WO2010035436A1 - 膜カートリッジ - Google Patents

膜カートリッジ Download PDF

Info

Publication number
WO2010035436A1
WO2010035436A1 PCT/JP2009/004665 JP2009004665W WO2010035436A1 WO 2010035436 A1 WO2010035436 A1 WO 2010035436A1 JP 2009004665 W JP2009004665 W JP 2009004665W WO 2010035436 A1 WO2010035436 A1 WO 2010035436A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
filter plate
membrane
channel
permeate
Prior art date
Application number
PCT/JP2009/004665
Other languages
English (en)
French (fr)
Inventor
石川公博
山▲崎▼一博
佐々木智彦
松崎好男
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to EP09815858.7A priority Critical patent/EP2332636B1/en
Priority to CN200980137327.0A priority patent/CN102164654B/zh
Priority to US13/063,043 priority patent/US8377303B2/en
Priority to ES09815858.7T priority patent/ES2629465T3/es
Publication of WO2010035436A1 publication Critical patent/WO2010035436A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • B01D63/0821Membrane plate arrangements for submerged operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a membrane cartridge constituting a submerged membrane separation apparatus used for solid-liquid separation such as activated sludge.
  • a submerged membrane separation device is immersed in a reaction tank that treats sewage or the like with activated sludge.
  • this membrane separation apparatus there is one in which a plurality of organic flat membrane type membrane cartridges are arranged in parallel at predetermined intervals in a main casing.
  • the membrane cartridge 10 includes a rectangular filter plate 11 that is long in the vertical direction A, and a filter membrane 12 that is disposed on both the front and back of the filter plate 11. Yes.
  • a plurality of flow channel grooves 13 are formed on both the front and back filter plate surfaces of the filter plate 11, and the permeated liquid that has passed through the filter membrane 12 flows through the flow channel grooves 13.
  • These flow channel grooves 13 are long in the vertical direction A (longitudinal direction), and are arranged in parallel in the width direction B of the filter plate 11.
  • a liquid collecting portion 14 that collects the permeated liquid in each flow channel groove 13 is formed.
  • the liquid collection unit 14 penetrates both the front and back filter plate surfaces of the filter plate 11, and the upper end of each flow channel groove 13 communicates with the liquid collection unit 14.
  • the flow channel 17 and the liquid collecting part 14 constitute a permeate flow channel 17.
  • a permeate extraction nozzle 15 that extracts the permeate collected in the liquid collector 14 to the outside of the membrane cartridge 10 is provided at the upper edge of the filter plate 11.
  • a suction pressure (negative pressure) is applied to the permeate take-out nozzle 15 using a suction pump, so that the suction pressure passes through the permeate take-out nozzle 15. It acts on the flow path 17 (that is, the flow path groove 13 and the liquid collecting portion 14), and the mixed liquid 18 (processed liquid) in the tank is filtered by the filtration membrane 12. At this time, the filtrate that has passed through the filtration membrane 12 passes through each flow channel groove 13, flows into the liquid collection portion 14, is collected, and passes from the liquid collection portion 14 through the permeate extraction nozzle 15 to the membrane cartridge 10. Take out to the outside.
  • each of the isobaric lines 19a to 19e is a curve in which the portion immediately below the permeate take-out nozzle 15 swells downward, and the suction pressure decreases as the position is farther from the permeate take-out nozzle 15. Further, with respect to the pressure distribution in the width direction B, the suction pressure decreases as the distance in the width direction B increases from directly below the permeate extraction nozzle 15.
  • the membrane surface is blocked on either the front or back surface of the membrane cartridge 10 due to clogging of the deposit 24 such as a solid content between the membranes of a pair of adjacent membrane cartridges 10.
  • the effective filtration membrane area where the permeate can be obtained on one surface of the membrane cartridge 10 is effective for obtaining the permeate on the other surface.
  • the amount of permeate obtained from the front and back surfaces of the membrane cartridge 10 is smaller than the amount of permeate obtained from the front and back surfaces.
  • An object of the present invention is to provide a membrane cartridge capable of reducing the difference from the liquid amount.
  • a filtration membrane is disposed on at least one of the front and back filter plates of the filter plate, On the surface of the filter plate covered with the filtration membrane, a channel groove pattern is formed in which the permeate that has permeated the filtration membrane flows.
  • a membrane cartridge constituting a submerged membrane separation device provided with a permeate outlet for collecting and taking out permeate flowing through the flow channel pattern at the peripheral edge of the filter plate,
  • the channel groove pattern has a plurality of channel grooves,
  • a pressure difference relaxation groove is formed in the filter plate across the region where the channel groove pattern is formed,
  • the area where the channel groove pattern is formed is divided into a plurality of water collection areas by pressure difference relief grooves,
  • the pressure difference relief groove communicates with the permeate outlet through a plurality of channel grooves,
  • the cross-sectional area of the pressure difference relief groove is larger than the cross-sectional area of the flow groove.
  • the liquid to be processed when the liquid to be processed is separated into solid and liquid using the membrane cartridge, the liquid to be processed is filtered by the filtration membrane by applying a suction pressure to the inside of the membrane cartridge through the permeate outlet.
  • the permeated liquid that has permeated flows through the flow channel groove and the pressure difference relief groove, and is taken out from the permeated liquid outlet to the outside of the membrane cartridge.
  • the permeate flowing through the channel groove in the water collection area farther from the permeate outlet than the pressure difference relief groove is collected from the channel groove to the pressure difference relief groove in the middle of reaching the permeate outlet.
  • the cross-sectional area of the pressure difference relief groove is larger than the cross-sectional area of the flow groove and crosses the region where the flow groove pattern is formed, the permeate flowing through the pressure difference relief groove Is lower than the flow rate of the permeate flowing through the flow channel.
  • the variation in the suction pressure in the water collection area closer to the permeate outlet than the pressure difference relief groove is averaged and relaxed in the length direction of the pressure difference relief groove, and thereby the permeation pressure is more permeable than the pressure difference relief groove. Since the suction pressure in the water collection area far from the liquid outlet is averaged in the length direction of the pressure difference relaxation groove, the permeated liquid can be obtained effectively using the entire membrane surface.
  • the filter plate has different shapes in length and width.
  • the permeate outlet is provided at or near the upper end of the filter plate,
  • the pressure difference relaxation groove is provided from one side of the filter plate to the other side.
  • the pressure difference relaxation groove is provided from one side of the filter plate to the other side, the variation in suction pressure in the water collection area closer to the permeate outlet than the pressure difference relaxation groove is caused by the pressure difference relaxation groove. Are averaged in the width direction. Thereby, since the suction pressure in the water collection area farther from the permeate outlet than the pressure difference relief groove is averaged in the width direction of the filter plate surface, the entire surface of the filter membrane can be used effectively.
  • the channel grooves are formed in a straight line and are arranged in parallel.
  • the channel resistance when the permeate flows in the channel groove is reduced.
  • the flow channel pattern has a plurality of communication grooves that allow adjacent flow channels to communicate with each other.
  • the permeate flows through the channel groove and the communication groove toward the permeate outlet, and is taken out of the membrane cartridge from the permeate outlet.
  • the permeate that has permeated through the filtration membrane in the water collection area farther from the permeate outlet than the pressure difference relief groove is collected in the pressure difference relief groove in the middle of reaching the permeate outlet.
  • the communication groove and the channel groove intersect in a T shape.
  • the filtration membrane is supported by the two corners of the cell that are separated by the communication groove and the flow groove and one side edge of the flow groove ( That is, it is supported by two points and one straight part).
  • the region for supporting the filtration membrane is increased. It is possible to prevent the effective channel cross-sectional area of these grooves from being reduced by biting into the grooves or the communication grooves.
  • the filtration membrane, the flow channel groove pattern, and the pressure difference relaxation groove are provided on both the front and back filter plate surfaces, A communication hole communicating with both the front and back sides of the filter plate is formed in the pressure difference relaxation groove.
  • the permeate cannot be obtained from the location where the membrane surface clog occurs, so the permeate can be obtained on the front or back side of the membrane cartridge.
  • the effective filtration membrane area is smaller than the effective filtration membrane area where the permeate is obtained on the other surface. And thereby, the average value of the suction pressure in the filtration membrane surface of one surface is increased more than the average value of the suction pressure in the filtration membrane surface of the other surface.
  • part of the permeate that has permeated through the filtration membrane on the other side of the front and back flows through the flow channel groove on the other side of the front and back, and passes from the pressure difference relief groove on the other side to the pressure difference relief groove on the front and back side
  • the permeate that flows in and permeates through one of the front and back filtration membranes flows through the flow channel groove on the front and back sides, and is taken out from the permeate outlet to the outside of the membrane cartridge.
  • the communication hole functions as a bypass flow path, so that the membrane surface of the membrane cartridge is clogged by using the suction pressure on the side where the membrane surface of the membrane cartridge is clogged. Since a part of the permeate on the non-occurring side flows to the side where the membrane surface clogging occurs and is taken out from the permeate outlet, the effective membrane area on either the front or back of the membrane cartridge is reduced by the membrane surface clogging. However, the difference between the permeate amount obtained from the front side of the membrane cartridge and the permeate amount obtained from the back side can be reduced.
  • the filtration membrane can be effectively used by collecting the permeate efficiently. Further, it is possible to reduce the difference between the amount of permeate obtained from the front side of the membrane cartridge and the amount of permeate obtained from the back side of the membrane cartridge caused by the membrane surface being blocked.
  • FIG. 1 is a partially cutaway perspective view of a membrane separation apparatus including a membrane cartridge according to a first embodiment of the present invention.
  • FIG. 3 is a partially cutaway front view of the membrane cartridge.
  • FIG. 4 is an enlarged view of a crossing portion of a flow channel groove and a communication groove of the flow channel pattern of the membrane cartridge. It is a front view of the filter plate of a membrane cartridge. It is a partially notched front view of the membrane cartridge in the 2nd Embodiment of this invention. It is the longitudinal cross-sectional view seen from the side of two membrane cartridges.
  • FIG. 6 is a longitudinal sectional view of the two membrane cartridges as viewed from the side, showing a state where the membrane surface is blocked.
  • FIG. 6 is a longitudinal sectional view of the two membrane cartridges as viewed from the side, showing a state where the membrane surface is blocked.
  • a submerged membrane separation device 31 is provided inside a reaction tank for treating activated sewage with sewage or the like.
  • the membrane separation device 31 includes a rectangular main body casing 33 whose upper and lower ends are open, a plurality of organic flat membrane type membrane cartridges 34 provided inside the main body casing 33, and a lower portion of these membrane cartridges 34.
  • the air diffuser 35 is provided.
  • the adjacent membrane cartridges 34 are arranged in parallel with a predetermined interval between the opposing membrane surfaces.
  • the membrane cartridges 34 are separated from each other with a predetermined interval, but may be in contact with each other at least on the side. In this case, the side surface of the main body casing 33 may be opened, or the main body casing 33 may be unnecessary.
  • the membrane cartridge 34 has a rectangular filter plate (an example of a shape having different vertical and horizontal lengths) that is long in the vertical direction A, and filter plate surfaces on both the front and back sides of the filter plate 36 (that is, the filter plate).
  • the filter membrane 37 is attached to the surface 36).
  • the peripheral edge of the filter membrane 37 is fixed to the filter plate 36 by welding or adhesion.
  • a filter groove pattern 38 and first and second header grooves 43 and 44 for averaging the suction pressure in the width direction B of the filter plate surface are formed on both the front and back filter plate surfaces of the filter plate 36, respectively. Yes.
  • the permeated liquid that has passed through the filtration membrane 37 flows through the flow channel pattern 38.
  • the channel groove pattern 38 and the header grooves 43 and 44 are covered with a filtration membrane 37.
  • a permeate take-out nozzle 39 (an example of a permeate take-out port) that collects the permeate in the channel groove pattern 38 and takes it out of the membrane cartridge 34 is provided at the upper end of the filter plate 36.
  • the channel groove pattern 38 is formed by a plurality of linear parallel channel grooves 38a inclined with respect to the vertical direction and a plurality of communication grooves 38b that allow the adjacent channel grooves 38a to communicate with each other.
  • the flow channel groove pattern 38 by forming the flow channel groove pattern 38, the periphery of the filter plate surface on both the front and back sides of the filter plate 36 is divided by a flow channel groove 38a and a communication groove 38b.
  • a plurality of rectangular cells 40 are formed.
  • the channel groove 38a and the communication groove 38b intersect in a T shape, and the channel cross-sectional area of the channel groove 38a and the channel cross-sectional area of the communication groove 38b are the same.
  • the first and second header grooves 43 and 44 are linear grooves that are parallel to the upper and lower end sides of the filter plate 36 and are long in the width direction B of the filter plate 36, and from one side of the filter plate 36 to the other side. It is formed over the side.
  • the second header groove 44 (an example of a pressure difference relaxation groove) is formed so as to cross the region in which the flow channel groove pattern 38 is formed in the width direction B.
  • the region where the channel groove pattern 38 is formed is divided into an upper water collection area 46 and a lower water collection area 47 by the second header groove 44.
  • the permeate extraction nozzle 39 has a nozzle main body 39a protruding upward from the upper end of the filter plate 36, and a hole 39b formed in the nozzle main body 39a.
  • One end of the hole 39b opens at the tip of the nozzle body 39a, and the other end of the hole 39b communicates with the first header groove 43.
  • the permeate extraction nozzle 39 and the second header groove 44 communicate with each other via the first header groove 43 and the flow channel groove 38a and the communication groove 38b in the upper water collection area 46.
  • the channel groove 38 a in the lower water collection area 47 communicates with the second header groove 44.
  • the width W1 of each of the first and second header grooves 43 and 44 is formed larger than the width W2 of the flow path groove 38a, and the depth of each of the first and second header grooves 43 and 44 is determined by the flow path groove. The same depth as 38a is formed. Thereby, the flow path cross-sectional area of each of the header grooves 43 and 44 is larger than the flow path cross-sectional area of the flow path groove 38a.
  • the flow path cross-sectional area of the first header groove 43 and the flow path cross-sectional area of the second header groove 44 are the same.
  • a water collecting pipe 50 that collects the permeated liquid sucked from the permeated liquid extraction nozzle 39 of each membrane cartridge 34 is provided above one side of the main body casing 33.
  • the permeate extraction nozzle 39 and the water collecting pipe 50 are connected via a connecting pipe 51.
  • a drain pipe 52 for leading the permeate out of the tank is connected to the water collecting pipe 50. Further, the outlet pipe 52 is provided with a suction pump that generates suction pressure (negative pressure) for sucking the permeated liquid inside the membrane cartridge 34. Instead of using the suction pump, the water head pressure of the liquid 53 to be treated in the reaction tank 32 may be used as the filtration driving pressure to generate the suction pressure.
  • the suction pump is driven while air is diffused from the air diffuser 35 to suck the permeate extraction nozzle 39.
  • the suction pressure acts on the header grooves 43 and 44, the flow path grooves 38a, and the communication grooves 38b through the permeate extraction nozzle 39, and the inside of the membrane cartridge 34 is reduced.
  • solid content, such as sludge, in the liquid 53 to be treated is captured by the filtration membrane 37 and removed from the surface of the filtration membrane 37 by aeration.
  • the permeated liquid that has passed through the filtration membrane 37 flows through the first and second header grooves 43 and 44, the flow path groove 38 a, and the communication groove 38 b, and is taken out from the permeated liquid extraction nozzle 39 to the outside of the membrane cartridge 34. Then, the water is collected in the water collecting pipe 50 through the connecting pipe 51 and led out of the tank through the water collecting pipe 50 through the outlet pipe 52.
  • the permeate flowing through the flow channel groove 38a and the communication groove 38b in the lower water collection area 47 (that is, the water collection area farther from the permeate extraction nozzle 39 than the second header groove 44) is permeated.
  • the liquid is collected from the flow path groove 38 a to the second header groove 44.
  • the flow path cross-sectional area of the second header groove 44 is larger than the flow path cross-sectional area of the flow path groove 38a, and the second header groove 44 has a region in which the flow path groove pattern 38 is formed in the width direction B. Since it crosses, the flow rate of the permeate flowing through the second header groove 44 is lower than the flow rate of the permeate flowing through the flow channel groove 38a.
  • the variation in the suction pressure in the upper water collection area 46 (that is, the water collection area located closer to the permeate take-out nozzle 39 than the second header groove 44) is changed in the length direction of the second header groove 44 ( That is, it is averaged and relaxed in the width direction B) of the filter plate surface.
  • the suction pressure in the lower water collecting section 47 is averaged in the length direction of the second header groove 44 (that is, the width direction B of the filter plate surface), so that the entire membrane surface can be effectively transmitted. A liquid can be obtained.
  • FIG. 4 shows the pressure distribution of the suction pressure generated on the filter plate surface of the filter plate 36.
  • the suction pressure is averaged in the width direction B of the filter plate surface, so that the isobaric line 54 is flattened in the lower water collecting area 47 as compared with that of the conventional membrane cartridge.
  • the difference (variation) in suction pressure in the width direction B of the filter plate surface is reduced, and it has been difficult to effectively obtain permeate from the filter membrane in the past.
  • the permeated liquid can also be efficiently collected from the lower portions 55 on both sides in the width direction B of the filter, and the entire surface of the filtration membrane 37 can be used effectively.
  • the permeate collected in the second header groove 44 and the permeate permeated through the filtration membrane 37 in the upper water collection area 46 are connected to the flow channel 38 a and the communication groove 38 b in the upper water collection area 46. It flows and is collected in the first header groove 43, and flows from the first header groove 43 to the hole 39 b of the permeate extraction nozzle 39.
  • each flow channel groove 38a in the upper and lower water collecting areas 46 and 47 is formed in a straight line, the permeate smoothly flows through the flow channel groove 38a, and the flow channel resistance is reduced.
  • the filtration membrane 37 is connected to the corners 59a and 59b of the two adjacent cells 40 and the flow channel groove. It is supported by one side edge 59c of 38a (that is, supported by two points and one straight part). For this reason, when suction pressure is applied to the inside of the membrane cartridge 34, for example, the flow channel groove and the communication groove intersect with each other in an X shape to support the filtration membrane only at the corners of a plurality of cells (multiple points support). As compared with the above, the filtration membrane 37 can be sufficiently supported at the intersecting portion 58. Thereby, it is possible to prevent the filtration membrane 37 from biting into the channel groove 38a at the intersection 58 and reducing the effective channel cross-sectional area of the channel groove 38a.
  • each communication hole 63 In the second header groove 44, a plurality (two in FIG. 5) of communication holes 63 communicating with both the front and back sides of the filter plate 36 are formed. As shown in FIG. 6, one end of each communication hole 63 opens into the second header groove 44 on either the front or back side of the filter plate 36, and the other end of each communication hole 63 is the second header groove on the other side of the front or back side. 44 is open.
  • the deposit 64 adheres to the filtration membrane 37 of either the front or back side of the membrane cartridge 34, and the membrane within the water collecting area 46 on the upper side of the front or back side S ⁇ b> 1 of the membrane cartridge 34.
  • the effective filtration membrane area in which the permeated liquid is obtained on the surface S1 of the membrane cartridge 34 is smaller than the effective filtration membrane area in which the permeate is obtained on the surface S2 of the membrane cartridge 34.
  • the average value of the suction pressure on the membrane surface of the filtration membrane 37 of the front and back side S1 is larger than the average value of the suction pressure on the membrane surface of the filtration membrane 37 of the other side S2.
  • the communication hole 63 functions as a bypass flow path, whereby the membrane surface is blocked by using the suction pressure on the side (S1) where the membrane surface of the membrane cartridge 34 is blocked.
  • a part of the permeated liquid on the side (S 2) where no stagnation occurs flows to the side (S 1) where the membrane surface blockage occurs and is taken out from the permeated liquid take-out nozzle 39.
  • the second header grooves 44 that cross the region in which the flow path groove pattern 38 is formed in the width direction B are formed on the upper and lower ends of the filter plate 36.
  • the second header groove 44 that crosses the region in which the channel groove pattern 38 is formed in the width direction B is The filter plate 36 is formed to be inclined with respect to the upper and lower end sides.
  • the flow groove pattern 38 of the upper water collection area 46 and the flow groove pattern 38 of the lower water collection area 47 are made the same pattern.
  • the flow groove pattern 38 in the upper water collection area 46 and the flow groove pattern 66 in the lower water collection area 47 may be different from each other.
  • the channel groove pattern 66 is formed by a plurality of channel grooves 66a and communication grooves 66b.
  • Each flow channel 38a of the flow channel pattern 38 in the upper water collection area 46 is inclined toward one side with respect to the vertical direction toward the permeate extraction nozzle 39 side.
  • each flow channel 66a of the flow channel pattern 66 in the lower water collection area 47 is inclined in the direction opposite to the flow channel 38a (on the other side) with respect to the vertical direction.
  • the upper and lower header grooves 43 and 44 and the upper and lower water collecting sections 46 and 47 are provided on the filter plate surface of the filter plate 36.
  • upper and lower three header grooves 43, 44, 68 and upper and lower water collecting areas 46, 47, 69 are provided on the filter plate surface of the filter plate 36. It may be done.
  • the upper and lower four header grooves 43, 44, 68 and 70 and the upper and lower water collecting areas 46, 47 and 69 are formed on the filter plate surface of the filter plate 36.
  • 71 may be provided.
  • the header grooves 44, 68, and 70 function as pressure difference relaxation grooves, whereby the suction pressure is averaged in the width direction B of the filter plate surface by the header grooves 43, 44, 68, and 70.
  • the header grooves may be formed in a plurality of five or more, and the water collecting area may be formed in a plurality of five or more.
  • a communication hole 63 similar to that of the second embodiment may be formed in the header groove of the membrane cartridge 34 shown in the third to sixth embodiments.
  • the filtration membrane 37, the flow path groove patterns 38, 66, and the header grooves 43, 44, 68, 70 are provided on both the front and back filter plate surfaces. It may be provided only on one of the filter plate surfaces. Further, the header grooves 43, 44, 68, 70 may penetrate both the front and back filter plate surfaces of the filter plate 36. The depth of the header grooves 43, 44, 68, 70 is not particularly limited as long as the groove has a sufficient volume to function as a header.
  • a spacer (nonwoven fabric, sponge, or the like) may be disposed between the filter plate 36 and the filter membrane 37, and the spacer may prevent the filter membrane 37 from coming into close contact with the filter plate 36.
  • the permeate extraction nozzle 39 is provided at the upper end portion of the filter plate 36, but is provided in the vicinity of the upper end portion of the filter plate 36, for example, at the upper portion of the side portion of the filter plate 36. It may be.
  • the membrane cartridge 34 is arranged in the membrane separation device 31 with the long side in the vertical direction A, but is arranged in the membrane separation device 31 with the long side in the width direction B. It may be a thing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

濾板36の濾板面に、濾過膜37と、濾過膜37を透過した透過液が流れる流路溝パターン38とが設けられ、濾板36の上端部に、透過液を集めて取り出す透過液取出ノズル39が設けられ、流路溝パターン38は複数の流路溝38aを有し、濾板36に、吸引圧を濾板面の幅方向Bにおいて平均化するヘッダー溝44が形成され、流路溝パターン38が形成されている領域は、濾板36の幅方向Bに長い直線状ヘッダー溝44によって、上下複数の集水区域46,47に区分けされ、透過液取出ノズル39とヘッダー溝44とは上部の集水区域46の流路溝38aを介して連通し、ヘッダー溝44の流路断面積が流路溝38aの流路断面積よりも大きい。

Description

膜カートリッジ
 本発明は、例えば活性汚泥等の固液分離等に用いられる浸漬型膜分離装置を構成する膜カートリッジに関する。
 従来、例えば膜分離活性汚泥処理においては、下水等を活性汚泥処理する反応槽内に浸漬型の膜分離装置が浸漬されている。この膜分離装置には、本体ケーシングの内部に複数枚の有機平膜型の膜カートリッジが所定間隔で平行に配列されて充填されたものがある。
 図9,図10に示すように、膜カートリッジ10は、上下方向Aに長い長方形状の濾板11と、濾板11の表裏両方の濾板面に配置された濾過膜12とを有している。
濾板11の表裏両濾板面には複数の流路溝13が形成されており、濾過膜12を透過した透過液は流路溝13を流れる。これら流路溝13は、上下方向A(縦方向)に長く形成され、濾板11の幅方向Bにおいて平行に配列されている。
 濾板11の上端部には、各流路溝13内の透過液を集める集液部14が形成されている。集液部14は濾板11の表裏両濾板面に貫通しており、各流路溝13の上端は集液部14に連通している。尚、上記流路溝13と集液部14とによって透過液流路17が構成される。また、濾板11の上縁部には、集液部14に集められた透過液を膜カートリッジ10の外部へ取り出す透過液取出ノズル15が設けられている。
 これによると、膜カートリッジ10を固液分離に使用する場合、吸引ポンプを用いて透過液取出ノズル15に吸引圧(負圧)を作用させることにより、吸引圧が透過液取出ノズル15を通して透過液流路17(すなわち流路溝13と集液部14)に作用し、槽内混合液18(被処理液)が濾過膜12で濾過される。この際、濾過膜12を透過した濾過液は、各流路溝13内を通り、集液部14に流入して集められ、集液部14から透過液取出ノズル15を通って膜カートリッジ10の外部へ取り出される。
 尚、上記のように濾板11に流路溝13と集液部14とが設けられた膜カートリッジ10については、例えば下記特許文献1の日本国公開特許公報に記載されている。
 また、膜カートリッジ10の透過液流路17に吸引圧が作用している際、膜カートリッジ10の下部ほど透過液取出ノズル15までの圧力損失が増大するため、濾板11の濾板面には図11に示すような吸引圧の圧力分布が生じる。図11において、各等圧線19a~19eは圧力が等しい位置を示しており、下位にある等圧線19a~19eほど低い圧力値を示す。これによると、各等圧線19a~19eは透過液取出ノズル15の直下が下向きに膨らんだ曲線となり、透過液取出ノズル15から離れた位置ほど吸引圧は低下する。また、幅方向Bにおける圧力分布については、透過液取出ノズル15の直下から幅方向Bに離れるほど吸引圧が低下する。
特開平8-281264
 しかしながら上記の従来形式では、図11に示すように、濾板11の下部ほど、濾板面の幅方向Bにおいて圧力差(圧力分布、圧力のばらつき)が増大する。このため、濾板11の両側の下部20へ向うほど透過液を効率良く集水することが困難となり、濾過膜12の全面を同時に有効に使用することが困難であるという問題がある。
 また、図12に示すように、隣り合う一対の膜カートリッジ10の膜間に固形分等の付着物24が詰まるなどして、膜カートリッジ10の表裏いずれか一方の面で膜面が閉塞することがある。この場合、膜面の閉塞の発生部分では濾過が行なわれないので、膜カートリッジ10の表裏一方の面において透過液が得られる有効な濾過膜面積は、表裏他方の面において透過液が得られる有効な濾過膜面積よりも減少する。これにより、膜カートリッジ10の表裏一方の面から得られる透過液の量が表裏他方の面から得られる透過液の量よりも減少してしまう。このように、膜カートリッジ10の表裏いずれかの面で膜面の閉塞が起こると、膜カートリッジ10の表側から得られる透過液の量と裏側から得られる透過液の量とに差が生じるといった問題がある。
 本発明は、透過液を効率良く集水することにより、濾過膜を有効に使用することが可能であり、また、膜面の閉塞等によって生じる表側から得られる透過液量と裏側から得られる透過液量との差を小さくすることができる膜カートリッジを提供することを目的とする。
 上記目的を達成するために、本第1発明は、濾板の少なくとも表裏いずれか一方の濾板面に濾過膜を配置し、
濾過膜で覆われた濾板面に、濾過膜を透過した透過液が流れる流路溝パターンを形成し、
濾板の周縁部に、流路溝パターンを流れる透過液を集めて取り出す透過液取出口を設けた浸漬型膜分離装置を構成する膜カートリッジであって、
流路溝パターンは複数の流路溝を有し、
濾板に、流路溝パターンが形成されている領域を横断する圧力差緩和溝が形成され、
流路溝パターンが形成されている領域は圧力差緩和溝によって複数の集水区域に区分けされ、
圧力差緩和溝は複数の流路溝を介して透過液取出口に連通し、
圧力差緩和溝の流路断面積が流路溝の流路断面積よりも大きいものである。
 これによると、膜カートリッジを用いて被処理液を固液分離する際、透過液取出口を通して膜カートリッジの内側に吸引圧を作用させることにより、被処理液が濾過膜で濾過され、濾過膜を透過した透過液が、流路溝と圧力差緩和溝とを流れ、透過液取出口から膜カートリッジの外部に取り出される。
 この際、圧力差緩和溝よりも透過液取出口から遠い集水区域の流路溝を流れる透過液は、透過液取出口に達するまでの途中で、流路溝から圧力差緩和溝に集められる。圧力差緩和溝は、流路断面積が流路溝の流路断面積よりも大きく、且つ、流路溝パターンが形成されている領域を横断しているため、圧力差緩和溝を流れる透過液の流速が流路溝を流れる透過液の流速よりも低下する。
 これにより、圧力差緩和溝よりも透過液取出口に近い集水区域における吸引圧のばらつきが圧力差緩和溝の長さ方向において平均化されて緩和され、これにより、圧力差緩和溝よりも透過液取出口から遠い集水区域における吸引圧が圧力差緩和溝の長さ方向において平均化されるため、膜面全体を使って効果的に透過液を得ることができる。
 本第2発明は、濾板は縦横の長さが異なる形状であり、
濾板の長手方向を立設させた際に、透過液取出口は濾板の上端部又は上端部近傍に設けられ、
圧力差緩和溝は濾板の一側辺から他側辺にわたり設けられているものである。
 これによると、縦長形状の濾板において濾過膜の全面を有効に使用するには、濾板面の幅方向での吸引圧のばらつきを抑えることが有効である。圧力差緩和溝を濾板の一側辺から他側辺にわたり設けたため、圧力差緩和溝よりも透過液取出口に近い集水区域における吸引圧のばらつきは、圧力差緩和溝によって、濾板面の幅方向において平均化される。これにより、圧力差緩和溝よりも透過液取出口から遠い集水区域における吸引圧が濾板面の幅方向において平均化されるため、濾過膜の全面を有効に使用することができる。
 本第3発明は、流路溝は、直線状に形成され、且つ、平行に配列されているものである。
 これによると、透過液が流路溝内を流れるときの流路抵抗が低減される。
 本第4発明は、流路溝パターンは隣り合った流路溝同士を連通させる複数の連通溝を有しているものである。
 これによると、透過液は、透過液取出口に向って流路溝と連通溝とを流れ、透過液取出口から膜カートリッジの外部に取り出される。この際、圧力差緩和溝よりも透過液取出口から遠い集水区域において濾過膜を透過した透過液は、透過液取出口に達するまでの途中で、圧力差緩和溝に集められる。
 本第5発明は、連通溝と流路溝とがT字状に交差しているものである。
 これによると、連通溝と流路溝とが交差する交差部分では、濾過膜は周囲を連通溝と流路溝とで区切られたセルの二つの角と流路溝の片側縁とで支持(すなわち二点と一本の直線部とで支持)される。これにより、例えば連通溝と流路溝とがX字状に交差している場合と比べて、濾過膜を支持する領域が多くなるため、濾過膜の伸びを抑制したり、濾過膜が流路溝や連通溝に食い込んでこれら溝の有効流路断面積を減少させるのを防止することができる。
 本第6発明は、濾過膜と流路溝パターンと圧力差緩和溝とが濾板の表裏両方の濾板面に設けられ、
圧力差緩和溝に、濾板の表裏両側に連通する連通孔が形成されているものである。
 これによると、連通孔を通じて濾板の表側と裏側との吸引圧の差が減少するため、濾板の表側と裏側とで濾過が偏ることを抑制することができる。
 例えば、膜カートリッジの表裏いずれか一方の面で膜面閉塞が起こった場合、膜面閉塞が起こった箇所からは透過液が得られないため、膜カートリッジの表裏一方の面において透過液が得られる有効な濾過膜面積は表裏他方の面において透過液が得られる有効な濾過膜面積よりも減少する。そして、これにより、表裏一方の面の濾過膜面における吸引圧の平均値が表裏他方の面の濾過膜面における吸引圧の平均値よりも増大する。
 これにより、表裏他方の面の濾過膜を透過した透過液の一部は、表裏他方の流路溝を流れ、表裏他方の圧力差緩和溝から連通孔を通って表裏一方の圧力差緩和溝へ流れ込み、表裏一方の濾過膜を透過した透過液と共に、表裏一方の流路溝を流れて透過液取出口から膜カートリッジの外部に取り出される。
 このように、膜面閉塞が起こった場合、連通孔がバイパス流路として機能し、これにより、膜カートリッジの膜面閉塞が起こった側の吸引圧を利用して、膜カートリッジの膜面閉塞が起こっていない側の透過液の一部は上記膜面閉塞が起こった側へ流れて透過液取出口から取り出されるため、膜面閉塞によって膜カートリッジの表裏いずれかの有効な濾過膜面積が減少しても、膜カートリッジの表側から得られる透過液量と裏側から得られる透過液量との差を小さくすることができる。
 以上のように、本発明では、透過液を効率良く集水することにより、濾過膜を有効に使用することが可能である。また、膜面の閉塞等によって生じる膜カートリッジの表側から得られる透過液量と膜カートリッジの裏側から得られる透過液量との差を小さくすることができる。
本発明の第1の実施の形態における膜カートリッジを備えた膜分離装置の一部切欠き斜視図である。 同、膜カートリッジの一部切欠き正面図である。 同、膜カートリッジの流路溝パターンの流路溝と連通溝との交差部分の拡大図である。 同、膜カートリッジの濾板の正面図である。 本発明の第2の実施の形態における膜カートリッジの一部切欠き正面図である。 同、二枚の膜カートリッジの側面から見た縦断面図である。 同、二枚の膜カートリッジの側面から見た縦断面図であり、膜面閉塞が発生した状態を示す。 本発明の第3の実施の形態における膜カートリッジの濾板の正面図である。 本発明の第4の実施の形態における膜カートリッジの濾板の正面図である。 本発明の第5の実施の形態における膜カートリッジの濾板の正面図である。 本発明の第6の実施の形態における膜カートリッジの濾板の正面図である。 従来の膜カートリッジの一部切欠き正面図である。 同、二枚の膜カートリッジの側面から見た縦断面図である。 同、膜カートリッジの濾板の正面図である。 同、二枚の膜カートリッジの側面から見た縦断面図であり、膜面閉塞が発生した状態を示す。
 以下、本発明における第1の実施の形態を、図1~図4を参照して説明する。
 図1に示すように、下水等を活性汚泥処理する反応槽の内部には浸漬型の膜分離装置31が設けられている。この膜分離装置31は、上下両端部が開放された四角形状の本体ケーシング33と、本体ケーシング33の内部に設けられた複数枚の有機平膜型の膜カートリッジ34と、これら膜カートリッジ34の下方に設けられた散気装置35を有している。
 尚、隣接する各膜カートリッジ34は、対向する膜面間に所定間隔をあけて、平行に配列されている。また、各膜カートリッジ34同士は、所定間隔をあけて離間しているが、少なくとも側辺部で接触していてもよい。この場合、本体ケーシング33の側面が開放されていてもよく、又は、本体ケーシング33が不要であってもよい。
 図2に示すように、膜カートリッジ34は、上下方向Aに長い長方形状(縦横の長さが異なる形状の一例)の濾板36と、濾板36の表裏両方の濾板面(すなわち濾板36の表面)に取り付けられた濾過膜37を有している。濾過膜37の周縁部は、濾板36に、溶着又は接着等により固着されている。
 濾板36の表裏両方の濾板面にはそれぞれ、流路溝パターン38と、吸引圧を濾板面の幅方向Bにおいて平均化する第1および第2のヘッダー溝43,44が形成されている。濾過膜37を透過した透過液は流路溝パターン38を流れる。
 流路溝パターン38とヘッダー溝43,44とは濾過膜37で覆われている。また、濾板36の上端部には、流路溝パターン38内の透過液を集めて膜カートリッジ34の外部に取り出す透過液取出ノズル39(透過液取出口の一例)が設けられている。
 流路溝パターン38は、鉛直方向に対して傾斜した直線状の複数の平行な流路溝38aと、隣り合う流路溝38a同士を連通させる複数の連通溝38bとによって形成されている。また、図2,図3に示すように、流路溝パターン38が形成されることにより、濾板36の表裏両方の濾板面には、周囲を流路溝38aと連通溝38bとで区切られた複数の長方形状のセル40が形成されている。流路溝38aと連通溝38bとはT字状に交差しており、流路溝38aの流路断面積と連通溝38bの流路断面積とは同一である。
 第1および第2のヘッダー溝43,44は、濾板36の上下両端辺に平行で且つ濾板36の幅方向Bに長い直線状の溝であり、濾板36の一側辺から他側辺にわたって形成されている。尚、第2のヘッダー溝44(圧力差緩和溝の一例)は、流路溝パターン38が形成されている領域を幅方向Bに横断するように形成されている。流路溝パターン38が形成されている領域は、第2のヘッダー溝44によって、上部の集水区域46と下部の集水区域47とに区分けされている。
 透過液取出ノズル39は、濾板36の上端部から上向きに突出したノズル本体部39aと、ノズル本体部39aに形成された孔部39bとを有している。尚、孔部39bの一端はノズル本体部39aの先端に開口し、孔部39bの他端は第1のヘッダー溝43に連通している。これにより、透過液取出ノズル39と第2のヘッダー溝44とは、第1のヘッダー溝43と上部の集水区域46内の流路溝38aと連通溝38bとを介して、連通している。また、下部の集水区域47内の流路溝38aは第2のヘッダー溝44に連通している。
 第1および第2のヘッダー溝43,44の各々の幅W1は流路溝38aの幅W2よりも大きく形成され、第1および第2のヘッダー溝43,44の各々の深さは流路溝38aの深さと同一に形成されている。これにより、ヘッダー溝43,44の各々の流路断面積は流路溝38aの流路断面積よりも大きい。尚、第1のヘッダー溝43の流路断面積と第2のヘッダー溝44の流路断面積とは同一である。
 図1に示すように、本体ケーシング33の一側部の上方には、各膜カートリッジ34の透過液取出ノズル39から吸引された透過液を集める集水管50が設けられている。透過液取出ノズル39と集水管50とは接続管51を介して接続されている。
 集水管50には、透過液を槽外へ導出する導出管52が接続されている。また、導出管52には、透過液を吸引するための吸引圧(負圧)を膜カートリッジ34の内側に発生させる吸引ポンプが設けられている。尚、吸引ポンプを用いずに、反応槽32内の被処理液53の水頭圧を濾過駆動圧として利用し、吸引圧を発生させてもよい。
 以下、上記構成における作用を説明する。
 濾過運転中は、散気装置35から散気を行ないながら、吸引ポンプを駆動して、透過液取出ノズル39を吸引する。これにより、吸引圧が透過液取出ノズル39を通してヘッダー溝43,44と流路溝38aと連通溝38bとに作用し、膜カートリッジ34の内側が減圧される。これにより、被処理液53中の汚泥等の固形分が、濾過膜37で捕捉され、散気によって濾過膜37の表面から除去される。この際、濾過膜37を透過した透過液は、第1および第2のヘッダー溝43,44と流路溝38aと連通溝38bとを流れ、透過液取出ノズル39から膜カートリッジ34の外部に取り出され、接続管51を経て集水管50に集められ、集水管50から導出管52を通って槽外へ導出される。
 この際、下部の集水区域47(すなわち第2のヘッダー溝44よりも透過液取出ノズル39から遠い位置にある集水区域)の流路溝38aと連通溝38bとを流れる透過液は、透過液取出ノズル39に達するまでの途中で、流路溝38aから第2のヘッダー溝44に集められる。第2のヘッダー溝44の流路断面積は流路溝38aの流路断面積よりも大きく、且つ、第2のヘッダー溝44は流路溝パターン38が形成されている領域を幅方向Bに横断しているため、第2のヘッダー溝44を流れる透過液の流速は流路溝38aを流れる透過液の流速よりも低下する。
 これにより、上部の集水区域46(すなわち第2のヘッダー溝44よりも透過液取出ノズル39に近い位置にある集水区域)における吸引圧のばらつきが第2のヘッダー溝44の長さ方向(すなわち濾板面の幅方向B)において平均化されて緩和される。これにより、下部の集水区域47における吸引圧が第2のヘッダー溝44の長さ方向(すなわち濾板面の幅方向B)において平均化されるため、膜面全体を使って効果的に透過液を得ることができる。
 図4には、濾板36の濾板面に発生する吸引圧の圧力分布が示されている。上記のように濾板面の幅方向Bにおいて吸引圧が平均化されることにより、下部の集水区域47では、等圧線54が、従来の膜カートリッジのものよりも、平坦化する。これにより、下部の集水区域47では、濾板面の幅方向Bにおける吸引圧の差(ばらつき)が縮小され、従来では有効に濾過膜から透過液を得ることが困難であった濾板36の幅方向Bにおける両側の下部55からも透過液を効率良く集水することができ、濾過膜37の全面を有効に使用することができる。
 また、第2のヘッダー溝44に集められた透過液と上部の集水区域46において濾過膜37を透過した透過液とは、上部の集水区域46の流路溝38aと連通溝38bとを流れて第1のヘッダー溝43に集められ、第1のヘッダー溝43から透過液取出ノズル39の孔部39bに流れる。
 また、上部および下部の集水区域46,47の各流路溝38aは直線状に形成されているため、透過液がスムーズに流路溝38aを流れ、流路抵抗が低減される。
 また、図3に示すように、流路溝38aと連通溝38bとがT字状に交差する交差部分58では、濾過膜37は、隣り合う二つのセル40の角59a,59bと流路溝38aの片側縁59cとで支持(すなわち二点と一本の直線部とで支持)される。このため、膜カートリッジ34の内側に吸引圧が作用した際、例えば流路溝と連通溝とがX字状に交差して複数のセルの角のみで濾過膜を支持(複数点支持)するものと比べて、交差部分58において濾過膜37を十分に支持することができる。これにより、交差部分58において濾過膜37が流路溝38a内に食い込んで流路溝38aの有効流路断面積が縮小するのを防止することができる。
 次に、本発明における第2の実施の形態を、図5~図7を参照して説明する。
 第2のヘッダー溝44には、濾板36の表裏両側に連通する複数個(図5では二個)の連通孔63が形成されている。図6に示すように、各連通孔63の一端は濾板36の表裏いずれか一方の第2のヘッダー溝44内に開口し、各連通孔63の他端は表裏他方の第2のヘッダー溝44内に開口している。
 以下、上記構成における作用を説明する。
 濾板36の表側と裏側との吸引圧の差が連通孔63を通じて減少するため、濾板36の表側と裏側とで濾過が偏ることを抑制することができる。
 また、例えば、図7に示すように、膜カートリッジ34の表裏いずれか一方S1の濾過膜37に付着物64が付着して、膜カートリッジ34の表裏一方S1の上部の集水区域46内で膜面が閉塞した場合、膜面が閉塞している箇所からは透過液が得られない。このため、膜カートリッジ34の表裏一方S1の面において透過液が得られる有効な濾過膜面積は、膜カートリッジ34の表裏他方S2の面において透過液が得られる有効な濾過膜面積よりも減少する。これにより、表裏一方S1の濾過膜37の膜面における吸引圧の平均値が表裏他方S2の濾過膜37の膜面における吸引圧の平均値よりも増大する。
 これにより、表裏他方S2の濾過膜37を透過した透過液の一部は、表裏他方S2の流路溝38aを流れ、表裏他方S2の第2のヘッダー溝44から連通孔63を通って表裏一方S1の第2のヘッダー溝44へ流れ込み、表裏一方S1の濾過膜37を透過した透過液と共に、表裏一方S1の流路溝38aを流れて透過液取出ノズル39から膜カートリッジ34の外部に取り出される。
 このように、膜面が閉塞した場合、連通孔63がバイパス流路として機能し、これにより、膜カートリッジ34の膜面閉塞が起こった側(S1)の吸引圧を利用して、膜面閉塞が起こっていない側(S2)の透過液の一部は、上記膜面閉塞が起こった側(S1)へ流れて透過液取出ノズル39から取り出される。このため、膜面の閉塞によって膜カートリッジ34の表裏いずれかの有効な濾過膜面積が減少しても、膜カートリッジ34の表側から得られる透過液の量と膜カートリッジ34の裏側から得られる透過液の量との差を小さくすることができる。
 尚、上記第2の実施の形態では、図5に示すように、連通孔63が二個形成されているが、二個以外の複数個又は一個のみ形成されていてもよい。
 次に、本発明における第3~第6の実施の形態を、図8A~図8Dを参照して説明する。
 上記第1の実施の形態では、図2に示すように、流路溝パターン38が形成されている領域を幅方向Bに横断する第2のヘッダー溝44は、濾板36の上下両端辺に対して平行に形成されているが、第3の実施の形態として、図8Aに示すように、流路溝パターン38が形成されている領域を幅方向Bに横断する第2のヘッダー溝44は、濾板36の上下両端辺に対して傾斜して形成されている。
 上記第1の実施の形態では、図2に示すように、上部の集水区域46の流路溝パターン38と下部の集水区域47の流路溝パターン38とを同一のパターンにしたが、第4の実施の形態として、図8Bに示すように、上部の集水区域46の流路溝パターン38と下部の集水区域47の流路溝パターン66とを異なったパターンにしてもよい。尚、流路溝パターン66は複数の流路溝66aと連通溝66bとによって形成されている。
 上部の集水区域46の流路溝パターン38の各流路溝38aは、透過液取出ノズル39側に向いて、鉛直方向に対して一側方へ傾斜している。また、下部の集水区域47の流路溝パターン66の各流路溝66aは、鉛直方向に対して、上記流路溝38aと反対方向(他側方)へ向いて傾斜している。
 上記第1の実施の形態では、図2に示すように、濾板36の濾板面に上下二本のヘッダー溝43,44と上下二つの集水区域46,47とが設けられているが、第5の実施の形態として、図8Cに示すように、濾板36の濾板面に上下三本のヘッダー溝43,44,68と上下三つの集水区域46,47,69とが設けられていてもよい。また、第6の実施の形態として、図8Dに示すように、濾板36の濾板面に上下四本のヘッダー溝43,44,68,70と上下四つの集水区域46,47,69,71とが設けられていてもよい。これによると、ヘッダー溝44,68,70が圧力差緩和溝として機能することで、各ヘッダー溝43,44,68,70により、濾板面の幅方向Bにおいて吸引圧が平均化される。尚、ヘッダー溝が五本以上の複数本形成されているとともに、集水区域が五つ以上の複数形成されていてもよい。
 尚、上記第3~第6の実施の形態で示した膜カートリッジ34のヘッダー溝に、上記第2の実施の形態と同様の連通孔63を形成してもよい。
 上記各々の実施の形態では、濾過膜37と流路溝パターン38,66とヘッダー溝43,44,68,70とは、濾板36の表裏両方の濾板面に設けられているが、表裏いずれか一方の濾板面のみに設けられていてもよい。また、ヘッダー溝43,44,68,70が濾板36の表裏両方の濾板面に貫通してもよい。尚、ヘッダー溝43,44,68,70の深さは、ヘッダーとして機能するのに十分な溝の容積を備える範囲において特に限定されるものではない。
 上記各々の実施の形態において、濾板36と濾過膜37との間にスペーサー(不織布やスポンジ等)が配置され、濾過膜37が濾板36に密着するのをスペーサーで防止してもよい。
 上記各々の実施の形態では、透過液取出ノズル39は、濾板36の上端部に設けられているが、濾板36の上端部近傍、例えば濾板36の側辺部の上部等に設けられていてもよい。
 上記各々の実施の形態では、膜カートリッジ34は、長辺を上下方向Aにして膜分離装置31内に配置されているが、長辺を幅方向Bにして膜分離装置31内に配置されるものであってもよい。

Claims (6)

  1. 濾板の少なくとも表裏いずれか一方の濾板面に濾過膜が設けられ、
    濾過膜で覆われた濾板面に、濾過膜を透過した透過液が流れる流路溝パターンが形成され、
    濾板の周縁部に、流路溝パターンを流れる透過液を集めて取り出す透過液取出口が設けられた浸漬型膜分離装置を構成する膜カートリッジであって、
    流路溝パターンは複数の流路溝を有し、
    濾板に、流路溝パターンが形成されている領域を横断する圧力差緩和溝が形成され、
    流路溝パターンが形成されている領域は圧力差緩和溝によって複数の集水区域に区分けされ、
    圧力差緩和溝は複数の流路溝を介して透過液取出口に連通し、
    圧力差緩和溝の流路断面積が流路溝の流路断面積よりも大きいことを特徴とする膜カートリッジ。
  2. 濾板は縦横の長さが異なる形状であり、
    濾板の長手方向が上下方向となるように濾板を立設した際、透過液取出口は濾板の上端部又は上端部の近傍に設けられ、
    圧力差緩和溝は濾板の一側辺から他側辺にわたり設けられていることを特徴とする請求項1記載の膜カートリッジ。
  3. 流路溝は、直線状に形成され、且つ、平行に配列されていることを特徴とする請求項1又は請求項2記載の膜カートリッジ。
  4. 流路溝パターンは、隣り合った流路溝同士を連通させる複数の連通溝を有していることを特徴とする請求項1から請求項3のいずれか1項に記載の膜カートリッジ。
  5. 連通溝と流路溝とがT字状に交差していることを特徴とする請求項4記載の膜カートリッジ。
  6. 濾過膜と流路溝パターンと圧力差緩和溝とが濾板の表裏両方の濾板面に設けられ、
    圧力差緩和溝に、濾板の表裏両側に連通する連通孔が形成されていることを特徴とする請求項1から請求項5のいずれか1項に記載の膜カートリッジ。
PCT/JP2009/004665 2008-09-26 2009-09-17 膜カートリッジ WO2010035436A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09815858.7A EP2332636B1 (en) 2008-09-26 2009-09-17 Membrane cartridge
CN200980137327.0A CN102164654B (zh) 2008-09-26 2009-09-17 膜滤芯
US13/063,043 US8377303B2 (en) 2008-09-26 2009-09-17 Membrane cartridge
ES09815858.7T ES2629465T3 (es) 2008-09-26 2009-09-17 Cartucho de membranas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008247491A JP5361312B2 (ja) 2008-09-26 2008-09-26 膜カートリッジ
JP2008-247491 2008-09-26

Publications (1)

Publication Number Publication Date
WO2010035436A1 true WO2010035436A1 (ja) 2010-04-01

Family

ID=42059449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004665 WO2010035436A1 (ja) 2008-09-26 2009-09-17 膜カートリッジ

Country Status (6)

Country Link
US (1) US8377303B2 (ja)
EP (1) EP2332636B1 (ja)
JP (1) JP5361312B2 (ja)
CN (1) CN102164654B (ja)
ES (1) ES2629465T3 (ja)
WO (1) WO2010035436A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920712B2 (ja) * 2009-03-31 2012-04-18 株式会社日立プラントテクノロジー 浸漬型膜分離装置における膜エレメント
TWI428168B (zh) * 2011-09-27 2014-03-01 Wang Yung Chuan Lee Anti - fouling device for membrane filter
CN103785296A (zh) * 2012-11-01 2014-05-14 河源海川科技有限公司 一种生物膜单元及膜生物反应器
WO2014191299A1 (de) * 2013-05-30 2014-12-04 Napt - New Advanced Process Technology Ag Keramikelement für eine fluidtrennvorrichtung
JP6896772B2 (ja) * 2016-06-08 2021-06-30 フェート・エンフェー (フラームス・インステリング・フーア・テクノロジシュ・オンダーゾエク・エンフェー) 予備成形されたシートを用いて作製された膜支持体
CN109718669A (zh) * 2019-02-25 2019-05-07 威孔过滤科技(苏州)有限公司 板式滤芯及应用该板式滤芯的过滤机
CN110479107B (zh) * 2019-09-09 2023-11-24 南京医科大学第二附属医院 一种westernblot敷育洗膜盒

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500426A (en) 1979-02-15 1985-02-19 Daicel Chemical Industries, Ltd. Semipermeable membrane elements
JPS62204802A (ja) 1986-03-04 1987-09-09 Sanki Eng Co Ltd 膜分離装置
JPH0639250A (ja) * 1992-07-23 1994-02-15 Kubota Corp 濾過エレメント
JPH06178920A (ja) * 1992-12-16 1994-06-28 Kubota Corp 濾過膜モジュール
JPH08281264A (ja) 1995-04-14 1996-10-29 Kubota Corp 浸漬型膜カートリッジ
JPH09299969A (ja) * 1996-05-20 1997-11-25 Kubota Corp 水処理用平板型膜分離体
US20030010690A1 (en) 2000-12-04 2003-01-16 Yasunobu Okajima Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
JP2003117358A (ja) * 2001-10-12 2003-04-22 Kubota Corp 平板状膜カートリッジ
JP2004121905A (ja) * 2002-09-30 2004-04-22 Kobe Steel Ltd 浸漬型膜分離装置
JP2007268388A (ja) * 2006-03-31 2007-10-18 Kubota Corp 膜カートリッジおよび浸漬型膜分離装置
JP2008073680A (ja) * 2006-09-22 2008-04-03 Membrane-Tec Co Ltd 濾過用カートリッジ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651888A (en) * 1992-12-16 1997-07-29 Kubota Corporation Filtration membrane cartridge

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500426A (en) 1979-02-15 1985-02-19 Daicel Chemical Industries, Ltd. Semipermeable membrane elements
JPS62204802A (ja) 1986-03-04 1987-09-09 Sanki Eng Co Ltd 膜分離装置
JPH0639250A (ja) * 1992-07-23 1994-02-15 Kubota Corp 濾過エレメント
JPH06178920A (ja) * 1992-12-16 1994-06-28 Kubota Corp 濾過膜モジュール
JPH08281264A (ja) 1995-04-14 1996-10-29 Kubota Corp 浸漬型膜カートリッジ
JPH09299969A (ja) * 1996-05-20 1997-11-25 Kubota Corp 水処理用平板型膜分離体
US20030010690A1 (en) 2000-12-04 2003-01-16 Yasunobu Okajima Multistage immersion type membrane separator and high-concentration wastewater treatment facility using same
JP2003117358A (ja) * 2001-10-12 2003-04-22 Kubota Corp 平板状膜カートリッジ
JP2004121905A (ja) * 2002-09-30 2004-04-22 Kobe Steel Ltd 浸漬型膜分離装置
JP2007268388A (ja) * 2006-03-31 2007-10-18 Kubota Corp 膜カートリッジおよび浸漬型膜分離装置
JP2008073680A (ja) * 2006-09-22 2008-04-03 Membrane-Tec Co Ltd 濾過用カートリッジ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2332636A4

Also Published As

Publication number Publication date
EP2332636A1 (en) 2011-06-15
CN102164654A (zh) 2011-08-24
US20110163025A1 (en) 2011-07-07
CN102164654B (zh) 2014-10-08
EP2332636B1 (en) 2017-05-03
ES2629465T3 (es) 2017-08-09
EP2332636A4 (en) 2012-05-02
JP5361312B2 (ja) 2013-12-04
US8377303B2 (en) 2013-02-19
JP2010075850A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
WO2010035436A1 (ja) 膜カートリッジ
US20110005994A1 (en) Membrane element and membrane module
KR101958154B1 (ko) 공기세정 일체형 침지식 중공사막 모듈 장치
JP5361310B2 (ja) 膜カートリッジ
JP5747046B2 (ja) 濾過装置
JP3538902B2 (ja) 浸漬型膜分離装置の膜エレメント
WO2010113923A1 (ja) 膜分離装置
AU2010201008A1 (en) Membrane element in immersion type membrane separation apparatus
JP3219579B2 (ja) 膜モジュール
JP3929194B2 (ja) 中空糸膜ユニット及び膜分離装置
JP3815996B2 (ja) 平板状膜カートリッジ
JP4192248B2 (ja) 分離膜モジュール
JP5105787B2 (ja) 膜カートリッジ
JP2008073676A (ja) 濾過用カートリッジ
CN214167467U (zh) 一种mbr平板膜水处理装置
JP2001321645A (ja) ろ過膜エレメントおよび透過水の製造方法
JPH07100338A (ja) 膜分離装置
JP2003175319A (ja) 膜エレメント、膜モジュール、造水装置および造水方法
JPH0824592A (ja) 膜カートリッジ
WO2010073574A1 (ja) 膜ユニットおよび膜モジュール
JP2001321766A (ja) ろ過膜エレメントおよび透過水の製造方法
JP2012223763A (ja) 膜カートリッジ
JPH09108549A (ja) 散気装置
WO2009118786A1 (ja) 膜モジュールおよび膜カセット
JP2001029757A (ja) 分離膜エレメント及びそれを用いた分離装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137327.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1016/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13063043

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009815858

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009815858

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE