WO2010035414A1 - 顕微鏡システム、該制御プログラムが格納された記憶媒体、及び該制御方法 - Google Patents

顕微鏡システム、該制御プログラムが格納された記憶媒体、及び該制御方法 Download PDF

Info

Publication number
WO2010035414A1
WO2010035414A1 PCT/JP2009/004463 JP2009004463W WO2010035414A1 WO 2010035414 A1 WO2010035414 A1 WO 2010035414A1 JP 2009004463 W JP2009004463 W JP 2009004463W WO 2010035414 A1 WO2010035414 A1 WO 2010035414A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation
image
microscope
screen
display
Prior art date
Application number
PCT/JP2009/004463
Other languages
English (en)
French (fr)
Inventor
城田哲也
石井泰子
吉川晃彦
佐久間いづみ
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008248481A external-priority patent/JP5192965B2/ja
Priority claimed from JP2008247931A external-priority patent/JP5191333B2/ja
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP09815836.3A priority Critical patent/EP2328009B1/en
Publication of WO2010035414A1 publication Critical patent/WO2010035414A1/ja
Priority to US13/052,530 priority patent/US8699129B2/en
Priority to US13/178,146 priority patent/US8339702B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison

Definitions

  • the present invention relates to a microscope system having a plurality of objective lenses and performing various types of optical member driving by a motor for performing magnified observation of a minute sample.
  • Microscope devices are widely used in research and inspection in the biological field including the industrial field.
  • a microscope device When inspecting using such a microscope device, generally operate a motorized stage that has multiple objective lenses with different magnifications and can move the observation sample in a plane perpendicular to the observation optical path from the objective lens. By doing so, observation and inspection are performed.
  • this inspection for example, there is the following method. First, the objective lens is set at a low magnification, and the entire sample is screened for leaks. After that, the point where the abnormal site is found in the observation sample or the point to be recorded is returned. Furthermore, the high-magnification objective lens is switched to the optimal spectroscopic method, the abnormal part is inspected in detail, and the detailed observation data is recorded.
  • Patent Document 1 when a desired region of an observation image on a monitor is designated, an objective magnification and a stage position necessary for displaying the designated region on the entire screen are calculated, and the objective magnification is calculated based on the calculation result.
  • a microscope zooming device that automatically drives a zooming mechanism and a stage so that a corresponding objective lens is inserted in the observation optical path and a designated region is located at substantially the center of the observation field.
  • Patent Document 2 there is a microscope apparatus that can set the moving direction and moving speed of the stage by moving the pointer on the controller images for the XY and Z directions displayed on the monitor. It is disclosed.
  • Patent Document 3 the magnification of the microscope image is controlled based on the magnification set by the amount and direction of rotation of the mouse wheel, the position adjustment function is assigned to one switch of the mouse, and the focus adjustment is assigned to the other switch.
  • Patent Literature 4 a virtual microscope system that reconstructs an image of an observation object by joining together the microscope images obtained by imaging the observation object, with the same operability as when the observation object is actually observed with a microscope. Switching between microscopic methods is disclosed.
  • Patent Document 5 switching between filter sets is performed automatically, and superimposed images of the respective image images are sequentially performed simultaneously, and both can be displayed on the display unit, thereby realizing multicolor fluorescence observation in almost real time.
  • a fluorescence microscope is disclosed.
  • the present invention provides a microscope system that improves user operability during microscopic observation.
  • the microscope system includes a microscope apparatus having a plurality of drive units, display means for displaying an operation screen for operating the microscope apparatus, and the microscope with respect to the operation screen.
  • a pointing device that inputs an operation instruction to the apparatus with a pointer, and the drive unit is switched according to the position of the pointer on the operation screen, and the operation of the switched drive unit is performed according to the operation of the pointing device.
  • Control means for controlling.
  • a microscope apparatus having a plurality of drive units, a display apparatus for displaying an operation screen for operating the microscope apparatus, and the microscope apparatus with respect to the operation screen
  • a storage medium storing a program for causing a computer to execute a process for controlling a microscope system having a pointing device that inputs an operation instruction using a pointer includes: a determination process for determining the position of the pointer on the operation screen; and the determination result Moreover, a unit switching process for switching the drive unit according to the position of the pointer on the operation screen, and a unit control process for controlling the operation of the switched drive unit according to the operation of the pointing device. Let the computer run.
  • a microscope apparatus having a plurality of drive units, a display apparatus for displaying an operation screen for operating the microscope apparatus, and the microscope apparatus with respect to the operation screen
  • a microscope system control method for controlling a microscope system having a pointing device that inputs an operation instruction using a pointer determines the position of the pointer on the operation screen, and determines the position of the pointer on the operation screen based on the determination result.
  • the drive unit is switched according to the control unit, and the operation of the switched drive unit is controlled according to the operation of the pointing device.
  • a microscope system includes a microscope capable of observing an observation body by switching a plurality of observation methods, an imaging unit that captures an optical image of the observation body, and the plurality of observations
  • a selection instruction means for giving a selection instruction for selecting at least one of the observation methods, a superimposition means for superimposing the captured images based on the selected observation method, and the superimposed image
  • Display control means for performing display control, detection means for detecting an operation of the microscope that causes a change in an observation environment for photographing the observation body, and a superimposed state of the superimposed image based on the detection result Superimposing cancellation means for canceling.
  • the computer controls the microscope system according to the second embodiment of the present invention, which includes a microscope capable of observing an observation object by switching a plurality of observation methods and an imaging means for taking an optical image of the observation object.
  • a storage medium storing a program to be executed is based on a selection instruction acquisition process for acquiring selection instruction information for selecting at least one observation method among the plurality of observation methods, and the selected observation method.
  • Superimposition processing for superimposing the captured images, display control processing for performing control for displaying the superimposed images, and detection processing for detecting the operation of the microscope that causes a change in the observation environment for photographing the observation body
  • the computer is caused to execute a superposition cancellation process for canceling a superposition state of the superposed image.
  • a control method for a microscope system including a microscope capable of observing an observation body by switching a plurality of observation methods and an imaging unit that captures an optical image of the observation body. Selection instruction information for selecting at least one observation method among the plurality of observation methods is acquired, the captured images are superimposed on each other based on the selected observation method, and the superimposed image is displayed. The operation of the microscope causing a change in the observation environment for photographing the observation body is detected, and the superimposed state of the superimposed image is canceled based on the detection result.
  • the example of a screen when the mouse pointer P is detected in the division area A of the wizard screen C which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • the example of a screen in case the mouse pointer P exists in the division area B of the wizard screen C which concerns on 1st Embodiment is shown.
  • the example (the 1) of a screen when the mouse pointer P is detected in the division area B of the wizard screen C which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • the example (2) of a screen when the mouse pointer P is detected in the division area B of the wizard screen C which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • the example of a screen when the mouse pointer P exists in the division area C of the wizard screen C which concerns on 1st Embodiment is shown.
  • the example (the 1) of a screen when the mouse pointer P is detected in the division area C of the wizard screen C which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • the example (the 2) of a screen when the mouse pointer P is detected in the division area C of the wizard screen C which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • the example of a screen in case the mouse pointer P exists in the division area D of the wizard screen C which concerns on 1st Embodiment is shown.
  • the example (the 1) of a screen when the mouse pointer P is detected in the division area D of the wizard screen C which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • the example (2) of a screen when the mouse pointer P is detected in the division area D of the wizard screen C which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • the example of a screen in case the mouse pointer P exists in the division area E of the wizard screen C which concerns on 1st Embodiment is shown.
  • the example (the 1) of a screen when the mouse pointer P is detected in the division area E of the wizard screen C which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • the example (2) of a screen when the mouse pointer P is detected in the division area E of the wizard screen C which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • region of the wizard screen C which concerns on 1st Embodiment is shown.
  • the screen example in case the mouse pointer P exists in the division area F of the wizard screen D which concerns on 1st Embodiment is shown.
  • the example (the 1) of a screen when the mouse pointer P is detected in the division area F of the wizard screen D which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • the example (2) of a screen when the mouse pointer P is detected in the division area F of the wizard screen D which concerns on 1st Embodiment, and the form of the mouse pointer is changed is shown.
  • region of the wizard screen D which concerns on 1st Embodiment is shown.
  • An example of the wheel operation control table which concerns on 1st Embodiment is shown. It is the figure which showed the microscopic method change instruction
  • FIG. 10 is a diagram showing variations of display forms of buttons 192A to 192D according to the second embodiment.
  • indication button 192B of the fluorescence cube B is selected is shown.
  • indication button 192C of the fluorescence cube C is selected in the case of not performing a superimposition display based on 2nd Embodiment is shown.
  • indication button 192A of the fluorescence cube A is selected in the case of performing a superimposition display based on 2nd Embodiment is shown.
  • 46 shows an example of a screen that is displayed when the selection instruction button 192B of the fluorescent cube B is selected in the state of FIG. 45 in the case of performing overlay display according to the second embodiment.
  • 46 shows an example of a screen that is displayed when the selection instruction button 192C of the fluorescent cube C is selected in the state of FIG. 46 in the case of performing overlay display according to the second embodiment.
  • 47 shows an example of a screen that is displayed when the selection instruction button 192A of the fluorescent cube A is selected in the state of FIG. 47 in the case of performing overlay display according to the second embodiment. In the state shown in FIG.
  • FIG. 48 an example of a screen displayed when the button 192C is selected in order to cancel the superimposed display of the images captured by the spectroscopic method using the fluorescent cube C.
  • FIG. 49 an example of a screen displayed when the stage is moved and the image superimposed on the LIVE image is forcibly canceled.
  • the example of a screen displayed when the image of the microscopic method in which the superimposed display is canceled by the movement of the stage is superimposed on the LIVE image again from the state shown in FIG. 50 according to the second embodiment.
  • FIG. 50 In the state shown in FIG.
  • the drive unit to be driven by the mouse wheel operation varies depending on the observation situation. For example, when it is desired to switch the drive unit to be driven on the screen displaying the specimen according to the position of the pointer, the user has to switch the unit by himself. Therefore, the user has to switch the unit as such, and the operability is not so good.
  • a microscope system that operates a microscope apparatus by operating an operation screen using a pointing device
  • a microscope system that can control a plurality of drive units with the pointing device is provided.
  • the microscope system according to the first embodiment includes a microscope apparatus, a display unit, a pointing device, and a control unit.
  • the microscope apparatus has a plurality of drive units.
  • the microscope apparatus corresponds to the microscope apparatus 1 in this embodiment.
  • the display means displays an operation screen for operating the microscope apparatus.
  • the display means corresponds to the monitor 5 in the present embodiment, for example.
  • the pointing device inputs an operation instruction to the microscope apparatus with a pointer on the operation screen.
  • the pointing device corresponds to the mouse 88 in this embodiment.
  • the control means switches the drive unit according to the position of the pointer on the operation screen, and controls the operation of the switched drive unit according to the operation of the pointing device.
  • the control means corresponds to the host system 2 in this embodiment.
  • a plurality of drive units can be controlled by the pointing device.
  • the drive unit includes at least one of a magnification changing mechanism that changes the observation magnification, a drive stage that can move the observation body in the same direction as the observation optical path, or a dimming mechanism.
  • the control means determines the position of the pointer on the operation screen.
  • the control means moves the drive stage in the direction of the observation optical path in accordance with the operation of the pointing device.
  • the control means moves the drive stage in a direction perpendicular to the observation optical path in accordance with the operation of the pointing device.
  • the control unit causes the magnification changing mechanism to change the magnification according to the operation of the pointing device.
  • the control means performs dimming control according to the operation of the pointing device.
  • the drive unit to be controlled can be switched according to the position of the pointer on the operation screen. Then, according to the operation of the pointing device, it is possible to control the functions unique to the switched drive unit.
  • the microscope system further includes an imaging unit that captures an image of the observation object observed by the microscope apparatus.
  • the imaging means corresponds to the video camera 3 in the present embodiment, for example.
  • the operation screen includes an image display area for displaying an image picked up by the image pickup means.
  • the control means switches the drive unit according to the position of the pointer on the image display area. Then, the control means controls the operation of the switched drive unit in accordance with the operation of the pointing device.
  • the drive unit to be controlled can be switched according to the position of the pointer on the operation screen. Then, according to the operation of the pointing device, it is possible to control the functions unique to the switched drive unit.
  • An example of the pointing device is a mouse with a wheel.
  • the control means controls the operation of the switched drive unit in accordance with the operation of the wheel of the mouse with wheel.
  • the drive unit to be controlled can be switched according to the position of the mouse pointer on the operation screen.
  • the operation of the switched drive unit can be controlled in accordance with the operation of the wheel of the mouse with wheel.
  • control means can change the display form of the pointer to a predetermined display form according to the position on the operation screen.
  • the pointer display form can be changed to a predetermined display form in accordance with the position on the operation screen.
  • FIG. 1 is a diagram illustrating a configuration example of a microscope system according to an embodiment of the present invention.
  • the microscope apparatus 1 includes, as a transmission observation optical system, a transmission illumination light source 6, a collector lens 7 that collects illumination light from the transmission illumination light source 6, a transmission filter unit 8, and a transmission field stop 9.
  • a transmissive aperture stop 10, a condenser optical element unit 11, and a top lens unit 12 are provided.
  • the epi-illumination observation optical system includes an epi-illumination light source 13, a collector lens 14, an epi-illumination filter unit 15, an epi-illumination shutter 16, an epi-illumination field stop 17, and an epi-illumination aperture stop 18.
  • an electric stage 20 on which an observation body (specimen) 19 is placed is provided on the observation optical path where the optical path of the transmission observation optical system and the optical path of the epi-illumination optical system overlap.
  • the electric stage 20 is movable in each of up, down, left and right directions.
  • Control of the movement of the electric stage 20 is performed by the stage XY drive control unit 21 and the stage Z drive control unit 22.
  • the stage XY drive control unit 21 moves the stage 20 in the X direction and the Y direction by controlling the drive of the XY motor 21a.
  • the stage Z drive control unit 22 moves the stage 20 in the Z direction by controlling the drive of the Z motor 22a.
  • the electric stage 20 has an origin detection function (not shown) by an origin sensor. Thereby, the movement control by coordinate detection and coordinate specification of the specimen 19 placed on the electric stage 20 can be performed.
  • a revolver 24, a cube unit 25, and a zoom optical system 27 are provided on the observation optical path.
  • the revolver 24 selects a plurality of objective lenses 23a, 23b,... (Hereinafter collectively referred to as “objective lens 23” as necessary) to be used for observation by rotating operation.
  • the cube unit 25 switches the speculum method.
  • a polarizer 28 for differential interference observation a DIC (Differential Interference Contrast) prism 29, and an analyzer 30 can be inserted into the observation optical path.
  • These units are motorized, and their operations are controlled by a microscope controller 31 described later.
  • the objective lens 23 is equipped with a so-called objective lens with a correction ring having an aberration correction function for correcting the thickness by the cover glass (not shown). Further, the correction ring position can be controlled by the microscope controller 31.
  • the microscope controller 31 connected to the host system 2 has a function of controlling the operation of the entire microscope apparatus 1.
  • the microscope controller 31 has a function of changing the spectroscopic method and dimming the transmitted illumination light source 6 and the epi-illumination light source 13 in accordance with a control signal from the host system 2.
  • the microscope controller 31 has a function of sending the current microscopic state (microscope state) by the microscope apparatus 1 to the host system 2.
  • the microscope controller 31 is also connected to the stage XY drive control unit 21 and the stage Z drive control unit 22. Thereby, the host system 2 can also control the electric stage 20.
  • the microscope operation unit 34 is a hand switch provided with various input units for inputting operation instructions of the microscope apparatus 1. Further, the electric stage 20 can be operated by a joystick or an encoder (not shown) provided in the hand switch.
  • the microscope image of the specimen 19 imaged by the video camera 3 is taken into the host system 2 via the video board 32.
  • the host system 2 can perform automatic gain control ON / OFF, gain setting, automatic exposure control ON / OFF, and exposure time setting for the video camera 3 via the camera controller 33.
  • the host system 2 can store the image data of the specimen 19 sent from the video camera 3 in the operation history recording unit 4.
  • the image data recorded in the operation history recording unit 4 can be read by the host system 2 and displayed on the monitor 5 which is a display unit.
  • the image recording unit 188 records a microscope image of the specimen 19 captured by the video camera 3.
  • the host system 2 can perform image processing such as superimposing the observed images of the observed object.
  • the host system 2 controls the display form of a graphical user interface (GUI) displayed on the monitor 5.
  • GUI graphical user interface
  • the host system 2 also provides a so-called video AF function that performs a focusing operation based on the contrast of an image captured by the video camera 3.
  • the host system 2 is a computer having a CPU (Central Processing Unit), a main memory, a mouse 88, an interface unit, an auxiliary storage device, and the like.
  • the CPU controls the operation of the entire microscope system by executing the control program.
  • the main memory is used as a work memory by the CPU as needed.
  • the mouse 88 is a mouse with a wheel, for example.
  • This wheel has a click function, and corresponds to 24 clicks per rotation of the wheel in this embodiment.
  • an input device such as a keyboard for acquiring various instructions from the user other than the mouse may be connected.
  • the interface unit manages the exchange of various data with each component of this microscope system.
  • the auxiliary storage device is, for example, a hard disk device that stores various programs and data.
  • FIG. 2 is a diagram for explaining the outline of the four wizard screens.
  • the four wizard screens include a wizard screen A, a wizard screen B, a wizard screen C, and a wizard screen D.
  • the wizard screen A is a start menu screen.
  • the wizard screen B is a specimen check menu screen.
  • the wizard screen C is a specimen search menu screen.
  • the wizard screen D is a shooting menu screen.
  • Each of these four wizard screens is provided corresponding to each of a plurality (four in this example) of observation steps in microscope observation. And when performing microscope observation, a user switches a wizard screen sequentially according to an observation step, and uses it. The wizard screen can be switched from each wizard screen to any of the other three wizard screens, as indicated by the arrows in FIG.
  • Each wizard screen is associated with a unit that can be set and operated so that only settings and operations required in the corresponding observation step can be received. Therefore, the user cannot perform unnecessary settings and operations on each wizard screen.
  • the settings and operations received on each wizard screen are recorded in the operation history recording unit 4 as history data.
  • FIG. 3 is a diagram illustrating an example of the wizard screen A.
  • the wizard screen A shown in the figure is a start menu screen (photographing course selection menu screen) that is the first operation menu screen for starting observation.
  • the user sets (exchanges) the specimen (slide glass) 19 to be observed from now on, and selects a speculum method (bright field observation, differential interference observation, fluorescence observation, etc.) to be observed from now on. It is possible to select an optical element (objective lens 23, cube, etc.) to be used and to set a photographed image size.
  • the specimen exchange button 36 is a button for giving an instruction for exchanging the specimen 19.
  • the host system 2 sends an instruction to the electric stage 20 via the microscope controller 31. Based on this instruction, the electric stage 20 moves to stage position coordinates (sample exchange position coordinates) for exchanging the specimen 19.
  • the position of the specimen 19 is set to the center stage position coordinates (observation start default coordinates). It is also possible to move the electric stage 20.
  • Area 35 is the main area on wizard screen A.
  • the buttons 43, 44, and 45 in the area 35 are all speculum selection buttons.
  • the button 43 is a fluorescence observation selection button.
  • the button 44 is a differential interference observation selection button.
  • the button 45 is a bright field observation selection button.
  • buttons 46 to 49 are all shooting method selection buttons.
  • the button 46 is a button for selecting normal shooting.
  • the button 47 is a button for selecting Z stack shooting.
  • the button 48 is a button for selecting time-lapse shooting.
  • the button 51 is a button for shifting to the wizard screen B corresponding to the next observation step.
  • the button 52 is a button for returning to the wizard screen before shifting to the wizard screen A. For example, when the wizard screen D is shifted to the wizard screen A, when the button 52 is pressed (for example, clicked with the mouse), the wizard screen D is returned to.
  • the area 50 is an area for displaying various explanations.
  • the area 37 is an area for selection, addition, and replacement (physical replacement) of optical elements to be used.
  • the user can set a cube or the like to be used for observation by the selected spectroscopic method via this area 37. That is, the user can set only the optical elements related to the spectroscopic method selected on the wizard screen A among the various optical elements that can be driven by the microscope apparatus 1.
  • Buttons 38 to 41 are buttons for directly shifting to other wizard screens.
  • the button 38 is a button for shifting to the wizard screen A.
  • the button 39 is a button for shifting to the wizard screen B.
  • the button 40 is a button for shifting to the wizard screen C.
  • the button 41 is a button for shifting to the wizard screen D.
  • the buttons 38 to 41 are also provided on a wizard screen B, a wizard screen C, and a wizard screen D described later.
  • the settings and operations that can be performed by the user on the wizard screen A are, in principle, for instructing the movement of the electric stage 20 for exchanging the specimen 19 and for the imaging course (spectroscopic method).
  • the optical element for exchanging the optical element, and for setting the captured image size. Therefore, settings and operations for other units cannot be performed from the wizard screen A.
  • the area 50 is a menu for displaying various explanations.
  • FIG. 4 is a diagram illustrating an example of the wizard screen B.
  • the wizard screen B shown in the figure is an operation menu screen for searching for an initial observation start position in a macro image (photographed image with a low magnification objective lens) and performing an AF operation (focusing operation) on the macro image. It is a specimen check menu screen.
  • a range of an area 54 indicated by a rectangle in the slide image area 53 indicates an operable range of the electric stage 20 with respect to the entire slide glass as the specimen 19.
  • the macro image display area 56 is an area where a macro image that is a LIVE image of the specimen 19 photographed in real time by the video camera 3 is displayed.
  • the objective lens 23 to be used is fixed to a low magnification (here, 4 ⁇ (4 ⁇ ) objective lens).
  • the macro image displayed in the macro image display area 56 is a macro image taken under the speculum method selected on the wizard screen A shown in FIG.
  • the spectroscopic method selected on the wizard screen A is fluorescence observation, it is necessary to prevent discoloration of the observation target in the specimen 19. Therefore, on the wizard screen B, the spectroscopic method is switched to differential interference observation, and a macro image taken under the differential interference observation is displayed.
  • the range corresponding to the macro image displayed in the macro image display area 56 is shown as a rectangular frame 54.
  • the position of the cross mark 55 in the slide image area 53 is the center position displayed as a macro image in the macro image display area 56.
  • buttons 57 to 60 for moving the specimen 19 in four directions are provided.
  • the electric stage 20 moves in the direction corresponding to the button, and the sample 19 moves in that direction.
  • the user can select the initial observation start position where the observation target exists in the specimen 19 by pressing the buttons 57 to 60 while confirming the display contents of the slide image area 53 and the macro image display area 56.
  • the AF operation can be executed.
  • the focus coordinate (Z coordinate) in a macro image can be determined.
  • the AF operation can be executed by the user pressing the button 61 (for example, clicking the mouse), and the in-focus coordinate (Z coordinate) in the macro image is determined. can do.
  • the microscopic method is temporarily switched to differential interference observation, and a macro image photographed under the differential interference observation is macroscopic. It is displayed in the image display area 56. Therefore, the selection of the initial observation start position and the determination of the in-focus coordinates in the macro image are also performed on the macro image photographed under the differential interference observation.
  • the button 61 is a movement instruction button for moving to the wizard screen C corresponding to the next observation step in addition to the execution of the AF operation described above.
  • the button 62 is a button for returning to the wizard screen before shifting to the wizard screen B.
  • the settings and operations that can be performed by the user on the wizard screen B are for selecting the initial observation start position where the observation target in the specimen 19 exists and for performing the AF operation on the macro image. It has become.
  • FIG. 5 is a diagram showing an example of the wizard screen C.
  • the wizard screen C shown in the figure is a sample search menu screen serving as an operation menu screen for searching for an imaging position in the sample 19 and selecting an imaging magnification.
  • the macro LIVE image area 63 is an area in which a macro image to be a LIVE image of the specimen 19 photographed in real time by the video camera 3 is displayed.
  • the user can search for an imaging target position in the specimen 19 and select an imaging range.
  • the objective lens 23 to be used is fixed at a low magnification (here, a 4x objective lens).
  • the range designation frame 64 indicates a shooting range by the video camera 3 on the wizard screen D corresponding to the next observation step, and is indicated by a rectangle. That is, the range indicated by the range designation frame 64 corresponds to the visual field range by the objective lens 23 used at the time of photographing on the next wizard screen D.
  • the range designation frame 64 can be moved within the range of the macro LIVE image area 63 by a drag and drop operation with the mouse.
  • the range designation frame switching area 67 is an area for changing the size (shooting magnification) of the range designation frame 64.
  • the user can change the size (shooting magnification) of the range designation frame 64 by moving the slider 67a to the left or right (here, 20x to 60x (20 times)). It is possible to change within the range of up to 60 times).
  • the slide area 65 is an area indicating the position of the macro LIVE image area 63 with respect to the entire slide glass as the specimen 19.
  • a cross mark 66 indicates a position corresponding to the center of the macro image displayed in the macro LIVE image area 63.
  • the tool area 69 is for adjusting the brightness of the macro image displayed in the macro LIVE image area 63.
  • the focus area 68 is an area for adjusting the focus of the macro image displayed in the macro LIVE image area 63.
  • an instruction to move the electric stage 20 in the optical axis direction (Z direction) is given, and the focus position can be changed.
  • the instruction to move the electric stage 20 in the direction orthogonal to the optical axis direction is performed by the user performing a macro image scrolling operation by dragging and dropping the mouse on the macro LIVE image area 63. It is possible.
  • the button 70 is a button for shifting to the wizard screen D corresponding to the next observation step for photographing the range designated by the range designation frame 64.
  • the button 71 is a button for returning to the wizard screen before shifting to the wizard screen C.
  • the settings and operations that can be performed by the user on the wizard screen C are for searching for an imaging position in the specimen 19 and for selecting an imaging magnification.
  • FIG. 6 is a diagram illustrating an example of the wizard screen D.
  • the wizard screen D shown in the figure is a shooting menu screen that serves as an operation menu screen for shooting the range designated by the range designation frame 64 of the wizard screen C.
  • the image display area 72 is an area in which a LIVE image in which the sample 19 in the range designated by the range designation frame 64 of the wizard screen C is captured in real time by the video camera 3 is displayed, or its range. This is an area where a PAUSE image of the specimen 19 taken by the video camera 3 is displayed.
  • this image display area 72 when the user designates a position in the image display area 72 (for example, a double click of the mouse) when the LIVE image is displayed, the designated position is displayed in the image display area 72.
  • the electric stage 20 can be moved so as to be in the center position. Therefore, the user can also instruct to move the electric stage 20 for adjusting the shooting position from the image display area 72.
  • the display image switching area 85 is an area for switching an image to be displayed in the image display area 72 to either a LIVE image that is a real-time image or a PAUSE image that is a captured image.
  • the button 86 in the display image switching area 85 is for switching the image to be displayed in the image display area 72 to the LIVE image.
  • the button 87 is for switching an image to be displayed in the image display area 72 to a PAUSE image.
  • a PAUSE image is displayed if no operation is performed for a certain period of time to prevent discoloration.
  • the focus / correction ring area 73 is used to perform the focus and AF operations of the image displayed in the image display area 72.
  • the slide bar 74 is used for focus adjustment.
  • the slide bar 74 is instructed to move the electric stage 20 in the optical axis direction (Z direction) when the user moves the slide bar 74 up and down.
  • the focus position can be changed.
  • the AF button 75 is for performing an AF operation (focusing operation).
  • the correction ring adjustment buttons 76A and 76B are used for instructing driving of the correction ring for correcting the aberration of thickness by the cover glass.
  • the stage control / map area 77 is an area that displays the display range of the image display area 72 and its surrounding images, and also enables scrolling of images displayed in the area 77.
  • the display range of the image display area 72 is shown as a rectangular frame 78.
  • the button 79 lists images taken in the past under the same or similar observation conditions as the current observation conditions (microscopic method, cube in use, objective lens magnification (magnification), photographed image size, etc.). It is a button for displaying.
  • the button 80 is used to give an instruction to change the optical magnification (zoom).
  • the button 80 can be changed to a low magnification when it is slid left, and can be changed to a high magnification when it is slid right.
  • the SHOT button 81 is a button for taking a LIVE image displayed in the image display area 72.
  • An area 84 is used by the user to manually set shooting conditions.
  • the button 82 is a button for shifting to the wizard screen C.
  • the button 83 is a button for returning to the wizard screen before shifting to the wizard screen D.
  • the speculum method change instruction area 189 is an area for instructing to switch the speculum method.
  • the fluorescent cubes A, B, C and DIC observation can be switched.
  • the operation of the speculum method change instruction area 189 will be described in detail with reference to FIG.
  • the settings and operations that can be performed by the user on the wizard screen D are for photographing the range specified by the range specification frame 64 of the wizard screen C.
  • 7 to 10 are flowcharts showing the specimen observation operation. These flows are controlled by the host system 2.
  • 11 to 19 are diagrams showing examples of wizard screens displayed on the monitor 5 during the operation.
  • a wizard screen A (see FIG. 3) is displayed on the monitor 5 by a predetermined operation by the user. Thereby, the process shown in FIG. 7 related to the wizard screen A which is the start menu screen is started.
  • the host system 2 moves the electric stage 20 to stage position coordinates (specimen exchange position coordinates) for exchanging the specimen (observer) 19 in response to the user pressing the specimen exchange button 36. .
  • stage position coordinates for exchanging the specimen (observer) 19 in response to the user pressing the specimen exchange button 36.
  • the sample 19 is set by the user (S101).
  • the host system 2 determines the position of the specimen 19 in advance on the electric stage 20 in response to a predetermined operation on the wizard screen A by the user (for example, pressing the specimen exchange button 36 again).
  • the electric stage 20 is moved so as to be the center stage position coordinate (observation start default coordinate) (S102). Thereby, the position of the electric stage 20 is set to the reference point coordinates.
  • the microscopic method is selected by pressing any one of the buttons 43 to 45 by the user (S103). Thereby, the microscopic method for performing observation is selected.
  • the button 43 is pressed here.
  • a cube is selected by an operation on the area 37 by the user (S104). Thereby, the cube used for observation is selected.
  • the fluorescent cube A since the fluorescent cube A is used, it is assumed that the fluorescent cube A is selected here.
  • an image size when shooting with the video camera 3 is set by a predetermined operation on the wizard screen A by the user (S105).
  • M ⁇ N M> 0, N> 0
  • the host system 2 records the settings and operations performed in S101 to S105 in the operation history recording unit 4 as history data (S106).
  • history data S106
  • the wizard screen A displayed on the monitor 5 is switched to the wizard screen B (see FIG. 4).
  • the flowchart shown in FIG. 8 related to the wizard screen B which is the sample check menu screen, starts.
  • the host system 2 first instructs the microscope controller 31. Based on this instruction, the microscope controller 31 moves the electric stage 20 to a predetermined standard focus (Z coordinate) position (S201), and switches the objective lens 23 to be used to a 4x lens (S202).
  • the host system 2 reads the speculum method selected in S103 from the operation history recording unit 4 (S203). Then, the host system 2 switches the current microscopic method to a microscopic method corresponding to the read microscopic method (S204).
  • the fluorescence observation is read out as the selected speculum method. Then, the current spectroscopic method is switched to differential interference observation as a spectroscopic method corresponding to the read fluorescence observation.
  • the host system 2 captures the specimen 19 in real time by the video camera 3 under the switched spectroscopic method, and displays the macro image that becomes the LIVE image in the macro image display area 56. Start that.
  • FIG. 11 is a diagram showing an example of the wizard screen B at this time.
  • the host system 2 moves the electric stage 20 in response to the user pressing the buttons 57 to 60 (S205).
  • the initial observation start position where the observation target in the specimen 19 exists is selected (S206).
  • the user can search for the initial observation start position where the observation target in the specimen 19 exists by pressing the buttons 57 to 60 while confirming the display contents of the slide image area 53 and the macro image display area 56. it can. Then, the user can select a desired position as the initial observation start position.
  • the position selected as the initial observation start position is the center position of the macro image displayed in the macro image display area 56.
  • the point a on the macro image displayed in the macro image display area 56 of the wizard screen B shown in FIG. 11 is selected as the initial observation start position.
  • the buttons 57 to 60 are pressed so that the point a becomes the center position of the macro image display area 56.
  • the point a becomes the center position of the macro image display area 56 and is selected as the initial observation start position.
  • the XY coordinates of the initial observation start position at this time are (x_a, y_a).
  • the rectangular frame 54 moves to a corresponding position in the slide image area 53 of the wizard screen B shown in FIG.
  • the host system 2 controls the AF operation at the selected initial observation start position in response to the user pressing the button 61 (S207).
  • the Z coordinate that is the in-focus coordinate after the AF operation is set to (z_a).
  • the host system 2 records the settings and operations performed in S201 to S207 in the operation history recording unit 4 as history data (S208).
  • the XY coordinates (x_a, y_a) and the Z coordinate (z_a) are recorded in the operation history recording unit 4 as history data.
  • the wizard screen B displayed on the monitor 5 is switched to the wizard screen C (see FIG. 5).
  • the processing shown in the flowchart of FIG. 9 related to the wizard screen C which is the sample search menu screen starts.
  • the host system 2 first instructs the microscope controller 31 to switch to the 4x lens if the objective lens 23 to be used is not 4x (S301).
  • the host system 2 reads the selected speculum method from the operation history recording unit 4 (S302), and switches the current speculum method to the read speculum method (S303).
  • the fact that the fluorescence observation is selected as the speculum method is recorded in the operation history recording unit 4, so that the fluorescence observation is read out as the selected speculum method.
  • the fluorescent cube A is read as the selected cube.
  • the current spectroscopic method and cube are switched to the read fluorescence observation and fluorescence cube A.
  • the setting of the microscope apparatus 1 according to the current spectroscopic method is switched to the setting of the microscope apparatus 1 according to the fluorescence observation using the fluorescent cube A.
  • the host system 2 captures the specimen 19 in real time by the video camera 3 under the switched speculum method, and displays the macro image that becomes the LIVE image in the macro LIVE image area 63. Start that.
  • FIG. 13 is a diagram showing an example of the wizard screen C at this time.
  • the host system 2 moves the range designation frame 64 in response to an operation of the range designation frame 64 of the macro LIVE image area 63 by the user (drag and drop with the mouse).
  • the host system 2 moves the electric stage 20 in response to the macro image scroll operation by the mouse drag and drop operation on the macro LIVE image area 63 by the user (S304).
  • an observation target imaging target
  • the user can search for the observation target and can determine the range as the observation target by matching the desired range with the range designation frame 64.
  • the point b on the macro image displayed in the macro LIVE image area 63 of the wizard screen C shown in FIG. 13 is determined as the observation target.
  • the range designation frame 64 is operated so that the point b becomes the center position of the range designation frame 64.
  • the point b becomes the center position of the range designation frame 64 and is determined as an observation target.
  • a frame 64 ' indicates the range designation frame 64 after movement.
  • the host system 2 determines the observation target determined in S305 as the imaging target position. At the same time, the host system 2 changes the size of the range designation frame 64 according to the operation of the slider 67a in the range designation frame switching area 67 by the user, and determines the photographing magnification (objective lens magnification) (S306).
  • the point b in the range designation frame 64 'shown in FIG. 14 is determined as the shooting target position.
  • an objective lens having a photographing magnification of 20x is determined according to the operation of the slider 67a by the user.
  • the XY coordinates of the position of the point b are (x_b, y_b).
  • the host system 2 captures the range displayed in the macro LIVE image area 63 at this time.
  • the host system 2 records the macro image obtained by the shooting at this time and the settings and operations performed in S301 to S306 in the operation history recording unit 4 as history data (S307).
  • a macro image obtained by photographing the range displayed in the macro LIVE image area 63 at this time is defined as a macro image (pic_m_b).
  • the operation history recording unit 4 corresponds to the macro image (pic_m_b), the XY coordinates (x_b, y_b) of the b point as the coordinates of the photographing target position, and the size of the range designation frame 64 after the change.
  • the photographing magnification (20x) and the like are recorded as history data.
  • the wizard screen C displayed on the monitor 5 is switched to the wizard screen D (see FIG. 6).
  • the process shown in the flowchart of FIG. 10 related to the wizard screen D which is the shooting menu screen starts.
  • the host system 2 when the screen shifts to the wizard screen D, the host system 2 first reads out the coordinates of the determined shooting target position and the shooting magnification from the operation history recording unit 4 (S401). The host system 2 switches the objective lens 23 to the objective lens 23 corresponding to the read photographing magnification (S402). Further, the host system 2 moves the electric stage 20 to the coordinates of the read target position (S403).
  • the host system 2 uses the switched objective lens 23 to photograph the photographing target position of the specimen 19 in real time by the video camera 3 and starts displaying the LIVE image in the image display area 72. Further, the macro image recorded in the operation history recording unit 4 immediately before the transition to the wizard screen D is read by the host system 2, and the macro image is displayed in the stage control / map area 77.
  • the video camera 3 uses the switched 20x objective lens (the 20x objective lens determined according to the size of the range designation frame 64 ′ shown in FIG. 14) to be a shooting target position in real time.
  • Point b is photographed, and the display of the LIVE image in the image display area 72 is started.
  • the macro image (pic_m_b) recorded in the operation history recording unit 4 immediately before shifting to the wizard screen D is read out.
  • the macro image (pic_m_b) is displayed in the stage control / map area 77.
  • FIG. 15 is a diagram showing an example of the wizard screen D at this time.
  • the point b that is the shooting target position is displayed at the center of the image display area 72. Further, a macro image (pic_m_b) is displayed in the stage control / map area 77.
  • the host system 2 moves the electric stage 20 so that the designated position becomes the center position of the image display area 72 (S404). Thereby, the user can perform fine adjustment of the shooting target position (the range in which shooting is performed).
  • the host system 2 moves the electric stage 20 so that the c point becomes the center position of the image display area 72.
  • the point c is the center position of the image display area 72 and is the shooting target position.
  • the rectangular frame 78 moves to a position corresponding to the point C in the stage control / map area 77. It is assumed that the XY coordinates of the position of point c are (x_c, y_c).
  • the host system 2 controls the AF operation (focusing operation) (S405).
  • the focus position is changed by moving the electric stage 20 in the optical axis direction (z direction) in accordance with the operation of the slide bar 74 in the focus / correction ring area 73 by the user. You can also. Thereby, the user can also perform fine adjustment of an in-focus position.
  • the AF operation itself performed in S405 may be performed manually by only operating the slide bar 74.
  • the Z coordinate that is the coordinate of the in-focus position is defined as (z_c).
  • the host system 2 determines whether or not correction ring data (correction ring position) for the current specimen 19 is recorded in the operation history recording unit 4 (S406). If the determination result in S406 is No, the host system 2 performs correction ring position adjustment / determination processing (S407). In this process, the host system 2 controls to drive the correction ring of the objective lens 23 in use in response to the pressing of the correction ring adjustment buttons 76A and 76B in the focus / correction ring area 73 by the user. Thus, the user can adjust the optimal correction ring position by pressing the correction ring adjustment buttons 76A and 76B while confirming the LIVE image displayed in the image display area 72. Therefore, aberration correction of thickness by the cover glass can be performed.
  • the host system 2 records the current correction ring position in the operation history recording unit 4 as a correction ring position (correction ring data) after adjustment (after correction). To do. Thereby, the user can record the corrected correction ring position in the operation history recording unit 4.
  • the correction ring position (h_1) is recorded in the operation history recording unit 4 as correction ring data.
  • the host system 2 reads the correction ring data recorded in the operation history recording unit 4, and drives the correction ring to a position corresponding to the correction ring data (S408). . Thereby, the correction ring is driven to an optimum position, and the thickness aberration correction by the cover glass can be performed. For example, if the correction ring position (h_1) is recorded in the operation history recording unit 4 as correction ring data, the correction ring is driven to the correction ring position (h_1) according to the correction ring data.
  • the host system 2 determines whether or not the button 79 is pressed by the user (S409). This determination is to determine whether or not to use the shooting conditions used at the time of past shooting when setting the shooting conditions of the video camera 3.
  • the host system 2 is the same as the current observation condition (the spectroscopic method, the cube in use, the magnification of the objective lens (imaging magnification), the captured image size, etc.) or An image (however, excluding a macro image) that has been captured by the video camera 3 and recorded in the operation history recording unit 4 in the past under similar observation conditions is searched. Then, the host system 2 displays a list of the corresponding images in a window displayed separately from the wizard screen D (S410). FIG. 17 is a diagram showing an example of the window at this time.
  • the most recently captured image (however, excluding the macro image) (pic_0) is also displayed.
  • pic_0 to pic_4 are shown for convenience of explanation, and are not actually displayed.
  • one image in the window is selected by an image selection operation (for example, click with the mouse) by the user.
  • the host system 2 sets shooting conditions for shooting the selected image, and displays the shooting conditions on the menu 84 (S411).
  • the user can easily reproduce the shooting condition used when the image is shot by selecting a desired image in the window.
  • the reproducible shooting conditions are exposure, light control (including ND filter), W / B (white balance), and B / B (black balance) shooting conditions. XY coordinates and Z coordinates are not reproduced. In the reproducible shooting conditions, it is further possible to select whether or not to reproduce for each shooting condition.
  • this selection can be performed from, for example, a window displaying a list of images.
  • a desired image for example, shooting conditions when the image is shot are also displayed in the window.
  • an image (pic_2) is selected by the user, and exposure (ae_2), dimming (l_2), W / B (wb_2), B / B ( bb_2) is set and reproduced.
  • the host system 2 sets the shooting conditions for the last shooting (except for the shooting conditions for macro image shooting), and sets the shooting conditions in the menu. 84. Note that the shooting conditions can be set and displayed immediately after switching to the wizard screen D.
  • the host system 2 subsequently changes the set shooting conditions in response to an operation (for example, mouse click) for changing the shooting conditions for the menu 84 by the user. (S412).
  • an operation for example, mouse click
  • the user can perform fine adjustment of the set photographing conditions.
  • this allows the user to manually set the shooting conditions.
  • the host system 2 captures the LIVE image displayed in the image display area 72 (S413).
  • the shooting conditions at this time shooting conditions when shooting point c
  • exposure ae_c
  • light control l_c
  • W / B W / B
  • B / B B / B
  • the obtained image is set to (pic_c).
  • the captured image is displayed in the image display area 72 as a PAUSE image.
  • the host system 2 records the settings and operations performed in S401 to S413 in the operation history recording unit 4 as history data (S414).
  • the above XY coordinates (x_c, y_c) and Z coordinates (z_c), which are also the current XY coordinates and Z coordinates, and exposure (ae_c) and adjustment conditions, which are the shooting conditions when shooting point c in S413, are taken.
  • Light (l_c), W / B (wb_c), B / B (bb_c), a captured image (pic_c), and the like are recorded in the operation history recording unit 4.
  • the PAUSE image displayed in the image display area 72 can be switched to the LIVE image by pressing the button 86 by the user.
  • each wizard screen can be switched to another wizard screen as necessary.
  • the flow shown in FIG. 7 can be resumed by switching to the wizard screen A by pressing the button 38.
  • pressing the button 39 it is possible to switch to the wizard screen B and restart the flow shown in FIG.
  • pressing the button 40 or the button 82 it is possible to switch to the wizard screen C and restart the flow shown in FIG.
  • pressing the button 41 it is possible to switch to the wizard screen D and restart the flow shown in FIG.
  • the wizard screen D displayed on the monitor 5 is switched to the wizard screen C in response to the user pressing the button 82.
  • the objective lens 23 to be used is changed from 20x to 4x.
  • a macro image (LIVE image) by the 4 ⁇ objective lens is displayed again in the macro LIVE image area 63.
  • FIG. 18 is a diagram showing an example of the wizard screen C at this time.
  • the point d displayed in the macro LIVE image area 63 is determined as a new observation target, 20x is determined as the imaging magnification, and the wizard screen D is displayed. Can be switched.
  • FIG. 19 is a diagram showing an example of the wizard screen D at this time.
  • the user can again set the shooting condition when the last shooting was performed as the shooting condition. It is also possible to set shooting conditions used at the time of past shooting by pressing the button 79. The user can also finely adjust the shooting conditions set in this way via the menu 84.
  • FIG. 20 shows an example of the mouse 88.
  • the mouse 88 is a mouse with a wheel, and includes a left button 90, a right button 92, and a wheel 91.
  • the wheel 91 is generally used for scrolling the screen and rotates in the direction of W1 and the direction of W2.
  • the rotation direction and amount of rotation of the wheel 91 are detected by the host system 2.
  • P indicates an example of the mouse pointer of the mouse 88 displayed on the screen.
  • the wheel 91 is assigned a function for controlling the drive unit. At this time, the drive unit to be controlled is different for each wizard screen and for each area in the wizard screen.
  • the host system 2 divides the inside of the wizard screen C into a plurality of areas, and assigns a function for controlling the drive unit to each area (S501). As shown in FIG. 21, the host system 2 divides the operation category by the wheel 91 into areas of an operation category A, an operation category B, an operation category C, an operation category D, and an operation category E on the wizard screen C.
  • the following is realized by dividing the wizard screen C into a plurality of areas. That is, when the position of the mouse pointer is moved to each operation section and the wheel 91 is rotated in the moved operation section, the drive of the drive unit assigned to the operation section is controlled.
  • the host system 2 detects the position of the mouse pointer P (S503).
  • the host system 2 changes the GUI (graphical user interface) of the mouse pointer from the form indicated by P to the form indicated by Pa in FIG. 22 (S508).
  • the host system 2 controls the drive of the stage Z drive control unit 22 via the microscope controller 32 according to the rotation direction and the rotation amount of the wheel 91. This is performed (S509).
  • the host system 2 controls the drive of the stage Z drive control unit 22 in the direction in which the sample 19 approaches the objective lens 23 according to the rotation amount of the wheel 91.
  • the host system 2 controls the drive of the stage Z drive control unit 22 in the direction in which the sample 19 moves away from the objective lens 23 according to the amount of rotation of the wheel 91.
  • the electric stage 20 can be driven at 10 ⁇ m per click of the wheel in the Z direction. Since the magnification is fixed on the wizard screen C, the drive amount is also fixed. In the case of a mouse wheel without a click, the driving amount per one rotation of the wheel may correspond to 240 ⁇ m, for example.
  • the host system 2 When the drive operation of the stage Z drive control unit 22 is completed, the host system 2 returns the mouse pointer GUI to the form indicated by P again (S519). As described above, when the mouse pointer is in the divided area A, the electric stage 20 can be driven in the Z direction by rotating the wheel 91.
  • the size of the range designation frame 64 indicating the range in which shooting is performed by the video camera 3 on the next wizard screen D is changed according to the rotation direction and the rotation amount of the wheel 91 by the mouse operation. .
  • the host system 2 sets a shooting range based on the changed size of the range designation frame 64 (S512).
  • the host system 2 moves the wheel 91 in the direction in which the shooting range increases from B to B ′ (in the direction in which the shooting magnification decreases) as shown in FIG.
  • the size of the range designation frame 64 that surrounds the photographing range is changed according to the amount of rotation. Further, when the wheel 91 is moved in the direction of W2, the host system 2 moves the shooting range from B to B ′′ as shown in FIG. 25 (in the direction in which the shooting magnification increases). In accordance with the rotation amount of the wheel 91, the size of the range designation frame 64 surrounding the photographing range is changed.
  • the host system 2 again returns the mouse pointer GUI to the form indicated by P (S519).
  • the shooting range is changed by the wheel operation, when the screen shifts to the wizard screen D, it is possible to perform shooting in the range specified by the range specification frame 64. Therefore, when the pointer is in the segmented area B, the shooting range on the next wizard screen D can be set by rotating the wheel 91.
  • the host system 2 controls the drive in the X direction of the stage XY drive control unit 21 according to the rotation direction and the rotation amount of the wheel 91 via the microscope controller 32 (S514).
  • the host system 2 moves the stage X in accordance with the rotation amount of the wheel 91 in order to move the sample 19 in the X direction indicated by the left-pointing arrow in FIG. -Drive control of the Y drive controller 21 is performed.
  • the host system 2 moves the stage XY in accordance with the amount of rotation of the wheel 91 in order to move the specimen 19 in the X direction indicated by the right-pointing arrow in FIG. Drive control of the drive control unit 21 is performed.
  • the driving amount of the electric stage 20 corresponds to the movement amount of 1/4 screen in the display area direction per click of the mouse wheel.
  • the driving amount per rotation of the mouse wheel may correspond to, for example, a driving amount for five screens.
  • the host system 2 When the driving operation of the electric stage 20 is completed, the host system 2 returns the GUI of the mouse pointer to the form indicated by P again (S519). Therefore, when the mouse pointer is in the divided area C, the electric stage 20 can be driven in the X direction by rotating the wheel 91.
  • the host system 2 changes the GUI of the mouse pointer from P to Pd in FIG. It changes to the form shown (S515).
  • the host system 2 controls the drive in the Y direction of the stage XY drive control unit 21 according to the rotation direction and the rotation amount of the wheel 91 via the microscope controller 32 (S516).
  • the host system 2 moves the stage X in accordance with the amount of rotation of the wheel 91 in order to move the specimen 19 in the X direction indicated by the upward arrow in FIG. -Drive control of the Y drive controller 21 is performed.
  • the host system 2 moves the specimen 19 in the X direction indicated by the downward arrow in FIG.
  • the drive control of the Y drive control unit 21 is performed.
  • the host system 2 performs dimming control of the light source according to the rotation direction and the rotation amount of the wheel 91 via the microscope controller 32 (S518).
  • the sample image in the range designation frame 64 becomes bright as shown in FIG.
  • the sample image in the range designation frame 64 becomes dark as shown in FIG.
  • the host system 2 when the wheel 91 is moved in the direction of W1, the host system 2 performs dimming drive control of the light source according to the amount of rotation of the wheel 91 in the direction of increasing the amount of light as shown in FIG.
  • the host system 2 performs dimming drive control of the light source according to the amount of rotation of the wheel 91 in the direction of decreasing the amount of light as shown in FIG.
  • the host system 2 When the driving operation of the light source dimming is completed, the host system 2 returns the GUI of the mouse pointer to the form indicated by P again (S519). Therefore, when the mouse pointer is in the segmented area E, the dimming drive control of the light source can be performed by rotating the wheel 91.
  • the host system 2 divides the inside of the wizard screen D into a plurality of areas, and assigns a function for controlling the drive unit to each area (S601). As shown in FIG. 36, the host system 2 divides the operation category by the wheel 91 into areas of an operation category A, an operation category C, an operation category D, an operation category E, and an operation category F on the wizard screen D.
  • the same control as the wizard screen C is realized by dividing the wizard screen into a plurality of areas. That is, when the position of the mouse pointer is moved to each operation section and the wheel 91 is rotated in the moved operation section, the drive of the drive unit assigned to the operation section is controlled.
  • the host system 2 adjusts the stage according to the rotation direction and the rotation amount of the wheel 91 in order to adjust the distance between the objective lens 23 and the electric stage 20 as in the wizard screen C.
  • the Z drive control unit 22 is controlled (S609).
  • the host system 2 performs drive control of the stage Z drive control unit 22 in a direction in which the specimen 19 approaches the objective lens 23 according to the rotation amount of the wheel 91.
  • the host system 2 performs drive control of the stage Z drive control unit 22 in a direction in which the sample 19 moves away from the objective lens 23 according to the rotation amount of the wheel 91.
  • the drive amount of the electric stage 20 driven in the Z direction by the stage Z drive control unit 22 is variable according to the optical magnification. Therefore, when 20 ⁇ magnification is selected, the mouse wheel can be driven at 1 ⁇ m per click. When a 40 ⁇ magnification is selected, the mouse wheel can be driven at 0.5 ⁇ m per click. In the case of a mouse wheel without a click, the driving amount per one rotation of the wheel may correspond to a driving amount of 20 ⁇ m and 10 ⁇ m, respectively.
  • the host system 2 performs drive control of the zoom optical system 27 through the microscope controller 32 in order to adjust the optical magnification according to the rotation direction and the rotation amount of the wheel 91 (S612).
  • the host system 2 increases the optical magnification with respect to the zoom optical system 27 as shown in FIG. Drive control is performed.
  • the host system 2 performs drive control of the zoom optical system 27 in accordance with the amount of rotation of the wheel 91 in the direction of decreasing the optical magnification as shown in FIG.
  • the zoom optical system can be driven with a drive amount that changes the magnification of 1 ⁇ per click of the wheel.
  • the host system 2 When the driving operation of the zoom optical system 27 is completed, the host system 2 returns the GUI of the mouse pointer again to the form indicated by P (S619). Therefore, when the mouse pointer is in the segmented region F, the optical magnification can be driven by rotating the wheel 91.
  • FIG. 40 shows an example of the wheel operation control table.
  • the wheel operation control table exists for each wizard screen and is stored in the storage device of the host system 2.
  • the wheel operation control table stores, for example, “partition area name”, “partition area range”, “drive unit name”, “operation content by wheel”, and “mouse pointer image”.
  • “Division area name” stores the name of the division area.
  • the “division area range” stores coordinates indicating the range of the division area on the wizard screen.
  • “Drive unit name” stores the drive unit name assigned to the segmented area.
  • the “operation content by wheel” stores control information for driving the drive unit in accordance with the rotation direction and the rotation amount of the wheel when the mouse pointer is in the divided area.
  • the “mouse pointer image” stores the image data of the mouse pointer displayed when the mouse pointer is on the divided area or the location information of the image data.
  • the CPU of the host system 2 When executing the flow of FIGS. 35 and 39, the CPU of the host system 2 reads the wheel operation control table corresponding to each wizard screen from the storage device, and performs processing based on the flow. By using the wheel operation control table, the host system 2 can switch the drive unit to be driven according to the area on the wizard screen. Furthermore, by using the wheel operation control table, the host system 2 converts the rotation direction and rotation amount of the wheel into an instruction signal for physical operation of the switched drive unit and transmits it to the microscope controller 31. Can do. Therefore, the microscope controller 31 can drive the drive unit based on the transmitted signal.
  • the drive unit to be driven is automatically selected according to the selected region and the wheel operation of the mouse 88 in the region on the specimen display screen or the operation menu display screen.
  • the switched drive unit can be controlled. As a result, it is possible to improve the operability of the microscope system and reduce the operation burden on the user.
  • the assignment of the mouse wheel of the mouse with the wheel of the pointing device has been described, but it may be replaced with a trap ball or other general pointing devices. Further, the driving amount by the mouse wheel is not a fixed amount, but may be set arbitrarily by the user for each part.
  • the drive unit assigned to the mouse wheel may be an electric AS (Aperture Stop), an electric correction ring, or other drive unit.
  • the drive unit to be driven is automatically selected according to the region selected with the mouse and the mouse wheel operation on the selected region. Can be switched. As a result, it is possible to improve the operability of the microscope system and reduce the operation burden on the user.
  • the fluorescence filter for multiple excitation has a problem that the number of combinations of fluorescence wavelengths that can be observed is limited, so that the degree of freedom in observation is limited. Further, in the method of performing imaging while switching between a plurality of single color fluorescent filters and performing a superimposed display, the operation of the microscope is limited by the filter switching interval. For this reason, in particular, when the stage is moved or the magnification conversion operation is performed, the images before the update are displayed in an overlapping manner, which is inconvenient.
  • the present invention provides a microscope system that can easily track an observation object without any troublesome display.
  • the microscope system includes a microscope, an imaging unit, a selection instruction unit, a superimposing unit, a display control unit, a detecting unit, and a superimposing cancellation unit.
  • the microscope can observe the observation object by switching a plurality of observation methods.
  • the microscope corresponds to the microscope apparatus 1 in this embodiment.
  • the imaging means captures an optical image of the observation body.
  • the imaging means corresponds to the video camera 3 in the present embodiment, for example.
  • the selection instruction means is given a selection instruction for selecting at least one observation method among the plurality of observation methods.
  • the selection instruction means corresponds to the video camera 3 in this embodiment.
  • An instruction button 192 for switching to an observation method using each fluorescent cube is shown.
  • the superimposing unit superimposes the captured images on the basis of the selected observation method.
  • the superimposing means corresponds to the processing of S706 to S707 executed by the host system 2.
  • the display control means performs control to display the superimposed image.
  • the display control means corresponds to the processing of S707 executed by the host system 2.
  • the detecting means detects an operation of the microscope that causes a change in an observation environment for photographing the observation body.
  • the detection means corresponds to the processing of S710 executed by the host system 2.
  • the superimposing cancellation unit cancels the superimposing state of the superimposed image based on the detection result.
  • the superimposing cancellation unit corresponds to the processing of S711 executed by the host system 2.
  • the microscope operation that causes a change in the observation environment when observing the observation images superimposed on the same observation body using a plurality of observation methods. Even when this is performed, there is no troublesome display, and the observation object can be easily tracked.
  • the superimposing unit cumulatively superimposes the image of the observation method according to the selection instruction on the image displayed by the display control unit. With this configuration, the stored observation image can be superimposed on the LIVE image.
  • the detection means can detect an operation related to at least one of movement of a stage on which the observation object is placed, change of magnification, and focusing. With this configuration, it is possible to detect the operation of the microscope that causes a change in the observation environment for photographing the observation body.
  • the superimposing cancellation unit can cancel the superimposing state of the image by erasing the image superimposed on the displayed image.
  • the superimposed image can be eliminated and the LIVE image can be obtained when moving the stage or changing the objective lens, so that the observation object can be easily found and the operability is improved.
  • the burden on the user can be reduced.
  • the selection instruction means is displayed as a part of a graphical user interface for displaying the image.
  • the display control means can change the display form of the selection instruction means from the first display form to the second display form.
  • the display control means changes the display form of the selection instruction means from the second display form to the first display form when a selection cancellation instruction is given by the selection instruction means, and detects the detection.
  • the display form of the selection instruction means can be changed from the second display form to the third display form.
  • the observation method may be a fluorescence observation method in which fluorescence observation is performed for each wavelength. Moreover, at least any two of the bright field observation method, the dark field observation method, the phase difference observation method, and the differential interference contrast method may be used.
  • FIG. 41A is a diagram showing a speculum method change instruction area 189 on the wizard screen D.
  • FIG. 41B is a diagram showing an example of the GUI of the speculum method change instruction area 189.
  • the button 192A is a button for instructing switching to an observation method using the fluorescent cube A.
  • the button 192B is a button for instructing switching to an observation method using the fluorescent cube B.
  • the button 192C is a button for instructing switching to an observation method using the fluorescent cube C.
  • the button 192D indicates a button for switching to fluorescence DIC observation.
  • buttons 192A, 192B, 192C, and 192D (collectively referred to as “button 192”) are selected, they slide from L1 to L2. That is, when the left end of the button 192 has reached L1, the spectroscopic method corresponding to the button indicates the selected state. When the left end of the button 192 is at L2, it indicates a non-selected state.
  • GUI display forms of the buttons 192A to 192D are further changed to display forms indicated by reference numerals 193 to 195 in FIGS. 42 (a) to (c).
  • the GUI of the button shown in the form 193 indicates a state in which the microscopic method corresponding to the button is currently selected as the main, and the LIVE image is displayed in the observation image display area 72.
  • the GUI of the button shown in the form 194 indicates that the speculum method corresponding to the button is non-main (not selected as main) or non-selected.
  • the GUI of the button shown in the form 195 indicates a state in which an image by the spectroscopic method corresponding to the button is not displayed by the operation of the microscope described later.
  • the button 190 is a button for turning ON / OFF the multi-color display, and is a button for displaying the fluorescence observation images photographed by the spectroscopic method using each fluorescent cube in a superimposed manner (hereinafter referred to as “superposition display”). It is.
  • the button 191 is a superimposed image redisplay instruction button described later.
  • the control of the display mode for representing the selection / non-selection state of the button is performed by the CPU of the host system 2 that reads the program according to the present embodiment or the processor for screen control.
  • the button 192A is selected, that is, the fluorescent cube A is selected.
  • a LIVE image based on the fluorescent cube A is displayed in the observation image display area 72.
  • the selection instruction button 192B for the fluorescent cube B is selected. Then, the left end of the button 192B moves to the position L1, and the form of the button 192B is changed from the form 194 to the form 193.
  • the host system 2 gives an instruction to insert the fluorescent cube B (35b) into the observation optical path through the microscope controller 31 (S722).
  • the observation image (the LIVE image) is displayed by the fluorescent cube B (S723). Further, the button 192A moves to the position L2, and its form is changed from the form 193 to the form 194.
  • the selection instruction button 192C for the fluorescent cube C is selected. Then, the left end of the button 192C moves to the position L1, and the form is changed from the form 194 to the form 193.
  • the host system 2 instructs the microscope controller 31 to insert the fluorescent cube C (35c) onto the observation optical path (S722).
  • the observation image (the LIVE image) is displayed by the fluorescent cube C (S723). Further, the button 192B moves to the position L2, and its form is changed from the form 193 to the form 194.
  • FIG. That is, the case where multi-color display ON is selected with the button 190 will be described.
  • the multi-color display button 190 is turned on (S701) in a state where the LIVE image by the cube A is displayed in the observation image display area 72.
  • the button 192B for selecting the fluorescent cube B is selected (“Y” in S702).
  • the host system 2 stores the image of the LIVE image by the cube A displayed in the observation image display area 72 in the image recording unit 188 (S703).
  • the left end of the button 192B moves to the position L1, and its form is changed from form 194 to form 193.
  • the host system 2 instructs the microscope controller 31 to insert the fluorescent cube B (35b) into the observation optical path (S704). Then, under the control of the host system 2, an observation image (Live image) by the fluorescent cube B is displayed in the observation image display area 72 (S705).
  • the host system 2 reads the image of the fluorescent cube A stored in the image recording unit 188 (S706). As shown in FIG. 46, the host system 2 superimposes and displays the read image of the fluorescent cube A on the observation image (the LIVE image) of the fluorescent cube B (S707). At this time, the button 192A remains at the position L1, and the form of the button 192A is changed from the form 193 to the form 194. That is, in the observation image display area 72, the image of the fluorescent cube A stored in the image recording unit 188 is superimposed and displayed on the observation image (the LIVE image) by the fluorescent cube B.
  • the host system 2 displays an image of the LIVE image by the cube B displayed in the observation image display area 72 as an image recording unit. Save to 188 (S703).
  • the left end of the button 192C moves to the position L1, and its form is changed from form 194 to form 193.
  • the host system 2 gives an instruction to insert the fluorescent cube C (35c) into the observation optical path through the microscope controller 31.
  • an observation image (LIVE image) by the fluorescent cube C is displayed (S705).
  • the host system 2 reads the images of the fluorescent cube A and the fluorescent cube B stored in the image recording unit 188 (S706).
  • the host system 2 performs overlay display (S707). That is, in the observation image display area 72, the images of the fluorescent cube A and the fluorescent cube B stored in the image recording unit 188 are superimposed and displayed on the observation image (the LIVE image) by the fluorescent cube C. At this time, the button 192B remains at the position L1, and the form is changed from the form 193 to the form 194.
  • the host system 2 sends the image of the LIVE image by the cube C displayed in the observation image display area 72 to the image recording unit 188. Save (S703).
  • the left end of the button 192A moves to the position L1, and its form is changed from form 194 to form 193.
  • the host system 2 gives an instruction to insert the fluorescent cube A (35a) into the observation optical path through the microscope controller 31.
  • an observation image Live image
  • the host system 2 reads the image by the fluorescent cube B and the fluorescent cube C stored in the image recording unit 188 (S706).
  • the host system 2 superimposes and displays the read images of the fluorescent cube B and the fluorescent cube C on the observation image (the LIVE image) of the fluorescent cube A (S707).
  • the button 192C remains at the position of L1, and its form is changed from the form 193 to the form 194.
  • the images of the fluorescent cube B and the fluorescent cube C stored in the image recording unit 188 are superimposed and displayed on the observation image (the LIVE image) by the fluorescent cube A.
  • the button 192C is selected in order to select the fluorescent cube C that is the target for canceling the superimposed display in the state shown in FIG. 48 (“Y” in S708).
  • the host system 2 cancels the superimposed display of the fluorescent cube C that has been read from the image recording unit 188 (S709).
  • the observation image display area 72 only the image of the fluorescent cube B stored in the image recording unit 188 is superimposed and displayed on the observation image of the fluorescent cube A. That is, in the observation image display area 72, only the image of the fluorescent cube B stored in the image recording unit 188 is superimposed and displayed on the observation image (the LIVE image) by the fluorescent cube A.
  • the form of the button 192C remains the form 194, and the movement is performed to the position L2.
  • the LIVE image corresponding to the button whose button GUI is shown in the form 193 cannot be canceled during the overlay display. Therefore, when the LIVE image is canceled from the superimposed display, the LIVE image is canceled after being switched to an observation image (LIVE image) by another fluorescent cube.
  • FIG. 49 when the stage is moved in a state where the observation image by the fluorescent cube B is superimposed on the LIVE image by the fluorescent cube A, the stage is moved by, for example, clicking the mouse. If it is detected, the host system 2 detects that the stage has been moved (“Y” in S710). In this case, the host system 2 cancels the superimposed display of the observation image by the fluorescent cube B that has been read from the image recording unit 188 (S711).
  • observation image display area 72 an observation image (Live image) by the fluorescent cube A is displayed. That is, when superimposing such as moving the stage or changing the magnification, the host system 2 cancels the superimposing display when a microscope operation that causes a deviation from the currently displayed LIVE image is performed. Then, in the observation image display area 72, only the observation image (LIVE image) by the fluorescent cube A is displayed.
  • the button 192B moves to the position of L2, and its form is changed from the form 194 to the form 195.
  • the image of the fluorescent cube B is distinguished from the form 194 of the fluorescent cube C when it is arbitrarily released by the user. That is, the form of the button is changed to GUI 195 when the release is performed by moving the stage.
  • a button 191 is an instruction for redisplaying the released superimposed image. That is, the button 191 gives an instruction to perform overlay display again on the image of the microscopic method whose overlay display has been canceled by moving the stage or changing the magnification. Further, when the stage movement or the magnification conversion operation is completed, the button 191 is enabled (“Y” in S712). As shown in FIG. 50, the observation image display area 72 displays an observation image of the fluorescent cube A. The selection of the fluorescent cube B is canceled by moving the stage. The selection of the fluorescent cube C is arbitrarily canceled by the user.
  • the host system 2 instructs the microscope controller 31 to insert the fluorescent cube B (35b) onto the observation optical path (S715). Then, the host system 2 captures an image through the fluorescent cube B (35b), and stores the observation image by the cube B in the image recording unit 188 (S716).
  • the host system 2 determines whether there is an image that has been recorded by the microscopic method in which the overlay display is canceled due to movement of the stage or the like and is not recorded (S717). If there is an image that has been taken by the microscopic method with the superimposed display canceled and has not been recorded (“Y” in S717), S715 to S717 are repeated.
  • the host system 2 again instructs the microscope controller 31 to insert the fluorescent cube A (35a) into the observation optical path. This is performed (S718).
  • an observation image Live image is displayed by the fluorescent cube A (S719).
  • the host system 2 reads the image of the fluorescent cube B stored in the image recording unit 188 (S720). Then, as shown in FIG. 51, the host system 2 performs an overlay display (S721). That is, in the observation image display area 72, the image of the fluorescent cube B released by the stage movement is superimposed and displayed on the observation image (the LIVE image) by the fluorescent cube A after the stage movement is completed.
  • magnification is performed in a state where the fluorescent cube B is superimposed and displayed on the LIVE image of the fluorescent cube A
  • the optical magnification is changed by an instruction from the button 80 or the like.
  • the host system 2 detects that the optical magnification has been changed (“Y” in S710).
  • the host system 2 cancels the superimposed display of the fluorescent cube B that has been read from the image recording unit 188 (S711).
  • the observation image display area 72 displays an observation image (LIVE image) by the fluorescent cube A.
  • the button 192B moves to the position L2, and its form is changed from the form 194 to the form 195.
  • the button 192B is distinguished from the form 194 of the fluorescent cube C arbitrarily released by the user. That is, the button 192B has a GUI represented by a form 195 indicating that the release has been performed by moving the stage.
  • the host system 2 instructs the microscope controller 31 to insert the fluorescent cube B (35b) onto the observation optical path (S715).
  • the host system 2 captures an image through the fluorescent cube B (35b) and stores an observation image by the cube B in the image recording unit 188 (S716).
  • the host system 2 determines whether there is an image that has been captured by the microscopic method whose overlay display has been canceled due to a change in magnification or the like and has not been recorded (S717). If there is an image that has been recorded by the microscopic method with the superimposed display canceled and is not recorded (“Y” in S717), S715 to S717 are repeated.
  • the host system 2 When recording of the image of the microscopic method with the superimposed display canceled is completed (“N” in S717), the host system 2 again inserts the fluorescent cube A (35a) into the observation optical path with respect to the microscope controller 31. An instruction is given (S718). In the observation image display area 72, an observation image (Live image) is displayed by the fluorescent cube A (S719).
  • the host system 2 reads the image of the fluorescent cube B stored in the image recording unit 188 (S720). As shown in FIG. 53, the host system 2 performs overlay display (S720). That is, in the observation image display area 72, the image of the fluorescent cube B released by the stage movement is superimposed and displayed on the observation image (the LIVE image) of the fluorescent cube A after the optical magnification change. Further, in the present embodiment, the detection of the movement of the stage has been described with respect to the movement in the XY direction, but the movement in the Z direction in addition to the XY direction can also be detected in the same manner. In this case, when the movement of the stage in the Z direction is detected by the focusing operation, the overlapping operation can be automatically canceled in the same manner.
  • the microscopic method change instruction area 189 can be operated until moving to another wizard screen (S714).
  • the microscope system according to the second embodiment has detection means for detecting a microscope operation in which a change occurs in the image of the observation body. Thereby, even when the stage is moved, the magnification is changed, or the AF operation is performed during the fluorescence observation, the overlay display state of the observation image can be canceled.
  • the microscope is operated with the observation images superimposed, it is difficult to observe the LIVE image and the observation image superimposed on the LIVE image so that the troublesome operation becomes troublesome. Therefore, it is possible to reduce the burden on the user for improving the operability of the microscope. In addition, the burden on the user can be greatly reduced by shortening the observation time.
  • the observation method forcibly canceling the overlay display and the observation method arbitrarily canceling the overlay display can be easily distinguished.
  • the observation method forcibly canceling the overlay display can be easily identified and selected.
  • the instruction to perform the overlay display again on the image of the microscopic method whose overlay display has been canceled due to the movement of the stage or the change of the magnification is performed with the button 191, but the movement of the stage or It may be automatically performed by detecting that the magnification conversion operation is completed.
  • the case where the image of the selected microscopic method is displayed as a LIVE image is shown.
  • the LIVE / PAUSE switching / display area 85 in order to prevent discoloration in the fluorescent image, it may be automatically switched to the PAUSE image when there is no operation for a certain period of time.
  • DIC observation may be replaced with phase difference observation, or a combination of other spectroscopic methods may be used.
  • the microscope apparatus of the second embodiment has been described as having a plurality of objective lenses and switching them as needed, an objective lens having a zoom mechanism may be used.
  • an objective lens having a zoom mechanism may be used.
  • the slide glass was demonstrated to the example as a sample, it is not limited to this, A dish and another sample may be sufficient.
  • the processing and wheel operation control tables shown in the flowcharts of FIGS. 7 to 10, 35, 39, and 54 are prepared by creating a control program to be executed by the CPU of a computer having a standard configuration as described above. It may be recorded on a computer-readable recording medium.
  • the first and second embodiments can be applied by causing the computer to read the program from a recording medium and causing the computer to execute the program.
  • a recording medium from which the recorded control program can be read by a computer for example, a storage device such as a ROM or a hard disk device provided as an internal or external accessory device in the computer, or a medium driving device provided in the computer is inserted.
  • a portable recording medium such as a flexible disk, MO (magneto-optical disk), CD-ROM, DVD-ROM, or the like from which the control program recorded can be read can be used.
  • the recording medium may be a storage device provided in a computer system functioning as a program server connected to a computer via a communication line.
  • a transmission signal obtained by modulating a carrier wave with a data signal representing a control program is transmitted from the program server to a computer through a communication line as a transmission medium, and the computer demodulates the received transmission signal.
  • the control program can be executed by the CPU of the computer.
  • the microscope system according to the first and second embodiments employs an upright microscope apparatus as the microscope apparatus 1, an inverted microscope apparatus may be employed instead.
  • the present embodiment may be applied to various systems such as a line apparatus incorporating a microscope apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

 本発明では、顕微鏡観察の際のユーザの操作性を向上させる顕微鏡システムを提供する。顕微鏡システムは、複数の駆動ユニットを有する顕微鏡装置と、前記顕微鏡装置の操作を行うための操作画面を表示する表示手段と、前記操作画面に対して前記顕微鏡装置への操作指示をポインタにより入力するポインティングデバイスと、前記操作画面上における前記ポインタの位置に応じて、前記駆動ユニットを切り換え、該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御する制御手段と、を備えることにより、上記課題の解決を図る。

Description

顕微鏡システム、該制御プログラムが格納された記憶媒体、及び該制御方法
 本発明は、複数の対物レンズを有し、微小な試料の拡大観察を行う、各種光学部材がモータによって駆動される顕微鏡システムに関する。
 顕微鏡装置は工業分野を始め、生物分野における研究や検査等において広く利用されている。
 このような顕微鏡装置を使用して検査を行う場合には、一般に拡大倍率の異なる複数の対物レンズを有し、対物レンズからの観察光路と直交する平面内で観察試料を移動できる電動ステージを操作することにより、観察、検査を行っている。この検査としては、例えば、次の方法がある。まず、対物レンズを低倍にセットして試料全体を漏れのないようにスクリーニングする。その後、その観察試料の中で異常部位が発見されたポイントや記録に残したいポイントに戻る。さらに、高倍率の対物レンズを最適な検鏡方法へと切換えて、異常部位を詳細に検査し、その詳細観察データの記録を行う。
 特許文献1では、モニター上の観察像の所望の領域を指定すると、その指定領域を全画面に表示するに必要な対物倍率およびステージの位置を演算し、その演算結果に基づいて、対物倍率に対応する対物レンズが観察光路に挿入され、かつ指定領域が観察視野のほぼ中央に位置するように、変倍機構およびステージを自動的に駆動する顕微鏡変倍装置が開示されている。
 特許文献2では、モニターに表示させたX-Y方向用及びZ方向用のコントローラ・イメージ上で、ポインタを移動させることによってステージの移動方向とステージの移動速度を設定することができる顕微鏡装置が開示されている。
 特許文献3では、マウスのホイールの回転量および回転方向によって設定された倍率に基づいて顕微鏡像の倍率を制御し、マウスの一方のスイッチに位置調整の機能を割り当て、他方のスイッチに焦点調整の機能を割り当てることによって、顕微鏡像の位置調整及び焦点調整を可能にした顕微鏡が開示されている。
 特許文献4では、観察体を撮像して得られた顕微鏡画像を繋ぎ合わせることで観察体の画像を再構築するバーチャル顕微鏡システムにより、観察体を実際に顕微鏡で観察した場合と同様の操作性により検鏡法を切り替えることが開示されている。
 特許文献5では、フィルタセットの切り替えを自動で行うと共に、各画像イメージの重ね合わせ画像も同時に逐次行われ、共に表示部に表示可能とすることにより、多色蛍光観察をほぼリアルタイムで実現可能な蛍光顕微鏡が開示されている。
特許第2925647号 特開2001-91854号公報 特開2002-98897号公報 特開2007-17930号公報 特開2005-331887号公報
 本発明は、顕微鏡観察の際のユーザの操作性を向上させる顕微鏡システムを提供する。
 本発明の第1の実施形態に係る顕微鏡システムは、複数の駆動ユニットを有する顕微鏡装置と、前記顕微鏡装置の操作を行うための操作画面を表示する表示手段と、前記操作画面に対して前記顕微鏡装置への操作指示をポインタにより入力するポインティングデバイスと、前記操作画面上における前記ポインタの位置に応じて、前記駆動ユニットを切り換え、該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御する制御手段と、を備える。
 本発明の第1の実施形態に係る、複数の駆動ユニットを有する顕微鏡装置と、前記顕微鏡装置の操作を行うための操作画面を表示する表示装置と、前記操作画面に対して前記顕微鏡装置への操作指示をポインタにより入力するポインティングデバイスを有する顕微鏡システムを制御する処理をコンピュータに実行させるプログラムが格納された記憶媒体は、前記操作画面上における前記ポインタの位置を判別する判別処理と、前記判別結果より、前記操作画面上における前記ポインタの位置に応じて、前記駆動ユニットを切り換えるユニット切換処理と、該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御するユニット制御処理と、をコンピュータに実行させる。
 本発明の第1の実施形態に係る、複数の駆動ユニットを有する顕微鏡装置と、前記顕微鏡装置の操作を行うための操作画面を表示する表示装置と、前記操作画面に対して前記顕微鏡装置への操作指示をポインタにより入力するポインティングデバイスを有する顕微鏡システムを制御する顕微鏡システムの制御方法は、前記操作画面上における前記ポインタの位置を判別し、前記判別結果より、前記操作画面上における前記ポインタの位置に応じて、前記駆動ユニットを切り換え、該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御することを特徴とする。
 本発明の第2の実施形態に係る顕微鏡システムは、複数の観察方法を切り替えて観察体の観察を行うことができる顕微鏡と、前記観察体の光学画像を撮像する撮像手段と、前記複数の観察方法のうち少なくとも1つの観察方法を選択させるための選択指示が与えられる選択指示手段と、前記選択された観察方法に基づいて、前記撮像した画像同士を重畳させる重畳手段と、前記重畳させた画像を表示させる制御を行う表示制御手段と、前記観察体を撮影する観察環境の変化を生じさせる前記顕微鏡の動作を検出する検出手段と、前記検出結果に基づいて、前記重畳させた画像の重畳状態を解除する重畳解除手段と、を備える。
 本発明の第2の実施形態に係る、複数の観察方法を切り替えて観察体の観察を行うことができる顕微鏡と該観察体の光学画像を撮像する撮像手段とを含む顕微鏡システムの制御をコンピュータに実行させるプログラムが格納された記憶媒体は、前記複数の観察方法のうち少なくとも1つの観察方法を選択させるための選択指示情報を取得する選択指示取得処理と、前記選択された観察方法に基づいて、前記撮像した画像同士を重畳させる重畳処理と、前記重畳させた画像を表示させる制御を行う表示制御処理と、前記観察体を撮影する観察環境の変化を生じさせる前記顕微鏡の動作を検出する検出処理と、前記検出結果に基づいて、前記重畳させた画像の重畳状態を解除する重畳解除処理と、をコンピュータに実行させる。
 本発明の第2の実施形態に係る、複数の観察方法を切り替えて観察体の観察を行うことができる顕微鏡と該観察体の光学画像を撮像する撮像手段とを含む顕微鏡システムの制御方法は、前記複数の観察方法のうち少なくとも1つの観察方法を選択させるための選択指示情報を取得し、前記選択された観察方法に基づいて、前記撮像した画像同士を重畳させ、前記重畳させた画像を表示させる制御を行い、前記観察体を撮影する観察環境の変化を生じさせる前記顕微鏡の動作を検出し、前記検出結果に基づいて、前記重畳させた画像の重畳状態を解除する。
 本発明によれば、顕微鏡観察の際のユーザの操作性を向上させる顕微鏡システムを提供することができる。
本発明の実施形態に係る顕微鏡システムの構成例を示す図である。 本発明の実施形態に係る4つのウィザード画面の概要を説明する図である。 本発明の実施形態に係るウィザード画面Aの一例を示す図である。 本発明の実施形態に係るウィザード画面Bの一例を示す図である。 本発明の実施形態に係るウィザード画面Cの一例を示す図である。 本発明の実施形態に係るウィザード画面Dの一例を示す図である。 本発明の実施形態に係るウィザード画面Aに係るフローチャートを示す図である。 本発明の実施形態に係るウィザード画面Bに係るフローチャートを示す図である。 本発明の実施形態に係るウィザード画面Cに係るフローチャートを示す図である。 本発明の実施形態に係るウィザード画面Dに係るフローチャートを示す図である。 本発明の実施形態に係る観察動作中のウィザード画面Bの一例を示す第1の図である。 本発明の実施形態に係る観察動作中のウィザード画面Bの一例を示す第2の図である。 本発明の実施形態に係る観察動作中のウィザード画面Cの一例を示す第1の図である。 本発明の実施形態に係る観察動作中のウィザード画面Cの一例を示す第2の図である。 本発明の実施形態に係る観察動作中のウィザード画面Dの一例を示す第1の図である。 本発明の実施形態に係る観察動作中のウィザード画面Dの一例を示す第2の図である。 本発明の実施形態に係るウィンドウの一例を示す図である。 本発明の実施形態に係る観察動作中のウィザード画面Cの一例を示す第3の図である。 本発明の実施形態に係る観察動作中のウィザード画面Dの一例を示す第3の図である。 第1の実施形態に係るマウス88の一例を示す。 第1の実施形態に係るウィザード画面Cの区分領域AにマウスポインタPがある場合の画面例を示す。 第1の実施形態に係るウィザード画面Cの区分領域AにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例を示す。 第1の実施形態に係るウィザード画面Cの区分領域BにマウスポインタPがある場合の画面例を示す。 第1の実施形態に係るウィザード画面Cの区分領域BにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その1)を示す。 第1の実施形態に係るウィザード画面Cの区分領域BにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その2)を示す。 第1の実施形態に係るウィザード画面Cの区分領域CにマウスポインタPがある場合の画面例を示す。 第1の実施形態に係るウィザード画面Cの区分領域CにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その1)を示す。 第1の実施形態に係るウィザード画面Cの区分領域CにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その2)を示す。 第1の実施形態に係るウィザード画面Cの区分領域DにマウスポインタPがある場合の画面例を示す。 第1の実施形態に係るウィザード画面Cの区分領域DにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その1)を示す。 第1の実施形態に係るウィザード画面Cの区分領域DにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その2)を示す。 第1の実施形態に係るウィザード画面Cの区分領域EにマウスポインタPがある場合の画面例を示す。 第1の実施形態に係るウィザード画面Cの区分領域EにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その1)を示す。 第1の実施形態に係るウィザード画面Cの区分領域EにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その2)を示す。 第1の実施形態に係るウィザード画面Cの各領域上でマウスのホイール操作を行った場合のフローを示す。 第1の実施形態に係るウィザード画面Dの区分領域FにマウスポインタPがある場合の画面例を示す。 第1の実施形態に係るウィザード画面Dの区分領域FにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その1)を示す。 第1の実施形態に係るウィザード画面Dの区分領域FにおいてマウスポインタPが検出されて、マウスポインタの形態が変更された場合の画面例(その2)を示す。 第1の実施形態に係るウィザード画面Dの各領域上でマウスのホイール操作を行った場合のフローを示す。 第1の実施形態に係るホイール操作制御テーブルの一例を示す。 第2の実施形態に係る、ウィザード画面Dの検鏡方法変更指示エリア189を示した図である。 第2の実施形態に係る、検鏡方法変更指示エリア189のGUIの一例を示した図である。 第2の実施形態に係る、ボタン192A~192Dの表示形態のバリエーションを示す図である。 第2の実施形態に係る、重ね合わせ表示を行わない場合において、蛍光キューブBの選択指示ボタン192Bが選択されたときに表示される画面例を示す。 第2の実施形態に係る、重ね合わせ表示を行わない場合において、蛍光キューブCの選択指示ボタン192Cが選択されたときに表示される画面例を示す。 第2の実施形態に係る、重ね合わせ表示を行う場合において、蛍光キューブAの選択指示ボタン192Aが選択されたときに表示される画面例を示す。 第2の実施形態に係る、重ね合わせ表示を行う場合において、図45の状態で蛍光キューブBの選択指示ボタン192Bが選択されたときに表示される画面例を示す。 第2の実施形態に係る、重ね合わせ表示を行う場合において、図46の状態で蛍光キューブCの選択指示ボタン192Cが選択されたときに表示される画面例を示す。 第2の実施形態に係る、重ね合わせ表示を行う場合において、図47の状態で蛍光キューブAの選択指示ボタン192Aが選択されたときに表示される画面例を示す。 第2の実施形態に係る、図48に示す状態で、蛍光キューブCによる検鏡方法で撮影された画像の重ね合わせ表示を解除するためにボタン192Cが選択されたときに表示される画面例を示す。 第2の実施形態に係る、図49に示す状態で、ステージの移動が行われて、LIVE画像に対して重畳していた画像が強制的に重畳を解除させられた場合に表示される画面例を示す。 第2の実施形態に係る、図50に示す状態から、ステージの移動によって重ね合わせ表示が解除された検鏡方法の画像を再びLIVE画像に重畳させた場合に表示される画面例を示す。 第2の実施形態に係る、図51に示す状態で、倍率の変更が行われて、LIVE画像に対して重畳していた画像が強制的に重畳を解除させられた場合に表示される画面例を示す。 第2の実施形態に係る、図52に示す状態から、倍率の変更によって重ね合わせ表示が解除された検鏡方法の画像を再びLIVE画像に重畳させた場合に表示される画面例を示す。 第2の実施形態に係る、検鏡方法変更指示エリア189の各種ボタン操作に伴うフローを示す。
 <第1の実施形態>
 近年、顕微鏡システムの電動化が進展しつつある。その1つに、特許文献3に示すように、モニターに表示された操作画面をポインティングデバイスであるマウスを操作することにより、顕微鏡のコントロールを行うものが知られている。
 しかしながら、ホイール付マウスのホイールに駆動ユニットをコントロールする機能を割り当てる場合、ホイールは1つしかないので1つの駆動ユニットについてしか割り当てることができない。しかし、顕微鏡システムには複数の駆動ユニットがあるので、その多くの駆動ユニットをホイール付マウスのホイールでコントロールすることができない。
 ところが、観察状況に応じて、マウスのホイール操作によって駆動を行いたい駆動ユニットは異なってくる。例えば、標本を表示している画面上において、ポインタの位置に応じて、駆動を行いたい駆動ユニットを切り換えたい場合、ユーザ自身で、ユニットを切り替えなければならなかった。したがって、そのようにユーザ自身でユニットの切り換えを行わなければならず、操作性があまりよくなかった。
 上記の課題に鑑み、第1の実施形態では、ポインティングデバイスを用いて操作画面を操作することにより顕微鏡装置を操作する顕微鏡システムにおいて、ポインティングデバイスにより複数の駆動ユニットを制御することができる顕微鏡システムを提供する。
 第1の実施形態にかかる顕微鏡システムは、顕微鏡装置と、表示手段と、ポインティングデバイスと、制御手段とを備える。
 顕微鏡装置は、複数の駆動ユニットを有する。顕微鏡装置は、例えば本実施形態で言えば、顕微鏡装置1に相当する。
 表示手段は、前記顕微鏡装置の操作を行うための操作画面を表示する。表示手段は、例えば本実施形態で言えば、モニター5に相当する。
 ポインティングデバイスは、前記操作画面に対して前記顕微鏡装置への操作指示をポインタにより入力する。ポインティングデバイスは、例えば本実施形態で言えば、マウス88に相当する。
 制御手段は、前記操作画面上における前記ポインタの位置に応じて、前記駆動ユニットを切り換え、該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御する。制御手段は、例えば本実施形態で言えば、ホストシステム2に相当する。
 このように構成することにより、ポインティングデバイスを用いて操作画面を操作することにより顕微鏡装置を操作する顕微鏡システムにおいて、ポインティングデバイスにより複数の駆動ユニットを制御することができる。
 前記駆動ユニットには、観察倍率を変倍する変倍機構、観察光路と同方向または垂直方向に観察体を移動させることができる駆動ステージ、及び調光機構のうち少なくともいずれかが含まれる。
 この場合、前記制御手段は、前記操作画面上における前記ポインタの位置を判別する。該ポインタが該操作画面上の第1の領域にある場合には、前記制御手段は、該ポインティングデバイスの操作に応じて、前記駆動ステージを観察光路方向へ動作させる。前記制御手段は、該ポインタが該操作画面上の第2の領域にある場合には、該ポインティングデバイスの操作に応じて、前記駆動ステージを観察光路に対して垂直方向へ動作させる。前記制御手段は、該ポインタが該操作画面上の第3の領域にある場合には、該ポインティングデバイスの操作に応じて、前記変倍機構に倍率を変倍させる。前記制御手段は、該ポインタが該操作画面上の第4の領域にある場合には、該ポインティングデバイスの操作に応じて、調光制御を行う。
 このように構成することにより、操作画面上のポインタの位置に応じて、制御対象となる駆動ユニットを切り替えることができる。そして、該ポインティングデバイスの操作に応じて、その切り換えた駆動ユニット固有の機能を制御できる。
 前記顕微鏡システムは、さらに、前記顕微鏡装置によって観察された観察体の像を撮像する撮像手段を備える。撮像手段は、例えば本実施形態で言えば、ビデオカメラ3に相当する。ここで、前記操作画面には、前記撮像手段により撮像された画像を表示させる画像表示領域が含まれている。また、前記制御手段は、前記画像表示領域上における前記ポインタの位置に応じて、前記駆動ユニットを切り換える。それから、前記制御手段は、該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御する。
 このように構成することにより、操作画面上のポインタの位置に応じて、制御対象となる駆動ユニットを切り替えることができる。そして、該ポインティングデバイスの操作に応じて、その切り換えた駆動ユニット固有の機能を制御できる。
 また、前記ポインティングデバイスの一例は、ホイール付マウスである。このとき、前記制御手段は、前記ホイール付マウスのホイールの操作に応じて、前記切り換えた駆動ユニットの動作を制御する。
 このように構成することにより、操作画面上のマウスポインタの位置に応じて、制御対象となる駆動ユニットを切り替えることができる。そして、ホイール付マウスのホイールの操作に応じて、前記切り換えた駆動ユニットの動作を制御することができる。
 また、前記制御手段は、前記操作画面上の位置に応じて、前記ポインタの表示形態を所定の表示形態に変化させることができる。このように構成することにより、操作画面上の位置に応じて、前記ポインタの表示形態を所定の表示形態に変化させることができる。
 以下、図面を参照しながら第1の実施形態の詳細を説明する。
 図1は、本発明の実施形態に係る顕微鏡システムの構成例を示す図である。顕微鏡装置1には、透過観察用光学系として、透過照明用光源6と、透過照明用光源6の照明光を集光するコレクタレンズ7と、透過用フィルタユニット8と、透過視野絞り9と、透過開口絞り10と、コンデンサ光学素子ユニット11と、トップレンズユニット12とが備えられている。また、落射観察光学系として、落射照明用光源13と、コレクタレンズ14と、落射用フィルタユニット15と、落射シャッタ16と、落射視野絞り17と、落射開口絞り18とが備えられている。
 また、これらの透過観察用光学系の光路と落射観察用光学系の光路とが重なる観察光路上には、観察体(標本)19が載置される電動ステージ20が備えられている。電動ステージ20は、上下左右の各方向に移動可能である。
 電動ステージ20の移動の制御は、ステージX-Y駆動制御部21とステージZ駆動制御部22とによって行われる。ステージX-Y駆動制御部21は、X-Yモータ21aの駆動を制御することにより、ステージ20をX方向及びY方向へ移動させる。ステージZ駆動制御部22は、Zモータ22aの駆動を制御することにより、ステージ20をZ方向へ移動させる。
 なお、電動ステージ20は、原点センサによる原点検出機能(不図示)を有している。これにより、電動ステージ20に載置した標本19の座標検出及び座標指定による移動制御を行うことができる。
 また、観察光路上には、レボルバ24と、キューブユニット25と、ズーム光学系27とが備えられている。レボルバ24は、複数装着された対物レンズ23a,23b,…(以下、必要に応じて「対物レンズ23」と総称する)から観察に使用するものを回転動作により選択する。キューブユニット25は、検鏡方法を切り替える。
 さらに、微分干渉観察用のポラライザー28、DIC(Differential Interference Contrast)プリズム29、及びアナライザー30は観察光路に挿入可能となっている。これらの各ユニットは電動化されており、その動作は後述する顕微鏡コントローラ31によって制御される。
 また、対物レンズ23には、カバーガラスによる厚みの補正を行う収差補正機能を有する、いわゆる補正環付対物レンズが装着されている(不図示)。また、顕微鏡コントローラ31によって補正環位置の制御も可能となっている。
 ホストシステム2に接続された顕微鏡コントローラ31は、顕微鏡装置1全体の動作を制御する機能を有する。顕微鏡コントローラ31は、ホストシステム2からの制御信号に応じ、検鏡方法の変更、透過照明用光源6及び落射照明用光源13の調光を行う機能を有する。また、顕微鏡コントローラ31は、現在の顕微鏡装置1による検鏡状態(顕微鏡状態)をホストシステム2へ送出する機能を有する。
 また、顕微鏡コントローラ31は、ステージX-Y駆動制御部21及びステージZ駆動制御部22にも接続されている。それにより、電動ステージ20の制御もホストシステム2で行うことができる。
 顕微鏡操作部34は、顕微鏡装置1の動作指示を入力するための各種入力部を備えたハンドスイッチである。さらに、ハンドスイッチに備えられたジョイスティックやエンコーダ(表記せず)によって、電動ステージ20の操作も行えるものとなっている。
 ビデオカメラ3によって撮像された標本19の顕微鏡画像は、ビデオボード32を介してホストシステム2に取り込まれる。ホストシステム2は、ビデオカメラ3に対して、自動ゲイン制御のON/OFF、ゲイン設定、自動露出制御のON/OFF、及び露光時間の設定を、カメラコントローラ33を介して行うことができる。
 また、ホストシステム2は、ビデオカメラ3から送られてきた標本19の画像データを操作来歴記録部4に保存することができる。操作来歴記録部4に記録された画像データはホストシステム2によって読み出され、表示部であるモニター5に表示させることができる。画像記録部188は、ビデオカメラ3によって撮像された標本19の顕微鏡画像を記録する。
 また、ホストシステム2は、撮像した観察体の観察画像を重ね合わせる等の画像処理を行うことができる。また、ホストシステム2は、モニター5に表示させるグラフィカルユーザインターフェース(GUI)の表示形態を制御する。更に、ホストシステム2は、ビデオカメラ3によって撮像された画像のコントラストに基づいて合焦動作を行う、いわゆるビデオAF機能も提供している。
 なお、ホストシステム2は、CPU(中央演算装置)、メインメモリ、マウス88、インターフェースユニット、補助記憶装置等を有しているコンピュータである。CPUは、制御プログラムの実行によって顕微鏡システム全体の動作を制御する。メインメモリは、CPUが必要に応じてワークメモリとして使用する。
 マウス88は、本実施形態では、例えばホイール付マウスである。このホイールは、クリック機能を有しており、本実施形態では、ホイール1回転当たり24クリックに相当する。なお、マウス以外の、ユーザからの各種の指示を取得するキーボード等の入力装置が接続されていてもよい。
 インターフェースユニットは、この顕微鏡システムの各構成要素との間で各種データの授受を管理する。補助記憶装置は、各種のプログラムやデータを記憶しておく例えばハードディスク装置などである。
 次に、ホストシステム2によってモニター5に1つずつ操作メニュー画面として表示される4つのウィザード画面について説明する。
 図2は、その4つのウィザード画面の概要を説明する図である。同図に示したように、4つのウィザード画面には、ウィザード画面A、ウィザード画面B、ウィザード画面C、及びウィザード画面Dがある。ウィザード画面Aは、スタートメニュー画面である。ウィザード画面Bは、標本チェックメニュー画面である。ウィザード画面Cは、標本サーチメニュー画面である。ウィザード画面Dは、撮影メニュー画面である。
 これら4つのウィザード画面の各々は、顕微鏡観察における複数(本例では4つとする)の観察ステップの各々に対応して設けられている。そして、顕微鏡観察を行う場合、ユーザが観察ステップに応じてウィザード画面を順次切り替えて使用する。なお、ウィザード画面の切り替えは、同図の矢印に示したように、各ウィザード画面から他の3つのウィザード画面の何れへも切り替えることが可能になっている。
 各ウィザード画面では、対応する観察ステップにおいて必要となる設定及び操作のみを受け付けることが可能なように、その設定及び操作が可能なユニットとの関連付けが行われる。そのため、各ウィザード画面では、ユーザが不用意に不必要な設定及び操作を行うことができない。また、各ウィザード画面にて受け付けた設定及び操作は、来歴データとして、操作来歴記録部4に記録される。
 次に、4つのウィザード画面の各々を詳細に説明する。
 図3は、ウィザード画面Aの一例を示す図である。同図に示したウィザード画面Aは、観察を開始するための最初の操作メニュー画面となるスタートメニュー画面(撮影コース選択メニュー画面)である。
 このウィザード画面Aでは、ユーザが、これから観察を行う標本(スライドガラス)19のセット(交換)作業と、これから観察を行う検鏡方法(明視野観察、微分干渉観察、蛍光観察等)の選択と、使用する光学素子(対物レンズ23、キューブ等)の選択と、撮影画像サイズの設定等を行うことができる。
 ウィザード画面Aにおいて、標本交換ボタン36は、標本19を交換するための指示を行うためのボタンである。標本交換ボタン36が押下(例えばマウスによるクリック)されると、ホストシステム2は顕微鏡コントローラ31を介して電動ステージ20に対して指示を送る。この指示に基づいて、電動ステージ20は、標本19の交換を行うためのステージ位置座標(標本交換位置座標)へ移動する。
 なお、標本19のセット後に、ユーザがウィザード画面Aに所定の操作(例えば標本交換ボタン36の再押下)をした場合、標本19の位置を中心ステージ位置座標(観察開始デフォルト座標)へセットするように電動ステージ20を移動させることもできる。
 エリア35は、ウィザード画面Aにおけるメインエリアとなっている。エリア35内のボタン43,44,45は、いずれも検鏡方法選択ボタンである。ボタン43は、蛍光観察選択ボタンである。ボタン44は、微分干渉観察選択ボタンである。ボタン45は、明視野観察選択ボタンである。
 ボタン46~49は、いずれも撮影方法選択ボタンである。例えば、ボタン46は、通常撮影を選択するボタンである。ボタン47は、Zスタック撮影を選択するボタンである。ボタン48は、タイムラプス撮影を選択するボタンである。
 また、ボタン51は、次の観察ステップに対応するウィザード画面Bへ移行するためのボタンである。ボタン52は、ウィザード画面Aに移行する前のウィザード画面に戻るためのボタンである。例えば、ウィザード画面Dからウィザード画面Aに移行していた場合には、ボタン52が押下(例えばマウスによるクリック)されると、ウィザード画面Dへ戻ることとなる。エリア50は、各種説明表示用のエリアである。
 エリア37は、使用する光学素子の選択、追加、交換(物理的交換)のためのエリアである。ユーザは、このエリア37を介して、選択されている検鏡方法による観察で使用するキューブ等の設定を行うことができる。すなわち、ユーザは、顕微鏡装置1で駆動可能な各種光学素子のうち、ウィザード画面Aにて選択した検鏡方法に関連する光学素子のみの設定を行うことが可能となる。
 ボタン38~41は、いずれも他のウィザード画面にダイレクトに移行するためのボタンである。ボタン38は、ウィザード画面Aに移行するためのボタンである。ボタン39は、ウィザード画面Bに移行するためのボタンである。ボタン40は、ウィザード画面Cに移行するためのボタンである。ボタン41は、ウィザード画面Dに移行するためのボタンである。但し、モニター5に表示されているウィザード画面と同一のウィザード画面へ移行するためのボタンが押下(例えばマウスによるクリック)された場合には、ウィザード画面の移行は行われない。なお、ボタン38~41は、後述のウィザード画面B、ウィザード画面C、及びウィザード画面Dにおいても設けられるものである。
 また、このウィザード画面Aでは、ビデオカメラ3で撮影を行う際の画像サイズを設定することも可能となっている。
 このように、ウィザード画面Aにおいてユーザが行うことのできる設定及び操作は、原則として、標本19の交換を行うための電動ステージ20の移動指示を行うためのものと、撮影コース(検鏡方法)を選択するためのものと、光学素子を交換するためのものと、撮影画像サイズを設定するためのものとなっている。よって、その他のユニットに対する設定及び操作は、ウィザード画面Aから行うことができないものとなっている。さらにエリア50は各種説明表示用のメニューとなっている。
 図4は、ウィザード画面Bの一例を示す図である。同図に示したウィザード画面Bは、マクロ画像(低倍対物レンズによる撮影画像)における初期観察スタート位置の検索とそのマクロ画像におけるAF動作(合焦動作)を行わせるための操作メニュー画面となる標本チェックメニュー画面である。
 このウィザード画面Bにおいて、スライドイメージエリア53における矩形で示されるエリア54の範囲は、標本19であるスライドガラス全体に対する電動ステージ20の動作可能範囲を示している。
 マクロ画像表示エリア56は、ビデオカメラ3によりリアルタイムに撮影される標本19のLIVE画像となるマクロ画像が表示されるエリアである。なお、ウィザード画面Bがモニター5に表示されているときには、使用する対物レンズ23が低倍(ここでは4x(4倍)の対物レンズとする)のものに固定される。
 また、マクロ画像表示エリア56に表示されるマクロ画像は、図3に示したウィザード画面Aにて選択された検鏡方法の下で撮影されたマクロ画像となるのが原則である。しかしながら、ウィザード画面Aにて選択された検鏡方法が蛍光観察であった場合には、標本19における観察対象の褪色を防止する必要がある。そのために、ウィザード画面Bでは、検鏡方法が微分干渉観察へ切り替えられ、その微分干渉観察の下で撮影されたマクロ画像が表示されるようになっている。
 また、スライドイメージエリア53においては、そのマクロ画像表示エリア56に表示されているマクロ画像に対応する範囲が矩形枠54として示される。また、スライドイメージエリア53における十字マーク55の位置がマクロ画像表示エリア56にてマクロ画像として表示されている中心位置となっている。
 マクロ画像表示エリア56の周囲には、標本19を4方向に移動させるためのボタン57~60が設けられている。ユーザがボタン57~60の何れかを押下(例えばマウスによりクリック)すると、そのボタンに対応する方向へ電動ステージ20が移動し、標本19がその方向へ移動するようになっている。
 従って、ユーザは、スライドイメージエリア53及びマクロ画像表示エリア56の表示内容を確認しながらボタン57~60を押下することにより、標本19における観察対象が存在する初期観察スタート位置を選択することができる。初期観察スタート位置の選択が行われると、AF動作を実行させることができる。これにより、マクロ画像における合焦座標(Z座標)を決定することができる。
 また、この初期観察スタート位置の選択が行われた後、ユーザによるボタン61の押下(例えばマウスのクリック)により、AF動作を実行させることができ、マクロ画像における合焦座標(Z座標)を決定することができる。
 なお、ウィザード画面Aにて蛍光観察が選択されていた場合には、上述の通り、検鏡方法が一時的に微分干渉観察に切り替えられ、その微分干渉観察の下で撮影されたマクロ画像がマクロ画像表示エリア56に表示される。そのため、上記の初期観察スタート位置の選択とマクロ画像における合焦座標の決定も、その微分干渉観察の下で撮影されたマクロ画像に対して行われることとなる。
 ボタン61は、上記のAF動作の実行の他、次の観察ステップに対応するウィザード画面Cへ移行するための移動指示ボタンである。ユーザによるボタン61の押下により、ウィザード画面Cに移行する。ボタン62は、ウィザード画面Bに移行する前のウィザード画面に戻るためのボタンである。
 このように、ウィザード画面Bにおいてユーザが行うことのできる設定及び操作は、標本19における観察対象が存在する初期観察スタート位置を選択するためのものと、マクロ画像におけるAF動作を行わせるためのものとなっている。
 なお、ウィザード画面Aからウィザード画面Bに移行した時には、ウィザード画面Aにて選択された検鏡方法への切り替えが自動的に行われる。これにより、ウィザード画面Bのマクロ表示エリア56に、ウィザード画面Aにて選択させた検鏡方法による画像を表示させることができる。但し、検鏡方法として蛍光観察が選択されていた場合には、上述の通り、微分干渉観察への切り替えが行われる。この検鏡方法の切り替えでは、対物レンズ23及びその他の設定が、切り替えられる検鏡方法に応じたデフォルト値に設定される。
 図5は、ウィザード画面Cの一例を示す図である。同図に示したウィザード画面Cは、標本19における撮影位置の検索及び撮影倍率を選択するための操作メニュー画面となる標本サーチメニュー画面である。
 このウィザード画面Cにおいて、マクロLIVE画像エリア63は、ビデオカメラ3によりリアルタイムに撮影される標本19のLIVE画像となるマクロ画像が表示されるエリアである。
 マクロLIVE画像エリア63において、ユーザは標本19における撮影対象位置の検索と撮影範囲の選択を行うことが可能になっている。なお、ウィザード画面Cがモニター5に表示されているときにも、ウィザード画面Bのときと同様に、使用する対物レンズ23が低倍(ここでは4xの対物レンズとする)のものに固定される。
 範囲指定枠64は、次の観察ステップに対応するウィザード画面Dにおけるビデオカメラ3による撮影範囲を示すものであり、矩形で示されている。すなわち、範囲指定枠64が示す範囲は、次のウィザード画面Dにおいて撮影時に使用する対物レンズ23による視野範囲に対応したものとなっている。また、この範囲指定枠64は、マウスによるドラッグ及びドロップ操作によって、マクロLIVE画像エリア63の範囲内を移動可能となっている。
 範囲指定枠切替エリア67は、範囲指定枠64の大きさ(撮影倍率)を変更するためのエリアである。範囲指定枠切替エリア67において、ユーザがスライダー67aを左右に移動させることにより、範囲指定枠64の大きさ(撮影倍率)を変更することが可能となっている(ここでは20x~60x(20倍~60倍)の範囲内で変更が可能であるとする)。
 スライドエリア65は、標本19であるスライドガラス全体に対するマクロLIVE画像エリア63の位置を示すエリアである。スライドエリア65において、十字マーク66がマクロLIVE画像エリア63に表示されているマクロ画像の中心に対応する位置を示している。
 ツールエリア69は、マクロLIVE画像エリア63に表示されているマクロ画像の明るさ等の調整を行うためのものである。
 フォーカスエリア68は、マクロLIVE画像エリア63に表示されているマクロ画像のフォーカス調整を行うためのエリアである。フォーカスエリア68において、ユーザがスライドバー68aを上下に移動させることにより、光軸方向(Z方向)への電動ステージ20の移動指示が行われ、フォーカス位置を変更することが可能となっている。
 なお、その光軸方向に直行する方向(XY方向)への電動ステージ20の移動指示は、ユーザがマクロLIVE画像エリア63上でのマウスのドラック&ドロップ操作によるマクロ画像のスクロール操作を行うことによって可能となっている。
 ボタン70は、範囲指定枠64により指定された範囲の撮影を行うための次の観察ステップに対応するウィザード画面Dへ移行するためのボタンである。ボタン71は、ウィザード画面Cに移行する前のウィザード画面に戻るためのボタンである。
 このように、ウィザード画面Cにおいてユーザが行うことのできる設定及び操作は、標本19における撮影位置の検索のためのものと、撮影倍率を選択するためのものとなっている。
 図6は、ウィザード画面Dの一例を示す図である。同図に示したウィザード画面Dは、ウィザード画面Cの範囲指定枠64により指定された範囲の撮影を行うための操作メニュー画面となる撮影メニュー画面である。
 このウィザード画面Dにおいて、画像表示エリア72は、ウィザード画面Cの範囲指定枠64により指定された範囲の標本19がビデオカメラ3によりリアルタイムに撮影されたLIVE画像が表示されるエリア、又は、その範囲の標本19がビデオカメラ3により撮影されたPAUSE画像が表示されるエリアである。
 なお、この画像表示エリア72では、LIVE画像が表示されているときにユーザが画像表示エリア72内の位置を指定(例えばマウスのダブルクリック)することによって、指定された位置が画像表示エリア72の中心位置となるように電動ステージ20を移動させることが可能になっている。従って、ユーザは、画像表示エリア72上から、撮影位置調整のための電動ステージ20の移動指示を行うことも可能になっている。
 表示画像切替エリア85は、画像表示エリア72に表示させる画像を、リアルタイム画像であるLIVE画像、又は、撮影した画像であるPAUSE画像の何れかに切り替えるためのエリアである。
 この表示画像切替エリア85内のボタン86は、画像表示エリア72に表示させる画像をLIVE画像に切り替えるためのものである。ボタン87は、画像表示エリア72に表示させる画像をPAUSE画像に切り替えるためのものである。なお、蛍光画像表示中においては、退色防止のため、一定時間操作が行われないとPAUSE画像を表示するものとなっている。
 フォーカス・補正環エリア73は、画像表示エリア72に表示されている画像のフォーカス及びAF動作を行わせるためのものとなっている。このフォーカス・補正環エリア73において、スライドバー74はフォーカス調整を行うためのものである。
 なお、このスライドバー74は、ウィザード画面Cにおけるスライドバー68aと同様に、ユーザがスライドバー74を上下に移動させることによって、光軸方向(Z方向)への電動ステージ20の移動指示が行われ、フォーカス位置を変更することが可能となっている。
 AFボタン75は、AF動作(合焦動作)を行わせるためのものである。また、補正環調整ボタン76A及び76Bは、カバーガラスによる厚みの収差補正を行うための補正環の駆動指示を行うためのものである。
 ステージコントロール・マップエリア77は、画像表示エリア72の表示範囲とその周辺の画像を表示すると共に、当該エリア77に表示される画像のスクロールをも可能にするエリアである。なお、このステージコントロール・マップエリア77において、画像表示エリア72の表示範囲は、矩形枠78として示される。
 ボタン79は、現在の観察条件(検鏡方法、使用中のキューブ、対物レンズの倍率(撮影倍率)、撮影画像サイズ等)に同一又は類似の観察条件の下で過去に撮影された画像を一覧表示させるためのボタンである。
 ボタン80は、光学倍率(ズーム)の変更指示を行うものである。ボタン80は、左にスライドされると低倍率に変更でき、右にスライドさせると高い倍率に変更できる。
 SHOTボタン81は、画像表示エリア72に表示されているLIVE画像の撮影を行うためのボタンである。エリア84は、ユーザが撮影条件をマニュアルで設定するためのものである。ボタン82は、ウィザード画面Cへ移行するためのボタンである。ボタン83は、ウィザード画面Dに移行する前のウィザード画面に戻るためのボタンである。
 検鏡方法変更指示エリア189は検鏡方法の切り換えの指示を行うエリアである。本例では、蛍光キューブA,B,C及びDIC観察の切り換えを行える。検鏡方法変更指示エリア189の操作については、図41以降で詳述する。
 このように、ウィザード画面Dにおいてユーザが行うことのできる設定及び操作は、ウィザード画面Cの範囲指定枠64により指定された範囲の撮影を行うためのものとなっている。
 次に、上述の4つのウィザード画面を使用しながら標本観察を行うときの顕微鏡システムの動作を説明する。以下では、検鏡方法として蛍光観察を選択し、使用するキューブとして蛍光キューブAを選択し、蛍光キューブAを用いた蛍光観察の下で標本19の撮影を行う場合を例に、その動作を説明することにする。
 図7~図10は、その標本観察動作のフローチャートを示す図である。これらのフローは、ホストシステム2により制御される。図11~図19は、その動作中にモニター5に表示されるウィザード画面の一例を示す図である。
 まず始めに、標本観察を開始するために、ユーザによる所定の操作により、モニター5にウィザード画面A(図3参照)が表示される。これにより、スタートメニュー画面であるウィザード画面Aに係る図7に示した処理がスタートする。
 図7において、まず、ユーザによる標本交換ボタン36の押下に応じて、ホストシステム2は、標本(観察体)19を交換するためのステージ位置座標(標本交換位置座標)へ電動ステージ20を移動させる。電動ステージ20の移動完了後、標本19がユーザによりセットされる(S101)。
 標本19がセットされると、ユーザによるウィザード画面Aに対する所定の操作(例えば標本交換ボタン36の再押下)に応じて、ホストシステム2は、標本19の位置が電動ステージ20の予め定められている中心ステージ位置座標(観察開始デフォルト座標)となるように電動ステージ20を移動させる(S102)。これにより、電動ステージ20の位置が基準点座標にセットさせる。
 続いて、ユーザによるボタン43~45の何れか1つの押下により、検鏡方法が選択される(S103)。これにより、観察を行う検鏡方法が選択される。本例では、蛍光観察を選択するとしていることから、ここではボタン43が押下されたものとする。
 続いて、ユーザによるエリア37に対する操作により、キューブが選択される(S104)。これにより、観察に使用されるキューブが選択される。本例では、蛍光キューブAを使用するとしていることから、ここでは蛍光キューブAが選択されたものとする。
 続いて、カメラ初期設定として、ユーザによるウィザード画面Aに対する所定の操作により、ビデオカメラ3で撮影を行う際の画像サイズが設定される(S105)。本例では、撮影画像サイズとして、M×N(M>0、N>0)が設定されたとする。
 続いて、ユーザによるボタン51の押下に応じて、ホストシステム2は、S101~S105で行われた設定及び操作を来歴データとして操作来歴記録部4に記録する(S106)。本例では、検鏡方法として蛍光観察が選択されたこと、使用するキューブとして蛍光キューブAが選択されたこと、撮影画像サイズがM×Nに設定されたこと等が、来歴データとして操作来歴記録部4に記録される。そして、モニター5に表示されていたウィザード画面Aをウィザード画面B(図4参照)に切り替える。これにより、標本チェックメニュー画面であるウィザード画面Bに係る図8に示すフローチャートがスタートする。
 図8において、ウィザード画面Bに移行すると、まず、ホストシステム2は顕微鏡コントローラ31に対して指示を行う。この指示に基づいて、顕微鏡コントローラ31は、予め定められた標準ピント(Z座標)位置へ電動ステージ20を移動させ(S201)、使用する対物レンズ23を4xのものへ切り替える(S202)。
 続いて、ホストシステム2は、S103で選択された検鏡方法を操作来歴記録部4から読み出す(S203)。そして、ホストシステム2は、現在の検鏡方法を、その読み出した検鏡方法に対応する検鏡方法へ切り替える(S204)。
 本例では、検鏡方法として蛍光観察が選択されたことが操作来歴記録部4に記録されていることから、選択された検鏡方法として蛍光観察が読み出される。そして、現在の検鏡方法が、読み出された蛍光観察に対応する検鏡方法として微分干渉観察に切り替えられる。
 このように、ウィザード画面Bにおいて、選択されている検鏡方法が蛍光観察であった場合には、上述の通り、観察対象の褪色防止のため、蛍光観察ではなく微分干渉観察への切り替えが行われる。これにより、現在の検鏡方法に応じた顕微鏡装置1の設定が、微分干渉観察に応じた顕微鏡装置1の設定に切り替えられる。
 検鏡方法の切り替えが終了すると、ホストシステム2は、切り替えた検鏡方法の下でビデオカメラ3によりリアルタイムで標本19を撮影し、そのLIVE画像となるマクロ画像をマクロ画像表示エリア56へ表示することを開始する。
 本例では、微分干渉観察へ切り替えられたことから、ホストシステム2は、その微分干渉観察の下でビデオカメラ3によりリアルタイムに標本19を撮影して、そのLIVE画像となるマクロ画像をマクロ画像表示エリア56に表示することが開始される。図11は、この時のウィザード画面Bの一例を示す図である。
 続いて、ユーザによるボタン57~60の押下に応じて、ホストシステム2は、電動ステージ20を移動させる(S205)。この操作により、標本19における観察対象が存在する初期観察スタート位置が選択される(S206)。これにより、ユーザは、スライドイメージエリア53及びマクロ画像表示エリア56の表示内容を確認しながらボタン57~60を押下することにより、標本19における観察対象が存在する初期観察スタート位置を検索することができる。そして、ユーザは、所望の位置を初期観察スタート位置として選択することができる。
 なお、この初期観察スタート位置として選択される位置は、マクロ画像表示エリア56に表示されているマクロ画像の中心位置となっている。本例では、図11に示したウィザード画面Bのマクロ画像表示エリア56に表示されているマクロ画像上のa点を初期観察スタート位置として選択する。この場合、そのa点がマクロ画像表示エリア56の中心位置となるようにボタン57~60が押下される。
 そして、図12に示したように、そのa点がマクロ画像表示エリア56の中心位置となり、初期観察スタート位置として選択されたものとする。この時の初期観察スタート位置のXY座標を(x_a、y_a)とする。また、a点がマクロ画像表示エリア56の中心に移動したことに伴い、図12に示したウィザード画面Bのスライドイメージエリア53では矩形枠54が対応する位置へ移動する。
 初期観察スタート位置の選択が終了した後、ユーザによるボタン61の押下に応じて、ホストシステム2は、選択された初期観察スタート位置でのAF動作の制御を行う(S207)。本例では、AF動作後の合焦座標であるZ座標を(z_a)とする。
 続いて、ホストシステム2は、S201~S207で行われた設定及び操作を来歴データとして操作来歴記録部4に記録する(S208)。
 本例では、上記のXY座標(x_a,y_a)とZ座標(z_a)とが来歴データとして操作来歴記録部4に記録される。そして、モニター5に表示されていたウィザード画面Bをウィザード画面C(図5参照)に切り替える。これにより、標本サーチメニュー画面であるウィザード画面Cに係る図9のフローチャートで示す処理がスタートする。
 図9において、ウィザード画面Cに移行すると、まず、ホストシステム2は顕微鏡コントローラ31に対して指示を行い、使用する対物レンズ23が4xのものでない場合には4xのものに切り替える(S301)。
 続いて、ホストシステム2は、選択された検鏡方法を操作来歴記録部4から読み出し(S302)、現在の検鏡方法を、読み出した検鏡方法へ切り替える(S303)。
 本例では、検鏡方法として蛍光観察が選択されたことが操作来歴記録部4に記録されていることから、選択された検鏡方法として蛍光観察が読み出される。その読み出しと共に、選択されたキューブとして蛍光キューブAが読み出される。そして、現在の検鏡方法及びキューブが、読み出された蛍光観察及び蛍光キューブAに切り替えられる。これにより、現在の検鏡方法に応じた顕微鏡装置1の設定が、蛍光キューブAを用いた蛍光観察に応じた顕微鏡装置1の設定に切り替えられる。
 検鏡方法の切り替えが終了すると、ホストシステム2は、切り替えた検鏡方法の下でビデオカメラ3によりリアルタイムに標本19を撮影し、そのLIVE画像となるマクロ画像をマクロLIVE画像エリア63に表示することを開始する。
 本例では、蛍光キューブAを用いた蛍光観察に切り替えられたことから、ホストシステム2は、その蛍光キューブAを用いた蛍光観察の下でビデオカメラ3によりリアルタイムに標本19を撮影し、そのLIVE画像となるマクロ画像をマクロLIVE画像エリア63に表示することを開始する。図13は、この時のウィザード画面Cの一例を示す図である。
 続いて、ユーザによるマクロLIVE画像エリア63の範囲指定枠64の操作(マウスによるドラッグ&ドロップ)に応じて、ホストシステム2は、範囲指定枠64を移動させる。又は、ユーザによるマクロLIVE画像エリア63上でのマウスのドラック&ドロップ操作によるマクロ画像のスクロール操作に応じて、ホストシステム2は、電動ステージ20を移動させる(S304)。これにより、観察ターゲット(撮影ターゲット)が決定される(S305)。これにより、ユーザは、観察ターゲットの検索を行うことができると共に、所望の範囲を範囲指定枠64に合わせることによりその範囲を観察ターゲットとして決定させることができる。
 本例では、図13に示したウィザード画面CのマクロLIVE画像エリア63に表示されているマクロ画像上のb点を観察ターゲットとして決定する。この場合、そのb点が範囲指定枠64の中心位置となるように範囲指定枠64が操作される。そして、図14に示したように、そのb点が範囲指定枠64の中心位置となり、観察ターゲットとして決定される。なお、図14において、枠64’は、移動後の範囲指定枠64を示している。
 続いて、ホストシステム2は、S305で決定された観察ターゲットを撮影対象位置として決定する。それと共に、ユーザによる範囲指定枠切替エリア67のスライダー67aの操作に応じて、ホストシステム2は、範囲指定枠64の大きさを変更し、撮影倍率(対物レンズ倍率)を決定する(S306)。
 本例では、図14に示した範囲指定枠64’内のb点が撮影対象位置として決定される。それと共に、ユーザによるスライダー67aの操作に応じて撮影倍率が20xの対物レンズが決定されたものとする。なお、b点の位置のXY座標を(x_b,y_b)とする。
 続いて、ユーザによるボタン70の押下に応じて、ホストシステム2は、この時にマクロLIVE画像エリア63に表示されている範囲を撮影する。ホストシステム2は、この時の撮影で得られたマクロ画像と、S301~S306で行われた設定及び操作とを、来歴データとして操作来歴記録部4に記録する(S307)。
 本例では、この時にマクロLIVE画像エリア63に表示されている範囲を撮影したマクロ画像をマクロ画像(pic_m_b)とする。すると、操作来歴記録部4には、このマクロ画像(pic_m_b)と、撮影対象位置の座標として上記のb点のXY座標(x_b、y_b)と、変更後の範囲指定枠64の大きさに応じた撮影倍率(20x)等が、来歴データとして記録される。そして、モニター5に表示されていたウィザード画面Cをウィザード画面D(図6参照)に切り替える。これにより、撮影メニュー画面であるウィザード画面Dに係る図10のフローチャートで示す処理がスタートする。
 図10において、ウィザード画面Dに移行すると、まず、ホストシステム2は、決定された撮影対象位置の座標及び撮影倍率を操作来歴記録部4から読み出す(S401)。ホストシステム2は、対物レンズ23を、読み出した撮影倍率に対応する対物レンズ23へ切り替える(S402)。更に、ホストシステム2は、読み出した撮影対象位置の座標へ電動ステージ20を移動させる(S403)。
 本例では、撮影対象位置の座標(x_b、y_b)と撮影倍率(20x)が操作来歴記録部4に記録されたことから、20xのものへ対物レンズ23が切り替えられ、撮影対象位置の座標(x_b、y_b)へ電動ステージ20が移動する。
 そして、ホストシステム2は、切り替えられた対物レンズ23を用いてビデオカメラ3によりリアルタイムに標本19の撮影対象位置を撮影し、そのLIVE画像を画像表示エリア72へ表示することを開始する。また、ウィザード画面Dへ移行する直前に操作来歴記録部4に記録されたマクロ画像がホストシステム2により読み出され、そのマクロ画像がステージコントロール・マップエリア77に表示される。
 本例では、切り替えられた20xの対物レンズ(図14に示した範囲指定枠64’の大きさに応じて決定された20xの対物レンズ)を用いてビデオカメラ3によりリアルタイムに撮影対象位置となるb点が撮影され、そのLIVE画像を画像表示エリア72へ表示することが開始される。また、ウィザード画面Dへ移行する直前に操作来歴記録部4に記録されたマクロ画像(pic_m_b)が読み出される。そのマクロ画像(pic_m_b)がステージコントロール・マップエリア77に表示される。図15は、この時のウィザード画面Dの一例を示す図である。
 図15のウィザード画面Dに示したように、撮影対象位置となるb点が画像表示エリア72の中心に表示される。さらに、マクロ画像(pic_m_b)がステージコントロール・マップエリア77に表示される。
 続いて、ユーザによる画像表示エリア72内の位置の指定に応じて、ホストシステム2は、指定された位置が画像表示エリア72の中心位置となるように電動ステージ20を移動させる(S404)。これにより、ユーザは、撮影対象位置(撮影を行う範囲)の微調整を行うことができる。
 本例では、図15に示したウィザード画面Dの画像表示エリア72に表示されているLIVE画像上のc点を撮影対象位置とする。ユーザによりそのc点が指定されると、ホストシステム2は、そのc点が画像表示エリア72の中心位置となるように電動ステージ20を移動させる。
 そして、図16に示したように、そのc点が画像表示エリア72の中心位置となって撮影対象位置とされたものとする。また、この時には、c点が画像表示エリア72の中心に移動したことに伴い、ステージコントロール・マップエリア77では、矩形枠78がそのC点に対応する位置へ移動する。なお、c点の位置のXY座標を(x_c,y_c)とする。
 続いて、ユーザによるフォーカス・補正環エリア73におけるAFボタン75の押下(例えばマウスによるクリック)に応じて、ホストシステム2は、AF動作(合焦動作)の制御を行う(S405)。
 また、このAF動作の後に、ユーザによるフォーカス・補正環エリア73におけるスライドバー74の操作に応じて電動ステージ20を光軸方向(z方向)へ移動することにより、合焦位置の変更を行うこともできる。これにより、ユーザは、合焦位置の微調整を行うこともできる。なお、S405で行われるAF動作自体を、スライドバー74の操作のみによるマニュアルによって行うようにすることもできる。合焦位置の座標であるZ座標を(z_c)とする。
 続いて、ホストシステム2は、現在の標本19に対する補正環データ(補正環位置)が操作来歴記録部4に記録されているか否かを判定する(S406)。
 ここで、S406の判定結果がNoの場合には、ホストシステム2は、補正環位置調整・決定の処理を行う(S407)。この処理では、ユーザによるフォーカス・補正環エリア73における補正環調整ボタン76A及び76Bの押下に応じて、ホストシステム2は、使用中の対物レンズ23の補正環を駆動する制御を行う。これにより、ユーザは、画像表示エリア72に表示されているLIVE画像を確認しながら補正環調整ボタン76A及び76Bを押下することで、最適な補正環位置を調整することができる。よって、カバーガラスによる厚みの収差補正を行うことができる。
 そして、ユーザによるウィザード画面Dに対する所定の操作に応じて、ホストシステム2は、現在の補正環位置を、調整後(補正後)の補正環位置(補正環データ)として操作来歴記録部4に記録する。これにより、ユーザは、調整後の補正環位置を操作来歴記録部4に記録させることができる。本例では、補正環データとして補正環位置(h_1)が操作来歴記録部4に記録されたものとする。
 一方、S406の判定結果がYesの場合には、ホストシステム2は、操作来歴記録部4に記録された補正環データを読み出し、その補正環データに応じた位置へ補正環を駆動する(S408)。これにより、最適な位置へ補正環が駆動され、カバーガラスによる厚みの収差補正を行うことができる。例えば、補正環データとして上記の補正環位置(h_1)が操作来歴記録部4に記録されていたとすると、その補正環データに応じて補正環が補正環位置(h_1)へ駆動される。
 このようなS406~S408の処理により、本フローでは、1つの標本に対してS407の処理が一度だけ行われるようになる。そして、S407の処理が一度行われた後は、標本が交換されるまでS407の処理は行われず、代わりにS408の処理が行われるようになる。
 S407又はS408の処理が終了すると、ホストシステム2は、ユーザによりボタン79が押下されたか否かを判定する(S409)。なお、この判定は、ビデオカメラ3の撮影条件を設定するにあたり、過去の撮影時に使用した撮影条件を使用するか否かを判定するものである。
 ここで、S409の判定結果がYesの場合には、ホストシステム2は、現在の観察条件(検鏡方法、使用中のキューブ、対物レンズの倍率(撮影倍率)、撮影画像サイズ等)に同一又は類似の観察条件の下で過去にビデオカメラ3により撮影され操作来歴記録部4に記録された画像(但しマクロ画像を除く)を検索する。そして、ホストシステム2は、該当する画像を、ウィザード画面Dとは別に表示されるウィンドウ内に一覧表示する(S410)。図17は、この時のウィンドウの一例を示す図である。
 図17に示したウィンドウの例では、類似度の高い上位4つの画像(pic_1~pic_4)に加え、直近に撮影された画像(但し、マクロ画像を除く)(pic_0)も表示するようにしている。なお、図17において、pic_0~pic_4は説明の便宜のために示したものであり、実際には表示されるものではない。
 続いて、ユーザによる画像選択操作(例えばマウスによるクリック)により、ウィンドウ内の1つの画像が選択される。ホストシステム2は、その選択された画像を撮影した時の撮影条件を設定し、その撮影条件をメニュー84に表示する(S411)。これにより、ユーザは、ウィンドウ内の所望の画像を選択することにより、その画像を撮影した時に使用した撮影条件を容易に再現させることができる。
 なお、ウィンドウ内で選択された画像に対しては、例えば、図17に示したように太点線枠(pic_0の画像を参照)が設けられ、選択されていない画像と区別可能に表示される。また、このウィンドウは、例えば、ウィザード画面Dが他のウィザード画面に切り替えられると、消えるようになっている。
 本フローでは、再現可能な撮影条件を、露出、調光(NDフィルタ含む)、W/B(ホワイトバランス)、及びB/B(ブラックバランス)の各撮影条件とし、撮影時の電動ステージ20のXY座標及びZ座標は再現させない条件とする。また、再現可能な撮影条件においては、更に、撮影条件毎に、再現させるか否かを選択可能となっている。
 なお、この選択は、例えば、画像が一覧表示されたウィンドウ内から行うようにすることができる。この場合、一覧表示されたウィンドウ内からユーザが所望の画像を選択すると、例えば、その画像を撮影した時の撮影条件が同ウィンドウ内に併せて表示される。それにより、再現しない或いは再現する撮影条件をユーザが選択できるように構成することにより実現することができる。
 本例では、図17に示したウィンドウの例において、ユーザにより画像(pic_2)が選択され、撮影条件として、露出(ae_2)、調光(l_2)、W/B(wb_2)、B/B(bb_2)が設定・再現されたものする。
 一方、S409の判定結果がNoの場合には、ホストシステム2は、最後に撮影が行われた時の撮影条件(但しマクロ画像撮影時の撮影条件を除く)を設定し、その撮影条件をメニュー84に表示する。なお、このときの撮影条件の設定及び表示は、ウィザード画面Dに切り替えられた直後に行うようにすることも可能である。
 このようにして撮影条件が設定されると、続いて、ユーザによるメニュー84に対する撮影条件を変更するための操作(例えばマウスのクリック)に応じて、ホストシステム2は、設定された撮影条件を変更する(S412)。これにより、ユーザは、設定された撮影条件の微調整を行うことができる。また、これによりユーザがマニュアルで撮影条件を設定することができることは勿論のことである。
 続いて、ユーザによるSHOTボタン81の押下に応じて、ホストシステム2は、画像表示エリア72に表示されているLIVE画像の撮影を行う(S413)。本例では、この時の撮影条件(c点を撮影した時の撮影条件)を、露出(ae_c)、調光(l_c)、W/B(wb_c)、及びB/B(bb_c)とし、撮影された画像を(pic_c)とする。なお、このLIVE画像の撮影が行われると、撮影された画像がPAUSE画像として画像表示エリア72に表示される。
 続いて、ホストシステム2は、S401~S413で行われた設定及び操作を来歴データとして操作来歴記録部4に記録する(S414)。本例では、現在のXY座標及びZ座標でもある上記のXY座標(x_c,y_c)及びZ座標(z_c)と、S413でc点を撮影した時の撮影条件である、露出(ae_c)、調光(l_c)、W/B(wb_c)、及びB/B(bb_c)と、その撮影画像(pic_c)等が、操作来歴記録部4に記録される。また、このS414では、ユーザによるボタン86の押下により、画像表示エリア72に表示されているPAUSE画像をLIVE画像に切り替えることも可能である。
 以上が、ウィザード画面を使用しながら標本観察を行う一連の動作である。しかし、各ウィザード画面では、上述のとおり、必要に応じて他のウィザード画面へ切り替えることも可能である。この場合、ボタン38の押下により、ウィザード画面Aへ切り替えて図7に示したフローを再開させることが可能である。また、ボタン39の押下により、ウィザード画面Bへ切り替えて図8に示したフローを再開させることが可能である。また、ボタン40又はボタン82の押下により、ウィザード画面Cへ切り替えて図9に示したフローを再開させることが可能である。また、ボタン41の押下により、ウィザード画面Dへ切り替えて図10に示したフローを再開させることが可能である。
 これにより、例えば、上記のS414の処理が終了した後に、ユーザがボタン82を押下すると、引き続き、別の撮影ポイントとなる観察ターゲットを探索することが可能となる。この場合は、ユーザによるボタン82の押下に応じて、モニター5に表示されているウィザード画面Dがウィザード画面Cに切り替えられる。そして、使用する対物レンズ23が20xのものから4xのものに変更される。そして、マクロLIVE画像エリア63に再び4xの対物レンズによるマクロ画像(LIVE画像)が表示される。
 なお、この時のXY座標及びZ座標が、ウィザード画面Dからウィザード画面Cへ切り替わる直前のXY座標及びZ座標から引き継がれるものとなることは、ウィザード画面Cに係るフローチャート(図9参照)から明らかである。
 従って、本例では、XY座標及びZ座標が、ウィザード画面Cへ切り替わる直前のXY座標(x_c,y_c)及びZ座標(z_c)から引き継がれるものとなる。図18は、この時のウィザード画面Cの一例を示す図である。
 ここで、ユーザによる図18のウィザード画面Cに対する操作により、マクロLIVE画像エリア63に表示されているd点が新たな観察ターゲットとして決定され、撮影倍率として20xが決定され、そして、ウィザード画面Dに切り替えられる。
 すると、そのウィザード画面Dにおける画像表示エリア72には、20xの対物レンズによるd点のLIVE画像が表示される。図19は、この時のウィザード画面Dの一例を示す図である。
 ここで、ユーザは再び、撮影条件として、最後に撮影が行われた時の撮影条件を設定することも可能である。また、ボタン79の押下により、過去の撮影時に使用した撮影条件を設定することも可能である。また、ユーザは、そのようにして設定した撮影条件の微調整を、メニュー84を介して行うこともできる。
 次に、マウス88のホイール操作によって、顕微鏡システムを構成する駆動ユニットを制御することについて説明する。
 図20は、マウス88の一例を示す。マウス88は、ホイール付マウスであり、左ボタン90、右ボタン92、及びホイール91を有する。ホイール91は、一般的に画面のスクロールに用いられるものであり、W1の方向及びW2の方向に回転する。ホイール91の回転方向と回転量は、ホストシステム2によって検出される。また、Pは、画面上に表示されるマウス88のマウスポインタの一例を示す。
 ホイール91には、駆動ユニットを制御するための機能が割り当てされている。このとき、制御の対象となる駆動ユニットは、ウィザード画面毎、およびウィザード画面内の領域毎に異なっている。
 以下では、図21~図34の画面図と図35のフローチャートを参照しながら、ウィザード画面Cについての機能の割り当てについて説明する。
 図35のフローチャートにおいて、ホストシステム2は、ウィザード画面C内を複数の領域に分割し、各領域に駆動ユニットを制御するための機能を割り当てる(S501)。図21に示すように、ホストシステム2は、ウィザード画面Cにおいて、ホイール91による操作区分を、操作区分A、操作区分B、操作区分C、操作区分D、操作区分Eのエリアに分割する。
 このようにウィザード画面C内を複数の領域に分割することにより次のことを実現する。すなわち、マウスポインタの位置をそれぞれの操作区分に移動させて、その移動させた操作区分でホイール91を回転させると、その操作区分に割り当てられた駆動ユニットの駆動を制御する。
 まず、図21に示すように、区分領域Aにマウスポインタがある場合について説明する。ホイール91が操作された場合(S502)、ホストシステム2は、マウスポインタPの位置の検出を行う(S503)。マウスポインタPが操作領域Aにあった場合(S504)、ホストシステム2はマウスポインタのGUI(グラフィカルユーザインターフェース)をPで示す形態から図22のP-aで示す形態に変更する(S508)。
 ホストシステム2は、対物レンズ23と電動ステージ20間の距離を調整するために、顕微鏡コントローラ32を介して、ホイール91の回転方向及び回転量に応じて、ステージZ駆動制御部22の駆動制御を行う(S509)。
 すなわち、ホイール91がW2の方向に動かされた場合は、ホストシステム2は、標本19が対物レンズ23に近づく方向に、ホイール91の回転量に応じて、ステージZ駆動制御部22の駆動制御を行う。また、ホイール91がW1の方向に動かされた場合は、ホストシステム2は、標本19が対物レンズ23に離れる方向に、ホイール91の回転量に応じて、ステージZ駆動制御部22の駆動制御を行う。
 電動ステージ20は、Z方向にホイール1クリックあたり10μmで駆動できる。ウィザード画面Cでは倍率が固定されているため、駆動量も固定されている。クリックがないマウスホイールの場合はホイール1回転あたりの駆動量が例えば240μmに対応するようになっていてもよい。
 ステージZ駆動制御部22の駆動操作が終了した場合、ホストシステム2は、再びマウスポインタのGUIをPで示す形態に戻す(S519)。このように、マウスポインタが区分領域Aにある場合、ホイール91を回転させることで電動ステージ20のZ方向の駆動が可能となる。
 次に、図23に示すように、区分領域Bにマウスポインタがある場合について説明する。ホイール91が操作された場合(S502)、マウスポインタPの位置の検出を行う(S503)。マウスポインタPが区分領域Bにあった場合(S505)、ホストシステム2はマウスポインタのGUIをPで示す形態から図24のP-bで示す形態に変更する(S511)。
 続いて、マウス操作により、次のウィザード画面Dにおけるビデオカメラ3による撮影を行う範囲を示したものである範囲指定枠64の大きさが、ホイール91の回転方向及び回転量に応じて変更される。そして、ホストシステム2は、その変更された範囲指定枠64の大きさに基づいて、撮影範囲を設定する(S512)。
 すなわち、ホイール91がW1の方向に動かされた場合は、ホストシステム2は、図24に示すように、撮影範囲がBからB’へ大きくなる方向(撮影倍率が小さくなる方向)に、ホイール91の回転量に応じて、その撮影範囲を囲む範囲指定枠64の大きさを変更する。また、ホイール91がW2の方向に動かされた場合は、ホストシステム2は、図25に示すように、撮影範囲がBからB”へ小きくなる方向(撮影倍率が大さくなる方向)に、ホイール91の回転量に応じて、その撮影範囲を囲む範囲指定枠64の大きさを変更する。
 マウスポインタが区分領域Bの外側へ移動した場合は、ホストシステム2は、再びマウスポインタのGUIをPで示す形態に戻す(S519)。ホイール操作による撮影範囲の変更後、ウィザード画面Dへ移行すると、範囲指定枠64により指定された範囲の撮影を行うことができる。したがって、ポインタが区分領域Bにある場合、ホイール91を回転させることで次のウィザード画面Dにおける撮影範囲を設定することが可能となる。
 続いて、図26に示すように区分領域CにマウスポインタPがある場合について説明する。ホイール91が操作された場合であって(S502)、マウスポインタPが操作領域Cにあった場合(S506)、ホストシステム2はマウスポインタのGUIをPで示す形態から図27のP-cで示す形態に変更する(S513)。
 続いて、ホストシステム2は、顕微鏡コントローラ32を介して、ホイール91の回転方向及び回転量に応じて、ステージX-Y駆動制御部21のX方向の駆動の制御を行う(S514)。
 すなわち、ホイール91がW1の方向に動かされた場合は、標本19を図27中の左向き矢印で示すX方向に移動させるために、ホストシステム2は、ホイール91の回転量に応じて、ステージX-Y駆動制御部21の駆動制御を行う。ホイール91がW2の方向に動かされた場合は、標本19を図28中の右向き矢印で示すX方向に移動させるために、ホストシステム2は、ホイール91の回転量に応じて、ステージX-Y駆動制御部21の駆動制御を行う。
 電動ステージ20の駆動量は、マウスホイール1クリックあたり表示エリア方向の1/4画面分の移動量に相当する。クリックがないマウスホイールの場合、マウスホイール1回転あたりの駆動量が例えば5画面分の駆動量に対応するようになっていてもよい。
 電動ステージ20の駆動操作が終了した場合は、ホストシステム2は、再びマウスポインタのGUIをPで示す形態に戻す(S519)。したがって、マウスポインタが区分領域Cにある場合、ホイール91を回転させることで電動ステージ20のX方向の駆動が可能となる。
 続いて、図29に示すように区分領域Dにマウスポインタがある場合について説明する。ホイール91が操作された場合(S502)であって、マウスポインタPが操作領域Dにあった場合(S507)、ホストシステム2はマウスポインタのGUIをPで示す形態から図30のP-dで示す形態に変更する(S515)。
 続いて、ホストシステム2は、顕微鏡コントローラ32を介して、ホイール91の回転方向及び回転量に応じて、ステージX-Y駆動制御部21のY方向の駆動の制御を行う(S516)。
 すなわち、ホイール91がW1の方向に動かされた場合は、標本19を図30中の上向き矢印で示すX方向に移動させるために、ホストシステム2は、ホイール91の回転量に応じて、ステージX-Y駆動制御部21の駆動制御を行う。ホイール91がW2の方向に動かされた場合は、ホストシステム2は、標本19を図31中の下向き矢印で示すX方向に移動させるために、ホイール91の回転量に対応させて、ステージX-Y駆動制御部21の駆動の制御を行う。
 電動ステージ20の駆動操作が終了した場合は、再びマウスポインタのGUIをPで示す形態に戻す動作を行う(S519)。したがって、マウスポインタが区分領域Cにある場合、ホイール91を回転させることでステージのY方向の駆動が可能となる。
 続いて、図32に示すように区分領域Eにマウスポインタがある場合について説明する。ホイール91が操作された場合(S502)であって、マウスポインタPが操作領域Eにあった場合(S520)、ホストシステム2はポインタのGUIをPで示す形態から図33のP-eで示す形態に変更する(S517)。
 続いて、ホストシステム2は、顕微鏡コントローラ32を介して、ホイール91の回転方向及び回転量に応じて、光源の調光制御を行う(S518)。ホイール91がW1の方向に動かされた場合、図33に示すように、範囲指定枠64中の標本画像は明るくなる。ホイール91がW2の方向に動かされた場合、図34に示すように、範囲指定枠64中の標本画像は暗くなる。
 すなわち、ホイール91がW1の方向に動かされた場合、ホストシステム2は、図33に示すように光量を上げる方向に、ホイール91の回転量に応じて、光源の調光駆動制御を行う。ホイール91がW2の方向に動かされた場合、ホストシステム2は、図34に示すように光量を下げる方向に、ホイール91の回転量に応じて、光源の調光駆動制御を行う。
 光源の調光の駆動操作が終了した場合は、ホストシステム2は再びマウスポインタのGUIをPで示す形態に戻す(S519)。したがって、マウスポインタが区分領域Eにある場合、ホイール91を回転させることで光源の調光駆動制御が可能となる。
 次に、図36~図38の画面図と図39のフローチャートを参照しながら、ウィザード画面Dについての機能の割り当てについて説明する。
 図39のフローチャートにおいて、ホストシステム2は、ウィザード画面D内を複数の領域に分割し、各領域に駆動ユニットを制御するための機能を割り当てる(S601)。図36に示すように、ホストシステム2は、ウィザード画面Dにおいて、ホイール91による操作区分を、操作区分A、操作区分C、操作区分D、操作区分E、操作区分Fのエリアに分割する。
 このようにウィザード画面内を複数の領域に分割することによりウィザード画面Cと同様の制御を実現する。すなわち、マウスポインタの位置をそれぞれの操作区分に移動させて、その移動させた操作区分でホイール91を回転させると、その操作区分に割り当てられた駆動ユニットの駆動を制御する。
 まず、区分領域Aにマウスポインタがある場合について説明する。操作区分Aにおいてマウス操作を行うと、ウィザード画面Cと同様に、ホストシステム2は、対物レンズ23と電動ステージ20間の距離を調整するためにホイール91の回転方向及び回転量に応じて、ステージZ駆動制御部22の制御を行う(S609)。
 すなわち、ホイール91がW2の方向に動かされた場合、ホストシステム2は、標本19が対物レンズ23に近づく方向に、ホイール91の回転量に応じて、ステージZ駆動制御部22の駆動制御を行う。ホイール91がW1の方向に動かされた場合は、ホストシステム2は、標本19が対物レンズ23から離れる方向に、ホイール91の回転量に応じて、ステージZ駆動制御部22の駆動制御を行う。
 ステージZ駆動制御部22によりZ方向へ駆動される電動ステージ20の駆動量は、光学倍率に応じて可変である。したがって、20×の倍率が選択された場合は、マウスホイール1クリックあたり1μmで駆動できる。また、40×の倍率が選択され場合は、マウスホイール1クリックあたり0.5μmで駆動できる。クリックがないマウスホイールの場合はホイール1回転あたりの駆動量が例えばそれぞれ、20μm、10μmの駆動量に対応するようになっていてもよい。
 操作区分C、操作区分D、操作区分Eについてはウィザード画面Cと同様のため、その説明を省略する。
 次に、図36に示すように区分領域Fにマウスポインタがある場合について説明する。ホイール91が操作された場合であって(S602)、マウスポインタPが操作領域Fにあった場合(S605)、ホストシステム2はマウスポインタのGUIをPで示す形態から図37のP-fで示す形態に変更する(S611)。
 続いて、ホストシステム2は、顕微鏡コントローラ32を介して、ホイール91の回転方向及び回転量に応じて、光学倍率を調整するため、ズーム光学系27の駆動制御を行う(S612)。
 すなわち、ホイール91がW2の方向に動かされた場合は、ホストシステム2は、ズーム光学系27に対して、図37に示すように光学倍率を上げる方向に、ホイール91の回転量に応じて、駆動制御を行う。ホイール91がW1の方向に動かされた場合は、ホストシステム2は、図38に示すように光学倍率を下げる方向に、ホイール91の回転量に応じて、ズーム光学系27の駆動制御を行う。なお、ズーム光学系は、ホイール1クリックあたり1xの倍率を変更する駆動量で駆動できる。
 ズーム光学系27の駆動操作が終了した場合は、ホストシステム2は、再びマウスポインタのGUIをPで示す形態に戻す(S619)。したがって、マウスポインタが区分領域Fにある場合、ホイール91を回転させることで光学倍率の駆動が可能となる。
 図40は、ホイール操作制御テーブルの一例を示す。ホイール操作制御テーブルは、ウィザード画面毎に存在し、ホストシステム2の記憶装置に格納されている。ホイール操作制御テーブルは、例えば「区分領域名」、「区分領域範囲」、「駆動ユニット名」、「ホイールによる操作内容」、「マウスポインタイメージ」が格納されている。
 「区分領域名」には、区分領域の名称が格納される。「区分領域範囲」には、ウィザード画面上におけるその区分領域の範囲を示す座標が格納される。「駆動ユニット名」には、その区分領域に割り当てられた駆動ユニット名が格納される。「ホイールによる操作内容」には、その区分領域にマウスポインタがある場合の、ホイールの回転方向及び回転量に応じて駆動ユニットを駆動させるための制御情報が格納される。「マウスポインタイメージ」には、その区分領域上にマウスポインタがある場合に表示されるマウスポインタのイメージデータまたはそのイメージデータの所在情報が格納される。
 ホストシステム2のCPUは、図35及び図39のフローを実行する場合、各ウィザード画面に対応するホイール操作制御テーブルを記憶装置から読み出して、そのフローに基づく処理を行う。ホイール操作制御テーブルを用いることにより、ホストシステム2は、ウィザード画面上の領域に応じて、駆動させる駆動ユニットを切り換えることができる。さらに、ホイール操作制御テーブルを用いることにより、ホストシステム2は、ホイールの回転方向及び回転量を、その切り換えた駆動ユニットの物理的動作のための指示信号に変換して顕微鏡コントローラ31へ送信することができる。よって、顕微鏡コントローラ31は、その送信された信号に基づいて、その駆動ユニットを駆動させることができる。
 以上のように、本実施形態に係る顕微鏡システムでは、標本表示画面または操作メニュー表示画面において、選択された領域およびその領域でのマウス88のホイール操作に応じて、駆動対象の駆動ユニットが自動的に切り替えられると共に、その切り替えられた駆動ユニットを制御できる。これにより、顕微鏡システムの操作性向上と、ユーザの操作負担の低減を図ることが可能となる。
 なお、本実施形態では、ポインティングデバイスのホイール付マウスのマウスホイールの割付について説明したが、トラップボールやその他の一般的なポインティングデバイスに置き換えてもよい。また、マウスホイールによる駆動量は、固定量ではなく、各部位毎にユーザが任意に設定できるようになっていてもよい。また、マウスのホイールに割り当てられている駆動ユニットは、電動AS(Aperture Stop)、電動補正環、その他の駆動ユニットであってもよい。
 第1の実施形態によれば、標本表示画面または操作メニュー表示画面において、マウスで選択された領域及びその選択された領域上でのマウスホイール操作に応じて、駆動される駆動ユニットが自動的に切り替えられる。これにより、顕微鏡システムの操作性の向上と、ユーザの操作負担の低減を図ることが可能となる。
 <第2の実施形態>
 近年、詳細な分析及び解析のため様々な観察法が用いられるようになっている。例えば蛍光観察においては、複数の蛍光色素を染色、発現させる多重励起観察が用いられるようになっている。この多重励起観察には、複数の蛍光色素を同時に観察できる多重励起用蛍光フィルタを使用する方法や、使用する蛍光色素それぞれに対応した単色用蛍光フィルタを切り替えて使用する方法等がある。
 しかしながら、多重励起用蛍光フィルタは観察できる蛍光波長の組み合わせが限られてしまうために、観察の自由度が制限されてしまう問題があった。
 また、複数の単色用蛍光フィルタを切り換えながら撮影を行って、重ね合わせる表示を行う方法においては、フィルタを切り換える間隔によって顕微鏡の動作が制限されてしまう。そのため、特にステージの移動や倍率変換動作を行った場合は、更新前の画像が重ねて表示されてしまうために、使い勝手が悪いものとなってしまっていた。
 そこで、本実施形態では、同一の観察体に対して複数の観察方法で撮像した観察画像を重畳させて観察しているときに、観察環境の変化を生じさせる顕微鏡の動作が行われた場合でも、表示上の煩わしさがなく、容易に観察体の追跡を行うことができる顕微鏡システムを提供する。
 第2の実施形態に係る顕微鏡システムは、顕微鏡、撮像手段、選択指示手段、重畳手段、表示制御手段、検出手段、重畳解除手段を備える。
 顕微鏡は、複数の観察方法を切り替えて観察体の観察を行うことができる。顕微鏡は、例えば本実施形態で言えば、顕微鏡装置1に相当する。
 撮像手段は、前記観察体の光学画像を撮像する。撮像手段は、例えば本実施形態で言えば、ビデオカメラ3に相当する。
 選択指示手段は、前記複数の観察方法のうち少なくとも1つの観察方法を選択させるための選択指示が与えられる。選択指示手段は、例えば本実施形態で言えば、ビデオカメラ3に相当する。各蛍光キューブによる観察方法への切り換え指示ボタン192を示す。
 重畳手段は、前記選択された観察方法に基づいて、前記撮像した画像同士を重畳させる。重畳手段は、例えば本実施形態で言えば、ホストシステム2により実行されるS706~S707の処理に相当する。
 表示制御手段は、前記重畳させた画像を表示させる制御を行う。表示制御手段は、例えば本実施形態で言えば、ホストシステム2により実行されるS707の処理に相当する。
 検出手段は、前記観察体を撮影する観察環境の変化を生じさせる前記顕微鏡の動作を検出する。検出手段は、例えば本実施形態で言えば、ホストシステム2により実行されるS710の処理に相当する。
 重畳解除手段は、前記検出結果に基づいて、前記重畳させた画像の重畳状態を解除する。重畳解除手段は、例えば本実施形態で言えば、ホストシステム2により実行されるS711の処理に相当する。
 このように構成することにより、本実施形態では、同一の観察体に対して複数の観察方法で撮像した観察画像を重畳させて観察しているときに、観察環境の変化を生じさせる顕微鏡の動作が行われた場合でも、表示上の煩わしさがなく、容易に観察体の追跡を行うことができる。
 前記重畳手段は、前記表示制御手段により表示させていた画像に対して、前記選択指示による観察方法の画像を累積的に重畳させる。このように構成することにより、記憶した観察画像をLIVE画像に重畳させることができる。
 前記検出手段は、前記観察体を載置するステージの移動、倍率の変更、及び合焦のうち少なくともいずれかに関する動作を検出することができる。このように構成することにより、観察体を撮影する観察環境の変化を生じさせる顕微鏡の動作を検出することができる。
 ここで、前記重畳解除手段は、前記顕微鏡の動作が検出された場合、前記表示させていた画像に対して重畳させていた前記画像を消去して前記画像の重畳状態を解除することができる。このように構成することにより、ステージ移動時や対物レンズ交換時等において、重畳画像を解消し、LIVE画像とすることができるので、観察体を見つけやすくすることが可能であり、操作性向上とのユーザの負担低減を図ることができる。
 また、前記選択指示手段は、前記画像を表示させるグラフィカルユーザインターフェースの一部として表示されている。このとき、前記表示制御手段は、前記選択指示手段に前記選択指示が与えられた場合、該選択指示手段の表示形態を第1の表示形態から第2の表示形態に変更することができる。このように構成することにより、選択された観察方法を視覚的に容易に判別することができる。
 また、前記表示制御手段は、前記選択指示手段により選択解除指示が与えられた場合には該選択指示手段の表示形態を前記第2の表示形態から前記第1の表示形態に変更し、前記検出手段により顕微鏡の動作が検出された場合には該選択指示手段の表示形態を前記第2の表示形態から第3の表示形態に変更するができる。このように構成することにより、ユーザ自身が解除した観察方法と、観察環境の変化により強制的に解除された観察方法とを視覚的に容易に判別することができる。
 前記観察方法は、波長毎に蛍光観察を行う蛍光観察法であってもよい。また、明視野観察法、暗視野観察法、位相差観察法、及び微分干渉コントラスト法のうち少なくともいずれか2つであってもよい。
 以下、図面を参照しながら第2の実施形態の詳細を説明する。本実施形態では、蛍光キューブA、蛍光キューブB、蛍光キューブCによる観察画像の重ね合わせ操作について説明する。なお、本実施形態の顕微鏡システムの構成及び画面構成は第1の実施形態(図1~図19)と共通であるので、その説明を省略する。また、第1の実施形態と同一の構成には同一の符号を付与し、その説明を省略する。
 以下では、図41~図53の画面及び図54のフローチャートを参照しながら、ユーザが撮影を行う範囲の微調整を行う場合(S404)に使用可能な機能について説明する。
 図41Aは、ウィザード画面Dの検鏡方法変更指示エリア189を示した図である。図41Bは、検鏡方法変更指示エリア189のGUIの一例を示した図である。ボタン192Aは、蛍光キューブAによる観察方法への切り換え指示ボタンを示す。ボタン192Bは、蛍光キューブBによる観察方法への切り換え指示ボタンを示す。ボタン192Cは、蛍光キューブCによる観察方法への切り換え指示ボタンを示す。ボタン192Dは、蛍光DIC観察への切り換え指示ボタンを示す。
 ボタン192A,192B,192C,192D(これらを総称して「ボタン192」で表す)はそれぞれ選択されると、L1からL2へスライドする。すなわちボタン192の左端がL1に到達している場合はそのボタンに対応した検鏡方法が選択状態を示す。ボタン192の左端がL2にある場合は非選択状態を示す。
 また、ボタン192A~192DのGUIの表示形態は、さらに図42(a)~(c)において符号193~195に示す表示形態に変化する。形態193で示すボタンのGUIは、現在そのボタンに対応する検鏡方法がメインとして選択させており、LIVE画像が観察画像表示エリア72に表示されている状態を示す。形態194で示すボタンのGUIは、そのボタンに対応する検鏡方法が非メイン(メインとして選択されていない)または非選択状態を示す。形態195で示すボタンのGUIは、後述する顕微鏡の動作によって、そのボタンに対応する検鏡方法による画像が非表示となった状態を示す。
 ボタン190は、マルチカラー表示をON/OFFするボタンであって、各蛍光キューブによる検鏡方法にて撮影した蛍光観察画像を重ね合せて表示させる(以下、「重ね合わせ表示」という)ためのボタンである。ボタン191は、後述する重ね合わせ画像の再表示指示ボタンである。
 このようなボタンの選択/非選択状態等を表すための表示形態の制御は、本実施形態にかかるプログラムを読み込んだホストシステム2のCPUまたは画面制御用のプロセッサ等により行われている。
 まずは、図41~図44を用いて、重ね合わせ表示を行わない場合の検鏡方法切り換え動作について説明する。ボタン190にてマルチカラー表示のOFFが選択されているものとする(S701で「N」)。
 図41Aにおいて、ボタン192Aが選択状態、すなわち蛍光キューブAが選択されている。この場合、観察画像表示エリア72には蛍光キューブAによるLIVE画像が表示されている。
 この状態で蛍光キューブBの選択指示ボタン192Bを選択する。すると、ボタン192Bの左端はL1の位置に移動し、ボタン192Bの形態は形態194から形態193へ変更される。ホストシステム2は、顕微鏡コントローラ31を通して蛍光キューブB(35b)を観察光路上へ挿入する指示を行う(S722)。
 すると、図43に示すように観察画像表示エリア72には、蛍光キューブBによる観察画像(LIVE画像)の表示が行われる(S723)。また、ボタン192AはL2の位置に移動し、その形態は形態193から形態194へ変更される。
 続いて、蛍光キューブCの選択指示ボタン192Cを選択する。すると、ボタン192Cの左端はL1の位置に移動し、その形態は形態194から形態193へ変更される。ホストシステム2は、顕微鏡コントローラ31に対して蛍光キューブC(35c)を観察光路上へ挿入する指示を行う(S722)。
 すると、図44に示すように、観察画像表示エリア72には、蛍光キューブCによる観察画像(LIVE画像)の表示が行われる(S723)。また、ボタン192Bは、L2の位置に移動し、その形態は形態193から形態194へ変更される。
 続いて、図45~図47を用いて重ね合わせ表示を行う場合の検鏡方法切り換え操作について説明する。すなわち、ボタン190にてマルチカラー表示のONが選択されている場合について説明する。
 図45に示すように、観察画像表示エリア72にキューブAによるLIVE画像が表示されている状態で、マルチカラー表示ボタン190がON(S701)にされている。この場合に、蛍光キューブBを選択するためのボタン192Bを選択する(S702で「Y」)。
 すると、ホストシステム2は、観察画像表示エリア72に表示されているキューブAによるLIVE画像の画像を画像記録部188へ保存する(S703)。ボタン192Bの左端はL1の位置に移動し、その形態は、形態194から形態193へ変更される。
 ホストシステム2は、顕微鏡コントローラ31に対して蛍光キューブB(35b)を観察光路上へ挿入する指示を行う(S704)。すると、ホストシステム2の制御により、観察画像表示エリア72には蛍光キューブBによる観察画像(LIVE画像)が表示される(S705)。
 それから、ホストシステム2は、画像記録部188に保存された蛍光キューブAの画像の読み出しを行う(S706)。図46に示すように、ホストシステム2は、蛍光キューブBによる観察画像(LIVE画像)に対して、その読み出した蛍光キューブAの画像を重ね合わせ表示する(S707)。このとき、ボタン192AはL1の位置のままで、ボタン192Aの形態が形態193から形態194へ変更される。即ち、観察画像表示エリア72には蛍光キューブBによる観察画像(LIVE画像)に対して、画像記録部188に保存された蛍光キューブAの画像が重ね合わせ表示される。
 続いて、図46に示す状態で蛍光キューブCの選択指示ボタン192Cを選択すると(S702)、ホストシステム2は、観察画像表示エリア72に表示されているキューブBによるLIVE画像の画像を画像記録部188へ保存する(S703)。ボタン192Cの左端はL1の位置に移動し、その形態は形態194から形態193へ変更される。
 ホストシステム2は、顕微鏡コントローラ31を通して蛍光キューブC(35c)を観察光路上へ挿入する指示を行う。観察画像表示エリア72には、蛍光キューブCによる観察画像(LIVE画像)が表示される(S705)。ホストシステム2は、画像記録部188に保存された蛍光キューブA及び蛍光キューブBの画像の読み出しを行う(S706)。
 図47に示すように、ホストシステム2は、重ね合わせ表示を行う(S707)。即ち、観察画像表示エリア72には蛍光キューブCによる観察画像(LIVE画像)に対して、画像記録部188に保存された蛍光キューブA及び蛍光キューブBの画像が重ね合わせ表示される。このとき、ボタン192BはL1の位置のままで、その形態は形態193から形態194へ変更される。
 続いて図47に示す状態で蛍光キューブAの選択指示ボタン192Aを選択すると(S702)、ホストシステム2は観察画像表示エリア72に表示されているキューブCによるLIVE画像の画像を画像記録部188へ保存する(S703)。ボタン192Aの左端はL1の位置に移動し、その形態は形態194から形態193へ変更される。
 ホストシステム2は、顕微鏡コントローラ31を通して蛍光キューブA(35a)を観察光路上へ挿入する指示を行う。観察画像表示エリア72には蛍光キューブAによる観察画像(LIVE画像)の表示が行われる(S705)。ホストシステム2は、画像記録部188に保存された蛍光キューブB及び蛍光キューブCによる画像の読み出す(S706)。
 図48に示すように、ホストシステム2は、蛍光キューブAによる観察画像(LIVE画像)に対して、読み出した蛍光キューブB及び蛍光キューブCによる画像を重ね合わせ表示する(S707)。
 また、ボタン192CはL1の位置のままで、その形態が形態193から形態194へ変更される。また、観察画像表示エリア72には蛍光キューブAによる観察画像(LIVE画像)に画像記録部188に保存された蛍光キューブB、蛍光キューブCの画像が重ね合わせ表示される。
 次に、図48~図49を用いて重ね合わせ表示のされている検鏡方法の解除の操作について説明する。重ね合わせ表示のうち蛍光キューブCによる観察画像を解除する場合、図48に示す状態で重ね合わせ表示解除対象である蛍光キューブCの選択するためにボタン192Cを選択する(S708で「Y」)。
 すると、ホストシステム2は、画像記録部188から読み出しを行っていた蛍光キューブCの重ね合わせ表示を解除する(S709)。すると、図49に示すように、観察画像表示エリア72には蛍光キューブAによる観察画像に、画像記録部188に保存された蛍光キューブBの画像のみが重ね合わせ表示されている。即ち、観察画像表示エリア72には蛍光キューブAによる観察画像(LIVE画像)に対して、画像記録部188に保存された蛍光キューブBの画像のみが重ね合わせ表示される。また、ボタン192Cの形態は、形態194のままでL2の位置に移動が行われる。
 なお、重ね合せ表示中、ボタンのGUIが形態193で示されるボタンに対応するLIVE画像の解除はできない。したがって、重ね合せ表示からLIVE画像を解除する場合には、LIVE画像を他の蛍光キューブによる観察画像(LIVE画像)に切り替えた後に、解除することになる。
 続いて、図49~図50を用いてステージの移動による重ね合わせ表示のされている検鏡方法の解除の操作について説明する。
 図49では、蛍光キューブAによるLIVE画像に、蛍光キューブBによる観察画像が重ね合わせ表示されている状態で、ステージの移動が行われた場合、例えば、マウスのクリック等によりステージの移動が行われた場合、ホストシステム2はステージ移動が行われたことを検出する(S710で「Y」)。この場合、ホストシステム2は画像記録部188から読み出しを行っていた蛍光キューブBによる観察画像の重ね合わせ表示を解除する(S711)。
 すると、図50に示すように、観察画像表示エリア72には蛍光キューブAによる観察画像(LIVE画像)が表示される。即ち、ホストシステム2は、ステージの移動や倍率の変更動作といった重ね合わせを行うと、現在表示されているLIVE画像とずれが生じる顕微鏡操作が行われた場合は、重ね合わせ表示を解除する。すると、観察画像表示エリア72には蛍光キューブAによる観察画像(LIVE画像)のみが表示される。
 また、ボタン192Bは、L2の位置に移動し、その形態は形態194から形態195へ変更される。このように、蛍光キューブBの画像は、ユーザによって任意に解除された場合の蛍光キューブCの形態194とは区別される。すなわち、ボタンの形態が、ステージの移動によって解除が行われた場合のGUI195に変更されている。
 続いて、図50~図51を用いて、ステージの移動等によって重ね合わせ表示が解除された検鏡方法の再表示動作について説明する。図50において、ボタン191は、解除された重ね合わせ画像の再表示指示ボタンである。すなわち、ボタン191は、ステージの移動や倍率の変更で重ね合わせ表示が解除された検鏡方法の画像を再び重ね合わせ表示を行う指示を与える。さらに、ステージの移動や倍率の変換動作が終了した場合に、ボタン191は有効となる(S712で「Y」)。図50に示されるように、観察画像表示エリア72には蛍光キューブAの観察画像の表示が行われている。蛍光キューブBの選択は、ステージの移動によって解除されている。蛍光キューブCの選択は、ユーザによって任意に解除されたものとなっている。
 ここで、ボタン191をクリックすると(S713で「Y」)、ホストシステム2は顕微鏡コントローラ31に対して蛍光キューブB(35b)を観察光路上へ挿入する指示を行う(S715)。すると、ホストシステム2はその蛍光キューブB(35b)を介して撮影し、そのキューブBによる観察画像を画像記録部188へ保存する(S716)。
 ホストシステム2は、ステージの移動等によって重ね合わせ表示が解除された検鏡方法で撮影された画像であって、記録されていない画像があるかを判定する(S717)。重ね合わせ表示が解除された検鏡方法で撮影された画像であって、記録されていない画像がある場合(S717で「Y」)、S715~S717を繰り返す。
 重ね合わせ表示が解除された検鏡方法の画像の記録が終わった場合(S717で「N」)、再びホストシステム2は顕微鏡コントローラ31を通して蛍光キューブA(35a)を観察光路上へ挿入する指示を行う(S718)。観察画像表示エリア72には、蛍光キューブAによる観察画像(LIVE画像)の表示が行われる(S719)。
 ホストシステム2は、画像記録部188に保存された蛍光キューブBの画像の読み出しを行う(S720)。それから、図51に示すように、ホストシステム2は、重ね合わせ表示を行う(S721)。即ち、観察画像表示エリア72にはステージ移動終了後の蛍光キューブAによる観察画像(LIVE画像)に、ステージ移動によって解除された蛍光キューブBの画像が重ね合わせ表示される。
 続いて、図51~図53を用いて蛍光キューブAのLIVE画像に蛍光キューブBが重ね合わせ表示されている状態で、倍率の行われた場合について説明する。ボタン80による指示等で、光学倍率の変更が行われる。すると、ホストシステム2は光学倍率の変更が行われたことを検出する(S710で「Y」)。
 ホストシステム2は、画像記録部188から読み出しを行っていた蛍光キューブBの重ね合わせ表示を解除する(S711)。図52に示すように、観察画像表示エリア72には蛍光キューブAによる観察画像(LIVE画像)が表示される。また、ボタン192BはL2の位置に移動し、その形態は形態194から形態195へ変更される。これにより、ボタン192Bは、ユーザによって任意に解除された蛍光キューブCの形態194とは区別される。すなわち、ボタン192Bは、ステージの移動によって解除が行われたことを示す形態195で表されるGUIとなる。ここで、ボタン191をクリックすると(S713)、ホストシステム2は顕微鏡コントローラ31に対して蛍光キューブB(35b)を観察光路上へ挿入する指示を行う(S715)。
 すると、ホストシステム2はその蛍光キューブB(35b)を介して撮影し、そのキューブBによる観察画像を画像記録部188へ保存する(S716)。ホストシステム2は、倍率の変更等によって重ね合わせ表示が解除された検鏡方法で撮影された画像であって、記録されていない画像があるかを判定する(S717)。重ね合わせ表示が解除された検鏡方法で撮影された画像で、記録されていない画像がある場合(S717で「Y」)、S715~S717を繰り返す。重ね合わせ表示が解除された検鏡方法の画像の記録が終わった場合(S717で「N」)、再びホストシステム2は顕微鏡コントローラ31に対して蛍光キューブA(35a)を観察光路上へ挿入する指示を行う(S718)。観察画像表示エリア72には蛍光キューブAによる観察画像(LIVE画像)の表示が行われる(S719)。
 それから、ホストシステム2は、画像記録部188に保存された蛍光キューブBの画像の読み出しを行う(S720)。図53に示すように、ホストシステム2は、重ね合わせ表示を行う(S720)。即ち、観察画像表示エリア72には光学倍率変更後の蛍光キューブAによる観察画像(LIVE画像)に、ステージ移動によって解除された蛍光キューブBの画像が重ね合わせ表示される。また、本実施形態ではステージの動作の検出はXY方向の動作について説明したが、XY方向に加えてZ方向の動きも同様に検出することができる。この場合、合焦動作によってステージのZ方向の動きを検出した場合も同様に、重ね合わせ動作を自動的に解除することができる。
 なお、ボタン191を押下して、重ね合わせ表示が解除された画像を再表示させる場合において、S715~S717を繰り返している間(すなわち、重ね合わせ表示が解除された画像を再取得中)は、モニター5に表示させている画像を一旦消去し、画像取得後に重ね合わせ表示を行う。
 他のウィザード画面へ移動するまで、検鏡方法変更指示エリア189を操作することができる(S714)。
 以上のように、第2の実施形態に係る顕微鏡システムは、観察体の画像に変化が生じる顕微鏡動作の検出を行う検出手段を有する。これにより、蛍光観察時において、ステージの移動、倍率の変更やAF動作を行った場合においても、観察画像のオーバーレイ表示状態の解除を行うことができる。その結果、観察画像を重ね合わせたまま顕微鏡を操作した場合に、LIVE画像とそのLIVE画像に重ね合せた観察画像とがずれて観察しづらく、操作が煩わしくなるという弊害を防止できる。よって、顕微鏡の操作性向上とのユーザの負担低減を図ることが可能となる。また、観察時間の短縮化を図ってユーザの負担を大きく低減することが可能となる。
 さらに、ボタン192の表示形態に応じて、強制的に重ね合わせ表示が解除された観察方法と、任意に重ね合わせ表示を解除した観察方法とを容易に区別することができる。その結果、再度重ね合わせ表示させる場合に、強制的に重ね合わせ表示が解除された観察方法を容易に判別して選択することができる。
 なお、第2の実施形態では、ステージの移動や倍率の変更で重ね合わせ表示が解除された検鏡方法の画像を再び重ね合わせ表示を行う指示はボタン191にて行ったが、ステージの移動や倍率の変換動作が終了したことを検出して自動的に行うようにしてもよい。
 さらに、第2の実施形態では選択されている検鏡方法の画像は、LIVE画像として表示されている場合について示した。しかし、LIVE/PAUSE切替・表示エリア85の説明でも述べたように、蛍光画像における退色防止のために、一定時間操作がない場合は自動的にPAUSE画像に切り替わるようにしてもよい。
 なお、第2の実施形態においては、蛍光観察、DIC観察、明視野観察の組み合わせの例について説明したが、これに限定されない。例えば、DIC観察を位相差観察に置き換えてもよく、またその他の検鏡方法の組み合わせであってもよい。
 また、第2の実施形態の顕微鏡装置は、複数の対物レンズを有し、これを随時切り換えていく構成として説明したが、ズーム機構を有する対物レンズであってもよい。また、標本としてスライドガラスを例に説明を行ったが、これに限定されるものではなく、ディッシュやその他の標本であってもよい。
 図7~図10、図35、図39、図54のフローチャートで示した処理及びホイール操作制御テーブルは、前述したような標準的な構成のコンピュータのCPUに行わせるための制御プログラムを作成してコンピュータ読み取り可能な記録媒体に記録させておいてもよい。この場合、そのプログラムを記録媒体からコンピュータに読み込ませてCPUで実行させることにより、第1及び2の実施形態を適用することができる。
 記録させた制御プログラムをコンピュータで読み取ることの可能な記録媒体としては、例えば、コンピュータに内蔵若しくは外付けの付属装置として備えられるROMやハードディスク装置などの記憶装置、コンピュータに備えられる媒体駆動装置へ挿入することによって記録された制御プログラムを読み出すことのできるフレキシブルディスク、MO(光磁気ディスク)、CD-ROM、DVD-ROMなどといった携帯可能記録媒体等が利用できる。
 また、記録媒体は、通信回線を介してコンピュータと接続される、プログラムサーバとして機能するコンピュータシステムが備えている記憶装置であってもよい。この場合には、制御プログラムを表現するデータ信号で搬送波を変調して得られる伝送信号を、プログラムサーバから伝送媒体である通信回線を通じてコンピュータへ伝送するようにし、コンピュータでは受信した伝送信号を復調して制御プログラムを再生することでこの制御プログラムをコンピュータのCPUで実行できるようになる。
 例えば、第1及び第2の実施形態に係る顕微鏡システムでは顕微鏡装置1として正立型顕微鏡装置を採用していたが、その代わりに、倒立型顕微鏡装置を採用してもよい。また、顕微鏡装置を組み込んだライン装置といった各種システムに本実施形態を適応してもよい。
 以上、本発明の実施形態を説明したが、本発明は、上述した各実施形態に限定されることなく、本発明の要旨を逸脱しない範囲内で種々の改良・変更が可能である。
 1   顕微鏡装置
 2   ホストシステム
 3   ビデオカメラ
 4   操作来歴記録部
 5   モニター
 6   透過照明用光源
 7   コレクタレンズ
 8   透過用フィルタユニット
 9   透過視野絞り
 10  透過開口絞り
 11  コンデンサ光学素子ユニット
 12  トップレンズユニット
 13  落射照明用光源
 14  コレクタレンズ
 15  落射用フィルタユニット
 16  落射シャッタ
 17  落射視野絞り
 18  落射開口絞り
 19  観察体
 20  電動ステージ
 21  ステージX-Y駆動制御部
 22  ステージZ駆動制御部
 23  対物レンズ
 24  レボルバ
 25  キューブユニット
 26  接眼レンズ
 27  ズーム光学系
 28  ポラライザー
 29  DICプリズム
 30  アナライザー
 31  顕微鏡コントローラ
 32  ビデオボード
 33  カメラコントローラ
 34  顕微鏡操作部
 35  エリア
 36  標本交換ボタン
 37  エリア
 38、39、40、41 ボタン
 43  蛍光観察選択ボタン
 44  微分干渉観察選択ボタン
 45  明視野観察選択ボタン
 46、47、48、49 ボタン
 50  エリア
 51、52 ボタン
 53  スライドイメージエリア
 54  エリア
 55  矩形枠
 56  マクロ画像表示エリア
 57、58、59、60、61、62 ボタン
 63  マクロLIVE画像エリア
 64  範囲指定枠
 65  スライドエリア
 66  十字マーク
 67  範囲指定枠切替エリア
 68  フォーカスエリア
 69  ツールエリア
 70、71 ボタン
 72  画像表示エリア
 73  フォーカス・補正環エリア
 74  スライドバー
 75  AFボタン
 76  補正環調整ボタン
 77  ステージコントロール・マップエリア
 78  矩形枠
 79  ボタン
 81  SHOTボタン
 80、82、83 ボタン
 84  エリア
 85  表示画像切替エリア
 86、87 ボタン
 88  ホイール付マウス
 90  左ボタン
 91  ホイール
 92  右ボタン
 188  画像記録部
 189  検鏡方法変更指示エリア
 190  マルチカラー表示ON/OFFボタン
 191  重ね合わせ再表示指示ボタン
 192(192A,192B,192C,192D)  検鏡方法選択ボタン

Claims (17)

  1.  複数の駆動ユニットを有する顕微鏡装置と、
     前記顕微鏡装置の操作を行うための操作画面を表示する表示手段と、
     前記操作画面に対して前記顕微鏡装置への操作指示をポインタにより入力するポインティングデバイスと、
     前記操作画面上における前記ポインタの位置に応じて、前記駆動ユニットを切り換え、該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御する制御手段と、
     を備えることを特徴とする顕微鏡システム。
  2.  前記駆動ユニットには、観察倍率を変倍する変倍機構、観察光路と同方向または垂直方向に観察体を移動させることができる駆動ステージ、及び調光機構のうち少なくともいずれかが含まれ、
     前記制御手段は、前記操作画面上における前記ポインタの位置を判別し、該ポインタが該操作画面上の第1の領域にある場合には、該ポインティングデバイスの操作に応じて、前記駆動ステージを観察光路方向へ動作させ、該ポインタが該操作画面上の第2の領域にある場合には、該ポインティングデバイスの操作に応じて、前記駆動ステージを観察光路に対して垂直方向へ動作させ、該ポインタが該操作画面上の第3の領域にある場合には、該ポインティングデバイスの操作に応じて、前記変倍機構に倍率を変倍させ、該ポインタが該操作画面上の第4の領域にある場合には、該ポインティングデバイスの操作に応じて、調光制御を行う
     ことを特徴とする請求項1に記載の顕微鏡システム。
  3.  前記顕微鏡システムは、さらに、
     前記顕微鏡装置によって観察された観察体の像を撮像する撮像手段
     を備え、
     前記操作画面には、前記撮像手段により撮像された画像を表示させる画像表示領域が含まれ、
     前記制御手段は、前記画像表示領域上における前記ポインタの位置に応じて、前記駆動ユニットを切り換え、該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御する
     ことを特徴とする請求項1に記載の顕微鏡システム。
  4.  前記ポインティングデバイスは、ホイール付マウスであり、
     前記制御手段は、前記ホイール付マウスのホイールの操作に応じて、前記切り換えた駆動ユニットの動作を制御する
     ことを特徴とする請求項1に記載の顕微鏡システム。
  5.  前記制御手段は、前記操作画面上の位置に応じて、前記ポインタの表示形態を所定の表示形態に変化させる
     ことを特徴とする請求項1に記載の顕微鏡システム。
  6.  複数の駆動ユニットを有する顕微鏡装置と、前記顕微鏡装置の操作を行うための操作画面を表示する表示装置と、前記操作画面に対して前記顕微鏡装置への操作指示をポインタにより入力するポインティングデバイスを有する顕微鏡システムを制御する処理をコンピュータに実行させるプログラムが格納された記憶媒体であって、
     前記操作画面上における前記ポインタの位置を判別する判別処理と、
     前記判別結果より、前記操作画面上における前記ポインタの位置に応じて、前記駆動ユニットを切り換えるユニット切換処理と、
     該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御するユニット制御処理と、
     をコンピュータに実行させるプログラムが格納された記憶媒体。
  7.  複数の駆動ユニットを有する顕微鏡装置と、前記顕微鏡装置の操作を行うための操作画面を表示する表示装置と、前記操作画面に対して前記顕微鏡装置への操作指示をポインタにより入力するポインティングデバイスを有する顕微鏡システムの制御方法であって、
     前記操作画面上における前記ポインタの位置を判別し、
     前記判別結果より、前記操作画面上における前記ポインタの位置に応じて、前記駆動ユニットを切り換え、
     該ポインティングデバイスの操作に応じて、該切り換えた駆動ユニットの動作を制御する
     ことを特徴とする顕微鏡システムの制御方法。
  8.  複数の観察方法を切り替えて観察体の観察を行うことができる顕微鏡と、
     前記観察体の光学画像を撮像する撮像手段と、
     前記複数の観察方法のうち少なくとも1つの観察方法を選択させるための選択指示が与えられる選択指示手段と、
     前記選択された観察方法に基づいて、前記撮像した画像同士を重畳させる重畳手段と、
     前記重畳させた画像を表示させる制御を行う表示制御手段と、
     前記観察体を撮影する観察環境の変化を生じさせる前記顕微鏡の動作を検出する検出手段と、
     前記検出結果に基づいて、前記重畳させた画像の重畳状態を解除する重畳解除手段と、
     を備えることを特徴とする顕微鏡システム。
  9.  前記重畳手段は、前記表示制御手段により表示させていた画像に対して、前記選択指示による観察方法の画像を累積的に重畳させる
     ことを特徴とする請求項8に記載の顕微鏡システム。
  10.  前記検出手段は、前記観察体を載置するステージの移動、倍率の変更、及び合焦のうち少なくともいずれかに関する動作を検出する
     ことを特徴とする請求項8に記載の顕微鏡システム。
  11.  前記重畳解除手段は、前記顕微鏡の動作が検出された場合、前記表示させていた画像に対して重畳させていた前記画像を消去して前記画像の重畳状態を解除する
     ことを特徴とする請求項9に記載の顕微鏡システム。
  12.  前記選択指示手段は、前記画像を表示させるグラフィカルユーザインターフェースの一部として表示されており、
     前記表示制御手段は、前記選択指示手段に前記選択指示が与えられた場合、該選択指示手段の表示形態を第1の表示形態から第2の表示形態に変更する
     ことを特徴とする請求項9に記載の顕微鏡システム。
  13.  前記表示制御手段は、前記選択指示手段により選択解除指示が与えられた場合には該選択指示手段の表示形態を前記第2の表示形態から前記第1の表示形態に変更し、前記検出手段により顕微鏡の動作が検出された場合には該選択指示手段の表示形態を前記第2の表示形態から第3の表示形態に変更する
     ことを特徴とする請求項12に記載の顕微鏡システム。
  14.  前記観察方法は、波長毎に蛍光観察を行う蛍光観察法である
     ことを特徴とする請求項8に記載の顕微鏡システム。
  15.   前記観察方法は、明視野観察法、暗視野観察法、位相差観察法、及び微分干渉コントラスト法のうち少なくともいずれか2つである
     ことを特徴とする請求項8に記載の顕微鏡システム。
  16.  複数の観察方法を切り替えて観察体の観察を行うことができる顕微鏡と該観察体の光学画像を撮像する撮像手段とを含む顕微鏡システムの制御をコンピュータに実行させるプログラムが格納された記憶媒体であって、
     前記複数の観察方法のうち少なくとも1つの観察方法を選択させるための選択指示情報を取得する選択指示取得処理と、
     前記選択された観察方法に基づいて、前記撮像した画像同士を重畳させる重畳処理と、
     前記重畳させた画像を表示させる制御を行う表示制御処理と、
     前記観察体を撮影する観察環境の変化を生じさせる前記顕微鏡の動作を検出する検出処理と、
     前記検出結果に基づいて、前記重畳させた画像の重畳状態を解除する重畳解除処理と、
     をコンピュータに実行させるプログラムが格納された記憶媒体。
  17.  複数の観察方法を切り替えて観察体の観察を行うことができる顕微鏡と該観察体の光学画像を撮像する撮像手段とを含む顕微鏡システムの制御方法であって、
     前記複数の観察方法のうち少なくとも1つの観察方法を選択させるための選択指示情報を取得し、
     前記選択された観察方法に基づいて、前記撮像した画像同士を重畳させ、
     前記重畳させた画像を表示させる制御を行い、
     前記観察体を撮影する観察環境の変化を生じさせる前記顕微鏡の動作を検出し、
     前記検出結果に基づいて、前記重畳させた画像の重畳状態を解除する
     ことを特徴とする顕微鏡システムの制御方法。
PCT/JP2009/004463 2008-09-26 2009-09-09 顕微鏡システム、該制御プログラムが格納された記憶媒体、及び該制御方法 WO2010035414A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09815836.3A EP2328009B1 (en) 2008-09-26 2009-09-09 Microscope system, storage medium in which control program therefor is stored, and control method therefor
US13/052,530 US8699129B2 (en) 2008-09-26 2011-03-21 Microscope system, storage medium storing control program, and control method
US13/178,146 US8339702B2 (en) 2008-09-26 2011-07-07 Microscope system, storage medium storing control program, and control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-248481 2008-09-26
JP2008248481A JP5192965B2 (ja) 2008-09-26 2008-09-26 顕微鏡システム、該制御プログラム、及び該制御方法
JP2008-247931 2008-09-26
JP2008247931A JP5191333B2 (ja) 2008-09-26 2008-09-26 顕微鏡システム、該プログラム、及び該方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/052,530 Continuation US8699129B2 (en) 2008-09-26 2011-03-21 Microscope system, storage medium storing control program, and control method

Publications (1)

Publication Number Publication Date
WO2010035414A1 true WO2010035414A1 (ja) 2010-04-01

Family

ID=42059428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004463 WO2010035414A1 (ja) 2008-09-26 2009-09-09 顕微鏡システム、該制御プログラムが格納された記憶媒体、及び該制御方法

Country Status (3)

Country Link
US (2) US8699129B2 (ja)
EP (2) EP2339389B1 (ja)
WO (1) WO2010035414A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339389B1 (en) 2008-09-26 2014-07-30 Olympus Corporation Microscope system, storage medium storing control program, and control method
JP5863357B2 (ja) * 2011-09-21 2016-02-16 オリンパス株式会社 拡大観察装置、並びに、拡大観察装置の画像表示方法及び検鏡法切換方法
US8922639B2 (en) * 2011-09-27 2014-12-30 Olympus Corporation Microscope system
DE102012009257B4 (de) 2012-05-02 2023-10-05 Leica Microsystems Cms Gmbh Verfahren zur Ausführung beim Betreiben eines Mikroskops und Mikroskop
USD745025S1 (en) * 2013-02-22 2015-12-08 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
JP6455829B2 (ja) * 2013-04-01 2019-01-23 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
JP6289044B2 (ja) * 2013-11-15 2018-03-07 オリンパス株式会社 観察装置
JP6253400B2 (ja) * 2013-12-26 2017-12-27 オリンパス株式会社 画像形成方法、及び、画像形成装置
US10460077B2 (en) * 2016-04-12 2019-10-29 GreatDef Corp. Securely collecting and processing medical imagery
US10268032B2 (en) 2016-07-07 2019-04-23 The Board Of Regents Of The University Of Texas System Systems and method for imaging devices with angular orientation indications
EP3901683A1 (en) 2020-04-24 2021-10-27 Leica Microsystems CMS GmbH Method of controlling imaging of a sample by a microscope and corresponding microscope
EP4202524A1 (en) * 2021-12-21 2023-06-28 Leica Microsystems CMS GmbH Microscope control arrangement
US11947099B1 (en) * 2023-07-25 2024-04-02 Pramana Inc. Apparatus and methods for real-time image generation
US12075155B1 (en) 2023-12-21 2024-08-27 Pramana, Inc. System and methods for slide imaging

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925647B2 (ja) 1990-04-16 1999-07-28 オリンパス光学工業株式会社 顕微鏡変倍装置
JPH11231223A (ja) * 1998-02-16 1999-08-27 Olympus Optical Co Ltd 走査型光学顕微鏡
JP2001091854A (ja) 1999-09-21 2001-04-06 Jasco Corp 簡易操作顕微装置
JP2002007498A (ja) * 2000-06-22 2002-01-11 Hitachi Ltd 半導体設計グラフィカルユーザインターフェース装置
JP2002090632A (ja) * 2000-09-19 2002-03-27 Olympus Optical Co Ltd マウスを用いた調整方法及びコンピュータにより読み取り可能な記憶媒体
JP2002098897A (ja) 2000-09-21 2002-04-05 Shimadzu Corp 顕微鏡
JP2003019679A (ja) * 2001-07-09 2003-01-21 Suruga Seiki Kk マイクロマニピュレータ駆動制御装置、マイクロマニピュレータ駆動制御方法およびマイクロマニピュレータ駆動制御プログラムを記録した媒体
JP2003126017A (ja) * 2001-10-25 2003-05-07 Olympus Optical Co Ltd 手術用顕微鏡システム
JP2005331887A (ja) 2004-05-21 2005-12-02 Keyence Corp 蛍光顕微鏡、蛍光顕微鏡装置を使用した表示方法、蛍光顕微鏡画像表示プログラム及びコンピュータで読み取り可能な記録媒体並びに記憶した機器
JP2007017930A (ja) 2005-06-10 2007-01-25 Olympus Corp 顕微鏡装置
JP2007192776A (ja) * 2006-01-23 2007-08-02 Shimadzu Corp X線検査装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118581A (en) 1995-09-15 2000-09-12 Accumed International, Inc. Multifunctional control unit for a microscope
US6404906B2 (en) 1997-03-03 2002-06-11 Bacus Research Laboratories,Inc. Method and apparatus for acquiring and reconstructing magnified specimen images from a computer-controlled microscope
US6477266B1 (en) 1998-12-11 2002-11-05 Lucent Technologies Inc. Vision comparison inspection system graphical user interface
US6636354B1 (en) * 1999-12-29 2003-10-21 Intel Corporation Microscope device for a computer system
JPWO2002067039A1 (ja) 2001-02-19 2004-06-24 オリンパス株式会社 画像比較装置、画像比較方法及び画像比較をコンピュータに実行させるプログラム
DE10362401B3 (de) * 2002-08-28 2022-03-10 Carl Zeiss Meditec Ag Mikroskopiesystem und Mikroskopieverfahren
DE10332468B4 (de) 2003-07-16 2005-05-25 Leica Microsystems Wetzlar Gmbh Mikroskop und Verfahren zur Bedienung eines Mikroskops
US7345814B2 (en) * 2003-09-29 2008-03-18 Olympus Corporation Microscope system and microscope focus maintaining device for the same
DE10361158B4 (de) 2003-12-22 2007-05-16 Leica Microsystems Einrichtung und Verfahren zur Konfiguration eines Mikroskops
DE102005023855A1 (de) * 2004-05-26 2006-01-26 Olympus Corporation Kulturmikroskop und Computerprogramm zur Steuerung des Kulturmikroskops
JP5058444B2 (ja) * 2005-02-10 2012-10-24 オリンパス株式会社 顕微鏡写真装置および顕微鏡写真装置制御方法
JP4581786B2 (ja) * 2005-03-28 2010-11-17 セイコーエプソン株式会社 電気泳動表示装置、その製造方法及び電子機器
JP4970869B2 (ja) 2005-09-12 2012-07-11 オリンパス株式会社 観察装置および観察方法
JP2008151865A (ja) * 2006-12-14 2008-07-03 Olympus Corp 顕微鏡システム
EP2339389B1 (en) 2008-09-26 2014-07-30 Olympus Corporation Microscope system, storage medium storing control program, and control method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925647B2 (ja) 1990-04-16 1999-07-28 オリンパス光学工業株式会社 顕微鏡変倍装置
JPH11231223A (ja) * 1998-02-16 1999-08-27 Olympus Optical Co Ltd 走査型光学顕微鏡
JP2001091854A (ja) 1999-09-21 2001-04-06 Jasco Corp 簡易操作顕微装置
JP2002007498A (ja) * 2000-06-22 2002-01-11 Hitachi Ltd 半導体設計グラフィカルユーザインターフェース装置
JP2002090632A (ja) * 2000-09-19 2002-03-27 Olympus Optical Co Ltd マウスを用いた調整方法及びコンピュータにより読み取り可能な記憶媒体
JP2002098897A (ja) 2000-09-21 2002-04-05 Shimadzu Corp 顕微鏡
JP2003019679A (ja) * 2001-07-09 2003-01-21 Suruga Seiki Kk マイクロマニピュレータ駆動制御装置、マイクロマニピュレータ駆動制御方法およびマイクロマニピュレータ駆動制御プログラムを記録した媒体
JP2003126017A (ja) * 2001-10-25 2003-05-07 Olympus Optical Co Ltd 手術用顕微鏡システム
JP2005331887A (ja) 2004-05-21 2005-12-02 Keyence Corp 蛍光顕微鏡、蛍光顕微鏡装置を使用した表示方法、蛍光顕微鏡画像表示プログラム及びコンピュータで読み取り可能な記録媒体並びに記憶した機器
JP2007017930A (ja) 2005-06-10 2007-01-25 Olympus Corp 顕微鏡装置
JP2007192776A (ja) * 2006-01-23 2007-08-02 Shimadzu Corp X線検査装置

Also Published As

Publication number Publication date
EP2328009B1 (en) 2019-01-02
EP2328009A1 (en) 2011-06-01
US20110164314A1 (en) 2011-07-07
EP2339389B1 (en) 2014-07-30
EP2339389A1 (en) 2011-06-29
US20110267449A1 (en) 2011-11-03
EP2328009A4 (en) 2012-02-29
US8339702B2 (en) 2012-12-25
US8699129B2 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
WO2010035414A1 (ja) 顕微鏡システム、該制御プログラムが格納された記憶媒体、及び該制御方法
EP1860481B1 (en) Micropscope system and method for synthesiing microscopic images
JP4970869B2 (ja) 観察装置および観察方法
US8264768B2 (en) Microscope system
EP1860482B1 (en) Microscope system and method for synthesizing microscopic images
JP5191333B2 (ja) 顕微鏡システム、該プログラム、及び該方法
JP4878815B2 (ja) 顕微鏡装置
JP5192965B2 (ja) 顕微鏡システム、該制御プログラム、及び該制御方法
US8284246B2 (en) Microscope system, control method used for microscope system, and recording medium for reproducing a microscope state based on microscope operation history and a microscope operation item
JP2009211358A (ja) 顕微鏡用画像の情報処理装置
JP2009162974A (ja) 顕微鏡システム及びその制御方法
JP2008151865A (ja) 顕微鏡システム
JP2015082099A (ja) 顕微鏡を制御する制御装置、顕微鏡システム、制御方法およびプログラム
JP2009237267A (ja) 顕微鏡システム、顕微鏡システムの制御方法、及びプログラム
JP4979464B2 (ja) 顕微鏡装置、該制御プログラム、及び該制御方法
JP5197246B2 (ja) 顕微鏡システム
JP5155673B2 (ja) 顕微鏡システム
JP2010169736A (ja) 顕微鏡システム
JP4820458B2 (ja) 顕微鏡システム、顕微鏡システムの動作制御方法および動作制御プログラムを記録した記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009815836

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE