JP2008166081A - Lighting device, and lighting apparatus having lighting device - Google Patents

Lighting device, and lighting apparatus having lighting device Download PDF

Info

Publication number
JP2008166081A
JP2008166081A JP2006353467A JP2006353467A JP2008166081A JP 2008166081 A JP2008166081 A JP 2008166081A JP 2006353467 A JP2006353467 A JP 2006353467A JP 2006353467 A JP2006353467 A JP 2006353467A JP 2008166081 A JP2008166081 A JP 2008166081A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
substrate
device substrate
stress relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006353467A
Other languages
Japanese (ja)
Inventor
Masahiro Izumi
昌裕 泉
Tomohiro Sanpei
友広 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2006353467A priority Critical patent/JP2008166081A/en
Publication of JP2008166081A publication Critical patent/JP2008166081A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a load accompanying lighting to a jointing portion of a semiconductor light-emitting element and a conductor to a bonding wire, and suppress deformation of a device board accompanying wire bonding. <P>SOLUTION: The lighting device 31 comprises a device board 1 of a rectangular shape, a plurality of semiconductor light-emitting elements 11, a plurality of conductors 8, a bonding wire 17, and a translucent sealing member 22. The device board 1 has a rear face 1b which serves as a heat radiating face. Stress relaxation grooves 1a which are open on the heat radiation face are installed extended in a direction crossing the longitudinal direction of the board 1. The light-emitting elements 11 are mounted on the board 1 corresponding to the stress relaxation grooves 1a and are arranged in longitudinal direction of the board 1. The conductors 8 are arranged alternately with each light-emitting element 11 on the board 1 corresponding to the stress relaxation grooves 1a to be in a row in longitudinal direction of the device board 1. The light-emitting elements 11 and the conductors 8 adjoining in longitudinal direction of the device board 1 are connected by the bonding wire. The bonding wire 17 and the light-emitting elements 11 are sealed by the sealing member 22. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、LED(発光ダイオード)等の半導体発光素子を発光させて照明をする照明装置、及びこの照明装置を光源部として備える照明器具に関する。   The present invention relates to an illuminating device that emits light by emitting light from a semiconductor light emitting element such as an LED (light emitting diode), and a luminaire including the illuminating device as a light source unit.

従来、透光性の樹脂内に埋め込まれたLEDからの放熱を促進して、LED出力や発光波長を安定させ、LEDとしての信頼性向上並びに長寿命化を図るために、複数のLEDが表面実装された基板の裏面に放熱用の溝を設ける技術が知られている。   Conventionally, in order to promote the heat radiation from the LED embedded in the translucent resin, stabilize the LED output and emission wavelength, improve the reliability as LED, and extend the life of the LED, A technique for providing a heat radiation groove on the back surface of a mounted substrate is known.

この技術では、基板の一面に複数の凹部からなる凹部列を互いに平行に形成し、各凹部に個別に実装された発光素子であるLEDを、基板の他面(裏面)に設けた正極及び負極の配線端子に凹部の底面から基板の裏面に達するスルーホールを介して接続し、各LEDを電気的に接続している。そして、基板の裏面に、前記凹部列の間に夫々位置してこれら凹部列と平行に放熱用の溝を形成し、これらの溝にヒートパープをはめ込んでいる。それにより、LEDが発生した熱を放熱用の溝からヒートパイプに放出して、高い放熱性を得るように構成されている(例えば、特許文献1参照。)。
特開2006−19557号公報(段落0006,0021−0048、図1−図7)
In this technology, a row of concave portions formed of a plurality of concave portions is formed in parallel on one surface of a substrate, and LEDs, which are light-emitting elements individually mounted on the concave portions, are provided on the other surface (back surface) of the substrate. Each of the LEDs is electrically connected to the wiring terminal through a through hole that reaches the back surface of the substrate from the bottom surface of the recess. On the back surface of the substrate, heat radiating grooves are formed in parallel with the recess rows, respectively, between the recess rows, and heat traps are fitted in these grooves. Thereby, the heat generated by the LED is released from the heat radiating groove to the heat pipe to obtain high heat radiating properties (see, for example, Patent Document 1).
Japanese Patent Laying-Open No. 2006-19557 (paragraphs 0006, 0021-0048, FIGS. 1 to 7)

点灯したLEDからの放熱を促進する工夫があっても、基板の温度はある程度上昇する。それに伴い基板は、その長手方向両端を基準としてこれらの間が基板の一面側に凸となるように反ることがある。しかし、基板の長手方向に直交する方向に並べて配設されたLED同士を、基板の裏面で電気的に接続した技術を開示した特許文献1には、基板温度の上昇により基板が反った場合、この反りがLED同士の電気的接続にどのような影響に与えるのかということについては開示がない。   Even if there is a device for promoting heat dissipation from the lit LED, the temperature of the substrate rises to some extent. Accordingly, the substrate may be warped so that the distance between the both ends in the longitudinal direction is convex toward the one surface side of the substrate. However, in Patent Document 1 that discloses a technique in which LEDs arranged in a direction orthogonal to the longitudinal direction of the substrate are electrically connected to each other on the back surface of the substrate, the substrate warps due to an increase in the substrate temperature. There is no disclosure as to how this warpage affects the electrical connection between LEDs.

ところで、照明装置として、特許文献1に記載されたもの以外に、複数のLEDと導体とを基板の長手方向に交互に並べて、これらを基板の長手方向に延びるボンディングワイヤで電気的に接続するとともに、少なくともボンディングワイヤ及びLEDを透光性樹脂で封止した照明装置が、本発明者等により提案されている。   By the way, as a lighting device, in addition to the one described in Patent Document 1, a plurality of LEDs and conductors are alternately arranged in the longitudinal direction of the substrate, and these are electrically connected by a bonding wire extending in the longitudinal direction of the substrate. An illuminating device in which at least a bonding wire and an LED are sealed with a translucent resin has been proposed by the present inventors.

このような照明装置では、ボンディングワイヤの自由な変形がこのワイヤを埋めた樹脂で妨げられている。そのため、LEDが点灯して基板温度が上昇することに伴い基板が反った場合に、LED及び導体に対するボンディングワイヤの接合部に負荷が掛かりやすく、それを原因としてLEDの点灯不良を招く恐れが考えられる。   In such an illuminating device, the free deformation of the bonding wire is hindered by the resin filling the wire. Therefore, when the LED is turned on and the substrate is warped as the substrate temperature rises, a load is easily applied to the bonding portion of the bonding wire to the LED and the conductor, which may cause a lighting failure of the LED. It is done.

又、ワイヤボンディングをするには、ボンディングツールをある程度の押圧力でLEDの電極及び導体に押付けて接合をするので、この接合に伴って基板が前記押圧力で変形しないように配慮する必要がある。しかし、このような配慮は、ボンディングワイヤを介してLEDと導体を電気的に接続した技術では知られてない。これとともに、そもそもボンディングワイヤを用いて隣接したLED同士を電気的に接続するものではない前記特許文献1の技術は、当然のことながら、前記配慮を示唆するものではない。   For wire bonding, the bonding tool is pressed against the electrodes and conductors of the LED with a certain amount of pressing force, and it is necessary to consider that the substrate does not deform with the pressing force. . However, such consideration is not known in the technology in which the LED and the conductor are electrically connected via a bonding wire. At the same time, the technique of Patent Document 1 that does not electrically connect adjacent LEDs using a bonding wire does not suggest the consideration.

本発明の目的は、半導体発光素子及び導体とボンディングワイヤとの接合部に対する点灯に伴う負荷を低減できるとともに、ワイヤボンディングに伴う装置基板の変形を抑制できる照明装置及びこの照明装置を備えた照明器具を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a lighting device capable of reducing a load caused by lighting on a joint portion between a semiconductor light emitting element and a conductor and a bonding wire, and capable of suppressing deformation of a device substrate caused by wire bonding, and a lighting fixture including the lighting device. Is to provide.

請求項1に係る発明の照明装置は、長四角形状であって、放熱面をなす裏面を有し、かつ、前記長四角形状の長手方向に交差する方向に延びる複数の応力緩和溝が前記放熱面に開放して設けられた装置基板と;前記応力緩和溝に対応して前記装置基板に実装され前記装置基板の長手方向に並べられた複数の半導体発光素子と;前記応力緩和溝間に対応して前記装置基板に前記各半導体発光素子と交互に配置されて前記装置基板の長手方向に並べられた複数の導体と;前記装置基板の長手方向に隣接した前記半導体発光素子と前記導体とを接続したボンディングワイヤと;このボンディングワイヤ及び前記半導体発光素子を封止した透光性の封止部材と;を具備したことを特徴としている。   The illumination device of the invention according to claim 1 has a long rectangular shape, a back surface forming a heat radiating surface, and a plurality of stress relaxation grooves extending in a direction intersecting a longitudinal direction of the long rectangular shape. A device substrate provided open to the surface; a plurality of semiconductor light emitting elements mounted on the device substrate corresponding to the stress relaxation grooves and arranged in a longitudinal direction of the device substrate; and corresponding between the stress relaxation grooves A plurality of conductors alternately arranged on the device substrate and arranged in the longitudinal direction of the device substrate; and the semiconductor light emitting devices and the conductors adjacent to each other in the longitudinal direction of the device substrate. A bonding wire connected; and a translucent sealing member that seals the bonding wire and the semiconductor light emitting element.

請求項1の発明で、装置基板には合成樹脂基板や金属ベースド基板などを用いることができる。合成樹脂基板としては、ガラスエポキシ基板を例示できる。金属ベースド基板は、Cu(銅)やAl(アルミニウム)及びその合金等からなる金属製ベースの一面に合成樹脂製の絶縁層を積層してなる基板である。金属ベースド基板の表面をなす絶縁層及び合成樹脂基板の表面は、半導体発行素子から差し込む光の吸収を抑制して光の取出し効率を高めるために、高い光反射性能を有すると良く、白色を呈することが好ましい。   In the first aspect of the present invention, a synthetic resin substrate, a metal-based substrate, or the like can be used as the device substrate. An example of the synthetic resin substrate is a glass epoxy substrate. The metal-based substrate is a substrate obtained by laminating an insulating layer made of a synthetic resin on one surface of a metal base made of Cu (copper), Al (aluminum), an alloy thereof, or the like. The insulating layer forming the surface of the metal-based substrate and the surface of the synthetic resin substrate should have high light reflection performance and exhibit white color in order to suppress the absorption of light inserted from the semiconductor issuing element and increase the light extraction efficiency. It is preferable.

請求項1の発明で、応力緩和溝の断面の形状は、半円状、コの字状、V字状、台形状等いかなる形状であってもよい。又、装置基板の長手方向に対して交差する応力緩和溝は、最大90度の交差角を含めてこの角度にできるだけ近い角度で装置基板の長手方向に交差させて設けると良い。更に、装置基板の長手方向に交差して応力緩和溝が延びるとは、連続して延びていることに制約されず、不連続であっても良い。   In the invention of claim 1, the shape of the cross section of the stress relaxation groove may be any shape such as a semicircular shape, a U shape, a V shape, and a trapezoidal shape. Further, the stress relaxation grooves intersecting with the longitudinal direction of the device substrate may be provided so as to intersect with the longitudinal direction of the device substrate at an angle as close as possible to this angle including the intersection angle of 90 degrees at the maximum. Furthermore, the stress relaxation grooves extending across the longitudinal direction of the device substrate are not limited to being continuously extended, and may be discontinuous.

請求項1の発明で、半導体発光素子には、例えば青色発光する青色LED、紫外光を発する紫外光LED等を好適に用いることができるが、青色LED、赤色LED、緑色LEDのうちの少なくとも二種のLEDを組み合わせて用いることも可能である。そして、例えば発光源に青色LEDを用いて白色発光をする照明装置とする場合には、青色の光を吸収して黄色の光を放射する蛍光体が混ぜられた封止部材を用いればよく、或いは紫外光を吸収して赤色の光を放射する蛍光体、紫外光を吸収して緑色の光を放射する蛍光体、及び紫外光を吸収して黄色の光を放射する蛍光体が夫々混ぜられた封止部材を用いればよい。   In the invention of claim 1, for example, a blue LED that emits blue light, an ultraviolet LED that emits ultraviolet light, or the like can be suitably used as the semiconductor light emitting element, but at least two of blue LEDs, red LEDs, and green LEDs can be used. It is also possible to use various types of LEDs in combination. And, for example, in the case of an illumination device that emits white light using a blue LED as a light source, a sealing member mixed with a phosphor that absorbs blue light and emits yellow light may be used. Alternatively, a phosphor that absorbs ultraviolet light and emits red light, a phosphor that absorbs ultraviolet light and emits green light, and a phosphor that absorbs ultraviolet light and emits yellow light are mixed. A sealing member may be used.

請求項1の発明で、半導体発光素子を外気及び湿気から遮断してこの素子の寿命低下を防ぐ透光性の封止部材には、透光性の合成樹脂、例えばエポキシ樹脂、シリコーン樹脂、ウレタン樹脂等を用いることができる他、透明な低融点ガラスを用いることもできる。   In the invention of claim 1, a translucent sealing member that blocks the semiconductor light emitting element from the outside air and moisture to prevent the lifetime of the element from being reduced includes a translucent synthetic resin such as an epoxy resin, a silicone resin, and urethane. Resin or the like can be used, and transparent low melting point glass can also be used.

請求項1の発明の照明装置は、導体及びボンディングワイヤを介して半導体発光素子に通電することにより、この素子を発光させ、その光を封止部材に透過させて外部に取出し、その取出し方向の照明を行う。この点灯に伴い装置基板は温度上昇するが、隣接した応力緩和溝間に位置された溝間基板部分の膨張は応力緩和溝で吸収されるので、前記熱膨張により装置基板が反ることを抑制できる。そのため、導体及び半導体発光素子とボンディングワイヤとの接合部に、装置基板の熱膨張に伴って与えられる負荷を低減できる。   The lighting device according to the first aspect of the present invention emits light from the semiconductor light-emitting element by energizing the semiconductor light-emitting element through the conductor and the bonding wire, transmits the light through the sealing member, and takes it out to the outside. Illuminate. With this lighting, the temperature of the device substrate rises, but the expansion of the inter-groove substrate portion located between adjacent stress relaxation grooves is absorbed by the stress relaxation groove, so that the device substrate is prevented from warping due to the thermal expansion. it can. For this reason, it is possible to reduce the load applied to the joint portion between the conductor and the semiconductor light emitting element and the bonding wire in accordance with the thermal expansion of the device substrate.

更に、装置基板の応力緩和溝が形成された基板部位は薄くなってその強度は低下するが、それ以外の溝間基板部位は十分な厚みがあって強度が低下しない。そして、この強度が維持された溝間基板部位に対応して設けられた導体にボンディングワイヤがワイヤボンディングにより接合されているため、導体へのワイヤボンディングに伴い応力緩和溝を原因として装置基板が変形する恐れがない。又、応力緩和溝により薄くなった基板部位は、そこに実装された半導体発光素子の厚みが加味されているので、半導体発光素子へのワイヤボンディングに伴い応力緩和溝を原因として装置基板が変形する恐れがない。   Further, the substrate portion where the stress relaxation groove of the device substrate is formed becomes thin and its strength is reduced, but the other substrate portion between the grooves has a sufficient thickness and the strength is not lowered. Since the bonding wire is bonded to the conductor provided corresponding to the inter-groove substrate portion where the strength is maintained by wire bonding, the device substrate is deformed due to the stress relaxation groove along with the wire bonding to the conductor. There is no fear of doing. Further, since the thickness of the semiconductor light emitting element mounted on the substrate portion thinned by the stress relaxation groove is taken into account, the device substrate is deformed due to the stress relaxation groove along with the wire bonding to the semiconductor light emitting element. There is no fear.

請求項2の発明の照明装置は、前記応力緩和溝を前記装置基板の長手方向に対して斜め交差させたことを特徴としている。   The illuminating device of the invention of claim 2 is characterized in that the stress relaxation groove is obliquely intersected with the longitudinal direction of the device substrate.

この発明では、各応力緩和溝を装置基板の長手方向に対して斜め交差させて、隣接した応力緩和溝間の強度が低下しない溝間基板部位が、装置基板の長手方向に関して応力緩和溝で途切れないようにしたので、応力緩和溝を装置基板の長手方向に直交して設けた場合よりも、点灯に伴い装置基板が反ることをより効果的に抑制できる。   In this invention, each stress relaxation groove is obliquely intersected with the longitudinal direction of the device substrate, and the inter-groove substrate portion where the strength between adjacent stress relaxation grooves does not decrease is interrupted by the stress relaxation groove in the longitudinal direction of the device substrate. Since the stress relaxation grooves are provided orthogonal to the longitudinal direction of the device substrate, the device substrate can be more effectively suppressed from being warped with lighting.

請求項3の発明の照明器具は、光源部をなす前記請求項1又は2に記載の照明装置と:この照明装置が備えた装置基板の放熱面に重ねて配置された排熱部材と;前記装置基板の各応力緩和溝に充填されて前記装置基板と前記排熱部材との間の伝熱を担う伝熱部材と;を具備したことを特徴としている。   The lighting apparatus of the invention of claim 3 comprises the lighting device according to claim 1 or 2 forming a light source part: a heat exhausting member disposed so as to overlap with a heat radiating surface of a device substrate provided in the lighting device; And a heat transfer member that fills each stress relaxation groove of the device substrate and carries out heat transfer between the device substrate and the exhaust heat member.

この発明は、請求項1又は2に記載の照明装置を備えているので、半導体発光素子及び導体とボンディングワイヤとの接合部に対する点灯に伴う負荷を低減できるとともに、ワイヤボンディングに伴う基板の変形を抑制できる。しかも、点灯時の半導体発光素子が発する熱はこの素子に対応した位置の応力緩和溝から排熱部材に放出されるが、応力緩和溝が断熱空間となることはなく、この溝を埋めた伝熱部材を通じて排熱部材に円滑に熱伝導させて放出できるので、半導体発光素子及び装置基板の温度上昇を効果的に抑制できる。   Since this invention is provided with the illuminating device of Claim 1 or 2, while reducing the load accompanying the lighting with respect to the junction part of a semiconductor light emitting element and a conductor, and a bonding wire, the deformation | transformation of the board | substrate accompanying wire bonding can be reduced. Can be suppressed. In addition, the heat generated by the semiconductor light emitting element during lighting is released to the heat exhausting member from the stress relaxation groove at a position corresponding to the element, but the stress relaxation groove does not become a heat insulating space, and the heat transmitted through the groove is filled. Since heat can be smoothly conducted to the exhaust heat member through the heat member and released, temperature rise of the semiconductor light emitting element and the device substrate can be effectively suppressed.

請求項1から3の発明によれば、半導体発光素子及び導体とボンディングワイヤとの接合部に対する点灯に伴う負荷を低減できるとともに、ワイヤボンディングに伴う装置基板の変形を抑制できる照明装置及びこの照明装置を備えた照明器具を提供できる。   According to the first to third aspects of the present invention, it is possible to reduce a load associated with lighting of a semiconductor light emitting element and a joint between a conductor and a bonding wire, and to suppress deformation of the device substrate associated with wire bonding, and the illumination device Can be provided.

図1〜図4を参照して本発明の第1実施形態を説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1及び図2中符号30はLEDパッケージを形成する照明装置を示している。照明装置30は照明器具31(図2中参照)の光源部として用いられている。照明装置30は、照明器具31が備えた図示しない器具本体にその照射開口に対向して内蔵されていて、点灯されることにより照射開口を通して照明対象に光を照射する。照明器具31は図2に二点鎖線で示した排熱部材32を備えている。排熱部材32は、照明装置30から放出される熱を受けるものであって、例えばヒートシンク等により構成される。   Reference numeral 30 in FIGS. 1 and 2 denotes an illumination device that forms an LED package. The lighting device 30 is used as a light source unit of a lighting fixture 31 (see FIG. 2). The illuminating device 30 is built in a fixture main body (not shown) provided in the luminaire 31 so as to face the irradiation opening, and illuminates the illumination target through the irradiation opening when turned on. The luminaire 31 includes a heat exhaust member 32 shown by a two-dot chain line in FIG. The heat exhausting member 32 receives heat released from the lighting device 30 and is composed of, for example, a heat sink.

照明装置30は、装置基板1と、複数の導体8と、複数のチップ状LED例えば半導体発光素子11と、ボンディングワイヤ17,18と、リフレクタ20と、封止部材22と、を備えて形成されている。   The illumination device 30 includes the device substrate 1, a plurality of conductors 8, a plurality of chip LEDs, for example, semiconductor light emitting elements 11, bonding wires 17 and 18, a reflector 20, and a sealing member 22. ing.

装置基板1は、照明装置30として必要とされる発光面積を得るために所定の大きさの長四角形状をなしている。この装置基板1は、金属ベース2の一面に絶縁層5を積層してなる金属ベースド基板からなる。金属ベース2はCuからなる。   The device substrate 1 has a long rectangular shape with a predetermined size in order to obtain a light emitting area required for the lighting device 30. The device substrate 1 is composed of a metal-based substrate in which an insulating layer 5 is laminated on one surface of a metal base 2. The metal base 2 is made of Cu.

金属ベース2の後述する素子取付け部3以外の基板主部2aの厚みは例えば0.25mmである。金属ベース2の裏面からなる装置基板1の裏面1b、つまり、後述の半導体発光素子11が実装されていない面は、排熱部材32に面接触する伝熱面として用いられる。   The thickness of the substrate main portion 2a other than the element mounting portion 3 described later of the metal base 2 is, for example, 0.25 mm. The back surface 1 b of the device substrate 1 made of the back surface of the metal base 2, that is, the surface on which a semiconductor light emitting element 11 described later is not mounted is used as a heat transfer surface that is in surface contact with the heat exhaust member 32.

この裏面1bに開口して装置基板1に応力緩和溝1aが複数設けられている。図4に示すように各応力緩和溝1aは、互いに平行であって、装置基板1の長手方向に例えば直交する方向に延びている。これら応力緩和溝1aの配設ピッチは装置基板1の長手方向に並べて実装される半導体発光素子11の配設ピッチに等しい。図2に代表して示すように各応力緩和溝1aはそれが延びる方向と直交する方向の断面が、装置基板1の裏面1bに向けて次第に開く形状、例えばV形に形成されていて、後述する素子取付け部3の裏側部位を抉るように設けられている。応力緩和溝1aの開口幅は後述する素子取付け部3の先端面3aの直径より小さい。   A plurality of stress relaxation grooves 1a are provided in the device substrate 1 so as to open on the back surface 1b. As shown in FIG. 4, the stress relaxation grooves 1 a are parallel to each other and extend, for example, in a direction orthogonal to the longitudinal direction of the device substrate 1. The arrangement pitch of the stress relaxation grooves 1a is equal to the arrangement pitch of the semiconductor light emitting elements 11 mounted side by side in the longitudinal direction of the device substrate 1. As representatively shown in FIG. 2, each stress relaxation groove 1 a has a cross-section in a direction perpendicular to the extending direction thereof, which is gradually opened toward the back surface 1 b of the device substrate 1, for example, a V shape. It is provided so as to cover the back side portion of the element mounting portion 3 to be operated. The opening width of the stress relaxation groove 1a is smaller than the diameter of the tip surface 3a of the element mounting portion 3 described later.

装置基板1の裏面1bとこれに接して配設された排熱部材32との間には、これらの間の伝熱を担う伝熱部材33(図2参照)が設けられている。伝熱部材33は例えばシリコーン樹脂を主剤とするものであって、応力緩和溝1aに充填されている。   Between the back surface 1b of the apparatus substrate 1 and the exhaust heat member 32 disposed in contact therewith, a heat transfer member 33 (see FIG. 2) responsible for heat transfer therebetween is provided. The heat transfer member 33 is mainly composed of, for example, a silicone resin, and is filled in the stress relaxation groove 1a.

金属ベース2は、これと一体の凸部からなる素子取付け部3を例えば半導体発光素子11と同数有している。これらの素子取付け部3は各応力緩和溝1aの真上(図2及び図3において)に位置して基板主部2aの表面(一面)に突設されている。図2で代表して示すように素子取付け部3の先端面3aは前記一面と平行な平坦面をなしていて、この先端面3aに半導体発光素子11が実装されている。したがって、各半導体発光素子11は応力緩和溝1aが形成された位置に対応して装置基板1の表面側に実装されて、装置基板1の長手方向に間隔的に並べられている。   The metal base 2 has, for example, the same number of element mounting portions 3 formed by convex portions integrated with the metal base 2 as the number of semiconductor light emitting elements 11. These element mounting portions 3 are positioned directly above each stress relaxation groove 1a (in FIGS. 2 and 3) and project from the surface (one surface) of the substrate main portion 2a. As representatively shown in FIG. 2, the tip surface 3a of the element mounting portion 3 forms a flat surface parallel to the one surface, and the semiconductor light emitting element 11 is mounted on the tip surface 3a. Accordingly, the respective semiconductor light emitting elements 11 are mounted on the surface side of the device substrate 1 corresponding to the positions where the stress relaxation grooves 1 a are formed, and are arranged at intervals in the longitudinal direction of the device substrate 1.

なお、本発明は、素子取付け部3に一個の半導体発光素子11を取付けることに制約されることはなく、一つの素子取付け部3に複数個の半導体発光素子11を並べて取付けることも可能である。その場合、同じ色を発する複数個の半導体発光素子11であっても、或いは異なる色を発する複数個の半導体発光素子11であってもよく、異なる色を発する複数個の半導体発光素子11を一つの素子取付け部3に取付ける場合には、赤色、黄色、青色の光を発する3個の半導体発光素子11を並べて取付けることもできる。そして、一つの素子取付け部3に複数個の半導体発光素子11を並べて取付けた構成においては、照明装置30の全光束を向上させることが可能である。   The present invention is not limited to mounting one semiconductor light emitting element 11 on the element mounting portion 3, and a plurality of semiconductor light emitting elements 11 can be mounted side by side on one element mounting portion 3. . In that case, it may be a plurality of semiconductor light emitting elements 11 that emit the same color or a plurality of semiconductor light emitting elements 11 that emit different colors. When attaching to the two element attaching portions 3, three semiconductor light emitting elements 11 emitting red, yellow, and blue light can be attached side by side. In the configuration in which a plurality of semiconductor light emitting elements 11 are mounted side by side on one element mounting portion 3, the total luminous flux of the lighting device 30 can be improved.

素子取付け部3はその先端面3aから金属ベース2の一面に至るに従い次第に太く形成されている。言い換えれば、素子取付け部3は、その高さ方向と直交する断面積が先端面3aから金属ベース2の表面に至るに従い次第に大きくなる円錐台状に形成されている。そのため、素子取付け部3の最大径をなす根元部の周面は基板主部2aとの間に角を作ることなく弧状となって基板主部2aの表面に連続している。表面素子取付け部3の先端面3aに光反射層4が被着されている。光反射層4は、Agの薄膜からなり、その厚みは0.003mm〜0.005mmである。これとともに、Ag製光反射層4の反射率は90%以上である。   The element mounting portion 3 is gradually formed thicker from the tip end surface 3a to one surface of the metal base 2. In other words, the element mounting portion 3 is formed in a truncated cone shape whose cross-sectional area perpendicular to the height direction gradually increases from the tip surface 3 a to the surface of the metal base 2. For this reason, the peripheral surface of the base portion forming the maximum diameter of the element mounting portion 3 forms an arc shape without forming a corner with the substrate main portion 2a and continues to the surface of the substrate main portion 2a. The light reflecting layer 4 is attached to the front end surface 3 a of the surface element mounting portion 3. The light reflecting layer 4 is made of an Ag thin film and has a thickness of 0.003 mm to 0.005 mm. At the same time, the reflectance of the Ag light reflecting layer 4 is 90% or more.

光反射層4を含めた素子取付け部3の高さは、図2において半導体発光素子11の上面の高さ位置が後述する導体8の高さ位置以上になることを満たせば、基板主部2aの厚みより低くても差し支えないが、基板主部2aの厚みと同じかそれ以上の高さとすることが好ましく、本実施形態では絶縁層5及び導体8の合計厚みより高くしてある。   If the height of the element mounting portion 3 including the light reflection layer 4 satisfies that the height position of the upper surface of the semiconductor light emitting element 11 in FIG. 2 is equal to or higher than the height position of the conductor 8 described later, the substrate main portion 2a. However, the height is preferably equal to or higher than the thickness of the substrate main portion 2a. In this embodiment, the thickness is higher than the total thickness of the insulating layer 5 and the conductor 8.

絶縁層5には光反射性能を得るために例えば白色のガラスエポキシ基板が用いられている。絶縁層5の厚みは、最小で0.060mmあればよく、本実施形態では例えば0.25mmにしてある。この絶縁層5は、図2及び図3で代表して示すように素子取付け部3が通る逃げ孔6を有している。この逃げ孔6は例えば円形で、その直径は素子取付け部3の最大径をなす根元部の直径より大きい。逃げ孔6は素子取付け部3と同数設けられている。   For example, a white glass epoxy substrate is used for the insulating layer 5 in order to obtain light reflection performance. The thickness of the insulating layer 5 may be 0.060 mm at the minimum, and is set to, for example, 0.25 mm in this embodiment. The insulating layer 5 has an escape hole 6 through which the element mounting portion 3 passes, as representatively shown in FIGS. 2 and 3. The escape hole 6 is circular, for example, and the diameter thereof is larger than the diameter of the root portion forming the maximum diameter of the element mounting portion 3. The same number of escape holes 6 as the element mounting portions 3 are provided.

絶縁層5は基板主部2aの表面(一面)に接着剤7を用いて貼り合わせることにより金属ベース2に積層されている。接着剤7は、絶縁性であって、絶縁層5と基板主部2aとの間に例えば0.005mm以下の膜厚で設けられる。絶縁層5の接着において、絶縁層5の各逃げ孔6は各素子取付け部3に夫々嵌合するので、絶縁層5は金属ベース2に素子取付け部3を除いて積層され、それにより、素子取付け部3は逃げ孔6に露出されている。   The insulating layer 5 is laminated on the metal base 2 by being bonded to the surface (one surface) of the substrate main portion 2a using an adhesive 7. The adhesive 7 is insulative and is provided with a film thickness of, for example, 0.005 mm or less between the insulating layer 5 and the substrate main portion 2a. In adhesion of the insulating layer 5, each escape hole 6 of the insulating layer 5 is fitted into each element mounting portion 3, so that the insulating layer 5 is laminated on the metal base 2 except for the element mounting portion 3, thereby The attachment portion 3 is exposed in the escape hole 6.

前記嵌合により絶縁層5が素子取付け部3に当たらないので、絶縁層5が金属ベース2に対して浮くようなことがなく適正に重ね合わされるとともに、金属ベース2に対し絶縁層5が位置決めされる。言い換えれば、凸部からなる素子取付け部3が通る絶縁層5の逃げ孔6によって、金属ベース2へ絶縁層5を接着する際に、この絶縁層5が素子取付け部3に当たらないようにして、金属ベース2に絶縁層5を適正に積層させることができる。   Since the insulating layer 5 does not hit the element mounting portion 3 by the fitting, the insulating layer 5 does not float with respect to the metal base 2 and is properly overlapped, and the insulating layer 5 is positioned with respect to the metal base 2. Is done. In other words, when the insulating layer 5 is bonded to the metal base 2 by the escape hole 6 of the insulating layer 5 through which the element mounting portion 3 made of a convex portion passes, the insulating layer 5 is prevented from hitting the element mounting portion 3. The insulating layer 5 can be appropriately laminated on the metal base 2.

そして、前記貼り合わせにおいて接着剤7の塗布量が多く余剰を生じた場合、その余剰分7a(図2及び図3参照)の一部は逃げ孔6に流入し、より正確には、素子取付け部3の形状に起因して、この素子取付け部3の周面と逃げ孔6との間に必然的に形成される環状の隙間に、余剰分7aが流入してそこに溜められて固化される。それにより、絶縁層5は素子取付け部3の周面に対しても接着されるので、積層強度が高められる。しかも、余剰分7aは体積固有抵抗が10−2〜10−15Ω・mの絶縁層として機能するので、後述のように導体8が装着された絶縁層5と素子取付け部3の周面との間の耐電圧を向上できる。 And when the application amount of the adhesive 7 is large in the bonding, a part of the surplus 7a (see FIGS. 2 and 3) flows into the escape hole 6, and more precisely, the element mounting Due to the shape of the portion 3, the surplus portion 7 a flows into the annular gap inevitably formed between the peripheral surface of the element mounting portion 3 and the escape hole 6, and is accumulated and solidified there. The As a result, the insulating layer 5 is also bonded to the peripheral surface of the element mounting portion 3, so that the lamination strength is increased. Moreover, since the surplus portion 7a functions as an insulating layer having a volume resistivity of 10 −2 to 10 −15 Ω · m, the insulating layer 5 on which the conductor 8 is mounted and the peripheral surface of the element mounting portion 3 as described later Withstand voltage between the two can be improved.

複数の導体8は、各半導体発光素子11への通電要素としてこれら半導体発光素子11を直列に接続するために設けられ、絶縁層5の基板主部2aに接着された裏面とは反対側の面にエッチング処理等により形成されている。これらの導体8は、Cuからなり、絶縁層5を基板主部2aに貼り合わせる前に設けられる。   The plurality of conductors 8 are provided to connect the semiconductor light emitting elements 11 in series as current-carrying elements to the semiconductor light emitting elements 11, and are opposite to the back surface bonded to the substrate main portion 2a of the insulating layer 5. It is formed by an etching process or the like. These conductors 8 are made of Cu, and are provided before the insulating layer 5 is bonded to the substrate main portion 2a.

図1及び図3に示すように各導体8は、装置基板1を平面的に見て応力緩和溝1aから外れた位置、つまり、応力緩和溝1a間に対応して配置されているとともに、装置基板1の長手方向に所定間隔毎に点在して二列形成されている。各列での複数の導体8は、例えば4mmピッチで各逃げ孔6と交互に並べられている。前記列の一端側に位置した導体8には電線接続部9が一体に連続して形成されている。これら電線接続部9の夫々には図示しない電源にいたる電線が個別に半田付けされる。   As shown in FIG. 1 and FIG. 3, each conductor 8 is disposed corresponding to a position deviated from the stress relaxation groove 1a when the device substrate 1 is viewed in plan, that is, between the stress relaxation grooves 1a. Two rows are formed at predetermined intervals in the longitudinal direction of the substrate 1. The plurality of conductors 8 in each row are alternately arranged with the escape holes 6 at a pitch of 4 mm, for example. An electric wire connecting portion 9 is integrally and continuously formed on the conductor 8 located on one end side of the row. Each of these electric wire connecting portions 9 is individually soldered with electric wires leading to a power source (not shown).

図2及び図3で代表して示すように各導体8は、逃げ孔6の縁には達しておらず、この逃げ孔6の縁から所定距離隔てられている。それにより、導体8の端8aとこれに最も近接している逃げ孔6の縁との間に、白色の絶縁層5の一部が露出されている。なお、符号5aで露出面を示す。そのため、導体8の端8aと素子取付け部3との間に前記環状の隙間より大きい絶縁距離を確保できるとともに、露出面5aでもそこに入射した光を光の取出し方向に反射させることができる。   As representatively shown in FIGS. 2 and 3, each conductor 8 does not reach the edge of the escape hole 6 but is separated from the edge of the escape hole 6 by a predetermined distance. Thereby, a part of the white insulating layer 5 is exposed between the end 8a of the conductor 8 and the edge of the escape hole 6 closest to the end 8a. Note that the exposed surface is indicated by reference numeral 5a. Therefore, an insulation distance larger than the annular gap can be secured between the end 8a of the conductor 8 and the element mounting portion 3, and light incident thereon can be reflected in the light extraction direction even on the exposed surface 5a.

導体8の端8aは、半導体発光素子11の後述する電極14又は15から0.25mm〜6.0mmの距離を隔てて位置される。これは、後述のワイヤボンディングにおいて導体8に対しては、その端8aをボンディングマシンに認識させて、そこを基準に所定距離E離れた位置にボンディングワイヤを接合するので、その際にボンディングワイヤの接合部にストレスが残留することを極力抑制するための配慮である。   The end 8a of the conductor 8 is located at a distance of 0.25 mm to 6.0 mm from an electrode 14 or 15 described later of the semiconductor light emitting element 11. This is because, in the wire bonding described later, the end 8a of the conductor 8 is recognized by the bonding machine, and the bonding wire is bonded to a position separated by a predetermined distance E with reference to the end 8a. This is a consideration for suppressing the residual stress at the joint as much as possible.

各導体8の表面にはAgの光反射層10が被着されている。この光反射層10は、反射率が90%以上のAgの薄膜からなり、その厚みは0.003mm〜0.005mmである。光反射層10を含めた導体8の厚みは0.012mm〜0.018mmである。各導体8上の光反射層10及び各素子取付け部3の光反射層4は、いずれも例えばメッキ処理により一度に設けることができる。この場合、導体8及び素子取付け部3がCu製であるので、これらをメッキ浴することなく、光反射層10及び4をメッキ処理して設けることが可能である。   An Ag light reflecting layer 10 is deposited on the surface of each conductor 8. The light reflecting layer 10 is made of an Ag thin film having a reflectance of 90% or more, and has a thickness of 0.003 mm to 0.005 mm. The thickness of the conductor 8 including the light reflection layer 10 is 0.012 mm to 0.018 mm. Both the light reflecting layer 10 on each conductor 8 and the light reflecting layer 4 of each element mounting portion 3 can be provided at a time by, for example, plating. In this case, since the conductor 8 and the element mounting portion 3 are made of Cu, the light reflecting layers 10 and 4 can be provided by plating without plating them.

各半導体発光素子11は例えばチップ状をなす青色LEDからなる。この青色LEDは、例えば窒化物半導体を用いてなるダブルワイヤー型であって、図2に示すように透光性を有する素子基板12の一面に半導体発光層13を積層して形成されている。素子基板12は例えばサファイア基板で作られている。半導体発光層13は、素子基板12の裏面にバッファ層、n型半導体層、発光層、p型クラッド層、p型半導体層を順次積層して形成されている。発光層は、バリア層とウエル層を交互に積層した量子井戸構造をなしている。n形半導体層にはn側電極14が設けられ、p形半導体層にはp側電極15が設けられている。この半導体発光層13は反射膜を有しておらず、半導体発光素子11の厚み方向の双方に光を放射できるとともに、素子基板12の側面から側方へも光を放射できる。   Each semiconductor light emitting element 11 is made of, for example, a blue LED having a chip shape. The blue LED is a double wire type using, for example, a nitride semiconductor, and is formed by laminating a semiconductor light emitting layer 13 on one surface of a light-transmitting element substrate 12 as shown in FIG. The element substrate 12 is made of, for example, a sapphire substrate. The semiconductor light emitting layer 13 is formed by sequentially stacking a buffer layer, an n-type semiconductor layer, a light emitting layer, a p-type cladding layer, and a p-type semiconductor layer on the back surface of the element substrate 12. The light emitting layer has a quantum well structure in which barrier layers and well layers are alternately stacked. An n-side electrode 14 is provided on the n-type semiconductor layer, and a p-side electrode 15 is provided on the p-type semiconductor layer. The semiconductor light emitting layer 13 does not have a reflective film, and can emit light in both the thickness direction of the semiconductor light emitting element 11 and can also emit light from the side surface of the element substrate 12 to the side.

これらの半導体発光素子11は、素子基板12の前記一面と平行な他面を接着剤例えば透光性のシリコーン樹脂からなるダイボンド材16を用いて各素子取付け部3の先端面3aにダイボンドされている。それによって、各半導体発光素子11は、各導体8と同じく例えば4mmピッチで、これら導体8と交互に配置されている。   These semiconductor light emitting elements 11 are die-bonded to the front end surface 3a of each element mounting portion 3 on the other surface parallel to the one surface of the element substrate 12 using a die bond material 16 made of an adhesive such as a translucent silicone resin. Yes. Accordingly, the respective semiconductor light emitting elements 11 are arranged alternately with these conductors 8 at a pitch of 4 mm, for example, like the respective conductors 8.

ダイボンド材16の厚みは0.10mm以下である。ダイボンド材16は半導体発光素子11から素子取付け部3への伝熱の抵抗部材となるが、以上のようにきわめて薄いので、このダイボンド材16での熱抵抗は実質的に無視できる程度である。従って、ダイボンド材16の厚みは、接着性能を失わない範囲でできるだけ薄くすることが望ましい。   The thickness of the die bond material 16 is 0.10 mm or less. The die bond material 16 serves as a resistance member for heat transfer from the semiconductor light emitting element 11 to the element mounting portion 3. However, since the die bond material 16 is extremely thin as described above, the thermal resistance of the die bond material 16 is substantially negligible. Therefore, it is desirable that the thickness of the die bond material 16 be as thin as possible without losing the bonding performance.

半導体発光素子11の半導体発光層13と素子取付け部3との間の絶縁耐圧は、ダイボンド材16だけではなく、このダイボンド材16よりもはるかに厚いサファイア製の素子基板12で確保されている。ダイボンド材16を含めた半導体発光素子11の厚みは例えば0.09mmである。こうした半導体発光素子11を用いることによって、半導体発光層13の高さ位置は導体8表面の光反射層10より高く位置されており、しかも、本実施形態では半導体発光素子11全体が導体8表面の光反射層10より高く位置されている。   The withstand voltage between the semiconductor light emitting layer 13 of the semiconductor light emitting element 11 and the element mounting portion 3 is secured not only by the die bond material 16 but also by the element substrate 12 made of sapphire much thicker than the die bond material 16. The thickness of the semiconductor light emitting element 11 including the die bond material 16 is, for example, 0.09 mm. By using such a semiconductor light emitting element 11, the height position of the semiconductor light emitting layer 13 is positioned higher than the light reflecting layer 10 on the surface of the conductor 8, and in the present embodiment, the entire semiconductor light emitting element 11 is on the surface of the conductor 8. It is positioned higher than the light reflecting layer 10.

こうした高さの差によって、後述のワイヤボンディングにおいて、ボンディングマシンでボンディングワイヤの一端を半導体発光層13の電極14,15にボールボンディングにより接合した後に、このボンディングワイヤの他端を導体8に接合する際、ボンディングマシンのボンディングツールの移動に絶縁層5が邪魔になり難く、又、ボンディングワイヤを斜め下方に無理に引くこともないので、ワイヤボンディングがし易い。   Due to the difference in height, in wire bonding described later, one end of the bonding wire is bonded to the electrodes 14 and 15 of the semiconductor light emitting layer 13 by ball bonding in a bonding machine, and the other end of the bonding wire is bonded to the conductor 8. At this time, the insulating layer 5 does not easily interfere with the movement of the bonding tool of the bonding machine, and the bonding wire is not forcibly pulled downward, so that wire bonding is easy.

更に、本実施形態のように半導体発光素子11全体が絶縁層5の表面よりも高い位置に配置されている好ましい構成では、半導体発光素子11からその周囲に放射される光が、絶縁層5に妨げられることなく、逃げ孔6の周辺に差し込み易い。それにより、半導体発光素子11の周りで光を反射させて光を取出すことができるので、光の取出し効率を高めることができる点で有利である。   Furthermore, in a preferred configuration in which the entire semiconductor light emitting element 11 is disposed at a position higher than the surface of the insulating layer 5 as in the present embodiment, light emitted from the semiconductor light emitting element 11 to the periphery thereof is applied to the insulating layer 5. It is easy to insert into the periphery of the escape hole 6 without being obstructed. Thereby, the light can be extracted by reflecting the light around the semiconductor light emitting element 11, which is advantageous in that the light extraction efficiency can be increased.

金属ベース2の長手方向に交互に配置された導体8と半導体発光素子11とは、ワイヤボンディングにより設けられたボンディングワイヤ17で接続されている。各ボンディングワイヤ17は、図1に示すように装置基板1を正面から見た場合に装置基板1の長手方向に延びて並べられている。更に、前記二列の導体列の他端側に位置した導体8同士は、図1に示すようにワイヤボンディングにより設けられた端部ボンディングワイヤ18で接続されている。従って、本実施形態の場合、各半導体発光素子11は電気的に直列に接続されている。   The conductors 8 and the semiconductor light emitting elements 11 arranged alternately in the longitudinal direction of the metal base 2 are connected by bonding wires 17 provided by wire bonding. As shown in FIG. 1, the bonding wires 17 are arranged extending in the longitudinal direction of the device substrate 1 when the device substrate 1 is viewed from the front. Further, the conductors 8 positioned on the other end side of the two conductor rows are connected by an end bonding wire 18 provided by wire bonding as shown in FIG. Accordingly, in the present embodiment, the semiconductor light emitting elements 11 are electrically connected in series.

以上の光反射層4を有した装置基板1、光反射層10を有した導体8、半導体発光素子11、ボンディングワイヤ17、及び端部ボンディングワイヤ18によって、照明装置30の面状発光源が形成されている。   The planar light source of the lighting device 30 is formed by the device substrate 1 having the light reflecting layer 4, the conductor 8 having the light reflecting layer 10, the semiconductor light emitting element 11, the bonding wire 17, and the end bonding wire 18. Has been.

リフレクタ20は、一個一個又は数個の半導体発光素子11毎に個別に設けられるものではなく、絶縁層5上の全ての半導体発光素子11を包囲する単一のものであり、枠、例えば図1に示すように長方形をなす枠で形成されている。リフレクタ20は絶縁層5に接着されている。電線接続部9の一部は電線を接続するためにリフレクタ20の外に位置されている。リフレクタ20の内周面は光反射面となっている。そのために、例えばリフレクタ20の成形材料である合成樹脂中に酸化アルミニウム等の白色粉末を混入させている。このリフレクタ20は、光の取出し方向に取出された光を、投光対象に対して制御をするレンズ等の配光制御部材(図示しない)の取付け部として、利用することが可能である。   The reflector 20 is not individually provided for each one or several semiconductor light emitting elements 11, but is a single one surrounding all the semiconductor light emitting elements 11 on the insulating layer 5. As shown in FIG. 2, it is formed of a rectangular frame. The reflector 20 is bonded to the insulating layer 5. A part of the wire connecting portion 9 is located outside the reflector 20 in order to connect the wire. The inner peripheral surface of the reflector 20 is a light reflecting surface. Therefore, for example, white powder such as aluminum oxide is mixed in a synthetic resin that is a molding material of the reflector 20. The reflector 20 can use the light extracted in the light extraction direction as an attachment portion of a light distribution control member (not shown) such as a lens that controls the projection target.

封止部材22は、半導体発光素子11、これに接続された一対のボンディングワイヤ17、これらボンディングワイヤ17と接続された導体8の端部を封止している。封止部材22は、図示しないディスペンサーから未硬化の状態で滴下(ポッティング)して供給され、滴下後に略半球状に盛り上がった形状を呈して硬化されたものである。以上のように封止部材22をポッティングにより設けることは、封止部材22の使用量を低減できる点で好ましいとともに、このように封止部材22が設けられる構成においてリフレクタ20は省略してもよい。しかし、封止部材22は、リフレクタ20内に注入して固化させることによって、リフレクタ20内に位置された殆どの部分を埋めて設けることもできる。   The sealing member 22 seals the semiconductor light emitting element 11, the pair of bonding wires 17 connected thereto, and the ends of the conductors 8 connected to the bonding wires 17. The sealing member 22 is supplied by dropping (potting) in an uncured state from a dispenser (not shown), and is cured by exhibiting a shape that rises in a substantially hemispherical shape after dropping. Providing the sealing member 22 by potting as described above is preferable in that the amount of the sealing member 22 used can be reduced, and the reflector 20 may be omitted in the configuration in which the sealing member 22 is provided as described above. . However, the sealing member 22 can be provided by filling most of the portions located in the reflector 20 by being injected into the reflector 20 and solidified.

封止部材22は、透光性材料例えば透明シリコーン樹脂からなり、その内部には必要により蛍光体が混入されている。本実施形態では半導体発光素子11が青色発光をするので、この光を吸収して黄色の光を放射する蛍光体(図示しない)が、好ましくは略均一に分散した状態で混入されている。   The sealing member 22 is made of a translucent material such as a transparent silicone resin, and a phosphor is mixed therein if necessary. In the present embodiment, since the semiconductor light emitting element 11 emits blue light, phosphors (not shown) that absorb this light and emit yellow light are preferably mixed in a substantially uniformly dispersed state.

この組み合わせにより、照明装置30の点灯により半導体発光層13から放出された青色の光の一部が蛍光体に当たることなく封止部材22を通過する一方で、青色の光が当たった蛍光体が、青色の光を吸収して黄色の光を放射し、この黄色の光が封止部材22を通過するので、これら補色関係にある二色の混合によって照明装置30の白色光を照射できる。なお、リフレクタ20が枠形であるので、照明装置30から取出される光の多くは、リフレクタ20で反射されることなく封止部材22を透過するので、反射を原因とする光の損失が少なく、光の取出し効率を向上するにも有効である。   By this combination, a part of blue light emitted from the semiconductor light emitting layer 13 by lighting of the lighting device 30 passes through the sealing member 22 without hitting the phosphor, while the phosphor hit by the blue light is The blue light is absorbed to emit yellow light, and the yellow light passes through the sealing member 22. Therefore, the white light of the illumination device 30 can be irradiated by mixing these two colors having a complementary color relationship. Since the reflector 20 has a frame shape, most of the light extracted from the illumination device 30 is transmitted through the sealing member 22 without being reflected by the reflector 20, so that the loss of light due to reflection is small. It is also effective in improving the light extraction efficiency.

以上の構成の照明装置30は、各半導体発光素子11に通電して、これらの半導体発光素子11を発光させることにより図2中矢印方向に光を取出して照明を行う。この点灯時に各半導体発光素子11が発熱するに伴い装置基板1の温度は上昇し、それに応じて装置基板1は熱膨張する。   The illuminating device 30 having the above configuration performs illumination by extracting light in the direction of the arrow in FIG. 2 by energizing each semiconductor light emitting element 11 and causing the semiconductor light emitting elements 11 to emit light. As each semiconductor light emitting element 11 generates heat during lighting, the temperature of the device substrate 1 rises and the device substrate 1 expands accordingly.

しかし、装置基板1には、その長手方向と交差して延びるとともに、装置基板1の裏面1bに開口する複数の応力緩和溝1aが形成されているから、前記熱膨張に伴い装置基板1が光の出射側に凸となるように反ることを抑制できる。つまり、隣接した応力緩和溝1a間の溝間基板部位が、応力緩和溝1aによって恰も分断されたような構成となっているので、前記溝間基板部位の夫々の熱膨張が、隣接する溝間基板部位に波及することを応力緩和溝1aで吸収できる。このような応力吸収によって熱膨張に伴う装置基板1の反りが抑制される。したがって、装置基板1の長手方向に一列に並んだ導体8及び半導体発光素子11とボンディングワイヤ17との接合部に、装置基板1の熱膨張に伴って与えられる負荷が低減されるため、接合不良により半導体発光素子11が点灯しなくなる恐れを招かないようにできる。   However, since the device substrate 1 is formed with a plurality of stress relaxation grooves 1a that extend across the longitudinal direction of the device substrate 1 and open on the back surface 1b of the device substrate 1, the device substrate 1 is optically coupled with the thermal expansion. It can suppress warping so that it may become convex on the outgoing side. That is, since the inter-groove substrate part between the adjacent stress relaxation grooves 1a is configured to be divided by the stress relaxation groove 1a, the thermal expansion of each of the inter-groove substrate parts is caused between the adjacent grooves. It can be absorbed by the stress relaxation groove 1a to spread to the substrate portion. Such stress absorption suppresses warpage of the device substrate 1 due to thermal expansion. Therefore, since the load given to the bonding portion of the conductor 8 and the semiconductor light emitting element 11 and the bonding wire 17 arranged in a line in the longitudinal direction of the device substrate 1 due to the thermal expansion of the device substrate 1 is reduced, the bonding failure Thus, it is possible to prevent the semiconductor light emitting element 11 from being turned on.

前記構成の照明装置30では、装置基板1の応力緩和溝1aが形成された部位は薄くなって強度が低下するが、それ以外の溝間基板部位は十分な厚みがあって強度が低下していない。そして、この強度が維持された溝間基板部位に対応して導体8が設けられていて、この導体8にボンディングワイヤ17がワイヤボンディングにより接合されている。このため、導体8へのワイヤボンディングに伴い、導体8に対応した位置の応力緩和溝1aを原因として装置基板1が変形する恐れがない。   In the illuminating device 30 having the above-described configuration, the portion of the device substrate 1 where the stress relaxation groove 1a is formed is thinned and the strength is lowered, but the other substrate portion between the grooves is sufficiently thick and the strength is lowered. Absent. And the conductor 8 is provided corresponding to the board | substrate part between groove | channels in which this intensity | strength was maintained, and the bonding wire 17 is joined to this conductor 8 by wire bonding. For this reason, there is no fear that the apparatus substrate 1 is deformed due to the stress relaxation groove 1 a at a position corresponding to the conductor 8 along with the wire bonding to the conductor 8.

又、応力緩和溝1aにより薄くなった装置基板1の部位は、そこに実装された半導体発光素子11の厚みが加味されているので、半導体発光素子11へのワイヤボンディングに伴い、半導体発光素子11に対応した位置の応力緩和溝1aを原因として装置基板1が変形する恐れがない。しかも、本実施形態では、凸状の素子取付け部3によって半導体発光素子11が取付けられた部位は他の部位より厚くなっていて、そこの強度が低下していないため、半導体発光素子11に対応した位置の応力緩和溝1aを原因として、ワイヤボンディングに伴い装置基板1が変形する恐れがない。   Further, since the thickness of the semiconductor light emitting element 11 mounted on the portion of the device substrate 1 thinned by the stress relaxation groove 1a is taken into account, the semiconductor light emitting element 11 is accompanied by wire bonding to the semiconductor light emitting element 11. There is no possibility that the apparatus substrate 1 is deformed due to the stress relaxation groove 1a at a position corresponding to the above. Moreover, in the present embodiment, the portion where the semiconductor light emitting element 11 is attached by the convex element attaching portion 3 is thicker than the other portions, and the strength thereof does not decrease. Due to the stress relaxation groove 1a at the position, there is no possibility that the device substrate 1 is deformed along with the wire bonding.

そして、構成の照明装置30において半導体発光素子11に電力を導く導体8と金属ベース2とは、これらの間に設けた絶縁層5で電気的に絶縁されているが、この絶縁層5は金属ベース2と半導体発光素子11との間には介在されていないとともに、半導体発光素子11は金属ベース2の素子取付け部3に直接ダイボンドされている。   In the illumination device 30 having the configuration, the conductor 8 for guiding power to the semiconductor light emitting element 11 and the metal base 2 are electrically insulated by an insulating layer 5 provided therebetween. The insulating layer 5 is made of metal. While not interposed between the base 2 and the semiconductor light emitting element 11, the semiconductor light emitting element 11 is directly die-bonded to the element mounting portion 3 of the metal base 2.

そのため、各半導体発光素子11が発する熱は、絶縁層5に邪魔されることなく金属ベース2に直接的に伝導する。より具体的には、半導体発光素子11の熱は、実質的に熱抵抗とはならないほど薄いダイボンド材16を通ってから、Agの光反射層4を経て金属ベース2の素子取付け部3に伝えられる。しかも、金属ベース2の素子取付け部3は、半導体発光素子11がダイボンドされた先端面3aから金属ベース2の基板主部2aに至るに従い次第に太く、言い換えれば、素子取付け部3の断面積が基板主部2aに近付く程大きくなっているので、半導体発光素子11から装置基板1の裏面1bに向けての熱伝導がより容易となる。そして、金属ベース2の熱は裏面1bから外部に放出される。   Therefore, the heat generated by each semiconductor light emitting element 11 is directly conducted to the metal base 2 without being disturbed by the insulating layer 5. More specifically, the heat of the semiconductor light-emitting element 11 passes through the die bonding material 16 that is so thin that it does not substantially become thermal resistance, and then is transmitted to the element mounting portion 3 of the metal base 2 through the Ag light reflecting layer 4. It is done. In addition, the element mounting portion 3 of the metal base 2 gradually becomes thicker from the tip surface 3a to which the semiconductor light emitting element 11 is die-bonded to the substrate main portion 2a of the metal base 2, in other words, the cross-sectional area of the element mounting portion 3 is the substrate. Since it becomes so large that it approaches the main part 2a, the heat conduction from the semiconductor light emitting element 11 toward the back surface 1b of the apparatus substrate 1 becomes easier. The heat of the metal base 2 is released to the outside from the back surface 1b.

この外部への放熱において、装置基板1の裏面1bとこれに接して配設された排熱部材32との間の伝熱を担う伝熱部材33が各応力緩和溝1aに充填されていて、応力緩和溝1aが断熱空間となることがないため、高熱伝導性の伝熱部材33を通じて排熱部材32に円滑に熱伝導させて放熱できる。それにより、半導体発光素子11及び装置基板の温度上昇が効果的に抑制されるに伴い、装置基板1の熱膨張による変形をより効果的に抑制できる。   In this heat dissipation to the outside, each stress relaxation groove 1a is filled with a heat transfer member 33 responsible for heat transfer between the back surface 1b of the device substrate 1 and the exhaust heat member 32 disposed in contact therewith, Since the stress relaxation groove 1a does not become a heat insulating space, heat can be smoothly conducted to the heat exhausting member 32 through the heat transfer member 33 having high thermal conductivity to dissipate heat. Thereby, as the temperature rise of the semiconductor light emitting element 11 and the device substrate is effectively suppressed, deformation due to thermal expansion of the device substrate 1 can be more effectively suppressed.

こうして半導体発光素子11の熱が高効率に金属ベース2を通って外部に放出されるので、各半導体発光素子11の温度上昇が効果的に抑制され、各半導体発光素子11の温度を設計通りに維持できる。そのため、各半導体発光素子11の発光効率の低下と、各半導体発光素子11が発する光量のばらつきが抑制され、その結果的として、各半導体発光素子から取出される光の色むらを抑制できる。   In this way, the heat of the semiconductor light emitting element 11 is released to the outside through the metal base 2 with high efficiency, so that the temperature rise of each semiconductor light emitting element 11 is effectively suppressed, and the temperature of each semiconductor light emitting element 11 is set as designed. Can be maintained. Therefore, a decrease in the light emission efficiency of each semiconductor light emitting element 11 and a variation in the amount of light emitted from each semiconductor light emitting element 11 are suppressed, and as a result, color unevenness of light extracted from each semiconductor light emitting element can be suppressed.

なお、前記構成の各半導体発光素子11は全方向に光を放射し、取分け、表方向つまり金属ベース2とは反対側の光の取出し方向に放射される光よりも、裏方向つまり金属ベース2に向けて放射される光の方が強い。   Each of the semiconductor light emitting elements 11 having the above-described structure emits light in all directions, and in particular, the back direction, that is, the metal base 2 rather than the light emitted in the front direction, that is, the light extraction direction opposite to the metal base 2. The light emitted toward is stronger.

そして、裏方向に放射された光の多くは、透光性のダイボンド材16を通って90%以上の光反射率を有したAgメッキ層からなる光反射層4に入射し、この光反射層4で光の取出し方向に反射される。このような半導体発光素子11直下での高効率の反射により、光の取出し効率をより向上させることができる。ちなみに、460nmの波長の光については、半導体発光素子11の直下での反射率が高いほど取出される光の強さ(相対発光強度)が上がることが測定の結果明らかとなり、半導体発光素子11の直下の反射率は91.35%であることが確かめられた。   Then, most of the light emitted in the reverse direction passes through the translucent die-bonding material 16 and enters the light reflecting layer 4 made of an Ag plating layer having a light reflectance of 90% or more, and this light reflecting layer. 4 is reflected in the light extraction direction. Such high-efficiency reflection directly under the semiconductor light emitting element 11 can further improve the light extraction efficiency. Incidentally, as for the light having a wavelength of 460 nm, it is clear from the measurement results that the intensity of the extracted light (relative light emission intensity) increases as the reflectance directly below the semiconductor light emitting element 11 increases. It was confirmed that the direct reflectance was 91.35%.

しかも、前記裏方向に放射された光の一部、及び封止部材22内の蛍光体から放射された光の一部は、白色の絶縁層5に入射し、この絶縁層5で光の取出し方向に反射される。加えて、裏方向に向かった光の一部は導体8を覆ったAgメッキ層からなる光反射層10に入射し、この絶縁層5で光の取出し方向に反射される。更に、絶縁層5の逃げ孔6の周辺は、その一部が導体8で覆われることがなく、この導体8と逃げ孔6との間おいて露出面5aを有している。言い換えれば、逃げ孔6の周辺は、その周方向に沿って途切れることなく連続した白色反射面とみなすことができるので、そこに入射した光を、光の取出し方向に反射させることができる。ちなみに、400nm〜740nmの波長の光の平均反射率が高いほど取出される光の強さ(相対発光強度)が上がることが測定の結果明らかとなり、半導体発光素子11の周りでの反射率は93.7%であることが確かめられた。   In addition, a part of the light emitted in the reverse direction and a part of the light emitted from the phosphor in the sealing member 22 enter the white insulating layer 5, and light is extracted by the insulating layer 5. Reflected in the direction. In addition, part of the light traveling in the back direction is incident on the light reflecting layer 10 made of an Ag plating layer covering the conductor 8 and reflected by the insulating layer 5 in the light extraction direction. Furthermore, the periphery of the escape hole 6 of the insulating layer 5 is not partially covered with the conductor 8, and has an exposed surface 5 a between the conductor 8 and the escape hole 6. In other words, since the periphery of the escape hole 6 can be regarded as a continuous white reflecting surface without interruption along the circumferential direction, the light incident thereon can be reflected in the light extraction direction. Incidentally, it becomes clear as a result of the measurement that the intensity (relative emission intensity) of the extracted light increases as the average reflectance of light having a wavelength of 400 nm to 740 nm increases, and the reflectance around the semiconductor light emitting element 11 is 93. It was confirmed to be 7%.

反射率が下がるほど発光効率が下がり、逆に言えば、反射率が上がるほど発光効率が上がるので、Agメッキ層からなる光反射層4,10、及び白色の絶縁層5での高反射特性により、照明装置30の発光効率(光の取出し効率)を向上することができた。ちなみに、照明装置30の消費電力が0.06Wである場合、光束7.4lm、発光効率125lm/Wで照明ができることが実験の結果確かめられた。   The lower the reflectance is, the lower the luminous efficiency. In other words, the higher the reflectance is, the higher the luminous efficiency is. Therefore, the high reflection characteristics of the light reflecting layers 4 and 10 made of an Ag plating layer and the white insulating layer 5 The luminous efficiency (light extraction efficiency) of the lighting device 30 could be improved. Incidentally, as a result of the experiment, it was confirmed that when the power consumption of the illumination device 30 is 0.06 W, illumination can be performed with a luminous flux of 7.4 lm and a light emission efficiency of 125 lm / W.

したがって、前記構成の照明装置30は、高熱伝導により各半導体発光素子11の温度上昇に伴う発光効率の低下を抑制しつつ、各半導体発光素子11の裏側に放射された光の高反射特性により、光の取出し効率を向上できる。   Therefore, the illumination device 30 having the above-described configuration has a high reflection characteristic of light emitted to the back side of each semiconductor light emitting element 11 while suppressing a decrease in light emission efficiency due to a temperature increase of each semiconductor light emitting element 11 due to high heat conduction. The light extraction efficiency can be improved.

又、金属ベース2の素子取付け部3に半導体発光素子11をダイボンドしたダイボンド材16は、透明なシリコーン樹脂であるので、このダイボンド材が変色を伴って劣化する可能性が極めて小さい。したがって、光反射層4で反射されて取出される光の取出し効率を長期にわたり維持できる。   Further, since the die bonding material 16 obtained by die bonding the semiconductor light emitting element 11 to the element mounting portion 3 of the metal base 2 is a transparent silicone resin, the possibility that the die bonding material is deteriorated with discoloration is extremely small. Therefore, the extraction efficiency of the light reflected and extracted by the light reflecting layer 4 can be maintained over a long period of time.

図5は本発明の第2実施形態を示している。第2実施形態は、以下説明する事項以外は、図示されない事項を含めて第1実施形態と同じであるので、第1実施形態と同じ部分には同一符号を付してその説明を省略する。   FIG. 5 shows a second embodiment of the present invention. Since the second embodiment is the same as the first embodiment except for the matters described below, including the matters not shown, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.

第2実施形態では、応力緩和溝1aを、装置基板1の長手方向に対して直角に交差するのではなく、斜めに交差させて設けてある。この点以外の構成は第1実施形態と同じである。   In the second embodiment, the stress relaxation grooves 1 a are provided so as to cross obliquely rather than intersecting at right angles to the longitudinal direction of the device substrate 1. The configuration other than this point is the same as that of the first embodiment.

したがって、この第2実施形態の照明装置30でも、第1実施形態で説明した理由により、装置基板1の長手方向に列をなして交互に並んだ半導体発光素子11及び導体8とボンディングワイヤ17との接合部に対する点灯に伴う負荷を低減できるとともに、ワイヤボンディングに伴う装置基板1の変形を抑制できる照明装置30を提供できる。   Therefore, also in the illumination device 30 of the second embodiment, for the reason described in the first embodiment, the semiconductor light emitting elements 11 and the conductors 8 and the bonding wires 17 that are alternately arranged in a row in the longitudinal direction of the device substrate 1. It is possible to provide a lighting device 30 that can reduce the load caused by lighting on the joint portion of the device and can suppress the deformation of the device substrate 1 caused by wire bonding.

その上、応力緩和溝1aを装置基板1の長手方向に対して斜め交差させたので、隣接した応力緩和溝1a間の強度が低下しない溝間基板部位が、装置基板1の長手方向に関して応力緩和溝1aで途切れないようにできる。したがって、第1実施形態のように応力緩和溝1aを装置基板1の長手方向に直交して設けた場合よりも、点灯に伴い装置基板1が反ることをより効果的に抑制できる点で優れている。   In addition, since the stress relaxation grooves 1 a are obliquely intersected with the longitudinal direction of the device substrate 1, the inter-groove substrate portion where the strength between the adjacent stress relaxation grooves 1 a does not decrease is stress relaxation with respect to the longitudinal direction of the device substrate 1. It can be prevented from being interrupted by the groove 1a. Therefore, it is excellent in that the device substrate 1 can be more effectively suppressed from being warped with lighting than in the case where the stress relaxation groove 1a is provided perpendicular to the longitudinal direction of the device substrate 1 as in the first embodiment. ing.

本発明の第1実施形態に係る照明装置をこの装置が有する封止部材の一部を省略して示す正面図。The front view which abbreviate | omits and shows a part of sealing member which this apparatus has for the illuminating device which concerns on 1st Embodiment of this invention. 図1の照明装置の一部を拡大して示す断面図。Sectional drawing which expands and shows a part of illuminating device of FIG. 図2に示された部分を封止部材が除かれた状態で示す正面図。The front view which shows the part shown by FIG. 2 in the state from which the sealing member was removed. 図1の照明装置での半導体発光素子及び導体の配置に対する応力緩和溝の位置関係を示す正面図。The front view which shows the positional relationship of the stress relaxation groove with respect to arrangement | positioning of the semiconductor light-emitting element and conductor in the illuminating device of FIG. 本発明の第2実施形態に係る照明装置での半導体発光素子及び導体の配置に対する応力緩和溝との位置関係を示す正面図。The front view which shows the positional relationship with the stress relaxation groove | channel with respect to arrangement | positioning of the semiconductor light-emitting element and conductor in the illuminating device which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…装置基板、1a…応力緩和溝、1b…装置基板の裏面、8…導体、11…半導体発光素子、17…ボンディングワイヤ、22…封止部材、30…照明器具、31…照明装置、32…排熱部材、33…伝熱部材   DESCRIPTION OF SYMBOLS 1 ... Device substrate, 1a ... Stress relaxation groove, 1b ... Back surface of device substrate, 8 ... Conductor, 11 ... Semiconductor light emitting element, 17 ... Bonding wire, 22 ... Sealing member, 30 ... Lighting fixture, 31 ... Lighting device, 32 ... Heat exhaust member, 33 ... Heat transfer member

Claims (3)

長四角形状であって、放熱面をなす裏面を有し、かつ、前記長四角形状の長手方向に交差する方向に延びる複数の応力緩和溝が前記放熱面に開放して設けられた装置基板と;
前記応力緩和溝に対応して前記装置基板に実装され前記装置基板の長手方向に並べられた複数の半導体発光素子と;
前記応力緩和溝間に対応して前記装置基板に前記各半導体発光素子と交互に配置されて前記装置基板の長手方向に並べられた複数の導体と;
前記装置基板の長手方向に隣接した前記半導体発光素子と前記導体とを接続したボンディングワイヤと;
このボンディングワイヤ及び前記半導体発光素子を封止した透光性の封止部材と;
を具備したことを特徴とする照明装置。
A device substrate having a long rectangular shape and having a back surface forming a heat dissipation surface, and a plurality of stress relaxation grooves extending in a direction intersecting a longitudinal direction of the long square shape and opened to the heat dissipation surface; ;
A plurality of semiconductor light emitting elements mounted on the device substrate corresponding to the stress relaxation grooves and arranged in the longitudinal direction of the device substrate;
A plurality of conductors arranged alternately with the semiconductor light emitting elements on the device substrate corresponding to the stress relaxation grooves and arranged in the longitudinal direction of the device substrate;
A bonding wire connecting the semiconductor light emitting element adjacent to the longitudinal direction of the device substrate and the conductor;
A translucent sealing member that seals the bonding wire and the semiconductor light emitting element;
An illumination device comprising:
前記応力緩和溝を前記装置基板の長手方向に対して斜めに交差させたことを特徴とする請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the stress relaxation grooves are crossed obliquely with respect to a longitudinal direction of the device substrate. 光源部をなす前記請求項1又は2に記載の照明装置と:
この照明装置が備えた装置基板の放熱面に重ねて配置された排熱部材と;
前記装置基板の各応力緩和溝に充填されて前記装置基板と前記排熱部材との間の伝熱を担う伝熱部材と;
を具備したことを特徴とする照明器具。
The illumination device according to claim 1 or 2, which forms a light source unit:
An exhaust heat member disposed on the heat dissipation surface of the device substrate provided in the lighting device;
A heat transfer member that fills each stress relaxation groove of the device substrate to transfer heat between the device substrate and the exhaust heat member;
The lighting fixture characterized by comprising.
JP2006353467A 2006-12-27 2006-12-27 Lighting device, and lighting apparatus having lighting device Pending JP2008166081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353467A JP2008166081A (en) 2006-12-27 2006-12-27 Lighting device, and lighting apparatus having lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353467A JP2008166081A (en) 2006-12-27 2006-12-27 Lighting device, and lighting apparatus having lighting device

Publications (1)

Publication Number Publication Date
JP2008166081A true JP2008166081A (en) 2008-07-17

Family

ID=39695276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353467A Pending JP2008166081A (en) 2006-12-27 2006-12-27 Lighting device, and lighting apparatus having lighting device

Country Status (1)

Country Link
JP (1) JP2008166081A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035788A1 (en) * 2008-09-25 2010-04-01 デンカAgsp株式会社 Substrate for mounting light-emitting element and method for producing same
JP2010153761A (en) * 2008-11-19 2010-07-08 Rohm Co Ltd Led lamp
JP2010245037A (en) * 2009-04-02 2010-10-28 Liquidleds Lighting Corp Light emitting diode bulb
JP2012069303A (en) * 2010-09-21 2012-04-05 Panasonic Corp Lamp and lighting system
JP2013084675A (en) * 2011-10-06 2013-05-09 Shindengen Electric Mfg Co Ltd Electric connection structure of semiconductor element
US8616732B2 (en) 2010-02-12 2013-12-31 Toshiba Lighting & Technology Corporation Light-emitting device and illumination device
US8632212B2 (en) 2010-02-12 2014-01-21 Toshiba Lighting & Technology Corporation Light-emitting device and illumination device
WO2014030271A1 (en) * 2012-08-24 2014-02-27 パナソニック株式会社 Light bulb-shaped lamp and lighting device
US8872198B2 (en) 2010-04-20 2014-10-28 Toshiba Lighting & Technology Corporation Luminaire and light-emitting apparatus with light-emitting device
JP2019114610A (en) * 2017-12-21 2019-07-11 東芝ライテック株式会社 Light irradiation device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035788A1 (en) * 2008-09-25 2010-04-01 デンカAgsp株式会社 Substrate for mounting light-emitting element and method for producing same
JPWO2010035788A1 (en) * 2008-09-25 2012-02-23 電気化学工業株式会社 Light-emitting element mounting substrate and manufacturing method thereof
JP2010153761A (en) * 2008-11-19 2010-07-08 Rohm Co Ltd Led lamp
JP2010245037A (en) * 2009-04-02 2010-10-28 Liquidleds Lighting Corp Light emitting diode bulb
US8616732B2 (en) 2010-02-12 2013-12-31 Toshiba Lighting & Technology Corporation Light-emitting device and illumination device
US8632212B2 (en) 2010-02-12 2014-01-21 Toshiba Lighting & Technology Corporation Light-emitting device and illumination device
US8872198B2 (en) 2010-04-20 2014-10-28 Toshiba Lighting & Technology Corporation Luminaire and light-emitting apparatus with light-emitting device
JP2012069303A (en) * 2010-09-21 2012-04-05 Panasonic Corp Lamp and lighting system
JP2013084675A (en) * 2011-10-06 2013-05-09 Shindengen Electric Mfg Co Ltd Electric connection structure of semiconductor element
WO2014030271A1 (en) * 2012-08-24 2014-02-27 パナソニック株式会社 Light bulb-shaped lamp and lighting device
JP5588569B2 (en) * 2012-08-24 2014-09-10 パナソニック株式会社 Light bulb shaped lamp and lighting device
JPWO2014030271A1 (en) * 2012-08-24 2016-07-28 パナソニック株式会社 Light bulb shaped lamp and lighting device
JP2019114610A (en) * 2017-12-21 2019-07-11 東芝ライテック株式会社 Light irradiation device
JP7135316B2 (en) 2017-12-21 2022-09-13 東芝ライテック株式会社 Light irradiation device

Similar Documents

Publication Publication Date Title
JP2008166081A (en) Lighting device, and lighting apparatus having lighting device
US7934856B2 (en) Illumination device with semiconductor light-emitting elements
JP5273486B2 (en) Lighting device
JP4600455B2 (en) Lighting device
JP4640514B2 (en) Light emitting module
JP4771179B2 (en) Lighting device
US20080296590A1 (en) LED-Based Light Source Having Improved Thermal Dissipation
JP4678391B2 (en) Lighting equipment
JP2003168829A (en) Light emitting device
JP2012532441A (en) Light emitting diode package
JP4808550B2 (en) Light emitting diode light source device, lighting device, display device, and traffic signal device
JP2008244165A (en) Lighting system
JP2008251664A (en) Illumination apparatus
JP2008071895A (en) Lighting system
JP2008078401A (en) Lighting device
JP2009231397A (en) Lighting system
JP5515822B2 (en) Light emitting device and lighting device
WO2012057163A1 (en) Light emitting device and illumination device
JPWO2014050650A1 (en) Light emitting device
JP2014082481A (en) Light-emitting device
KR20140004351A (en) Light emitting diode package
JP2008235720A (en) Illumination apparatus
JP2009212126A (en) Lighting system
JP5769129B2 (en) Light emitting device and lighting device
JP2000236111A (en) Light source equipment