shown in FIG. 4 is different from FIG.
  • FIG. 5 is a diagram for explaining bending of the second LED package substrate.
  • FIG. 5A is a side view showing a metal plate to be processed.
  • the laminated body which joined metal foil (for example, copper foil) on this metal plate on both sides of the insulating layer which consists of polyimide resins is comprised.
  • a solution obtained by dissolving a polyimide resin containing a thermoplastic polyimide in a solvent is first applied to a metal foil (or metal plate), dried, and thermocompression bonded to the metal plate (or metal foil).
  • a polyimide resin having a thickness of at least 5 ⁇ m in order to ensure a certain withstand voltage.
  • the thickness of the polyimide resin is preferably thin from the viewpoint of heat dissipation characteristics, but a certain thickness is required from the viewpoint of withstand voltage and tear strength.
  • the withstand voltage of the insulating film required for LED mounting is generally 2.5 to 5 kV, and the withstand voltage of the polyimide resin varies depending on the structure, but several hundred to Since it is 500 V / ⁇ m, a minimum thickness of 5 ⁇ m is required.
  • the polyimide resin layer cannot be thickened, and the thickness is desirably 40 ⁇ m or less, preferably 20 ⁇ m or less (see the section of Example 1 described later based on FIG. 20).
  • thermoplastic polyimide resin layer that can be converted into a thermoplastic polyimide resin is applied on a metal plate (see Example 2).
  • the precursor resin layer is heat-treated to form a thermoplastic polyimide resin layer.
  • a copper foil is joined under heat and pressure to form a laminate.
  • a polyimide precursor resin layer that can be converted into thermoplastic polyimide is applied on a copper foil instead of a metal plate.
  • the precursor resin layer can be heat-treated to form a thermoplastic polyimide resin layer, and then laminated with a metal plate under heat and pressure.
  • a predetermined film thickness is required to secure the breakdown voltage while making the insulating layer as thin as possible in order to improve heat dissipation, but it is necessary to further increase the flatness variation film thickness.
  • heat dissipation characteristics can be further improved by mixing a filler having good thermal conductivity smaller than the diameter of the spacer particles in the polyimide resin separately from the spacer particles or by mixing both.
  • the filler having good thermal conductivity aluminum nitride, alumina-coated metal fine particles (for example, copper), or alumina-coated carbon particles or fibers can be used.
  • the thermal conductive filler is filled, the electrical insulation resistance is lowered, but since the insulating layer can be applied thickly, the film thickness can be easily controlled.
  • the insulating layer made of polyimide resin containing thermoplastic polyimide is formed into a laminated structure in which the metal plate and the metal foil are sandwiched, and the thickness of the insulating layer can be controlled to a predetermined value (5 ⁇ m to 40 ⁇ m).
  • This insulating layer not only provides insulation between the pair of connection electrodes of the LED chip, but also allows copper foil to be used as the connection wiring of the LED chip. Moreover, not only copper foil but metal foil (metal layer) with high heat conductivity like aluminum can be used.
  • the joined metal foil is processed to form slit openings and copper foil removal portions (for details, see the description of FIG. 2C).
  • the presence of the polyimide resin layer facilitates etching of the upper surface copper foil. Since the slit portion does not function as a reflective material for light emission from the LED chip, it is desirable that the slit portion is narrow, but about 20 ⁇ m to 100 ⁇ m is desirable in order to insulate and separate the metal foil on both sides of the slit.
  • metal (for example, silver) plating metal surface treatment
  • metal surface treatment metal surface treatment that functions as a reflective material for light emission from the LED chip is applied to all of the upper surface of the metal foil (for details, see (See description of FIG. 2 (e)).
  • a metal reflection process is performed on almost the entire surface of the metal plate.
  • the laminate is pressed in a state where at least the metal reflection treatment surface is covered with the protective tape, and then the protective tape is peeled off.
  • FIG. 6 is a view showing a completed second LED package substrate
  • (A) is a view showing a state in which a plurality of LED package substrates are connected
  • (B) is a single LED package substrate. It is a figure which takes out only and shows. In the illustrated example, 5 ⁇ 14 LED package substrates are illustrated as being simultaneously formed on a single metal plate. In a later step, after mounting the LED chip on the LED package substrate and resin-sealing, individualization is performed by dividing into individual packages or arbitrary plural connected packages.
  • a gap is formed around the package substrate region so as not to exert the distortion of the drawing during bending of the laminate on the periphery. It is connected to the surrounding metal plate via a coupling portion provided around the package substrate region. At the time of individualization in a later process, the joint is cut. Details of the inside of the package substrate region will be described later with reference to FIG.
  • FIG. 7 is a diagram showing details of the second LED package substrate, (A) is a diagram showing only one LED package substrate, and (B) is an AA shown in (A). (C) is a cross-sectional view taken along line BB 'shown in (A).
  • the illustrated second LED package substrate has a recess for mounting the LED chip. On both sides of the recess, at least left and right wall portions are provided, and front and rear wall portions connected to and orthogonal to the left and right wall portions are provided, so that the sealing resin can be confined from the left and right front and rear.
  • the resin flowing in the left and right directions in the figure is left and right wall portions when the resin is sealed in the mold after mounting the LED chip on the LED package substrate in a later step.
  • the resin flowing in the front-rear direction is restricted by edge processing of the package substrate, for example, by providing a wall only at the edge.
  • connection electrodes external connection electrodes for connecting to the wiring board (see FIG. 1)
  • slits for electrically separating the pair of connection electrodes are formed in the metal foil (and silver plating thereon).
  • An LED chip is mounted on one of the metal foils divided by the slit as described later.
  • the second LED package substrate has a flat bottom portion that is to be electrically connected with the LED chip mounted thereon, and a direction in which the second LED package substrate is bent from the bottom end and located on the left and right sides of the bottom portion.
  • left and right and front and rear wall portions extending on the same side as the light emitting direction of the LED chip are provided.
  • the flat bottom portion has an area sufficient for mounting the LED chip on the upper surface thereof and forming a connection portion for connecting the pair of connection electrodes. In order to perform the bonding connection at the bottom, a certain amount of space is required in the process, and it is preferable that the LED chip is optically located at the center.
  • the chip short side m It is desirable to take 2 to 20 times, preferably 3 to 10 times (see Example 3 below based on FIG. 21). Further, as will be described later, since the heat radiating body is mounted in contact with the lower surface of the flat bottom portion having a large area, the heat radiated from the LED chip is efficiently transferred to the heat radiating body.
  • the metal foils on the pair of left and right wall tip surfaces function as connection electrodes (external connection electrodes).
  • the opening of the third LED package substrate is different from the first and second LED package substrates in that it has a sufficient opening width for mounting the LED chip.
  • FIG. 8 is a diagram illustrating the bending process of the third LED package substrate.
  • A is a side view which shows the metal plate which should be processed.
  • B is a laminated film composed of a resin layer (for example, a polyimide film) and a metal foil (for example, a copper foil) bonded to the metal plate shown in (a).
  • the laminated film is punched to provide an opening.
  • the resin layer and the metal foil can be simultaneously opened by punching.
  • this opening part electrically insulates and separates the copper foils on both the left and right sides and forms a space for mounting the LED chip.
  • the copper foil separated on both sides can be used as the connection wiring of the LED chip.
  • metal foil metal layer with high heat conductivity like aluminum can be used.
  • the polyimide film side of the laminated film in which the opening is formed is pasted onto the metal plate shown in (a) using an adhesive.
  • an adhesive it is also possible to open an opening by punching out a portion corresponding to a chip mounting location in a laminated body made of an adhesive / polyimide resin / metal foil (copper foil) and adhere it to a metal plate.
  • the adhesive has an insulating property, thermal conductivity is not necessarily required because it does not exist under the LED chip.
  • a two-layer insulating layer (see FIG. 2) composed of a resin layer (polyimide film) and an adhesive layer is sandwiched between the metal plate and the metal foil.
  • this insulating layer can be formed in a narrow structure in which only the resin layer (polyimide film) described above with reference to FIG. 5 is sandwiched between the metal plate and the metal foil.
  • This narrow attachment configuration is performed by high-temperature pressure bonding of a laminate made of a thermocompression bonding polyimide resin and a metal foil (copper foil) to a metal plate.
  • a metal foil removing portion is provided by partially removing the front end side of the connection electrode soldered to the wiring board (see FIG. 1).
  • the metal plate with the laminated film attached is bent.
  • This bending process is performed by pressing using a mold so as to form a recess for mounting an LED chip and sealing with resin, and a connection electrode whose upper part is bent outward.
  • a metal surface treatment for example, silver plating that functions as a reflective material for light emission from the LED chip is applied to the entire upper surface of the metal foil.
  • the third LED package substrate illustrated in FIG. 8 has the same configuration as the above-described first or second LED package substrate except that the LED chip is mounted in the opening. be able to.
  • FIG. 9 is a diagram showing a first example of LED package assembly.
  • the LED package substrate shown in (a) is the same as the first LED package substrate shown in FIGS. 2 to 4 or the second LED package substrate shown in FIGS.
  • the LED chip is fixed on the silver-plated metal foil on the flat bottom surface of the LED package substrate with an adhesive as shown in FIG.
  • This LED chip has an LED light emitting surface on the upper surface.
  • a plurality of chips can be mounted (see FIG. 13).
  • wire bond connection is performed between the LED chip and the metal foil functioning as connection wiring.
  • wire bonding is performed between the respective connection portions on the two-part metal foil and the pair of connection electrodes of the LED chip by bonding wires.
  • silver plating is formed as a reflective material on the metal foil, this silver plating can also function for improving wire bonding.
  • resin sealing (transfer molding or potting) is performed using a transparent resin (material is, for example, epoxy or silicone).
  • the transparent resin may be mixed with a phosphor.
  • a white LED a yellow phosphor is disposed on an LED chip using a blue light emitting LED chip, and this phosphor receives blue and glows white.
  • this phosphor is often mixed in a transparent resin.
  • Resin sealing is performed by placing the connected package in a mold. Alternatively, resin sealing may be performed by a dispenser or screen printing. The height of the sealing resin is injected up to the same plane as the front end surface of the wall functioning as a connection electrode. Thereafter, the LED package is completed by dividing into individual packages or a plurality of connected packages.
  • FIG. 10 is a diagram showing a second example of LED package assembly.
  • the LED package substrate shown in (a) is different from the first or second LED package substrate described above in that a silver-plated metal foil is formed with a wiring pattern for flip chip mounting.
  • the LED chip is flip-chip mounted on the connection portion on the flip-chip mounting wiring pattern.
  • the same resin sealing as described with reference to FIG. 9 is performed.
  • FIG. 11 is a diagram showing a third example of LED package assembly.
  • the LED package substrate shown in (a) is the same as the LED package substrate of the third example shown in FIG.
  • the LED chip is fixed on the metal plate as shown in FIG.
  • This chip fixing is performed using a die bond material such as silver paste, gold-silicon eutectic, or silver nanopaste (having silver characteristics after firing).
  • This LED chip has an LED light emitting surface on the upper surface. Although only one LED chip is illustrated, a plurality of chips can be mounted.
  • wire bond connection is performed between the LED chip and the metal foil functioning as connection wiring.
  • a pair of electrodes of the mounted LED chip is wire-bonded to the left and right metal foils by bonding wires.
  • a metal surface treatment (silver plating) is formed on the metal foil as a reflective material, so that this silver plating can also function to improve wire bonding properties.
  • FIG. 12A is a cross-sectional view showing another example different from the assembly of the LED package shown in FIG. 11, and FIG. 12B is a cross-sectional view showing still another example.
  • the LED package substrate itself shown in (A) is the same as the LED package substrate of the third example shown in FIG.
  • the connection electrodes are different.
  • the illustrated configuration uses not only the metal foil (and metal surface treatment) formed on the metal plate via an insulating film but also the metal plate itself as a connection electrode.
  • the LED chip is electrically and mechanically fixed on the metal plate at the opening of the LED package substrate.
  • One of the pair of electrodes of the LED chip is formed on the upper surface thereof, while the other electrode is formed on the lower surface of the LED chip.
  • Chip fixation is performed using a conductive die bond material (conductive adhesive material) such as silver paste, gold silicon eutectic, or silver nano paste (having silver characteristics after firing).
  • the electrical connection between the electrode on the lower surface of the chip and the metal plate is completed by fixing using the conductive die bond material.
  • the connection electrode on the right side in the figure is constituted by the metal foil on the upper end side
  • the connection electrode on the left side in the figure is constituted by the side surface of the metal plate on the upper end side.
  • the metal foil (and the metal surface treatment thereon) to which one electrode of the LED chip is connected is an insulating layer on the right side of the figure, as in the example shown in FIG.
  • the metal plate on the left side of the figure is formed with a metal surface treatment as a reflective material, and an insulating layer and a metal foil are attached to the metal plate on the left side of the figure. Absent.
  • This metal surface treatment can be performed by forming a glossy surface (reflecting material) by applying an ink jet to a necessary portion on a metal plate using a silver ink and baking it.
  • FIG. 13 is a view showing a fourth example of LED package assembly, where (A) shows a top view of the completed LED package and (B) shows a side cross-sectional view.
  • a silver-plated metal foil is divided into three by two slits on the left and right sides.
  • a plurality of (6 ⁇ 6 exemplified) LED chips are mounted on the central metal foil divided into three, and the wiring between the LED chips and the wiring between the LED chip and the metal foil are bonded using bonding wires. It is connected.
  • FIG. 14 is a view for explaining assembly of the first example (see FIG. 1) of the LED module device embodying the present invention.
  • an LED package see FIG. 9 and the LED package shown in FIGS. 10 to 13 can be used
  • a wiring board having an opening corresponding to the LED package for example, Prepare a single-layer glass epoxy board
  • place the LED package in the opening of this wiring board and use a bonding material (heat-resistant and insulating bonding material) to clear the gap between the LED package side surface and the wiring board fill in.
  • a pair of connection electrodes of the LED package is soldered to the wiring on the upper surface of the wiring board or connected by copper, silver, or the like by inkjet.
  • the LED chip light emitting surface is directed to the upper surface side in the figure, and emits light toward the upper surface without being blocked by the LED package substrate.
  • the LED package on which the wiring board is mounted is fixed on a heat radiating plate (for example, copper or aluminum plate) by solder connection.
  • a heat radiating plate for example, copper or aluminum plate
  • solder connection it is possible to bond using a highly heat conductive adhesive.
  • the heat radiating plate it can be directly fixed to the housing.
  • FIG. 15 is a side cross-sectional view showing a second example of an LED module device embodying the present invention.
  • the exemplary LED module device differs from the first example of the LED module device described with reference to FIG. 14 only in that the LED package uses the third example of the LED package shown in FIG. Yes. Detailed description thereof is omitted.
  • FIG. 16 is a side cross-sectional view showing a third example of the LED module device embodying the present invention.
  • the exemplary LED module device is different from the above-described first or second example of the LED module device only in that the LED package described with reference to FIG. 12A is used as the LED package. Yes.
  • the LED package described with reference to FIG. 12B can also be used. Detailed description thereof is omitted.
  • FIG. 17 is a diagram for explaining assembly of the fourth example of the LED module device embodying the present invention.
  • a wiring board is used as a heat radiator.
  • the exemplary wiring board does not have an opening for mounting the LED package, and is different from the above example in that the LED package is mounted on the upper surface of the wiring board.
  • a wiring board having a good thermal conductivity for example, 1 more filled with a thermal conductive filler such as aluminum nitride described above
  • the above-described LED package is fixed to a predetermined position on the layer glass epoxy substrate) using an adhesive (heat-resistant and insulating adhesive).
  • an isolated wiring pattern is provided on the wiring board, it can be fixed by soldering.
  • the space between the LED package side surface and the wiring board is filled with an insulating adhesive.
  • a pair of connection electrodes of the LED package are soldered to the wiring on the upper surface of the wiring board or connected by copper, silver, or the like by inkjet. Heat generated from the LED chip is radiated from the LED package substrate through the wiring substrate.
  • FIGS. 9 to 13 are diagrams for explaining a fifth example of the LED module device embodying the present invention.
  • FIG. 18A is a cross-sectional view thereof
  • FIG. 18B is a diagram in which three LED packages are mounted on a wiring board. It is a top view shown in a state.
  • An LED package described above (see FIGS. 9 to 13) and a wiring board having an opening corresponding to the LED package are prepared.
  • the wiring board can be, for example, a single-layer glass epoxy board having a wiring layer on the back surface, but it is desirable that the wiring board be as thin as possible for light radiation, and a tape board such as polyimide may be used. When the wiring board is opened, the thickness of the board becomes a wall, and light hitting it becomes a loss.
  • the wiring board has a large opening area and a small connection portion with the LED package.
  • a white resist is applied to the front surface of the wiring board to obtain a reflection effect.
  • the LED package is disposed in the opening of the wiring board, and the connection electrode on the upper surface of the LED package is soldered to the wiring on the back surface of the wiring board.
  • the connection electrode penetrates from the end of the metal plate, so that the solder does not protrude from the end of the metal plate. If the connection electrode extends to the end of the metal plate, there is a high risk that the solder will bridge on the thin insulating layer.
  • the LED chip light emitting surface is directed to the upper surface side in the figure, and emits light toward the upper surface without being blocked by the LED package substrate.
  • the LED package with the wiring board attached is soldered on a heat sink (eg, copper or aluminum plate).
  • a heat sink eg, copper or aluminum plate.
  • the heat radiating plate it can be directly fixed to the housing.
  • FIG. 19A and 19B are views for explaining a sixth example of the LED module device embodying the present invention.
  • FIG. 19A is a top view of the connection configuration LED package
  • FIG. 19B is a wiring diagram of the connection configuration LED package.
  • a cross-sectional view taken along the line AA ′ in a state of being mounted on a substrate is shown.
  • the connected configuration LED package is obtained by connecting a plurality of LED packages (illustrated as four) at a connecting portion. In the connecting portion, partial cut portions are formed on both sides of the connecting portion in order to escape distortion during drawing.
  • connection structure LED package is mounted in a wiring board. As described above with reference to FIG. 14, the mounting on the wiring board is performed by filling the space between the LED package side surface and the wiring board with an insulating adhesive, and then connecting the insulating adhesive on the insulating adhesive. A pair of connection electrodes of the configuration LED package are soldered to the wiring on the upper surface of the wiring board or connected by copper, silver, or the like by inkjet.
  • FIG. 20 is a graph showing the film thickness dependence of the LED junction temperature. The analysis was performed under the following analysis conditions. Package size: 4 mm ⁇ 4 mm, heat radiation area 1.5 mm ⁇ 1.5 mm, power consumption: 1 W, ambient temperature Ta: 60 ° C. The horizontal axis of the graph indicates the thickness of the polyimide resin layer, and the vertical axis indicates the junction temperature.
  • the LED junction temperature is desirably 120 ° C or less, and in order to realize this in a 4 mm square package, it is necessary to make the polyimide film thickness 40 ⁇ m or less. More desirably, the film thickness is 20 ⁇ m or less, and the LED junction temperature is 100 ° C. or less.
  • the insulating film on the metal substrate of the LED must satisfy the following characteristics in addition to the thermal conductivity described above.
  • (1) Insulation In order to have insulation reliability with a thin film, it is necessary that the dielectric breakdown voltage is high.
  • the standard dielectric breakdown voltage of polyimide is about 150 kV / mm, high-performance products are about 500 kV / mm, and ordinary engineering plastics are about 15 to 30 kV / mm. For this reason, as described above, it is possible to reduce the thickness to 5 ⁇ m by using high-performance polyimide.
  • (2) Heat resistance It is necessary to have solder heat resistance (260 ° C.), and it is necessary to withstand the heat generation of the LED.
  • the thermal decomposition temperature of polyimide is 500 ° C or higher and has excellent performance.
  • Thermoplastic Polyimide has thermoplasticity and thermosetting properties, but it needs to be thermoplastic polyimide to withstand deformation by press molding. (4) Mechanical strength Mechanical strength that does not crack against stress. (5) Flexibility Since polyimide is used for flexible substrates, it has excellent performance. (6) Long-term stability The above characteristics are stable without deterioration over a long period of time.
  • thermoplastic polyimide resin solution is applied onto a metal plate, for example, “Iupitite UPA-N221C” (trade name: manufactured by Ube Industries), which is a thermoplastic polyimide varnish, is made to have a solid content of 15% with tetrahydrofuran.
  • a diluted solution can be applied, and heated to dry the solvent to form a film.
  • a solution containing a polyamic acid obtained by polymerizing tetracarboxylic dianhydride and diamine in equimolar amounts as raw materials is applied, It is desirable to carry out the solvent removal treatment at a temperature not higher than the imide ring-closing temperature after heating gradually, and finally heat to 300 to 400 ° C. to close the imide and convert to polyimide.
  • Patent Document 4 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used as the tetracarboxylic dianhydride, and metaxylylenediamine and 1,3-bis (4- Aminophenoxy) benzene is disclosed.
  • Patent Document 5 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride is used as the tetracarboxylic dianhydride content, and 1,3- (3-aminophenoxy) benzene is used as the diamine component. , 3-bis (3-maleimidophenoxy) benzene copolymerized.
  • the coating method is not limited to this, but can be performed by a known method such as a bar coater, a roll coater, a die coater comma coater, a gravure coater, a curtain coater, or a spray coater.
  • FIG. 21A is a graph showing heat dissipation performance (thermal resistance ratio)
  • FIG. 21B is a diagram showing an LED package structure mounted on a heat sink.
  • the LED chip size is m
  • the length of the metal plate in contact with the heat sink is L.
  • the horizontal axis represents the length L (1 m to 5 m) changed to a multiple of m (and the heat radiation area squared)
  • the vertical axis represents the heat calculated.
  • the thermal conductivity of the lead frame 300 W / mk
  • the thermal conductivity of polyimide 0.5 W / mk
  • the thermal conductivity of copper foil 400 W / mk.
  • the thickness of the copper foil was 9 ⁇ m
  • the thickness of the metal plate was 125 ⁇ m
  • the thermal resistance of each member was calculated according to Fourier's law for each polyimide thickness of 5/10/30 ⁇ m.
  • the total thermal resistance is calculated for each of copper foil, polyimide, and metal plate, and is totaled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

This LED module device comprises an LED package, a wiring substrate having an opening for mounting the LED package, and a heat dissipation plate affixed to the LED package back surface. The LED package is assembled on the LED package substrate. The LED package substrate is constituted by attaching, using an adhesive, a laminated film formed from a metal foil with a resin onto a metal plate bent into a prescribed shape so as to have a recess for mounting an LED chip and carrying out silver plating that functions as a reflective material on this metal foil. The LED package is constituted by the LED chip being mounted on the LED package substrate thus constituted, and after the implementation of electrical connection wiring, filling in a transparent resin.

Description

LEDモジュール装置とその製造方法、及び該LEDモジュール装置に用いるLEDパッケージとその製造方法LED module device and manufacturing method thereof, and LED package used in the LED module device and manufacturing method thereof
 本発明は、金属プレートを曲げ加工して構成したLEDパッケージ基板を用いたLEDモジュール装置とその製造方法、及び該LEDモジュール装置に用いるLEDパッケージとその製造方法に関する。 The present invention relates to an LED module device using an LED package substrate formed by bending a metal plate and a manufacturing method thereof, and an LED package used in the LED module device and a manufacturing method thereof.
 LED(Light Emitting Diode:発光ダイオード)は、消費電力が低く二酸化炭素削減、高耐久性という環境と省エネを兼ね備えた素子として普及している。このようなLEDチップを搭載したパッケージは、配線基板上に装着して、大型ディスプレイ、携帯電話やデジタルビデオカメラ、PDAなどの電子機器のバックライト、道路照明や一般照明などに用いられている。LEDはそれ自体が発光素子であり、熱を放出するので、LEDパッケージは基本的に冷却のための放熱装置を含んでいる。 LED (Light Emitting Diode) is widely used as an element that has both low energy consumption, carbon dioxide reduction, high durability and energy saving. A package on which such an LED chip is mounted is mounted on a wiring board, and is used for a large display, a backlight of an electronic device such as a mobile phone, a digital video camera, or a PDA, road illumination, general illumination, and the like. Since the LED itself is a light emitting element and emits heat, the LED package basically includes a heat dissipation device for cooling.
 現行のLEDモジュール装置ではLEDパッケージ基板としてセラミック基板又はシリコン基板、或いは金属基板を用いているが、従来のセラミック基板又はシリコン基板を使用した方法では、セラミックやシリコンの熱伝導が銅などの金属よりも悪いためうまく放熱できないこと、高価なこと、加工が困難などの問題がある。 In the current LED module device, a ceramic substrate, a silicon substrate, or a metal substrate is used as the LED package substrate. However, in a method using a conventional ceramic substrate or silicon substrate, the heat conduction of ceramic or silicon is higher than that of a metal such as copper. However, there are problems such as being unable to dissipate heat well, expensive, and difficult to process.
 図22は、従来公知の発光装置を例示する図である(特許文献1参照)。図示のように、ステンレス基板の表面に、リード電極を構成する銅箔パターンが絶縁膜を介して形成されている。このステンレス基板には貫通孔を形成して、この貫通孔に銅支持体を嵌合させる。銅支持体の先端に形成した凹所内に、LEDチップを配置する。LEDチップの各電極と基板の表面に設けられた銅箔パターンとをワイヤボンディングする。この後、シリコン樹脂等の透光性樹脂をポッティングして硬化させることにより、レンズを形成する。レンズとして機能させているシリコン樹脂は、支持体の突起部及び発光素子、更には電極にボンディングされたワイヤまでを覆うように設けられている。 FIG. 22 is a diagram illustrating a conventionally known light emitting device (see Patent Document 1). As shown in the figure, a copper foil pattern constituting a lead electrode is formed on the surface of a stainless steel substrate via an insulating film. A through hole is formed in the stainless steel substrate, and a copper support is fitted into the through hole. The LED chip is placed in a recess formed at the tip of the copper support. Each electrode of the LED chip and a copper foil pattern provided on the surface of the substrate are wire-bonded. Thereafter, a lens is formed by potting and curing a translucent resin such as a silicon resin. The silicon resin functioning as a lens is provided so as to cover the protrusions of the support, the light emitting elements, and even the wires bonded to the electrodes.
 LEDチップ電極のボンディング接続部には樹脂封止が施されているが、図示の構成は、必要な箇所のみに効率的に樹脂注入することができないという問題がある。樹脂封止のためのシリコン樹脂等の透光性樹脂は、高価であるので、より限定的に樹脂注入するための構成が求められる。 Although resin sealing is applied to the bonding connection portion of the LED chip electrode, the configuration shown in the figure has a problem that the resin cannot be efficiently injected only into a necessary portion. A translucent resin such as silicon resin for resin sealing is expensive, and therefore a structure for injecting resin more specifically is required.
 図23は、特許文献2に開示の発光装置を示す側面断面図である。基板は、液晶ポリマ等の電気絶縁性材料を用い、射出成形によって絶縁性基材を形成する。そして、LEDチップの実装箇所に凹所を設ける等して3次元の立体形状の絶縁性基材を形成する。絶縁性基材の表面には金属膜を形成した後、回路部を形成する箇所以外の金属膜は除去する。基板の凹所にLEDチップを実装し、回路部とLEDチップを導電性接着材で電気的に接合する。その後にLEDチップの上部電極と回路部とを金線で接合する。その次に凹所内に透明樹脂を充填してLEDチップを封止する。最後に基板の表面に透明樹脂等から成る拡散板を取り付けて、LED照明モジュールが完成する。 FIG. 23 is a side cross-sectional view showing the light emitting device disclosed in Patent Document 2. The substrate uses an electrically insulating material such as a liquid crystal polymer, and forms an insulating substrate by injection molding. Then, a three-dimensional three-dimensional insulating base material is formed, for example, by providing a recess in the LED chip mounting location. After the metal film is formed on the surface of the insulating substrate, the metal film other than the portion where the circuit portion is formed is removed. The LED chip is mounted in the recess of the substrate, and the circuit portion and the LED chip are electrically joined with a conductive adhesive. Thereafter, the upper electrode of the LED chip and the circuit part are joined with a gold wire. Next, the recess is filled with a transparent resin to seal the LED chip. Finally, a diffusion plate made of a transparent resin or the like is attached to the surface of the substrate to complete the LED lighting module.
 このように、複数個のLEDチップを凹所内に実装して基板に立体的に配置するため、基板の形状に応じて任意の配光特性が容易に得られるとともに、モジュールの薄型化が可能となる。しかし、特許文献2に開示の発光装置は、パッケージ土台となる基板を3次元に形成しておいて、後で配線を形成するものであるために、工程が複雑で、コストが高くなるという問題がある。 In this way, since a plurality of LED chips are mounted in the recess and three-dimensionally arranged on the substrate, any light distribution characteristic can be easily obtained according to the shape of the substrate, and the module can be thinned. Become. However, the light-emitting device disclosed in Patent Document 2 has a problem that the process is complicated and the cost is high because a substrate serving as a package base is formed three-dimensionally and wiring is formed later. There is.
 図24は、特許文献3に開示のLED照明器具を示す図であり、(A)は上面図を示し、(B)は部分断面図を示している。図示のように、絶縁金属基板は、しぼり加工により設けたLEDチップ設置用の凹所を有する。絶縁金属基板は、金属基板層,絶縁材料層からなる電気絶縁層,導電性金属からなる電極パターンと、リードパターンとからなっている。隣接するLEDチップ同士は電極パターンを介してボンディングワイヤによって電気的に接続されている。 FIG. 24 is a view showing the LED lighting apparatus disclosed in Patent Document 3, wherein (A) shows a top view and (B) shows a partial cross-sectional view. As shown in the figure, the insulating metal substrate has a recess for installing the LED chip provided by squeezing. The insulating metal substrate includes a metal substrate layer, an electrical insulating layer made of an insulating material layer, an electrode pattern made of a conductive metal, and a lead pattern. Adjacent LED chips are electrically connected by a bonding wire via an electrode pattern.
 しかし、特許文献3は、一枚の絶縁金属基板に複数のLEDチップを搭載しているモジュールについて開示している。図24(A)に示すように、複数のチップ(6チップとして例示)が含まれたものが一つの製品を構成している。このときもし複数チップの1個でも不良(点灯しない)があると、その製品は不良となってしまう。この場合1個の不良チップが他のチップも一緒に犠牲にしてしまう。即ち、全て点灯して初めて製品が良品となる。LEDチップもICチップと同じようにベアチップの検査で良品と判断されても、組立工程である確立で不良となる場合がある。不良救済のためには個別パッケージによる照明器具への搭載が簡潔な解決策であるが、特許文献3には、LEDチップ毎に切り分けて個片化した個別パッケージ、及びこの個別パッケージを配線基板及び放熱体に装着することについての開示は無い。それ故に、放熱についての検討がなされていない。 However, Patent Document 3 discloses a module in which a plurality of LED chips are mounted on a single insulating metal substrate. As shown in FIG. 24A, a product including a plurality of chips (illustrated as 6 chips) constitutes one product. At this time, if even one of the multiple chips is defective (not lit), the product will be defective. In this case, one defective chip is sacrificed together with other chips. That is, a product becomes a non-defective product only after all the lights are turned on. Even if the LED chip is determined to be a non-defective product by the bare chip inspection in the same manner as the IC chip, it may become defective due to the establishment of the assembly process. In order to remedy defects, mounting on an illuminating device using an individual package is a simple solution. However, Patent Document 3 discloses an individual package that is divided into individual pieces for each LED chip, and an individual package that is divided into a wiring board and an individual package. There is no disclosure about mounting on a radiator. Therefore, no consideration has been given to heat dissipation.
 特許文献3は、絶縁金属基板を折り曲げることにより形成した窪み底部にLEDチップを装着する一方、そのボンディングによる接続を窪み中段(或いは上段)に設けている。このため、金属基板の底面積はLEDチップ面積より僅かに大きい程度であり、底面を放熱に活かすことは考えられていない。また、一般的な絶縁金属板が使用されているためLEDチップの下面に位置する電気絶縁層は、通常80μm位と厚く熱伝導性が悪いために、良好な放熱特性が得られないという問題がある。放熱性を向上させるために、絶縁層(ポリイミド層)を薄く塗布する製造方法が求められている。 In Patent Document 3, an LED chip is mounted on a bottom of a recess formed by bending an insulating metal substrate, and a connection by bonding is provided in the middle (or upper) of the recess. For this reason, the bottom area of the metal substrate is slightly larger than the LED chip area, and it is not considered to utilize the bottom surface for heat dissipation. In addition, since a general insulating metal plate is used, the electrical insulating layer located on the lower surface of the LED chip is usually about 80 μm thick and has poor thermal conductivity, so that there is a problem that good heat dissipation characteristics cannot be obtained. is there. In order to improve heat dissipation, there is a demand for a manufacturing method in which an insulating layer (polyimide layer) is thinly applied.
 また光を効率よく取り出すためには反射材の付加が不可欠であるが、特許文献3には後付けで白色材料の塗布や金属の蒸着しか開示されていない。透明の絶縁層を用い、下地の金属面を反射面として利用することは、透明絶縁層および下地金属面の光沢処理が何れもコストアップになる。白色レジスト塗布は、追加材料費用と塗布工程費用が増えることになる。金属膜の蒸着とは、低圧(真空)高温で金属を蒸発させ、対象物に金属皮膜を形成することであり、装置も大掛かりで高い装置が必要で、真空に引く手間も掛かり、スループットは長くなり、工程費用も増えることになる。またターゲット金属のコストも掛かる。工程の追加無く低コストで反射性能を発揮できる反射面の形成が求められている。 In addition, in order to extract light efficiently, addition of a reflective material is indispensable. However, Patent Document 3 discloses only application of a white material and metal deposition as a retrofit. Using a transparent insulating layer and using the underlying metal surface as a reflecting surface increases the cost of the gloss treatment on the transparent insulating layer and the underlying metal surface. The white resist coating increases the additional material costs and the coating process costs. Deposition of metal film means that metal is evaporated at low pressure (vacuum) and high temperature, and a metal film is formed on the object. The apparatus is large and requires a high apparatus, and it takes time and effort to draw a vacuum, and the throughput is long. As a result, process costs also increase. In addition, the cost of the target metal is also increased. There is a demand for the formation of a reflective surface that can exhibit reflective performance at low cost without any additional process.
 さらには、個別パッケージを配線基板に装着して、絶縁層により金属プレートから絶縁分離されている電極端を、配線基板上の配線と半田付けする際に、半田によって電極端が金属プレート端とショートするのを防止するため、ソルダーレジスト等の対策が必要であるが、そのための工程や必要部材が増えることになる。工程の追加無く低コストで個別パッケージを配線基板に装着することが求められている。 Furthermore, when the individual package is mounted on the wiring board and the electrode end insulated from the metal plate by the insulating layer is soldered to the wiring on the wiring board, the electrode end is short-circuited with the metal plate end by soldering. In order to prevent this, measures such as a solder resist are necessary, but the number of steps and necessary members for that increase. There is a demand for mounting an individual package on a wiring board at a low cost without adding a process.
 図25は、特許文献6に開示の照明具を示す断面図である。図示のメタルコア印刷回路基板は、メタルコアと、その上に絶縁層を介して、銅箔を回路加工した印刷回路により構成されている。絶縁層としては、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォンの内のいずれかからなる100μm程度の厚さの耐熱性熱可塑性樹脂が用いられる。メタルコア印刷回路基板の窪みの底面に発光ダイオードを載置固定して各端子をそれぞれ印刷回路に接続する。メタルコア印刷回路基板の窪みには透明アクリル樹脂が充填される。このように、絶縁層として耐熱性熱可塑性樹脂を用いることは知られているが、しかし、通常、樹脂は、放熱性に優れているとは言えない。電気的絶縁性を図りつつも、発光ダイオードで発生した熱を放熱させることのできる熱伝導性の良い絶縁層が求められている。 FIG. 25 is a cross-sectional view showing a lighting fixture disclosed in Patent Document 6. The illustrated metal core printed circuit board includes a metal core and a printed circuit obtained by processing a copper foil over the insulating layer on the metal core. As the insulating layer, a heat-resistant thermoplastic resin having a thickness of about 100 μm made of any one of polyether ether ketone, polyether imide, and polyether sulfone is used. A light emitting diode is mounted and fixed on the bottom surface of the recess of the metal core printed circuit board, and each terminal is connected to the printed circuit. The hollow of the metal core printed circuit board is filled with a transparent acrylic resin. As described above, it is known to use a heat-resistant thermoplastic resin as the insulating layer, however, it cannot be said that the resin is usually excellent in heat dissipation. There is a need for an insulating layer with good thermal conductivity that can dissipate heat generated by a light emitting diode while achieving electrical insulation.
 図26は、特許文献7に開示の発光装置を示す断面図である。LED素子を搭載するCu基板は、SiO2からなる絶縁層を接着剤として薄膜状のCu配線層を一体的に有する。Cu配線層の表面は、Agめっきが施されて光反射性を有している。LED素子は、素子搭載部におけるCu配線層、絶縁層を部分的に除去してCu基板を露出させており、この露出させたCu基板の表面に接着固定している。LED素子の一対の電極は、ワイヤを介して対応するCu配線層に接続されている。透光性樹脂材料である封止樹脂が、Cu基板の素子搭載部分に封止されている。このように、Cu基板の露出した表面に、LED素子を接着固定したことにより、LED素子により発生した発熱をCu基板に速やかに熱伝導させることができ、放熱性を向上させることができる。 FIG. 26 is a cross-sectional view illustrating a light emitting device disclosed in Patent Document 7. A Cu substrate on which an LED element is mounted integrally has a thin-film Cu wiring layer using an insulating layer made of SiO 2 as an adhesive. The surface of the Cu wiring layer is Ag-plated and has light reflectivity. In the LED element, the Cu wiring layer and the insulating layer in the element mounting portion are partially removed to expose the Cu substrate, and are bonded and fixed to the exposed surface of the Cu substrate. A pair of electrodes of the LED element is connected to a corresponding Cu wiring layer through a wire. A sealing resin, which is a translucent resin material, is sealed in the element mounting portion of the Cu substrate. Thus, by adhering and fixing the LED element to the exposed surface of the Cu substrate, the heat generated by the LED element can be quickly conducted to the Cu substrate, and the heat dissipation can be improved.
 しかし、Cu配線層及び絶縁層を部分的に除去してCu基板を露出させるプロセスは容易なことではない。従来、このような部分的な除去はエッチング技術で行われるが、絶縁層として用いられているSiO2は、通常の酸やアルカリではエッチングは困難で、取り扱い上極めて危険な薬品であるフッ酸を使用する必要がある。さらには、Cuはフッ酸と反応してCuF2を形成するので、表面Cu箔が損傷してしまうという問題もある。より簡易な絶縁層の部分的除去プロセスが求められている。 However, the process of partially removing the Cu wiring layer and the insulating layer to expose the Cu substrate is not easy. Conventionally, such partial removal is performed by an etching technique. However, SiO 2 used as an insulating layer is difficult to etch with a normal acid or alkali, and hydrofluoric acid, which is an extremely dangerous chemical in handling, is used. Need to use. Furthermore, since Cu reacts with hydrofluoric acid to form CuF 2 , there is a problem that the surface Cu foil is damaged. There is a need for a simpler partial removal process of the insulating layer.
 絶縁層として、特許文献7に開示のSiO2に代えて、例えばポリイミド樹脂層を用いるとして、第一段階として金属箔をエッチングして開口しておいて、開口した金属箔をマスクとして利用して第二段階でポリイミド樹脂層をエッチングで開口するとしても、ポリイミド樹脂層をエッチングするためには毒性のヒドラジンを必要とし、樹脂層がポリイミド前駆体の場合は、アルカリエッチングによる開口工程の後で前駆体のイミド化を必要とするのでプロセスが複雑となる。 As an insulating layer, instead of SiO 2 disclosed in Patent Document 7, for example, a polyimide resin layer is used. As a first step, a metal foil is etched and opened as a first step, and the opened metal foil is used as a mask. Even if the polyimide resin layer is opened by etching in the second stage, toxic hydrazine is required to etch the polyimide resin layer. If the resin layer is a polyimide precursor, the precursor is formed after the opening step by alkali etching. The process is complicated because it requires imidization of the body.
 更には、樹脂層開口部のサイズを金属箔開口部のサイズと同じか又は小さくするエッチングの制御が困難で、開口部において金属箔端面より樹脂層端面が後退する危険性があり、金属箔端面と金属プレートとのショートによる信頼性の低下が懸念される。 Furthermore, it is difficult to control the etching so that the size of the resin layer opening is the same as or smaller than the size of the metal foil opening, and there is a risk that the resin layer end face may recede from the metal foil end face in the opening. There is a concern that reliability may be reduced due to short circuit between the metal plate and the metal plate.
特開2002-335019号公報JP 2002-335019 特開平11-163412号公報JP 11-163412 A 特開平1-309201号公報JP-A-1-309201 特開2001-131284号公報JP 2001-131284 A 特開2006-88410号公報JP 2006-88410 A 特開平11-68269号公報Japanese Patent Laid-Open No. 11-68269 特開2006-245032号公報JP 2006-245032 A
 本発明は、係る問題点を解決して、金属プレートを加工して形成したLEDパッケージ基板にLEDチップを装着したLEDパッケージを、配線基板に取り付けると共に放熱体を装着して構成したLEDモジュール装置の放熱特性を改善することを目的としている。 The present invention solves such problems and is an LED module device in which an LED package in which an LED chip is attached to an LED package substrate formed by processing a metal plate is attached to a wiring substrate and a radiator is attached. The purpose is to improve the heat dissipation characteristics.
 本発明は、LEDパッケージ基板として加工性及び熱伝導性の良好な金属プレートを用い、かつ、そこに装着されるLEDチップの接続配線との絶縁性を確保する絶縁層を用いつつも、その絶縁層を通しての熱伝導性を向上させることを目的としている。 The present invention uses a metal plate having good processability and thermal conductivity as an LED package substrate, and uses an insulating layer that ensures insulation from the connection wiring of the LED chip mounted thereon, while insulating the same. The aim is to improve the thermal conductivity through the layers.
 また、本発明は、配線基板に接続するLEDパッケージの電気接続部を、LEDチップよりも上面に位置させる一方、LEDパッケージ基板を装着する放熱体を下方に位置させて、両者を分離することにより、LEDパッケージ基板と配線基板との電気的接続を簡易に行うと同時に、放熱と電気接続のそれぞれのコストパフォーマンスの最適化を図って、総合して安価で高効率な排熱を実現することを目的としている。 In addition, the present invention is such that the electrical connection portion of the LED package connected to the wiring board is positioned on the upper surface of the LED chip, while the heat dissipator for mounting the LED package board is positioned below to separate the two. In addition to simplifying the electrical connection between the LED package substrate and the wiring substrate, the cost performance of each of the heat dissipation and electrical connection is optimized, and overall, low-cost and high-efficiency exhaust heat is realized. It is aimed.
 本発明のLEDモジュール装置及びその製造方法は、所定の板厚を有する板材からなる金属プレートを曲げ加工してLEDチップのためのLEDパッケージ基板を構成し、かつ、該基板を用いたLEDパッケージを配線基板に装着した。LEDパッケージ基板は、LEDチップ装着のための平板状底部と、該底部端の両側からそれぞれ立ち上がる壁部と、該壁部上部を外方向に折り曲げた接続電極部を一体に形成するように曲げ加工した金属プレートを備え、かつ、この金属プレートと金属箔との間に、樹脂層と接着材層からなる2層の絶縁層を挟んだ積層構成とする。壁部上部を外方向に折り曲げた接続電極部の上端の金属箔を一対の外部接続電極の少なくとも一方として構成する。LEDパッケージ基板の平板状底部上面に、LEDチップを装着すると共に、該LEDチップの一対の電極の少なくとも一方を平板状底部上面の金属箔に接続し、かつ透明樹脂を前記壁部に挟まれた凹所に充填することによりLEDパッケージを構成する。LEDパッケージの平板状底部裏面を放熱体に固着或いは接触させると共に、該放熱体との間に間隔を開けて配置した配線基板の開口部にLEDパッケージを実装して、金属プレート端より内側に配置した一対の外部接続電極を配線基板の配線と接続する。 An LED module device and a manufacturing method thereof according to the present invention comprise an LED package substrate for an LED chip by bending a metal plate made of a plate material having a predetermined plate thickness, and an LED package using the substrate. Attached to the wiring board. The LED package substrate is bent so as to integrally form a flat bottom portion for mounting the LED chip, a wall portion rising from both sides of the bottom end, and a connection electrode portion where the upper portion of the wall portion is bent outward. And a laminated structure in which two insulating layers composed of a resin layer and an adhesive layer are sandwiched between the metal plate and the metal foil. A metal foil at the upper end of the connection electrode portion where the upper portion of the wall portion is bent outward is configured as at least one of the pair of external connection electrodes. The LED chip is mounted on the upper surface of the flat bottom of the LED package substrate, at least one of the pair of electrodes of the LED chip is connected to the metal foil on the upper surface of the flat bottom, and the transparent resin is sandwiched between the walls. An LED package is formed by filling the recess. The flat bottom surface of the LED package is fixed or brought into contact with the heat sink, and the LED package is mounted in the opening of the wiring board arranged with a space between the heat sink and placed inside the end of the metal plate. The paired external connection electrodes are connected to the wiring of the wiring board.
 金属プレートの上に、反射材として機能する金属表面処理を施した金属箔を備え、かつ、外部接続電極として構成した金属箔の端部は、金属プレート端より内側に配置することができる。壁部の上端の金属箔を一対の外部接続電極のそれぞれとして機能させるように、平板状底部上面の金属箔を両側に絶縁分離し、LEDチップの一対の電極をそれぞれ、絶縁分離された金属箔のそれぞれに接続することができる。 A metal foil provided with a metal surface treatment that functions as a reflective material on a metal plate, and an end portion of the metal foil configured as an external connection electrode can be disposed inside the metal plate end. The metal foil on the upper surface of the flat bottom portion is insulated and separated on both sides so that the metal foil on the upper end of the wall portion functions as a pair of external connection electrodes, and the pair of electrodes of the LED chip are insulated and separated. Can be connected to each of.
 金属プレートの平板状底部上面に、絶縁層を介すること無く、LEDチップを導電性ダイボンド材を用いて電気的及び機械的に結合して、該LEDチップの一対の電極の内の一方の電極を金属箔にワイヤボンド接続する一方、他方の電極の接続は、金属プレートに対して導電性ダイボンド材により接続されており、壁部の上端側の金属箔を、一対の接続電極の内の一方の接続電極として機能させ、かつ、他方の接続電極を、壁部の上端側の金属プレートにより構成することができる。 An LED chip is electrically and mechanically bonded to the upper surface of the flat bottom of the metal plate without using an insulating layer using a conductive die-bonding material, and one of the pair of electrodes of the LED chip is attached. The wire foil is connected to the metal foil, while the other electrode is connected to the metal plate by a conductive die bond material, and the metal foil on the upper end side of the wall portion is connected to one of the pair of connection electrodes. It can function as a connection electrode, and the other connection electrode can be configured by a metal plate on the upper end side of the wall portion.
 また、本発明のLEDパッケージ及びその製造方法において、LEDパッケージ基板は、LEDチップ装着部及びLEDチップの一対の電極を接続するための一対の接続部を上面に形成するだけの十分な面積を有する平板状底部と、該底部端の両側からそれぞれ立ち上がる壁部と、該壁部上部を外方向に折り曲げた接続電極部を一体に形成するように曲げ加工した金属プレートの上に、樹脂層からなる絶縁層を挟んで金属箔を接合した積層構成とし、この絶縁層を構成する樹脂層は、5μm~40μmの範囲にある膜厚を有するポリイミド樹脂とした。 In the LED package and the manufacturing method thereof according to the present invention, the LED package substrate has an area sufficient to form on the upper surface a pair of connection portions for connecting the LED chip mounting portion and the pair of electrodes of the LED chip. It consists of a resin layer on a metal plate that is bent so as to integrally form a flat bottom, a wall that rises from both sides of the bottom edge, and a connection electrode that is bent outwardly from the top of the wall. A laminated structure in which metal foils are bonded with an insulating layer interposed therebetween, and the resin layer constituting the insulating layer is a polyimide resin having a film thickness in the range of 5 μm to 40 μm.
 ポリイミド樹脂は、熱可塑性ポリイミドを含むポリイミド樹脂の中に、球状のスペーサー粒子又は該スペーサー粒子の径より小さい熱伝導性フィラー、若しくはその両方を混在させることができる。放熱体に接するLEDパッケージの平板状底部の長辺をLEDチップ短辺の2倍~20倍の長さとすることができる。 As the polyimide resin, spherical spacer particles, a thermally conductive filler smaller than the diameter of the spacer particles, or both can be mixed in a polyimide resin containing thermoplastic polyimide. The long side of the flat bottom portion of the LED package in contact with the heat dissipator can be twice to 20 times as long as the short side of the LED chip.
 積層体は、ポリイミド樹脂の溶液を金属箔又は金属プレートに塗り、乾燥させた後、金属プレート又は金属箔に熱圧着させることにより形成することができる。また、積層体は、金属箔又は金属プレートの上に、熱可塑性ポリイミド系樹脂に変換可能な少なくとも一種のポリイミド前駆体樹脂層を塗布した後、この前駆体樹脂層を熱処理することにより、熱可塑性ポリイミド系樹脂層を形成し、この熱可塑性ポリイミド系樹脂層の上に、金属プレート又は金属箔を加熱加圧下で接合して形成することができる。また、積層体は、金属箔と金属プレートの間に、熱可塑性ポリイミド系フィルムを挟持させたものを、加熱加圧下で接合して形成することができる。 The laminate can be formed by applying a polyimide resin solution to a metal foil or a metal plate and drying it, followed by thermocompression bonding to the metal plate or metal foil. In addition, the laminate is formed by applying at least one polyimide precursor resin layer that can be converted into a thermoplastic polyimide resin on a metal foil or a metal plate, and then heat-treating the precursor resin layer, thereby thermoplasticity. A polyimide-based resin layer is formed, and a metal plate or a metal foil can be bonded to the thermoplastic polyimide-based resin layer by heating and pressing. Moreover, a laminated body can be formed by bonding a material obtained by sandwiching a thermoplastic polyimide film between a metal foil and a metal plate under heat and pressure.
 本発明によれば、LEDパッケージ基板に加工性及び熱伝導性の良好な金属プレートを用い、かつ、そこに装着されるLEDチップ接続配線との絶縁性を確保する絶縁層を用いつつも、LEDパッケージ基板形状を工夫して、平板状底部に大きな面積を確保して、この大きな面積を介して放熱体に伝熱するように構成したことによりLEDチップから放熱体への熱伝導性を向上させることができる。 According to the present invention, while using a metal plate with good processability and thermal conductivity for the LED package substrate and using an insulating layer that ensures insulation with the LED chip connection wiring mounted thereon, the LED The package substrate shape is devised to secure a large area on the flat bottom and to transfer heat to the radiator through this large area, thereby improving the thermal conductivity from the LED chip to the radiator. be able to.
 本発明のLEDパッケージ基板は、金属-2層絶縁層(ポリイミド+接着材層)-金属の4層構造にすることで、絶縁用の樹脂層(ポリイミド)は非常に薄くでき、接着材料は低熱抵抗のフィラーを混ぜることによって絶縁層より熱伝導性を1桁程度改善でき、トータルの熱抵抗を低減することができる。また、本発明のLEDパッケージ基板は、金属プレートと金属箔の間に挟まれた絶縁層からなる積層体の製造方法を工夫したことにより、絶縁用の樹脂層(ポリイミド)を非常に薄くして、熱抵抗を低減することができる。 The LED package substrate of the present invention has a metal-two-layer insulating layer (polyimide + adhesive layer) -metal four-layer structure, so that the insulating resin layer (polyimide) can be made very thin and the adhesive material has a low heat By mixing a resistance filler, the thermal conductivity can be improved by an order of magnitude over the insulating layer, and the total thermal resistance can be reduced. In addition, the LED package substrate of the present invention has a very thin insulating resin layer (polyimide) by devising a method for manufacturing a laminate comprising an insulating layer sandwiched between a metal plate and a metal foil. , Thermal resistance can be reduced.
 また、本発明によれば、LEDパッケージ基板の配線基板との電気接続部を、LEDパッケージ基板を装着する放熱体から分離することにより、LEDパッケージ基板と配線基板との電気的接続を簡易に行うと同時に、放熱と電気接続のそれぞれのコストパフォーマンスの最適化を図って、総合して安価で高効率な排熱を実現することができる。 In addition, according to the present invention, the electrical connection between the LED package substrate and the wiring board can be easily performed by separating the electrical connection portion between the LED package board and the wiring board from the heat radiating body on which the LED package board is mounted. At the same time, by optimizing the cost performance of heat dissipation and electrical connection, it is possible to achieve low-cost and high-efficiency exhaust heat overall.
 また、金属プレートの上にLEDチップを装着するための開口部の形成を、エッチングではなく、打ち抜き加工(パンチング)で行うことにより、製造プロセスを簡単化することができる。 Also, the manufacturing process can be simplified by forming the opening for mounting the LED chip on the metal plate by punching instead of etching.
本発明を具体化するLEDモジュール装置の第1の例を示す側面断面図である。It is side surface sectional drawing which shows the 1st example of the LED module apparatus which actualizes this invention. 第1のLEDパッケージ基板の曲げ加工を説明する図である。It is a figure explaining the bending process of a 1st LED package board | substrate. 完成した第1のLEDパッケージ基板を示す図であり、(A)は、LEDパッケージ基板を複数個連結した状態で示す図であり、(B)は、その1個のLEDパッケージ基板のみを取り出して示す図であり、(C)は、(B)に示すA-A’ラインで切断した断面図であり、(D)は、(B)に示すB-B’ラインで切断した断面図である。It is a figure which shows the completed 1st LED package board | substrate, (A) is a figure shown in the state which connected several LED package board | substrates, (B) takes out only the one LED package board | substrate, and is taken out. (C) is a cross-sectional view taken along the line AA ′ shown in (B), and (D) is a cross-sectional view taken along the line BB ′ shown in (B). . 第1のLEDパッケージ基板の図3とは異なる別の例を示す図であり、(A)は、LEDパッケージ基板を複数個連結した状態で示す図であり、(B)は、その1個のLEDパッケージ基板のみを取り出して示す図であり、(C)は、(B)に示すA-A’ラインで切断した断面図であり、(D)は、(B)に示すB-B’ラインで切断した断面図である。It is a figure which shows another example different from FIG. 3 of a 1st LED package board | substrate, (A) is a figure shown in the state which connected several LED package board | substrates, (B) is the one of the FIG. 4 is a view showing only the LED package substrate taken out, (C) is a cross-sectional view taken along line AA ′ shown in (B), and (D) is a line BB ′ shown in (B). It is sectional drawing cut | disconnected by. 第2のLEDパッケージ基板の曲げ加工を説明する図である。It is a figure explaining the bending process of a 2nd LED package board | substrate. 完成した第2のLEDパッケージ基板を示す図であり、(A)は、LEDパッケージ基板を複数個連結した状態で示す図であり、(B)は、その1個のLEDパッケージ基板のみを取り出して示す図である。It is a figure which shows the completed 2nd LED package board | substrate, (A) is a figure which shows the state which connected several LED package board | substrates, (B) takes out only the one LED package board | substrate, FIG. 第2のLEDパッケージ基板の詳細を示す図であり、(A)は1個のLEDパッケージ基板のみを取り出して示す図であり、(B)は、(A)に示すA-A’ラインで切断した断面図であり、(C)は、(A)に示すB-B’ラインで切断した断面図である。It is a figure which shows the detail of a 2nd LED package board | substrate, (A) is a figure which takes out and shows only one LED package board | substrate, (B) is cut | disconnected by the AA 'line shown to (A) (C) is a cross-sectional view taken along the line BB ′ shown in (A). 第3のLEDパッケージ基板の曲げ加工を説明する図である。It is a figure explaining the bending process of a 3rd LED package board | substrate. LEDパッケージ組立ての第1の例を示す図である。It is a figure which shows the 1st example of LED package assembly. LEDパッケージ組立ての第2の例を示す図である。It is a figure which shows the 2nd example of LED package assembly. LEDパッケージ組立ての第3の例を示す図である。It is a figure which shows the 3rd example of LED package assembly. (A)は、図11に示すLEDパッケージの組立てとは異なる別の例を、(B)は、さらに別の例を示す断面図である。(A) is sectional drawing which shows another example different from the assembly of the LED package shown in FIG. 11, (B) is sectional drawing which shows another example. LEDパッケージ組立ての第4の例を示す図であり、(A)は完成したLEDパッケージの上面図を示し、(B)は側面断面図を示している。It is a figure which shows the 4th example of LED package assembly, (A) shows the top view of the completed LED package, (B) has shown side surface sectional drawing. 本発明を具体化するLEDモジュール装置の第1の例(図1参照)の組立を説明する図である。It is a figure explaining the assembly of the 1st example (refer FIG. 1) of the LED module apparatus which actualizes this invention. 本発明を具体化するLEDモジュール装置の第2の例を示す側面断面図である。It is side surface sectional drawing which shows the 2nd example of the LED module apparatus which actualizes this invention. 本発明を具体化するLEDモジュール装置の第3の例を示す側面断面図である。It is side surface sectional drawing which shows the 3rd example of the LED module apparatus which actualizes this invention. 本発明を具体化するLEDモジュール装置の第4の例の組立てを説明する図である。It is a figure explaining the assembly of the 4th example of the LED module apparatus which actualizes this invention. 本発明を具体化するLEDモジュール装置の第5の例を説明する図であり、(A)はその断面図を示し、(B)は配線基板に3個のLEDパッケージを装着した状態で示す上面図である。It is a figure explaining the 5th example of the LED module device which embodies this invention, (A) shows the sectional view, and (B) is the upper surface shown in the state where three LED packages were attached to the wiring board. FIG. 本発明を具体化するLEDモジュール装置の第6の例を説明する図であり、(A)は連結構成LEDパッケージの上面図を示し、(B)はこの連結構成LEDパッケージを配線基板に装着した状態のA-A’ラインで切断した断面図を示している。It is a figure explaining the 6th example of the LED module device which actualizes this invention, (A) shows the top view of a connection structure LED package, (B) attached this connection structure LED package to the wiring board. A sectional view taken along the line AA ′ in the state is shown. LEDジャンクション温度の膜厚依存を示すグラフである。It is a graph which shows the film thickness dependence of LED junction temperature. (A)は、放熱性能(熱抵抗比)を示すグラフであり、(B)は放熱板上に装着されるLEDパッケージ構造を示す図である。(A) is a graph which shows heat dissipation performance (thermal resistance ratio), (B) is a figure which shows the LED package structure with which a heat sink is mounted | worn. 従来公知の発光装置を例示する図である(特許文献1参照)。It is a figure which illustrates a conventionally well-known light-emitting device (refer patent document 1). 特許文献2に開示の発光装置を示す側面断面図である。FIG. 10 is a side cross-sectional view showing a light emitting device disclosed in Patent Document 2. 特許文献3に開示のLED照明器具を示す図であり、(A)は上面図を示し、(B)は部分断面図を示している。It is a figure which shows the LED lighting fixture disclosed by patent document 3, (A) shows the top view, (B) has shown the fragmentary sectional view. 特許文献6に開示の照明具を示す断面図である。It is sectional drawing which shows the lighting fixture of the patent document 6. 特許文献7に開示の発光装置を示す断面図である。FIG. 10 is a cross-sectional view illustrating a light emitting device disclosed in Patent Document 7.
 以下、例示に基づき本発明を説明する。図1は、本発明を具体化するLEDモジュール装置の第1の例を示す側面断面図である。例示のLEDモジュール装置は、LEDパッケージと、LEDパッケージを装着するための開口を有する配線基板と、LEDパッケージ裏面に固着された放熱板によって構成されている。配線基板の開口部へのLEDパッケージの装着は、LEDパッケージ側面と配線基板の間の隙間を接着材(耐熱性接着材)で埋め、この接着材の上で、LEDパッケージの一対の接続電極(配線基板に接続するための外部接続電極)を、配線基板上面の配線に半田付け等により接続することにより行う。LEDチップ発光面は、図中の上面側に向けられていて、配線基板に遮られること無く上面に向けて発光する。配線基板を装着したLEDパッケージの裏面は、放熱板の上に半田接続により固着される。或いは、この半田接続に代えて、高熱伝導性の接着材を用いて接着することも可能である。 Hereinafter, the present invention will be described based on examples. FIG. 1 is a side sectional view showing a first example of an LED module device embodying the present invention. The exemplary LED module device includes an LED package, a wiring board having an opening for mounting the LED package, and a heat sink fixed to the back surface of the LED package. The LED package is attached to the opening of the wiring board by filling a gap between the LED package side surface and the wiring board with an adhesive (heat-resistant adhesive), and on the adhesive, a pair of connection electrodes ( The external connection electrodes for connecting to the wiring board are connected to the wiring on the upper surface of the wiring board by soldering or the like. The LED chip light emitting surface is directed to the upper surface side in the figure, and emits light toward the upper surface without being blocked by the wiring board. The back surface of the LED package on which the wiring board is mounted is fixed on the heat sink by solder connection. Alternatively, instead of this solder connection, it is possible to bond using a highly heat conductive adhesive.
 LEDパッケージは、LEDパッケージ基板の上に組み立てられる。LEDモジュール装置の第1の例に用いたLEDパッケージ基板は、例えば、図2を参照して後述するように、LEDチップ装着のための凹所を有するように所定形状に曲げ加工された金属プレートの上に、樹脂付き金属箔からなる積層膜を、接着材を用いて貼り付けると共に、この金属箔の上には、反射材として機能する銀メッキを施すことにより構成されている。接続配線として機能する金属箔(及び銀メッキ)には、一対の接続電極(金属箔の両端側)を絶縁分離するためのスリットが開口してある。このように構成されたLEDパッケージ基板上に、LEDチップが装着され、電気的に接続配線された後、透明樹脂を充填して、LEDパッケージが構成されている。 The LED package is assembled on the LED package substrate. The LED package substrate used in the first example of the LED module device is, for example, a metal plate bent into a predetermined shape so as to have a recess for mounting an LED chip, as will be described later with reference to FIG. A laminated film made of a resin-attached metal foil is attached onto the metal foil using an adhesive, and silver plating that functions as a reflector is applied on the metal foil. In the metal foil (and silver plating) functioning as connection wiring, a slit for insulating and separating a pair of connection electrodes (both ends of the metal foil) is opened. After the LED chip is mounted on the LED package substrate configured as described above and electrically connected and wired, a transparent resin is filled to configure the LED package.
 このように、LEDパッケージ基板(図2参照)は、金属プレートと金属箔に挟まれた絶縁層を、樹脂層(ポリイミド膜)と接着材層との2層により構成しており、ポリイミド膜が電気絶縁を受け持ち、接着材が接着力を受け持つので、夫々最適化が可能となり、結果的に熱伝導特性が改善されることになる。或いは、LEDパッケージ基板は、図5を参照して後述するように、絶縁層をポリイミド樹脂によって形成し、このポリイミド樹脂からなる絶縁層を挟んで金属プレートの上に金属箔(例えば、銅箔)を接合した積層体を所定形状に曲げ加工することにより、LEDチップ装着部及びその一対の電極を接続するための接続部を、平板状底面の上に形成している。 As described above, the LED package substrate (see FIG. 2) includes an insulating layer sandwiched between a metal plate and a metal foil, which is composed of two layers of a resin layer (polyimide film) and an adhesive layer. Since it is responsible for electrical insulation and the adhesive material is responsible for adhesion, each can be optimized, resulting in improved heat transfer characteristics. Alternatively, as will be described later with reference to FIG. 5, the LED package substrate is formed of a polyimide resin with an insulating layer formed on a metal plate (for example, a copper foil) on the metal plate with the insulating layer made of the polyimide resin interposed therebetween. The LED chip mounting part and the connection part for connecting the pair of electrodes are formed on the flat bottom surface by bending the laminated body joined together into a predetermined shape.
 このように、LEDパッケージ基板は、LEDチップを装着して、その一対の電極を接続する接続部を形成するに十分な面積の平板状底部を有しており、この大きな面積を有する平板状底部の下面に放熱体が装着されるために、LEDチップからの放熱は効率よく放熱体に伝熱されることになる。また、個片化後の剛性が、金属箔よりも厚い金属プレートで保持できるので、信頼性が格段に向上する。透明樹脂で剛性を確保する必要が無くなり、樹脂材料の選択肢が豊富になり、結果的にコスト低減に繋がる。以下、さらに、その製造法について詳述する。 As described above, the LED package substrate has a flat bottom portion having an area sufficient to mount the LED chip and form a connection portion connecting the pair of electrodes, and the flat bottom portion having this large area. Since the radiator is mounted on the lower surface of the LED, the heat radiation from the LED chip is efficiently transferred to the radiator. Moreover, since the rigidity after singulation can be held by a metal plate thicker than the metal foil, the reliability is remarkably improved. There is no need to ensure rigidity with transparent resin, and there are many choices of resin materials, resulting in cost reduction. Hereinafter, the production method will be described in detail.
 図2は、第1のLEDパッケージ基板の曲げ加工を説明する図である。図2(a)は、加工されるべき金属プレート(銅とかアルミのような高熱伝導性の板状金属部材)を示す側面図である。次に、(b)に示すように、この板状部材の上に、樹脂付き金属箔からなる積層膜(例えば、ポリイミド膜を貼り付けた銅箔:例えば日立化成工業のMCF-5000IR、この材料はポリイミドの厚さが僅か5μmであり、熱抵抗的には非常に有利な材料である)のポリイミド膜側を、接着材を用いて貼り付ける。樹脂層の厚さを接着材層より薄い構成にすることにより、コスト的にも放熱的にも有利となる。この接着材には、熱伝導性フィラーを充填することが望ましい。これによって、樹脂層(ポリイミド膜)と接着材層からなる2層の絶縁層を、金属プレートと金属箔で挟んだ積層構成となる。ポリイミド膜及び接着材層により、LEDチップの一対の接続電極間の絶縁を行うだけでなく、銅箔をLEDチップの接続配線として利用することができる。また、銅箔に限らず、アルミのような高熱伝導性の金属箔(金属層)を用いることができる。 FIG. 2 is a diagram for explaining bending of the first LED package substrate. FIG. 2A is a side view showing a metal plate to be processed (a plate metal member having high thermal conductivity such as copper or aluminum). Next, as shown in (b), a laminated film made of a metal foil with a resin (for example, a copper foil with a polyimide film attached thereto: for example, MCF-5000IR manufactured by Hitachi Chemical Co., Ltd., this material, as shown in FIG. The polyimide film has a thickness of only 5 μm, which is a very advantageous material in terms of heat resistance, and is attached using an adhesive. By making the thickness of the resin layer thinner than that of the adhesive layer, it is advantageous in terms of both cost and heat dissipation. This adhesive is preferably filled with a heat conductive filler. As a result, a two-layer insulating layer composed of a resin layer (polyimide film) and an adhesive layer is sandwiched between the metal plate and the metal foil. The polyimide film and the adhesive layer can not only provide insulation between the pair of connection electrodes of the LED chip, but also can utilize a copper foil as the connection wiring of the LED chip. Moreover, not only copper foil but metal foil (metal layer) with high heat conductivity like aluminum can be used.
 このように、絶縁層として、樹脂層と接着材層との2層構成にすることにより、絶縁層の放熱性を大きく向上させることが可能になる。例えば、18μの銅箔と125μm前後の銅板(金属プレート)との間の絶縁層として、ポリイミド膜の1層のみを用いる場合、両方の公差を加味して、間の接着力も兼ねるために、ポリイミド膜厚は例えば20~30μmくらい必要となる。これに対して、絶縁層をポリイミド膜と接着材層に分けた場合、ポリイミド膜厚を極限まで薄くすることができる。これは銅箔の上にポリイミドを薄く塗ることで実現できる。この結果、ポリイミド膜厚5μmが実現されている。この銅箔と薄いポリイミド膜の積層を貼るためにさらに接着材を用いる。125μm程度の比較的に厚い板材(金属プレート)に塗ることを想定しているので、接着材層の厚さは上記と同じ理由で25μm位に設定されている。単純に厚さの比で言えば、絶縁層1層の場合が25μmで、ポリイミド膜と接着材層の2層の場合が25μm+5μmとなり、絶縁層2層が不利となる。しかし絶縁層2層の場合は、5μmのポリイミド膜が絶縁耐性を受け持つので、接着材層は熱伝導を簡単に上げることができる。例えば熱伝導性フィラー(窒化アルミなどのセラミックや金属)の充填率を上げることによって簡単に実現できる。一般に熱伝導性フィラーを充填していくと電気絶縁耐性が下がってくるが、ポリイミド膜との積層によって電気絶縁耐性は気にしなくて良い。この結果絶縁層2層の場合は、例えばトータルの熱伝導率をほぼ同じ厚さの1層の接着材に比べ3倍程向上させることが可能となる。 Thus, by using a two-layer structure of the resin layer and the adhesive layer as the insulating layer, it is possible to greatly improve the heat dissipation of the insulating layer. For example, when only one layer of polyimide film is used as an insulating layer between an 18μ copper foil and a copper plate (metal plate) of around 125μm, polyimide can be used to take into account both tolerances and also serve as an adhesive force between them. For example, a film thickness of about 20 to 30 μm is required. On the other hand, when the insulating layer is divided into a polyimide film and an adhesive layer, the polyimide film thickness can be made as thin as possible. This can be realized by thinly applying polyimide on the copper foil. As a result, a polyimide film thickness of 5 μm is realized. An adhesive is further used to attach a laminate of this copper foil and a thin polyimide film. Since it is assumed that it is applied to a relatively thick plate (metal plate) of about 125 μm, the thickness of the adhesive layer is set to about 25 μm for the same reason as described above. Simply speaking, the ratio of thickness is 25 μm in the case of one insulating layer, and 25 μm + 5 μm in the case of two layers of a polyimide film and an adhesive layer, which is disadvantageous for two insulating layers. However, in the case of two insulating layers, the 5 μm polyimide film has insulation resistance, so the adhesive layer can easily increase heat conduction. For example, it can be easily realized by increasing the filling rate of a thermally conductive filler (ceramic or metal such as aluminum nitride). In general, as the thermal conductive filler is filled, the electrical insulation resistance decreases, but the electrical insulation resistance does not have to be considered by the lamination with the polyimide film. As a result, in the case of two insulating layers, for example, the total thermal conductivity can be improved by about three times compared to a single-layer adhesive having substantially the same thickness.
 また、樹脂層があることで、上面の銅箔のエッチング加工が容易になる。エッチング時に接着材層がエッチ液に侵食される心配が無い。但し、接着材層だけで熱伝導を向上させると絶縁耐性を犠牲にし易く、接着材層単層で熱伝導と絶縁耐性を両立させるのは難しい。 Also, the presence of the resin layer makes it easy to etch the copper foil on the top surface. There is no concern that the adhesive layer is eroded by the etchant during etching. However, if the heat conduction is improved only by the adhesive layer, the insulation resistance is easily sacrificed, and it is difficult to achieve both the heat conduction and the insulation resistance by a single adhesive layer.
 次に、図2(c)に示すように、貼り付けた金属箔の加工を行って、スリット開口及び銅箔除去部を形成する。例えば、この加工のために、ホトリソグラフィ技術を用いる。金属層(銅箔)の上にレジストを塗布し、パターンを露光、現像してさらにエッチングを行い、レジストを除去して、スリット開口及び銅箔除去部を完成させる。ここでは、積層膜を金属プレートの上に貼り付けた状態で、積層膜の金属箔にスリット開口する場合を例示したが、積層膜単独の状態でエッチング加工により金属箔にスリット開口し、このスリット加工した積層膜を金属プレートの上に接着材を用いて貼り付けることもできる。或いは、積層膜単独の状態で、打ち抜き加工によりスリット開口をすることもできる。但し、この場合、スリットは、金属箔だけでなくポリイミド層に対しても開口されることになる。 Next, as shown in FIG. 2C, the attached metal foil is processed to form slit openings and copper foil removal portions. For example, photolithography technology is used for this processing. A resist is applied on the metal layer (copper foil), the pattern is exposed and developed, and etching is further performed to remove the resist, thereby completing the slit opening and the copper foil removing portion. Here, the case where a slit is opened in the metal foil of the laminated film with the laminated film attached on the metal plate is illustrated, but the slit is opened in the metal foil by etching in the state of the laminated film alone. The processed laminated film can also be attached on the metal plate using an adhesive. Alternatively, the slit opening can be made by punching in the state of the laminated film alone. However, in this case, the slit is opened not only to the metal foil but also to the polyimide layer.
 次に、(d)に示すように、樹脂付き金属箔を貼り付けた金属プレートの曲げ加工を行う。この曲げ加工は、LEDチップを搭載するための凹所、及び上部を外方向に折り曲げた接続電極を形成するように、金型を用いたプレス加工によって行う。後述するように、接続電極を配線基板に対して半田付けした際に、半田が接続電極と金属プレートを電気的にショートさせるのを防ぐために、接続電極先端側を部分的に除去した銅箔除去部を設ける。即ち、接続電極端部は、金属プレート端より内側に配置されることになる。電極端と金属プレート端の半田ショートを防止するため、工程を追加すること無く、図2(c)に示すスリット開口工程によって銅箔除去部を設けることができる。 Next, as shown in (d), the metal plate to which the metal foil with resin is attached is bent. This bending process is performed by pressing using a mold so as to form a recess for mounting the LED chip and a connection electrode with the upper part bent outward. As will be described later, when the connection electrode is soldered to the wiring substrate, the copper foil is removed by partially removing the connection electrode tip in order to prevent the solder from electrically shorting the connection electrode and the metal plate. Provide a part. That is, the connection electrode end is disposed inside the metal plate end. In order to prevent a solder short between the electrode end and the metal plate end, the copper foil removing portion can be provided by a slit opening step shown in FIG.
 次に、(e)に示すように、LEDチップからの発光の反射材として機能する金属(例えば、銀)メッキ(金属表面処理)を、金属箔の上面の全てに施す。メッキ処理のためのメッキ電極として金属箔を用いることにより、スリット及び銅箔除去部を除いて、金属箔の上面のみにメッキすることが可能になる。または、金属表面処理の必要な箇所に銀インクを用いてインクジェット塗布し、焼成することによって光沢面(反射材)を形成する。 Next, as shown in (e), metal (for example, silver) plating (metal surface treatment) that functions as a reflective material for light emission from the LED chip is applied to the entire upper surface of the metal foil. By using the metal foil as a plating electrode for the plating process, it is possible to plate only on the upper surface of the metal foil except for the slit and the copper foil removing portion. Alternatively, a glossy surface (reflecting material) is formed by applying an ink jet to a portion requiring metal surface treatment using silver ink and baking.
 図3は、完成した第1のLEDパッケージ基板を示す図であり、(A)は、LEDパッケージ基板を複数個連結した状態で示す図であり、(B)は、その1個のLEDパッケージ基板のみを取り出して示す図であり、(C)は、(B)に示すA-A’ラインで切断した断面図であり、(D)は、(B)に示すB-B’ラインで切断した断面図である。図示の例において、5×14個のLEDパッケージ基板を、1枚の金属プレートの上に同時作成するものとして例示している。後の工程で、LEDパッケージ基板上にLEDチップを装着して樹脂封止した後、個々のパッケージ或いは任意の複数個連結したパッケージに切り分ける個片化が行われる。個片化は、図3(A)に示す分割ラインに沿って行われるが、複数個のLEDパッケージを連結するための連結部を作成することによって、電気的に直列に接続されると同時に、連結構成LEDパッケージに柔軟性を付与して、凸面形状或いは凹面形状などの任意の外表面形状を有するヒートシンク或いは筐体の上に装着することができる(後述する図19参照)。 FIG. 3 is a view showing a completed first LED package substrate, (A) is a view showing a state in which a plurality of LED package substrates are connected, and (B) is a single LED package substrate. (C) is a cross-sectional view taken along the line AA ′ shown in (B), and (D) is a view taken along the line BB ′ shown in (B). It is sectional drawing. In the illustrated example, 5 × 14 LED package substrates are illustrated as being simultaneously formed on a single metal plate. In a later step, after mounting the LED chip on the LED package substrate and resin-sealing, individualization is performed by dividing into individual packages or arbitrary plural connected packages. The singulation is performed along the dividing line shown in FIG. 3 (A), but by creating a connecting part for connecting a plurality of LED packages, they are electrically connected in series, The connected LED package can be provided with flexibility, and can be mounted on a heat sink or housing having an arbitrary outer surface shape such as a convex shape or a concave shape (see FIG. 19 described later).
 図示の第1のLEDパッケージ基板は、LEDチップを搭載するための凹所が形成されている。この凹所両側には左右壁部が設けられ、また、この左右壁部に連結しかつ直交する前後壁部が設けられて、封止樹脂を左右前後から閉じこめる機能を果たしている。左右壁部上面の金属箔(及びその上の銀メッキ)は、一対の接続電極として機能する。また、一対の接続電極を電気的に分離するためのスリットが、金属箔(及びその上の銀メッキ)に形成されている。スリットにより分割されたいずれか一方の金属箔の上に、後述のようにLEDチップが装着されることになる。 In the illustrated first LED package substrate, a recess for mounting the LED chip is formed. Left and right wall portions are provided on both sides of the recess, and front and rear wall portions connected to and orthogonal to the left and right wall portions are provided to perform a function of confining the sealing resin from the left and right front and rear. The metal foils on the upper surfaces of the left and right wall parts (and the silver plating thereon) function as a pair of connection electrodes. In addition, slits for electrically separating the pair of connection electrodes are formed in the metal foil (and silver plating thereon). An LED chip is mounted on one of the metal foils divided by the slit as described later.
 このように、図示の第1のLEDパッケージ基板は、LEDチップが搭載されることになる平板状の底部と、この底部の左右前後に位置して底部端から折曲して立ち上がる方向に、LEDチップの発光方向と同じ側に伸びる左右及び前後の壁部を備えている。この一対の左右の壁部先端面の金属箔が、接続電極として機能する。底部端から左右前後の壁部が立ち上がる方向は、必ずしも直交する必要はなく、接続電極が平板状の底部より上方に位置できるように、例えば、斜め上方に直線的に、或いは湾曲させて立ち上がらせても良い。図示の例では、平板状の底部及び前後の壁部の金属箔をスリットにより2分割することにより、一対の接続電極を互いに分離している。後述するように(図9参照)、2分割した底部金属箔の一方の上にLEDチップを装着して一方のワイヤボンド接続をする一方、2分割底部金属箔の他方には他方のワイヤボンド接続をする。 As described above, the illustrated first LED package substrate includes a flat bottom portion on which the LED chip is to be mounted, and LED lamps in a direction that rises by bending from the bottom end located on the left and right front and back of the bottom portion. Left and right and front and rear wall portions extending on the same side as the light emitting direction of the chip are provided. The metal foils on the pair of left and right wall tip surfaces function as connection electrodes. The directions in which the left and right front and rear walls rise from the bottom end do not necessarily have to be orthogonal to each other. For example, the connection electrode can be raised linearly or curved upward at an angle so that the connection electrode can be positioned above the flat bottom. May be. In the example shown in the drawing, the pair of connection electrodes are separated from each other by dividing the metal foil of the flat bottom portion and the front and rear wall portions into two by slits. As will be described later (see FIG. 9), an LED chip is mounted on one of the two divided bottom metal foils to make one wire bond connection, while the other of the two divided bottom metal foils has the other wire bond connection. do.
 図4は、第1のLEDパッケージ基板の図3とは異なる別の例を示す図であり、(A)は、LEDパッケージ基板を複数個連結した状態で示す図であり、(B)は、その1個のLEDパッケージ基板のみを取り出して示す図であり、(C)は、(B)に示すA-A’ラインで切断した断面図であり、(D)は、(B)に示すB-B’ラインで切断した断面図である。図示の例においても、図3と同様に、5×14個のLEDパッケージ基板を、1枚の金属プレートの上に同時作成するものとして例示している。図4に示す第1のLEDパッケージ基板において、凹所の左右側のみに壁部を設けている点で、左右だけでなく前後に壁部を設けた図3とは相違している。後の工程で、LEDパッケージ基板上にLEDチップを装着した後、金型内で樹脂封止する際に、図中の左右方向に流れる樹脂は左右壁部によって規制される一方、前後方向に流れる樹脂は、パッケージ基板のエッジ部処理、例えばエッジ部のみ壁部を設けることによって規制される。その他の構成についての説明は、図3と同じであるので省略する。 FIG. 4 is a view showing another example of the first LED package substrate different from FIG. 3, (A) is a view showing a state in which a plurality of LED package substrates are connected, and (B) is It is a figure which takes out and shows only the one LED package board | substrate, (C) is sectional drawing cut | disconnected by the AA 'line shown to (B), (D) is B shown to (B). FIG. 6 is a cross-sectional view taken along line −B ′. In the illustrated example, as in FIG. 3, 5 × 14 LED package substrates are illustrated as being simultaneously formed on one metal plate. The first LED package substrate shown in FIG. 4 is different from FIG. 3 in which walls are provided not only on the left and right but also on the front and back, in that walls are provided only on the left and right sides of the recess. In a later step, after mounting the LED chip on the LED package substrate, when the resin is sealed in the mold, the resin flowing in the left-right direction in the figure is regulated by the left and right walls, while flowing in the front-rear direction. The resin is regulated by edge processing of the package substrate, for example, by providing a wall only at the edge. The description of other configurations is the same as in FIG.
 次に、図5~図6を参照して、第2のLEDパッケージ基板の製造について説明する。第2のLEDパッケージ基板において用いられる絶縁層は、ポリイミド樹脂から形成される点で、図2~図4を参照して説明した第1のLEDパッケージ基板の樹脂層(ポリイミド膜)と接着材層との2層により構成した絶縁層とは異なっている。図5は、第2のLEDパッケージ基板の曲げ加工を説明する図である。図5(a)は、加工されるべき金属プレートを示す側面図である。次に、(b)に示すように、この金属プレートの上に、ポリイミド樹脂からなる絶縁層を挟んで金属箔(例えば、銅箔)を接合した積層体を構成する。このために、熱可塑性ポリイミドを含むポリイミド樹脂を溶媒に溶解した溶液をまず金属箔(又は金属プレート)に塗り、乾燥させて金属プレート(又は金属箔)に熱圧着させる。通常は金属プレートと金属箔の平坦性を考慮し、一定の絶縁耐圧を確保しようとすれば、最低5μmの膜厚のポリイミド樹脂を塗らなければならない。ポリイミド樹脂の厚さは、放熱特性の観点からは、薄いほうが望ましいが、耐電圧と引き裂き強度の観点からは、ある程度の厚さが要求される。ポリイミド樹脂層を絶縁層として使用する場合は、LED搭載に要求される絶縁膜の耐電圧は一般的には2.5~5kVであり、ポリイミド樹脂の耐電圧は構造によっても異なるが数百~500V/μmなので、最低5μmの厚さが必要である。一方、放熱効果を上げるためには、ポリイミド樹脂層を厚くすることはできず、その厚さは40μm以下、好ましくは20μm以下が望ましい(図20に基づき後述する実施例1の項を参照)。 Next, the manufacturing of the second LED package substrate will be described with reference to FIGS. The insulating layer used in the second LED package substrate is formed of a polyimide resin, and therefore the resin layer (polyimide film) and adhesive layer of the first LED package substrate described with reference to FIGS. This is different from the insulating layer constituted by two layers. FIG. 5 is a diagram for explaining bending of the second LED package substrate. FIG. 5A is a side view showing a metal plate to be processed. Next, as shown in (b), the laminated body which joined metal foil (for example, copper foil) on this metal plate on both sides of the insulating layer which consists of polyimide resins is comprised. For this purpose, a solution obtained by dissolving a polyimide resin containing a thermoplastic polyimide in a solvent is first applied to a metal foil (or metal plate), dried, and thermocompression bonded to the metal plate (or metal foil). In general, in consideration of the flatness of the metal plate and the metal foil, it is necessary to apply a polyimide resin having a thickness of at least 5 μm in order to ensure a certain withstand voltage. The thickness of the polyimide resin is preferably thin from the viewpoint of heat dissipation characteristics, but a certain thickness is required from the viewpoint of withstand voltage and tear strength. When a polyimide resin layer is used as an insulating layer, the withstand voltage of the insulating film required for LED mounting is generally 2.5 to 5 kV, and the withstand voltage of the polyimide resin varies depending on the structure, but several hundred to Since it is 500 V / μm, a minimum thickness of 5 μm is required. On the other hand, in order to increase the heat dissipation effect, the polyimide resin layer cannot be thickened, and the thickness is desirably 40 μm or less, preferably 20 μm or less (see the section of Example 1 described later based on FIG. 20).
 積層体を構成する別の方法として、金属プレートの上に、最初に、熱可塑性ポリイミド系樹脂に変換可能な少なくとも一種のポリイミド前駆体樹脂層を塗布する(実施例2参照)。次に、この前駆体樹脂層を熱処理することにより、熱可塑性ポリイミド系樹脂層を形成する。この熱可塑性ポリイミド系樹脂層の上に、銅箔を加熱加圧下で接合して積層体を構成する。 As another method for forming a laminate, first, at least one polyimide precursor resin layer that can be converted into a thermoplastic polyimide resin is applied on a metal plate (see Example 2). Next, the precursor resin layer is heat-treated to form a thermoplastic polyimide resin layer. On this thermoplastic polyimide resin layer, a copper foil is joined under heat and pressure to form a laminate.
 或いは、積層体を構成するために、最初に、金属プレートではなく、銅箔の上に、熱可塑性ポリイミドに変換可能なポリイミド前駆体樹脂層を塗布する。この前駆体樹脂層を加熱処理して、熱可塑性ポリイミド系樹脂層を形成したのちに、加熱加圧下で金属プレートと積層することもできる。 Alternatively, in order to form a laminate, first, a polyimide precursor resin layer that can be converted into thermoplastic polyimide is applied on a copper foil instead of a metal plate. The precursor resin layer can be heat-treated to form a thermoplastic polyimide resin layer, and then laminated with a metal plate under heat and pressure.
 上述のように、放熱性を上げるために絶縁層をできるだけ薄くしつつ、その破壊耐圧を確保するために、所定の膜厚が必要となるが、さらに平坦性のバラツキ膜厚をプラスする必要があり、耐圧に必要以上の膜厚を塗らなければならない。そこで、バラツキを低減して一定の膜厚を確保するために、球状のスペーサー粒子(例えば、積水化学工業の製品名:ミクロパールSI、真球状のプラスチック微粒子(3~500μm)であり、高い圧縮性を保有している)をポリイミド樹脂に混ぜて塗布しても良い。さらに、このスペーサー粒子とは別に、若しくは両方を混在させて、スペーサー粒子の径より小さい熱伝導の良いフィラーをポリイミド樹脂に混ぜることにより、放熱特性をさらに改善することができる。熱伝導の良いフィラーとしては、窒化アルミ、アルミナコーティングされた金属微粒子(例えば銅)、又はアルミナコーティングされた炭素粒子あるいは繊維を用いることができる。一般に熱伝導性フィラーを充填していくと電気絶縁耐性が下がってくるが、絶縁層を厚く塗ることができるので、膜厚の制御が容易になる。 As described above, a predetermined film thickness is required to secure the breakdown voltage while making the insulating layer as thin as possible in order to improve heat dissipation, but it is necessary to further increase the flatness variation film thickness. Yes, it is necessary to apply more film thickness than is necessary for pressure resistance. Therefore, in order to reduce variation and ensure a certain film thickness, spherical spacer particles (for example, Sekisui Chemical's product name: Micropearl SI, spherical plastic particles (3 to 500 μm), high compression) May be applied by mixing with polyimide resin. Furthermore, heat dissipation characteristics can be further improved by mixing a filler having good thermal conductivity smaller than the diameter of the spacer particles in the polyimide resin separately from the spacer particles or by mixing both. As the filler having good thermal conductivity, aluminum nitride, alumina-coated metal fine particles (for example, copper), or alumina-coated carbon particles or fibers can be used. In general, as the thermal conductive filler is filled, the electrical insulation resistance is lowered, but since the insulating layer can be applied thickly, the film thickness can be easily controlled.
 このようにして、熱可塑性ポリイミドを含むポリイミド樹脂からなる絶縁層を、金属プレートと金属箔で挟んだ積層構成として、その絶縁層の膜厚を所定値(5μm~40μm)に制御できる。この絶縁層により、LEDチップの一対の接続電極間の絶縁を行うだけでなく、銅箔をLEDチップの接続配線として利用することができる。また、銅箔に限らず、アルミのような高熱伝導性の金属箔(金属層)を用いることができる。 In this way, the insulating layer made of polyimide resin containing thermoplastic polyimide is formed into a laminated structure in which the metal plate and the metal foil are sandwiched, and the thickness of the insulating layer can be controlled to a predetermined value (5 μm to 40 μm). This insulating layer not only provides insulation between the pair of connection electrodes of the LED chip, but also allows copper foil to be used as the connection wiring of the LED chip. Moreover, not only copper foil but metal foil (metal layer) with high heat conductivity like aluminum can be used.
 次に、図5(c)に示すように、接合した金属箔の加工を行って、スリット開口及び銅箔除去部を形成する(詳細は、図2(c)の説明参照)。ポリイミド系樹脂層があることで、上面の銅箔のエッチング加工が容易になる。スリット部は、LEDチップからの発光の反射材として機能しないので、狭い方が望ましいが、スリット両側の金属箔を絶縁分離するために20μm~100μm程度が望ましい。 Next, as shown in FIG. 5C, the joined metal foil is processed to form slit openings and copper foil removal portions (for details, see the description of FIG. 2C). The presence of the polyimide resin layer facilitates etching of the upper surface copper foil. Since the slit portion does not function as a reflective material for light emission from the LED chip, it is desirable that the slit portion is narrow, but about 20 μm to 100 μm is desirable in order to insulate and separate the metal foil on both sides of the slit.
 次に、図5(d)に示すように、銅箔、ポリイミド系樹脂層、及び金属プレートからなる積層体の折り曲げ加工を行う(詳細は、図2(d)の説明参照)。 Next, as shown in FIG. 5 (d), the laminate made of the copper foil, the polyimide resin layer, and the metal plate is bent (for details, see the description of FIG. 2 (d)).
 次に、図5(e)に示すように、LEDチップからの発光の反射材として機能する金属(例えば、銀)メッキ(金属表面処理)を、金属箔の上面の全てに施す(詳細は、図2(e)の説明参照)。これによって、金属プレート上のほぼ全面に金属反射処理がなされることになる。 Next, as shown in FIG. 5 (e), metal (for example, silver) plating (metal surface treatment) that functions as a reflective material for light emission from the LED chip is applied to all of the upper surface of the metal foil (for details, see (See description of FIG. 2 (e)). As a result, a metal reflection process is performed on almost the entire surface of the metal plate.
 なお、積層体の曲げ加工後に、金属反射処理を行うものとして説明したが、曲げ加工前に、金属反射処理を行うことも可能である。この場合、積層体のプレス加工は、少なくとも金属反射処理面の上を保護テープで覆った状態で行い、その後に保護テープを剥離する。 In addition, although demonstrated as what performs a metal reflection process after the bending process of a laminated body, it is also possible to perform a metal reflection process before a bending process. In this case, the laminate is pressed in a state where at least the metal reflection treatment surface is covered with the protective tape, and then the protective tape is peeled off.
 図6は、完成した第2のLEDパッケージ基板を示す図であり、(A)は、LEDパッケージ基板を複数個連結した状態で示す図であり、(B)は、その1個のLEDパッケージ基板のみを取り出して示す図である。図示の例において、5×14個のLEDパッケージ基板を、1枚の金属プレートの上に同時作成するものとして例示している。後の工程で、LEDパッケージ基板上にLEDチップを装着して樹脂封止した後、個々のパッケージ或いは任意の複数個連結したパッケージに切り分ける個片化が行われる。 FIG. 6 is a view showing a completed second LED package substrate, (A) is a view showing a state in which a plurality of LED package substrates are connected, and (B) is a single LED package substrate. It is a figure which takes out only and shows. In the illustrated example, 5 × 14 LED package substrates are illustrated as being simultaneously formed on a single metal plate. In a later step, after mounting the LED chip on the LED package substrate and resin-sealing, individualization is performed by dividing into individual packages or arbitrary plural connected packages.
 図6(B)に示すように、積層体の曲げ加工時の絞りの歪を周辺部に及ぼさないために、パッケージ基板領域の周辺に空隙部を形成する。パッケージ基板領域の周囲に設けた結合部を介して、その周囲の金属プレートとは連結されている。後の工程の個片化時に、この結合部で切断される。パッケージ基板領域内部の詳細は、図7を参照して後述する。 As shown in FIG. 6 (B), a gap is formed around the package substrate region so as not to exert the distortion of the drawing during bending of the laminate on the periphery. It is connected to the surrounding metal plate via a coupling portion provided around the package substrate region. At the time of individualization in a later process, the joint is cut. Details of the inside of the package substrate region will be described later with reference to FIG.
 図7は、第2のLEDパッケージ基板の詳細を示す図であり、(A)は1個のLEDパッケージ基板のみを取り出して示す図であり、(B)は、(A)に示すA-A’ラインで切断した断面図であり、(C)は、(A)に示すB-B’ラインで切断した断面図である。図示の第2のLEDパッケージ基板は、LEDチップを搭載するための凹所が形成されている。この凹所両側には、少なくとも左右壁部が設けられ、また、この左右壁部に連結しかつ直交する前後壁部を設けて、封止樹脂を左右前後から閉じこめることができる。左右のみに壁部を設けた場合、後の工程で、LEDパッケージ基板上にLEDチップを装着した後、金型内で樹脂封止する際に、図中の左右方向に流れる樹脂は左右壁部によって規制される一方、前後方向に流れる樹脂は、パッケージ基板のエッジ部処理、例えばエッジ部のみ壁部を設けることによって規制される。 FIG. 7 is a diagram showing details of the second LED package substrate, (A) is a diagram showing only one LED package substrate, and (B) is an AA shown in (A). (C) is a cross-sectional view taken along line BB 'shown in (A). The illustrated second LED package substrate has a recess for mounting the LED chip. On both sides of the recess, at least left and right wall portions are provided, and front and rear wall portions connected to and orthogonal to the left and right wall portions are provided, so that the sealing resin can be confined from the left and right front and rear. When wall portions are provided only on the left and right sides, the resin flowing in the left and right directions in the figure is left and right wall portions when the resin is sealed in the mold after mounting the LED chip on the LED package substrate in a later step. On the other hand, the resin flowing in the front-rear direction is restricted by edge processing of the package substrate, for example, by providing a wall only at the edge.
 左右壁部上面の金属箔(及びその上の銀メッキ)は、一対の接続電極(配線基板(図1参照)に接続するための外部接続電極)として機能する。また、一対の接続電極を電気的に分離するためのスリットが、金属箔(及びその上の銀メッキ)に形成されている。スリットにより分割されたいずれか一方の金属箔の上に、後述のようにLEDチップが装着されることになる。 The metal foil on the upper surfaces of the left and right wall portions (and the silver plating thereon) functions as a pair of connection electrodes (external connection electrodes for connecting to the wiring board (see FIG. 1)). In addition, slits for electrically separating the pair of connection electrodes are formed in the metal foil (and silver plating thereon). An LED chip is mounted on one of the metal foils divided by the slit as described later.
 このように、第2のLEDパッケージ基板は、LEDチップを搭載して電気的に接続することになる平板状の底部と、この底部の左右前後に位置して底部端から折曲して立ち上がる方向に、LEDチップの発光方向と同じ側に伸びる左右及び前後の壁部を備えている。平板状底部は、その上面にLEDチップを装着して、その一対の接続電極を接続する接続部を形成するに十分な面積を有している。ボンディング接続を底部で行うために、プロセス上、ある程度のスペースが必要で、LEDチップは光学的に中央に位置するのが好ましいので、平板状底部の長辺の長さLとして、チップ短辺mの2倍~20倍、好ましくは3倍~10倍を取ることが望ましい(図21に基づき後述する実施例3の項を参照)。また、後述するように、この大きな面積を有する平板状底部の下面に接して放熱体が装着されるために、LEDチップからの放熱は効率よく放熱体に伝熱されることになる。一対の左右の壁部先端面の金属箔が、接続電極(外部接続電極)として機能する。 As described above, the second LED package substrate has a flat bottom portion that is to be electrically connected with the LED chip mounted thereon, and a direction in which the second LED package substrate is bent from the bottom end and located on the left and right sides of the bottom portion. In addition, left and right and front and rear wall portions extending on the same side as the light emitting direction of the LED chip are provided. The flat bottom portion has an area sufficient for mounting the LED chip on the upper surface thereof and forming a connection portion for connecting the pair of connection electrodes. In order to perform the bonding connection at the bottom, a certain amount of space is required in the process, and it is preferable that the LED chip is optically located at the center. Therefore, as the length L of the long side of the flat bottom, the chip short side m It is desirable to take 2 to 20 times, preferably 3 to 10 times (see Example 3 below based on FIG. 21). Further, as will be described later, since the heat radiating body is mounted in contact with the lower surface of the flat bottom portion having a large area, the heat radiated from the LED chip is efficiently transferred to the heat radiating body. The metal foils on the pair of left and right wall tip surfaces function as connection electrodes (external connection electrodes).
 次に、図8を参照して、第3のLEDパッケージ基板の製造について説明する。第3のLEDパッケージ基板の開口部は、LEDチップ装着のための十分な開口幅を有する点で、第1及び第2のLEDパッケージ基板とは異なっている。 Next, the manufacturing of the third LED package substrate will be described with reference to FIG. The opening of the third LED package substrate is different from the first and second LED package substrates in that it has a sufficient opening width for mounting the LED chip.
 図8は、第3のLEDパッケージ基板の曲げ加工を説明する図である。(a)は、加工されるべき金属プレートを示す側面図である。(b)は、(a)に示す金属プレートの上に貼り合わされる樹脂層(例えば、ポリイミド膜)と金属箔(例えば、銅箔)からなる積層膜である。次に、(c)に示すように、この積層膜を打ち抜き加工(パンチング)することにより、開口部を設ける。これによって、樹脂層と金属箔を同時にパンチングで開口することが可能になる。 FIG. 8 is a diagram illustrating the bending process of the third LED package substrate. (A) is a side view which shows the metal plate which should be processed. (B) is a laminated film composed of a resin layer (for example, a polyimide film) and a metal foil (for example, a copper foil) bonded to the metal plate shown in (a). Next, as shown in (c), the laminated film is punched to provide an opening. As a result, the resin layer and the metal foil can be simultaneously opened by punching.
 この開口部は、後述のように、左右両側の銅箔を電気的に絶縁分離すると共に、LEDチップを装着するスペースを形成する。両側に分離した銅箔は、LEDチップの接続配線として利用することができる。また、銅箔に限らず、アルミのような高熱伝導性の金属箔(金属層)を用いることができる。 As will be described later, this opening part electrically insulates and separates the copper foils on both the left and right sides and forms a space for mounting the LED chip. The copper foil separated on both sides can be used as the connection wiring of the LED chip. Moreover, not only copper foil but metal foil (metal layer) with high heat conductivity like aluminum can be used.
 次に、(d)に示すように、開口部を形成した積層膜のポリイミド膜側を、(a)に示す金属プレートの上に接着材を用いて貼り付ける。或いは、接着材/ポリイミド樹脂/金属箔(銅箔)から成る積層体に、チップ搭載箇所に相当する部分に打ち抜きにより開口部を開けて、金属プレートに接着することも可能である。接着材は絶縁性を有することが望ましいが、LEDチップ下には存在しないので熱伝導性は必ずしも必要としない。これによって、樹脂層(ポリイミド膜)と接着材層からなる2層の絶縁層(図2参照)を、金属プレートと金属箔で挟んだ積層構成となる。或いは、この絶縁層は、図5を参照して上述した樹脂層(ポリイミド膜)のみを金属プレートと金属箔の間に挟んだ狭着構成にすることができる。この狭着構成は、熱圧着性ポリイミド樹脂と金属箔(銅箔)から成る積層体を金属プレートに高温加圧接着することにより行う。また、配線基板(図1参照)に半田付けされる接続電極先端側を部分的に除去した金属箔除去部を設ける。 Next, as shown in (d), the polyimide film side of the laminated film in which the opening is formed is pasted onto the metal plate shown in (a) using an adhesive. Alternatively, it is also possible to open an opening by punching out a portion corresponding to a chip mounting location in a laminated body made of an adhesive / polyimide resin / metal foil (copper foil) and adhere it to a metal plate. Although it is desirable that the adhesive has an insulating property, thermal conductivity is not necessarily required because it does not exist under the LED chip. As a result, a two-layer insulating layer (see FIG. 2) composed of a resin layer (polyimide film) and an adhesive layer is sandwiched between the metal plate and the metal foil. Alternatively, this insulating layer can be formed in a narrow structure in which only the resin layer (polyimide film) described above with reference to FIG. 5 is sandwiched between the metal plate and the metal foil. This narrow attachment configuration is performed by high-temperature pressure bonding of a laminate made of a thermocompression bonding polyimide resin and a metal foil (copper foil) to a metal plate. In addition, a metal foil removing portion is provided by partially removing the front end side of the connection electrode soldered to the wiring board (see FIG. 1).
 次に、(e)に示すように、積層膜を貼り付けた金属プレートの曲げ加工を行う。この折り曲げ加工は、LEDチップを搭載して樹脂封止するための凹所、及び上部を外方向に折り曲げた接続電極を形成するように、金型を用いたプレス加工によって行う。 Next, as shown in (e), the metal plate with the laminated film attached is bent. This bending process is performed by pressing using a mold so as to form a recess for mounting an LED chip and sealing with resin, and a connection electrode whose upper part is bent outward.
 次に、(f)に示すように、LEDチップからの発光の反射材として機能する金属表面処理(例えば、銀メッキ)を、金属箔の上面の全てに施す。 Next, as shown in (f), a metal surface treatment (for example, silver plating) that functions as a reflective material for light emission from the LED chip is applied to the entire upper surface of the metal foil.
 このように、図8に例示の第3のLEDパッケージ基板は、開口部にLEDチップが装着されることになるのを除いて、上述した第1或いは第2のLEDパッケージ基板と同じ構成にすることができる。 As described above, the third LED package substrate illustrated in FIG. 8 has the same configuration as the above-described first or second LED package substrate except that the LED chip is mounted in the opening. be able to.
 図9は、LEDパッケージ組立ての第1の例を示す図である。(a)に示すLEDパッケージ基板は、図2~図4に示した第1のLEDパッケージ基板或いは図5~図7に示した第2のLEDパッケージ基板と同一のものである。このLEDパッケージ基板の平板状底部おもて面の銀メッキした金属箔の上に、(b)に示すように、LEDチップを、接着材を用いて固定する。このLEDチップは、LED発光面を上面に有している。なお、LEDチップは、1個のみを例示したが、複数チップを搭載することもできる(図13参照)。 FIG. 9 is a diagram showing a first example of LED package assembly. The LED package substrate shown in (a) is the same as the first LED package substrate shown in FIGS. 2 to 4 or the second LED package substrate shown in FIGS. The LED chip is fixed on the silver-plated metal foil on the flat bottom surface of the LED package substrate with an adhesive as shown in FIG. This LED chip has an LED light emitting surface on the upper surface. In addition, although only one LED chip is illustrated, a plurality of chips can be mounted (see FIG. 13).
 次に、(c)に示すように、LEDチップと、接続配線として機能する金属箔との間でワイヤボンド接続が行われる。LEDチップをLEDパッケージ基板の底部金属箔の上に固着した後、2分割金属箔上のそれぞれの接続部と、LEDチップの一対の接続電極間を、ボンディングワイヤによりワイヤボンド接続する。上述したように、金属箔の上には、反射材として銀メッキが形成されているので、この銀メッキをワイヤボンディング性向上にも機能させることができる。 Next, as shown in (c), wire bond connection is performed between the LED chip and the metal foil functioning as connection wiring. After the LED chip is fixed on the bottom metal foil of the LED package substrate, wire bonding is performed between the respective connection portions on the two-part metal foil and the pair of connection electrodes of the LED chip by bonding wires. As described above, since silver plating is formed as a reflective material on the metal foil, this silver plating can also function for improving wire bonding.
 次に、(d)に示す樹脂封止において、透明樹脂(材質は、例えばエポキシ系やシリコーン系)を用いて樹脂封止(トランスファーモールドあるいはポッティング)する。この透明樹脂には、蛍光体を混合しても良い。一般的に白色LEDの場合は、青色発光LEDチップを用いてLEDチップ上に黄色の蛍光体を配置し、この蛍光体が青色を受けて白く光っている。通常、この蛍光体は透明樹脂に混入されている場合が多い。樹脂封止は、連結状態のパッケージを金型内に配置して行われる。或いは樹脂封止はディスペンサーやスクリーン印刷で行なっても良い。封止樹脂の高さは、接続電極として機能する壁部先端面と同平面まで注入する。この後、個々のパッケージに、或いは複数個連結した状態のパッケージに個片化することによって、LEDパッケージが完成する。 Next, in the resin sealing shown in (d), resin sealing (transfer molding or potting) is performed using a transparent resin (material is, for example, epoxy or silicone). The transparent resin may be mixed with a phosphor. In general, in the case of a white LED, a yellow phosphor is disposed on an LED chip using a blue light emitting LED chip, and this phosphor receives blue and glows white. Usually, this phosphor is often mixed in a transparent resin. Resin sealing is performed by placing the connected package in a mold. Alternatively, resin sealing may be performed by a dispenser or screen printing. The height of the sealing resin is injected up to the same plane as the front end surface of the wall functioning as a connection electrode. Thereafter, the LED package is completed by dividing into individual packages or a plurality of connected packages.
 図10は、LEDパッケージ組立ての第2の例を示す図である。(a)に示すLEDパッケージ基板は、銀メッキした金属箔が、フリップチップ実装用の配線用パターン形成されている点で、上述した第1或いは第2のLEDパッケージ基板とは異なっている。次に、(b)に示すように、このフリップチップ実装用配線パターン上の接続部に、LEDチップがフリップチップ搭載される。次に、(c)に示すように、図9を参照して説明したのと同様な樹脂封止が行われる。 FIG. 10 is a diagram showing a second example of LED package assembly. The LED package substrate shown in (a) is different from the first or second LED package substrate described above in that a silver-plated metal foil is formed with a wiring pattern for flip chip mounting. Next, as shown in (b), the LED chip is flip-chip mounted on the connection portion on the flip-chip mounting wiring pattern. Next, as shown in (c), the same resin sealing as described with reference to FIG. 9 is performed.
 図11は、LEDパッケージ組立ての第3の例を示す図である。(a)に示すLEDパッケージ基板は、図8に示した第3の例のLEDパッケージ基板と同一のものである。このLEDパッケージ基板の開口部において、金属プレートの上に、(b)に示すように、LEDチップを固着する。このチップ固着は、銀ペースト、金シリコン共晶、或いは銀ナノペースト(焼成後銀の特性を持つ)などのダイボンド材を用いて行う。このLEDチップは、LED発光面を上面に有している。なお、LEDチップは、1個のみを例示したが、複数チップを搭載することもできる。 FIG. 11 is a diagram showing a third example of LED package assembly. The LED package substrate shown in (a) is the same as the LED package substrate of the third example shown in FIG. At the opening of the LED package substrate, the LED chip is fixed on the metal plate as shown in FIG. This chip fixing is performed using a die bond material such as silver paste, gold-silicon eutectic, or silver nanopaste (having silver characteristics after firing). This LED chip has an LED light emitting surface on the upper surface. Although only one LED chip is illustrated, a plurality of chips can be mounted.
 次に、(c)に示すように、LEDチップと、接続配線として機能する金属箔との間でワイヤボンド接続が行われる。装着したLEDチップの一対の電極を、左右に2分割された金属箔のそれぞれとボンディングワイヤによりワイヤボンド接続する。上述したように、金属箔の上には、反射材として金属表面処理(銀メッキ)が形成されているので、この銀メッキをワイヤボンディング性向上にも機能させることができる。 Next, as shown in (c), wire bond connection is performed between the LED chip and the metal foil functioning as connection wiring. A pair of electrodes of the mounted LED chip is wire-bonded to the left and right metal foils by bonding wires. As described above, a metal surface treatment (silver plating) is formed on the metal foil as a reflective material, so that this silver plating can also function to improve wire bonding properties.
 次に、(d)に示すように、上述の例と同様に、樹脂封止を行う。この後、個々のパッケージに、或いは複数個連結した状態のパッケージに個片化することによって、LEDパッケージが完成する。 Next, as shown in (d), resin sealing is performed as in the above example. Thereafter, the LED package is completed by dividing into individual packages or a plurality of connected packages.
 図12(A)は、図11に示すLEDパッケージの組立てとは異なる別の例を、(B)は、さらに別の例を示す断面図である。(A)に示すLEDパッケージ基板自体は、図8に示した第3の例のLEDパッケージ基板と同一のものである。但し、接続電極は異なっている。例示の構成は、金属プレート上に絶縁膜を介して形成される金属箔(及び金属表面処理)だけでなく、金属プレート自体を接続電極として利用する。 12A is a cross-sectional view showing another example different from the assembly of the LED package shown in FIG. 11, and FIG. 12B is a cross-sectional view showing still another example. The LED package substrate itself shown in (A) is the same as the LED package substrate of the third example shown in FIG. However, the connection electrodes are different. The illustrated configuration uses not only the metal foil (and metal surface treatment) formed on the metal plate via an insulating film but also the metal plate itself as a connection electrode.
 LEDチップは、LEDパッケージ基板の開口部において、金属プレートの上に、電気的及び機械的に固着する。LEDチップの一対の電極の内の一方は、その上面に形成される一方、他方の電極は、LEDチップの下面に形成されている。チップ固着は、銀ペースト、金シリコン共晶、或いは銀ナノペースト(焼成後銀の特性を持つ)などの導電性ダイボンド材(導電性接着材)を用いて行う。この導電性ダイボンド材を用いた固着により、同時にチップ下面の電極と金属プレートの間の電気的接続が完了する。これによって、図中右側の接続電極は、上端側の金属箔により構成されるのに対して、図中左側の接続電極は、上端側の金属プレート側面により構成される。さらに、左側の接続電極の上端側の絶縁層及び金属箔を除去して、上面側を接続電極とすることも可能である。 The LED chip is electrically and mechanically fixed on the metal plate at the opening of the LED package substrate. One of the pair of electrodes of the LED chip is formed on the upper surface thereof, while the other electrode is formed on the lower surface of the LED chip. Chip fixation is performed using a conductive die bond material (conductive adhesive material) such as silver paste, gold silicon eutectic, or silver nano paste (having silver characteristics after firing). The electrical connection between the electrode on the lower surface of the chip and the metal plate is completed by fixing using the conductive die bond material. As a result, the connection electrode on the right side in the figure is constituted by the metal foil on the upper end side, whereas the connection electrode on the left side in the figure is constituted by the side surface of the metal plate on the upper end side. Furthermore, it is possible to remove the insulating layer and the metal foil on the upper end side of the left connection electrode, and to use the upper surface side as the connection electrode.
 或いは、LEDチップ上面に一対の電極を設けて、その双方をワイヤボンド接続することも可能である。このとき、一方のワイヤは金属箔に接続するのに対して、他方のワイヤは金属プレートの平板状底部上面に接続する。次に、上述の例と同様に、樹脂封止を行う。 Alternatively, it is possible to provide a pair of electrodes on the upper surface of the LED chip and wire-bond both of them. At this time, one wire is connected to the metal foil while the other wire is connected to the upper surface of the flat bottom of the metal plate. Next, resin sealing is performed as in the above example.
 図12(B)に示すパッケージ基板は、図右側には、(A)に示す例と同様に、LEDチップの一方の電極が接続される金属箔(及びその上の金属表面処理)が絶縁層を介して金属プレートの上に形成されているのに対して、図左側の金属プレートには、反射材としての金属表面処理が形成されているのみで、絶縁層及び金属箔が貼り付けられていない。この金属表面処理は、金属プレート上の必要な箇所に銀インクを用いてインクジェット塗布し、焼成することによって光沢面(反射材)を形成することにより行うことができる。 In the package substrate shown in FIG. 12B, the metal foil (and the metal surface treatment thereon) to which one electrode of the LED chip is connected is an insulating layer on the right side of the figure, as in the example shown in FIG. The metal plate on the left side of the figure is formed with a metal surface treatment as a reflective material, and an insulating layer and a metal foil are attached to the metal plate on the left side of the figure. Absent. This metal surface treatment can be performed by forming a glossy surface (reflecting material) by applying an ink jet to a necessary portion on a metal plate using a silver ink and baking it.
 図13は、LEDパッケージ組立ての第4の例を示す図であり、(A)は完成したLEDパッケージの上面図を示し、(B)は側面断面図を示している。例示のLEDパッケージ基板は、銀メッキした金属箔が、左右両側にある2つのスリットにより3分割されている。この3分割した中央の金属箔の上に複数個(6×6個として例示)のLEDチップが搭載されて、LEDチップ相互の配線及びLEDチップと金属箔との配線が、ボンディングワイヤを用いて接続されている。 FIG. 13 is a view showing a fourth example of LED package assembly, where (A) shows a top view of the completed LED package and (B) shows a side cross-sectional view. In the illustrated LED package substrate, a silver-plated metal foil is divided into three by two slits on the left and right sides. A plurality of (6 × 6 exemplified) LED chips are mounted on the central metal foil divided into three, and the wiring between the LED chips and the wiring between the LED chip and the metal foil are bonded using bonding wires. It is connected.
 図14は、本発明を具体化するLEDモジュール装置の第1の例(図1参照)の組立を説明する図である。最初に、(a)に示すように、LEDパッケージ(図9参照、また、図10~図13に示すLEDパッケージを使用可能)と、このLEDパッケージに相当する開口部を有する配線基板(例えば、1層ガラスエポキシ基板)を用意して、この配線基板の開口部にLEDパッケージを配置して、このLEDパッケージ側面と配線基板の間の隙間を接着材(耐熱性及び絶縁性の接着材)で埋める。次に、(b)に示すように、この接着材の上で、LEDパッケージの一対の接続電極を、配線基板上面の配線に半田付け、或いはインクジェットによる銅や銀等により接続する。LEDチップ発光面は、図中の上面側に向けられていて、LEDパッケージ基板に遮られること無く上面に向けて発光する。 FIG. 14 is a view for explaining assembly of the first example (see FIG. 1) of the LED module device embodying the present invention. First, as shown in (a), an LED package (see FIG. 9 and the LED package shown in FIGS. 10 to 13 can be used) and a wiring board having an opening corresponding to the LED package (for example, Prepare a single-layer glass epoxy board), place the LED package in the opening of this wiring board, and use a bonding material (heat-resistant and insulating bonding material) to clear the gap between the LED package side surface and the wiring board fill in. Next, as shown in (b), on this adhesive, a pair of connection electrodes of the LED package is soldered to the wiring on the upper surface of the wiring board or connected by copper, silver, or the like by inkjet. The LED chip light emitting surface is directed to the upper surface side in the figure, and emits light toward the upper surface without being blocked by the LED package substrate.
 次に、(c)に示すように、配線基板を装着したLEDパッケージを、放熱板(例えば、銅あるいはアルミ板)の上に半田接続により固着する。或いは、この半田接続に代えて、高熱伝導性の接着材を用いて接着することも可能である。また、放熱板に代えて、そのまま筐体へ固着することも可能である。このように、配線基板を、放熱板との間に間隔を開けて配置したことにより、放熱板の下面からだけでなく、放熱板の上面(配線基板に面する側)からも放熱することが可能になる。 Next, as shown in (c), the LED package on which the wiring board is mounted is fixed on a heat radiating plate (for example, copper or aluminum plate) by solder connection. Alternatively, instead of this solder connection, it is possible to bond using a highly heat conductive adhesive. Further, instead of the heat radiating plate, it can be directly fixed to the housing. Thus, by arranging the wiring board with a space between the heat sink, heat can be radiated not only from the lower surface of the heat sink but also from the upper surface (side facing the wiring board) of the heat sink. It becomes possible.
 図15は、本発明を具体化するLEDモジュール装置の第2の例を示す側面断面図である。例示のLEDモジュール装置は、LEDパッケージとして、図11に示したLEDパッケージの第3の例を用いた点でのみ、図14を参照して説明したLEDモジュール装置の第1の例とは異なっている。その詳細な説明は、省略する。 FIG. 15 is a side cross-sectional view showing a second example of an LED module device embodying the present invention. The exemplary LED module device differs from the first example of the LED module device described with reference to FIG. 14 only in that the LED package uses the third example of the LED package shown in FIG. Yes. Detailed description thereof is omitted.
 図16は、本発明を具体化するLEDモジュール装置の第3の例を示す側面断面図である。例示のLEDモジュール装置は、LEDパッケージとして、図12(A)を参照して説明したLEDパッケージを用いた点でのみ、上述したLEDモジュール装置の第1の例或いは第2の例とは異なっている。同様に、図12(B)を参照して説明したLEDパッケージを用いることもできる。その詳細な説明は、省略する。 FIG. 16 is a side cross-sectional view showing a third example of the LED module device embodying the present invention. The exemplary LED module device is different from the above-described first or second example of the LED module device only in that the LED package described with reference to FIG. 12A is used as the LED package. Yes. Similarly, the LED package described with reference to FIG. 12B can also be used. Detailed description thereof is omitted.
 図17は、本発明を具体化するLEDモジュール装置の第4の例の組立てを説明する図である。この第4の例は、放熱体として配線基板を利用する。このために、例示の配線基板は、LEDパッケージを装着する開口部を有しておらず、LEDパッケージが配線基板上面に装着される点で、上述の例とは相違している。LEDモジュール装置の第4の例の組立は、最初に、(a)に示すように、熱伝導性が良い配線基板(例えば、上述した窒化アルミのような熱伝導性フィラーをより多く充填した1層ガラスエポキシ基板)上の所定位置に、上述したLEDパッケージ(図9~図13参照)を接着材(耐熱性及び絶縁性の接着材)を用いて固着する。或いは、配線基板上に孤立した配線パターンを設ければ、半田接続によって固着することも可能である。次に、(b)に示すように、LEDパッケージ側面と配線基板との間を絶縁性の接着材で埋める。次に、(c)に示すように、この絶縁性接着材の上で、LEDパッケージの一対の接続電極を、配線基板上面の配線に半田付け、或いはインクジェットによる銅や銀等により接続する。LEDチップから発生した熱は、LEDパッケージ基板から配線基板を介して放熱される。 FIG. 17 is a diagram for explaining assembly of the fourth example of the LED module device embodying the present invention. In the fourth example, a wiring board is used as a heat radiator. For this reason, the exemplary wiring board does not have an opening for mounting the LED package, and is different from the above example in that the LED package is mounted on the upper surface of the wiring board. In the assembly of the fourth example of the LED module device, first, as shown in (a), a wiring board having a good thermal conductivity (for example, 1 more filled with a thermal conductive filler such as aluminum nitride described above) The above-described LED package (see FIGS. 9 to 13) is fixed to a predetermined position on the layer glass epoxy substrate) using an adhesive (heat-resistant and insulating adhesive). Alternatively, if an isolated wiring pattern is provided on the wiring board, it can be fixed by soldering. Next, as shown in (b), the space between the LED package side surface and the wiring board is filled with an insulating adhesive. Next, as shown in (c), on this insulating adhesive, a pair of connection electrodes of the LED package are soldered to the wiring on the upper surface of the wiring board or connected by copper, silver, or the like by inkjet. Heat generated from the LED chip is radiated from the LED package substrate through the wiring substrate.
 図18は、本発明を具体化するLEDモジュール装置の第5の例を説明する図であり、(A)はその断面図を示し、(B)は配線基板に3個のLEDパッケージを装着した状態で示す上面図である。上述したLEDパッケージ(図9~図13参照)と、このLEDパッケージに相当する開口部を有する配線基板を用意する。配線基板は、例えば、裏面に配線層を有する1層ガラスエポキシ基板とすることができるが、光放射のために配線基板は出来るだけ薄い方が望ましく、ポリイミドのようなテープ基板でも良い。配線基板を開口すると基板の厚さ分が壁となり、そこに当る光がロスとなる。このためこの壁となる厚さが薄い程有利になる。またこのロスを小さくするために、配線基板は、開口面積を大きくしておいて、LEDパッケージとの接続部を爪状に小さく構成している。配線基板のおもて面には、反射効果を得るために白色レジストを塗布する。この配線基板の開口部にLEDパッケージを配置して、このLEDパッケージ上面の接続電極を、配線基板裏面の配線に半田付けする。図示のように、接続電極は、金属プレート端より内側に入り込んでいるので、半田が金属プレート端部にはみ出すことはない。仮に、接続電極が金属プレート端まで延びていれば半田は薄い絶縁層の上をブリッジする危険性が高くなる。LEDチップ発光面は、図中の上面側に向けられていて、LEDパッケージ基板に遮られること無く上面に向けて発光する。 18A and 18B are diagrams for explaining a fifth example of the LED module device embodying the present invention. FIG. 18A is a cross-sectional view thereof, and FIG. 18B is a diagram in which three LED packages are mounted on a wiring board. It is a top view shown in a state. An LED package described above (see FIGS. 9 to 13) and a wiring board having an opening corresponding to the LED package are prepared. The wiring board can be, for example, a single-layer glass epoxy board having a wiring layer on the back surface, but it is desirable that the wiring board be as thin as possible for light radiation, and a tape board such as polyimide may be used. When the wiring board is opened, the thickness of the board becomes a wall, and light hitting it becomes a loss. Therefore, the thinner the wall, the more advantageous. Further, in order to reduce this loss, the wiring board has a large opening area and a small connection portion with the LED package. A white resist is applied to the front surface of the wiring board to obtain a reflection effect. The LED package is disposed in the opening of the wiring board, and the connection electrode on the upper surface of the LED package is soldered to the wiring on the back surface of the wiring board. As shown in the figure, the connection electrode penetrates from the end of the metal plate, so that the solder does not protrude from the end of the metal plate. If the connection electrode extends to the end of the metal plate, there is a high risk that the solder will bridge on the thin insulating layer. The LED chip light emitting surface is directed to the upper surface side in the figure, and emits light toward the upper surface without being blocked by the LED package substrate.
 配線基板を装着したLEDパッケージは、放熱板(例えば、銅あるいはアルミ板)の上に半田接続する。或いは、この半田接続に代えて、高熱伝導性の接着材を用いて接着することも可能である。また、放熱板に代えて、そのまま筐体へ固着することも可能である。 The LED package with the wiring board attached is soldered on a heat sink (eg, copper or aluminum plate). Alternatively, instead of this solder connection, it is possible to bond using a highly heat conductive adhesive. Further, instead of the heat radiating plate, it can be directly fixed to the housing.
 図19は、本発明を具体化するLEDモジュール装置の第6の例を説明する図であり、(A)は連結構成LEDパッケージの上面図を示し、(B)はこの連結構成LEDパッケージを配線基板に装着した状態のA-A’ラインで切断した断面図を示している。連結構成LEDパッケージは、複数個(4個として例示)のLEDパッケージを、連結部で連結したものである。連結部は、絞り加工時の歪みを逃すために、連結部の両側に部分切除部が形成されている。連結部で連結することによって、電気的に直列に接続されると同時に、連結構成LEDパッケージに柔軟性を付与して、凸面形状或いは凹面形状などの任意の外表面形状を有するヒートシンク或いは筐体のような放熱体上に装着することができる。連結構成LEDパッケージの最両端側には、連結部はなく、ここに接続電極が形成されることになる。そして、この連結構成LEDパッケージが配線基板に実装される。配線基板上への実装は、図14を参照して上述したように、LEDパッケージ側面と配線基板との間を絶縁性の接着材で埋め、次に、この絶縁性接着材の上で、連結構成LEDパッケージの一対の接続電極を、配線基板上面の配線に半田付け、或いはインクジェットによる銅や銀等により接続する。 19A and 19B are views for explaining a sixth example of the LED module device embodying the present invention. FIG. 19A is a top view of the connection configuration LED package, and FIG. 19B is a wiring diagram of the connection configuration LED package. A cross-sectional view taken along the line AA ′ in a state of being mounted on a substrate is shown. The connected configuration LED package is obtained by connecting a plurality of LED packages (illustrated as four) at a connecting portion. In the connecting portion, partial cut portions are formed on both sides of the connecting portion in order to escape distortion during drawing. By connecting at the connecting portion, it is electrically connected in series, and at the same time, it gives flexibility to the connected LED package, and the heat sink or housing having an arbitrary outer surface shape such as a convex shape or a concave shape. It can be mounted on such a radiator. There is no connecting portion on the most end side of the connected LED package, and connection electrodes are formed here. And this connection structure LED package is mounted in a wiring board. As described above with reference to FIG. 14, the mounting on the wiring board is performed by filling the space between the LED package side surface and the wiring board with an insulating adhesive, and then connecting the insulating adhesive on the insulating adhesive. A pair of connection electrodes of the configuration LED package are soldered to the wiring on the upper surface of the wiring board or connected by copper, silver, or the like by inkjet.
 図20は、LEDジャンクション温度の膜厚依存を示すグラフである。以下の解析条件で解析を行った。パッケージサイズ:4mm×4mm、放熱部面積1.5mm×1.5mm、消費電力:1W、周囲温度Ta:60℃である。グラフ横軸は、ポリイミド樹脂層の厚さを示し、縦軸は、ジャンクション温度を示している。 FIG. 20 is a graph showing the film thickness dependence of the LED junction temperature. The analysis was performed under the following analysis conditions. Package size: 4 mm × 4 mm, heat radiation area 1.5 mm × 1.5 mm, power consumption: 1 W, ambient temperature Ta: 60 ° C. The horizontal axis of the graph indicates the thickness of the polyimide resin layer, and the vertical axis indicates the junction temperature.
 通常LEDジャンクション温度は120℃以下が望ましく、これを4mm□のパッケージで実現するにはポリイミドの膜厚を40μm以下にすることが必要になる。さらに望ましくは、膜厚を20μm以下にして、LEDジャンクション温度を100℃以下にする。 Normally, the LED junction temperature is desirably 120 ° C or less, and in order to realize this in a 4 mm square package, it is necessary to make the polyimide film thickness 40 μm or less. More desirably, the film thickness is 20 μm or less, and the LED junction temperature is 100 ° C. or less.
 LEDの金属基板上の絶縁膜としては、上記の熱伝導性以外にも、次の特性を満足する必要がある。
(1)絶縁性
 薄いフィルムで絶縁信頼性を有する為には、絶縁破壊電圧が高いという必要がある。ポリイミドの標準的な絶縁破壊電圧は150kV/mm程度、高性能品では500kV/mm位あり、通常のエンジニアリングプラスチックでは、15~30kV/mm程度である。このため、上述のように、高性能のポリイミドを使えば5μmの厚さまで薄くすることが可能である。
(2)耐熱性
 半田耐熱性を有する必要があり(260℃)、LEDの発熱に耐える必要がある。ポリイミドの熱分解温度は、500℃ 以上で、抜群の性能を有している。
(3)熱可塑性
 ポリイミドは熱可塑性と熱硬化性があるが、プレス成型で、変形に耐えるには、熱可塑性ポリイミドである必要がある。
(4)機械強度
 応力に対して亀裂が入らない機械強度があること。
(5)屈曲性
 ポリイミドはフレキシブル基板に使われるので、抜群の性能である。
(6)長期安定性
 以上の特性が長期にわたって劣化せずに安定であること。
The insulating film on the metal substrate of the LED must satisfy the following characteristics in addition to the thermal conductivity described above.
(1) Insulation In order to have insulation reliability with a thin film, it is necessary that the dielectric breakdown voltage is high. The standard dielectric breakdown voltage of polyimide is about 150 kV / mm, high-performance products are about 500 kV / mm, and ordinary engineering plastics are about 15 to 30 kV / mm. For this reason, as described above, it is possible to reduce the thickness to 5 μm by using high-performance polyimide.
(2) Heat resistance It is necessary to have solder heat resistance (260 ° C.), and it is necessary to withstand the heat generation of the LED. The thermal decomposition temperature of polyimide is 500 ° C or higher and has excellent performance.
(3) Thermoplastic Polyimide has thermoplasticity and thermosetting properties, but it needs to be thermoplastic polyimide to withstand deformation by press molding.
(4) Mechanical strength Mechanical strength that does not crack against stress.
(5) Flexibility Since polyimide is used for flexible substrates, it has excellent performance.
(6) Long-term stability The above characteristics are stable without deterioration over a long period of time.
(金属プレート/ポリイミド/銅箔積層体の作成)
 金属プレート上に熱可塑性ポリイミド系樹脂溶液を塗工する場合、例えば、熱可塑性ポリイミドワニスである「ユピタイトUPA-N221C」(商品名:宇部興産社製)をテトラヒドロフランで固形分15%になるように希釈した溶液を塗布し、加熱して溶媒の乾燥を行うことにより製膜できる。
(Creation of metal plate / polyimide / copper foil laminate)
When a thermoplastic polyimide resin solution is applied onto a metal plate, for example, “Iupitite UPA-N221C” (trade name: manufactured by Ube Industries), which is a thermoplastic polyimide varnish, is made to have a solid content of 15% with tetrahydrofuran. A diluted solution can be applied, and heated to dry the solvent to form a film.
 金属プレート上に熱可塑性ポリイミド系樹脂の前駆体であるポリアミック酸溶液を塗工する場合は、テトラカルボン酸2無水物とジアミンを原料に等モルで重合させたポリアミック酸を含む溶液を塗布し、徐々に加熱してイミド閉環温度以下での脱溶剤処理の後、最終的に300~400℃迄加熱してイミド閉環し、ポリイミドへの変換を行うのが望ましい。 When applying a polyamic acid solution which is a precursor of a thermoplastic polyimide resin on a metal plate, a solution containing a polyamic acid obtained by polymerizing tetracarboxylic dianhydride and diamine in equimolar amounts as raw materials is applied, It is desirable to carry out the solvent removal treatment at a temperature not higher than the imide ring-closing temperature after heating gradually, and finally heat to 300 to 400 ° C. to close the imide and convert to polyimide.
 特許文献4では、テトラカルボン酸2無水物分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ジアミン成分としては、メタキシリレンジアミンと1,3-ビス(4-アミノフェノキシ)ベンゼンが開示されている。また、特許文献5では、テトラカルボン酸2無水物分として3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ジアミン成分としては1,3-(3-アミノフェノキシ)ベンゼンに1,3-ビス(3-マレイミドフェノキシ)ベンゼンを共重合させたものが開示されている。 In Patent Document 4, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is used as the tetracarboxylic dianhydride, and metaxylylenediamine and 1,3-bis (4- Aminophenoxy) benzene is disclosed. In Patent Document 5, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride is used as the tetracarboxylic dianhydride content, and 1,3- (3-aminophenoxy) benzene is used as the diamine component. , 3-bis (3-maleimidophenoxy) benzene copolymerized.
 塗工方法としては、これに限定されるものではないが、バーコーター、ロールコーター、ダイコーターコンマコーター、グラビアコーター、カーテンコーター、スプレーコーター等の公知の方法により行うことができる。 The coating method is not limited to this, but can be performed by a known method such as a bar coater, a roll coater, a die coater comma coater, a gravure coater, a curtain coater, or a spray coater.
 或いは、市販の熱可塑性ポリイミドフィルム(クラボウMidfil(ミドフィル))を金属プレートと銅箔で挟み、加熱加圧下で接合して金属プレート/ポリイミド/銅箔の積層体を得ることも可能である。 Alternatively, it is also possible to obtain a laminate of metal plate / polyimide / copper foil by sandwiching a commercially available thermoplastic polyimide film (Kurabo Midfil) between a metal plate and copper foil and joining them under heat and pressure.
 図21(A)は、放熱性能(熱抵抗比)を示すグラフであり、(B)は放熱板上に装着されるLEDパッケージ構造を示す図である。(B)に示すように、LEDチップサイズをmとし、かつ、金属プレートが放熱板に接している長さをLとする。(A)に示すグラフでは、横軸にmの倍数に変化させたLの長さ(1m~5m)(及びそれを2乗した放熱面積)を取り、かつ、縦軸に計算で求めた熱抵抗比を任意値(L=1mのときの熱抵抗を1とした)で示している。算出に際して、リードフレームの熱伝導率:300W/mk、ポリイミドの熱伝導率:0.5W/mk、銅箔の熱伝導率:400W/mkとした。銅箔の厚さは9μm、金属プレートの厚さは125μmとして、ポリイミドの厚さ5/10/30μmのそれぞれに対して、各部材の熱抵抗をフーリエの法則より算出した。各部材の熱抵抗は、熱抵抗θ=部材厚みt/(熱伝導率λ×放熱面積)となる。合計熱抵抗は、銅箔、ポリイミド、金属プレートのそれぞれについて計算し、合計したものである。 FIG. 21A is a graph showing heat dissipation performance (thermal resistance ratio), and FIG. 21B is a diagram showing an LED package structure mounted on a heat sink. As shown in (B), the LED chip size is m, and the length of the metal plate in contact with the heat sink is L. In the graph shown in (A), the horizontal axis represents the length L (1 m to 5 m) changed to a multiple of m (and the heat radiation area squared), and the vertical axis represents the heat calculated. The resistance ratio is represented by an arbitrary value (the thermal resistance when L = 1 m is assumed to be 1). In the calculation, the thermal conductivity of the lead frame: 300 W / mk, the thermal conductivity of polyimide: 0.5 W / mk, and the thermal conductivity of copper foil: 400 W / mk. The thickness of the copper foil was 9 μm, the thickness of the metal plate was 125 μm, and the thermal resistance of each member was calculated according to Fourier's law for each polyimide thickness of 5/10/30 μm. The thermal resistance of each member is thermal resistance θ = member thickness t / (thermal conductivity λ × heat radiation area). The total thermal resistance is calculated for each of copper foil, polyimide, and metal plate, and is totaled.
 図21(A)に見られるように、L=2mとすれば、熱抵抗は十分に低下することが分かる。これ以下だと、放熱が十分ではなく熱が蓄積して損傷の原因になる。Lの長さを長くするにつれて、熱抵抗は低下するが、L=5m以上に長くしても殆ど変化は無くなり、放熱効果がそれ以上向上しない。一方、Lの長さを長くすると、コスト的には不利であるので、辺長比L=2m~20mの範囲、好ましくは3m~10mの範囲が望ましい。 As seen in FIG. 21A, it can be seen that if L = 2 m, the thermal resistance is sufficiently reduced. If it is less than this, the heat release is not sufficient and heat accumulates, causing damage. As the length of L is increased, the thermal resistance decreases, but even if L is increased to 5 m or longer, there is almost no change, and the heat dissipation effect is not further improved. On the other hand, increasing the length of L is disadvantageous in terms of cost, so the side length ratio L = 2 m to 20 m, preferably 3 m to 10 m is desirable.
 以上、本開示にて幾つかの実施の形態を単に例示として詳細に説明したが、本発明の新規な教示及び有利な効果から実質的に逸脱せずに、その実施の形態には多くの改変例が可能である。
 
Although several embodiments have been described in detail in the present disclosure by way of example only, many modifications may be made to the embodiments without substantially departing from the novel teachings and advantages of the present invention. Examples are possible.

Claims (28)

  1. 所定の板厚を有する板材からなる金属プレートを曲げ加工してLEDチップのためのLEDパッケージ基板を構成し、かつ、該基板を用いたLEDパッケージを配線基板に装着したLEDモジュール装置において、
     前記LEDパッケージ基板は、LEDチップ装着のための平板状底部と、該底部端の両側からそれぞれ立ち上がる壁部と、該壁部上部を外方向に折り曲げた接続電極部を一体に形成するように曲げ加工した金属プレートを備え、かつ、この金属プレートと金属箔との間に、樹脂層と接着材層からなる2層の絶縁層を挟んだ積層構成とし、
     前記壁部上部を外方向に折り曲げた接続電極部の上端の金属箔を一対の外部接続電極の少なくとも一方として構成し、
     前記LEDパッケージ基板の平板状底部上面に、LEDチップを装着すると共に、該LEDチップの一対の電極の少なくとも一方を前記平板状底部上面の金属箔に接続し、かつ透明樹脂を前記壁部に挟まれた凹所に充填することによりLEDパッケージを構成し、
     前記LEDパッケージの平板状底部裏面を放熱体に固着或いは接触させると共に、該放熱体との間に間隔を開けて配置した配線基板の開口部に前記LEDパッケージを実装して、前記一対の外部接続電極を配線基板の配線と接続したことから成るLEDモジュール装置。
    In an LED module device in which an LED package substrate for an LED chip is configured by bending a metal plate made of a plate material having a predetermined plate thickness, and the LED package using the substrate is mounted on a wiring substrate.
    The LED package substrate is bent so as to integrally form a flat bottom portion for mounting an LED chip, a wall portion rising from both sides of the bottom end, and a connection electrode portion where the upper portion of the wall portion is bent outward. A laminated structure comprising a processed metal plate and sandwiching two insulating layers composed of a resin layer and an adhesive layer between the metal plate and the metal foil,
    The metal foil at the upper end of the connection electrode part where the wall part upper part is bent outward is configured as at least one of a pair of external connection electrodes,
    An LED chip is mounted on the upper surface of the flat bottom of the LED package substrate, at least one of the pair of electrodes of the LED chip is connected to the metal foil on the upper surface of the flat bottom, and a transparent resin is sandwiched between the walls. Configure the LED package by filling the recessed part,
    The LED package is mounted on an opening of a wiring board that is fixed or brought into contact with a radiator and the back surface of the flat bottom of the LED package is disposed between the radiator and the pair of external connections. An LED module device comprising an electrode connected to a wiring of a wiring board.
  2. 前記金属プレートの上に、反射材として機能する金属表面処理を施した金属箔を備え、かつ、前記外部接続電極として構成した金属箔の端部は、金属プレート端より内側に配置した請求項1に記載のLEDモジュール装置。 The metal foil which performed the metal surface treatment which functions as a reflecting material on the said metal plate was provided, and the edge part of the metal foil comprised as the said external connection electrode was arrange | positioned inside the metal plate end. LED module device according to claim 1.
  3. 前記壁部の上端の金属箔を一対の外部接続電極のそれぞれとして機能させるように、前記平板状底部上面の金属箔を両側に絶縁分離し、前記LEDチップの一対の電極をそれぞれ、前記絶縁分離された金属箔のそれぞれに接続した請求項2に記載のLEDモジュール装置。 Insulating and separating the metal foil on the upper surface of the plate-like bottom part on both sides so that the metal foil on the upper end of the wall part functions as a pair of external connection electrodes, respectively, and the pair of electrodes of the LED chip, respectively. The LED module device according to claim 2, wherein the LED module device is connected to each of the formed metal foils.
  4. 前記金属プレートの平板状底部上面に、前記絶縁層を介すること無く、LEDチップを導電性ダイボンド材を用いて電気的及び機械的に結合して、該LEDチップの一対の電極の内の一方の電極を前記金属箔にワイヤボンド接続する一方、他方の電極の接続は、前記金属プレートに対して前記導電性ダイボンド材により接続されており、前記壁部の上端側の金属箔を、一対の接続電極の内の一方の接続電極として機能させ、かつ、他方の接続電極を、前記壁部の上端側の金属プレートにより構成した請求項2に記載のLEDモジュール装置。 An LED chip is electrically and mechanically bonded to the upper surface of the flat bottom of the metal plate without using the insulating layer using a conductive die bond material, and one of the pair of electrodes of the LED chip is connected. While the electrode is wire-bonded to the metal foil, the other electrode is connected to the metal plate by the conductive die bond material, and the metal foil on the upper end side of the wall portion is connected to a pair of connections. 3. The LED module device according to claim 2, wherein the LED module device functions as one connection electrode of the electrodes, and the other connection electrode is configured by a metal plate on an upper end side of the wall portion.
  5. 前記樹脂層の厚さを前記接着材層より薄くした請求項2に記載のLEDモジュール装置。 The LED module device according to claim 2, wherein the resin layer is thinner than the adhesive layer.
  6. LEDチップのためのLEDパッケージ基板を、金属プレートを加工して構成したLEDパッケージにおいて、
     前記LEDパッケージ基板は、LEDチップ装着のための平板状底部と、該底部端の両側からそれぞれ立ち上がる壁部を形成するように曲げ加工した金属プレートを備え、かつ、この金属プレートと金属箔との間に、樹脂層と接着材層からなる2層の絶縁層を挟んだ積層構成とし、
     前記壁部の上端の金属箔を一対の外部接続電極の少なくとも一方として構成し、
     前記LEDパッケージ基板の平板状底部上面に、LEDチップを装着すると共に、該LEDチップの一対の電極の少なくとも一方を前記平板状底部上面の金属箔に接続し、かつ透明樹脂を前記壁部に挟まれた凹所に充填したことから成るLEDパッケージ。
    In an LED package configured by processing a metal plate, an LED package substrate for an LED chip,
    The LED package substrate includes a flat bottom for mounting the LED chip, and a metal plate bent so as to form walls rising from both sides of the bottom end, and the metal plate and the metal foil. A laminated structure with two insulating layers composed of a resin layer and an adhesive layer in between,
    The metal foil at the upper end of the wall portion is configured as at least one of a pair of external connection electrodes,
    An LED chip is mounted on the upper surface of the flat bottom of the LED package substrate, at least one of the pair of electrodes of the LED chip is connected to the metal foil on the upper surface of the flat bottom, and a transparent resin is sandwiched between the walls. LED package consisting of filling in a recessed recess.
  7. 所定の板厚を有する板材からなる金属プレートを曲げ加工してLEDチップのためのLEDパッケージ基板を構成し、かつ、該基板を用いたLEDパッケージを配線基板に装着したLEDモジュール装置の製造方法において、
     金属プレートの上に、樹脂層付き金属箔からなる積層膜の樹脂層側を、接着材を用いて貼り付けて、前記金属プレートと前記金属箔との間に、前記樹脂層と接着材層からなる2層の絶縁層を挟んだ積層構成を形成し、
     前記金属プレートを含む前記積層構成の曲げ加工を行なって、LEDチップが搭載されることになる平板状の底部と、この底部の両側に位置して底部端から折曲して立ち上がる方向に、LEDチップの発光方向と同じ側に伸びる壁部を備え、この壁部上部を外方向に折り曲げて一対の外部接続電極を形成して、LEDパッケージ基板を構成し、
     前記壁部の上端の金属箔を前記一対の外部接続電極の少なくとも1つとして機能させ、
     前記LEDパッケージ基板の上にLEDチップを装着して、前記LEDパッケージ基板の底部金属箔に、LEDチップ電極の少なくとも一方を接続し、
     透明樹脂を用いて樹脂封止して、LEDパッケージを構成し、
     前記LEDパッケージの平板状底部裏面を放熱体に固着或いは接触させると共に、該放熱体との間に間隔を開けて配置した配線基板の開口部に前記LEDパッケージを実装して、前記一対の外部接続電極を配線基板の配線と接続することから成るLEDモジュール装置の製造方法。
    In a manufacturing method of an LED module device in which an LED package substrate for an LED chip is configured by bending a metal plate made of a plate material having a predetermined thickness, and the LED package using the substrate is mounted on a wiring substrate ,
    On the metal plate, the resin layer side of the laminated film made of a metal foil with a resin layer is attached using an adhesive, and the resin layer and the adhesive layer are between the metal plate and the metal foil. Forming a laminated structure sandwiching two insulating layers,
    The laminated structure including the metal plate is bent to form a flat bottom on which the LED chip is to be mounted, and the LED is positioned on both sides of the bottom to bend and rise from the bottom end. A wall portion extending on the same side as the light emitting direction of the chip is provided, and the upper portion of the wall portion is bent outward to form a pair of external connection electrodes to constitute an LED package substrate,
    The metal foil at the upper end of the wall portion functions as at least one of the pair of external connection electrodes,
    An LED chip is mounted on the LED package substrate, and at least one of the LED chip electrodes is connected to the bottom metal foil of the LED package substrate,
    Resin-sealing with a transparent resin to form an LED package,
    The LED package is mounted on an opening of a wiring board that is fixed or brought into contact with a radiator and the back surface of the flat bottom of the LED package is disposed between the radiator and the pair of external connections. A method of manufacturing an LED module device comprising connecting an electrode to a wiring of a wiring board.
  8. 前記壁部の上端の金属箔を一対の外部接続電極のそれぞれとして機能させるように、前記平板状底部上面の金属箔を両側に絶縁分離し、前記LEDチップの一対の電極をそれぞれ、前記絶縁分離された金属箔のそれぞれに接続した請求項7に記載のLEDモジュール装置の製造方法。 Insulating and separating the metal foil on the upper surface of the plate-like bottom part on both sides so that the metal foil on the upper end of the wall part functions as a pair of external connection electrodes, respectively, and the pair of electrodes of the LED chip, respectively. The manufacturing method of the LED module apparatus of Claim 7 connected to each of the metal foil which was made.
  9. 前記金属プレートの平板状底部上面に、前記絶縁層を介すること無く、LEDチップを導電性ダイボンド材を用いて電気的及び機械的に結合して、該LEDチップの一対の電極の内の一方の電極を前記金属箔にワイヤボンド接続する一方、他方の電極の接続は、前記金属プレートに対して前記導電性ダイボンド材により接続されており、前記壁部の上端側の金属箔を、一対の接続電極の内の一方の接続電極として機能させ、かつ、他方の接続電極を、前記壁部の上端側の金属プレートにより構成した請求項7に記載のLEDモジュール装置の製造方法。 An LED chip is electrically and mechanically bonded to the upper surface of the flat bottom of the metal plate without using the insulating layer using a conductive die bond material, and one of the pair of electrodes of the LED chip is connected. While the electrode is wire-bonded to the metal foil, the other electrode is connected to the metal plate by the conductive die bond material, and the metal foil on the upper end side of the wall portion is connected to a pair of connections. The manufacturing method of the LED module apparatus of Claim 7 made to function as one connection electrode among electrodes, and comprising the other connection electrode with the metal plate of the upper end side of the said wall part.
  10. 前記樹脂層の上で前記金属箔をエッチング加工することにより前記金属箔を絶縁分離するスリット開口を形成する請求項7に記載のLEDモジュール装置の製造方法。 The manufacturing method of the LED module apparatus of Claim 7 which forms the slit opening which carries out the insulation process of the said metal foil by etching the said metal foil on the said resin layer.
  11. 前記金属箔の上には、反射材として機能する金属表面処理を施す請求項7に記載のLEDモジュール装置の製造方法。 The manufacturing method of the LED module apparatus of Claim 7 which performs the metal surface treatment which functions as a reflecting material on the said metal foil.
  12. LEDチップのためのLEDパッケージ基板を、金属プレートを加工して構成したLEDパッケージの製造方法において、
     金属プレートの上に、樹脂層付き金属箔からなる積層膜の樹脂層側を、接着材を用いて貼り付けて、前記金属プレートと前記金属箔との間に、前記樹脂層と接着材層からなる2層の絶縁層を挟んだ積層構成を形成し、
     前記金属プレートを含む前記積層構成の曲げ加工を行なって、LEDチップが搭載されることになる平板状の底部と、この底部の両側に位置して底部端から折曲して立ち上がる方向に、LEDチップの発光方向と同じ側に伸びる壁部を備え、この壁部上部を外方向に折り曲げて一対の外部接続電極を形成して、LEDパッケージ基板を構成し、
     前記壁部の上端の金属箔を前記一対の外部接続電極の少なくとも1つとして機能させ、
     前記LEDパッケージ基板の上にLEDチップを装着して、前記LEDパッケージ基板の底部金属箔に、LEDチップ電極の少なくとも一方を接続し、
     透明樹脂を用いて樹脂封止したことから成るLEDパッケージの製造方法。
    In an LED package manufacturing method in which an LED package substrate for an LED chip is formed by processing a metal plate,
    On the metal plate, the resin layer side of the laminated film made of a metal foil with a resin layer is attached using an adhesive, and the resin layer and the adhesive layer are between the metal plate and the metal foil. Forming a laminated structure sandwiching two insulating layers,
    The laminated structure including the metal plate is bent to form a flat bottom on which the LED chip is to be mounted, and the LED is positioned on both sides of the bottom to bend and rise from the bottom end. A wall portion extending on the same side as the light emitting direction of the chip is provided, and the upper portion of the wall portion is bent outward to form a pair of external connection electrodes to constitute an LED package substrate,
    The metal foil at the upper end of the wall portion functions as at least one of the pair of external connection electrodes,
    An LED chip is mounted on the LED package substrate, and at least one of the LED chip electrodes is connected to the bottom metal foil of the LED package substrate,
    A method for manufacturing an LED package, comprising resin sealing using a transparent resin.
  13. 所定の板厚を有する板材からなる金属プレートを曲げ加工してLEDチップのためのLEDパッケージ基板を構成し、かつ、該基板を用いたLEDパッケージを配線基板に装着したLEDモジュール装置において、
     前記LEDパッケージ基板は、LEDチップ装着部及びLEDチップの一対の電極を接続するための一対の接続部を上面に形成するだけの十分な面積を有する平板状底部と、該底部端の両側からそれぞれ立ち上がる壁部と、該壁部上部を外方向に折り曲げた接続電極部を一体に形成するように曲げ加工した金属プレートの上に、樹脂層からなる絶縁層を挟んで金属箔を接合した積層構成とし、
     前記絶縁層を構成する樹脂層は、5μm~40μmの範囲にある膜厚を有するポリイミド樹脂であり、
     前記壁部上部を外方向に折り曲げた接続電極部の上端の金属箔を一対の外部接続電極の少なくとも一方として構成し、
     前記LEDパッケージ基板の平板状底部上面に、LEDチップを装着すると共に、該LEDチップの一対の電極の少なくとも一方を前記平板状底部上面の金属箔に接続し、かつ透明樹脂を前記壁部に挟まれた凹所に充填することによりLEDパッケージを構成し、
     前記LEDパッケージの平板状底部裏面を放熱体に固着或いは接触させると共に、該放熱体との間に間隔を開けて配置した配線基板の開口部に前記LEDパッケージを実装して、前記一対の外部接続電極を配線基板の配線と接続したことから成るLEDモジュール装置。
    In an LED module device in which an LED package substrate for an LED chip is configured by bending a metal plate made of a plate material having a predetermined plate thickness, and the LED package using the substrate is mounted on a wiring substrate.
    The LED package substrate includes a flat bottom portion having an area sufficient to form an LED chip mounting portion and a pair of connection portions for connecting a pair of electrodes of the LED chip on the upper surface, and both sides of the bottom end. A laminated structure in which a metal foil is joined to an insulating layer made of a resin layer on a metal plate bent so as to integrally form a rising wall part and a connection electrode part where the upper part of the wall part is bent outward. age,
    The resin layer constituting the insulating layer is a polyimide resin having a film thickness in the range of 5 μm to 40 μm,
    The metal foil at the upper end of the connection electrode part where the wall part upper part is bent outward is configured as at least one of a pair of external connection electrodes,
    An LED chip is mounted on the upper surface of the flat bottom of the LED package substrate, at least one of the pair of electrodes of the LED chip is connected to the metal foil on the upper surface of the flat bottom, and a transparent resin is sandwiched between the walls. Configure the LED package by filling the recessed part,
    The LED package is mounted on an opening of a wiring board that is fixed or brought into contact with a radiator and the back surface of the flat bottom of the LED package is disposed between the radiator and the pair of external connections. An LED module device comprising an electrode connected to a wiring of a wiring board.
  14. 前記外部接続電極として構成した金属箔の端部は、金属プレート端より内側に配置した請求項13に記載のLEDモジュール装置。 The LED module device according to claim 13, wherein an end portion of the metal foil configured as the external connection electrode is disposed inside the end of the metal plate.
  15. 前記壁部の上端の金属箔を一対の外部接続電極のそれぞれとして機能させるように、前記平板状底部上面の金属箔を両側に絶縁分離し、前記LEDチップの一対の電極をそれぞれ、前記絶縁分離された金属箔のそれぞれに接続した請求項14に記載のLEDモジュール装置。 Insulating and separating the metal foil on the upper surface of the plate-like bottom part on both sides so that the metal foil on the upper end of the wall part functions as a pair of external connection electrodes, respectively, and the pair of electrodes of the LED chip, respectively. The LED module device according to claim 14, wherein the LED module device is connected to each of the formed metal foils.
  16. 前記金属プレートの平板状底部上面に、前記絶縁層を介すること無く、LEDチップを導電性ダイボンド材を用いて電気的及び機械的に結合して、該LEDチップの一対の電極の内の一方の電極を前記金属箔にワイヤボンド接続する一方、他方の電極の接続は、前記金属プレートに対して前記導電性ダイボンド材により接続されており、前記壁部の上端側の金属箔を、一対の接続電極の内の一方の接続電極として機能させ、かつ、他方の接続電極を、前記壁部の上端側の金属プレートにより構成した請求項14に記載のLEDモジュール装置。 An LED chip is electrically and mechanically bonded to the upper surface of the flat bottom of the metal plate without using the insulating layer using a conductive die bond material, and one of the pair of electrodes of the LED chip is connected. While the electrode is wire-bonded to the metal foil, the other electrode is connected to the metal plate by the conductive die bond material, and the metal foil on the upper end side of the wall portion is connected to a pair of connections. The LED module device according to claim 14, wherein the LED module device functions as one connection electrode of the electrodes, and the other connection electrode is configured by a metal plate on an upper end side of the wall portion.
  17. 前記ポリイミド樹脂は、熱可塑性ポリイミドを含むポリイミド樹脂の中に、球状のスペーサー粒子又は該スペーサー粒子の径より小さい熱伝導性フィラー、若しくはその両方を混在させた請求項14に記載のLEDモジュール装置。 The LED module device according to claim 14, wherein the polyimide resin includes spherical spacer particles, a thermally conductive filler smaller than the diameter of the spacer particles, or both in a polyimide resin containing a thermoplastic polyimide.
  18. 前記LEDパッケージの平板状底部の長辺をLEDチップ短辺の2倍~20倍の長さとした請求項14に記載のLEDモジュール装置。 The LED module device according to claim 14, wherein the long side of the flat bottom of the LED package has a length that is twice to 20 times the short side of the LED chip.
  19. LEDチップのためのLEDパッケージ基板を、金属プレートを加工して構成したLEDパッケージにおいて、
     前記LEDパッケージ基板は、LEDチップ装着部及びLEDチップの一対の電極を接続するための一対の接続部を上面に形成するだけの十分な面積を有する平板状底部と、該底部端の両側からそれぞれ立ち上がる壁部を形成するように曲げ加工した金属プレートの上に、樹脂層からなる絶縁層を挟んで金属箔を接合した積層構成とし、
     前記絶縁層を構成する樹脂層は、5μm~40μmの範囲にある膜厚を有するポリイミド樹脂であり、
     前記壁部の上端の金属箔を一対の外部接続電極の少なくとも一方として構成し、
     前記LEDパッケージ基板の平板状底部上面に、LEDチップを装着すると共に、該LEDチップの一対の電極の少なくとも一方を前記平板状底部上面の金属箔に接続し、かつ透明樹脂を前記壁部に挟まれた凹所に充填したことから成るLEDパッケージ。
    In an LED package configured by processing a metal plate, an LED package substrate for an LED chip,
    The LED package substrate includes a flat bottom portion having an area sufficient to form an LED chip mounting portion and a pair of connection portions for connecting a pair of electrodes of the LED chip on the upper surface, and both sides of the bottom end. On the metal plate bent so as to form a rising wall, a laminated structure in which a metal foil is joined with an insulating layer made of a resin layer sandwiched therebetween,
    The resin layer constituting the insulating layer is a polyimide resin having a film thickness in the range of 5 μm to 40 μm,
    The metal foil at the upper end of the wall portion is configured as at least one of a pair of external connection electrodes,
    An LED chip is mounted on the upper surface of the flat bottom of the LED package substrate, at least one of the pair of electrodes of the LED chip is connected to the metal foil on the upper surface of the flat bottom, and a transparent resin is sandwiched between the walls. LED package consisting of filling in a recessed recess.
  20. 所定の板厚を有する板材からなる金属プレートを曲げ加工してLEDチップのためのLEDパッケージ基板を構成し、かつ、該基板を用いたLEDパッケージを配線基板に装着したLEDモジュール装置の製造方法において、
     金属プレートの上に、樹脂層からなる絶縁層を挟んで金属箔を接合した積層体を形成し、前記絶縁層を構成する樹脂層は、5μm~40μmの範囲にある膜厚を有するポリイミド樹脂であり、
     前記金属プレートを含む前記積層体の曲げ加工を行なって、LEDチップ装着部及びLEDチップの一対の電極を接続するための一対の接続部を上面に形成するだけの十分な面積を有する平板状底部と、この底部の両側に位置して底部端から折曲して立ち上がる方向に、LEDチップの発光方向と同じ側に伸びる壁部を備え、この壁部上部を外方向に折り曲げて一対の外部接続電極を形成して、LEDパッケージ基板を構成し、
     前記壁部の上端の金属箔を前記一対の外部接続電極の少なくとも1つとして機能させ、
     前記LEDパッケージ基板の上にLEDチップを装着して、LEDチップ電極の少なくとも一方を、前記平板状底部上面に設けた金属箔に接続し、
     透明樹脂を用いて樹脂封止して、LEDパッケージを構成し、
     前記LEDパッケージの平板状底部裏面を放熱体に固着或いは接触させると共に、該放熱体との間に間隔を開けて配置した配線基板の開口部に前記LEDパッケージを実装して、前記一対の外部接続電極を配線基板の配線と接続することから成るLEDモジュール装置の製造方法。
    In a manufacturing method of an LED module device in which an LED package substrate for an LED chip is configured by bending a metal plate made of a plate material having a predetermined thickness, and the LED package using the substrate is mounted on a wiring substrate ,
    A laminated body in which a metal foil is bonded on a metal plate with an insulating layer made of a resin layer interposed therebetween is formed, and the resin layer constituting the insulating layer is a polyimide resin having a film thickness in the range of 5 μm to 40 μm. Yes,
    A flat bottom portion having a sufficient area to bend the laminated body including the metal plate to form a pair of connection portions on the top surface for connecting the LED chip mounting portion and the pair of electrodes of the LED chip. And a wall portion extending on the same side as the light emitting direction of the LED chip in a direction rising from the bottom end located on both sides of the bottom portion, and a pair of external connections by bending the upper portion of the wall portion outward Forming an electrode to constitute an LED package substrate,
    The metal foil at the upper end of the wall portion functions as at least one of the pair of external connection electrodes,
    An LED chip is mounted on the LED package substrate, and at least one of the LED chip electrodes is connected to a metal foil provided on the upper surface of the flat bottom,
    Resin-sealing with a transparent resin to form an LED package,
    The LED package is mounted on an opening of a wiring board that is fixed or brought into contact with a radiator and the back surface of the flat bottom of the LED package is disposed between the radiator and the pair of external connections. A method of manufacturing an LED module device comprising connecting an electrode to a wiring of a wiring board.
  21. 前記壁部の上端の金属箔を一対の外部接続電極のそれぞれとして機能させるように、前記平板状底部上面の金属箔を両側に絶縁分離し、前記LEDチップの一対の電極をそれぞれ、前記絶縁分離された金属箔のそれぞれに接続した請求項20に記載のLEDモジュール装置の製造方法。 Insulating and separating the metal foil on the upper surface of the plate-like bottom part on both sides so that the metal foil on the upper end of the wall part functions as a pair of external connection electrodes, respectively, and the pair of electrodes of the LED chip, respectively. The manufacturing method of the LED module apparatus of Claim 20 connected to each of the metal foil which was made.
  22. 前記金属プレートの平板状底部上面に、前記絶縁層を介すること無く、LEDチップを導電性ダイボンド材を用いて電気的及び機械的に結合して、該LEDチップの一対の電極の内の一方の電極を前記金属箔にワイヤボンド接続する一方、他方の電極の接続は、前記金属プレートに対して前記導電性ダイボンド材により接続されており、前記壁部の上端側の金属箔を、一対の接続電極の内の一方の接続電極として機能させ、かつ、他方の接続電極を、前記壁部の上端側の金属プレートにより構成した請求項20に記載のLEDモジュール装置の製造方法。 An LED chip is electrically and mechanically bonded to the upper surface of the flat bottom of the metal plate without using the insulating layer using a conductive die bond material, and one of the pair of electrodes of the LED chip is connected. While the electrode is wire-bonded to the metal foil, the other electrode is connected to the metal plate by the conductive die bond material, and the metal foil on the upper end side of the wall portion is connected to a pair of connections. 21. The method for manufacturing an LED module device according to claim 20, wherein the LED module device functions as one connection electrode of the electrodes, and the other connection electrode is constituted by a metal plate on an upper end side of the wall portion.
  23. 前記ポリイミド樹脂は、熱可塑性ポリイミドを含むポリイミド樹脂の中に、球状のスペーサー粒子又は該スペーサー粒子の径より小さい熱伝導性フィラー、若しくはその両方を混在させた請求項20に記載のLEDモジュール装置の製造方法。 21. The LED module device according to claim 20, wherein the polyimide resin includes spherical spacer particles, a thermally conductive filler smaller than the diameter of the spacer particles, or both in a polyimide resin containing thermoplastic polyimide. Production method.
  24. 前記積層体は、前記ポリイミド樹脂の溶液を前記金属箔又は前記金属プレートに塗り、乾燥させた後、前記金属プレート又は前記金属箔に熱圧着させることにより形成する請求項20に記載のLEDモジュール装置の製造方法。 21. The LED module device according to claim 20, wherein the laminate is formed by applying a solution of the polyimide resin to the metal foil or the metal plate, drying and then thermocompression bonding the metal plate or the metal foil. Manufacturing method.
  25. 前記積層体は、前記金属箔又は前記金属プレートの上に、熱可塑性ポリイミド系樹脂に変換可能な少なくとも一種のポリイミド前駆体樹脂層を塗布した後、この前駆体樹脂層を熱処理することにより、熱可塑性ポリイミド系樹脂層を形成し、この熱可塑性ポリイミド系樹脂層の上に、前記金属プレート又は前記金属箔を加熱加圧下で接合して形成する請求項20に記載のLEDモジュール装置の製造方法。 The laminate is formed by applying at least one polyimide precursor resin layer that can be converted into a thermoplastic polyimide resin on the metal foil or the metal plate, and then heat-treating the precursor resin layer. 21. The method of manufacturing an LED module device according to claim 20, wherein a plastic polyimide resin layer is formed, and the metal plate or the metal foil is bonded to the thermoplastic polyimide resin layer under heat and pressure.
  26. 前記積層体は、前記金属箔と前記金属プレートの間に、熱可塑性ポリイミド系フィルムを挟持させたものを、加熱加圧下で接合して形成する請求項20に記載のLEDモジュール装置の製造方法。 21. The method for manufacturing an LED module device according to claim 20, wherein the laminate is formed by bonding a laminate obtained by sandwiching a thermoplastic polyimide film between the metal foil and the metal plate under heat and pressure.
  27. 前記積層体の曲げ加工を行なう前、或いは後に、前記金属箔の上に反射材として機能する金属表面処理を施す請求項20に記載のLEDモジュール装置の製造方法。 The manufacturing method of the LED module apparatus of Claim 20 which performs the metal surface treatment which functions as a reflecting material on the said metal foil before or after performing the bending process of the said laminated body.
  28. LEDチップのためのLEDパッケージ基板を、金属プレートを加工して構成したLEDパッケージの製造方法において、
     金属プレートの上に、樹脂層からなる絶縁層を挟んで金属箔を接合した積層体を形成し、前記絶縁層を構成する樹脂層は、5μm~40μmの範囲にある膜厚を有するポリイミド樹脂であり、
     前記金属プレートを含む前記積層体の曲げ加工を行なって、LEDチップ装着部及びLEDチップの一対の電極を接続するための一対の接続部を上面に形成するだけの十分な面積を有する平板状底部と、この底部の両側に位置して底部端から折曲して立ち上がる方向に、LEDチップの発光方向と同じ側に伸びる壁部を備え、この壁部上部を外方向に折り曲げて一対の外部接続電極を形成して、LEDパッケージ基板を構成し、
     前記壁部の上端の金属箔を前記一対の外部接続電極の少なくとも1つとして機能させ、
     前記LEDパッケージ基板の上にLEDチップを装着して、LEDチップ電極の少なくとも一方を、前記平板状底部上面に設けた金属箔に接続し、
     透明樹脂を用いて樹脂封止したことから成るLEDパッケージの製造方法。
     
    In an LED package manufacturing method in which an LED package substrate for an LED chip is formed by processing a metal plate,
    A laminated body in which a metal foil is bonded on a metal plate with an insulating layer made of a resin layer interposed therebetween is formed, and the resin layer constituting the insulating layer is a polyimide resin having a film thickness in the range of 5 μm to 40 μm. Yes,
    A flat bottom portion having a sufficient area to bend the laminated body including the metal plate to form a pair of connection portions on the top surface for connecting the LED chip mounting portion and the pair of electrodes of the LED chip. And a wall portion extending on the same side as the light emitting direction of the LED chip in a direction rising from the bottom end located on both sides of the bottom portion, and a pair of external connections by bending the upper portion of the wall portion outward Forming an electrode to constitute an LED package substrate,
    The metal foil at the upper end of the wall portion functions as at least one of the pair of external connection electrodes,
    An LED chip is mounted on the LED package substrate, and at least one of the LED chip electrodes is connected to a metal foil provided on the upper surface of the flat bottom,
    A method for manufacturing an LED package, comprising resin sealing using a transparent resin.
PCT/JP2011/074050 2010-10-19 2011-10-19 Led module device, method for manufacturing same, led package used for led module device, and method for manufacturing same WO2012053550A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-234173 2010-10-19
JP2010234173 2010-10-19
JP2010-241777 2010-10-28
JP2010241777 2010-10-28
JP2010-256634 2010-11-17
JP2010256634 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012053550A1 true WO2012053550A1 (en) 2012-04-26

Family

ID=45975261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074050 WO2012053550A1 (en) 2010-10-19 2011-10-19 Led module device, method for manufacturing same, led package used for led module device, and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW201246618A (en)
WO (1) WO2012053550A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059499A3 (en) * 2013-10-25 2015-06-18 Litecool Limited Led package and led module
JP2015220307A (en) * 2014-05-16 2015-12-07 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
EP3116038A1 (en) * 2015-07-06 2017-01-11 LG Electronics Inc. Light source module, fabrication method therefor, and lighting device including the same
CN107087351A (en) * 2017-06-28 2017-08-22 奇酷互联网络科技(深圳)有限公司 Printed circuit board (PCB), the manufacture method of printed circuit board (PCB) and electronic product
CN107525025A (en) * 2017-09-22 2017-12-29 宁波升谱光电股份有限公司 A kind of LED encapsulation method and structure
JP2018174334A (en) * 2018-06-08 2018-11-08 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
CN108807646A (en) * 2018-08-28 2018-11-13 吉安市木林森光电有限公司 A kind of LED single crystalline chips holder and LED lamp bead
CN109343273A (en) * 2018-11-23 2019-02-15 江苏新广联科技股份有限公司 A kind of big beam angle Mini LED backlight mould group and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559581B (en) * 2014-12-11 2016-11-21 綠點高新科技股份有限公司 Light emitting unit, manufacturing method thereof and light emitting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204904A (en) * 1998-01-16 1999-07-30 Mitsubishi Plastics Ind Ltd Recessed metal core printed circuit board, metal mold therefor and lighting fixture using this board
JP2004265986A (en) * 2003-02-28 2004-09-24 Citizen Electronics Co Ltd High luminance light emitting element, and method for manufacturing the same and light emitting device using the same
JP2006005290A (en) * 2004-06-21 2006-01-05 Citizen Electronics Co Ltd Light emitting diode
JP2006245032A (en) * 2005-02-28 2006-09-14 Toyoda Gosei Co Ltd Light emitting device and led lamp
JP2006319074A (en) * 2005-05-12 2006-11-24 Mitsui Chemicals Inc Substrate for mounting led and its manufacturing method
WO2006129690A1 (en) * 2005-05-31 2006-12-07 Showa Denko K.K. Substrate for led and led package
JP2006351666A (en) * 2005-06-14 2006-12-28 Fujikura Ltd Light emitting device mounting board and its manufacturing method, light emitting device module, lighting device, display device, and traffic signal
JP2007067116A (en) * 2005-08-30 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting device
WO2010035788A1 (en) * 2008-09-25 2010-04-01 デンカAgsp株式会社 Substrate for mounting light-emitting element and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204904A (en) * 1998-01-16 1999-07-30 Mitsubishi Plastics Ind Ltd Recessed metal core printed circuit board, metal mold therefor and lighting fixture using this board
JP2004265986A (en) * 2003-02-28 2004-09-24 Citizen Electronics Co Ltd High luminance light emitting element, and method for manufacturing the same and light emitting device using the same
JP2006005290A (en) * 2004-06-21 2006-01-05 Citizen Electronics Co Ltd Light emitting diode
JP2006245032A (en) * 2005-02-28 2006-09-14 Toyoda Gosei Co Ltd Light emitting device and led lamp
JP2006319074A (en) * 2005-05-12 2006-11-24 Mitsui Chemicals Inc Substrate for mounting led and its manufacturing method
WO2006129690A1 (en) * 2005-05-31 2006-12-07 Showa Denko K.K. Substrate for led and led package
JP2006351666A (en) * 2005-06-14 2006-12-28 Fujikura Ltd Light emitting device mounting board and its manufacturing method, light emitting device module, lighting device, display device, and traffic signal
JP2007067116A (en) * 2005-08-30 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting device
WO2010035788A1 (en) * 2008-09-25 2010-04-01 デンカAgsp株式会社 Substrate for mounting light-emitting element and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAMICHI ISHIHARA ET AL.: "9-26 HLED Package Oyobi Kohonetsu Shomei Module no Kaihatsu", HEISEI 22 NENDO (DAI 43 KAI) PROCEEDINGS OF ANNUAL CONFERENCE OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN, 6 September 2010 (2010-09-06), pages 197 - 198 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059499A3 (en) * 2013-10-25 2015-06-18 Litecool Limited Led package and led module
JP2015220307A (en) * 2014-05-16 2015-12-07 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
EP3116038A1 (en) * 2015-07-06 2017-01-11 LG Electronics Inc. Light source module, fabrication method therefor, and lighting device including the same
US10401015B2 (en) 2015-07-06 2019-09-03 Lg Electronics Inc. Light source module, fabrication method therefor, and lighting device including the same
CN107087351A (en) * 2017-06-28 2017-08-22 奇酷互联网络科技(深圳)有限公司 Printed circuit board (PCB), the manufacture method of printed circuit board (PCB) and electronic product
CN107525025A (en) * 2017-09-22 2017-12-29 宁波升谱光电股份有限公司 A kind of LED encapsulation method and structure
JP2018174334A (en) * 2018-06-08 2018-11-08 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
CN108807646A (en) * 2018-08-28 2018-11-13 吉安市木林森光电有限公司 A kind of LED single crystalline chips holder and LED lamp bead
CN109343273A (en) * 2018-11-23 2019-02-15 江苏新广联科技股份有限公司 A kind of big beam angle Mini LED backlight mould group and preparation method thereof

Also Published As

Publication number Publication date
TW201246618A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
WO2012053550A1 (en) Led module device, method for manufacturing same, led package used for led module device, and method for manufacturing same
JP4914998B1 (en) LED module device and manufacturing method thereof
US10103304B2 (en) LED module
JP4910220B1 (en) LED module device and manufacturing method thereof
US9812621B2 (en) Semiconductor device and fabrication method for same
JP5038623B2 (en) Optical semiconductor device and manufacturing method thereof
US7514718B2 (en) LED package, manufacturing method thereof, and LED array module using the same
US10667345B2 (en) Method for manufacturing light-emitting device packages, light-emitting device package strip, and light-emitting device package
KR20120002916A (en) Led module, led package, and wiring substrate and manufacturing method thereof
WO2013168802A1 (en) Led module
JP2011176347A (en) Power light emitting die package with reflecting lens
JP4904604B1 (en) LED module device and manufacturing method thereof
US20120056223A1 (en) Led package structure and packaging method thereof
TW201511347A (en) LED package structure and manufacturing method thereof
JP6029188B2 (en) LED package and manufacturing method thereof
JP4887529B1 (en) LED package manufacturing method
JPH1050734A (en) Chip type semiconductor
KR101253183B1 (en) Printed circuit board, light emitting apparatus having the same and method for manufacturing thereof
CN101546737B (en) Package structure of compound semiconductor component and manufacturing method thereof
JP4910157B1 (en) LED package manufacturing method
US9066443B2 (en) Overlay circuit structure for interconnecting light emitting semiconductors
JP2015038902A (en) Led module device and manufacturing method of the same
JP2013084803A (en) Light-emitting device, light-emitting element package and wiring board for mounting light-emitting element
WO2014063637A1 (en) Cob led module and manufacturing method thereof
JP6679799B2 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834389

Country of ref document: EP

Kind code of ref document: A1