WO2010032357A1 - 内燃機関用の燃料噴射弁 - Google Patents

内燃機関用の燃料噴射弁 Download PDF

Info

Publication number
WO2010032357A1
WO2010032357A1 PCT/JP2009/003571 JP2009003571W WO2010032357A1 WO 2010032357 A1 WO2010032357 A1 WO 2010032357A1 JP 2009003571 W JP2009003571 W JP 2009003571W WO 2010032357 A1 WO2010032357 A1 WO 2010032357A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable core
fixed core
core
diameter side
annular end
Prior art date
Application number
PCT/JP2009/003571
Other languages
English (en)
French (fr)
Inventor
安部 元幸
早谷 政彦
石川 亨
小渡 武彦
淳司 高奥
保夫 生井沢
入野裕介
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP09814203.7A priority Critical patent/EP2325473B1/en
Priority to US12/920,559 priority patent/US8991783B2/en
Publication of WO2010032357A1 publication Critical patent/WO2010032357A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • F02M2200/9061Special treatments for modifying the properties of metals used for fuel injection apparatus, e.g. modifying mechanical or electromagnetic properties

Definitions

  • the present invention relates to a fuel injection valve for an internal combustion engine, and more particularly, to a coating film structure formed on opposing surfaces of a fixed core and a movable core with a valve body.
  • an electromagnetic coil In a fuel injection valve used in an internal combustion engine for automobiles (hereinafter referred to as an “engine”), an electromagnetic coil, a valve body, and a fixed core whose end faces face each other at a set interval when the electromagnetic coil is not energized, and
  • the movable core includes a movable core and a spring (return spring) that urges the movable core and the valve body in the valve closing direction.
  • the electromagnetic coil When the electromagnetic coil is energized, the movable core is magnetically attracted toward the fixed core against the force of the spring, and the valve body moves toward the fixed core along with the magnetic attraction to open the valve.
  • the fuel from the fuel tank is supplied to the inside of the injection valve body via a fuel pump and a fuel supply system pipe, and when the valve is closed, the fuel flow from the inside of the hollow fixed core to the seat portion of the nozzle body
  • the road is filled with pressure.
  • the electromagnetic coil is energized by the fuel injection pulse, the valve is opened for the pulse energization time, and fuel is injected.
  • the movable core is returned together with the valve body in the valve closing direction by the force of the spring, and the valve body comes into contact with the seat, so that the valve is closed.
  • Enhance the response operation of the valve closing is an important factor for improving the control accuracy of the fuel amount of the solenoid valve.
  • the movable core is separated from the fixed core side by the fluid interposed between the opposed surfaces of the movable core and the fixed core. It is known that a fluid resistance force (force due to a squeeze effect) that tries to hinder the operation is generated. This fluid resistance force increases as the gap between the opposed surfaces of the movable core and the fixed core (so-called fluid gap) decreases.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-328891
  • a protrusion is provided on the surface of the movable core that faces the fixed core, and only this protrusion collides with the fixed core during magnetic attraction and other parts (non-collision). Part) ensures a fluid gap.
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-227257
  • at least one of the opposing surfaces of the movable core (armature) and the fixed core that is, upstream of the armature.
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-36696
  • an annular collision surface having a limited width collision surface with respect to a fixed core
  • the collision surface is movable. It is formed on the inner diameter side from the center when viewed in the width direction of the annular end surface of the core.
  • a technique has been proposed in which a tapered surface is formed on both the inner diameter side and the outer diameter side of the collision surface at the annular end surface, and the wear resistance plating is applied to the annular end surface.
  • the tapered surface by forming the tapered surface, the fluid gap between the opposed surfaces of the movable core and the fixed core other than the collision surface is increased to reduce the squeeze effect.
  • the gap between the opposed surfaces (magnetic attraction surfaces) of the movable core and the fixed core is preferably as small as possible from the viewpoint of magnetic attraction force, but the thickness of the plating is increased as described above. As a result, the magnetic gap, which is the sum of the protrusions and the film thickness, becomes large.
  • At least one of the opposing end faces of the movable core (armature) and the fixed core is provided with a hard plating part and a non-plating part.
  • the method of disposing the concavo-convex surface in the circumferential direction of the annular end face requires a complicated masking operation for the non-plated portion when forming the plated portion, and the plating film operation becomes complicated.
  • a collision part (annular protrusion or the like) partially limited to at least one of the opposed annular end surfaces of the fixed core and the movable core is provided.
  • a fuel injection valve for an internal combustion engine capable of improving valve closing response while maintaining durability (wear resistance) and valve opening response of a collision portion in the formed type of fuel injection valve. It is in.
  • the present invention is basically a fuel injection valve for an internal combustion engine using an electromagnetic valve, which has a fixed core and a movable core similar to those described above, and the movable core is fixed to the opposed annular end faces of these cores.
  • a collision part that collides when magnetically attracted to the side and a non-collision part for securing a fluid gap in an area on the outer diameter side or the inner diameter side from the collision part are provided.
  • the annular end surfaces of the fixed core and the movable core are coated with wear-resistant plating.
  • at least one of the fixed core and the movable core has a large thickness at the collision portion and a non-collision portion. It is characterized in that the film thickness is reduced.
  • the annular end surfaces of the fixed core and the movable core similar to the above are divided into an inner diameter side and an outer diameter side in the radial direction, and a wear-resistant plating formation area is formed on the inner diameter side.
  • a wear-resistant plating formation area is formed on the inner diameter side.
  • the height of the collision part (protrusion or taper top) formed on at least one annular end surface (opposing surface) of the movable core and the fixed core is reduced, and accordingly, A sufficient plating thickness can be secured at the collision portion.
  • the responsiveness (opening responsiveness) of the magnetic suction of the fuel injection valve (solenoid valve) can be maintained without expanding the magnetic gap between the opposing surfaces between the movable core and the fixed core.
  • FIG. 2 is a partially enlarged longitudinal sectional view showing the vicinity of the opposed annular end surface portions of the fixed core and the movable core in the longitudinal sectional view of FIG. 1.
  • the longitudinal cross-sectional view which expands and shows a part of annular end surface part of the movable core and fixed core of a fuel injection valve which concern on 1st Example of this invention.
  • the longitudinal cross-sectional view which expands and shows a part of cyclic
  • FIG. 1 is a longitudinal sectional view showing an example of a fuel injection valve to which the present invention is applied.
  • FIG. 2 is a portion of the longitudinal sectional view of FIG. It is an enlarged vertical sectional view.
  • the fuel injection valve main body 100 includes a hollow fixed core 107 having a fuel flow path 112 therein, a yoke 109 serving also as a housing, a nozzle body 104, a movable core 106, and a valve body 101.
  • the needle-shaped valve body 101 is inserted into the center hole of the bottomed cylindrical movable core 106 so that the movable core 106 and the valve body 101 of the present embodiment can move relative to each other in the axial direction.
  • a flange portion 101 ⁇ / b> A is provided integrally with the valve body on the upper side of the valve body 101, and the flange portion 101 ⁇ / b> A is supported on the inner bottom of the movable core 106.
  • a spring 110 for urging the valve body 101 in the valve closing direction that is, the seat portion 102A provided on the lower end side of the nozzle body 104, and an adjuster 113 for adjusting the spring load of the spring.
  • the spring 110 is interposed between the adjuster 113 and the upper surface of the flange 101 ⁇ / b> A of the valve body 101, and biases the valve body 101 with a force in the valve closing direction.
  • a buffer spring 114 is interposed between the outer bottom of the movable core 106 and the valve body guide member 105 fixed to the upper side of the nozzle body 104.
  • the buffer spring 114 is sufficiently smaller than the force of the spring 110.
  • valve body 101 When the movable core 106 is magnetically attracted toward the fixed core 107 by energization of the electromagnetic coil 108, the valve body 101 is lifted together with the movable core 106 to perform a valve opening operation.
  • the valve element 101 When the energization of the electromagnetic coil 108 is interrupted, the valve element 101 is pushed back in the valve closing direction (seat 102A side) by the force of the spring 110, and the movable core 106 is also pushed back via the flange 101A of the valve element 101. It moves with the valve body 101.
  • the fixed core 107, the yoke 109, and the movable core 106 are components of the magnetic circuit.
  • the yoke 109, the nozzle body 104, and the fixed core 107 are joined by welding.
  • An electromagnetic coil 108 shielded by a resin mold is incorporated in the yoke 109.
  • an orifice plate 102 provided with a sheet 102A and an orifice (not shown) serving as an injection hole is fixed by welding.
  • a movable core 106 Inside the nozzle body 104, a valve body 101, an upper side guide member 105 for guiding the movement of the valve body, and a lower side guide member 103 are incorporated.
  • the fuel passage in the injection valve includes an internal flow path 112 of the fixed core 107, a plurality of holes 106B provided in the movable core 106, a plurality of holes 105A provided in the guide member 105, the inside of the nozzle body 104, and a guide.
  • a plurality of holes 103 ⁇ / b> A provided in the member 103 are configured.
  • the resin cover 111 is provided with a connector part 111A for supplying an exciting current (pulse current) to the electromagnetic coil 108, and a part of the lead terminal 115 insulated by the resin cover 111 is located in the connector part 111A.
  • the electromagnetic coil 108 When the electromagnetic coil 108 is energized by the external drive circuit (not shown) via the lead terminal 115, the fixed core 107, the yoke 109, and the movable core 106 form a magnetic circuit, and the movable core 106 is the force of the spring 110.
  • the magnetic core is attracted against this and collides with the downstream end face of the fixed core 102.
  • the valve body 101 is also lifted by the movable core 106, is separated from the seat 102A, is opened, and the fuel in the injection valve body, which has been pressurized (10 MPa or more) in advance by an external high-pressure pump (not shown), It injects through an injection hole.
  • valve body 101 When the excitation of the electromagnetic coil 108 is turned off, the valve body 101 is pressed against the seat portion 102A side by the force of the spring 110, and the valve is closed. When the valve body 101 is closed, the valve body 101 collides with the seat portion 102A, but the movable core 106 moves somewhat relative to the valve body 101 against the buffer spring 114 due to inertia, and then the movable core 106 moves. The buffer spring 114 is returned to a position where it comes into contact with the flange portion 101A of the valve body 101. By such an operation, rebound of the valve body 101 at the time of a collision is suppressed.
  • FIG. 3 is an enlarged vertical sectional view of a main portion showing a part of the annular end surface portions of the movable core and the fixed core of the fuel injection valve according to the first embodiment of the present invention (in the vicinity indicated by symbol P in FIGS. 1 and 2).
  • FIG. 3 is an enlarged vertical sectional view of a main portion showing a part of the annular end surface portions of the movable core and the fixed core of the fuel injection valve according to the first embodiment of the present invention (in the vicinity indicated by symbol P in FIGS. 1 and 2).
  • FIG. 3 is an enlarged vertical sectional view of a main portion showing a part of the annular end surface portions of the movable core and the fixed core of the fuel injection valve according to the first embodiment of the present invention (in the vicinity indicated by symbol P in FIGS. 1 and 2).
  • FIG. 3 is an enlarged vertical sectional view of a main portion showing a part of the annular end surface portions of the movable core and the fixed core of the fuel injection valve according to the first embodiment
  • annular protrusion 106C serving as a collision portion for the fixed core 107 is provided on the annular end face 106A on the movable core 106 side.
  • the annular protrusion (collision portion) 106C is provided on the inner diameter side of the center position when viewed from the width direction of the annular end surface 106A.
  • FIG. 3 shows a state where the movable core 106 is magnetically attracted to the fixed core 107 side.
  • a non-collision part area for securing the fluid gap Gf is provided in the outer diameter side and inner diameter side areas from the annular projection 106C that is the collision part.
  • the annular end faces 107A and 106A of the fixed core 107 and the movable core 106 are coated with plating 30 and 31 having wear resistance.
  • the plating film is a nonmagnetic material, and is made of, for example, a hard chromium film or an electroless nickel film.
  • the thickness of the plating 30 on the fixed core 107 side is uniform, while the plating 31 on the movable core 106 side has the thickest film thickness t1 at the collision part (projection part) 106C and is outside the collision part. It is formed so that the thickness decreases continuously (gradient) toward the outer diameter Do side of the movable core so that the film thickness t1 ′ is thinner than t1 in the non-collision area.
  • the magnetic gap Gm when the valve is closed takes into account the distance between the movable core / fixed core collision portions.
  • the fluid gap Gf at the time of valve opening is a value obtained by subtracting the plating thickness from the magnetic gap Gm.
  • the non-collision part area is on the outer side (outer diameter side) than the collision part and is larger on the outer diameter side. For this reason, the force by the squeeze effect which acts on the area of a non-collision part is large, and it becomes the cause which reduces responsiveness.
  • the fluid gap Gf between the movable core and the fixed core of the non-collision portion outside the collision portion is such that the plating thickness t1 ′ of the non-collision portion is smaller than the plating thickness t1 of the collision portion (t1 ′). Continuously decreases), the relationship of fluid gap (Gf)> height h of the collision part (projection part) 106C is established.
  • the height h of the collision part is 10.
  • the plating thickness t1 of the collision part is in the range of 10-20 ⁇ m (here 15 ⁇ m)
  • the plating thickness t2 of the fixed core 107 is about 10 ⁇ m
  • the plating thickness of the non-collision part outside the collision part When t1 ′ is continuously decreased from the thickness of the collision portion toward the outer diameter of the movable core to be 5 ⁇ m or less at the outer diameter position, the magnetic gap Gm is preferably about 45 ⁇ m and the fluid gap is about 25 ⁇ m to 30 ⁇ m.
  • the fluid gap can be expanded by about 5 to 15 ⁇ m as compared with the case where the present invention is not used. Since the fluid resistance force due to the squeeze effect is proportional to the cube of the size of the fluid gap, an effect of reducing the force due to the squeeze effect can be obtained even when the fluid gap is increased by about 5 ⁇ m.
  • the fluid resistance force S F as shown in FIG. 6, the gap Gf between the opposed surfaces of the movable core and fixed core increases as the smaller (S F ⁇ 1 / Gf 3) , in this embodiment , because it reduces the fluid resistance force S F without increasing the magnetic gap Gm, it is possible to reduce the squeeze effect.
  • the magnetic gap Gm is magnetic attraction force G F is greater the smaller as shown in FIG. 5 (G F ⁇ 1 / Gm 2 ).
  • the operation responsiveness of the movable core from shutting off the energization of the electromagnetic coil to closing the valve can be improved, and the valve closing delay can be improved by 20% to 50% compared to the comparative example.
  • This improvement effect can contribute to the high dynamic range and high fuel pressure required for engines in recent years.
  • the magnetic gap is reduced by reducing the height of the collision part (projection part) while ensuring a sufficient thickness from the viewpoint of durability (magnetic attraction force). Conditions on the lake) and reducing the fluid gap (fluid resistance: reduced squeeze effect).
  • the method of changing the thickness of the plating is to increase the thickness of the plating electrode in the case of electrolytic plating such as hard chrome so that the plating current density is high and the plating current density is low at the thin thickness. What is necessary is just to set arrangement
  • the plating current density and the plating current energization time may be arbitrarily set according to the thickness of plating.
  • the structure of the annular protrusion 106C and the plating 31 in which the thickness of the plating changes as described above may be provided on the fixed core 107 side instead of the movable core side.
  • the annular protrusion 106C is provided on the outer diameter side of the center position when viewed from the width direction of the annular end face, and the plating 31 has a collision portion (annular protrusion) in the width direction of the annular end face. 106C) may be formed so that the film thickness continuously decreases from the inner diameter side.
  • 4 and 7 to 9 are longitudinal sectional views showing the main part of another embodiment of the present invention.
  • the same reference numerals as those in the embodiment described above indicate the same or common elements.
  • the fuel injection valve is in a closed state, that is, the upper body in which the movable core 106 is separated from the fixed core 107.
  • FIG. 4 shows a second embodiment of the present invention.
  • the plating 30 on the downstream-side annular end face 107A of the fixed core 107 is also the same as the movable core 106 side from the inner diameter side toward the outer diameter side.
  • the plating thickness is continuously reduced with a gradient.
  • the configuration other than the thickness of the plating 30 is the same as that of the first embodiment.
  • FIG. 7 is an enlarged vertical sectional view showing an essential part of a third embodiment of the present invention.
  • the collision portion 106F provided on the movable core 106 is formed by an annular portion 106F provided on the inner diameter side of the center position when viewed from the width direction of the annular end surface 106A.
  • the annular portion 106F is formed with a planar annular width between an outer taper 106D and an inner taper 106E described below.
  • At least a taper 106D that is inclined from the annular portion 106F toward the outer diameter of the movable core 106 in the direction opposite to the fixed core 107 is formed.
  • This taper forms a non-impact portion between the cores.
  • a plating 31 is formed on the taper 106D so that the film thickness continuously decreases from the collision part (annular part) 106F toward the outer diameter side.
  • the thickness of the plating 31 on the collision portion 106F and on the inner diameter side thereof is made thicker than that on the outer diameter side plating.
  • FIG. 8 is an enlarged vertical cross-sectional view of a main part showing a fourth embodiment of the present invention.
  • the structure of the collision part and the taper is reversed from that of the third example. That is, the collision portion provided in the movable core 106 is formed by an annular portion 106F ′ provided on the inner diameter side of the center position when viewed from the width direction of the annular end surface 106A.
  • the annular portion 106F ′ is formed with a planar annular width between an outer taper 106D ′ and an inner taper 106E ′ described below.
  • At least a taper 106E ′ inclined from the annular portion 106F ′ toward the inner diameter of the movable core 106 in the direction opposite to the fixed core 107 is formed.
  • the plating 31 is formed so that the film thickness continuously decreases from the collision part (annular part) 106F ′ toward the outer diameter side.
  • the movable core-side annular collision portions (106F, 106F ′) and taper portions (106D, 106D ′, 106E, 106E ′) shown in the third and fourth embodiments are fixed instead of the movable core. It may be provided on the core side.
  • FIG. 9 is an enlarged vertical sectional view showing the main part of the fifth embodiment of the present invention.
  • the collision portion (annular protrusion) 106C provided on the annular end surface 106A of the movable core 106 is provided on the inner diameter side of the center position as viewed from the width direction of the annular end surface.
  • the annular end surface 106A of the fixed core 107 and the movable core 106 is divided into an inner diameter side and an outer diameter side in the radial direction, and a wear-resistant plating formation area 31 is provided on the inner diameter side.
  • a non-plating area 41 is provided.
  • the plating 31 covers the annular projection 106 ⁇ / b> C that becomes a collision portion, and the non-collision area 41 is constituted by the non-plating area 41.
  • annular end surface 107A on the fixed core 107 side is also divided in the radial direction into an inner diameter side and an outer diameter side, and the inner diameter side is a plating formation area and the outer diameter side is a non-plating area.
  • Example and 106 C of collision parts may be provided in an outer diameter side rather than the center position seeing from the width direction of an annular end surface.
  • the annular end face 106A of the movable core 106 is divided into two parts in the radial direction, the inner diameter side and the outer diameter side.
  • a wear-resistant plating formation area 31 is provided on the inner diameter side, and a non-plating area 41 is provided on the outer diameter side.
  • the plating 31 covers the annular projection 106 ⁇ / b> C that becomes a collision portion, and the non-collision area 41 is constituted by the non-plating area 41.
  • the annular end surface 107A on the fixed core 107 side is also divided into an outer diameter side and an inner diameter side in the radial direction so that the inner diameter side is a plating formation area and the outer diameter side is a non-plating area.
  • the collision part plating reduces the magnetic gap by reducing the height of the collision part (projection part) while ensuring a sufficient thickness from the viewpoint of durability (magnetic attraction force). Conditions on the lake) and reducing the fluid gap (fluid resistance: reduced squeeze effect).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

燃料噴射弁において、固定コア・可動コア間の衝突部の耐久性(耐磨耗性)及び開弁応答性を維持しつつ、閉弁応答性を高める。 燃料噴射弁の可動コア106の環状端面106Aに、可動コアが固定コア107側に磁気吸引されると衝突する衝突部106Cと、この衝突部よりも外径側或いは内径側のエリアで流体ギャップを確保するための非衝突部とを設ける。固定コア及び可動コアの環状端面には、耐摩耗性を有するめっき30、31が被膜され、このめっきのうち、固定コア及び可動コアの少なくとも一方のめっきは、衝突部106Cで膜厚が厚く非衝突部で膜厚が薄くなるよう形成されている。

Description

内燃機関用の燃料噴射弁
 本発明は、内燃機関用の燃料噴射弁に係り、特に固定コアと弁体付きの可動コアの対向面に形成されるめっきの被膜構造に関する。
 自動車用内燃機関(以下、「エンジン」と称する)に用いられる燃料噴射弁においては、電磁コイルと、弁体と、電磁コイルの非通電時に端面同士が設定の間隔を保って対向する固定コア及び可動コアと、可動コア及び弁体を閉弁方向に付勢するスプリング(戻しばね)とを有する。可動コアは、電磁コイルが通電されるとスプリングの力に抗して固定コア側に磁気吸引され、この磁気吸引に伴って弁体が固定コア側に移動して弁を開く。
 噴射弁本体内部には、燃料ポンプ及び燃料供給系の配管を介して燃料タンクからの燃料が供給されており、閉弁時には中空の固定コアの内部からノズルボディのシート部に至るまでの燃料流路に加圧された状態で満たされている。燃料噴射パルスにより電磁コイルが通電されると、そのパルス通電時間だけ弁が開き、燃料が噴射される。電磁コイルの通電が遮断されると、スプリングの力で可動コアが弁体と共に閉弁方向に戻され、弁体がシートに接触することで、閉弁状態になる。
 この閉弁の応答動作を高めることは、電磁弁の燃料量の制御精度を高める上で重要な要素である。電磁コイルの通電が遮断して燃料噴射弁が閉弁するに際して、可動コアと固定コアとの対向面の間には、両対向面間に介在する流体により、可動コアが固定コア側から離れようとする動作を妨げようとする流体抵抗力(スクイーズ効果による力)が生じることが知られている。この流体抵抗力は、可動コア・固定コアの対向面間のギャップ(いわゆる流体ギャップ)が小さくなるほど大きくなる。
 従来より、このようなスクイーズ効果による力を低減するため、種々の提案がなされている。
 例えば、特許文献1(特開2003-328891号公報)においては、可動コアの固定コアに対する対向面に突起を設けて、この突起のみが磁気吸引時に固定コアに衝突し突起以外の部分(非衝突部)は、流体ギャップを確保するようにしている。
 また、このような突起に代えて、特許文献2(特開2006-22727号公報)においては、可動コア(アーマチャ)と固定コアとの対向面のうち、少なくとも一方の対向面(すなわちアーマチャの上流側端面と固定コアの下流側端面)に硬質めっき部と非めっき部とをコア端面に周方向に交互に設けることによりこの対向面を凹凸面とし、凸部の高さ分だけ凹部箇所に流体ギャップを確保している。
 さらに、特許文献3(特開2005-36696号公報)においては、可動コアの環状端面に部分的に限られた幅の環状の衝突面(固定コアに対する衝突面)を形成し、衝突面は可動コアの環状端面の幅方向にみて中心より内径側に形成する。さらに、環状端面における衝突面より内径側にも外径側にもテーパ面を形成し、この環状端面に耐摩耗性のめっきを施す技術が提案されている。この技術は、上記テーパ面を形成することで、衝突面以外の可動コアと固定コアとの対向面間の流体ギャップを大きくしてスクイーズ効果の低減を図っている。
特開2003-328891号公報 特開2006-22727号公報 特開2005-36696号公報
 特許文献1或いは3に記載のように、可動コアが固定コア側に磁気吸引されている時のスクイーズ効果を低減するため(換言すれば、固定コア・可動コア間の流体ギャップを大きくするため)、可動コアの固定コアに対する対向面に突起やテーパを設け、それにより、可動コアが磁気吸引時に固定コアに衝突する衝突部を部分的に限定した場合には、その衝突部の箇所に衝突荷重が集中する。そのため、可動コア及び固定コアの衝突部の耐久性(耐摩耗性)を図るために、衝突部の硬質めっき膜を比較的厚くする必要がある。一方、可動コアと固定コアとの対向面(磁気吸引面)の間の隙間は、磁気吸引力の観点からすればできるだけ小さい方が望ましいが、上記のようにめっきの膜厚を厚くしてしまうと、突起と膜厚の合計である磁気ギャップが大きくなってしまう。
 このような突起に代えて、特許文献2に示すように、可動コア(アーマチャ)と固定コアとの対向する環状端面のうち、少なくとも一方の対向面に硬質めっき部と非めっき部とを設けることにより環状端面の周方向に凹凸面を配置する方式は、めっき部を形成する場合に、非めっき部については煩雑なマスキングを施すなどの作業を必要とし、めっき被膜作業が煩雑化する。
 本願発明は、上記事情に鑑みてなされたものであり、基本的には、固定コア及び可動コアの対向する環状端面のうち、少なくとも一方に部分的に限られた衝突部(環状突起等)を形成したタイプの燃料噴射弁において、衝突部の耐久性(耐磨耗性)及び開弁応答性を維持しつつ、閉弁応答性を高めることができる内燃機関用の燃料噴射弁を提供することにある。
 本発明は、基本的には、電磁弁を用いた内燃機関用の燃料噴射弁において、前記同様の固定コア及び可動コアを有し、これらのコアの対向する環状端面に、可動コアが固定コア側に磁気吸引されると衝突する衝突部と、この衝突部よりも外径側或いは内径側のエリアで流体ギャップを確保するための非衝突部とが設けられている。さらに、固定コア及び可動コアの環状端面には、耐摩耗性を有するめっきが被膜され、このめっきのうち、固定コア及び可動コアの少なくとも一方のめっきは、衝突部で膜厚が厚く非衝突部で膜厚が薄くなるよう形成されていることを特徴とする。
 さらに、上記構成に代えて、前記同様の固定コア及び可動コアの環状端面を、半径方向にて内径側と外径側とに2分して、内径側に耐磨耗性のめっき形成エリアを設け、外径側に非めっきエリアを設ける。そして、前記めっきによりコア間の衝突部となる環状突起を被膜し、非めっきエリアにより非衝突部を構成したものを提案する。
 このような構成によれば、第1に、可動コア及び固定コアの少なくとも一方の環状端面(対向面)に形成される衝突部(突起或いはテーパ頂部)の高さを小さくして、その分、衝突部のめっき厚みを十分に確保できる。それにより、可動コア・固定コア間の対向面間の磁気ギャップを拡大することなく燃料噴射弁(電磁弁)の磁気吸引の応答性(開弁応答性)を維持しできる。さらに、対向する環状端面の衝突部以外のエリアのめっきの厚みを薄くしたり、非めっきエリアを設定して、流体ギャップを拡大し、スクイーズ効果の低減を図ることができる。
本発明の適用対象となる燃料噴射弁の一例を示す全体構成を示す縦断面図。 図2は、図1の縦断面図のうち、固定コアと可動コアの対向する環状端面部付近を示す部分拡大縦断面図。 本発明の第1実施例に係る燃料噴射弁の可動コアと固定コアの環状端面部の一部を拡大して示す縦断面図。 本発明の第2実施例に係る燃料噴射弁の可動コアと固定コアの環状端面部の一部を拡大して示す縦断面図。 固定コア及び可動コア間の磁気ギャップGmと磁気吸引力GFとの関係を示すグラフ。 固定コア及び可動コア間の流体ギャップGfと流体抵抗力SFとの関係を示すグラフ。 本発明の第3実施例を示す要部拡大縦断面図。 本発明の第4実施例を示す要部拡大縦断面図。 本発明の第5実施例を示す要部拡大縦断面図。
 本発明の好ましい実施形態を図面に示した実施例により説明する。
 図1は、本発明の適用対象となる燃料噴射弁の一例を示す縦断面図、図2は、図1の縦断面図のうち、固定コアと可動コアの対向する環状端面部付近を示す部分拡大縦断面図である。
 燃料噴射弁本体100は、内部に燃料流路112を有する中空の固定コア107、ハウジングを兼ねるヨーク109、ノズルボディ104、可動コア106、及び弁体101を有する。本実施例の可動コア106と弁体101とは、軸方向に相対移動ができるようにニードル状の弁体101が有底円筒状の可動コア106の中心孔に挿通される。弁体101の上部側には鍔部101Aが弁体と一体に設けられ、鍔部101Aは、可動コア106の内底に支持されている。
 固定コア107の内部には、弁体101を閉弁方向、すなわちノズルボディ104の下端側に設けたシート部102A側に付勢するスプリング110とそのスプリングのばね荷重を調整するアジャスタ113が設けられている。スプリング110は、アジャスタ113と弁体101の鍔部101Aの上面との間に介在して、弁体101に閉弁方向の力を付勢する。
 可動コア106の外底とノズルボディ104の上部側に固定した弁体ガイド部材105との間には、緩衝スプリング114が介在している。この緩衝スプリング114は、スプリング110の力より充分に小さくしてある。
 可動コア106が、電磁コイル108の通電により固定コア107側に磁気吸引されると、弁体101は可動コア106と共に引き上げられ開弁動作を行う。また、電磁コイル108の通電が遮断されると、スプリング110の力で弁体101が閉弁方向(シート102A側)に押し戻され、可動コア106も弁体101の鍔部101Aを介して押し戻し力
を受け弁体101と共に移動する。
 固定コア107、ヨーク109、可動コア106は、磁気回路の構成要素となる。
 ヨーク109とノズルボディ104と固定コア107とは、溶接により結合される。ヨーク109内には樹脂モールドによりシールドされた電磁コイル108が組み込まれる。
 ノズルボディ104の先端には、シート102Aと噴射孔となるオリフィス(図示省略)とが設けられたオリフィスプレート102が溶接により固定されている。ノズルボディ104の内部には、可動コア106、弁体101、弁体の移動を案内する上部側ガイド部材105、下部側ガイド部材103とが組み込まれている。
 噴射弁内の燃料通路は、固定コア107の内部流路112と、可動コア106に設けた複数の孔106Bと、ガイド部材105に設けた複数の孔105Aと、ノズルボディ104の内部と、ガイド部材103に設けた複数の孔103Aとで構成される。
 樹脂カバー111には、電磁コイル108に励磁電流(パルス電流)を供給するコネクタ部111Aが設けられ、樹脂カバー111により絶縁されたリード端子115の一部がコネクタ部111Aに位置する。
 このリード端子115を介して、外部駆動回路(図示せず)により電磁コイル108を通電すると、固定コア107、ヨーク109及び可動コア106が磁気回路を形成し、可動コア106は、スプリング110の力に抗して磁気吸引され、固定コア102の下流側端面に衝突する。この時、弁体101も可動コア106によって引き上げられ、シート102Aから離れ開弁状態になり、外部高圧ポンプ(図示せず)で予め昇圧(10MPa以上)されている噴射弁本体内の燃料が、噴射孔を介して噴射する。
 電磁コイル108の励磁をオフすると、スプリング110の力で弁体101がシート部102A側に押し付けられ閉弁状態になる。弁体101の閉弁時に、弁体101がシート部102Aに衝突するが、可動コア106が慣性により緩衝ばね114に抗して幾分弁体101に対して相対移動しその後に可動コア106が緩衝ばね114の力で弁体101の鍔部101Aに接触する位置まで戻される。このような動作により、衝突時の弁体101のリバウンドが抑制される。
 ここで、図2に示す固定コア107の下流側の環状端面107Aと可動コア106の上流側の環状端面106Aの構造例の実施例を、図3~9を用いて説明する。
 図3は本発明の第1実施例に係る燃料噴射弁の可動コアと固定コアの環状端面部の一部(図1及び図2の符号Pで示す付近)を拡大して示す要部拡大縦断面図である。
 本実施例では、固定コア107及び可動コア106の対向する環状端面107A,106Aのうち、可動コア106側の環状端面106Aに固定コア107に対する衝突部となる環状突起106Cを設ける。この環状突起(衝突部)106Cは、環状端面106Aの幅方向からみて中央位置よりも内径側に設けてある。図3は、可動コア106が固定コア107側に磁気吸引されている状態を示している。衝突部である環状突起106Cよりも外径側及び内径側のエリアで流体ギャップGfを確保するための非衝突部のエリアが設けられる。
 固定コア107及び可動コア106の環状端面107A,106Aには、耐摩耗性を有するめっき30、31が被膜される。めっき被膜は、非磁性材料であり、例えば硬質クロム被膜或いは無電解ニッケル被膜よりなる。本実施例では、固定コア107側のめっき30の厚みは均一とし、一方、可動コア106側のめっき31は、衝突部(突起部)106Cでの膜厚t1が最も厚く、衝突部より外側の非衝突部のエリアで膜厚t1´がt1よりも薄くなるように、可動コアの外径Do側に向けて連続的(勾配状)に厚みが減少するよう形成されている。
 可動コア106が固定コア107に磁気吸引された時(開弁時)の磁気ギャップGmは、衝突部106C(突起部)の高さhと、衝突部上の可動コア106側のめっきの厚みt1及びこれに対応する固定コア107側のめっき厚みt2との合計の和(Gm=h+t1+t2)で表される。閉弁時の磁気ギャップGmは、これに可動コア・固定コアの衝突部間の離れた距離が加味される。また、開弁時の流体ギャップGfは、磁気ギャップGmからめっきの厚みを減算した値である。本実施例では、非衝突部の大部分のエリアは、衝突部よりも外側(外径側)にあり、外径側であるために面積が大きい。このため、非衝突部の面積に作用するスクイーズ効果による力は大きく、応答性を低下させる原因となっている。この衝突部より外側にある非衝突部の可動コア・固定コア間の流体ギャップGfは、非衝突部のめっきの厚みt1´を衝突部のめっきの厚みt1よりも小さくしてあるので(t1´は連続的に減少する)、流体ギャップ(Gf)>衝突部(突起部)106Cの高さhの関係が成立する。
 具体的な数値的な一例をあげると、例えば可動コア106の外径が10mm程度、内径が5mm程度、環状端面の幅Wが約2.5mm程度である場合、衝突部の高さhを10~25μmの範囲(ここでは20μm)、衝突部のめっき厚みt1を10~20μmの範囲(ここでは15μm)、固定コア107のめっき厚みt2を10μm程度、衝突部より外側の非衝突部のめっき厚みt1´を衝突部の厚みから可動コア外径に向けて連続的に減少させて外径位置で5μm以下とすると、磁気ギャップGmは45μm程度、流体ギャップは25μm~30μm程度とすると良い。このような寸法関係にすることで、本発明を用いない場合と比較して5~15μm程度流体ギャップを拡大することが出来る。スクイーズ効果による流体抵抗力は、流体ギャップの大きさの3乗に比例するため、5μm程度の流体ギャップの拡大であってもスクイーズ効果による力を低減する効果が得られる。
 これに対して、可動コア106のめっき厚みを、全域にわたって衝突部の上記の厚みt1と略同一(均一)とした場合(比較例)には、流体ギャップGfは、Gf=h(衝突部の高さ)の関係が成立するので、可動コア以外の数値的条件を上記同様にした場合には、流体ギャップGfは、20μmとなり、上記実施例の流体ギャップ(25~30μm)よりも小さくなるので、スクイーズ効果(流体抵抗力)Sが増大してしまう結果を招く。
 ここで、この流体抵抗力Sは、図6に示すように、可動コア・固定コアの対向面間のギャップGfが小さくなるほど大きくなるが(S∝1/Gf)、本実施例では、磁気ギャップGmを増やすことなく流体抵抗力Sを減少させるので、スクイーズ効果を減らすことができる。ちなみに、磁気ギャップGmは、図5に示すように小さいほど磁気吸引力Gが大きくなる(G∝1/Gm)。
 本実施例によれば、電磁コイルの通電を遮断してから閉弁までの可動コアの動作応答性を改善でき、閉弁遅れを比較例に比べて20%~50%改善できた。この改善効果は、特に近年のエンジンに要求されている高ダイナミックレンジ化、高燃料圧力に貢献できる。
 特に本実施例によれば、衝突部のめっきについては、耐久性の観点から十分な厚みを確保しつつ、衝突部(突起部)の高さを小さくして磁気ギャップを減少させ(磁気吸引力湖上)、且つ流体ギャップを減少させる(流体抵抗力:スクイーズ効果低減)条件を満足させることができる。
 めっきの厚みを変える工法は、膜厚の厚くしたい所は、硬質クロムなどの電解めっきの場合、めっき電流密度が高くなり且つ膜厚の薄い所はめっき電流密度が低くなるように、めっき電極の配置を設定すればよい。例えばめっき電極のうち一方の電極(被めっき部材側に配置される電極)と被めっき箇所との位置関係は、めっきの厚みを厚くする箇所を薄くする箇所よりも電極に近くなるように、電極を配置すれば良いので、めっき作業に煩雑さが伴うことはない。めっき電流密度やめっき電流通電時間は、めっきの厚みに応じて任意に設定すればよい。
 なお、環状突起106C及びめっきの厚みが上記のように変わるめっき31の構造を、可動コア側に代えて固定コア107側に設けてもよい。また、環状突起106Cを、上記第1実施例とは逆に、環状端面の幅方向からみて中央位置よりも外径側に設け、めっき31は、この環状端面の幅方向において衝突部(環状突起106C)から内径側に向けて連続的に膜厚が減少するよう形成してもよい。
 図4、図7~図9は本発明の他の実施例を示す要部縦断面図であり、既述した実施例と同一符号は、同一或いは共通する要素を示すものである。なお、図4、図7~図9においては、燃料噴射弁は閉弁状態、すなわち可動コア106が固定コア107から離れた上体を示している。
 図4は、本発明の第2実施例であり、本実施例では、固定コア107の下流側環状端面107Aのめっき30についても、内径側から外径側に向けて、可動コア106側同様にめっきの厚みを、勾配を伴って連続的に減少させている。めっき30の厚み以外の構成については、第1実施例同様の構成である。
 図7は、本発明の第3実施例を示す要部拡大縦断面図である。
 本実施例では、可動コア106に設けた衝突部106Fは、環状端面106Aの幅方向か
らみて中央位置よりも内径側に設けられた環状部106Fにより形成される。なお、この環状部106Fは、以下に述べる外側テーパ106Dと内側テーパ106Eとの間に平面の環状幅をもって形成されている。
 少なくとも、この環状部106Fから可動コア106の外径に向けて固定コア107と反対方向に傾斜するテーパ106Dが形成される。このテーパによりコア間の非衝突部が構成される。このテーパ106D上に衝突部(環状部)106Fから外径側に向けて膜厚が
連続的に減少するようなめっき31が形成されている。衝突部106F上及びそれよりも内径側のめっき31の厚みは、外径側めっきよりも厚くしてある。
 図8は、本発明の第4実施例を示す要部拡大縦断面図である。
 本実施例では、衝突部及びテーパ(被衝突部)の構造については、第3実施例と逆にしてある。すなわち、可動コア106に設けた衝突部は、環状端面106Aの幅方向からみて中央位置よりも内径側に設けられた環状部106F´により形成される。なお、この環状部106F´は、以下に述べる外側テーパ106D´と内側テーパ106E´との間に平面の環状幅をもって形成されている。
 少なくとも、この環状部106F´から可動コア106の内径に向けて固定コア107と反対方向に傾斜するテーパ106E´が形成される。このテーパ106上に衝突部(環状部)106F´から外径側に向けて膜厚が連続的に減少するようめっき31が形成されている。
 なお、第3実施例、第4実施例で示した可動コア側の環状の衝突部(106F、106F´)、テーパ部(106D、106D´、106E、106E´)を、可動コアに代えて固定コア側に設けてもよい。
 図9は、本発明の第5実施例を示す要部拡大縦断面図を示すものである。
 本実施例では、可動コア106の環状端面106Aに設けた衝突部(環状突起)106Cは、環状端面の幅方向からみて中央位置よりも内径側に設けられる。
 固定コア107及び可動コア106の環状端面106Aには、半径方向にて内径側と外径側とに2分して、内径側に耐磨耗性のめっき形成エリア31が設けられ、外径側に非めっきエリア41が設けられる。めっき31により、衝突部となる環状突起106Cが被膜され、非めっきエリア41により非衝突部が構成されている。
 また、固定コア107側の環状端面107Aも半径方向にて内径側と外径側に2分して、内径側をめっき形成エリア、外径側を非めっきエリアとしてある。
 なお、第5実施例に代えて、衝突部(環状突起)106Cは、環状端面の幅方向からみて中央位置よりも外径側に設けてもよい。この場合にも、可動コア106の環状端面106Aを、半径方向にて内径側と外径側とに2分する。そして内径側に耐磨耗性のめっき形成エリア31を設け、外径側に非めっきエリア41を設ける。めっき31により、衝突部となる環状突起106Cが被膜され、非めっきエリア41により非衝突部が構成されている。また、この場合には、固定コア107側の環状端面107Aも半径方向にて外径側と内径側に2分して、内径側をめっき形成エリア、外径側を非めっきエリアとする。
 上記各実施例における構成でも、衝突部のめっきについては、耐久性の観点から十分な厚みを確保しつつ、衝突部(突起部)の高さを小さくして磁気ギャップを減少させ(磁気吸引力湖上)、且つ流体ギャップを減少させる(流体抵抗力:スクイーズ効果低減)条件を満足させることができる。
30,31…めっき、100…燃料噴射弁、101…弁体、106…可動コア、106A…可動コア側の環状端面、106C…環状突起(衝突部)、106D,106E…テーパ、106F…衝突部、107…固定コア、107A…固定コア側の環状端面。

Claims (7)

  1.  電磁コイルと、弁体と、前記弁体の動作方向に配置され前記電磁コイルの非通電時に環状の端面同士が設定の間隔を保って対向する固定コア及び可動コアと、前記可動コアを前記弁体の閉じ方向に付勢するスプリングと、を有し、前記可動コアは、前記電磁コイルが通電されると前記スプリングの力に抗して前記固定コア側に磁気吸引され、この磁気吸引に伴って前記弁体が前記固定コア側に移動して弁を開く内燃機関用の燃料噴射弁において、
     前記固定コア及び可動コアの対向する環状端面に、前記可動コアが前記固定コア側に磁気吸引されると衝突する衝突部と、この衝突部よりも外径側或いは内径側のエリアで流体ギャップを確保するための非衝突部とが設けられ、
     前記固定コア及び可動コアの環状端面には、耐摩耗性を有するめっきが被膜され、このめっきのうち、前記固定コア及び可動コアの少なくとも一方のめっきは、前記衝突部で膜厚が厚く前記非衝突部で膜厚が薄くなるよう形成されていることを特徴とする内燃機関用の燃料噴射弁。
  2.  前記固定コア及び可動コアの対向する環状端面の少なくとも一方に設けた前記衝突部は、前記環状端面の幅方向からみて中央位置よりも内径側に設けられた環状突起により形成され、
     前記めっきは、この環状端面の幅方向において前記衝突部から外径側に向けて連続的に膜厚が減少するよう形成されている請求項1記載の内燃機関用の燃料噴射弁。
  3.  前記固定コア及び可動コアの対向する環状端面の少なくとも一方に設けた前記衝突部は、前記環状端面の幅方向における中央位置よりも外径側に設けられた環状突起により形成され、
     前記めっきは、この環状端面の幅方向において前記衝突部から内径側に向けて連続的に膜厚が減少するよう形成されている請求項1記載の内燃機関用の燃料噴射弁。
  4.  前記固定コア及び可動コアの対向する環状端面の少なくとも一方に設けた前記衝突部は、前記環状端面の幅方向からみて中央位置よりも内径側に設けられた環状部により形成され、
     少なくとも、この環状部から前記可動コアの外径に向けて前記固定コアと反対方向に傾斜するテーパが形成され、このテーパにより前記非衝突部が構成され、このテーパ上に前記衝突部から外径側に向けて膜厚が連続的に減少するよう前記めっきが形成されている請求項1記載の内燃機関用の燃料噴射弁。
  5.  前記固定コア及び可動コアの対向する環状端面の少なくとも一方に設けた前記衝突部は、前記環状端面の幅方向からみて中央位置よりも外径側に設けられた環状部により形成され、
     少なくとも、この環状部から前記可動コアの内径に向けて前記固定コアと反対方向に傾斜するテーパが形成され、このテーパにより前記非衝突部が構成され、このテーパ上に前記衝突部から内径側に向けて膜厚が連続的に減少するよう前記めっきが形成されている請求項1記載の内燃機関用の燃料噴射弁。
  6.  電磁コイルと、弁体と、前記弁体の動作方向に配置され前記電磁コイルの非通電時に環状の端面同士が設定の間隔を保って対向する固定コア及び可動コアと、前記可動コアを前記弁体の閉じ方向に付勢するスプリングと、を有し、前記可動コアは、前記電磁コイルが通電されると前記スプリングの力に抗して前記固定コア側に磁気吸引され、この磁気吸引に伴って前記弁体が前記固定コア側に移動して弁を開く内燃機関用の燃料噴射弁において、
     前記固定コア及び可動コアの対向する環状端面に、前記可動コアが前記固定コア側に磁気吸引されると衝突する衝突部と、この衝突部よりも内径側のエリアで流体ギャップを確保するための非衝突部とが設けられ、
     前記固定コア及び可動コアの対向する環状端面の少なくとも一方に設けた前記衝突部は、前記環状端面の幅方向からみて中央位置よりも内径側に設けられた環状突起により形成され、
     前記固定コア及び可動コアの環状端面には、半径方向にて内径側と外径側とに2分して、内径側に耐磨耗性のめっき形成エリアが設けられ、外径側に非めっきエリアが設けられ、前記めっきにより前記衝突部となる前記環状突起が被膜され、前記非めっきエリアにより前記非衝突部が構成されていることを特徴とする内燃機関用の燃料噴射弁。
  7.  電磁コイルと、弁体と、前記弁体の動作方向に配置され前記電磁コイルの非通電時に環状の端面同士が設定の間隔を保って対向する固定コア及び可動コアと、前記可動コアを前記弁体の閉じ方向に付勢するスプリングと、を有し、前記可動コアは、前記電磁コイルが通電されると前記スプリングの力に抗して前記固定コア側に磁気吸引され、この磁気吸引に伴って前記弁体が前記固定コア側に移動して弁を開く内燃機関用の燃料噴射弁において、
     前記固定コア及び可動コアの対向する環状端面に、前記可動コアが前記固定コア側に磁気吸引されると衝突する衝突部と、この衝突部よりも外径側のエリアで流体ギャップを確保するための非衝突部とが設けられ、
     前記固定コア及び可動コアの対向する環状端面の少なくとも一方に設けた前記衝突部は、前記環状端面の幅方向からみて中央位置よりも外径側に設けられた環状突起により形成され、
     前記固定コア及び可動コアの環状端面には、半径方向にて内径側と外径側とに2分して、外径側に耐磨耗性のめっき形成エリアが設けられ、内径側に非めっきエリアが設けられ、前記めっきにより前記衝突部となる前記環状突起が被膜され、前記非めっきエリアにより前記非衝突部が構成されていることを特徴とする内燃機関用の燃料噴射弁。
PCT/JP2009/003571 2008-09-17 2009-07-29 内燃機関用の燃料噴射弁 WO2010032357A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09814203.7A EP2325473B1 (en) 2008-09-17 2009-07-29 Fuel injection valve for internal combustion engine
US12/920,559 US8991783B2 (en) 2008-09-17 2009-07-29 Fuel injection valve for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-237501 2008-09-17
JP2008237501A JP5048617B2 (ja) 2008-09-17 2008-09-17 内燃機関用の燃料噴射弁

Publications (1)

Publication Number Publication Date
WO2010032357A1 true WO2010032357A1 (ja) 2010-03-25

Family

ID=42039210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003571 WO2010032357A1 (ja) 2008-09-17 2009-07-29 内燃機関用の燃料噴射弁

Country Status (4)

Country Link
US (1) US8991783B2 (ja)
EP (1) EP2325473B1 (ja)
JP (1) JP5048617B2 (ja)
WO (1) WO2010032357A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018083795A1 (ja) * 2016-11-07 2019-02-14 三菱電機株式会社 燃料噴射弁
WO2020145112A1 (ja) * 2019-01-08 2020-07-16 株式会社デンソー 燃料噴射弁
JP7482073B2 (ja) 2021-03-22 2024-05-13 日立Astemo株式会社 電磁式燃料噴射弁

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246789A (ja) * 2011-05-25 2012-12-13 Denso Corp 燃料噴射弁
DE102012204753A1 (de) * 2012-03-26 2013-09-26 Robert Bosch Gmbh Verfahren zur Herstellung eines Magnetventils
JP5982210B2 (ja) * 2012-07-27 2016-08-31 日立オートモティブシステムズ株式会社 電磁式燃料噴射弁
DE102012217322A1 (de) 2012-09-25 2014-06-12 Robert Bosch Gmbh Einspritzventil
GB201400625D0 (en) * 2014-01-15 2014-03-05 Delphi Tech Holding Sarl Actuator having an armature with integral spacer
US10190555B2 (en) 2014-03-14 2019-01-29 Hitachi Automotive Systems, Ltd. Electromagnetic valve
DE102014220100B3 (de) * 2014-10-02 2016-01-28 Continental Automotive Gmbh Kraftstoffeinspritzventil und Verfahren zum Herstellen eines solchen
GB201513847D0 (en) * 2015-08-05 2015-09-16 Delphi Int Operations Luxembourg Sarl Actuator arrangement
JP6605371B2 (ja) * 2016-03-14 2019-11-13 日立オートモティブシステムズ株式会社 電磁ソレノイド及び燃料噴射弁
DE102016222912A1 (de) * 2016-11-21 2018-05-24 Robert Bosch Gmbh Injektorbauteil mit Beschichtung, Injektor sowie Vorrichtung zum Beschichten
JP2018159294A (ja) * 2017-03-22 2018-10-11 株式会社ケーヒン 燃料噴射弁
DE102017222947A1 (de) * 2017-12-15 2019-06-19 Robert Bosch Gmbh Elektromagnetisch betätigbares Einlassventil und Kraftstoff-Hochdruckpumpe
JP6788085B1 (ja) * 2019-09-20 2020-11-18 株式会社ケーヒン 電磁式燃料噴射弁
JP7499205B2 (ja) 2021-03-22 2024-06-13 日立Astemo株式会社 ガス燃料用噴射弁

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328891A (ja) 2002-05-15 2003-11-19 Denso Corp 燃料噴射装置
JP2005036696A (ja) 2003-07-18 2005-02-10 Hitachi Ltd 電磁駆動式燃料噴射弁
JP2006022727A (ja) 2004-07-08 2006-01-26 Aisan Ind Co Ltd 燃料噴射弁
JP2006266231A (ja) * 2005-03-25 2006-10-05 Aisan Ind Co Ltd 燃料噴射弁

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4421935A1 (de) * 1993-12-09 1995-06-14 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
BR9406079A (pt) * 1993-12-09 1996-01-16 Bosch Gmbh Robert Válvula acionável eletromagneticamente
DE19654322C2 (de) * 1996-12-24 1999-12-23 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
DE10039083A1 (de) * 2000-08-10 2002-02-21 Bosch Gmbh Robert Brennstoffeinspritzventil
US7354027B2 (en) * 2002-12-13 2008-04-08 Robert Bosch Gmbh Bounce-free magnet actuator for injection valves
JP4168448B2 (ja) * 2004-07-08 2008-10-22 株式会社デンソー 燃料噴射弁
US8104698B2 (en) * 2006-09-25 2012-01-31 Hitachi, Ltd. Fuel injection valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328891A (ja) 2002-05-15 2003-11-19 Denso Corp 燃料噴射装置
JP2005036696A (ja) 2003-07-18 2005-02-10 Hitachi Ltd 電磁駆動式燃料噴射弁
JP2006022727A (ja) 2004-07-08 2006-01-26 Aisan Ind Co Ltd 燃料噴射弁
JP2006266231A (ja) * 2005-03-25 2006-10-05 Aisan Ind Co Ltd 燃料噴射弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2325473A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018083795A1 (ja) * 2016-11-07 2019-02-14 三菱電機株式会社 燃料噴射弁
WO2020145112A1 (ja) * 2019-01-08 2020-07-16 株式会社デンソー 燃料噴射弁
JP2020112044A (ja) * 2019-01-08 2020-07-27 株式会社デンソー 燃料噴射弁
CN113260781A (zh) * 2019-01-08 2021-08-13 株式会社电装 燃料喷射阀
JP7338155B2 (ja) 2019-01-08 2023-09-05 株式会社デンソー 燃料噴射弁
JP7482073B2 (ja) 2021-03-22 2024-05-13 日立Astemo株式会社 電磁式燃料噴射弁

Also Published As

Publication number Publication date
EP2325473B1 (en) 2015-09-09
JP2010071123A (ja) 2010-04-02
EP2325473A4 (en) 2011-11-09
US20110155103A1 (en) 2011-06-30
JP5048617B2 (ja) 2012-10-17
US8991783B2 (en) 2015-03-31
EP2325473A1 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP5048617B2 (ja) 内燃機関用の燃料噴射弁
JP4591593B2 (ja) 燃料噴射弁
JP3864175B2 (ja) 電磁操作式の弁
JP4755619B2 (ja) 電磁操作式の弁
JP4483940B2 (ja) 燃料噴射弁
JP5178683B2 (ja) 電磁式燃料噴射弁
EP2570648B1 (en) Electromagnetic fuel-injection valve
JP5537472B2 (ja) 燃料噴射装置
JP2012172594A (ja) 燃料噴射装置
JP4577654B2 (ja) 電磁駆動装置およびこれを用いた燃料噴射弁
JP2007154855A (ja) 燃料噴射弁
JP4038462B2 (ja) 燃料噴射弁
CN109196216B (zh) 燃料喷射装置
JP3923935B2 (ja) 燃料噴射弁
JP2010203375A (ja) 燃料噴射弁
JPH0550638B2 (ja)
JP2017137873A (ja) 燃料噴射装置
JP4285701B2 (ja) 燃料噴射弁
US6682046B2 (en) Fuel injection valve
CN108779747B (zh) 燃料喷射装置
JP6453381B2 (ja) 燃料噴射装置
CN111356835B (zh) 燃料喷射阀
JP2008095531A (ja) 電磁式燃料噴射弁
JP2009236095A (ja) 燃料噴射装置
JP5285379B2 (ja) ガス燃料用インジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009814203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12920559

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE