WO2010029883A1 - 太陽電池モジュール、太陽電池モジュールの敷設構造、及び太陽電池モジュールの敷設方法 - Google Patents

太陽電池モジュール、太陽電池モジュールの敷設構造、及び太陽電池モジュールの敷設方法 Download PDF

Info

Publication number
WO2010029883A1
WO2010029883A1 PCT/JP2009/065367 JP2009065367W WO2010029883A1 WO 2010029883 A1 WO2010029883 A1 WO 2010029883A1 JP 2009065367 W JP2009065367 W JP 2009065367W WO 2010029883 A1 WO2010029883 A1 WO 2010029883A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cable
cell module
connector
connectors
Prior art date
Application number
PCT/JP2009/065367
Other languages
English (en)
French (fr)
Inventor
泰弘 上田
竹治 山脇
石田 謙介
中島 丈温
只志 大林
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN200980133933.5A priority Critical patent/CN102137977B/zh
Priority to US13/063,195 priority patent/US8853520B2/en
Priority to AU2009292594A priority patent/AU2009292594B2/en
Publication of WO2010029883A1 publication Critical patent/WO2010029883A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module laid on the roof or wall surface of a structure, a laying structure using the solar cell module, and a method for laying the solar cell module.
  • a solar battery panel is an integrated solar battery, in which a conductive film or a semiconductor film is laminated on a glass substrate, and a plurality of grooves are provided on the glass substrate to form a predetermined number of unit batteries (solar battery cells).
  • unit batteries solar battery cells
  • Patent Document 1 discloses a method for manufacturing such a solar cell panel.
  • a single solar cell module can obtain a voltage of 100 volts or more, but the current that can be generated is small. Therefore, the conventional photovoltaic power generation system ensures a practical current capacity by electrically connecting a plurality of solar cell modules in parallel using cables as disclosed in Patent Documents 2 and 3 below. It was.
  • Patent Document 2 discloses a configuration in which four cables are connected to a solar cell module.
  • a configuration is also disclosed in which a plurality of solar cell modules are connected in parallel and the solar cell modules connected in parallel are connected in series.
  • Patent Document 2 a plurality of adjacent cables are directly connected and connected in parallel.
  • the cables connected as disclosed in FIG. 8 of the same document are housed on the back surface of the own solar cell module or the back surface of the solar cell module in the same row (same stage).
  • Patent Document 3 discloses a configuration in which four cables are connected to a solar cell module.
  • the cable is long or short.
  • the cables are different colors. Even in the configuration described in Patent Document 3, as disclosed in FIG. 7 of the same document, the connected cable is accommodated on the back surface of the own solar cell module or the back surface of the solar cell module in the same row (same stage). .
  • FIG. 25 of Patent Document 4 discloses a configuration in which a conducting wire is extended to the long side of the solar cell panel.
  • the solar cell module shown in Patent Document 4 has a short conducting wire, and the conducting wire is not extended out of the solar cell module in view of the positional relationship between the solar cell panel and the base material 62.
  • the solar cell module shown by patent document 4 has two conducting wires, one is a plus wire and the other is a minus wire.
  • Patent Documents 5 and 6 disclose drawings in which two cables protrude from the eaves side of the solar cell module. In the configurations disclosed in Patent Documents 5 and 6, the two cables are both single-core, and the solar cell modules are connected in series.
  • Patent Document 5 Even the configuration described in Patent Document 5 is housed on the back surface of its own solar cell module or the back surface of the solar cell module in the same row (same stage) as disclosed in FIGS.
  • a solar cell module is arrange
  • most of the cables are arranged on the back surface of the own solar cell module.
  • Patent Document 7 discloses a configuration in which two cables extend from the ridge side of the solar cell module. In the configuration disclosed in Patent Document 7, the wiring is performed at a part different from the part where the solar cell modules are arranged.
  • each of the two cables is a single core, and the solar cell modules are connected in series.
  • the invention described in Patent Document 8 is characterized by using a flat connector.
  • the main body portion has a flat plate shape, and a flat connector is disposed on the bottom thereof.
  • the solar cell module disclosed in Patent Document 8 is rectangular, and the two cables extend outward from the short side.
  • the work of laying the solar cell module on the roof of a house is a high place work, and it is performed in a harsh environment that is hot in summer and cold in winter.
  • the work of laying the solar cell module on a roof or the like requires not only the above harsh work environment but also the accuracy that the wiring must be free from errors. Therefore, the work of laying the solar cell module on the roof of a house has a problem that work efficiency is poor.
  • the length of the two cables that are electrically connected is substantially equal, and the cable is prevented from having an excessive portion.
  • the length of the cable is adjusted, a cable that is not so long is forcibly bent, so that wiring is performed at an intermediate portion between them. For this reason, stress due to bending greatly acts on a connection portion with a connector attached to each cable, a connection portion between each cable and a terminal box, and the like, and there is a possibility that disconnection is likely to occur.
  • the cables disclosed in Patent Documents 2 and 3 both connect adjacent solar cell modules in parallel, each having two plus-side conductors and two minus-side conductors, and four conductors.
  • the total volume of the cable is large.
  • the cables disclosed in Patent Documents 2 and 3 are configured to be connected on the back side of the own solar cell module as described above. That is, when the solar cell module is installed on the roof, in many cases, the solar cell module is arranged in a matrix over a number of stages, and is installed with a planar spread. More specifically, the solar cell modules are arranged in a row in parallel with the eaves and the building, but the rows are arranged not only in one row but in a plurality of stages.
  • the solar cell modules are connected to each other in the same row (left and right toward the roof) with cables, but the cables disclosed in Patent Documents 2 and 3 Are connected to the cables of the solar cell modules adjacent to the left and right through the back side of the left and right boundary lines between the solar cell modules. That is, the cable extends in the left-right direction toward the roof and is connected to the cables of other solar cell modules installed on the left and right, so the cable is always under the row of its own solar cell modules, never jump out of the line. Therefore, it is forced to create a gap between the back surface of the solar cell module and the roof portion of the building in a state where the solar cell module is lifted or inclined, and to connect the cable through the narrow gap. For this reason, the work of laying the solar cell module on the roof or the like of the house is inefficient.
  • the present invention focuses on the above-described problems of the prior art, and provides a solar cell module, a solar cell module laying structure, and a solar cell module laying method with less work mistakes and high work efficiency.
  • a solar cell module provided to solve the above-described problem has a long solar cell panel in which a plurality of solar cells are electrically connected in series and formed in a substantially rectangular plane, and two or more conductive wires.
  • a first cable and a second cable made of different cables, a first connector attached to an end of the first cable, and an end of the second cable to be fitted and connected to the first connector
  • Two sets of connectors comprising a second connector, two positive conductors electrically connected to the positive electrode of the solar cell panel, and two negative conductors electrically connected to the negative electrode of the solar cell panel
  • the first cable is arranged in the same insulating tube with two conductors comprising one of the two plus conductors and one of the two minus conductors.
  • the second cable is a cable in which two conductors composed of the other of the two plus-side conductors and the other of the two minus-side conductors are arranged in the same insulating tube. .
  • the solar cell module is a solar cell panel in which a plurality of solar cells are electrically connected in series to form a substantially rectangular surface, and electrically connected to the positive electrode of the solar cell panel.
  • the first cable and the second cable which are made of cables having different lengths and having two or more conductors, and a positive electrode connection terminal that is electrically connected, a negative electrode connection terminal that is electrically conductive to the negative electrode of the solar cell panel
  • Two sets of connectors comprising a first connector attached to the end of the first cable and a second connector attached to the end of the second cable and capable of being fitted and connected to the first connector, and the plus Two positive conductors connected to the side electrode connection terminal and two negative conductors connected to the negative electrode connection terminal, the first cable ,
  • a cable in which two conductors composed of one of the two plus conductors and one of the two minus conductors are arranged in the same insulating tube
  • the second cable is the two conductors
  • One of the first connector and the second connector is provided with a positive terminal on the male piece and a negative terminal on the female piece.
  • One connector and the other connector It is characterized in that the negative electrode side terminal provided in the male piece, is provided with a positive terminal on the female piece.
  • the above-described solar cell module can quickly determine whether the connector attached to the cable is the first connector or the second connector according to the length of the cable. Therefore, the above-described solar cell module allows an operator to quickly select an appropriate connector, and has fewer wiring errors and higher work efficiency than the conventional solar cell module.
  • the first and second cables are each composed of a cable having two or more conductors such as a two-core cable, and the number of cables can be minimized. Therefore, the above-described solar cell module has simple electrical wiring when installed on a roof or the like, and can avoid inconveniences such as the cable being caught in an unexpected place and being disconnected.
  • the above-described solar cell module employs a bundle of two conducting wires as the first and second cables, and has high rigidity. Therefore, the above-described solar cell module is unlikely to break the first and second cables.
  • the second cable is longer than the first cable, and the degree of freedom in handling the second cable is high. Therefore, the above-described solar cell module can be constructed without bending the first cable so much by routing the second cable with freedom to the first cable side. The stress due to the bending that acts on the surface does not increase so much. Therefore, the solar cell module can be easily constructed without taking the first and second cables longer than necessary, and troubles such as disconnection of each cable hardly occur.
  • the solar cell module is substantially rectangular, and both the first cable and the second cable are extended outward from the side in the longitudinal direction of the solar cell module, and the length of the solar cell panel in the longitudinal direction is extended.
  • L1 is the length L4 in the short direction of the solar cell panel
  • the length X of the portion extending toward the outside of the second cable is longer than (L1 / 2) and longer than L4.
  • the length Y of the portion of the first cable extending toward the outside is shorter than the length of the second cable and shorter than (L1 / 2).
  • the solar cell module is substantially rectangular, and the first cable and the second cable are both extended outward from the sides in the longitudinal direction of the solar cell module. This can be done outside the battery module area. And after connecting a cable, the solar cell module of an adjacent stage can be mounted on the cable connected previously by installing the solar cell module which belongs to an adjacent stage. In addition, by satisfying the above-described formula, the solar cell module can be connected to the adjacent solar cell module. As described above, when the solar cell module is installed on the roof, in many cases, the solar cell module is arranged in a matrix over a number of stages, and is installed with a planar spread.
  • the length X of the second cable is longer than the length Y of the first cable, but the length X of the longer second cable is longer than the length L4 in the short direction of the solar cell panel.
  • the second cable can dive on the back side of the solar cell module in the adjacent stage and can extend outside the solar cell module in the adjacent stage. Therefore, it can also be electrically connected to the adjacent solar cell modules. Since the length X of the second cable is 50% or more of the length L1 in the short direction of the solar cell module, it can be connected to the cables of the solar cell modules adjacent to the left and right.
  • the length X is preferably longer than the sum of (L1 / 4) and L4 and shorter than the sum of ((L1 / 4) ⁇ 3) and L4.
  • the length Y is preferably shorter than the length L2 in the short direction of the solar cell module. Further, the recommended length Y is shorter than L4.
  • the first cable is not connected to the adjacent solar cell module, and incorrect wiring is performed. Can be prevented.
  • the length Y of the first cable is shorter than the length L4 in the short direction of the solar cell panel, erroneous wiring can be prevented more reliably.
  • first connector and the second connector have different patterns or colors or their coupling.
  • the solar cell module allows the operator to quickly determine the type of the connector by confirming the shape, pattern, or color of the connector or their combination (hereinafter also simply referred to as “form”). . Therefore, the solar cell module of this configuration allows an operator to quickly select an appropriate connector, and has fewer wiring errors than the conventional solar cell module, and has high work efficiency.
  • the pattern, color, or combination of the first cable and the second cable are different.
  • the solar cell module allows the solar cell module to quickly determine the type of connector attached to the cable by the operator confirming the cable pattern, color, or combination thereof. Therefore, the solar cell module of this configuration allows an operator to quickly select an appropriate connector, has fewer wiring errors than the conventional solar cell module, and has high work efficiency.
  • the solar cell module may be different in pattern, color, or combination of the plus side conductor and the minus side conductor.
  • the solar cell panel has a substantially rectangular shape, and the first cable and the second cable are extended from substantially the center of the long side of the solar cell panel, and the short sides of the solar cell panel are adjacent to each other.
  • the first connector of one solar cell module and the first connector of the other solar cell module cannot be connected because the length of the cable is insufficient.
  • the connected cables are well-fitted and construction work can be performed easily.
  • a groove for inserting the cable in the short direction is provided on the back side of the solar cell module.
  • Another invention for solving the same problem is a solar cell module in which a plurality of solar cells are formed inside and constitutes one solar cell as a whole, and has two sets of connectors.
  • Each of the connectors includes two or more independent terminals, and each of the two sets of connectors is connected to a cable having two or more conductors extending from the longitudinal center of the solar cell module.
  • One terminal is a positive terminal connected to the positive electrode of the solar cell, and the other one terminal of each connector is a negative terminal connected to the negative electrode of the solar cell.
  • the cable connected to one of the connectors is shorter than the cable connected to the other connector, and the cable length relationship is shorter when arranged in a line with other solar cell modules.
  • the connectors to which the cables are connected are in a state of insufficient length and cannot be connected, the connector to which the long cable is connected and the connector to which the short cable is connected are joined, and both are joined. In this state, the positive electrode side terminals and the negative electrode side terminals of both connectors are connected to each other, and the solar cell module is electrically connected to other solar cell modules in parallel.
  • the long cable goes to the outside of the adjacent solar cell module through the back side of the adjacent solar cell module, and the connector to which the long cable is connected and the short cable of the adjacent solar module is connected. It is desirable that can be connected.
  • the short cable has a length that cannot reach the outside of the adjacent solar cell module through the back surface side of the adjacent solar cell module.
  • the connector of the adjacent solar cell module is joined to the connector to which the long cable is connected and the connector to which the short cable is connected.
  • a state where the connector to which the long cable is connected and the connector to which the short cable is connected is joined is a regular joined state.
  • the solar cell module of the present invention when connecting a long cable connector and a short cable connector when connecting to adjacent solar cell modules, the positive electrode side terminals and the negative electrode side terminals of both connectors are connected to each other. As a result, a plurality of solar cell modules are electrically connected in parallel.
  • the operator does not misconnect the connector. That is, since the above-described solar cell modules have short and long cable lengths, when arranged in a line with other solar cell modules, the connectors to which the short cables are connected are in a state of insufficient length and connected. I can't let you. Therefore, when a solar cell module is laid on the roof or the like, short cables of adjacent solar cell modules cannot be physically connected to each other, and an operator does not erroneously connect the connectors.
  • each of the solar cell modules is disclosed in Patent Document 3 (Japanese Patent Application Laid-Open No. 2008-130902) exemplified as the prior art.
  • the rigidity of each cable is higher than the case where cables are provided separately for each system. Therefore, the above-described solar cell module is unlikely to break each cable.
  • the cable length is not uniform as disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2004-349507) exemplified as the prior art. Therefore, in the above-described invention, the flexibility of handling the longer cable is high.
  • the solar cell module can bend a long cable with freedom and route it toward the short cable, so that excessive stress is not applied to the base end of the long cable and the connection part with the connector. . Further, when cables having different lengths are connected in this way, the longer cable reaches the vicinity of the shorter cable, and therefore it is not necessary to forcibly bend the shorter cable. Therefore, the above-described solar cell module can be easily constructed without taking each cable longer than necessary, and troubles such as disconnection of each cable hardly occur.
  • the solar cell module described above is characterized in that the cables connected to one and the other of the two sets of connectors are cables each having two conductors arranged in the same insulating tube. There may be.
  • each cable is a cable in which two wires are combined and placed in the same insulating tube
  • Patent Document 3 Japanese Patent Laid-Open No. 2008-130902
  • the rigidity of the cable is high and the possibility of disconnection is low.
  • the rigidity of the cable is increased, there is a possibility that the stress acting on the base end portion of the cable and the connection portion with the connector is increased by bending the cable.
  • the length of the cable is not uniform as disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2004-349507), and one cable is long and the other cable is short.
  • ⁇ It is desirable that the two sets of connectors have the same structure but different colors.
  • the two sets of connectors employed in the present invention have the same structure, they can be molded using a mold having the same structure.
  • the two sets of connectors employed in the solar cell module of the present invention have the same structure, they cannot be distinguished by just looking at the structure.
  • the operator can intuitively determine which connector to connect without having to look at the connector structure and the like. Can be grasped. Therefore, according to the solar cell module of the present invention, the operator can instantaneously determine the connector to be connected, and the occurrence of erroneous connection can be reliably prevented. Moreover, even if there is an erroneous connection of the connector, the operator can easily find this by visual recognition.
  • the invention provided based on such knowledge is a solar cell module characterized in that the longer cable is different in color from the shorter cable.
  • the operator can intuitively determine whether the cable is long or short simply by looking at the color of the cable.
  • the longer cable is 50% or more of the total length of the solar cell module, and the shorter cable is less than 50% of the total length of the solar cell module.
  • any one of the above-described solar cell modules is arranged in a plurality of rows, and the first connector as one of the two sets of connectors and the second connector as the other are respectively positive electrodes
  • the adjacent solar cell module is electrically connected by connecting the same-polarity terminals of the first connector of one adjacent solar cell module and the second connector of the other solar cell module. Are connected in parallel to form a series of solar cell blocks.
  • the above-described laying structure of the solar cell modules is such that the adjacent solar cell modules are electrically connected in parallel only by connecting the first connector of one adjacent solar cell module and the second connector of the other solar cell module. Can work easily. Moreover, even if the current that can be generated by one solar cell module is small, the solar cell module laying structure of the present invention allows a plurality of solar cell modules to be connected in parallel. Capacity can be secured.
  • the solar cell module laying structure described above can secure a desired voltage by connecting a plurality of solar cell blocks in series even when the voltage of one solar cell block is low.
  • the laying structure of the solar cell module includes two solar cell blocks, and the lead-in cable includes a first series connector connected to an unused first connector of one solar cell block, and the other solar cell.
  • a second series connector connected to an unused second connector of the battery block, an output connector for outputting electric power converted by the solar cell panel, and two positive and negative conductors connected to the first series connector
  • a first outdoor cable including: a second outdoor cable including two positive and negative conductors connected to the second series connector; and an indoor side cable including two positive and negative conductors connected to the output connector;
  • One of the first outdoor cables is connected to a conductor of which the second outdoor cable is different in polarity, and the other conductor of the first outdoor cable is connected to the indoor cable.
  • Positive and negative Le is connected to the same wire, it may be characterized in that the remaining conductors of the second outdoor cable and the rest of the conductors of the shop inner cable is connected.
  • first series connector and the second series connector have different patterns or colors or their combination.
  • the present invention has few wiring errors and high work efficiency.
  • first outdoor cable and the second outdoor cable have different patterns, colors, or combinations thereof.
  • the present invention has less wiring misconnection and high work efficiency.
  • the solar cell module which is substantially rectangular and has a plurality of solar cells formed therein and constitutes a single solar cell as a whole.
  • the solar cell module has two sets of connectors, each of the two sets of connectors having two or more independent terminals, and the two sets of connectors are Both are connected to a cable having two or more conductors extending from the center in the longitudinal direction of the solar cell module to the outside of the solar cell module, and one terminal of each connector is connected to the positive electrode of the solar cell, The other terminal of the connector is connected to the negative electrode of the solar cell, and the cable connected to one of the two sets of connectors is The length of the cable is shorter than the cable connected to the other connector, and when the solar cell modules are arranged in a row, the connectors to which the short cable is connected are in an insufficient length state and are connected.
  • the solar cell modules are arranged in a line on the structure, and the connectors of the adjacent solar cell modules are the connectors to which the long cables are connected and the connectors to which the short cables are connected. Joined outside the row of modules, and in a state where both are joined, the positive terminals and the negative terminals of both connectors are connected, and a plurality of solar cell modules are electrically connected in parallel. This is a laying structure of the solar cell module.
  • the operator does not misconnect the connector.
  • the connectors to which the short cables are connected are not sufficiently long. There is no connection. Therefore, when a solar cell module is laid on the roof or the like, short cables of adjacent solar cell modules cannot be physically connected to each other, and an operator does not erroneously connect the connectors.
  • the solar cell modules are electrically connected to each other by using a cable in which two or more conductors are combined. Therefore, the rigidity of each cable is higher than that in the case where cables provided separately for each system are employed as disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 2008-130902) exemplified as the prior art. . Therefore, in the above-described laying structure of the solar cell module, the strength of each cable is high, and the possibility of occurrence of problems due to disconnection is low.
  • the cable employed in the solar cell module laying structure described above is uniform in the length of each cable as disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2004-349507) exemplified as the prior art. is not. Therefore, when the above-described solar cell module laying structure is adopted, the longer cable can be freely routed at the time of laying even though the above-described highly rigid cable is adopted. Therefore, when the above-described solar cell module laying structure is adopted, a long cable with freedom is bent in the middle, routed toward the short cable, and both are electrically connected. There is no need to forcibly bend the cable.
  • the above-described laying structure of the solar cell module is adopted, excessive stress is not applied to the base end portion of the long cable and the connection portion with the connector. Furthermore, when the above-described solar cell module laying structure is adopted, the cables can be easily routed and electrically connected without taking each cable longer than necessary, so that the workability is excellent.
  • the laying structure of the solar cell module is characterized in that the cables connected to one and the other of the two sets of connectors are cables in which two conductors are arranged in the same insulating tube, respectively. You may do.
  • each cable is a cable in which two wires are combined and placed in the same insulating tube
  • Patent Document 3 Japanese Patent Laid-Open No. 2008-130902
  • the rigidity of the cable is high and the possibility of disconnection is low.
  • the rigidity of the cable is increased, the cable may be less likely to be bent, or the stress acting on the base end portion of the cable or the connection portion with the connector may be increased due to the bending.
  • the length of the cable is not uniform as disclosed in Patent Document 2 (Japanese Patent Laid-Open No.
  • the two sets of connectors included in the solar cell module have the same structure but different colors.
  • the two sets of connectors provided in the solar cell module constituting the laying structure of the solar cell module of the present invention have the same structure. Therefore, when laying a solar cell module, it is not possible to distinguish between the two connectors simply by looking at the structure.
  • the two sets of connectors described above have different colors. Therefore, when constructing the laying structure of the solar cell module, the operator can intuitively know which connector should be connected as long as attention is paid to the difference in color. Therefore, the solar cell module laying structure according to the present invention is less likely to be erroneously connected due to the operator mistaking the connector. Further, even if the connector is erroneously connected, the operator can easily find it by visual recognition, and it is possible to prevent the laying operation of the solar cell module from being completed while being erroneously connected.
  • the longer cable of the solar cell module is different in color from the shorter cable.
  • the operator can intuitively determine whether the cable is long or short by simply looking at the color of the cable when laying the solar cell module. Therefore, when the laying structure of the solar cell module of the present invention is adopted, it is possible to intuitively determine whether the cable is long or short by simply looking at the color of the cable, and it is difficult to cause a wiring mistake. .
  • the longer cable included in the solar cell module is 50% or more of the total length of the solar cell module, and the shorter cable is 50% of the total length of the solar cell module of the solar cell module. Desirably less than a percent.
  • One of the two sets of connectors included in the solar cell module is a first connector, the other is a second connector, and the lead-in cable is an unused first connector or second connector in the solar cell block. It is desirable that the terminal protection member is attached to the first connector or the second connector that is not connected.
  • terminals that are not connected to other connectors are also exposed to the outside, and dust and water can be effectively prevented from adhering to the terminals.
  • the solar cell module is provided with a gap for accommodating the connected cable and connector on the back surface side, and a plurality of rows of solar cell modules are arranged in a plurality of stages so that the solar cell module is planar.
  • the long cable and the short cable of the solar cell modules adjacent to each other in a row are connected, and the long cable and the short cable are adjacent to each other. It is desirable to be accommodated in the gap.
  • the connection between the cables can be performed outside the area of the solar cell module, and after connecting the cable, by installing the solar cell module belonging to the adjacent stage,
  • the cable connected previously can be accommodated in the space
  • a plurality of rows of solar cell modules are arranged in a plurality of stages so that the solar cell modules are distributed in a plane.
  • the longer cable is extended to the right side toward the roof and the right side Connect to the shorter cable of the solar panel adjacent to the cable, and in the stage adjacent to this, extend the longer cable to the left side toward the roof and connect to the shorter cable of the solar panel adjacent to the left side. It is desirable to do.
  • the solar cell module located at the end of the row is such that the longer cable passes through the bottom surface of the adjacent step solar cell module and appears outside the adjacent step solar cell module, and the end of the adjacent step row It is desirable to be connected to the shorter cable of the solar cell module located in the section.
  • the longer cable of the solar cell module located at the end of the row and the shorter cable of the solar cell module located at the end of the adjacent row of rows It is desirable that the battery module is accommodated in the gap.
  • the invention relating to a method for laying a solar cell module is the laying of the laying structure, in which one of the two sets of connectors included in the solar cell module constituting the laying structure is a first connector and the other is a second connector.
  • a terminal protection member is attached to the unused first connector or second connector when the operation is interrupted.
  • the present invention it is possible to provide a solar cell module, a solar cell module laying structure, and a solar cell module laying method with low wiring errors and high work efficiency.
  • (A) is a perspective view which shows the solar cell module which implemented this invention, (b), (c) is sectional drawing of the connector of the solar cell module of (a). It is a perspective view which shows the structure of the back surface side of the solar cell module of FIG. It is sectional drawing of the connector of the solar cell module of FIG. It is a flowchart which shows the work procedure of the laying structure of a solar cell module.
  • (A) is explanatory drawing which shows the roof of a house
  • (b) is explanatory drawing which shows the state which laid the solar cell module on the roof of the house.
  • FIG. 1 It is a circuit diagram when a solar cell module is correctly wired. It is a conceptual diagram which shows the laying structure of a solar cell module.
  • A is a front view of a lead-in cable
  • (b) is sectional drawing of the mold part of a lead-in cable. It is a top view of a terminal protection member.
  • (A) is a top view of the connector whose both poles are male pieces
  • (b) is a top view of the connector whose both poles are female pieces.
  • FIG. 1 It is a perspective view for demonstrating the attachment of the solar cell module to the eaves of the upper surface of the house in the roof structure of this embodiment, (a) shows the state before attachment, (b) is the state after attachment. Indicates. It is a perspective view explaining attachment of the solar cell module after the 2nd step in the roof structure of this embodiment. It is a fragmentary sectional view explaining attachment of the solar cell module after the 2nd step in the roof structure of the present invention. It is a perspective view explaining the cable wiring of the solar cell module in the roof structure of this embodiment. It is a perspective view explaining the relationship between the cable connection of the solar cell module which belongs to the specific stage in the roof structure of this embodiment, and the solar cell module of an adjacent stage.
  • the solar cell module 10 is provided with a solar cell panel 12, a front cover 102, a hook metal fitting 84, and the like on a base 82 configured by attaching a reinforcing heat insulating material 90 to a base material 70. Configured.
  • the solar cell module 10 of the present embodiment is a tile-type solar cell module applied to the roof R of a newly built or already built house. As shown in FIGS. 1 and 2, the solar cell module 10 includes a solar cell panel 12, a terminal box 14 attached to the back surface of the solar cell panel 12, and two cables 16 and 18 extending from the terminal box 14. And connectors 20 and 22 connected to the cables 16 and 18, respectively.
  • the solar cell module preferably has a total length in the longitudinal direction of 920 to 1200 [mm] and a total length in the short direction of 240 to 700 [mm].
  • the solar cell panel to be mounted preferably has a length in the longitudinal direction of 900 to 1200 [mm] and a length in the short direction of 230 to 650 [mm].
  • the solar cell module 10 is formed in a substantially rectangular surface as shown in FIGS. 1 and 2.
  • the battery panel 12 occupies most of the area exposed to the outside when laid. Therefore, the size of the solar cell module 10 is approximately the same as the solar cell panel 12 or slightly larger than the solar cell panel 12.
  • the total length LT of the solar cell module 10 is longer than the total length L1 of the solar cell panel 12 by the width of the groove-shaped flange portion 80.
  • the solar cell module 10 of the present embodiment has a total length LT in the longitudinal direction smaller than 1200 [mm] in consideration of securing workability of installation work in a house while securing output.
  • the solar cell module 10 does not include the lengths of the cables 16 and 18.
  • the length L1 of the solar cell panel 12 is set to 900 to 1100 [9001] in consideration of the interval between general scaffolds installed at the time of laying the solar cell module 10 and the ease of handling by a construction worker. mm] range.
  • the length (width) L4 in the short direction of the solar cell panel 12 is 250 to 320 [mm].
  • the solar cell module 10 normally has a length L2 in the short direction of 240 to 480 [mm] in consideration of the size of a general flat roof tile.
  • the length L2 is taken into consideration in order to improve the photoelectric conversion efficiency by minimizing the shaded portion due to the sunshine condition while being approximately the same as the working width of a general flat roof tile. Is adjusted within the range of 280 to 360 [mm].
  • the solar cell panel 12 is an integrated solar cell and is formed in a substantially rectangular surface as shown in FIGS.
  • a conductive film or a semiconductor film is laminated on a glass substrate, and a plurality of grooves are provided in the glass panel to form a predetermined number of unit cells (solar battery cells). Those connected in series can be used.
  • One solar cell panel 12 of this embodiment can obtain a voltage of about 100 volts.
  • the solar cell module 10 is laid in a posture in which the longitudinal direction is directed to the row direction of the house and the short side direction is directed to the ridge direction of the house. That is, the solar cell module 10 is arranged in parallel with the eaves and ridges of the house in the longitudinal direction.
  • the house is a sloped roof
  • the two long sides are up and down and both are arranged parallel to the horizontal
  • the two short sides are placed sideways and are inclined along the slope of the roof.
  • the terminal box 14 is fixed to the back side of the solar cell panel 12 using an adhesive or the like.
  • the terminal box 14 is attached to the lower region at the approximate center of the long side of the solar cell panel 12.
  • the terminal box 14 includes a positive electrode connection terminal (not shown) to which the positive electrode of the solar cell panel 12 is connected and a negative electrode connection terminal (not shown) to which the negative electrode of the solar cell panel 12 is connected. Is provided.
  • two plus-side conductors 24 hereinafter also referred to as plus-side core wires 24
  • Two negative-side conductive wires 26 (hereinafter also referred to as negative-side core wires 26), which are white coated conductive wires, are connected.
  • the first cable 16 is formed by bundling one plus side core wire 24 of the two plus side core wires 24 and 24 and one minus side core wire 26 of the two minus side core wires 26 and 26.
  • the second cable 18 is formed by bundling the other plus-side core wire 24 of the two plus-side core wires 24 and 24 and the other minus-side core wire 26 of the two minus-side core wires 26 and 26. This is a two-core cable.
  • the first cable 16 and the second cable 18 are different in color, and the first cable 16 has a plus-side core wire 24 and a minus-side core wire 26 arranged in a white insulating tube 16a.
  • the second cable 18 has a positive core wire 24 and a negative core wire 26 arranged in a black insulating tube 18a.
  • first cable 16 and the second cable 18 are long and short, one is long and the other is short. Specifically, the first cable 16 is shorter than the second cable 18.
  • the total length of the first cable 16 is less than 50% of the length of the long side of the rectangular solar cell panel 12, and the total length of the second cable 18 is the length of the long side of the solar cell panel 12. 50 percent or more.
  • the total length of the first cable 16 and the length of the second cable 18 is longer than the length of the long side of the solar cell panel 12.
  • the second cable 18 protrudes from the long side (upper side) 150 on the ridge side of the solar cell module 10 toward the ridge side (upper side).
  • the more recommended length X is 50% or more of the length L1 of the solar cell panel 12 and is longer than the length L4 in the short direction of the solar cell panel 12, and the length L1 of the solar cell panel 12 Shorter than.
  • the length of the portion extended toward the outside of the second cable 18 when the length L1 in the longitudinal direction of the solar cell panel 12 and the length L4 in the short direction of the solar cell panel 12 are used.
  • X is longer than (L1 / 2) and longer than L4.
  • the more recommended length X of the second cable 18 is longer than the sum of (L1 / 4) and L4, and shorter than the sum of ((L1 / 4) ⁇ 3) and L4.
  • the length X of the second cable 18 may be designed to adopt a length L2 instead of the length L4 in consideration of a connection margin.
  • the length X of the portion extending toward the outside of the second cable 18 is (L1). / 2) and longer than L2.
  • the more recommended length X of the second cable 18 is longer than the sum of (L1 / 4) and L2, and shorter than the sum of ((L1 / 4) ⁇ 3) and L2.
  • the length Y of the part extended toward the outer side of the 1st cable 16 is shorter than the length X of the above-mentioned 2nd cable 18, and is shorter than (L1 / 2). Further, the length Y of the portion extending toward the outside of the first cable 16 is shorter than the length L4 of the solar cell panel 12 in the short direction.
  • the length X of the first cable 16 may be designed to adopt a length L2 instead of the length L4 in consideration of a connection margin. That is, the length Y of the portion extended toward the outside of the first cable 16 is shorter than the length L2 of the solar cell module 10 in the short direction.
  • a first connector 20 and a second connector 22 are provided at the respective ends of the first cable 16 and the second cable 18.
  • the colors of the first connector 20 and the second connector 22 are different, the structure is the same.
  • the first connector 20 is white and the second connector 22 is black.
  • the first connector 20 and the second connector 22 include a pin-like terminal 28 and a socket-like terminal 30.
  • the first connector 20 and the second connector 22 have a female piece 32 and a male piece 34, the pin-like terminal 28 is in the female piece 32, and the socket-like terminal 30 is in the male piece 34. is there.
  • a plus-side core wire 24 is joined to the pin-like terminal 28 of the first connector 20, and the socket-like terminal of the first connector 20.
  • the negative core wire 26 is joined to 30.
  • a minus-side core wire 26 is joined to the pin-like terminal 28 of the second connector 22, and a plus-side core wire 24 is joined to the socket-like terminal 30 of the second connector 22. That is, in the first connector 20, the pin-shaped terminal 28 is a positive electrode and the socket-shaped terminal 30 is a negative electrode. On the other hand, in the second connector 22, the pin-shaped terminal 28 is a negative electrode, and the socket-shaped terminal 30 is a positive electrode. Therefore, the first connector 20 and the second connector 22 are formed by fitting one female piece 32 and the other male piece 34 to connect one pin-like terminal 28 to the other socket-like terminal 30. It is possible to electrically connect the same poles.
  • the base material 70 is a substantially rectangular plate material, which is formed by bending one or a plurality of metal plates into a predetermined shape.
  • the base material 70 is formed of a single metal plate, it can be easily processed and the manufacturing cost can be suppressed, and a structure having no joining portion can be provided, which is advantageous in terms of strength. It becomes. Therefore, considering these advantages, it is desirable that the base material 70 be formed by bending a single metal plate.
  • a side fixing portion 76, a solar cell module 10 disposed adjacent to the ridge side (upper stage), and a stacking portion 78 on which an eaves side end of the general roof tile is stacked are formed.
  • a groove-shaped flange 80 is formed on the side of the base material 70. It is preferable to use a metal plate such as a steel plate, aluminum, and stainless steel for the base material 70. In this embodiment, a galvalume steel plate is used.
  • the cover attaching portion 72 is a portion to which a front cover 102 described later is attached, and is formed by bending the eaves side end portion of the base material 70 to the back side at a substantially right angle.
  • the solar cell arrangement portion 74 is a planar portion on which the solar cell panel 12 is arranged, and is formed to have approximately the same size as the solar cell panel 12. As shown in FIG. 14, an opening 74 a for inserting the terminal box 14 of the solar cell panel 12 is provided in the approximate center of the solar cell arrangement portion 74.
  • the solar cell panel 12 is mounted from the surface side of the base material 70, and the terminal box 14, the cables 16, 18 and the connectors 20, 22 have openings 74a as shown in FIG. It is disposed on the back side of the base material 70.
  • the ridge side fixing part 76 is a part for fixing the ridge side of the solar cell panel 12 arranged in the solar cell arrangement part 74.
  • the ridge-side fixing part 76 is formed by bending the base material 70 at a predetermined position to the front surface side at a substantially right angle, and by bending the base material 70 at the predetermined position from the base end of the rising part 76a.
  • the rising portion 76a is a portion where the ridge side end surface of the solar cell panel 12 abuts, and the surface pressing portion 76b covers a part of the surface (light receiving surface) of the solar cell panel 12 and applies a pressing force from the surface side. Part.
  • the loading portion 78 is a planar portion formed by folding the base material 70 toward the ridge side at a predetermined position from the base end of the surface pressing portion 76b of the ridge side fixing portion 76. As shown in FIG. 2, a through hole 78 a for attaching a hook 84 to be described later is provided at a predetermined position of the stacking portion 78, and a solar cell module is provided at a predetermined position on the ridge side of the through hole 78 a. A through hole 78b is provided for driving a screw for fixing 10 to the house.
  • the loading portion 78 is in a portion excluding the upper surface of the solar cell panel 12.
  • the reinforcing heat insulating material 90 is a foamed resin member attached to the back surface of the base material 70 in order to ensure the strength and heat insulating properties of the solar cell module 10.
  • the reinforcing heat insulating material 90 extends in the eave direction from both ends of the girder direction reinforcing portion 92 extending in the girder direction along the long side of the base material 70 on the ridge side, and the girder direction reinforcing portion 92 along the short side of the base material 70. And an inclination direction reinforcing portion 94.
  • the inclination direction reinforcing portion 94 is a portion that is stacked on the stacking portion 78 or the general roof tile of the solar cell module 10 disposed adjacent to the eave side (lower stage), and is formed thinner than the beam direction reinforcing portion 92. Has been.
  • the reinforcement heat insulating material 90 is not attached to the whole back surface of the base material 70, but is arrange
  • a terminal box 14 is disposed substantially at the center of the accommodation space 96.
  • the accommodation space 96 can accommodate the wired cables 16 and 18.
  • the cables 16 and 18 protrude from the long side 150 on the ridge side of the solar cell module 10, and the connectors of the cables 16 and 18 of the solar cell module 10 that are on the same row and adjacent to each other as will be described later. 20 and 21 are connected and the solar cell module 10 is connected in parallel.
  • the connection work between the connectors 20 and 21 can be performed on the outer upper portion of the solar cell module 10.
  • the cables 16 and 18 (including the connectors 20 and 21) wired in the accommodation space 96 of the solar cell modules 10 in the upper row are accommodated.
  • the cables 16 and 18 are inserted through the gap.
  • Two cable grooves 98 are provided on the surface of the reinforcing heat insulating material 90 opposite to the surface attached to the base material 70 of the beam direction reinforcing portion 92 as shown in FIG.
  • the cable groove 98 penetrates from the ridge side of the reinforcing heat insulating material 90 to the eaves side, and connects the inside and outside of the accommodation space 96.
  • One of the cable grooves 98 is a central groove 98a that is disposed substantially at the center of the girder-direction reinforcing portion 92, and the other is a side groove 98b that is disposed on the left and right of the central groove 98a with a predetermined distance from the central groove 98a. , 98b.
  • the central groove 98 a and the terminal box 14 are arranged on substantially the same straight line, and the cables 16 and 18 extending from the terminal box 14 pass through the central groove 98 a from the accommodation space 96 to the ridge side. Has been pulled out of.
  • the side grooves 98b and 98b are used for wiring with other solar cell modules 10 arranged adjacent to the upper and lower stages.
  • FIG. 4 is a flowchart showing an operation procedure for laying the solar cell module on the roof R of the house.
  • step 1 When laying the solar cell module 10, first, eaves draining or a predetermined roofing material is attached to the roof R of the house to be laid. In step 1, lines, shapes, and dimensions necessary for the progress of the work are displayed on the roof R. Ink out is performed. In subsequent step 2, vertical piers (sink bars) are attached at predetermined intervals, and in step 3, Hiromiko (tile) and horizontal piers (tiles) are attached. The horizontal piers are attached at predetermined climb intervals. Next, in step 4, after the blow-up preventing metal fitting for preventing the solar cell module 10 from blowing up is attached at a predetermined position, the operation shifts to step 5.
  • step 5 the solar cell modules 10 are sequentially attached from the eaves side to the ridge side of the roof R, and the adjacent solar cell modules 10 and 10 are connected by cables 16 and 18. More specifically, as shown in FIG. 5, the solar cell modules 10 are attached by forming the row-shaped module stage 36 by adjoining the short sides of the plurality of solar cell modules 10, and using the screws or the like. Is fixed to the roof R. In the present embodiment, the module stage 36 is provided with an even number (14 stages in FIG. 5B) on the roof R.
  • the solar cell module 10 is installed in the through-hole 78b of the stacking portion 78 in the construction screw 152 as shown in FIG. Is fixed to the house by being driven. At this time, the cables 16 and 18 of the solar cell module 10 are extended to the ridge side.
  • the first connector 20 of one solar cell module 10 and the second connector 22 of the other adjacent solar cell module 10. are connected to each other, the two adjacent solar cell modules 10 and 10 can be electrically connected in parallel. That is, by connecting the white first connector 20 attached to the white first cable 16 and the black second connector 22 attached to the black first cable 18, the adjacent solar cell modules 10, Ten parallel connections are possible. Therefore, the solar cell module 10 of this embodiment connects all the solar cell modules 10 included in the module stage 36 sequentially in parallel by connecting the left and right adjacent solar cell modules 10 and 10 using the cables 16 and 18. (FIG. 8).
  • the first cable 16 is formed shorter than the second cable 18 as described above. Therefore, in the solar cell module 10, the operator confirms the length of the cables 16, 18, so that the connectors 20, 22 attached to the cables 16, 18 are the first connectors 20, or the second connectors 22. It can be instantly determined.
  • the total length of the first cable 16 is less than 50% of the length of the long side of the rectangular solar cell panel 12, and the total length of the second cable 18 is It is 50% or more of the length of the long side of the solar cell panel 12. Therefore, as shown in FIG. 7, the first connectors 20 and 20 attached to the first cable 16 cannot be connected to each other between the solar cell modules 10 and 10 that are adjacent to each other with their short sides abutted. Therefore, the solar cell module 10 of the present embodiment can reliably prevent erroneous connection between the first connectors 20 and 20 between the adjacent solar cell modules 10 and 10.
  • the solar cell module 10 In the solar cell module 10, the second cable 18 is longer than the first cable 16, and the degree of freedom in handling the second cable 18 is high. Therefore, the solar cell module 10 is configured such that the second cable 18 having a high degree of freedom is bent in the middle toward the first cable 16, and the two cables 16 are connected via the first connector 20 and the second connector 22. , 18 can be electrically connected. Therefore, the solar cell module 10 includes a connection portion between the first connector 20 and the first cable 16, a connection portion between the second connector 22 and the second cable 18, the terminal box 14 and the first and second cables 16 and 18.
  • the stress (stress) caused by bending acting on the connecting portion of the cable is small, problems such as disconnection hardly occur, and the first and second cables 16 and 18 do not need to be excessively long. Moreover, since the solar cell module 10 does not need to take the 1st cable 16 and the 2nd cable 18 too long, it is excellent in workability, and the space etc. for accommodating these cables 16 and 18 are also required. And not.
  • the rigidity of the cables 16 and 18 is high. Moreover, the solar cell module 10 can be electrically connected only by connecting the two cables 16 and 18, and the number of cables can be minimized. Moreover, the solar cell module 10 has a simple wiring and is less likely to cause inconveniences such as disconnection of the cables 16 and 18 during installation.
  • the first cable 16 is white and the second cable 18 is black. Therefore, the solar cell module 10 allows the operator to easily determine the types of the connectors 20 and 22 attached to the cables 16 and 18 by confirming the colors of the cables 16 and 18.
  • the first connector 20 is formed in white and the second connector 22 is formed in black, and the first connector 20 and the second connector 22 are different in color. Therefore, in the solar cell module 10 of the present embodiment, the operator can quickly determine the types of the connectors 20 and 22 by checking the colors of the connectors 20 and 22 of the solar cell module 10. Therefore, the solar cell module 10 according to the present embodiment allows a worker to select an appropriate connector quickly, has few wiring misconnections, and has high work efficiency.
  • the 1st cable 16 and the 2nd cable 18 have protruded outside from the ridge side center of the solar cell module 10 like FIG. 1 in the solar cell module 10, in the state which fixed the solar cell module 10 to the roof
  • the cables 16 and 18 can be connected. That is, even if the solar cell module 10 of this embodiment is fixed to the roof with a nail or the like, the first cable 16 and the second cable 18 are outside the main body portion of the solar cell module 10 as shown in FIGS. Out. Therefore, in this embodiment, after fixing the solar cell module 10 to a roof with a nail etc., it can connect.
  • the cables 16 and 18 are connected for each stage.
  • the solar cell module 10 since the solar cell module 10 is attached from the eaves side, the solar cell module 10 is first fixed to one step at the eave or the step in the vicinity of the eaves, and then protrudes to the ridge side of each solar cell module 10.
  • the cables 16 and 18 are connected sequentially. By doing in this way, a wiring mistake and a connection mistake can be reduced rather than the method of connecting for every module.
  • One connection operation is performed on the upper side of the solar cell modules 10 arranged in a row at the corresponding stage, and the connected cables 16 and 18 are the solar arranged in the row at the corresponding stage as shown in FIG. It is placed on the upper side of the battery module 10. Subsequently, the second-stage solar cell module 10 is fixed.
  • the second-stage solar cell module 10 is placed on the stacking portion 78 of the first-stage solar cell module 10 on the eaves side. Therefore, the second-stage solar cell module 10 is covered on the cables 16 and 18 of the first-stage solar cell module 10 as shown in FIG. 20, and the first-stage solar cell module 10 is accommodated in the housing space 96 of the second-stage solar cell module 10. The cables 16 and 18 of the solar cell module 10 are accommodated.
  • the solar battery module 10 is attached to the module stage 36 in the second and subsequent stages by placing the front cover 102 of the solar battery module 10C arranged in the upper stage on the eaves side.
  • the locking piece 108 of the front cover 102 of 10C is formed in a gap 156 generated between the engaging portion 88 of the hook metal fitting 84 of the solar cell module 10D arranged in the lower stage and the surface of the stacking portion 78 of the base material 70.
  • the solar cell module 10C is pulled up to the ridge side, and the solar cell module 10C and the solar cell module 10D are engaged with each other.
  • the sealing member 154 is attached to the locking piece 108 of the solar cell module 10 ⁇ / b> C, and the locking piece 108 is inserted into the gap 156 between the engaging portion 88 of the hook metal 84 and the base material 70. Since the sealing material 154 is disposed in the gap 156 without a gap, rattling at the engaging portion between the solar cell module 10C and the solar cell module 10D is prevented.
  • the cables 16 and 18 of the lower solar cell module 10D are connected to the upper solar cell module 10D.
  • the cables 16 and 18 of the lower solar cell module 10D are accommodated in an orderly manner in the storage space 96 of the main body.
  • the upper solar cell module 10C extends the cables 16 and 18 to the building side.
  • the construction screw 152 is driven into the through hole 78b of the stacking portion 78 and fixed to the house.
  • the solar cell modules 10 and 10 adjacent to the left and right are connected by cables 16 and 18 in the same procedure as the first module stage 36.
  • all the solar cell modules 10 included in the module stage 36 can be connected in parallel.
  • the laying structure 100 of the solar cell module 10 of the present embodiment includes an odd-numbered module level 36a, 36c and an even-numbered module level 36b, 36d from the eaves side (lower side).
  • the connection order of the cables 16 and 18 is reversed left and right. That is, the odd-numbered module stages 36 a and 36 c connect the second connector 22 of the right solar cell module 10 and the first connector 20 of the left solar cell module 10, and connect the second cable 18 and the first The cable 16 is connected.
  • the even-numbered module stages 36b and 36d are connected to the first cable 16 by connecting the first connector 20 of the right solar cell module 10 and the second connector 22 of the left solar cell module 10. The second cable 18 is connected.
  • the solar cells disposed at both ends of the plurality of solar cell modules 10 constituting the module stage 36 are connected by the cables 16 and 18, as shown in FIG. 6, the solar cells disposed at both ends of the plurality of solar cell modules 10 constituting the module stage 36.
  • the first connector 20 of one solar cell module 10 is unused (unconnected), and the second connector 22 of the other solar cell module 10 is unused.
  • These unused first connector 20 and second connector 22 are used for electrical connection of the module stages 36 and 36 arranged above and below.
  • the odd-numbered module levels 36a and 36c and the even-numbered module levels 36b and 36d are connected to form solar cell blocks 38a and 38b.
  • the solar battery module 10a, 10c disposed at the left end of the odd-numbered module stages 36a, 36c is a solar cell disposed at the left end of the even-numbered module stages 36b, 36d.
  • the back surfaces of the solar cell panels 12 of the modules 10b and 10d are passed through, and the second connectors 22 of the solar cell modules 10a and 10c and the first connectors 20 of the solar cell modules 10b and 10d are connected.
  • the two cables 18 of the lower solar cell modules 10a and 10c are connected to the first cables 16 of the upper solar cell modules 10b and 10d, as described above,
  • the two cables 18 are passed through the back surface of the solar cell panel 12.
  • the insertion route of the second cable 18 at this time is as shown in FIGS. 21 and 22, and passes through one of the side grooves 98b and 98b through the accommodation space 96 of the solar cell modules 10b and 10d.
  • the front end side of the 2nd cable 18 is made to protrude further to the upper stage side of the upper stage side solar cell modules 10b and 10d, and is connected with the first cable 16 of the upper stage side solar cell modules 10b and 10d.
  • the longer one of the two cables 16 and 18 (second cable 18) is used for the solar cell. Modules 10 are connected in parallel.
  • the second cable 18 when the length X of the longer cable (second cable 18) is longer than the length L4 in the short direction of the solar cell panel 12, the second cable 18 is The solar cell module 10 belonging to the module stage 36 adjacent to the upper side of the roof can be submerged and extended further to the upper side of the solar cell module 10 belonging to the module stage 36 adjacent to the upper side.
  • the second cable 18 when the length X of the longer cable (second cable 18) is longer than the length L2 in the short direction of the solar cell module 10, the second cable 18 is connected to the upper side of the roof.
  • the solar cell module 10 belonging to the module stage 36 adjacent to the bottom of the solar battery module 10 belongs to the module stage 36, and extends further to the upper side of the solar cell module 10 belonging to the module stage 36 adjacent to the upper side so that it can be easily connected to other cables. Furthermore, in practice, as shown in FIG. 22, the space through which the cable 18 is inserted is limited, and the solar cell modules 10 are arranged in a staggered manner, so that the length X of the second cable 18 is the solar cell. The module 10 needs to be somewhat longer than the length L2 in the short direction. In the configuration shown in FIG. 22, the second cable 18 goes under the solar cell module 10 through the side groove 98 b provided in the reinforcing heat insulating material 90.
  • the solar cell modules 10 belonging to the adjacent stages are arranged so as to be shifted by a length a. Furthermore, the length of the overlapping part of the solar cell modules 10 of the adjacent stage placed on the stacking portion 78 of the upper stage solar cell module 10 is b.
  • the length of the second cable 18 is (L1 / 4) plus a
  • the required length in the vertical direction is L2 minus b. Therefore, the required length of the second cable 18 is ((L1 / 4) plus a) plus (L2 minus b).
  • L2 minus b is substantially equal to the length L4 of the solar battery panel 12 in the short direction. Therefore, the required length of the second cable 18 is ((L1 / 4) plus a) plus L4.
  • 23 to 25 show the required length of the cable 18 by changing the shift amount a of the solar cell modules 10 belonging to adjacent stages. 23 to 25, the longer the amount of displacement a, the longer the cable 18 is required. However, when the amount of displacement reaches 3/4 of the total length L1 of the solar cell panel 12, the longest cable 18 is used. Is required, and its length is the sum of ((L1 / 4) ⁇ 3) and L4. Further, considering the connection margin, it is the sum of ((L1 / 4) ⁇ 3) and L2.
  • the length of the cable 18 is preferably equal to or less than the sum of ((L1 / 4) ⁇ 3) and L4, and considering the connection allowance, is preferably equal to or less than the sum of ((L1 / 4) ⁇ 3) and L2.
  • the length Y of the part extended toward the outer side of the 1st cable 16 is shorter than the length X of the above-mentioned 2nd cable 18, and is shorter than (L1 / 2). Furthermore, the length Y of the part extended toward the outer side of the 1st cable 16 is shorter than the length L4 of the transversal direction of a solar cell panel. Therefore, the first cable 16 cannot pass under the upper solar cell module 10 and is not erroneously connected. In actuality, a margin for connection is necessary, and therefore, when the solar cell module 10 is shorter than the length L2 in the short direction, there is no erroneous connection.
  • connection of the two cables 16 and 18 when the solar cell module 10 constituting the solar cell block 38 extends over a plurality of stages can be performed outside the solar cell module 10, workability is improved. high.
  • the two connected cables 16 and 18 are accommodated in the accommodation space (gap part) 96 of the solar cell module 10 of one step as shown in FIG.
  • all the solar cell modules 10 included in the module stage 36a and the module stage 36b are connected in parallel to form the solar cell block 38a. Further, all the solar cell modules 10 included in the module stage 36c and the module stage 36d are also connected in parallel to form a solar cell block 38b.
  • the solar cell blocks 38 a and 38 b formed as described above are electrically connected in series by the lead-in cable 40.
  • the lead-in cable 40 is connected to the first series connector 42 connected to the first connector 20 of the solar cell module 10 and the second connector 22 connected to the second connector 22 of the solar cell module 10.
  • Two serial connectors 44 an output connector 46 that is connected to an indoor power conditioner (not shown) and outputs power converted by the solar cell panel 12 of the solar cell module 10, and a first serial connector 42.
  • the first series connector 42, the second series connector 44, and the output connector 46 have the same structure as the first connector 20 and the second connector 22 of the solar cell module 10.
  • the first series connector 42 and the output connector 46 are black, and the second series connector 44 is white.
  • the first outdoor cable 48, the second outdoor cable 50, and the indoor cable 52 are the plus side core wires 24 in the insulating tubes 48 a, 50 a, 52 a, similarly to the first cable 16 and the second cable 18 of the solar cell module 10. And one minus side core wire 26 is arranged.
  • the insulation tubes 48a and 52a of the first outdoor cable 48 and the indoor cable 52 are black, and the insulation tube 50a of the second outdoor cable 50 is white.
  • a white vinyl tape 56 is wound around the output connector 46 of the indoor cable 52. As a result, the indoor cable 52 and the output connector 46 can be discriminated instantaneously.
  • a first outdoor cable 48, a second outdoor cable 50, and an indoor cable 52 are connected. More specifically, the plus side core wire 24 of the first outdoor cable 48 and the minus side core wire 26 of the second outdoor cable 50 are electrically connected, and the minus side core wire 26 of the first outdoor cable 48 and the indoor side cable 52 are connected. The negative side core wire 26 is electrically connected, and the positive side core wire 24 of the second outdoor cable 50 and the positive side core wire 24 of the indoor side cable 52 are electrically connected.
  • the white second series connector 44 of the lead-in cable 40 constitutes the solar cell block 38a.
  • the black first series connector 42 of the lead-in cable 40 is connected to the white first connector 20 of the solar cell module 10g at the right end of the module stage 36c constituting the solar cell block 38b.
  • connection between the lead-in cable 40 and the solar cell blocks 38a and 38b may be made by connecting connectors of different colors, similarly to the connection between the adjacent solar cell modules 10 and 10, resulting in incorrect wiring connection. Hateful. Further, as described above, the connection of the lead-in cable 40 to the solar cell blocks 38a, 38b is simply a predetermined connector 44, 22, 42, 20 connected in a predetermined combination. It can be performed.
  • the solar cell blocks 38a and 38b of the present embodiment are ones in which a plurality of solar cell modules 10 capable of obtaining a voltage of about 100 volts are connected in parallel. Therefore, the voltage obtained from the entire solar cell blocks 38a and 38b is also about 100 volts. Therefore, the laying structure 100 of the solar cell module 10 of the present embodiment can obtain a voltage of about 200 volts, which is the rated voltage of various devices, by connecting the two solar cell blocks 38a and 38b in series. is there.
  • a plurality of solar cell modules 10 are connected in parallel by connecting the solar cell modules 10 defined in the present application using the first cable 16 and the second cable 18 and connecting them with the lead-in cable 40.
  • Solar cell solar cell blocks 38a and 38b can be made, and the two sets of solar cell blocks 38a and 38b can be connected in series.
  • the above-described operation is simple and simple, and does not cause erroneous wiring, and many solar cell modules 10 can be laid on the roof.
  • An output of approximately 200 [V] can be obtained from the output cable 52 of the lead-in cable 40.
  • the wiring work can be carried out without a skilled electrician, for example, the wiring work can be easily completed by the hands of a high-level work expert such as a roof tiler or a carpenter.
  • the voltage of 200 [V] or more can be generated by increasing the number of solar cells 100 of the solar cell panel 12 of the solar cell module 10 or the like. For example, a voltage of 200 [V] to 360 [V] can be generated.
  • the terminal protection member 58 shown in FIG. 11 is attached to these connectors 16 and 18.
  • the terminal protection member 58 has substantially the same structure as the first connector 20 and the second connector 22 of the solar cell module 10 except that the cable is not connected.
  • dust and water adhere to the terminals 28 and 30 of the unused connectors 20 and 22 by attaching the terminal protection member 58 to the unused connectors 20 and 22. Can be prevented.
  • step 5 in FIG. 4 When the work in step 5 in FIG. 4 is completed as described above, the worker pulls in the indoor cable 52 of the lead-in cable 40 into the house in step 6. After that, construction of the surrounding tiles is performed (Step 7), and after the cleaning of the roof R (Step 8) is completed, after the inspection (Step 9) is performed, the lead-in cable 40 is bundled indoors (Step 10). Then, the output connector 46 is connected to a connection box of a power conditioner (not shown) (step 11), and a series of operations is completed.
  • a power conditioner not shown
  • the solar cell module 10 of the above embodiment has the connectors 20 and 22 attached to the ends of the first cable 16 and the second cable 18 by making the colors of the first cable 16 and the second cable 18 different.
  • the present invention is not limited to such a configuration.
  • the pattern of the first cable 16 and the second cable 18 and the coupling between the pattern and the color may be made different so that the types of the connectors 20 and 22 can be easily identified.
  • the first outdoor cable 48 and the second outdoor cable 50 of the lead-in cable 40 the pattern and the coupling between the pattern and the color are different, and the types of the first series connector 42 and the second series connector 44 are different. It may be made easier to discriminate.
  • the 1st connector 20 and the 2nd connector 22 differed in color
  • this invention is not necessarily limited to such a structure.
  • the 1st connector 20 and the 2nd connector 22 should just be the structures which can distinguish a form rapidly by making forms, patterns, etc. differ.
  • the first series connector 42 and the second series connector 44 of the lead-in cable 40 may be configured such that the type can be instantaneously determined by different shapes and patterns.
  • the first connector 20 and the second connector 22 of the above embodiment are provided with the female piece 32 and the male piece 34, and the type of the terminals 28 and 30 can be discriminated from the respective shapes. It is not limited to the configuration.
  • a connector 60 whose both poles are male pieces 64a and 64b and a connector 62 whose both poles are female pieces 66a and 66b may be combined into a set of fitting structures.
  • the male piece 64a or female piece 66a
  • the male piece 64b or female piece 66b
  • one male piece 64b and female piece 66b are formed thicker than the other male piece 64a and female piece 66a, thereby facilitating discrimination of the poles. This prevents incorrect connection.
  • the connectors 60 and 62 also prevent the connectors 60 and 62 from being erroneously connected by providing a groove 68 in one male piece 64b of the connector 60 and one female piece 66b of the connector 62.
  • the solar cell panel 12 of the solar cell module 10 of the said embodiment was what can obtain the voltage of about 100 volts by one sheet, this invention is restrict
  • the voltage that can be obtained with one solar cell panel 12 is less than 100 volts, by configuring a predetermined number of solar cell blocks 38 and connecting these solar cell blocks 38 in series, In the laying structure 100 of the solar cell module 10, a desired voltage can be secured.
  • the solar cell module 10 of this embodiment can be constructed by taking out the cables 16 and 18 toward the ridge side. Therefore, the solar cell module 10 can be easily laid from the eaves side of the house to the ridge side as is generally done when roofing tiles in the house. Therefore, the solar cell module 10 can be easily and orderly installed by, for example, an operator who is not familiar with electrical work.
  • the laying structure 100 of the present embodiment employs the solar cell module 10 described above, the cables 16 and 18 can be easily routed at the time of laying, and disconnection due to kinking of the cables 16 and 18 occurs. Hateful. Further, the laying structure 100 of the present embodiment can be constructed by taking out the cables 16 and 18 of each solar cell module 10 toward the ridge side without particularly handling the cables 16 and 18. Therefore, in the laying structure 100 of the present embodiment, the solar cell module 10 is laid from the eaves side of the house toward the ridge side, as is generally done when roofing tiles in a house. Therefore, the cables 16 and 18 can be easily connected to each other.
  • the accommodation space 96 provided in the base 82 is surrounded on three sides by the spar direction reinforcing portion 92 and the tilt direction reinforcing portions 94 and 94 of the reinforcing heat insulating material 90. Therefore, it is difficult for wind and rain to enter the housing space 96 from above (building side) and from the left and right in the state of laying in the house, and the terminal box 14 can be prevented from getting wet.
  • the solar cell module 10 of the present embodiment can be ventilated through the open portion because the accommodation space 96 is open toward the eave facing side 162 side. Therefore, even if the terminal box 14 becomes high temperature due to energization, heat does not stay in the accommodation space 96 and the inside of the accommodation space 96 can be maintained at an appropriate temperature condition.
  • the solar cell module 10 of the present embodiment is provided with a gap 168 around the terminal box 14 in the accommodation space 96. Therefore, the solar cell module 10 of the present embodiment can reliably prevent problems such as the heat generated in the terminal box 14 being trapped in the accommodation space 96 and the terminal box 14 being damaged or damaged by this heat. it can.
  • the beam direction reinforcing portion 92 of the reinforcing heat insulating material 90 is made of foamed resin. Therefore, even if the cables 16 and 18 do not pass through the cable groove 98 provided in the girder direction reinforcing portion 92 and are sandwiched between the upper surface of the house and the girder direction reinforcing portion 92, the cables 16 and 18 An excessively large load can be prevented from acting. Therefore, the solar cell module 10 can reliably prevent inconveniences such as disconnection of the cables 16 and 18.
  • FIG. 1 is a perspective view of a tile-type solar cell module employed in an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the connector of the solar cell module of FIG.
  • the tile-type solar cell module 10 is an integrated solar cell, and a plurality of solar cells are formed inside to constitute one solar cell as a whole. That is, the tile-type solar cell module 10 is formed by laminating a conductive film or a semiconductor film on a glass substrate, and further providing a plurality of grooves in the glass substrate to divide it into a large number of unit cells (cells), and electrically connecting each cell in series. It is a thing.
  • the tile-shaped solar cell module 10 has a rectangular shape as shown in the figure, and two cables 16 and 18 are extended from the central portion in the longitudinal direction. Further, connectors 20 and 22 are connected to the cables 16 and 18, respectively.
  • the cables 16 and 18 are long and short, one is long and the other is short. Specifically, the long cable 18 has a total length of 50% or more of the total length of the roof tile-type solar cell module 10, and the short cable 16 has a total length of 50% of the total length of the roof tile-type solar cell module 10. Less than a percent.
  • the cables 16 and 18 are different in color.
  • Each of the cables 16 and 18 has two systems of electrically conductive wires 24 and 26 (a plus side core wire 24 and a minus side core wire 26). More specifically, it is a cable in which two coated conductors 24 and 26 are arranged in the same insulating tube.
  • Connectors 20 and 22 are connected to the two cables 16 and 18, respectively.
  • the connectors 20 and 22 are different in color but have the same structure, and have two terminals 28 and 30 (a pin terminal 28 and a socket terminal 30) as shown in FIG.
  • one pin-shaped terminal 28 is a pin
  • the other socket-shaped terminal 30 is a socket.
  • the connectors 20 and 22 have a female piece 32 and a male piece 34, the pin-like terminal 28 is in the female piece 32, and the socket-like terminal 30 is in the male piece 34.
  • the connectors 20 and 22 can be connected to each other, and one female piece 32 and the other male piece 34 are joined. At that time, one pin-shaped terminal 28 and the other socket-shaped terminal 30 are connected inside each female piece 32 and male piece 34.
  • the two covered conductors 24 and 26 of the two cables 16 and 18 are respectively connected to the positive electrode and the negative electrode of the solar cell (hereinafter simply referred to as a solar cell) in the roof tile solar cell module 10. . That is, one coated conductor 24 in the cable 18 is connected to the positive electrode of the solar cell, and the other coated conductor 26 is connected to the negative electrode of the solar cell. Similarly, one coated conductor 24 in the cable 16 is connected to the positive electrode of the solar cell, and the other coated conductor 26 is connected to the negative electrode of the solar cell. Therefore, one of the two terminals 28 and 30 of the connector 22 is connected to the positive electrode of the solar cell, and the other coated conductor is connected to the negative electrode of the solar cell.
  • one of the two terminals 28 and 30 of the connector 20 is connected to the positive electrode of the solar cell, and the other coated conductor is connected to the negative electrode of the solar cell.
  • the polarities of the two terminals 28 and 30 of the connectors 20 and 22 are compared, they are opposite to each other. That is, in one connector 20, the pin-shaped terminal 28 is a positive electrode and the socket-shaped terminal 30 is a negative electrode, whereas in the other connector 22, the pin-shaped terminal 28 is a negative electrode and the socket-shaped terminal 30 is a positive electrode. is there.
  • FIG. 6 is a conceptual diagram when the tile-type solar cell module is accurately wired.
  • FIG. 7 is a conceptual diagram when a tile-type solar cell module is wired incorrectly.
  • FIG. 8 is a circuit diagram when the tile-type solar cell module is correctly wired.
  • the tile-type solar cell module 10 described above is laid on a structure such as a roof side by side. Then, the connectors 20 and 22 of the adjacent tile type solar cell modules 10 are connected. When attention is paid to one tile-type solar cell module 10, the connector 22 of the tile-type solar cell module 10 and the connector 20 of the tile-type solar cell module 10 on the left are connected.
  • the connector 20 of the tile-type solar cell module 10 and the connector 22 of the tile-type solar cell module 10 on the right side are connected. If it demonstrates paying attention to the length of a cable, the connector 22 of the long cable 18 of the said tile type solar cell module 10 and the connector 20 of the short cable 16 of the tile type solar cell module 10 on the left side will be connected. Further, the connector 20 of the short cable 16 of the tile-type solar cell module 10 and the connector 22 of the long cable 18 of the tile-type solar cell module 10 on the right side are connected. As a result, the solar cells are connected in parallel as shown in FIG.
  • the other connectors 20 cannot be physically connected, so the operator notices the connection error. It becomes. That is, the other connector 20 is connected to a short cable 16, and the short cable 16 is less than half of the total length of the roof tile solar cell module 10. Moreover, since the cables 16 and 18 are extended from the center part of the tile-shaped solar cell module 10, even if it is going to connect the short cables 16, length is not enough and both cannot be connected. Therefore, the tile-type solar cell module 10 of the present embodiment cannot cause wiring errors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 配線の間違いが少なく、作業効率の高い太陽電池モジュールを提供することを課題とする。  本発明は、太陽電池パネル12と、太陽電池パネル12の正極に接続されるプラス側電極接続端子および負極に接続されるマイナス側電極接続端子を有する端子ボックス14と、プラス側電極接続端子に接続される二本のプラス側芯線24,24の一方およびマイナス側電極接続端子に接続される二本のマイナス側芯線26,26の一方を束ねた第一ケーブル16と、二本のプラス側芯線24,24の他方および二本のマイナス側芯線26,26の他方を束ねた第二ケーブル18と、第一ケーブル16に取り付けられる第一コネクタ20と、第二ケーブル18に取り付けられる第二コネクタ22と、を備え、第一ケーブル16の長さが第二ケーブル18の長さよりも短いことを特徴とする太陽電池モジュール10である。

Description

太陽電池モジュール、太陽電池モジュールの敷設構造、及び太陽電池モジュールの敷設方法
 本発明は、構造物の屋根や壁面に敷設される太陽電池モジュール、この太陽電池モジュールを用いた敷設構造、及びこの太陽電池モジュールの敷設方法に関するものである。
 従来から、太陽電池パネルを有する太陽電池モジュールを家屋の屋根等に敷設してその家屋で消費する電力をまかなうと共に、余剰電力を電力会社に売却する太陽光発電システムが増加している。太陽電池パネルは、集積型太陽電池であり、ガラス基板に導電膜や半導体膜を積層し、これに複数の溝を設けて所定数の単体電池(太陽電池セル)を形成し、各太陽電池セルを電気的に直列接続させたものであり、100ボルト以上の電圧を得ることができるものも知られている。以下の特許文献1には、このような太陽電池パネルの製造方法が開示されている。
 ここで太陽電池モジュールは、一枚で100ボルト以上の電圧を得ることができるが、発生し得る電流は小さい。したがって従来の太陽光発電システムは、複数の太陽電池モジュールを下記特許文献2,3に開示されているようなケーブル類を用いて電気的に並列に接続させることで実用的な電流容量を確保していた。
 特許文献2は、太陽電池モジュールに4本のケーブルが接続された構成が開示されている。また複数の太陽電池モジュールを並列に接続し、その並列に接続した太陽電池モジュールを直列に接続する構成が開示されている。特許文献2では、隣接するケーブル同士を直接接続して複数並列接続する。特許文献2に記載された構成では、同文献の図8に開示された様に接続されたケーブルは、自己の太陽電池モジュールの裏面または同列(同段)の太陽電池モジュールの裏面に収納される。
 特許文献3は、太陽電池モジュールに4本のケーブルが接続された構成が開示されている。また特許文献3に開示された構成では、ケーブルに長短がある。さらにケーブルを色違にすることも開示されている。
 特許文献3に記載された構成でも、同文献の図7に開示された様に、接続されたケーブルは自己の太陽電池モジュールの裏面または同列(同段)の太陽電池モジュールの裏面に収納される。
 また他に本発明の関連する先行技術として特許文献4乃至7がある。
 特許文献4の図25には、太陽電池パネルの長辺側に導線が延出された構成が開示されている。しかしながら、特許文献4に示された太陽電池モジュールは、導線が短く、且つ太陽電池パネルと基材62の位置関係から考えて、導線が太陽電池モジュールの外に延出されるものではない。
 また特許文献4に示された太陽電池モジュールは、導線が2本であり、一方がプラス線であり、他方がマイナス線である。
 特許文献5,6には、太陽電池モジュールの軒側から2本のケーブルが出ている図面が開示されている。特許文献5,6に開示された構成は、2本のケーブルはいずれも単芯であって太陽電池モジュール同士を直列接続するものである。
 特許文献5に記載された構成でも、同文献の図20,21に開示された様に、自己の太陽電池モジュールの裏面または同列(同段)の太陽電池モジュールの裏面に収納される。
 特許文献6では、太陽電池モジュールを平置き状に配置するものであって重ねない。特許文献6についても、大半のケーブルは自己の太陽電池モジュールの裏面に配される。
 特許文献7には、太陽電池モジュールの棟側から2本のケーブルが延出した構成が開示されている。特許文献7に開示の構成では、配線は、太陽電池モジュールが配列された部位とは別の部位で行われている。
 特許文献8に記載の発明では、太陽電池モジュールの棟側から2本のケーブルが出ており、このケーブルが隣接する段に属する太陽電池モジュールの裏面側で接続された図面が開示されている。特許文献8に開示された構成では、2本のケーブルはいずれも単芯であって太陽電池モジュール同士を直列接続するものである。特許文献8に記載の発明は、偏平な形状のコネクタを使用することを特徴としている。特許文献8に記載された太陽電池モジュールは、本体部分が平板状であり、その底に偏平な形状のコネクタを配置する。
 特許文献8に開示された太陽電池モジュールは長方形であり、2本のケーブルはその短手方向の辺から外側に延出されている。
特開平11-298017号公報 特開2004-349507号公報 特開2008-130902号公報 WO2003/29577号公報 特開2000-282647号公報 特開2002-329881号公報 特開2002-83991号公報 特開2004-14920号公報
 ところが家屋の屋根等に太陽電池モジュールを敷設する作業は高所作業であり、夏暑く冬寒い過酷な環境で行われる。また太陽電池モジュールを屋根等に敷設する作業は、上記過酷な作業環境に加え、配線に誤りが生じないようにしなければならないという正確性も要求される。そのため太陽電池モジュールを家屋の屋根等に敷設する作業は、作業効率が悪いという問題があった。
 上記特許文献2に開示されているケーブルは、それぞれ長さがほぼ同一であり、両端に同一の形状および色彩のコネクタが取り付けられたものであった。そのため、特許文献2に開示されているケーブルを採用した場合は、作業者が一見しただけではいずれのケーブルやコネクタであるのかの判別が付かず、誤配線が起こる可能性があった。
 また、特許文献3に開示されているケーブルのように、太陽電池モジュールを接続するために設けられた配線がバラバラになっていると、予期せぬ場所に引っかかるなどして断線してしまう可能性もあった。また、従来公知の二芯ケーブルのように、複数の導線(配線)を束ねたものを採用した場合は、剛性が高いが、その分ケーブルがある程度長くないと折り曲げ等しにくく、取り回しが困難になるといった問題点があった。その一方で、折り曲げの容易さなどを考慮してケーブルの長さを必要以上に長くすると、その分だけケーブルの余剰になる部分を収容するスペース等を確保しなければならなくなり、施工性が低下してしまうという問題があった。
 さらに、上記特許文献2に開示されているケーブルのように、電気的に接続される二本のケーブルの長さをほぼ同等としつつ、ケーブルに余剰になる部分ができるのを防止するためにケーブルの長さを調整した場合は、さほど長くないケーブルを無理に折り曲げるなどして、両者の中間部分で配線することになる。そのため、折り曲げによるストレスが各ケーブルに取り付けられたコネクタとの接続部分や、各ケーブルと端子ボックスとの接続部分などに大きく作用し、断線しやすくなる可能性もあった。
 また特許文献2,3に開示されたケーブルは、いずれも隣接する太陽電池モジュールを並列に接続するものであり、プラス側の導線とマイナス側の導線をそれぞれ2本づつ有し、4本の導線によって構成されるから、ケーブルの総容積が大きい。
 それにも係わらず、特許文献2,3に開示されたケーブルは、前記した様に、自己の太陽電池モジュールの裏面側で接続する構成となっている。
 即ち太陽電池モジュールを屋根に設置する場合、多くの場合は多数段に渡って行列状に配され、平面的な広がりを以て設置される。
 具体的に説明すると、太陽電池モジュールは、軒及び棟と平行に列状に配されるが、列は一列だけではなく、複数段に渡って並べられる。特許文献2,3に開示された発明では、太陽電池モジュールは、同列上に隣接する(屋根に向かって左右)太陽電池モジュール同士をケーブルで接続するが、特許文献2,3に開示されたケーブルは、いずれも太陽電池モジュール同士の左右の境界線の裏側を通過して左右に隣接する太陽電池モジュールのケーブルと接続される。即ちケーブルは屋根に向かって左右方向に延出し、左右に設置された他の太陽電池モジュールのケーブルと接続されるから、ケーブルは、常に自己の太陽電池モジュールの列の下に有り、太陽電池モジュールの列から飛び出すことはない。
 そのため太陽電池モジュールを持ち上げたり、斜め姿勢にした状態で太陽電池モジュールの裏面と建屋の屋根部分との間に隙間を作り、その狭い隙間でケーブルを接続する作業を強いられる。
 そのため太陽電池モジュールを家屋の屋根等に敷設する作業は、作業効率が悪い。
 そこで本発明は、従来技術の上記した問題点に注目し、配線の間違いが少なく、作業効率の高い太陽電池モジュール、太陽電池モジュールの敷設構造、及び太陽電池モジュールの敷設方法を提供することを課題とする。
 上記課題を解決するため提供される太陽電池モジュールは、複数の太陽電池セルが電気的に直列接続されて略長方形の面状に形成された太陽電池パネルと、2系統以上の導線を有し長さの異なるケーブルからなる第一ケーブルおよび第二ケーブルと、前記第一ケーブルの端部に取り付けられる第一コネクタおよび前記第二ケーブルの端部に取り付けられて前記第一コネクタに嵌合接続可能な第二コネクタからなる二組のコネクタと、前記太陽電池パネルの正極に電気的に導通した二本のプラス側の導線と、前記太陽電池パネルの負極に電気的に導通した二本のマイナス側の導線と、を備え、前記第一ケーブルが、前記二本のプラス側の導線の一方および前記二本のマイナス側の導線の一方からなる2条の導線を同一の絶縁チューブ内に配したケーブルであり、
 前記第二ケーブルが、前記二本のプラス側の導線の他方および前記二本のマイナス側の導線の他方からなる2条の導線を同一の絶縁チューブ内に配したケーブルであることを特徴としている。
 もう一つの推奨される構成の太陽電池モジュールは、複数の太陽電池セルが電気的に直列接続されて略長方形の面状に形成された太陽電池パネルと、前記太陽電池パネルの正極に電気的に導通したプラス側電極接続端子と、前記太陽電池パネルの負極に電気的に導通したマイナス側電極接続端子と、2系統以上の導線を有し長さの異なるケーブルからなる第一ケーブルおよび第二ケーブルと、前記第一ケーブルの端部に取り付けられる第一コネクタおよび前記第二ケーブルの端部に取り付けられて前記第一コネクタに嵌合接続可能な第二コネクタからなる二組のコネクタと、前記プラス側電極接続端子に接続される二本のプラス側の導線と、前記マイナス側電極接続端子に接続される二本のマイナス側の導線と、を備え、前記第一ケーブルが、前記二本のプラス側の導線の一方および前記二本のマイナス側の導線の一方からなる2条の導線を同一の絶縁チューブ内に配したケーブルであり、前記第二ケーブルが、前記二本のプラス側の導線の他方および前記二本のマイナス側の導線の他方からなる2条の導線を同一の絶縁チューブ内に配したケーブルであり、前記第一ケーブルの長さが前記第二ケーブルの長さよりも短く、前記第一コネクタおよび第二コネクタは、前記プラス側の導線に接続される正極側端子と、前記マイナス側の導線に接続される負極側端子と、雄片と、当該雄片と嵌合接続可能な雌片と、を有し、第一コネクタおよび第二コネクタの一方は、前記雄片に正極側端子を設け、前記雌片に負極側端子を設けたものであり、第一コネクタおよび第二コネクタの他方は、前記雄片に負極側端子を設け、前記雌片に正極側端子を設けたものであることを特徴としている。
 上記した太陽電池モジュールは、ケーブルの長さによって、そのケーブルに取り付けられたコネクタが第一コネクタであるのか、あるいは第二コネクタであるのかを迅速に判断することができる。したがって上記した太陽電池モジュールは、作業者が迅速に適切なコネクタを選択することができ、従来の太陽電池モジュールに比べて配線の間違いが少なく、作業効率が高い。
 また、上記した太陽電池モジュールは、第一,二ケーブルが、それぞれ二芯ケーブルのように2系統以上の導線を有するケーブルによって構成されており、ケーブルの本数が最小限で済む。そのため、上記した太陽電池モジュールは、屋根等に設置する際の電気配線が簡単であり、予期せぬ場所にケーブルが引っかかって断線するなどの不都合を回避することができる。
 また、上記した太陽電池モジュールは、2本の導線を束ねたものを第一,二ケーブルとして採用しており、剛性が高い。そのため、上記した太陽電池モジュールは、第一,二ケーブルが断線する可能性が低い。また、上記した太陽電池モジュールでは、第二ケーブルを第一ケーブルよりも長くしたものであり、第二ケーブルの取り回しの自由度が高い。そのため、上記した太陽電池モジュールは、自由が効く第二ケーブルを第一ケーブル側に取り回すことにより、第一ケーブルをさほど大きく折り曲げ等せずに施工することができ、第一,二ケーブルのいずれに作用する曲げによるストレスもさほど大きくならない。従って、太陽電池モジュールは、必要以上に第一,二ケーブルを長くとらなくても容易に施工でき、各ケーブルの断線などの不具合も起こりにくい。
 また太陽電池モジュールは略長方形であって第一ケーブル及び第二ケーブルは、いずれも太陽電池モジュールの長手方向の辺から外側に向かって延出されており、太陽電池パネルの長手方向の長さをL1とし太陽電池パネルの短手方向の長さL4としたとき前記第二ケーブルの前記外側に向かって延出された部分の長さXは(L1/2)よりも長く且つL4よりも長いものであり、前記第一ケーブルの前記外側に向かって延出された部分の長さYは、前記第二ケーブルの長さよりも短く且つ(L1/2)よりも短い。
 本発明では、太陽電池モジュールは略長方形であって第一ケーブル及び第二ケーブルは、いずれも太陽電池モジュールの長手方向の辺から外側に向かって延出されているから、ケーブル同士の接続を太陽電池モジュールのエリア外で行うことができる。そしてケーブルを接続した後に、隣接する段に属する太陽電池モジュールを設置することにより、先に接続したケーブルの上に隣接する段の太陽電池モジュールを載置することができる。
 また上記した式を満足することにより、太陽電池モジュールを隣接する段の太陽電池モジュールと接続することもできる。
 前記した様に、太陽電池モジュールを屋根に設置する場合、多くの場合は多数段に渡って行列状に配され、平面的な広がりを以て設置される。従って、太陽電池モジュールを
電気接続する場合、左右に隣接する太陽電池モジュールだけでなく、隣接する列(隣接する段。傾斜屋根であれば上下。)に属する太陽電池モジュールともケーブルを接続する必要がある。
 ここで本発明では、第二ケーブルの長さXが第一ケーブルの長さYよりも長いが、長い方の第二ケーブルの長さXが、太陽電池パネル短手方向の長さL4よりも長い場合は、第二ケーブルは隣接する段の太陽電池モジュールの裏面側を潜り、隣接する段の太陽電池モジュールの外に延出することができる。そのため隣接する段の太陽電池モジュールとも電気的に接続することができる。なお第二ケーブルの長さXは、太陽電池モジュールの短手方向の長さL1の50%以上であるから、左右に隣接する太陽電池モジュールのケーブルと接続することができる。
 太陽電池モジュールは、千鳥状に配置される場合が多いので、隣接する段の太陽電池モジュールがずれる場合がある。そのため長さXは、(L1/4)とL4の合計よりも長く、((L1/4)×3)とL4の合計よりも短いことが望ましい。
 長さYは、太陽電池モジュールの短手方向の長さL2よりも短いことが望ましい。
 またさらに推奨される長さYは、L4よりも短い。
 短い方の第一ケーブルの長さYが、太陽電池モジュール短手方向の長さL2よりも短い場合は、第一ケーブルが隣接する段の太陽電池モジュールと接続されることがなく、誤配線を防止することができる。第一ケーブルの長さYが、太陽電池パネル短手方向の長さL4よりも短い場合は、より確実に誤配線を防止することができる。
 前記第一コネクタおよび前記第二コネクタの模様若しくは色彩又はこれらの結合が相違することが望ましい。
 これにより太陽電池モジュールは、作業者が、コネクタの形状、模様若しくは色彩又はこれらの結合(以下、単に「形態」ともいう)を確認することによって、そのコネクタの種類を迅速に判別することができる。したがって本構成の太陽電池モジュールは、作業者が迅速に適切なコネクタを選択することができ、従来の太陽電池モジュールに比べて配線の間違いが少なく、作業効率が高い。
 前記第一ケーブルおよび前記第二ケーブルの模様、色彩又はこれらの結合が相違することが望ましい。
 これにより太陽電池モジュールは、作業者がケーブルの模様、色彩又はこれらの結合を確認することで、そのケーブルに取り付けられたコネクタの種類を迅速に判断することができる。したがって本構成の太陽電池モジュールは、作業者が迅速に適切なコネクタを選択することが可能であり、従来の太陽電池モジュールに比べて配線の間違いが少なく、作業効率が高い。
 また前記太陽電池モジュールは、前記プラス側の導線および前記マイナス側の導線の模様、色彩又はこれらの結合が相違するものであってもよい。
 また前記太陽電池パネルが略長方形状であり、前記第一ケーブルおよび第二ケーブルは、前記太陽電池パネルの長辺の略中央から延出されており、太陽電池パネルの短辺同士を隣り合わせて二つの太陽電池モジュールを配置した場合、一方の太陽電池モジュールの第一コネクタと他方の太陽電池モジュールの第一コネクタとは、ケーブルの長さが足りないために接続不可能となることが望ましい。
 これにより太陽電池モジュールは、隣接する他の太陽電池モジュールと第一コネクタ同士を接続させることが不可能であり、配線の誤接続を確実に防止することができる。
 太陽電池モジュールの裏面側に、接続されたケーブル及びコネクタを収容する空隙部が設けられていることが望ましい。
 本発明によると、接続されたケーブルの収まりがよく、施工工事を楽に行うことができる。
 同様の理由から、太陽電池モジュールの裏面側にケーブルを短手方向に挿通する溝が設けられていることが望ましい。
 また同様の課題を解決するもう一つの発明は、内部に複数の太陽電池セルが形成され全体として一つの太陽電池を構成する太陽電池モジュールであって、二組のコネクタを有し、前記二組のコネクタはいずれも独立した二以上の端子を備え、前記二組のコネクタはいずれも太陽電池モジュールの長手方向中央から延出された2系統以上の導線を有するケーブルに接続されており、各コネクタの一つの端子は前記太陽電池の正極に接続された正極側端子であり、各コネクタの他の一つの端子は太陽電池の負極に接続された負極側端子であり、前記二組のコネクタの内の一方のコネクタに接続されたケーブルは、他方のコネクタに接続されたケーブルよりも短く、前記ケーブルの長さの関係は他の太陽電池モジュールと共に列状に並べたとき短いケーブルが接続されたコネクタ同士は長さ不足の状態であって接続させることが不能となるものであり、長いケーブルが接続されたコネクタと短いケーブルが接続されたコネクタが接合され、両者が接合された状態において両コネクタの正極側端子同士と、負極側端子同士が接続された状態となり、他の太陽電池モジュールと電気的に並列に接続されることを特徴とする太陽電池モジュールである。
 長いケーブルは隣接する段の太陽電池モジュールの裏面側を経て隣接する段の太陽電池モジュールの外側に至り、長いケーブルが接続されたコネクタと隣接する段の太陽電池モジュールの短いケーブルが接続されたコネクタとを接続することもできることが望ましい。
 短いケーブルは、隣接する段の太陽電池モジュールの裏面側を経て隣接する段の太陽電池モジュールの外側に至ることができない長さであることが望ましい。
 上記した太陽電池モジュールを敷設する場合、隣接する太陽電池モジュールのコネクタは、長いケーブルが接続されたコネクタと短いケーブルが接続されたコネクタが接合される。上記した太陽電池モジュールの敷設構造は、この様に長いケーブルが接続されたコネクタと短いケーブルが接続されたコネクタが接合された状態が正規の接合状態である。本発明の太陽電池モジュールは、この様に隣接する太陽電池モジュールとの接続に際し、長いケーブルのコネクタと短いケーブルのコネクタとを接合すると、両コネクタの正極側端子同士と、負極側端子同士が接続された状態となり、その結果、複数の太陽電池モジュールが電気的に並列に接続されることとなる。
 また、上記した太陽電池モジュールの敷設構造では、作業者がコネクタを誤接続することはない。すなわち、上記した太陽電池モジュールは、ケーブルの長さに長短があるので、他の太陽電池モジュールと共に列状に並べたとき、短いケーブルが接続されたコネクタ同士は長さ不足の状態であって接続させることができない。そのため屋根の上等に太陽電池モジュールを敷設した際に、隣接する太陽電池モジュールの短いケーブル同士を接続することは物理的にできず、作業者がコネクタを誤接続することはない。
 また、上記した太陽電池モジュールは、2系統以上の導線を纏めたケーブルを採用しているため、従来技術として例示した特許文献3(特開2008-130902号公報)に開示されているように各系統毎にバラバラに設けられたケーブルを採用した場合に比べて、各ケーブルの剛性が高い。そのため、上記した太陽電池モジュールは、各ケーブルが断線する可能性が低い。また、上記した太陽電池モジュールでは、従来技術として例示した特許文献2(特開2004-349507号公報)に開示されているもののようにケーブルの長さが均一ではない。そのため、上記した発明では、長い方のケーブルの取り回しの自由度が高い。よって、太陽電池モジュールは、自由が効く長いケーブルを、中途において屈曲させ短いケーブルの方に向けて取り回すことができ、長いケーブルの基端部やコネクタとの接続部分に過度なストレスが掛からない。また、このようにして長さの異なるケーブルを接続した場合は、長い方のケーブルが短い方のケーブルの近傍に至るため、短い方のケーブルも無理に屈曲させる必要がない。従って、上記した太陽電池モジュールは、必要以上に各ケーブルを長くとらなくても容易に施工でき、各ケーブルの断線などの不具合も起こりにくい。
 また上記した発明によると、隣接する段の列に属する太陽電池モジュールとも誤りなく配線することができる。
 上記した太陽電池モジュールは、二組のコネクタの内の一方および他方のコネクタに接続されたケーブルが、それぞれ2条の導線を同一の絶縁チューブ内に配したケーブルであることを特徴とするものであってもよい。
 本発明のように、各ケーブルがそれぞれ2条の導線を纏めて同一の絶縁チューブ内に配したものである場合は、上記特許文献3(特開2008-130902号公報)に開示されているように各系統毎にバラバラに設けられたケーブルを採用した場合に比べ、ケーブルの剛性が高く断線の可能性が低くなる。その一方で、ケーブルの剛性が高くなると、その分だけケーブルの折り曲げによりケーブルの基端部やコネクタとの接続部分に作用するストレスが大きくなる可能性がある。しかし、本発明では、特許文献2(特開2004-349507号公報)に開示されているもののようにケーブルの長さが均一ではなく、一方のケーブルが長く、他方のケーブルが短くされている。そのため、いずれのケーブルも無理に屈曲等させなくてもよく、ケーブルの基端部やコネクタとの接続部分にさほど大きな負荷が作用しない。従って、本発明によれば、ケーブルの強度不足による断線だけでなく、ケーブルの曲げに伴うストレスを原因としてケーブルの基端部やコネクタとの接続部分などで起こる断線も防止することができる。
 二組のコネクタが、それぞれ構造が同一であるが色違いであることが望ましい。
 本発明で採用する二組のコネクタは、構造が同一であるから同一構造の金型を使用して成形することができる。
 その一方で、本発明の太陽電池モジュールで採用されている二組のコネクタは、構造が同一であるため、構造を見ただけでは見分けが付かない。しかし、本発明の太陽電池モジュールでは、前記した二組のコネクタがそれぞれ色違いとされているため、作業者は、コネクタの構造等を見るまでもなく、どのコネクタを接続すれば良いかを直感的に把握することができる。従って、本発明の太陽電池モジュールによれば、接続すべきコネクタを作業者が瞬時に判別でき、誤接続の発生を確実に防止することができる。また、仮にコネクタの誤接続があったとしても、これを作業者が視認により容易に見つけることができる。
 ここで、上述したようにケーブルに長短がある場合は、長さを比較すればどちらのケーブルであるか判別することができる。しかし、多数の太陽電池モジュールを敷設する際の便宜を考慮すると、長さを比較するまでもなく、さらに直感的にいずれのケーブルであるのかを判別できることが好ましい。
 そこで、かかる知見に基づいて提供される発明は、長い方のケーブルが、短い方のケーブルと色が違うことを特徴とする太陽電池モジュールである。
 かかる構成によれば、作業者は、ケーブルの色を見るだけで、長短いずれのケーブルであるのかを直感的に判別することができる。
 上記した本発明の太陽電池モジュールは、長い方のケーブルが、太陽電池モジュールの全長の50パーセント以上であり、短い方のケーブルが、太陽電池モジュールの全長の50パーセント未満であることが望ましい。
 太陽電池モジュールの敷設構造に関する発明は、上記したいずれかの太陽電池モジュールが複数列状に配置され、二組のコネクタのうちの一方である第一コネクタおよび他方である第二コネクタは、それぞれ正極側端子および負極側端子を有し、隣接する一方の太陽電池モジュールの第一コネクタおよび他方の太陽電池モジュールの第二コネクタの同極の端子同士を接続させて、隣接する太陽電池モジュールが電気的に並列接続され、一連の太陽電池ブロックが形成されることを特徴とする。
 上記した太陽電池モジュールの敷設構造は、隣接する一方の太陽電池モジュールの第一コネクタと他方の太陽電池モジュールの第二コネクタとを接続させるだけで、隣接する太陽電池モジュールを電気的に並列接続させることができ、作業が容易である。また太陽電池モジュールが一つでは発生しうる電流が小さい場合であっても、本発明の太陽電池モジュールの敷設構造は、太陽電池モジュールを複数並列接続させることが可能であるため、実用的な電流容量の確保が可能である。
 上記した太陽電池モジュールの敷設構造において複数の前記太陽電池ブロックを直列に接続して配線を建物内に引き込む引込ケーブルを備えることが望ましい。
 これにより上記した太陽電池モジュールの敷設構造は、一つの太陽電池ブロックの電圧が低い場合であっても、複数の太陽電池ブロックを直列に接続させることで、所望の電圧の確保が可能である。
 上記の太陽電池モジュールの敷設構造は、二つの前記太陽電池ブロックを備え、前記引込ケーブルは、一方の太陽電池ブロックの未使用の第一コネクタに接続される第一直列コネクタと、他方の太陽電池ブロックの未使用の第二コネクタに接続される第二直列コネクタと、前記太陽電池パネルで変換された電力を出力する出力コネクタと、前記第一直列コネクタに接続される正負二本の導線を含む第一屋外ケーブルと、前記第二直列コネクタに接続される正負二本の導線を含む第二屋外ケーブルと、前記出力コネクタに接続される正負二本の導線を含む屋内側ケーブルと、を有し、前記第一屋外ケーブルの一方の導線は、前記第二屋外ケーブルの正負が異なる導線に接続されており、前記第一屋外ケーブルの他方の導線は、前記屋内側ケーブルの正負が同一の導線に接続されており、前記第二屋外ケーブルの残りの導線と前記屋内側ケーブルの残りの導線とが接続されていることを特徴とするものであってもよい。
 前記第一直列コネクタおよび前記第二直列コネクタの模様若しくは色彩又はこれらの結合が相違することが望ましい。
 これにより作業者が、引込ケーブルのコネクタの形態を確認することで、そのコネクタの種類を瞬時に判断することが可能である。したがって本発明は、配線の間違いが少なく、作業効率が高い。
 前記第一屋外側ケーブルおよび前記第二屋外側ケーブルの模様、色彩又はこれらの結合が相違することが望ましい。
 これにより作業者が屋外側ケーブルの模様、色彩又はこれらの結合を確認することで、そのケーブルに取り付けられたコネクタの種類を瞬時に判別することができる。したがって本発明は、配線の誤接続が少なく、作業効率が高い。
 またもう一つの太陽電池モジュールの敷設構造に関する発明は、略長方形状であって内部に複数の太陽電池セルが形成され全体として一つの太陽電池を構成する太陽電池モジュールを使用し、当該太陽電池モジュールを構造物に敷設する太陽電池モジュールの敷設構造において、太陽電池モジュールは、二組のコネクタを有し、前記二組のコネクタはいずれも独立した二以上の端子を備え、前記二組のコネクタはいずれも太陽電池モジュールの長手方向中央から太陽電池モジュールの外側に延出された2系統以上の導線を有するケーブルに接続されており、各コネクタの一つの端子は太陽電池の正極に接続され、各コネクタの他の一つの端子は太陽電池の負極に接続され、前記二組のコネクタの内の一方のコネクタに接続されたケーブルは、他方のコネクタに接続されたケーブルよりも短く、前記ケーブルの長さの関係は太陽電池モジュールを列状に並べたとき短いケーブルが接続されたコネクタ同士は長さ不足の状態であって接続させることが不能となるものであり、前記太陽電池モジュールは構造物に列状に並べて設置され、隣接する太陽電池モジュールのコネクタは長いケーブルが接続されたコネクタと短いケーブルが接続されたコネクタが前記太陽電池モジュールの列の外側で接合され、両者が接合された状態において両コネクタの正極側端子同士と、負極側端子同士が接続された状態となり、複数の太陽電池モジュールが電気的に並列に接続されることを特徴とする太陽電池モジュールの敷設構造である。
 上記した太陽電池モジュールの敷設構造では、隣接する太陽電池モジュールにおいては、長いケーブルが接続されたコネクタと短いケーブルが接続されたコネクタが接合される。上記した太陽電池モジュールの敷設構造は、この様に長いケーブルが接続されたコネクタと短いケーブルが接続されたコネクタが接合された状態が正規の接合状態である。上記した敷設構造では、この様に隣接する太陽電池モジュールの長いケーブルのコネクタと短いケーブルのコネクタとを接合すると、両コネクタの正極側端子同士と、負極側端子同士が接続された状態となり、複数の太陽電池モジュールが電気的に並列に接続されることとなる。
 また上記した太陽電池モジュールの敷設構造では、作業者がコネクタを誤接続することはない。すなわち上記した太陽電池モジュールの敷設構造では、この様にケーブルの長さに長短があるので、太陽電池モジュールを列状に並べたとき、短いケーブルが接続されたコネクタ同士は長さ不足の状態であって接続させることができない。そのため屋根の上等に太陽電池モジュールを敷設した際に、隣接する太陽電池モジュールの短いケーブル同士を接続することは物理的にできず、作業者がコネクタを誤接続することはない。
 また、上記した太陽電池モジュールの敷設構造では、2系統以上の導線を纏めたケーブルを採用して各太陽電池モジュール同士が電気的に接続されている。そのため、従来技術として例示した特許文献3(特開2008-130902号公報)に開示されているように各系統毎にバラバラに設けられたケーブルを採用した場合に比べて、各ケーブルの剛性が高い。従って、上記した太陽電池モジュールの敷設構造では、各ケーブルの強度が高く、断線による不具合が発生する可能性が低い。
 また、上記した太陽電池モジュールの敷設構造で採用しているケーブルは、従来技術として例示した特許文献2(特開2004-349507号公報)に開示されているもののように各ケーブルの長さが均一ではない。そのため、上記した太陽電池モジュールの敷設構造を採用した場合は、上記したような剛性の高いケーブルを採用しているにもかかわらず、敷設時に長い方のケーブルを自由に取り回すことができる。よって、上記した太陽電池モジュールの敷設構造を採用した場合は、自由が効く長いケーブルを、中途において屈曲させ短いケーブルの方に向けて取り回し、両者を電気的に接続することになるため、短い方のケーブルについても無理に折り曲げたりする必要がない。そのため、上記した太陽電池モジュールの敷設構造を採用した場合は、長いケーブルの基端部やコネクタとの接続部分に過度なストレスが掛からない。さらに、上記した太陽電池モジュールの敷設構造を採用した場合は、必要以上に各ケーブルを長くとる等しなくてもケーブルを容易に取り回し、電気的に接続できるため、施工性にも優れている。
 上記の太陽電池モジュールの敷設構造は、二組のコネクタの内の一方および他方のコネクタに接続されたケーブルが、それぞれ2条の導線を同一の絶縁チューブ内に配したケーブルであることを特徴とするものであってもよい。
 本発明のように、各ケーブルがそれぞれ2条の導線を纏めて同一の絶縁チューブ内に配したものである場合は、上記特許文献3(特開2008-130902号公報)に開示されているように各系統毎にバラバラに設けられたケーブルを採用した場合に比べ、ケーブルの剛性が高く、断線の可能性が低くなる。その一方で、ケーブルの剛性が高くなると、その分だけケーブルが折り曲げにくくなったり、折り曲げによりケーブルの基端部やコネクタとの接続部分に作用するストレスが大きくなる可能性がある。しかし、本発明では、特許文献2(特開2004-349507号公報)に開示されているもののようにケーブルの長さが均一ではなく、一方のケーブルが長く、他方のケーブルが短くされている。そのため、いずれのケーブルも無理に屈曲等させなくてもよく、取り回しが容易であり、ケーブルの基端部やコネクタとの接続部分にさほど大きな負荷が作用しない。従って、本発明によれば、ケーブルの強度不足による断線だけでなく、ケーブルの曲げに伴うストレスを原因としてケーブルの基端部やコネクタとの接続部分などで起こる断線も防止することができる。
 太陽電池モジュールが備える二組のコネクタが、それぞれ構造が同一であるが色違いであることが望ましい。
 本発明の太陽電池モジュールの敷設構造を構成する太陽電池モジュールが備える二組のコネクタは、構造が同一である。そのため、太陽電池モジュールを敷設する際に、両コネクタの構造を見ただけでは見分けが付かない。しかし、本発明では、前記した二組のコネクタがそれぞれ色違いとされている。そのため、太陽電池モジュールの敷設構造を構築する際に、作業者は色の違いにさえ注意すれば、どのコネクタを接続すれば良いかを直感的に把握することができる。従って、本発明の太陽電池モジュールの敷設構造は、作業者がコネクタを取り違えることによる、誤接続が発生しにくい。また、仮にコネクタの誤接続があったとしても、これを作業者が視認により容易に見つけることができ、誤接続されたまま太陽電池モジュールの敷設作業が完了してしまうのを未然に防止できる。
 太陽電池モジュールが備える長い方のケーブルが、短い方のケーブルと色が違うことが望ましい。
 かかる構成によれば、作業者は、太陽電池モジュールを敷設する際にケーブルの色を見るだけで、長短いずれのケーブルであるのかを直感的に判別することができる。従って、本発明の太陽電池モジュールの敷設構造を採用した場合は、ケーブルの色を見るだけで、作業者が長短いずれのケーブルであるのかを直感的に判別することができ、配線ミスが生じにくい。
 上記した太陽電池モジュールの敷設構造において、太陽電池モジュールが備える長い方のケーブルは、太陽電池モジュールの全長の50パーセント以上であり、短い方のケーブルは、太陽電池モジュールの太陽電池モジュールの全長の50パーセント未満であることが望ましい。
 太陽電池モジュールが備える二組のコネクタのうちの一方が第一コネクタであり、他方が第二コネクタであり、前記太陽電池ブロックにおいて未使用の第一コネクタ又は第二コネクタのうち、前記引込ケーブルが接続されない第一コネクタ又は第二コネクタに端子保護部材が取り付けられることが望ましい。
 本発明では、他のコネクタが接続されていないコネクタについても端子が外部に露出し、ゴミや水が端子に付着するのを効果的に防止することができる。
 太陽電池モジュールは、裏面側に、接続されたケーブル及びコネクタを収容する空隙部が設けられたものであり、複数個の太陽電池モジュールの列が複数段状に並べられて太陽電池モジュールが平面的に分布するものであり、列状に隣接する太陽電池モジュールの長い方のケーブルと短い方のケーブルが接続されて、当該長い方のケーブルと短い方のケーブルとが隣接する段の太陽電池モジュールの空隙部に収容されることが望ましい。
 本発明の太陽電池モジュールの敷設構造によると、ケーブル同士の接続を太陽電池モジュールのエリア外で行うことができ、さらにケーブルを接続した後に、隣接する段に属する太陽電池モジュールを設置することにより、先に接続したケーブルを、隣接する段の太陽電池モジュールの空隙部に収容することができる。
 また複数個の太陽電池モジュールの列が複数段状に並べられて太陽電池モジュールが平面的に分布するものであり、一つの段においては、長い方のケーブルを屋根に向かって右側に延ばして右側に隣接する太陽電池パネルの短い方のケーブルと接続し、これに隣接する段においては、長い方のケーブルを屋根に向かって左側に延ばして左側に隣接する太陽電池パネルの短い方のケーブルと接続することが望ましい。
 本発明によると、ケーブルの誤配線を未然に防止することができる。
 列の端部に位置する太陽電池モジュールは、長い方のケーブルが隣接する段の太陽電池モジュールの底面をくぐって当該隣接する段の太陽電池モジュールの外側に出現し、隣接する段の列の端部に位置する太陽電池モジュールの短い方のケーブルと接続されていることが望ましい。
 列の端部に位置する太陽電池モジュールの長い方のケーブルと、隣接する段の列の端部に位置する太陽電池モジュールの短い方のケーブルは、接続された状態で一つ飛びの段の太陽電池モジュールの空隙部に収容されていることが望ましい。
 太陽電池モジュールの敷設方法に関する発明は、上記した敷設構造を構成する太陽電池モジュールが備える二組のコネクタのうちの一方が第一コネクタであり、他方が第二コネクタであり、前記敷設構造の敷設作業中断時に、未使用の前記第一コネクタ又は第二コネクタに端子保護部材を取り付けることを特徴とする。
 これにより敷設作業中であっても、太陽電池モジュールのコネクタの端子にゴミや水が付着するのを効果的に防止することができる。
 本発明では、配線の間違いが少なく、作業効率の高い太陽電池モジュール、太陽電池モジュールの敷設構造、及び太陽電池モジュールの敷設方法を提供することができる。
(a)は、本発明を実施した太陽電池モジュールを示す斜視図であり、(b),(c)は、(a)の太陽電池モジュールのコネクタの断面図である。 図1の太陽電池モジュールの裏面側の構造を示す斜視図である。 図1の太陽電池モジュールのコネクタの断面図である。 太陽電池モジュールの敷設構造の作業手順を示すフローチャートである。 (a)は、家屋の屋根を示す説明図であり、(b)は、太陽電池モジュールを家屋の屋根に敷設した状態を示す説明図である。 太陽電池モジュールが正しく配線されたモジュール段を示す概念図である。 太陽電池モジュールが誤って配線されたモジュール段を示す概念図である。 太陽電池モジュールが正しく配線された場合の回路図である。 太陽電池モジュールの敷設構造を示す概念図である。 (a)は、引込ケーブルの正面図であり、(b)は、引込ケーブルのモールド部の断面図である。 端子保護部材の平面図である。 (a)は、両極が雄片であるコネクタの平面図であり、(b)は、両極が雌片であるコネクタの平面図である。 検電ケーブルを示す正面図である。 図1の太陽電池モジュールの分解斜視図である。 図1の太陽電池モジュールが家屋の上面の軒先に取り付けられた状態を示す断面図である。 本実施形態の屋根構造における家屋の上面の軒先への太陽電池モジュールの取り付けを説明するための斜視図であり、(a)は、取り付け前の状態を示し、(b)は、取り付け後の状態を示す。 本実施形態の屋根構造における二段目以降の太陽電池モジュールの取り付けを説明する斜視図である。 本発明の屋根構造における二段目以降の太陽電池モジュールの取り付けを説明する部分断面図である。 本実施形態の屋根構造における太陽電池モジュールのケーブル配線を説明する斜視図である。 本実施形態の屋根構造における特定の段に属する太陽電池モジュールのケーブル接続と、隣接する段の太陽電池モジュールとの関係を説明する斜視図である。 本実施形態の屋根構造における太陽電池モジュールのケーブル配線を裏面側から観察した斜視図である。 本実施形態の屋根構造における太陽電池モジュールのケーブル配線を裏面側から観察した斜視図であり、列の端部部分を示す。 太陽電池モジュールを行と列とを揃えて屋根に敷設した場合における太陽電池モジュールの大きさとケーブルの長さを説明する説明図である。 太陽電池モジュールを前後の段で4分の1の長さずらして屋根に敷設した場合における太陽電池モジュールの大きさとケーブルの長さを説明する説明図である。 太陽電池モジュールを前後の段で2分の1の長さずらして屋根に敷設した場合における太陽電池モジュールの大きさとケーブルの長さを説明する説明図である。 太陽電池モジュールを前後の段で4分の3の長さずらして屋根に敷設した場合における太陽電池モジュールの大きさとケーブルの長さを説明する説明図である。
 続いて本発明を実施した太陽電池モジュールについて図面を参照しながら詳細に説明する。なお以下の説明において、上下の位置関係については図1の位置関係を基準とする。
 図1、図14に示すように、太陽電池モジュール10は、基材70に補強断熱材90を取り付けて構成される基台82に、太陽電池パネル12やフロントカバー102、引掛金具84などを装着して構成される。
 本実施形態の太陽電池モジュール10は、新築又は既築の家屋の屋根Rに適用される瓦型の太陽電池モジュールである。図1,2に示すように、太陽電池モジュール10は、太陽電池パネル12と、太陽電池パネル12の裏面に取り付けられる端子ボックス14と、端子ボックス14から延設される二本のケーブル16,18と、ケーブル16,18のそれぞれに接続されるコネクタ20,22とを備えている。
 太陽電池モジュールは長手方向の全長が920乃至1200[mm]であって短手方向の全長が240乃至700[mm]であることが望ましい。
 また搭載される太陽電池パネルは、長手方向の長さが900乃至1200[mm]であって短手方向の長さが230乃至650[mm]であることが望ましい。
 次に太陽電池モジュール10及び太陽電池パネル12の推奨される大きさについて説明する。以下に説明する太陽電池モジュール10及び太陽電池パネル12の推奨される大きさは、図1以下に示す実施例のサイズである。
 太陽電池モジュール10は、図1や図2に示すようにほぼ長方形の面状に形成されている。太陽電池モジュール10は、敷設時に外部に露出する部分の大半の面積を電池パネル12が占めている。そのため、太陽電池モジュール10の大きさは、太陽電池パネル12とほぼ同等あるいは太陽電池パネル12よりも一回り大きい程度である。本実施形態では、太陽電池モジュール10の全長LTは、太陽電池パネル12の全長L1よりも溝状の樋部80の部分の幅だけ長い。
 本実施形態の太陽電池モジュール10は、出力を確保しつつ、家屋への設置作業の作業性を確保することを考慮し、長手方向の全長LTが1200[mm]より小さいものとされている。ただし太陽電池モジュール10にはケーブル16,18の長さを含まない。
 本実施形態では、太陽電池モジュール10の敷設施工時に設置される一般的な足場の間隔や、施工作業者の取り回しやすさ等を考慮し、太陽電池パネル12の長さL1が、900~1100[mm]の範囲とされている。
 また太陽電池パネル12の短手方向の長さ(幅)L4は、250乃至320[mm]である。
 また、太陽電池モジュール10は、通常は、一般的な平板瓦のサイズなどを考慮し、短手方向の長さL2が240~480[mm]の範囲とされている。しかし、本実施形態では、一般的な平板瓦の働き幅と同程度としつつ、日照条件によって陰になる部分を最小限に抑制することで光電変換効率を向上させることに配慮し、長さL2が280~360[mm]の範囲内に調整されている。
 太陽電池パネル12は、集積型太陽電池であり、図1,2に示すように、略長方形の面状に形成されている。太陽電池パネル12には、例えばガラス基板に導電膜や半導体膜を積層し、これに複数の溝を設けて所定数の単体電池(太陽電池セル)を形成し、各太陽電池セルを電気的に直列接続したものなどを採用することができる。本実施形態の太陽電池パネル12は、一枚で約100ボルトの電圧を得ることができる。
 太陽電池モジュール10は、長手方向が家屋の桁行方向に向き、短手方向が家屋の棟行方向に向く姿勢で敷設される。
 即ち太陽電池モジュール10は、長手方向が家屋の軒と棟に対して平行に配される。例えば家屋が傾斜屋根であるとすれば、長手の2辺は上下にあって共に水平に対して平行に配され、短手の2辺は横に配されて屋根の傾斜に沿って傾斜姿勢となる。
 図2に示すように、端子ボックス14は、太陽電池パネル12の裏面側に接着剤などを用いて固定されている。端子ボックス14は、太陽電池パネル12の長辺の略中央であって、下側の領域に取り付けられている。端子ボックス14は、太陽電池パネル12の正極が接続されるプラス側電極接続端子(図示せず)と、太陽電池パネル12の負極が接続されるマイナス側電極接続端子(図示せず)とが内部に設けられている。端子ボックス14内において、プラス側電極接続端子には、黒色の被覆導線であるプラス側の導線24(以下、プラス側芯線24とも称す)が二本接続されており、マイナス側電極接続端子には、白色の被覆導線であるマイナス側の導線26(以下、マイナス側芯線26とも称す)が二本接続されている。
 第一ケーブル16は、二本のプラス側芯線24,24のうちの一方のプラス側芯線24と、二本のマイナス側芯線26,26のうちの一方のマイナス側芯線26とを束ねて形成された二芯ケーブルである。また第二ケーブル18は、二本のプラス側芯線24,24のうちの他方のプラス側芯線24と、二本のマイナス側芯線26,26のうちの他方のマイナス側芯線26とを束ねて形成された二芯ケーブルである。
 図1に示すように、第一ケーブル16および第二ケーブル18は色彩が相違しており、第一ケーブル16は、白色の絶縁チューブ16a内にプラス側芯線24およびマイナス側芯線26が配されており、第二ケーブル18は、黒色の絶縁チューブ18a内にプラス側芯線24およびマイナス側芯線26が配されている。
 また第一ケーブル16および第二ケーブル18は、長さに長短があり、一方が長く、他方が短い。具体的には、第一ケーブル16が第二ケーブル18よりも短い。第一ケーブル16の全長は、長方形状の太陽電池パネル12の長辺の長さの50パーセント未満の長さであり、第二ケーブル18の全長は、太陽電池パネル12の長辺の長さの50パーセント以上である。
 ただし第一ケーブル16の長さと第二ケーブル18の長さの合計は、太陽電池パネル12の長辺の長さよりも長い。
 より詳細には、第二ケーブル18は、図1の様に、太陽電池モジュール10の棟側の長辺(上部側の辺)150から棟側(上部側)に向かって飛び出しており、当該飛び出し部分であって、コネクタ22までの長さ(コネクタ22は含まない)Xが、太陽電池モジュール10の太陽電池パネル12の長さL1の50パーセント以上である。
 またより推奨される長さXは、太陽電池パネル12の長さL1の50パーセント以上であり、且つ太陽電池パネル12の短手方向の長さL4よりも長く、太陽電池パネル12の長さL1よりも短い。
 具体的には、太陽電池パネル12の長手方向の長さL1とし、太陽電池パネル12の短手方向の長さL4としたとき第二ケーブル18の外側に向かって延出された部分の長さXは(L1/2)よりも長く且つL4よりも長い。より推奨される第二ケーブル18の長さXは、(L1/4)とL4の合計よりも長く、((L1/4)×3)とL4の合計よりも短いものである。
 また第二ケーブル18の長さXは、接続の余裕を考慮し、前記L4に代わってL2を採用した長さに設計してもよい。即ち太陽電池パネル12の長手方向の長さL1とし、太陽電池モジュール10の短手方向の長さL2としたとき第二ケーブル18の外側に向かって延出された部分の長さXは(L1/2)よりも長く且つL2よりも長い。より推奨される第二ケーブル18の長さXは、(L1/4)とL2の合計よりも長く、((L1/4)×3)とL2の合計よりも短いものである。
 また第一ケーブル16の外側に向かって延出された部分の長さYは、前記した第二ケーブル18の長さXよりも短く且つ(L1/2)よりも短い。
 さらに第一ケーブル16の外側に向かって延出された部分の長さYは、太陽電池パネル12の短手方向の長さL4よりも短い。
 また第一ケーブル16の長さXは、接続の余裕を考慮し、前記L4に代わってL2を採用した長さに設計してもよい。即ち第一ケーブル16の外側に向かって延出された部分の長さYは、太陽電池モジュール10の短手方向の長さL2よりも短い。
 図1に示すように、第一ケーブル16および第二ケーブル18のそれぞれの端部には、第一コネクタ20および第二コネクタ22が設けられている。第一コネクタ20および第二コネクタ22の色彩は相違しているが、構造は同一である。本実施形態において、第一コネクタ20は白色であり、第二コネクタ22は黒色である。
 図1(b),図1(c),図3に示すように、第一コネクタ20および第二コネクタ22は、ピン状端子28およびソケット状端子30を備えている。また第一コネクタ20および第二コネクタ22は、雌片32と雄片34とを有し、前記したピン状端子28は、雌片32内にあり、ソケット状端子30は、雄片34内にある。
 図1(b),図1(c)に示すように、本実施形態において、第一コネクタ20のピン状端子28にはプラス側芯線24が接合されており、第一コネクタ20のソケット状端子30にはマイナス側芯線26が接合されている。また第二コネクタ22のピン状端子28にはマイナス側芯線26が接合されており、第二コネクタ22のソケット状端子30にはプラス側芯線24が接合されている。即ち、第一コネクタ20では、ピン状端子28が正極であり、ソケット状端子30が負極である。これに対し、第二コネクタ22では、ピン状端子28が負極であり、ソケット状端子30が正極である。そのため、第一コネクタ20と第二コネクタ22とは、一方の雌片32と他方の雄片34とを嵌合させて一方のピン状端子28を他方のソケット状端子30に接続させることにより、同極同士を電気的に接続することが可能である。
 図14に示すように、基材70は、略長方形状の板材であり、一枚あるいは複数枚の金属板を屈曲加工して所定の形状に形成したものである。基材70を一枚の金属板で形成した場合は、加工が容易になることや、製作コストを抑制できることに加え、接合部分を持たない構成とすることができ、その分だけ強度面でも有利となる。そのため、これらの利点を考慮すると、基材70は、一枚の金属板を屈曲加工したものであることが望ましい。
 上述したようにして形成された基材70には、軒側から順に、カバー取付部72、太陽電池配置部74、太陽電池配置部74に配置された太陽電池パネル12の棟側を固定する棟側固定部76、棟側(上段)に隣接して配置される太陽電池モジュール10や一般瓦の軒側端部が積載される積載部78が形成されている。また基材70の側方には、溝状の樋部80が形成されている。基材70には、鋼板、アルミニウム、ステンレス等の金属板を用いることが好ましく、本実施形態では、ガルバリウム鋼板が用いられている。
 図15に示すように、カバー取付部72は、後述のフロントカバー102が取り付けられる部分であり、基材70の軒側端部が裏面側に略直角に折り曲げられて形成される。
 太陽電池配置部74は、太陽電池パネル12が配置される面状の部分であり、太陽電池パネル12と略同一の大きさに形成されている。図14に示すように、太陽電池配置部74の略中央には、太陽電池パネル12の端子ボックス14を挿入するための開口74aが設けられている。本実施形態の太陽電池モジュール10では、基材70の表面側から太陽電池パネル12が装着され、端子ボックス14、ケーブル16,18及びコネクタ20,22は、図3に示すように、開口74aを通って基材70の裏面側に配置されている。
 図15に示すように、棟側固定部76は、太陽電池配置部74に配置された太陽電池パネル12の棟側を固定する部分である。棟側固定部76は、基材70を所定位置で表面側に略直角に折り曲げて形成される立上り部76aと、立上り部76aの基端から所定位置で基材70を軒側に折り曲げて形成される表面押さえ部76bと、を備えている。立上り部76aは、太陽電池パネル12の棟側端面が当接する部分であり、表面押さえ部76bは、太陽電池パネル12の表面(受光面)の一部を覆い、表面側から押圧力を作用させる部分である。
 積載部78は、棟側固定部76の表面押さえ部76bの基端から所定位置で、基材70が棟側に折り返されて形成される面状の部分である。図2に示すように、積載部78の所定位置には、後述の引掛金具84を取り付けるための貫通孔78aが設けられており、貫通孔78aよりも棟側の所定位置には、太陽電池モジュール10を家屋に固定するビスを打ち込むための貫通孔78bが設けられている。
 積載部78は太陽電池パネル12の上面を除く部位にある。
 次に補強断熱材90について説明する。図2に示すように、補強断熱材90は、太陽電池モジュール10の強度や断熱性を確保するために基材70の裏面に取り付けられる発泡樹脂製の部材である。補強断熱材90は、基材70の棟側の長辺に沿って桁方向に伸びる桁方向補強部92と、基材70の短辺に沿って桁方向補強部92の両端から軒方向に伸びる傾斜方向補強部94と、を有する。傾斜方向補強部94は、軒側(下段)に隣接して配置される太陽電池モジュール10の積載部78や一般瓦の上に積載される部分であり、桁方向補強部92よりも肉薄に形成されている。
 補強断熱材90は、基材70の裏面全体に取り付けられているのではなく、基材70の周縁部分に沿って配置されている。そのため基材70の裏面には、周囲を補強断熱材90によって囲まれ、軒側が開放された収容空間(空隙部)96が形成されている。収容空間96の略中央には、端子ボックス14が配置されている。また収容空間96には配線されたケーブル16,18を収容することができる。
 本実施形態では、太陽電池モジュール10の棟側の長辺150からケーブル16,18が突出しており、後記する様に同列上であって左右に隣接する太陽電池モジュール10のケーブル16,18のコネクタ20,21を接続して太陽電池モジュール10を並列接続する。前記した様にケーブル16,18は、太陽電池モジュール10の棟側の長辺150から突出しているから、コネクタ20,21同士の接続作業は、太陽電池モジュール10の外側上部で行うことができる。そして後記する様に上部側の列の太陽電池モジュール10を設置すると、上部側の列の太陽電池モジュール10の収容空間96に配線されたケーブル16,18(コネクタ20,21を含む)が収容される。
 また補強断熱材90の傾斜方向補強部94と家屋との間には隙間があるので、当該隙間にケーブル16,18が挿通される。
 補強断熱材90の桁方向補強部92の基材70に取り付けられる面とは逆側の面には、図2の様にケーブル溝98が三本設けられている。ケーブル溝98は、補強断熱材90の棟側から軒側に貫通し、収容空間96の内外を繋いでいる。ケーブル溝98は、一本が桁方向補強部92の略中央に配置される中央溝98aであり、残りが中央溝98aと所定の間隔をあけて中央溝98aの左右に配置されるサイド溝98b,98bである。太陽電池モジュール10において、中央溝98aと端子ボックス14とは略同一直線上に配置されており、端子ボックス14から延出されるケーブル16,18は、収容空間96から中央溝98aを通って棟側の外部に引き出されている。サイド溝98b,98bは、上下段に隣接して配置される他の太陽電池モジュール10との配線の際に利用される。
 次に、上記した太陽電池モジュール10を家屋の屋根Rに敷設する作業手順および太陽電池モジュール10の敷設構造100について説明する。図4は、太陽電池モジュールを家屋の屋根Rに敷設する作業手順を示すフローチャートである。
 太陽電池モジュール10を敷設する場合、まず敷設対象である家屋の屋根Rに軒先水切りや所定のルーフィング材が取り付けられ、ステップ1において、作業の進行に必要な線や形、寸法を屋根Rに表示する墨出しが行われる。
 その後のステップ2では、縦桟木(流し桟)が所定の間隔で取り付けられ、ステップ3において広小舞(瓦座)や横桟木(瓦桟)が取り付けられる。横桟木は、所定の登り間隔で取り付けられる。次にステップ4において、太陽電池モジュール10が吹き上がるのを防止する吹上防止金具を所定の位置に取り付けた後、作業はステップ5に移行する。
 ステップ5では、太陽電池モジュール10が屋根Rの軒先側から棟側にかけて順次取り付けられ、隣接する太陽電池モジュール10,10がケーブル16,18によって接続される。詳しく説明すると、太陽電池モジュール10の取り付けは、図5に示すように、複数の太陽電池モジュール10の短辺同士を隣り合わせて列状のモジュール段36を形成し、ビス等で各太陽電池モジュール10を屋根Rに固定することで行われる。本実施形態において、モジュール段36は、偶数段(図5(b)では14段)が屋根Rに設置される。
 具体的には、太陽電池モジュール10と軒先吹上防止金具110とが係合された後、太陽電池モジュール10は、図16(b)に示すように、積載部78の貫通孔78bに施工ビス152が打ち込まれることで家屋に固定される。このとき、太陽電池モジュール10のケーブル16,18は、棟側に延出された状態になっている。
 図6に示すように、モジュール段36の形成中、隣接する太陽電池モジュール10,10において、一方の太陽電池モジュール10の第一コネクタ20と、隣接する他方の太陽電池モジュール10の第二コネクタ22とを接続させると、隣接する二つの太陽電池モジュール10,10を電気的に並列に接続させることができる。即ち、白色の第一ケーブル16に取り付けられた白色の第一コネクタ20と、黒色の第一ケーブル18に取り付けられた黒色の第二コネクタ22とを接続させることで、隣接する太陽電池モジュール10,10の並列接続が可能になる。したがって本実施形態の太陽電池モジュール10は、左右の隣接する太陽電池モジュール10,10を、ケーブル16,18を用いて接続させることにより、モジュール段36に含まれる全ての太陽電池モジュール10を順次並列に接続させることができる(図8)。
 ここで本実施形態の太陽電池モジュール10は、上記したように、第一ケーブル16が第二ケーブル18よりも短く形成されている。そのため太陽電池モジュール10は、作業者がケーブル16,18の長さを確認することによって、そのケーブル16,18に取り付けられたコネクタ20,22が第一コネクタ20であるのか、あるいは第二コネクタ22であるのかを瞬時に判断することができる。
 また本実施形態の太陽電池モジュール10において、第一ケーブル16の全長は、長方形状の太陽電池パネル12の長辺の長さの50パーセント未満の長さであり、第二ケーブル18の全長は、太陽電池パネル12の長辺の長さの50パーセント以上である。そのため、図7に示すように、短辺同士を突き合わせて隣接する太陽電池モジュール10,10間においては、第一ケーブル16に取り付けられた第一コネクタ20,20同士を接続させることができない。したがって本実施形態の太陽電池モジュール10は、隣接する太陽電池モジュール10,10間における、第一コネクタ20,20同士の誤接続を確実に防止することができる。
 太陽電池モジュール10は、第二ケーブル18が第一ケーブル16よりも長く、第二ケーブル18の取り回しの自由度が高い。そのため、太陽電池モジュール10は、自由度の高い第二ケーブル18を中途で第一ケーブル16側に向けて屈曲させて取り回すことで、第一コネクタ20および第二コネクタ22を介して両ケーブル16,18を電気的に接続することができる。そのため、太陽電池モジュール10は、第一コネクタ20と第一ケーブル16との接続部分や、第二コネクタ22と第二ケーブル18との接続部分、端子ボックス14と第一,二ケーブル16,18との接続部分などに作用する曲げによる応力(ストレス)が小さく、断線などの不具合が起こりにくく、第一,二ケーブル16,18を過度に長くとる必要もない。また、太陽電池モジュール10は、第一ケーブル16や第二ケーブル18を過度に長くとらなくても良いため、施工性に優れており、これらのケーブル16,18を収容するためのスペース等も必要としない。
 また、上記した太陽電池モジュール10は、第一ケーブル16および第二ケーブル18がそれぞれ二芯ケーブルによって構成されているため、ケーブル16,18の剛性が高い。また、太陽電池モジュール10は、2本のケーブル16,18を接続するだけで電気的に接続可能であり、ケーブルの本数が最小限で済む。また、太陽電池モジュール10は、配線がシンプルであり、敷設時にケーブル16,18が断線するなどの不都合が起こりにくい。
 また本実施形態の太陽電池モジュール10は、第一ケーブル16を白色とし、第二ケーブル18を黒色としている。そのため太陽電池モジュール10は、作業者がケーブル16,18の色彩を確認することで容易にケーブル16,18に取り付けられたコネクタ20,22の種類を判別することが可能である。
 また太陽電池モジュール10は、第一コネクタ20が白色、第二コネクタ22が黒色に形成されており、第一コネクタ20と第二コネクタ22とで色彩が相違している。したがって本実施形態の太陽電池モジュール10は、作業者が太陽電池モジュール10のコネクタ20,22の色彩を確認することによって、そのコネクタ20,22の種類を迅速に判別することができる。したがって本実施形態の太陽電池モジュール10は、作業者による迅速で適切なコネクタの選択が可能であり、配線の誤接続が少なく、作業効率が高い。
 また太陽電池モジュール10は、第一ケーブル16および第二ケーブル18が図1の様に共に太陽電池モジュール10の棟側中央から外側に突出しているから、太陽電池モジュール10を屋根に固定した状態でケーブル16,18の接続を行うことができる。即ち本実施形態の太陽電池モジュール10を釘その他で屋根に固定しても、第一ケーブル16および第二ケーブル18は、図16,図19に示すように太陽電池モジュール10の本体部分の外に出ている。そのため本実施形態では、太陽電池モジュール10を釘その他で屋根に固定した後に、接続を行うことができる。
 ケーブル16,18の接続は、段ごとに行われる。本実施形態では、軒側から太陽電池モジュール10を取り付けるから、最初に軒又は軒近傍の段に太陽電池モジュール10を一段分全て固定し、その後に、各太陽電池モジュール10の棟側に突出したケーブル16,18を、順次接続する。このようにすることで、1つのモジュール毎に接続する方法よりも、配線ミス・接続ミスを減らすことができる。1つの接続作業は、当該段の列状に並べられた太陽電池モジュール10の上段側で行われ、接続されたケーブル16,18は、図19の様に当該段の列状に並べられた太陽電池モジュール10の上段側に置かれる。
 続いて2段目の太陽電池モジュール10を固定する。ここで2段目の太陽電池モジュール10は、軒側を1段目の太陽電池モジュール10の積載部78上に載置される。そのため1段目の太陽電池モジュール10のケーブル16,18上に、図20の様に2段目の太陽電池モジュール10が被さり、2段目の太陽電池モジュール10の収容空間96に1段目の太陽電池モジュール10のケーブル16,18が収容される。
 二段目以降のモジュール段36における太陽電池モジュール10の取り付けは、図17や図18に示すように、上段に配置される太陽電池モジュール10Cのフロントカバー102を軒側に配し、太陽電池モジュール10Cのフロントカバー102の係止片108を、下段に配置される太陽電池モジュール10Dの引掛金具84の係合部88と、基材70の積載部78の表面との間に生じた隙間156に差し込み、太陽電池モジュール10C全体を棟側に引き上げて、太陽電池モジュール10Cと太陽電池モジュール10Dとを係合させることにより行われる。ここで、太陽電池モジュール10Cの係止片108には、シール材154が取り付けられており、係止片108が、引掛金具84の係合部88と基材70との間の隙間156に差し込まれると、隙間156にシール材154が隙間なく配置されるため、太陽電池モジュール10Cと太陽電池モジュール10Dの係合部におけるがたつきが防止される。
 また、太陽電池モジュール10Cと太陽電池モジュール10Dとが係合され、太陽電池モジュール10Cが所定の位置に配置されると、下段の太陽電池モジュール10Dのケーブル16,18は、上段の太陽電池モジュール10Dの収容空間96内に整然と収容される。
 上段の太陽電池モジュール10Cの係止片108と、下段の太陽電池モジュール10Dの引掛金具84とが係合された後、上段の太陽電池モジュール10Cは、ケーブル16,18を棟側に延出させた状態で、積載部78の貫通孔78bに施工ビス152を打ち込んで家屋に固定される。このようにして形成された二段目以降のモジュール段36についても、上記一段目のモジュール段36と同様の手順で、左右に隣接する太陽電池モジュール10,10をケーブル16,18で接続することにより、モジュール段36に含まれる全ての太陽電池モジュール10を並列に接続させることができる。
 図9に示すように、本実施形態の太陽電池モジュール10の敷設構造100は、軒側(下側)から奇数段目のモジュール段36a,36cと、偶数段目のモジュール段36b,36dとでケーブル16,18の接続順序が左右逆転している。即ち、奇数段目のモジュール段36a,36cは、右側の太陽電池モジュール10の第二コネクタ22と、左側の太陽電池モジュール10の第一コネクタ20とを接続させて、第二ケーブル18と第一ケーブル16とを接続させている。これに対し、偶数段目のモジュール段36b,36dは、右側の太陽電池モジュール10の第一コネクタ20と、左側の太陽電池モジュール10の第二コネクタ22とを接続させて、第一ケーブル16と第二ケーブル18とを接続させている。
 またモジュール段36を構成する太陽電池モジュール10が全てケーブル16,18で接続されると、図6に示すように、モジュール段36を構成する複数の太陽電池モジュール10の両端部に配置された太陽電池モジュール10,10のうち、一方の太陽電池モジュール10の第一コネクタ20が未使用(未接続)の状態になり、他方の太陽電池モジュール10の第二コネクタ22が未使用の状態になる。これらの未使用の第一コネクタ20および第二コネクタ22は、上下に配されたモジュール段36,36の電気的接続に用いられる。
 例えば、図9に示す太陽電池モジュール10の敷設構造100では、奇数段目のモジュール段36a,36cと、偶数段目のモジュール段36b,36dとが接続され、太陽電池ブロック38a,38bが形成されている。具体的には、奇数段目のモジュール段36a,36cの左端に配された太陽電池モジュール10a,10cの第二ケーブル18が、偶数段目のモジュール段36b,36dの左端に配された太陽電池モジュール10b,10dの太陽電池パネル12の裏面を通され、太陽電池モジュール10a,10cの第二コネクタ22と、太陽電池モジュール10b,10dの第一コネクタ20とが接続される。
 前記した様に、下の段の太陽電池モジュール10a,10cの第二ケーブル18を上段の太陽電池モジュール10b,10dの第一ケーブル16と接続する場合には、前記した様に下の段の第二ケーブル18を太陽電池パネル12の裏面に通す。このときの第二ケーブル18の挿通ルートは、図21,図22の通りであり、太陽電池モジュール10b,10dの収容空間96を経てサイド溝98b,98bのいずれかを通るものである。そして第二ケーブル18の先端側を、上段側の太陽電池モジュール10b,10dのさらに上段側に突出させ、上段側の太陽電池モジュール10b,10dの第一ケーブル16と接続する。
 本実施形態では、太陽電池ブロック38を構成する太陽電池モジュール10が複数の段に跨がる場合は、二本のケーブル16,18の内、長いほうのケーブル(第二ケーブル18)によって太陽電池モジュール10が並列接続される。
 ここで本実施形態の太陽電池モジュール10では、長い方のケーブル(第二ケーブル18)の長さXが太陽電池パネル12の短手方向の長さL4よりも長い場合は、第二ケーブル18は、屋根の上部側に隣接するモジュール段36に属する太陽電池モジュール10の下を潜り、上部側に隣接するモジュール段36に属する太陽電池モジュール10のさらに上部側に延出することができる。
 また接続しろを考慮すると、長い方のケーブル(第二ケーブル18)の長さXが太陽電池モジュール10の短手方向の長さL2よりも長い場合は、第二ケーブル18は、屋根の上部側に隣接するモジュール段36に属する太陽電池モジュール10の下を潜り、上部側に隣接するモジュール段36に属する太陽電池モジュール10のさらに上部側に延出して他のケーブルと容易に接続できる。
 さらに実際上は、図22の様に、ケーブル18を挿通させる空間が限定されることと、太陽電池モジュール10が千鳥状に配されることから、第二ケーブル18の長さXは、太陽電池モジュール10短手方向の長さL2よりもある程度長くする必要がある。
 図22に示す構成では、第二ケーブル18は、補強断熱材90に設けられたサイド溝98bを経て太陽電池モジュール10の下を潜る。また隣接する段に属する太陽電池モジュール10は、長さaだけずらして配されている。
 さらに上部側の段の太陽電池モジュール10の積載部78に載置され、隣接する段の太陽電池モジュール10の重なり部分の長さは、bである。
 図22に示す例で説明すると、第二ケーブル18の長さは、横引きされる長さが、(L1/4)プラスaであり、縦方向の必要長さは、L2マイナスbである。
 そのため第二ケーブル18の必要長さは、((L1/4)プラスa)プラス(L2マイナスb)である。
 ここで本実施形態では、L2マイナスbは、太陽電池バネル12の短手方向の長さL4と略等しい。そのため第二ケーブル18の必要長さは、((L1/4)プラスa)プラスL4である。
 図23~図25は、隣接する段に属する太陽電池モジュール10のずれ量aを変更して必要なケーブル18の長さを検討したものである。図23~図25によると、ずれ量aが多くなる程、長いケーブル18が必要となるが、ずれ量が、太陽電池パネル12の全長L1の3/4に及んだ場合に最も長いケーブル18が必要となり、その長さは、((L1/4)×3)とL4の合計である。また接続しろを考慮すると、((L1/4)×3)とL2の合計である。
 従ってケーブル18の長さは、((L1/4)×3)とL4の合計以下であり、接続しろを考慮すると((L1/4)×3)とL2の合計以下であることが望ましい。
 また第一ケーブル16の外側に向かって延出された部分の長さYは、前記した第二ケーブル18の長さXよりも短く且つ(L1/2)よりも短い。
 さらに第一ケーブル16の外側に向かって延出された部分の長さYは、太陽電池バネルの短手方向の長さL4よりも短い。そのため第一ケーブル16は、上段側の太陽電池モジュール10の下をくぐり抜けることができず、誤接続されることがない。
 実際には接続しろが必要であるから、太陽電池モジュール10短手方向の長さL2よりも短い場合には、誤接続されることはない。
 太陽電池ブロック38を構成する太陽電池モジュール10が複数の段に跨がる場合における、二本のケーブル16,18の接続についても、太陽電池モジュール10の外で行うことができるので、作業性が高い。また接続された二本のケーブル16,18は、図22の様に一つ飛びの段の太陽電池モジュール10の収容空間(空隙部)96に収容される。
 これにより、モジュール段36aおよびモジュール段36bに含まれる全ての太陽電池モジュール10が並列に接続され、太陽電池ブロック38aが形成される。またモジュール段36cおよびモジュール段36dに含まれる全ての太陽電池モジュール10についても並列に接続され太陽電池ブロック38bが形成される。以上のように形成された太陽電池ブロック38a,38bは、引込ケーブル40によって電気的に直列に接続される。
 図10(a)に示すように、引込ケーブル40は、太陽電池モジュール10の第一コネクタ20に接続される第一直列コネクタ42と、太陽電池モジュール10の第二コネクタ22に接続される第二直列コネクタ44と、屋内のパワーコンディショナー(図示せず)に接続されて太陽電池モジュール10の太陽電池パネル12で変換された電力を出力する出力コネクタ46と、第一直列コネクタ42に接続される第一屋外ケーブル48と、第二直列コネクタ44に接続される第二屋外ケーブル50と、出力コネクタ46に接続される屋内側ケーブル52と、モールド部54と、を備えている。
 第一直列コネクタ42、第二直列コネクタ44、および出力コネクタ46は、太陽電池モジュール10の第一コネクタ20および第二コネクタ22と同一の構造である。また第一直列コネクタ42および出力コネクタ46は黒色であり、第二直列コネクタ44は白色である。
 第一屋外ケーブル48、第二屋外ケーブル50、および屋内側ケーブル52は、太陽電池モジュール10の第一ケーブル16および第二ケーブル18と同様に、絶縁チューブ48a,50a,52a内にプラス側芯線24とマイナス側芯線26が一本ずつ配されている。第一屋外ケーブル48および屋内側ケーブル52の絶縁チューブ48a,52aは黒色であり、第二屋外ケーブル50の絶縁チューブ50aは白色である。
 また屋内側ケーブル52の出力コネクタ46近傍には白色のビニールテープ56が巻き付けられている。これにより屋内側ケーブル52および出力コネクタ46を瞬時に判別することが可能になる。
 図10(b)に示すように、モールド部54においては、第一屋外ケーブル48、第二屋外ケーブル50、および屋内側ケーブル52が接続されている。さらに説明すると、第一屋外ケーブル48のプラス側芯線24と、第二屋外ケーブル50のマイナス側芯線26とが電気的に接続され、第一屋外ケーブル48のマイナス側芯線26と、屋内側ケーブル52のマイナス側芯線26とが電気的に接続され、第二屋外ケーブル50のプラス側芯線24と、屋内側ケーブル52のプラス側芯線24とが電気的に接続されている。
 図9に示すように、引込ケーブル40を用いて、太陽電池ブロック38aと太陽電池ブロック38bとを直列に接続させる場合、引込ケーブル40の白色の第二直列コネクタ44は、太陽電池ブロック38aを構成するモジュール段36bの右端の太陽電池モジュール10fの黒色の第二コネクタ22に接続される。また引込ケーブル40の黒色の第一直列コネクタ42は、太陽電池ブロック38bを構成するモジュール段36cの右端の太陽電池モジュール10gの白色の第一コネクタ20に接続される。
 即ち、引込ケーブル40と、太陽電池ブロック38a,38bとの接続は、隣接する太陽電池モジュール10,10の接続と同様に、色彩の異なるコネクタ同士を接続させればよく、配線の誤接続が生じにくい。また上記のように、引込ケーブル40の太陽電池ブロック38a,38bへの接続は、所定のコネクタ44,22,42,20を所定の組み合わせで接続させるだけであり、屋根Rの上で容易に作業を行うことができる。
 ここで本実施形態の太陽電池ブロック38a,38bは、一枚で約100ボルトの電圧を得ることができる太陽電池モジュール10が複数並列に接続されたものである。そのため、太陽電池ブロック38a,38b全体から得られる電圧も約100ボルトである。そのため本実施形態の太陽電池モジュール10の敷設構造100は、二つの太陽電池ブロック38a,38bを直列に接続させることにより、様々な機器の定格電圧である約200ボルトの電圧を得ることが可能である。
 以上の如く、本願で規定する太陽電池モジュール10を第一ケーブル16及び第二ケーブル18を用いて接続し、さらにそれを引込ケーブル40で繋ぐことにより、太陽電池モジュール10を複数、並列に接続した太陽電池太陽電池ブロック38a,38bを作り、この二組の太陽電池ブロック38a,38bを直列接続することができる。上記した作業は、簡単且つ単純であり、誤配線を起こすことがなく、多くの太陽電池モジュール10を屋根に敷設することができる。そして引込ケーブル40の出力ケーブル52からは、略200[V]の出力を得ることができる。
 そのため本発明によると、配線作業を、熟練した電気技術者でなくとも実施することができ、例えば、屋根瓦職人や大工といった高所作業熟練者の手によって簡単に配線作業を完了させることができる。
 また太陽電池モジュール10の太陽電池パネル12の太陽電池セル100の数を増加させる等により、200[V]以上の電圧を発生させることができる。例えば、200[V]乃至360[V]の電圧を発生させることもできる。
 図9に示すように、太陽電池ブロック38a,38bが直列に接続された状態で、モジュール段36aの右端の太陽電池モジュール10eの第一コネクタ16、およびモジュール段36dの右端の太陽電池モジュール10hの第二コネクタ18は、未使用(未接続)の状態である。本実施形態の太陽電池モジュール10の敷設構造100では、これらのコネクタ16,18に図11に示す端子保護部材58が取り付けられている。端子保護部材58は、ケーブルが接続されていない点を除き太陽電池モジュール10の第一コネクタ20や第二コネクタ22と略同一の構造である。本実施形態の太陽電池モジュール10の敷設構造100は、端子保護部材58を未使用のコネクタ20,22に取り付けることで、未使用のコネクタ20,22の端子28,30にゴミや水が付着するのを防止することができる。
 また本実施形態の太陽電池モジュール10の敷設構造100の敷設作業が中断した場合にも、未接続の第一コネクタ20又は第二コネクタ22に端子保護部材58を取り付けることにより、コネクタ20,22の端子28、30にゴミや水が付着するのを防止することが可能である。
 以上のようにして図4のステップ5の作業が完了すると、作業者は、ステップ6において、引き込みケーブル40の屋内側ケーブル52を家屋の屋内に引き込む。その後、周辺役物瓦の施工を行い(ステップ7)、屋根Rの掃除(ステップ8)を終えると、点検(ステップ9)を行った後、屋内で引込ケーブル40の結束を行い(ステップ10)、出力コネクタ46を図示しないパワーコンディショナーの接続箱に接続させて(ステップ11)、一連の作業が終了する。
 上記実施形態の太陽電池モジュール10は、第一ケーブル16および第二ケーブル18の色彩に違いを持たせることで、第一ケーブル16および第二ケーブル18の端部に取り付けられたコネクタ20,22の種類の判別を容易にするものであったが、本発明は、このような構成に限定されるわけではない。例えば、第一ケーブル16および第二ケーブル18の模様や、模様と色彩との結合に違いを持たせ、コネクタ20,22の種類の判別を容易にさせてもよい。同様に引込ケーブル40の第一屋外ケーブル48と第二屋外ケーブル50についても、模様や、模様と色彩との結合に違いを持たせ、第一直列コネクタ42と第二直列コネクタ44との種類の判別を容易にさせてもよい。
 また上記実施形態の太陽電池モジュール10において、第一コネクタ20および第二コネクタ22は色彩が相違するものであったが、本発明はこのような構成に限定されるわけではない。第一コネクタ20および第二コネクタ22は、形状や模様などの形態を相違させて迅速に種別の判別が可能な構成であればよい。例えば、第一コネクタ20および第二コネクタ22の一方を太くし、他方を細くしたり、一方の断面形状を丸型にし、他方の断面形状を角型にしたりする等が可能である。
 同様に、引込ケーブル40の第一直列コネクタ42および第二直列コネクタ44についても、形状や模様などの形態を相違させて瞬時に種別を判別することが可能な構成にしてもよい。
 上記実施形態の第一コネクタ20や第二コネクタ22は、雌片32および雄片34を備え、それぞれの形状から端子28,30の種類が判別できる構成であったが、本発明はこのような構成に限られるわけではない。例えば、図12に示すように、両極が雄片64a,64bであるコネクタ60と、両極が雌片66a,66bであるコネクタ62とを一組の嵌合構造としてもよい。この場合、一方の極を構成する雄片64a(又は雌片66a)の形態を、他方の極を構成する雄片64b(又は雌片66b)の形態と相違させることで、極の種類の判別が可能であり、コネクタ60,62の誤接続を防止することができる。
 例えば、図12のコネクタ60,62では、一方の雄片64bおよび雌片66bを、他方の雄片64aおよび雌片66aよりも太く形成することで、極の判別を容易にし、コネクタ60,62の誤接続を防止している。またコネクタ60,62は、コネクタ60の一方の雄片64b、およびコネクタ62の一方の雌片66bに溝68を設けることによってもコネクタ60,62の誤接続を防止している。
 上記実施形態の太陽電池モジュール10の太陽電池パネル12は、一枚で約100ボルトの電圧を得ることができるものであったが、本発明は、太陽電池パネル12が得ることのできる電圧に制限があるわけではない。例えば一枚で約200ボルトの電圧を得ることができる太陽電池パネル12を用いて太陽電池モジュール10を構成してもよい。この場合、屋根Rに敷設される太陽電池モジュール10を全て並列に接続した一つの太陽電池ブロック38によって太陽電池モジュール10の敷設構造100が完成される。
 また一枚の太陽電池パネル12で得ることができる電圧が100ボルト未満の場合であっても、所定数の太陽電池ブロック38を構成し、これらの太陽電池ブロック38を直列に接続させることで、太陽電池モジュール10の敷設構造100において、所望の電圧の確保が可能になる。
 また、本実施形態の太陽電池モジュール10は、棟側に向けてケーブル16,18を取り出して施工できる。そのため、家屋に瓦を葺く際に一般的に行われているのと同様に、家屋の軒側から棟側に向けて太陽電池モジュール10を容易に敷設していくことができる。従って、太陽電池モジュール10は、例えば電気工事に不慣れな作業者であっても容易かつ整然とケーブル16,18を取り回して施工することができる。
 また、本実施形態の敷設構造100は、上述した太陽電池モジュール10を採用したものであるため、敷設時におけるケーブル16,18の取り回しが容易であり、ケーブル16,18のよじれなどによる断線が起こりにくい。また、本実施形態の敷設構造100は、特にケーブル16,18を取り回さなくても各太陽電池モジュール10のケーブル16,18を棟側に向けて取り出して施工できる。そのため、本実施形態の敷設構造100は、家屋に瓦を葺く際に一般的に行われているのと同様に、家屋の軒側から棟側に向けて太陽電池モジュール10を敷設していくことで容易にケーブル16,18同士の接続等を行える。
 本実施形態の太陽電池モジュール10は、基台82に設けられた収容空間96が、補強断熱材90の桁方向補強部92および傾斜方向補強部94,94によって三方を囲まれている。そのため、収容空間96には、家屋への敷設状態において上方(棟側)や左右から風雨が侵入しにくく、端子ボックス14が濡れるのを防止することができる。
 本実施形態の太陽電池モジュール10は、収容空間96が軒向辺162側に向けて開放されているため、当該開放部分を介して通気可能である。そのため、通電に伴って端子ボックス14が高温になったとしても、熱が収容空間96内にこもらず、収容空間96内を適切な温度条件に維持することができる。
 本実施形態の太陽電池モジュール10は、図3に示すように、収容空間96において、端子ボックス14の周囲に空隙168が設けられている。そのため、本実施形態の太陽電池モジュール10は、端子ボックス14において発生した熱が収容空間96内にこもったり、この熱によって端子ボックス14が故障したり破損するなどの不具合を確実に防止することができる。
 本実施形態の太陽電池モジュール10は、補強断熱材90の桁方向補強部92が発泡樹脂製である。そのため、仮にケーブル16,18が桁方向補強部92に設けられたケーブル溝98を通らず、家屋の上面と桁方向補強部92との間に挟まった状態になっても、ケーブル16,18に過度に大きな荷重が作用するのを防止することができる。従って、太陽電池モジュール10は、ケーブル16,18の断線等の不都合を確実に防止可能である。
 以下さらに本発明の実施例について説明する。
 図1は、本発明の実施形態で採用する瓦型太陽電池モジュールの斜視図である。図3は、図1の太陽電池モジュールのコネクタの断面図である。
 瓦型太陽電池モジュール10は、集積型太陽電池であり、内部に複数の太陽電池セルが形成され全体として一つの太陽電池を構成するものである。
 すなわち瓦型太陽電池モジュール10は、ガラス基板に導電膜や半導体膜が積層され、さらにこれに複数の溝を設けて多数の単体電池(セル)に分割し、各セルを電気的に直列に接続したものである。
 瓦型太陽電池モジュール10は、図の様に長方形をしており、長手方向の中心部から二本のケーブル16,18が延設されている。
 またケーブル16,18にはそれぞれコネクタ20,22が接続されている。
 ケーブル16,18は長さに長短があり、一方が長く、他方が短い。具体的には、長い方のケーブル18は、その全長が瓦型太陽電池モジュール10の全長の50パーセント以上であり、短い方のケーブル16は、その全長が瓦型太陽電池モジュール10の全長の50パーセント未満である。
 またケーブル16,18は色が違う。ケーブル16,18はいずれも電気的に絶縁された2系統の導線24,26(プラス側芯線24,マイナス側芯線26)を有するものである。より具体的には、2条の被覆導線24,26が同一の絶縁チューブ内に配されたケーブルである。
 二本のケーブル16,18にはそれぞれコネクタ20,22が接続されている。コネクタ20,22は、色違いであるが構造は同一であり、図3の様に2本の端子28,30(ピン状端子28,ソケット状端子30)を持っている。
 2本の端子28,30の内、一方のピン状端子28は、ピンであり、他方のソケット状端子30は、ソケットである。
 またコネクタ20,22は、雌片32と雄片34とを有し、前記したピン状端子28は、雌片32内にあり、ソケット状端子30は雄片34にある。
 コネクタ20,22は、互いに接続可能であり、一方の雌片32と他方の雄片34とが接合される。そのとき、各雌片32と雄片34の内部では、一方のピン状端子28と他方のソケット状端子30とが接続される。
 そして本実施形態では、二本のケーブル16,18の2条の被覆導線24,26は、それぞれ瓦型太陽電池モジュール10内の太陽電池(以下単に太陽電池)の正極と負極に接続されている。すなわちケーブル18内の一方の被覆導線24は太陽電池の正極に接続され、他方の被覆導線26は太陽電池の負極に接続されている。同様にケーブル16内の一方の被覆導線24は太陽電池の正極に接続され、他方の被覆導線26は太陽電池の負極に接続されている。
 したがって、コネクタ22の2本の端子28,30の一方は、太陽電池の正極に接続され、他方の被覆導線は太陽電池の負極に接続されている。同様にコネクタ20の2本の端子28,30の一方は、太陽電池の正極に接続され、他方の被覆導線は太陽電池の負極に接続されている。
 ただしコネクタ20,22の2本の端子28,30の極性を比較すると、両者は反対極となっている。すなわち一方のコネクタ20では、ピン状端子28が正極であり、ソケット状端子30が負極であるのに対し、他方のコネクタ22では、ピン状端子28が負極であり、ソケット状端子30が正極である。
 次に、上記した瓦型太陽電池モジュール10の敷設構造について説明する。
 図6は、瓦型太陽電池モジュールを正確に配線した場合の概念図である。図7は、瓦型太陽電池モジュールを誤って配線した場合の概念図である。図8は、瓦型太陽電池モジュールを正確に配線した場合の回路図である。
 上記した瓦型太陽電池モジュール10は、図5,6に示すように、横に並べて屋根等の構造物に敷設する。
 そして隣接する瓦型太陽電池モジュール10のコネクタ20,22を接続する。一つの瓦型太陽電池モジュール10に注目すると、当該瓦型太陽電池モジュール10のコネクタ22と左隣の瓦型太陽電池モジュール10のコネクタ20とを接続する。また瓦型太陽電池モジュール10のコネクタ20と右隣の瓦型太陽電池モジュール10のコネクタ22とを接続する。
 ケーブルの長短に注目して説明すると、当該瓦型太陽電池モジュール10の長いケーブル18のコネクタ22と左隣の瓦型太陽電池モジュール10の短いケーブル16のコネクタ20とを接続する。また瓦型太陽電池モジュール10の短いケーブル16のコネクタ20と右隣の瓦型太陽電池モジュール10の長いケーブル18のコネクタ22とを接続する。
 その結果、図8に示すように、太陽電池が並列に接続される。
 これに対して、接続方法を誤り、図7に示すように、長いケーブル18のコネクタ22同士を接続すると、他のコネクタ20が物理的に接続できなくなるので、作業者は接続の誤りに気づくこととなる。すなわち他方のコネクタ20は、短いケーブル16に接続されており、短いケーブル16は、瓦型太陽電池モジュール10の全長の半分に満たない。またケーブル16,18は、瓦型太陽電池モジュール10の中心部分から延びているので、短いケーブル16同士を接続しようとしても長さが足りず、両者を接続することができない。
 したがって本実施形態の瓦型太陽電池モジュール10は、配線の誤りが起きえない。

Claims (33)

  1.  複数の太陽電池セルが電気的に直列接続されて略長方形の面状に形成された太陽電池パネルと、
     2系統以上の導線を有し長さの異なるケーブルからなる第一ケーブルおよび第二ケーブルと、
     前記第一ケーブルの端部に取り付けられる第一コネクタおよび前記第二ケーブルの端部に取り付けられて前記第一コネクタに嵌合接続可能な第二コネクタからなる二組のコネクタと、
     前記太陽電池パネルの正極に電気的に導通した二本のプラス側の導線と、
     前記太陽電池パネルの負極に電気的に導通した二本のマイナス側の導線と、を備え、
     前記第一ケーブルが、前記二本のプラス側の導線の一方および前記二本のマイナス側の導線の一方からなる2条の導線を同一の絶縁チューブ内に配したケーブルであり、
     前記第二ケーブルが、前記二本のプラス側の導線の他方および前記二本のマイナス側の導線の他方からなる2条の導線を同一の絶縁チューブ内に配したケーブルであり、
     太陽電池モジュールは略長方形であって第一ケーブル及び第二ケーブルは、いずれも太陽電池モジュールの長手方向の辺から外側に向かって延出されており、
     太陽電池パネルの長手方向の長さをL1とし太陽電池パネルの短手方向の長さをL4としたとき前記第二ケーブルの前記外側に向かって延出された部分の長さXは(L1/2)よりも長く且つL4よりも長いものであり、
     前記第一ケーブルの前記外側に向かって延出された部分の長さYは、前記第二ケーブルの長さよりも短く且つ(L1/2)よりも短いことを特徴とする太陽電池モジュール。
  2.  長さXは、(L1/4)とL4の合計よりも長く、((L1/4)×3)とL4の合計よりも短いことを特徴とする請求項1に記載の太陽電池モジュール。
  3.  長さYは、太陽電池モジュールの短手方向の長さL2よりも短いことを特徴とする請求項1または2に記載の太陽電池モジュール。
  4.  前記第一コネクタおよび第二コネクタは、前記プラス側の導線に接続される正極側端子と、前記マイナス側の導線に接続される負極側端子と、雄片と、当該雄片と嵌合接続可能な雌片と、を有し、
     第一コネクタおよび第二コネクタの一方は、前記雄片に正極側端子を設け、前記雌片に負極側端子を設けたものであり、
     第一コネクタおよび第二コネクタの他方は、前記雄片に負極側端子を設け、前記雌片に正極側端子を設けたものであることを特徴とする請求項1乃至3のいずれかに記載の太陽電池モジュール。
  5.  前記太陽電池パネルの正極に電気的に導通したプラス側電極接続端子と、
     前記太陽電池パネルの負極に電気的に導通したマイナス側電極接続端子と、を有し、
     二本のプラス側の導線は、前記プラス側電極接続端子に接続され、二本のマイナス側の導線は、前記マイナス側電極接続端子に接続されていることを特徴とする請求項1乃至4のいずれかに記載の太陽電池モジュール。
  6.  前記第一コネクタおよび前記第二コネクタの模様若しくは色彩又はこれらの結合が相違することを特徴とする請求項1乃至5のいずれかに記載の太陽電池モジュール。
  7.  前記第一ケーブルおよび前記第二ケーブルの模様、色彩又はこれらの結合が相違することを特徴とする請求項1乃至6のいずれかに記載の太陽電池モジュール。
  8.  前記プラス側の導線および前記マイナス側の導線の模様、色彩又はこれらの結合が相違することを特徴とする請求項1乃至7のいずれかに記載の太陽電池モジュール。
  9.  前記太陽電池パネルが略長方形状であり、
     前記第一ケーブルおよび第二ケーブルは、前記太陽電池パネルの長辺の略中央から延出されており、
     太陽電池パネルの短辺同士を隣り合わせて二つの太陽電池モジュールを配置した場合、一方の太陽電池モジュールの第一コネクタと他方の太陽電池モジュールの第一コネクタとは、ケーブルの長さが足りないために接続不可能であることを特徴とする請求項1乃至8のいずれかに記載の太陽電池モジュール。
  10.  裏面側に、接続されたケーブル及びコネクタを収容する空隙部が設けられていることを特徴とする請求項1乃至9のいずれかに記載の太陽電池モジュール。
  11.  裏面側にケーブルを短手方向に挿通する溝が設けられていることを特徴とする請求項1乃至10のいずれかに記載の太陽電池モジュール。
  12.  内部に複数の太陽電池セルが形成され全体として一つの太陽電池を構成する太陽電池モジュールであって、
     二組のコネクタを有し、
     前記二組のコネクタはいずれも独立した二以上の端子を備え、
     前記二組のコネクタはいずれも太陽電池モジュールの長手方向中央から延出された2系統以上の導線を有するケーブルに接続されており、
     各コネクタの一つの端子は前記太陽電池の正極に接続された正極側端子であり、
     各コネクタの他の一つの端子は太陽電池の負極に接続された負極側端子であり、
     前記二組のコネクタの内の一方のコネクタに接続されたケーブルは、他方のコネクタに接続されたケーブルよりも短く、
     前記ケーブルの長さの関係は他の太陽電池モジュールと共に列状及び複数段状に並べて平面的に分布させたとき短いケーブルが接続されたコネクタ同士は長さ不足の状態であって接続させることが不能となるものであり、
     長いケーブルが接続されたコネクタと短いケーブルが接続されたコネクタが接合され、両者が接合された状態において両コネクタの正極側端子同士と、負極側端子同士が接続された状態となり、他の太陽電池モジュールと電気的に並列に接続され、
     且つ長いケーブルは隣接する段の太陽電池モジュールの裏面側を経て隣接する段の太陽電池モジュールの外側に至り、長いケーブルが接続されたコネクタと隣接する段の太陽電池モジュールの短いケーブルが接続されたコネクタとを接続することもできることを特徴とする太陽電池モジュール。
  13.  短いケーブルは、隣接する段の太陽電池モジュールの裏面側を経て隣接する段の太陽電池モジュールの外側に至ることができない長さであることを特徴とする請求項12に記載の太陽電池モジュール。
  14.  二組のコネクタの内の一方および他方のコネクタに接続されたケーブルは、それぞれ2条の導線を同一の絶縁チューブ内に配したケーブルであることを特徴とする請求項12又は13に記載の太陽電池モジュール。
  15.  二組のコネクタが、それぞれ構造が同一であるが色違いであることを特徴とする請求項1乃至14のいずれかに記載の太陽電池モジュール。
  16.  長い方のケーブルは、短い方のケーブルと色が違うことを特徴とする請求項1乃至15のいずれかに記載の太陽電池モジュール。
  17.  長い方のケーブルは、太陽電池モジュールの全長の50パーセント以上であり、短い方のケーブルは、太陽電池モジュール全長の50パーセント未満であることを特徴とする請求項1乃至16のいずれかに記載の太陽電池モジュール。
  18.  請求項1乃至17のいずれかに記載の太陽電池モジュールが複数列状に配置され、
     二組のコネクタのうちの一方である第一コネクタおよび他方である第二コネクタは、それぞれ正極側端子および負極側端子を有し、
     隣接する一方の太陽電池モジュールの第一コネクタおよび他方の太陽電池モジュールの第二コネクタの同極の端子同士を接続させて、隣接する太陽電池モジュールが電気的に並列接続され、一連の太陽電池ブロックが形成されることを特徴とする太陽電池モジュールの敷設構造。
  19.  複数の前記太陽電池ブロックを直列に接続して配線を建物内に引き込む引込ケーブルを備えることを特徴とする請求項18に記載の太陽電池モジュールの敷設構造。
  20.  二つの前記太陽電池ブロックを備え、
     前記引込ケーブルは、
     一方の太陽電池ブロックの未使用の第一コネクタに接続される第一直列コネクタと、
     他方の太陽電池ブロックの未使用の第二コネクタに接続される第二直列コネクタと、
     前記太陽電池パネルで変換された電力を出力する出力コネクタと、
     前記第一直列コネクタに接続される正負二本の導線を含む第一屋外ケーブルと、
     前記第二直列コネクタに接続される正負二本の導線を含む第二屋外ケーブルと、
     前記出力コネクタに接続される正負二本の導線を含む屋内側ケーブルと、を有し、
     前記第一屋外ケーブルの一方の導線は、前記第二屋外ケーブルの正負が異なる導線に接続されており、
     前記第一屋外ケーブルの他方の導線は、前記屋内側ケーブルの正負が同一の導線に接続されており、
     前記第二屋外ケーブルの残りの導線と前記屋内側ケーブルの残りの導線とが接続されていることを特徴とする請求項19に記載の太陽電池モジュールの敷設構造。
  21.  前記第一直列コネクタおよび前記第二直列コネクタの模様若しくは色彩又はこれらの結合が相違することを特徴とする請求項20に記載の太陽電池モジュールの敷設構造。
  22.  前記第一屋外側ケーブルおよび前記第二屋外側ケーブルの模様、色彩又はこれらの結合が相違することを特徴とする請求項21に記載の太陽電池モジュールの敷設構造。
  23.  略長方形状であって内部に複数の太陽電池セルが形成され全体として一つの太陽電池を構成する太陽電池モジュールを使用し、当該太陽電池モジュールを構造物に敷設する太陽電池モジュールの敷設構造において、
     太陽電池モジュールは、二組のコネクタを有し、
     前記二組のコネクタはいずれも独立した二以上の端子を備え、
     前記二組のコネクタはいずれも太陽電池モジュールの長手方向中央から太陽電池モジュールの外側に延出された2系統以上の導線を有するケーブルに接続されており、
     各コネクタの一つの端子は太陽電池の正極に接続され、
     各コネクタの他の一つの端子は太陽電池の負極に接続され、
     前記二組のコネクタの内の一方のコネクタに接続されたケーブルは、他方のコネクタに接続されたケーブルよりも短く、
     前記ケーブルの長さの関係は太陽電池モジュールを列状に並べたとき短いケーブルが接続されたコネクタ同士は長さ不足の状態であって接続させることが不能となるものであり、
     前記太陽電池モジュールは構造物に列状に並べて設置され、隣接する太陽電池モジュールのコネクタは長いケーブルが接続されたコネクタと短いケーブルが接続されたコネクタが前記太陽電池モジュールの列の外側で接合され、両者が接合された状態において両コネクタの正極側端子同士と、負極側端子同士が接続された状態となり、複数の太陽電池モジュールが電気的に並列に接続されることを特徴とする太陽電池モジュールの敷設構造。
  24.  二組のコネクタの内の一方および他方のコネクタに接続されたケーブルは、それぞれ2条の導線を同一の絶縁チューブ内に配したケーブルであることを特徴とする請求項23に記載の太陽電池モジュールの敷設構造。
  25.  太陽電池モジュールが備える二組のコネクタが、それぞれ構造が同一であるが色違いであることを特徴とする請求項23又は24に記載の太陽電池モジュールの敷設構造。
  26.  太陽電池モジュールが備える長い方のケーブルは、短い方のケーブルと色が違うことを特徴とする請求項23乃至25のいずれかに記載の太陽電池モジュールの敷設構造。
  27.  太陽電池モジュールが備える長い方のケーブルは、太陽電池モジュールの全長の50パーセント以上であり、短い方のケーブルは、太陽電池モジュールの太陽電池モジュールの全長の50パーセント未満であることを特徴とする請求23乃至26のいずれかに記載の太陽電池モジュールの敷設構造。
  28.  太陽電池モジュールが備える二組のコネクタのうちの一方が第一コネクタであり、他方が第二コネクタであり、
     前記太陽電池ブロックにおいて未使用の第一コネクタ又は第二コネクタのうち、前記引込ケーブルが接続されない第一コネクタ又は第二コネクタに端子保護部材が取り付けられることを特徴とする請求項23乃至27のいずれかに記載の太陽電池モジュールの敷設構造。
  29.  太陽電池モジュールは、裏面側に、接続されたケーブル及びコネクタを収容する空隙部が設けられたものであり、
     複数個の太陽電池モジュールの列が複数段状に並べられて太陽電池モジュールが平面的に分布するものであり、
     列状に隣接する太陽電池モジュールの長い方のケーブルと短い方のケーブルが接続されて、当該長い方のケーブルと短い方のケーブルとが隣接する段の太陽電池モジュールの空隙部に収容されていることを特徴とする請求項23乃至28のいずれかに記載の太陽電池モジュールの敷設構造。
  30.  複数個の太陽電池モジュールの列が複数段状に並べられて太陽電池モジュールが平面的に分布するものであり、
     一つの段においては、長い方のケーブルを屋根に向かって右側に延ばして右側に隣接する太陽電池パネルの短い方のケーブルと接続し、これに隣接する段においては、長い方のケーブルを屋根に向かって左側に延ばして左側に隣接する太陽電池パネルの短い方のケーブルと接続することを特徴とする請求項23乃至29のいずれかに記載の太陽電池モジュールの敷設構造。
  31.  列の端部に位置する太陽電池モジュールは、長い方のケーブルが隣接する段の太陽電池モジュールの底面をくぐって当該隣接する段の太陽電池モジュールの外側に出現し、隣接する段の列の端部に位置する太陽電池モジュールの短い方のケーブルと接続されていることを特徴とする請求項29又は30に記載の太陽電池モジュールの敷設構造。
  32.  列の端部に位置する太陽電池モジュールの長い方のケーブルと、隣接する段の列の端部に位置する太陽電池モジュールの短い方のケーブルは、接続された状態で一つ飛びの段の太陽電池モジュールの空隙部に収容されていることを特徴とする請求項29乃至31のいずれかに記載の太陽電池モジュールの敷設構造。
  33.  請求項18乃至32のいずれかに記載の敷設構造を構成する太陽電池モジュールが備える二組のコネクタのうちの一方が第一コネクタであり、他方が第二コネクタであり、
     前記敷設構造の敷設作業中断時に、未使用の前記第一コネクタ又は第二コネクタに端子保護部材を取り付けることを特徴とする太陽電池モジュールの敷設方法。
PCT/JP2009/065367 2008-09-10 2009-09-02 太陽電池モジュール、太陽電池モジュールの敷設構造、及び太陽電池モジュールの敷設方法 WO2010029883A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980133933.5A CN102137977B (zh) 2008-09-10 2009-09-02 太阳能电池模块、太阳能电池模块的铺设构造以及太阳能电池模块的铺设方法
US13/063,195 US8853520B2 (en) 2008-09-10 2009-09-02 Solar cell module, arrangement structure of the same, and method for arranging the same
AU2009292594A AU2009292594B2 (en) 2008-09-10 2009-09-02 Solar cell module, installation structure for solar cell module, and installation method for solar cell module

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008-232223 2008-09-10
JP2008232221 2008-09-10
JP2008232223 2008-09-10
JP2008-232221 2008-09-10
JP2008-236527 2008-09-16
JP2008236527 2008-09-16
JP2008-253483 2008-09-30
JP2008253483 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010029883A1 true WO2010029883A1 (ja) 2010-03-18

Family

ID=42005140

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/065367 WO2010029883A1 (ja) 2008-09-10 2009-09-02 太陽電池モジュール、太陽電池モジュールの敷設構造、及び太陽電池モジュールの敷設方法
PCT/JP2009/065368 WO2010029884A1 (ja) 2008-09-10 2009-09-02 太陽電池モジュール、並びに、太陽電池アレイ

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065368 WO2010029884A1 (ja) 2008-09-10 2009-09-02 太陽電池モジュール、並びに、太陽電池アレイ

Country Status (5)

Country Link
US (3) US8853520B2 (ja)
EP (1) EP2322738A4 (ja)
CN (3) CN102137976B (ja)
AU (2) AU2009292595B2 (ja)
WO (2) WO2010029883A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493056A (en) * 2011-06-16 2013-01-23 Stephen John Makin Roof-Mounted Solar Panels
US20130284514A1 (en) * 2012-04-26 2013-10-31 Sumitomo Wiring Systems, Ltd. Terminal box for solar cell module
JP2016102370A (ja) * 2014-11-28 2016-06-02 株式会社東芝 太陽光電池モジュール

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8922972B2 (en) * 2011-08-12 2014-12-30 General Electric Company Integral module power conditioning system
JP6541351B2 (ja) * 2011-11-30 2019-07-10 ジニアテック リミテッド 光起電力システム
TWI425646B (zh) * 2012-01-06 2014-02-01 Au Optronics Corp 光伏陣列系統、其光伏裝置及其光伏裝置的側框件
US9553225B2 (en) 2012-04-11 2017-01-24 Schneider Electric USA, Inc. Tapered trunking system with distributed combiner
US20130298968A1 (en) * 2012-05-14 2013-11-14 Mika Brian Laitila Solar panel racking system having separate support structure and cover assembly
JP6061511B2 (ja) * 2012-06-15 2017-01-18 株式会社カネカ 太陽電池モジュール
CN103580603A (zh) * 2012-08-10 2014-02-12 苏州快可光伏电子股份有限公司 电池模块及使用该电池模块的光伏组件
USD746768S1 (en) 2013-05-15 2016-01-05 Mika Brian Laitila Solar panel rack
AU2015213247B2 (en) * 2014-01-31 2019-05-02 Bluescope Steel Limited A roof
FR3018406B1 (fr) * 2014-03-10 2019-12-13 Gse Integration Plaque perfectionnee pour l’installation de panneaux photovoltaiques
FR3021175B1 (fr) * 2014-05-16 2016-05-13 Snc Yap Plaque de support pour panneau photovoltaique
EP3154190B1 (en) 2014-06-06 2019-08-28 Kaneka Corporation Solar cell module and roof structure
US10992254B2 (en) 2014-09-09 2021-04-27 Shoals Technologies Group, Llc Lead assembly for connecting solar panel arrays to inverter
US10756669B2 (en) 2014-12-04 2020-08-25 Solarmass Energy Group Ltd. Solar roof tile
TWI612684B (zh) * 2015-03-23 2018-01-21 上銀光電股份有限公司 太陽能板模組及其製造方法
RU2680375C1 (ru) 2015-05-26 2019-02-20 Арселормиттал Устройство электрического соединения фотогальванической установки
RU2682816C1 (ru) * 2015-05-26 2019-03-21 Арселормиттал Устройство электрического соединения фотогальванической установки
EP3113232A1 (de) * 2015-06-30 2017-01-04 Anton Naebauer Optimiertes photovoltaik modul mit bypass-netzwerk
US20190207555A1 (en) * 2016-12-27 2019-07-04 Hall Labs Llc Solar shingle installation and interconnection system
US11888442B2 (en) 2017-01-31 2024-01-30 Solarwat Ltd Solar modules having solar sub cells with matrix connections between the solar sub cells
WO2019058149A1 (en) * 2017-09-19 2019-03-28 Godi Attila ROOF COVER ELEMENT HAVING SOLAR CELL MODULE
US10693413B2 (en) * 2017-10-19 2020-06-23 Building Materials Investment Corporation Roof integrated photovoltaic system
JP7090649B2 (ja) * 2018-01-16 2022-06-24 株式会社カネカ 太陽光発電システム
US11012025B2 (en) * 2018-03-02 2021-05-18 Tesla, Inc. Interlocking BIPV roof tile with backer
WO2020014733A1 (en) * 2018-07-20 2020-01-23 Clearvue Technologies Ltd A device for generating electricity
US10530292B1 (en) * 2019-04-02 2020-01-07 Solarmass Energy Group Ltd. Solar roof tile with integrated cable management system
US20220060141A1 (en) * 2020-08-24 2022-02-24 Colin Felton Labor Saving Solar Roofing Shingle
WO2022103968A1 (en) 2020-11-12 2022-05-19 GAF Energy LLC Roofing shingles with handles
CN112854612B (zh) * 2021-01-13 2022-04-15 北方工业大学 一种屋顶瓦片
CN113611765B (zh) * 2021-06-30 2024-02-27 中国华能集团清洁能源技术研究院有限公司 光伏组件和光伏发电系统
JP2023122448A (ja) * 2022-02-22 2023-09-01 オムロン株式会社 太陽光発電システム
JP2023122447A (ja) * 2022-02-22 2023-09-01 オムロン株式会社 太陽光発電システム
JP2023122445A (ja) * 2022-02-22 2023-09-01 オムロン株式会社 太陽光発電システム
JP2023165346A (ja) * 2022-05-02 2023-11-15 オムロン株式会社 太陽光発電システム
JP2023165347A (ja) * 2022-05-02 2023-11-15 オムロン株式会社 太陽光発電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055815A (ja) * 1999-06-09 2001-02-27 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール用瓦
JP2002009326A (ja) * 2000-06-26 2002-01-11 Kanegafuchi Chem Ind Co Ltd 二極防水コネクタ及びこれを用いた太陽電池モジュールの配線構造
JP2003008042A (ja) * 2001-06-18 2003-01-10 Sumitomo Wiring Syst Ltd 太陽電池モジュール接続方法
JP2003293536A (ja) * 2002-04-01 2003-10-15 Sekisui Chem Co Ltd 太陽電池付き屋根材
JP2005264483A (ja) * 2004-03-17 2005-09-29 Asahi Kasei Construction Materials Co Ltd 屋根材一体型太陽電池モジュール
JP2008130902A (ja) * 2006-11-22 2008-06-05 Honda Motor Co Ltd 太陽電池モジュール

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329577A (ja) 1989-06-27 1991-02-07 Mitsubishi Electric Corp テレビジョン受像機の輪郭強調回路
US5338369A (en) * 1993-02-16 1994-08-16 Rawlings Lyle K Roof-integratable photovolatic modules
JPH11298017A (ja) 1998-04-14 1999-10-29 Kanegafuchi Chem Ind Co Ltd 集積型薄膜光電変換装置の製造方法
US6065255A (en) * 1998-12-07 2000-05-23 Kyocera Solar, Inc. Roof mounting for photovoltaic modules
JP2000226908A (ja) * 1999-02-08 2000-08-15 Sekisui Chem Co Ltd 太陽電池付き屋根瓦及びその製造方法
JP2000297501A (ja) 1999-02-10 2000-10-24 Sekisui Chem Co Ltd 太陽電池付屋根材の取付構造
JP3631393B2 (ja) 1999-03-30 2005-03-23 株式会社クボタ 太陽電池モジュールの設置構造
JP3627597B2 (ja) * 1999-11-05 2005-03-09 三菱電機株式会社 太陽電池パネル及び太陽電池パネルによる屋根構造
ATE556184T1 (de) * 2000-03-28 2012-05-15 Kaneka Corp Solarzellenmodul und mit generatorfunktion ausgestattetes dach zu dessen gebrauch
JP4380892B2 (ja) 2000-07-05 2009-12-09 秀雄 藤田 太陽光発電屋根
EP1172863A3 (en) * 2000-07-10 2007-02-14 Sanyo Electric Co., Ltd. Method of installing solar cell modules, and solar cell module
US8987736B2 (en) * 2000-07-10 2015-03-24 Amit Goyal [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices
WO2002004761A1 (fr) 2000-07-12 2002-01-17 Kaneka Corporation Module de batterie solaire, structure d'installation pour module de batterie solaire, toit a fonction de production d'energie de la structure d'installation et procede d'installation d'un module de batterie solaire
JP4690529B2 (ja) 2000-09-07 2011-06-01 三菱重工業株式会社 太陽光発電システムの配線接続方法
JP3572265B2 (ja) 2001-03-26 2004-09-29 三菱重工業株式会社 太陽電池モジュール、太陽光発電システム及びその施工方法
JP4169490B2 (ja) 2001-05-01 2008-10-22 株式会社Msk 太陽電池モジュール配線用ケーブル及び当該ケーブルを用いた太陽電池モジュール配線構造
EP1431476A4 (en) 2001-09-28 2009-11-18 Kaneka Corp SOLAR BATTERY MODULE, SOLAR BATTERY INSTALLATION METHOD, AND EXPLOSION PREVENTION DEVICE FOR SOLAR BATTERY MODULE
JP2003152210A (ja) 2001-11-09 2003-05-23 Sekisui Chem Co Ltd 太陽電池モジュールおよび太陽電池アレイ
JP2004014920A (ja) 2002-06-10 2004-01-15 Sumitomo Wiring Syst Ltd ケーブル連結部構造
JP4014460B2 (ja) 2002-07-03 2007-11-28 株式会社Msk 屋根パネルの設置構造
JP2004221151A (ja) 2003-01-10 2004-08-05 Fuji Electric Holdings Co Ltd 屋根材一体型太陽電池モジュール
US20050072456A1 (en) * 2003-01-23 2005-04-07 Stevenson Edward J. Integrated photovoltaic roofing system
JP2004349507A (ja) 2003-05-22 2004-12-09 Yukita Electric Wire Co Ltd 太陽電池モジュール用端子ボックス、及び太陽電池モジュールの配線構造
US20070119496A1 (en) * 2005-11-30 2007-05-31 Massachusetts Institute Of Technology Photovoltaic cell
JP5180590B2 (ja) 2005-12-26 2013-04-10 株式会社カネカ 積層型光電変換装置
JP4822418B2 (ja) 2006-01-11 2011-11-24 株式会社 エピア 太陽電池付き屋根材
US7509775B2 (en) * 2006-06-30 2009-03-31 Lumeta, Inc. Profile roof tile with integrated photovoltaic module
DE102006032275B3 (de) 2006-07-12 2008-01-03 Tyco Electronics Amp Gmbh Elektrische Verbindungsvorrichtung und Verfahren zu seiner Herstellung sowie elektrische Leitung und Solarmodulanordnung mit einer solchen Verbindungsvorrichtung
US7671270B2 (en) * 2007-07-30 2010-03-02 Emcore Solar Power, Inc. Solar cell receiver having an insulated bypass diode
CN100536149C (zh) * 2007-12-18 2009-09-02 李毅 一种硅薄膜太阳能电池及其制造方法
US8427378B2 (en) * 2010-07-27 2013-04-23 Harris Corporation Electronic device having solar cell antenna element and related methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055815A (ja) * 1999-06-09 2001-02-27 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール用瓦
JP2002009326A (ja) * 2000-06-26 2002-01-11 Kanegafuchi Chem Ind Co Ltd 二極防水コネクタ及びこれを用いた太陽電池モジュールの配線構造
JP2003008042A (ja) * 2001-06-18 2003-01-10 Sumitomo Wiring Syst Ltd 太陽電池モジュール接続方法
JP2003293536A (ja) * 2002-04-01 2003-10-15 Sekisui Chem Co Ltd 太陽電池付き屋根材
JP2005264483A (ja) * 2004-03-17 2005-09-29 Asahi Kasei Construction Materials Co Ltd 屋根材一体型太陽電池モジュール
JP2008130902A (ja) * 2006-11-22 2008-06-05 Honda Motor Co Ltd 太陽電池モジュール

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493056A (en) * 2011-06-16 2013-01-23 Stephen John Makin Roof-Mounted Solar Panels
GB2493056B (en) * 2011-06-16 2014-12-03 Stephen John Makin Roof-mounted solar panels
US20130284514A1 (en) * 2012-04-26 2013-10-31 Sumitomo Wiring Systems, Ltd. Terminal box for solar cell module
JP2016102370A (ja) * 2014-11-28 2016-06-02 株式会社東芝 太陽光電池モジュール

Also Published As

Publication number Publication date
AU2009292594A8 (en) 2011-03-31
CN102137976A (zh) 2011-07-27
CN102137977B (zh) 2019-07-26
US20110162689A1 (en) 2011-07-07
US20110162301A1 (en) 2011-07-07
AU2009292594B2 (en) 2015-09-03
CN103982013A (zh) 2014-08-13
EP2322738A1 (en) 2011-05-18
AU2009292594A1 (en) 2010-03-18
US8853520B2 (en) 2014-10-07
CN102137976B (zh) 2014-05-28
CN102137977A (zh) 2011-07-27
WO2010029884A1 (ja) 2010-03-18
US20160049537A1 (en) 2016-02-18
EP2322738A4 (en) 2015-09-02
CN103982013B (zh) 2017-05-10
AU2009292595A1 (en) 2010-03-18
AU2009292595B2 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
WO2010029883A1 (ja) 太陽電池モジュール、太陽電池モジュールの敷設構造、及び太陽電池モジュールの敷設方法
JP5588644B2 (ja) 太陽電池モジュール及び太陽電池アレイ
US6093884A (en) Solar cell module, solar cell array having the module, power generation apparatus using the array, and inspection method and construction method of the apparatus
EP3754754A1 (en) Busbar module
KR20170015363A (ko) 광전지 디바이스가 장착된 패널
US20140238469A1 (en) Solar cell module and solar cell array roofing structure using same
US20120216856A1 (en) Solar cell module
JP5557548B2 (ja) 屋根構造
CN115842503A (zh) Bipv光伏瓦片
CN115864980A (zh) 反向插拔式bipv光伏瓦片
JP5608386B2 (ja) 屋根構造
JP5574739B2 (ja) 屋根構造、太陽電池モジュールの取付け具及び太陽電池モジュールの取付け方法
JP2002058152A (ja) 太陽光発電システムの施工に用いられる中継ボックス
JP2004132123A (ja) 屋根材一体型太陽電池モジュールおよびその配線方法
JP4572598B2 (ja) 太陽電池パネルの電気接続構造
JP5574741B2 (ja) 屋根構造、太陽電池モジュールの取付け具及び太陽電池モジュールの取付け方法
JP4934956B2 (ja) 太陽電池モジュールの端子構造
JP2009038216A (ja) 太陽電池モジュール
JP5356276B2 (ja) 屋根構造、太陽電池モジュールの取付け具及び太陽電池モジュールの取付け方法
JPH11310997A (ja) 太陽電池付き屋根及びその施工方法並びにそれに用いられる中継ボックス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133933.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009292594

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009292594

Country of ref document: AU

Date of ref document: 20090902

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13063195

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09813029

Country of ref document: EP

Kind code of ref document: A1