WO2010035383A1 - フェライト付着体及びその製造方法 - Google Patents

フェライト付着体及びその製造方法 Download PDF

Info

Publication number
WO2010035383A1
WO2010035383A1 PCT/JP2009/003584 JP2009003584W WO2010035383A1 WO 2010035383 A1 WO2010035383 A1 WO 2010035383A1 JP 2009003584 W JP2009003584 W JP 2009003584W WO 2010035383 A1 WO2010035383 A1 WO 2010035383A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
substrate
manufacturing
film
base
Prior art date
Application number
PCT/JP2009/003584
Other languages
English (en)
French (fr)
Inventor
近藤幸一
小野裕司
沼田幸浩
Original Assignee
Necトーキン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necトーキン株式会社 filed Critical Necトーキン株式会社
Priority to CN200980136558XA priority Critical patent/CN102159749B/zh
Priority to US13/121,108 priority patent/US20110183130A1/en
Publication of WO2010035383A1 publication Critical patent/WO2010035383A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to a ferrite adhering body in which a ferrite film, particularly a spinel type ferrite film is adhered to a substrate, and a method for producing the ferrite adhering body.
  • the ferrite plating method provides a high-quality ferrite film, and is disclosed in Patent Document 1, for example.
  • the ferrite plating method of Patent Document 1 includes: preparing a specific aqueous solution containing at least ferrous ions; bringing the surface of the substrate into contact with the specific aqueous solution, Fe 2+ ions or Fe 2+ ions and other metal hydroxide ions; Adsorbing to the surface of the substrate; obtaining Fe 3+ ions by oxidizing the adsorbed Fe 2+ ions; causing a ferrite crystallization reaction between the Fe 3+ ions and metal hydroxide ions in a specific aqueous solution; Forming a ferrite film on the surface of the substrate.
  • any substrate can be used as long as the substrate is resistant to an aqueous solution. Further, since the ferrite plating method is based on a reaction via an aqueous solution, a spinel type ferrite film can be formed at a relatively low temperature (from room temperature to the boiling point of the aqueous solution). Therefore, the ferrite plating method is superior in that there are few limitations on the substrate as compared with other ferrite film forming techniques.
  • Patent Documents related to the ferrite plating method include Patent Documents 2 to 4.
  • Patent Document 2 discloses a technique for homogenizing the formed ferrite film and improving the reaction rate in the ferrite film forming process.
  • Patent Document 3 discloses a technique for imparting surface activity to a substrate surface to form a ferrite film on various substrates.
  • Patent Document 4 discloses a technique related to an improvement in the formation rate of a ferrite film.
  • Japanese Patent No. 1475891 Japanese Patent Publication No. 63-15990
  • Japanese Patent No. 1868730 Japanese Patent Laid-Open No. 61-030664
  • the ferrite film is formed by crystal growth based on the substrate surface. Therefore, an appropriately formed ferrite film becomes an aggregate of columnar crystals provided so that the major axis is along a direction substantially parallel to the normal direction of the substrate surface.
  • an object of the present invention is to provide a method for producing a ferrite film adhering body based on a ferrite plating method, and a method for producing a ferrite film adhering body having a homogeneous ferrite film.
  • Another object of the present invention is to provide a ferrite film adhering body manufactured by the method for manufacturing a ferrite film adhering body.
  • One aspect of the present invention provides a manufacturing method for manufacturing a ferrite adhering body including a base and a ferrite film attached to the base.
  • the substrate is supported with a space of 100 ⁇ m or more on the back side of the substrate, and a reaction solution containing at least ferrous ions and an oxidizing solution containing at least an oxidizing agent are supplied to the front side of the substrate.
  • a ferrite adhering body comprising a three-dimensionally shaped base and a ferrite film attached to the base, wherein the ratio of the average thickness x of the ferrite film to the standard deviation ⁇ of the thickness ⁇ / Provided is a ferrite adherent wherein x is 1 or less.
  • the columnar crystal of the ferrite film is grown in a state where the substrate is separated from the table by 100 ⁇ m or more and the reaction solution and the oxidizing solution supplied to the substrate are subjected to acceleration of 2 to 150 m / s 2 due to other than gravity.
  • the reaction solution and the oxidizing solution supplied to the substrate are subjected to acceleration of 2 to 150 m / s 2 due to other than gravity.
  • FIG. 1 It is a figure which shows typically the film-forming apparatus used in the manufacturing method of the ferrite film adhesion body by embodiment of this invention. It is a figure which shows typically the base
  • FIG. 1 shows typically the film-forming apparatus used in the manufacturing method of the ferrite film adhesion body by embodiment of this invention. It is a figure which shows typically the base
  • a method of manufacturing an adherent including a base and a ferrite film attached to the base according to the embodiment of the present invention uses a film forming apparatus as shown in FIG.
  • the illustrated film forming apparatus is an apparatus for forming a ferrite film on a substrate 3, and includes a reaction liquid nozzle 1, an oxidizing liquid nozzle 2, a support member 4, and a table (rotary table) 5.
  • the rotary table 5 is a table that can rotate around its axis.
  • the support member 4 is installed on the rotary table 5 and supports the base 3 with a space of 100 ⁇ m or more between the back side of the base 3 and the rotary table 5.
  • the support member 4 moves with the rotation of the turntable 5 while supporting the base 3. That is, the base 3 moves with the rotation of the turntable 5.
  • the reaction liquid nozzle 1 is for supplying a reaction liquid containing at least ferrous ions toward the turntable 5, and is fixed above the turntable 5.
  • the oxidizing solution nozzle 2 is for supplying an oxidizing solution containing at least an oxidizing agent toward the turntable 5, and is fixed above the turntable 5.
  • the reaction liquid nozzle 1 is located on one half region of the stationary rotary table 5, and the oxidizing liquid nozzle 2 is the other half of the stationary rotary table 5. It is located in an area.
  • the reaction liquid nozzle 1 and the oxidation liquid nozzle 2 are sprayed around a direction orthogonal to the rotary table 5. That is, the center line of the spray direction of the reaction liquid and the oxidizing liquid sprayed from the reaction liquid nozzle 1 and the oxidizing liquid nozzle 2 is along the direction orthogonal to the surface of the substrate 3.
  • the present invention is not limited to this, and the reaction solution and the oxidation solution are sprayed in a direction oblique to the surface of the substrate 3 by tilting the substrate 3 and / or the reaction solution nozzle 1 and the oxidation solution nozzle 2. It is also good to do.
  • the substrate 3 When the substrate 3 is supported by the support member 4 and the rotary table 5 is rotated while supplying the reaction solution from the reaction solution nozzle 1 and supplying the oxidation solution from the oxidation solution nozzle 2, The oxidizing solution is supplied alternately. As a result, the substrate 3 is ferrite plated. That is, a ferrite film based ferrite film is formed on the substrate 3.
  • the rotation speed of the turntable 5 in the present embodiment is set so that the reaction solution and the oxidizing solution supplied onto the substrate 3 receive an acceleration of 2 to 150 m / s 2 due to the centrifugal force.
  • the excess reaction solution and the oxidizing solution move from the front side to the back side of the substrate 3 without forming an undesirable “liquid pool”.
  • the excess reaction solution and the oxidizing solution flow smoothly without forming an unfavorable “puddle”.
  • the ferrite plating method can be realized under an ideal state, a homogeneous ferrite film can be obtained.
  • a ferrite film can be formed at a place other than the front side of the substrate 3 to which the reaction solution and the oxidizing solution are directly supplied.
  • the acceleration applied to the reaction solution and the oxidizing solution is caused by the centrifugal force accompanying the rotation of the turntable 5.
  • the acceleration applied to the reaction solution and the oxidizing solution is an intentionally applied acceleration (that is, an acceleration other than gravity), and may have a magnitude of 2 to 150 m / s 2 .
  • another means for applying acceleration includes applying vibration to the substrate 3.
  • the supply of the reaction liquid and the oxidizing liquid to the substrate 3 and the acceleration are performed substantially simultaneously.
  • the present invention is not limited to this. If excess reaction liquid and oxidation liquid can be removed, acceleration may be applied immediately after supply of the reaction liquid and oxidation liquid, reaction liquid supply, acceleration supply, oxidation liquid supply, acceleration supply, etc. The cycle may be executed repeatedly.
  • the shape and size of the substrate 3 as follows.
  • the base 3 has a rod-shaped portion like a single conductor, it is preferable that both the maximum width and the maximum height of the rod-shaped portion are 5 mm or less.
  • the maximum width W of each bar-like portion is provided.
  • the maximum height H are both 5 mm or less, and the gap S is preferably 100 ⁇ m or more.
  • the base 3 may be turned over and the ferrite film may be directly formed on the back side 3 of the base by the same method.
  • a homogeneous ferrite film (ferrite plating) 6 is formed by applying an appropriate acceleration while supplying a reaction solution and an oxidizing solution to the upper surface of the substrate 3. It may be turned over to form a uniform ferrite film (ferrite plating) by applying appropriate acceleration while supplying the reaction solution and the oxidizing solution to the lower surface of the substrate 3.
  • the ferrite film (ferrite plating) formed according to the present embodiment is formed by ideally arranging a plurality of columnar crystals having a major axis and a minor axis. Specifically, the plurality of columnar crystals are arranged so that the major axis is along the normal direction of the surface of the substrate 3 (that is, the film thickness direction of the ferrite film), and are magnetically coupled to each other. In particular, ferrite films formed on two adjacent surfaces such as the upper surface and the side surface are also magnetically coupled to each other.
  • the major axis a of the columnar crystal is 0.1 to 10 ⁇ m, and the minor axis b is 0.01 to 1 ⁇ m. Further, the ratio ⁇ / x of the average thickness x of the ferrite film to the standard deviation ⁇ of the thickness is 1 or less.
  • the ferrite adherent was formed under various conditions as shown in the following table.
  • Examples 1 to 4 are ferrite adherents manufactured under the conditions according to the present embodiment
  • Comparative Examples 1 to 5 are ferrite adherents manufactured under conditions that are not according to the present embodiment, respectively. Is the body.
  • the above-described film forming apparatus shown in FIG. 1 was used for manufacturing the ferrite adherent.
  • the substrate 3 is made of a copper alloy and has a structure as shown in FIG.
  • the length L of the rod-shaped portion of the substrate 3 was 30 mm.
  • the height H and width W of the rod-shaped portion of the substrate 3 for each of Examples 1 to 4 and Comparative Examples 1 to 5 and the gap (interline distance) S between the rod-shaped portions are as shown in the table. .
  • the substrate 3 was placed on the support member 4 and heated to 90 ° C. while supplying deoxygenated ion-exchanged water with the rotary table 5 being rotated. Next, nitrogen gas was introduced into the film forming apparatus to form a deoxygenated atmosphere.
  • the step of supplying the reaction solution from the reaction solution nozzle 1 onto the substrate 3 and the step of supplying the oxidation solution from the oxidation solution nozzle 2 to the substrate 3 were performed while the rotary table 5 was rotated. That is, the step of supplying the reaction solution and the step of supplying the oxidizing solution were alternately and repeatedly performed.
  • the flow rates for supplying the reaction solution and the oxidizing solution were both 40 ml / min.
  • the reaction solution was formed by dissolving FeCl 2 -4H 2 O, NiCl 2 -6H 2 O, ZnCl 2 in deoxygenated ion exchange water.
  • the oxidizing solution was formed by dissolving NaNo 2 and CH 3 COONH 4 in deoxygenated ion-exchanged water.
  • the reaction solution and the oxidizing solution may be formed with reference to, for example, US2009-0047507A1 and US2007-0231614A1.
  • Example 2 When supplying the reaction solution and the oxidizing solution to the substrate 3, the rotary table 5 was rotated at the number of rotations described in the table, and the acceleration described in the table was applied to the reaction solution and the oxidizing solution.
  • Example 2 as shown in FIG. 3, after forming the ferrite film 6 on the upper surface of the substrate 3, the substrate 3 was turned over and the ferrite film 6 was also formed on the lower surface. At this time, a space of 200 ⁇ m was provided between the base 3 and the turntable 5.
  • a black ferrite film 6 was formed on the substrate 3.
  • Various analyzes were performed on the ferrite adhering body thus formed. Specifically, the chemical composition of the ferrite film was evaluated by an inductively coupled plasma emission spectroscopy (ICPS) method. For structural analysis such as film thickness measurement, a scanning electron microscope (SEM) was used. The permeability of each ferrite film was measured using a permeability meter based on the shielded loop coil method. As a result of evaluation by the ICPS method, the average composition of the ferrite film in any of the ferrite adhering bodies was Ni 0.2 Zn 0.3 Fe 2.5 O 4 . Other analysis results are shown in the table above.
  • ICPS inductively coupled plasma emission spectroscopy
  • the ferrite film in the ferrite adherents of Examples 1 to 4 is formed by magnetically coupling a plurality of columnar crystals having a major axis and a minor axis, and the major axis of each columnar crystal. Is along the film thickness direction of the ferrite film (that is, the normal direction of the surface of the substrate 3).
  • the length of the major axis a of the columnar crystal is in the range of 0.1 to 10 ⁇ m
  • the length of the minor axis b is 0.01 to 1 ⁇ m
  • the ratio ⁇ / x of ⁇ is 1 or less.
  • the average value of the real part ⁇ ′ of the permeability of the ferrite film is 10 or more.
  • the average value of the real part ⁇ ′ of the permeability of the ferrite film is smaller than 10.
  • the ferrite adherent according to the present invention can be used in high-frequency magnetic devices such as an inductance element, an impedance element, a magnetic head, a microwave element, a magnetostrictive element, and an electromagnetic interference suppressor.
  • the electromagnetic interference suppressor is for suppressing electromagnetic interference caused by interference of unnecessary electromagnetic waves in a high frequency region.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Compounds Of Iron (AREA)
  • Chemically Coating (AREA)

Abstract

 基体3とその基体3に付着したフェライト膜とを備えるフェライト付着体を製造する製造方法を提供する。この製造方法は、基体3の裏側に100μm以上のスペースを空けた状態で基体3を支持し、少なくとも第1鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを反応液ノズル1及び酸化液ノズル2から基体3の表側に供給し、反応液と前記酸化液に対して重力以外に起因する2~150m/sの加速度を加える。

Description

フェライト付着体及びその製造方法
 本発明は、基体にフェライト膜、特にスピネル型フェライト膜を付着してなるフェライト付着体と、フェライト付着体の製造方法に関する。
 フェライトメッキ法は、良質のフェライト膜を提供するものであり、例えば、特許文献1に開示されている。特許文献1のフェライトメッキ法は:少なくとも第1鉄イオンを含む特定水溶液を用意するステップと;基体の表面を特定水溶液に接触させて、Fe2+イオン又はFe2+イオンと他の水酸化金属イオンとを基体の表面に吸着させるステップと;吸着したFe2+イオンを酸化させることによりFe3+イオンを得て、Fe3+イオンと特定水溶液中の水酸化金属イオンとでフェライト結晶化反応を起こさせて、基体の表面にフェライト膜を形成するステップ;とを備えている。
 このフェライトメッキ法によれば、基体が水溶液に対して耐性を有している限り、あらゆる基体を用いることができる。また、フェライトメッキ法は水溶液を介した反応に基づいているため、比較的低温(常温~水溶液の沸点以下)でスピネル型のフェライト膜を生成することができる。従って、フェライトメッキ法は、他のフェライト膜形成技術と比較して、基体に対する限定が少ないという点で優れている。
 フェライトメッキ法に関連する文献としては、特許文献2~特許文献4がある。特許文献2は、形成されたフェライト膜の均質化及びフェライト膜の形成工程における反応速度の向上を図る技術を開示している。特許文献3は、基体表面に界面活性を付与して様々な基体に対してフェライト膜を形成しようとする技術を開示している。特許文献4は、フェライト膜の形成速度の向上に関する技術を開示している。
特許第1475891号(特公昭63-15990号)公報 特許第1868730号(特公平5-58252号)公報 特開昭61-030674号公報 特開平02-166311号公報
 上述したフェライトメッキ法において、フェライト膜は基体表面を基点とした結晶成長によって形成される。そのため、適切に形成されたフェライト膜は、基体表面の法線方向と略平行な方向に長軸を沿わせるようにして設けられた柱状結晶の集合体となる。
 しかしながら、フェライト膜の形成時に残分の水溶液などを基体からしっかりと除去しないと液だまりが発生する。この液だまりが生じると、均質な柱状結晶の集合体としてのフェライト膜を得ることは困難となる。特に、半導体装置用のリードフレームなどのような三次元形状の基体の場合、液だまりが生じやすく、従って、均質なフェライト膜を得ることは困難である。
 そこで、本発明は、フェライトメッキ法に基づいたフェライト膜付着体の製造方法であって均質なフェライト膜を有するフェライト膜付着体の製造方法を提供することを目的とする。
 また、本発明は、上記フェライト膜付着体の製造方法によって製造されたフェライト膜付着体を提供することを目的とする。
 本発明の一の側面は、基体と該基体に付着したフェライト膜とを備えるフェライト付着体を製造する製造方法を提供する。この製造方法は、前記基体の裏側に100μm以上のスペースを空けた状態で前記基体を支持し、少なくとも第1鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを前記基体の表側に供給し、前記反応液と前記酸化液に対して重力以外に起因する2~150m/sの加速度を加える工程を備えている。
 本発明の他の側面は、三次元形状の基体と該基体に付着したフェライト膜とを備えるフェライト付着体であって、前記フェライト膜の平均膜厚xと膜厚の標準偏差σの比σ/xが1以下であるフェライト付着体を提供する。
 基体を台などから100μm以上離し且つ基体に供給される反応液と酸化液とに重力以外に起因する2~150m/sの加速度を加えた状態でフェライト膜の柱状結晶を成長させることとしたため、液だまりの発生を防止することができ、均質なフェライト膜を得ることができる。
本発明の実施の形態によるフェライト膜付着体の製造方法において用いた成膜装置を模式的に示す図である。 本発明の実施の形態によるフェライト膜付着体の基体を模式的に示す図である。 応用例によるフェライト膜付着体の製造方法を模式的に示す図である。図である。
 1    反応液ノズル
 2    酸化液ノズル
 3    基体
 4    支持部材
 5    台(回転テーブル)
 6    フェライト膜
 本発明の実施の形態による基体とその基体に付着したフェライト膜とを備える付着体の製造方法は、図1に示されるような成膜装置を用いる。
 図示された成膜装置は、基体3に対してフェライト膜を形成するための装置であり、反応液ノズル1と、酸化液ノズル2と、支持部材4と、台(回転テーブル)5とを備えている。回転テーブル5は、その軸の周りに回転可能なテーブルである。支持部材4は、回転テーブル5の上に設置されており、基体3の裏側と回転テーブル5との間に100μm以上のスペースを空けた状態で基体3を支持するためのものである。この支持部材4は、基体3を支持した状態で、回転テーブル5の回転に伴って移動する。即ち、基体3は、回転テーブル5の回転に伴って移動する。反応液ノズル1は、少なくとも第1鉄イオンを含む反応液を回転テーブル5側に向けて供給するためのものであり、回転テーブル5の上方に固定されている。酸化液ノズル2は、少なくとも酸化剤を含む酸化液を回転テーブル5側に向けて供給するためのものであり、回転テーブル5の上方に固定されている。図示された成膜装置において、反応液ノズル1は、静止状態にある回転テーブル5の一方のハーフ領域上に位置しており、酸化液ノズル2は、静止状態にある回転テーブル5の他方のハーフ領域状に位置している。なお、図示された成膜装置において、反応液ノズル1及び酸化液ノズル2は、夫々、回転テーブル5に対して直交する方向を中心に噴霧するものである。即ち、反応液ノズル1及び酸化液ノズル2から噴霧される反応液及び酸化液の噴霧方向の中心線は、基体3の表面と直交する方向に沿っている。しかしながら、本発明はこれに限定されるものではなく、基体3並びに/又は反応液ノズル1及び酸化液ノズル2を傾けることにより、基体3の表面と斜交する方向に反応液及び酸化液を噴霧することとしても良い。
 基体3を支持部材4に支持させた状態で、反応液ノズル1から反応液を供給し且つ酸化液ノズル2から酸化液を供給しつつ回転テーブル5を回転させると、基体3には反応液と酸化液とが交互に供給されることとなる。その結果、基体3はフェライトメッキされる。即ち、基体3上にはフェライトメッキ法ベースのフェライト膜が形成される。
 本実施の形態における回転テーブル5の回転スピードは、基体3上に供給された反応液と酸化液とが遠心力に起因する2~150m/sの加速度を受けるように設定される。これにより、余分な反応液と酸化液は好ましくない「液だまり」を形成することなく基体3の表側から裏側などに移動する。特に、基体3が狭い隙間を有していたとしても、本実施の形態においては、余分な反応液と酸化液は、好ましくない「液だまり」を形成することなく、スムーズに流れる。このように、本実施の形態によれば、理想的な状態下でフェライトメッキ法を具現化することができることから、均質なフェライト膜を得ることができる。また、余分な反応液と酸化液とが基体3の裏側にも回り込むため、反応液と酸化液が直接供給された基体3の表側以外の場所にもフェライト膜を形成することができる。
 上述した実施の形態において、反応液と酸化液に加えられる加速度は回転テーブル5の回転に伴った遠心力に起因するものであった。しかしながら、本発明はこれに限定されるものではない。反応液と酸化液に加えられる加速度は、意図的に加えられた加速度(即ち、重力以外の加速度)であり、且つ、2~150m/sの大きさを有していればよい。例えば、他の加速度を加える手段としては、基体3に振動を加えることなどがある。
 本実施の形態において、反応液と酸化液の基体3への供給と加速度を加えることとは、実質的に同時に行われる。しかしながら、本発明はこれに限定されるものではない。余分な反応液と酸化液を除去できるのであれば、反応液と酸化液の供給直後に加速度を加えることとしても良いし、反応液の供給、加速度の供給、酸化液の供給、加速度の供給といったサイクルを繰り返し実行することとしても良い。
 余分な反応液と酸化液の流れをよりスムーズなものとし、液だまりの形成防止を確実なものとするには、基体3の形状及び大きさに以下のような限定を加えることが好ましい。例えば、単一の導体のように基体3が棒状の部位を有している場合、その棒状の部位の最大幅及び最大高さの双方とも5mm以下であることが好ましい。また、例えば、図2に示される櫛歯状の配線パターンのように基体3が隙間を空けて設けられた複数の棒状の部位を有している場合には、各棒状の部位の最大幅W及び最大高さHの双方とも5mm以下であり、且つ、隙間Sが100μm以上であることが好ましい。
 更に、上述したようにして基体3の表側に対してフェライト膜を直接形成した後、基体3を裏返し、基体の裏側3に対して同手法によりフェライト膜を直接形成することとしても良い。例えば、図3に示されるように、基体3の上面に反応液と酸化液とを供給しつつ適切な加速度を加えることで均質なフェライト膜(フェライトメッキ)6を形成し、その後、基体3を裏返して、基体3の下面に反応液と酸化液とを供給しつつ適切な加速度を加えることで均質なフェライト膜(フェライトメッキ)を形成することとしても良い。
 本実施の形態により形成されたフェライト膜(フェライトメッキ)は、長軸及び短軸を有する複数の柱状結晶を理想的に配列してなるものである。詳しくは、複数の柱状結晶は、長軸が基体3の表面の法線方向(即ち、フェライト膜の膜厚方向)に沿うようにして配列され、且つ、互いに磁気的に結合されている。特に、上面と側面のように隣接する二つの面に形成されたフェライト膜同士も互いに磁気的に結合している。また、柱状結晶の長軸aは0.1~10μmであり、短軸bは0.01~1μmである。更に、フェライト膜の平均膜厚xと膜厚の標準偏差σの比σ/xは1以下である。
 フェライト付着体の特性評価のため、以下の表に示すような様々な条件の下でフェライト付着体を形成した。ここで、実施例1~4は夫々本実施の形態による条件下で製造されたフェライト付着体であり、比較例1~5は夫々本実施の形態による条件ではない条件下で製造されたフェライト付着体である。
Figure JPOXMLDOC01-appb-T000001
 フェライト付着体の製造には、図1に示される前述の成膜装置を用いた。基体3は、銅合金からなるものであり、図3に示されるような構造とした。ここで、基体3の棒状の部位の長さLは30mmとした。実施例1~4及び比較例1~5の夫々用の基体3の棒状の部位の高さH及び幅W並びに棒状の部位間の隙間(線間距離)Sは、表に示した通りである。
 前処理として、この基体3を支持部材4の上に設置し、回転テーブル5を回転させた状態で、脱酸素イオン交換水を供給しつつ90℃まで加熱した。次に、成膜装置内に窒素ガスを導入し、脱酸素雰囲気を形成した。
 その後、反応液を反応液ノズル1から基体3上に供給するステップと、酸化液を酸化液ノズル2から基体3に供給するステップとを回転テーブル5を回転させた状態で行った。即ち、反応液を供給するステップと、酸化液を供給するステップとを交互に且つ繰り返し行った。反応液と酸化液の供給の際の流量は、いずれも40ml/minとした。ここで、反応液は、FeCl-4HO、NiCl-6HO、ZnClを脱酸素イオン交換水中に溶かして形成した。一方、酸化液は、NaNoとCHCOONHを脱酸素イオン交換水中に溶かして形成した。反応液及び酸化液は、例えば、US2009-0047507A1やUS2007-0231614A1などを参照して形成しても良い。
 反応液及び酸化液を基体3に供給する際には、回転テーブル5を表に記載された回転数で回転させ、反応液及び酸化液に対して同表に記載された加速度を加えた。なお、実施例2においては、図3に示すようにして、基体3の上面にフェライト膜6を形成した後、基体3を裏返し、下面にもフェライト膜6を形成した。この際、基体3と回転テーブル5との間には、200μmの空間を設けた。
 上記の工程の結果として、黒色のフェライト膜6が基体3上に形成された。このようにして形成されたフェライト付着体について、様々な解析を行った。具体的には、フェライト膜の化学組成は、誘電結合プラズマ発光分光(ICPS)法により評価した。膜厚の測定のような構造解析には、走査型電子顕微鏡(SEM)を使用した。各フェライト膜の透磁率は、シールディドループコイル法に基づいた透磁率計を用いて測定した。ICPS法による評価の結果、いずれのフェライト付着体におけるフェライト膜の平均的な組成もNi0.2Zn0.3Fe2.5であった。その他の解析結果は、前述の表に示される。
 表の内容から明らかなように、実施例1~4のフェライト付着体におけるフェライト膜は、長軸及び短軸を有する複数の柱状結晶を磁気結合してなるものであり、各柱状結晶の長軸はフェライト膜の膜厚方向(即ち、基体3の表面の法線方向)に沿っている。柱状結晶の長軸aの長さが0.1~10μmの範囲にあり、短軸bの長さが0.01~1μmであり、更に、フェライト膜の平均膜厚xと膜厚の標準偏差σの比σ/xは1以下である。このため、フェライト膜の透磁率の実数部μ′の平均値は10以上となっている。これに対して、比較例1~5のフェライト付着体においては、フェライト膜の透磁率の実数部μ′の平均値は10より小さい。このように、本実施の形態によれば、優れた磁気特性を有するフェライト膜を有するフェライト付着体を得ることができる。
 本発明によるフェライト付着体は、インダクタンス素子、インピーダンス素子、磁気ヘッド、マイクロ波素子、磁歪素子、及び電磁干渉抑制体などの高周波磁気デバイスにおいて用いることができる。ここで、電磁干渉抑制体とは、高周波領域において不要電磁波の干渉によって生じる電磁障害を抑制するためのものである。

Claims (12)

  1.  基体と該基体に付着したフェライト膜とを備えるフェライト付着体を製造する製造方法であって、
     前記基体の裏側に100μm以上のスペースを空けた状態で前記基体を支持し、
     少なくとも第1鉄イオンを含む反応液と少なくとも酸化剤を含む酸化液とを前記基体の表側に供給し、
     前記反応液と前記酸化液に対して重力以外に起因する2~150m/sの加速度を加える
    製造方法。
  2.  請求項1記載の製造方法であって、
     前記基体の支持は、台の上に支持部材を配置し、前記台と前記基体との間に前記スペースを確保した状態で前記支持部材によって前記基体を支持することにより、行われる
    製造方法。
  3.  請求項2記載の製造方法であって、
     前記加速度は、前記台を回転させることにより生じる遠心力に起因するものである
    製造方法。
  4.  請求項1又は請求項2記載の製造方法であって、
     前記加速度は、前記基体に振動を与えることにより生じるものである
    製造方法。
  5.  請求項1乃至請求項4のいずれかに記載の製造方法であって、
     前記基体は、棒状の部位を有しており、
     前記棒状の部位は、5mm以下の最大幅を有すると共に5mm以下の最大高さを有している
    製造方法。
  6.  請求項1乃至請求項5のいずれかに記載の製造方法であって、
     前記基体は、隙間を空けて設けられた複数の棒状の部位を有しており、
     前記棒状の部位の夫々は、5mm以下の最大幅を有すると共に5mm以下の最大高さを有しており、
     前記隙間は100μm以上である
    製造方法。
  7.  請求項1乃至請求項6のいずれかに記載の製造方法であって、
     前記基体の前記表側に対して前記反応液と前記酸化液を直接供給し且つ前記加速度を加えてフェライト膜を直接形成した後、前記基体の前記裏側に対して前記反応液と前記酸化液を直接供給し且つ前記加速度を加えてフェライト膜を直接形成する
    製造方法。
  8.  三次元形状の基体と該基体に付着したフェライト膜とを備えるフェライト付着体であって、前記フェライト膜の平均膜厚xと膜厚の標準偏差σの比σ/xが1以下であるフェライト付着体。
  9.  請求項8記載のフェライト付着体であって、
     前記基体は、少なくとも隣接する二つの面を備えており、
     前記フェライト膜は、前記二つの面の夫々の上に直接形成されており、
     前記二つの面の上に形成された前記フェライト膜は、互いに磁気的に結合している
    フェライト付着体。
  10.  請求項8又は請求項9記載のフェライト付着体であって、
     前記基体は、棒状の部位を有しており、
     前記棒状の部位は、5mm以下の最大幅を有すると共に5mm以下の最大高さを有している
    フェライト付着体。
  11.  請求項8又は請求項9記載のフェライト付着体であって、
     前記基体は、隙間を空けて設けられた複数の棒状の部位を有しており、
     前記棒状の部位の夫々は、5mm以下の最大幅を有すると共に5mm以下の最大高さを有しており、
     前記隙間は100μm以上である
    フェライト付着体。
  12.  請求項8乃至請求項11のいずれかに記載のフェライト付着体であって、
     前記フェライト膜は、長軸及び短軸を有し且つ前記長軸を前記フェライト膜の膜厚方向に沿うようにして並べてなる複数の柱状結晶からなり、
     前記柱状結晶の前記長軸は0.1~10μmであり、前記短軸は0.01~1μmである
    フェライト付着体。
PCT/JP2009/003584 2008-09-25 2009-07-29 フェライト付着体及びその製造方法 WO2010035383A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980136558XA CN102159749B (zh) 2008-09-25 2009-07-29 铁素体附着体及其制造方法
US13/121,108 US20110183130A1 (en) 2008-09-25 2009-07-29 Ferrite-provided body and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008245066 2008-09-25
JP2008-245066 2008-09-25

Publications (1)

Publication Number Publication Date
WO2010035383A1 true WO2010035383A1 (ja) 2010-04-01

Family

ID=41739256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003584 WO2010035383A1 (ja) 2008-09-25 2009-07-29 フェライト付着体及びその製造方法

Country Status (5)

Country Link
US (1) US20110183130A1 (ja)
JP (1) JP4410838B1 (ja)
KR (1) KR101596476B1 (ja)
CN (1) CN102159749B (ja)
WO (1) WO2010035383A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330077A (zh) * 2011-09-13 2012-01-25 南京航空航天大学 喷射化学镀加工多层膜的方法及装置
CN113070196B (zh) * 2021-03-01 2022-05-03 电子科技大学 一种改善旋转喷涂制备NiZn铁氧体薄膜性能的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245419A (ja) * 2005-03-04 2006-09-14 Nec Tokin Corp フェライト膜製造装置
JP2006351603A (ja) * 2005-06-13 2006-12-28 Nec Tokin Corp フェライト膜の製造装置
JP2008091974A (ja) * 2006-09-29 2008-04-17 Nec Tokin Corp アンテナおよびそれを用いたrfidタグ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392013A (en) * 1979-12-27 1983-07-05 Asahi Kasei Kogyo Kabushiki Kaisha Fine-patterned thick film conductor structure and manufacturing method thereof
JPS59111929A (ja) * 1982-12-15 1984-06-28 Masanori Abe フエライト膜作製方法
JPH11168010A (ja) * 1997-12-04 1999-06-22 Yamaha Corp マイクロインダクタ
JP2002015415A (ja) * 2000-06-29 2002-01-18 Fuji Photo Film Co Ltd 磁気ディスク
JP2005129766A (ja) * 2003-10-24 2005-05-19 Nec Tokin Corp プリント回路基板及びその製造方法
JP2005126776A (ja) * 2003-10-24 2005-05-19 Nec Tokin Corp 柱状結晶を有するフェライト膜、及びその製造方法
US7821371B2 (en) * 2005-11-01 2010-10-26 Kabushiki Kaisha Toshiba Flat magnetic element and power IC package using the same
JP2007250924A (ja) * 2006-03-17 2007-09-27 Sony Corp インダクタ素子とその製造方法、並びにインダクタ素子を用いた半導体モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245419A (ja) * 2005-03-04 2006-09-14 Nec Tokin Corp フェライト膜製造装置
JP2006351603A (ja) * 2005-06-13 2006-12-28 Nec Tokin Corp フェライト膜の製造装置
JP2008091974A (ja) * 2006-09-29 2008-04-17 Nec Tokin Corp アンテナおよびそれを用いたrfidタグ

Also Published As

Publication number Publication date
CN102159749A (zh) 2011-08-17
CN102159749B (zh) 2013-01-23
JP4410838B1 (ja) 2010-02-03
JP2010100928A (ja) 2010-05-06
KR101596476B1 (ko) 2016-02-22
US20110183130A1 (en) 2011-07-28
KR20110066149A (ko) 2011-06-16

Similar Documents

Publication Publication Date Title
JP6201153B2 (ja) 無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液並びに無電解ニッケル又はニッケル合金メッキ方法
US7438946B2 (en) Ferrite thin film, method of manufacturing the same and electromagnetic noise suppressor using the same
TW201335422A (zh) 無電鍍鎳或無電鍍鎳合金用的前處理液及電鍍方法
TW201319307A (zh) 無電鍍銅用前處理液及無電鍍銅方法
WO2014051061A1 (ja) めっき処理のための触媒粒子を担持する基板の処理方法
WO2010035383A1 (ja) フェライト付着体及びその製造方法
TW201621083A (zh) 金屬化基板表面的方法及具有金屬化表面的基板
JP6029047B2 (ja) 導電性材料の製造方法
US10294119B2 (en) Zinc ferrite film and method for manufacturing zinc ferrite film
JP4515336B2 (ja) フェライト膜の製造装置
JP4480016B2 (ja) フェライト膜製造装置
JP4997484B2 (ja) フェライト膜とその製造方法、およびそれを用いた電磁雑音抑制体
JP2005126776A (ja) 柱状結晶を有するフェライト膜、及びその製造方法
JP2005129766A (ja) プリント回路基板及びその製造方法
JP4110286B2 (ja) フェライト薄膜の軟磁気特性の評価方法、フェライト薄膜の製造方法
JP3926780B2 (ja) フェライト薄膜の製造方法
JP4521814B2 (ja) フェライト膜の製造装置
JP3964379B2 (ja) フェライト膜の製造装置
JP3957183B2 (ja) フェライト膜、及びその製造方法
JP4993382B2 (ja) フェライト膜の製造方法
JP2005298875A (ja) フェライト膜およびそれを用いた支持体、電子配線基板、および半導体集積ウェハ
JP4060789B2 (ja) フェライト膜の製造装置
JP4563056B2 (ja) フェライト薄膜及びその製造方法
JP4251482B2 (ja) 電磁干渉抑制体
JPWO2004099464A1 (ja) フェライト膜の形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136558.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117006568

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13121108

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09815805

Country of ref document: EP

Kind code of ref document: A1