JP2023165346A - 太陽光発電システム - Google Patents

太陽光発電システム Download PDF

Info

Publication number
JP2023165346A
JP2023165346A JP2022076266A JP2022076266A JP2023165346A JP 2023165346 A JP2023165346 A JP 2023165346A JP 2022076266 A JP2022076266 A JP 2022076266A JP 2022076266 A JP2022076266 A JP 2022076266A JP 2023165346 A JP2023165346 A JP 2023165346A
Authority
JP
Japan
Prior art keywords
group
solar cell
power generation
generation system
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022076266A
Other languages
English (en)
Inventor
孝博 武山
Takahiro Takeyama
遼 小倉
Ryo Ogura
釘虎 白
Ding Hu Bai
淳 仲市
Jun Nakaichi
強士 内田
Tsuyoshi Uchida
智子 遠藤
Tomoko Endo
エリカ マーティン
Martin Erica
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2022076266A priority Critical patent/JP2023165346A/ja
Priority to US18/138,737 priority patent/US20230353088A1/en
Publication of JP2023165346A publication Critical patent/JP2023165346A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】太陽光発電システムにおいて、遮断装置の設置コストの低減、及び安定性の向上を両立できる太陽光発電システムを提供する。【解決手段】太陽光発電システムは、ストリングと、インバータと、複数の遮断装置と、とを備える。ストリングは、複数の太陽電池モジュールグループを含む。複数の遮断装置は、インバータからの制御信号に応じて複数の太陽電池モジュールグループ同士の接続を遮断する。複数の太陽電池モジュールグループは、第1グループと、第1グループに接続される第2グループと、第2グループに接続される第3グループとを含む。複数の遮断装置は、第1遮断装置を含む。第1遮断装置は、第2グループの陽極側の端子に接続される第1開閉部と、第2グループの陰極側の端子に接続される第2開閉部とを含む。【選択図】図1

Description

本発明は、太陽光発電システムに関する。
米国では、火災時等の緊急時に消防士を感電等から保護することを目的として、太陽光発電システムに対して、緊急時に太陽光発電システムによる発電を即座に停止するいわゆるラピッドシャットダウン機能の導入がNEC(米国電気工事規定)によって義務付けられている。例えば、特許文献1では、インバータの動作状態に応じて、太陽電池モジュールからインバータへの電力の出力を停止させる太陽光発電システムが開示されている。
特表2012-511299号公報
太陽光発電システムにおいて、火災時等における消防士のさらなる安全性の向上を図るには、例えば、ラピッドシャットダウン機能を備える遮断装置を太陽電池モジュール毎に設置することが好ましい。しかしながら、太陽電池モジュール毎に遮断装置を設置した場合、遮断装置の設置コストが高くなる。
本発明の課題は、太陽光発電システムにおいて、遮断装置の設置コストの低減、及び安定性の向上を両立できる太陽光発電システムを提供することにある。
本発明の一態様に係る太陽光発電システムは、ストリングと、インバータと、複数の遮断装置とを備える。ストリングは、互いに直列に接続された複数の太陽電池モジュールグループを含む。複数の太陽電池モジュールグループは、1つ又は直列に接続された複数の太陽電池モジュールをそれぞれ含む。インバータは、ストリングに接続され、ストリングから出力される直流電力を交流電力に変換する。複数の遮断装置は、インバータからの制御信号に応じて複数の太陽電池モジュールグループ同士の接続を遮断する。複数の太陽電池モジュールグループのそれぞれは、開放電圧が所定の開放電圧以下である。複数の太陽電池モジュールグループは、第1グループと、第1グループに接続される第2グループと、第2グループに接続される第3グループとを含む。複数の遮断装置は、第1遮断装置を含む。第1遮断装置は、第2グループの陽極側の端子に接続される第1開閉部と、第2グループの陰極側の端子に接続される第2開閉部とを含む。
この太陽光発電システムでは、第1遮断装置の第1開閉部と第2開閉部とによって第1グループと第2グループとの接続、並びに第2グループと第3グループとの接続を遮断できる。すなわち、1個の遮断装置で複数のグループの接続を遮断できるので、太陽電池モジュール毎に遮断装置を設置する場合に比べて、複数の遮断装置の設置コストの低減を図ることができる。また、ストリング単位で太陽電池モジュールとインバータとを遮断する場合に比べて、より安全性の高い太陽光発電システムを提供することができる。
第1遮断装置は、第2グループに並列接続される第1バイパス素子をさらに含んでもよい。この場合は、第2グループでの発電量が小さくなっても、他の太陽電池モジュールグループが発電した電力を、第1バイパス素子を介してインバータへ伝搬させることができる。
第1遮断装置は、第1開閉部と第2開閉部とを独立して開閉制御可能であってもよい。この場合は、例えば、第1開閉部に接点不良などの不具合が生じた場合において、正常に動作している第2開閉部は、そのまま利用することができる。
第1遮断装置は、第2グループで発電される電力によって駆動されてもよい。この場合は、例えば、既存の太陽光発電システムに第1遮断装置を設置するときにおいて、インバータと第1遮断装置とを接続する追加配線を省略することができる。これにより、第1遮断装置の設置コストの低減を図ることができる。また、第1遮断装置の駆動電圧範囲を小さく抑えることができるので、第1遮断装置の製造コストを抑えることができる。
複数の太陽電池モジュールグループの第1グループ、第2グループ及び第3グループの少なくとも1つは、直列に接続された複数の太陽電池モジュールを含んでもよい。この場合は、第1遮断装置によって、複数の太陽電池モジュールをまとめて遮断することができる。
第1遮断装置は、インバータからの制御信号を受信する信号受信部と、複数の太陽電池モジュールグループ同士の接続が遮断された状態において、信号受信部がインバータからの制御信号を受信するためのバイパス回路とをさらに含んでもよい。この場合は、複数の太陽電池モジュールグループ同士の接続が遮断された状態において、第1遮断装置は、バイパス回路を介して、インバータからの制御信号を受信することができる。
複数の太陽電池モジュールグループは、第3グループに接続される第4グループと、第4グループに接続される第5グループとをさらに含んでもよい。複数の遮断装置は、第2遮断装置をさらに含んでもよい。第2遮断装置は、第4グループの陽極側の端子に接続される第3開閉部と、第4グループの陰極側の端子に接続される第4開閉部とを含んでもよい。この場合は、第2遮断装置の第3開閉部と第4開閉部とによって第3グループと第4グループとの接続、並びに第4グループと第5グループとの接続を遮断できる。
第2遮断装置は、第4グループに並列接続される第2バイパス素子をさらに含んでもよい。この場合は、第4グループでの発電量が小さくなっても、他の太陽電池モジュールグループが発電した電力を、第2バイパス素子を介してインバータへ伝搬させることができる。
第2遮断装置は、第3開閉部と第4開閉部とを独立して開閉制御可能であってもよい。この場合は、例えば、第3開閉部に接点不良などの不具合が生じた場合において、正常に動作している第4開閉部は、そのまま利用することができる。
第2遮断装置は、第4グループで発電される電力によって駆動されてもよい。この場合は、例えば、既存の太陽光発電システムに第2遮断装置を設置するときにおいて、インバータと第2遮断装置とを接続する追加配線を省略することができる。これにより、第2遮断装置の設置コストの低減を図ることができる。また、第2遮断装置の駆動電圧範囲を小さく抑えることができるので、第2遮断装置の製造コストを抑えることができる。
複数の太陽電池モジュールグループの第4グループ、第5グループ及び第6グループの少なくとも1つは、直列に接続された複数の太陽電池モジュールを含んでもよい。この場合は、第2遮断装置によって、複数の太陽電池モジュールをまとめて遮断することができる。
ストリングの複数の太陽電池モジュールグループのそれぞれは、開放電圧が165V以下であってもよい。この場合は、より安全性の高い太陽光発電システムを提供することができる。
インバータは、電力線通信によって複数の遮断装置に制御信号を出力してもよい。この場合は、既存の太陽光発電システムに複数の遮断装置を設置するときに、インバータと複数の遮断装置との通信を確保するための追加配線を省略することができるので、複数の遮断装置の設置コストを抑えることができる。
インバータは、無線通信によって複数の遮断装置に制御信号を出力してもよい。この場合は、遠隔操作によって複数の遮断装置に制御信号を出力することが可能になる。
本発明によれば、太陽光発電システムにおいて、遮断装置の設置コストの低減、及び安定性の向上を両立できる太陽光発電システムを提供することができる。
図1は、本発明の一態様に係る太陽光発電システムの構成を模式的に示すブロック図である。 図2は、遮断装置の構成を模式的に示すブロック図である。 図3は、レギュレータの構成を模式的に示す回路図である。 図4は、遮断装置の構成を模式的に示すブロック図である。 図5は、遮断装置の動作モードの一例を説明する図である。 図6は、他の実施形態に係る太陽光発電システムの構成を模式的に示すブロック図である。 図7は、他の実施形態に係る太陽光発電システムの構成を模式的に示すブロック図である。 図8は、他の実施形態に係る太陽光発電システムの構成を模式的に示すブロック図である。
図1は、本発明の一態様に係る太陽光発電システム1の構成を模式的に示すブロック図である。太陽光発電システム1は、ストリング2と、インバータ3と、複数の遮断装置4と、を備える。
ストリング2は、互いに直列に接続された複数の太陽電池モジュールグループを含む。複数の太陽電池モジュールグループのそれぞれは、1つ又は直列に接続された複数の太陽電池モジュール6を含む。すなわち、ストリング2は、互いに直列に接続された複数(本実施形態では18個)の太陽電池モジュール6を含む。本実施形態における複数の太陽電池モジュールグループは、6つの太陽電池モジュールグループ6A~6Fで構成されている。なお、太陽光発電システム1は、ストリング2が並列に複数連結された太陽電池アレイを含んでもよい。
複数の太陽電池モジュールグループ6A~6Fのそれぞれは、開放電圧が所定の開放電圧以下である。所定の開放電圧は、例えば165Vである。すなわち、ストリング2は、グループ毎の開放電圧が165V以下になるようにグループ分けされている。太陽電池モジュール6のそれぞれの開放電圧は、例えば50Vである。以下では、太陽電池モジュールグループ6A~6Fをグループ6A~6Fとして記すことがある。なお、本実施形態におけるグループ6A~6Eは、第1グループ~第5グループの一例である。
グループ6A~6Fのそれぞれは、互いに直列に接続された3つの太陽電池モジュール6を含む。したがって、グループ6A~6Fのそれぞれの開放電圧は、150Vである。
グループ6A~6Fは、グループ6Aからグループ6Fまでアルファベット順に並んで互いに直列に接続されている。グループ6A~6Fのそれぞれは、陽極側の端子と陰極側の端子とを含む。各グループ6A~6Fの陽極側端子は、各グループ6A~6Fに属する太陽電池モジュール6の中で、インバータ3の陽極に最も近い太陽電池モジュール6の陽極側の端子によって構成される。各グループ6A~6Fの陰極側端子は、各グループ6A~6Fに属する太陽電池モジュール6の中でインバータ3の陽極から最も離れた太陽電池モジュール6の陰極側の端子によって構成される。
グループ6Aの陽極側の端子は、グループ6Aに属する太陽電池モジュール6の中で、グループ6Bに最も近い太陽電池モジュール6の陽極側の端子によって構成され、グループ6Bの陰極側の端子に接続されている。グループ6Aの陰極側の端子は、グループ6Aに属する太陽電池モジュール6の中で、グループ6Bから最も離れたグループ6Aの太陽電池モジュール6の陰極側の端子によって構成され、インバータ3の陰極側の端子に接続されている。
グループ6Bの陽極側の端子は、グループ6Bに属する太陽電池モジュール6の中で、グループ6Cに最も近い太陽電池モジュール6の陽極側の端子によって構成され、グループ6Cの陰極側の端子に接続されている。グループ6Bの陰極側の端子は、グループ6Bに属する太陽電池モジュール6の中で、グループ6Aに最も近い太陽電池モジュール6の陰極側の端子によって構成され、グループ6Aの陽極側の端子に接続されている。
グループ6Cの陽極側の端子は、グループ6Dの陰極側の端子に接続されている。グループ6Cの陰極側の端子は、グループ6Bの陽極側の端子に接続されている。グループ6Dの陽極側の端子は、グループ6Eの陰極側の端子に接続されている。グループ6Dの陰極側の端子は、グループ6Cの陽極側の端子に接続されている。グループ6Eの陽極側の端子は、グループ6Fの陰極側の端子に接続されている。グループ6Eの陰極側の端子は、グループ6Dの陽極側の端子に接続されている。グループ6Fの陽極側の端子は、インバータ3の陽極側の端子に接続されている。グループ6Fの陰極側の端子は、グループ6Eの陽極側の端子に接続されている。
太陽電池モジュール6は、太陽光を受けて電力を発電し、発電した電力をインバータ3に出力する。インバータ3は、電力線を介してストリング2に接続される。インバータ3は、ストリング2の太陽電池モジュール6から出力される直流電力を交流電力に変換する。インバータ3は、電力系統7に接続されており、交流電力を商用電力系統や負荷装置に供給する。
詳細には、インバータ3は、DC/DCコンバータ3aと、DC/ACインバータ3bと、制御部3cと、を含む。DC/DCコンバータ3aは、太陽電池モジュール6から出力される電力の電圧を所定の電圧に変換して、DC/ACインバータ3bに入力する。DC/ACインバータ3bは、DC/DCコンバータ3aを介して、太陽電池モジュール6から出力される直流電力を交流電力に変換する。制御部3cは、CPUやメモリ等を含み、DC/DCコンバータ3a及びDC/ACインバータ3bを制御する。また、制御部3cは、電力線通信によって複数の遮断装置4に制御信号を出力する。
複数の遮断装置4は、グループ6A~6F同士を接続する電路に接続されている。複数の遮断装置4は、インバータ3からの制御信号に応じてグループ6A~6F同士の接続を遮断する。複数の遮断装置4は、遮断装置4a~4cを含む。本実施形態では、複数の遮断装置4は、3つの遮断装置4a~4cによって構成される。本実施形態における遮断装置4aは、第1遮断装置の一例であり、遮断装置4bは、第2遮断装置の一例である。
遮断装置4aは、グループ6Aとグループ6Bとを接続する電路8aと、グループ6Bとグループ6Cとを接続する電路8bとに接続されている。遮断装置4aは、インバータ3からの制御信号に応じてグループ6Aとグループ6Bとの接続、並びにグループ6Bとグループ6Cとの接続を遮断する。詳細には、遮断装置4aは、インバータ3からの制御信号に応じてグループ6Bの太陽電池モジュール6から出力される電圧を遮断することで、電路8a,8bを遮断する。これにより、グループ6Aとグループ6Bとの接続、並びにグループ6Bとグループ6Cとの接続が遮断される。
遮断装置4aは、グループ6Bの太陽電池モジュール6で発電される電力によって駆動される。遮断装置4aは、例えば、グループ6Bの太陽電池モジュール6に外付けされている。
図2は、遮断装置4aの構成を模式的に示すブロック図である。遮断装置4aは、電力供給部41と、信号受信部42と、制御部43と、リレー44と、バイパス回路45と、バイパス素子46と、信号検出部47とを含む。
電力供給部41は、グループ6Bに並列接続されたレギュレータである。具体的には、電力供給部41の陽極側の端子は、グループ6Bの陽極側の端子に接続され、陰極側の端子は、グループ6Bの陰極側の端子に接続される。
図3は、電力供給部41の構成を模式的に示す回路図である。電力供給部41は、入力端子21a,21b、出力端子22a,22b、ラインフィルタ23、コンデンサ24,25、昇圧回路26、スイッチング素子27、制御回路28、トランス29、ダイオード30、DC/DCコンバータ31、フィードバック回路32等を含む。
電力供給部41は、太陽電池モジュール6で発電された電力を電源として遮断装置4aを駆動させる駆動電力を発生する。ここでは、グループ6Bの太陽電池モジュール6で発電された電力のみを利用して遮断装置4aの駆動電力を生成する。
信号受信部42は、インバータ3の制御部3cからの制御信号を受信して、受信した制御信号を制御部43に出力する。詳細には、インバータ3の制御部3cからの制御信号を検出する信号検出部47を介して、信号受信部42はインバータ3の制御部3cからの制御信号を受信する。
制御部43は、CPUやメモリ等を含む。制御部43は、信号受信部42から出力された信号に基づいて、リレー44のコイルに流れる電流値を制御して、リレー44の接点を開閉制御する。リレー44は、例えばメカニカルリレーであり、高電圧の直流電流を開閉可能である。
リレー44は、第1開閉部44aと、第2開閉部44bとを含む。第1開閉部44aは、グループ6Bの陽極側の端子に接続される。第1開閉部44aは、電路8aに配置され、グループ6Bとグループ6Cとの接続を開閉する。第2開閉部44bは、グループ6Bの陰極側の端子に接続される。第2開閉部44bは、電路8aに配置され、グループ6Aとグループ6Bとの接続を開閉する。以下では、第1開閉部44a及び第2開閉部44bを開閉部44a,44bと記すことがある。
電力供給部41から駆動電源が供給されていないとき、開閉部44a,44bは、常に開状態にある。したがって、遮断装置4aが駆動していないときは、グループ6Aとグループ6Bとの接続、グループ6Bとグループ6Cとの接続が遮断された状態にある。
バイパス回路45は、グループ6A~6F同士の接続が遮断された状態において、信号受信部42が制御部3cからの制御信号を受信するための回路である。グループ6Aとグループ6Bとの接続、並びにグループ6Bとグループ6Cとの接続が遮断された状態において、信号受信部42は、バイパス回路45を介して、制御部3cからの制御信号を受信することができる。
バイパス素子46は、グループ6Bに並列接続される。具体的には、バイパス素子46の一端は、グループ6Bの陰極側の端子と第2開閉部44bとの間に接続される。一方、バイパス素子46の他端は、グループ6Bの陽極側の端子と第1開閉部44aとの間に接続される。バイパス素子46は、例えば、グループ6Bの陰極側の端子と第2開閉部44bとの間に接続されるアノードと、グループ6Bの陽極側の端子と第1開閉部44aとの間に接続されるカソードと、を有するダイオードである。
日の出又は日没時、グループ6Aの太陽電池モジュールに影が入った場合、グループ6Bにおける急激な電力低下又は異常発熱などの異常により、グループ6Bから十分な電力を出力できなくなったときに、バイパス素子46は、他の太陽電池モジュールグループが発生させた電力を、グループ6Bを「バイパス」して伝搬させる電路を形成する。具体的には、バイパス素子46は、開閉部44a,44bが閉状態となったときに、他の太陽電池モジュールグループにて発生した電力を、インバータ3へと伝送させる経路を形成する。
バイパス素子46は、外部からの信号による指令がなくとも、グループ6Bから十分な電力を出力できなくなったときに、その電気的特性に基づいて、異常が生じたグループ6Bをバイパスする電路を直ちに形成できる。
なお、遮断装置4aが接続されたグループ6Bをバイパスでき、かつ、バイパス素子46の端子の少なくとも一方が第1開閉部44a又は第2開閉部44bを介さずにグループ6Bに接続されていれば、バイパス素子46の2つの端子の接続位置は任意に設定できる。例えば、バイパス素子46のアノードをグループ6Aの陽極側の端子と第2開閉部44bとを接続する電路に接続し、カソードをグループ6Bの陽極側の端子と第1開閉部44aとを接続する電路に接続してもよい。
遮断装置4bは、接続される電路が遮断装置4aと異なる点を除いて遮断装置4aと同様の構成である。遮断装置4bは、グループ6Cとグループ6Dとを接続する電路8cと、グループ6Dとグループ6Eとを接続する電路8dとに接続されている。遮断装置4bは、インバータ3からの制御信号に応じてグループ6Cとグループ6Dとの接続、並びにグループ6Cとグループ6Eとの接続を遮断する。
遮断装置4bは、グループ6Dの太陽電池モジュール6で発電される電力によって駆動される。遮断装置4bは、例えば、グループ6Dの太陽電池モジュール6に外付けされている。
図4に示すように、遮断装置4bは、電力供給部51と、信号受信部52と、制御部53と、リレー54と、バイパス回路55と、バイパス素子56と、信号検出部57とを含む。リレー54は、第1開閉部54a(第3開閉部の一例)と、第2開閉部54b(第4開閉部の一例)とを含む。遮断装置4bの各構成は、遮断装置4aの各構成と同様であるため、簡略に説明する。
電力供給部51は、太陽電池モジュール6で発電された電力を電源として遮断装置4bを駆動させる駆動電力を発生する。ここでは、グループ6Dの太陽電池モジュール6で発電された電力のみを利用して遮断装置4bの駆動電力を生成する。
信号受信部52は、インバータ3の制御部3cからの制御信号を受信して、受信した制御信号を制御部53に出力する。
制御部53は、リレー54の接点を開閉制御する。リレー54の第1開閉部54aは、グループ6Dの陽極側の端子に接続される。第1開閉部54aは、電路8dに配置され、グループ6Dとグループ6Eとの接続を開閉する。第2開閉部54bは、グループ6Dの陰極側の端子に接続される。第2開閉部54bは、電路8cに配置され、グループ6Cとグループ6Dとの接続を開閉する。
バイパス素子56は、グループ6Dに並列接続される。バイパス素子56の一端は、グループ6Dの陰極側の端子と第2開閉部54bとの間に接続される。バイパス素子56の他端は、グループ6Dの陽極側の端子と第1開閉部54aとの間に接続される。バイパス素子58は、例えば、グループ6Dの陰極側の端子と第2開閉部54bとの間に接続されるアノードと、グループ6Dの陽極側の端子と第1開閉部54aとの間に接続されるカソードと、を有するダイオードである。
遮断装置4cは、接続される電路が遮断装置4a及び遮断装置4bと異なる点を除いて遮断装置4aと同様の構成である。すなわち、遮断装置4cは、電力供給部と、信号受信部と、制御部と、第1開閉部64aと第2開閉部64bとを含むリレー64と、バイパス回路と、バイパス素子66と、信号検出部とを含む。遮断装置4cの各構成は、遮断装置4aの各構成と同様であるため、説明を省略する。
遮断装置4cは、グループ6Eとグループ6Fとを接続する電路8eと、グループ6Fとインバータ3とを接続する電路8fとに接続されている。遮断装置4cは、インバータ3からの制御信号に応じてグループ6Eとグループ6Fとの接続、並びにグループ6Fとインバータ3との接続を遮断する。
次に、図5を参照して、複数の遮断装置4の動作モードについて主に遮断装置4aの動作を例にして説明する。複数の遮断装置4の動作モードは、スタートモード、アクティブモード、安全モードの3つの動作モードを含む。安全モードは、通常遮断モードと、緊急安全遮断モードと、を含む。したがって、複数の遮断装置4は、スタートモード、アクティブモード、通常遮断モード、及び緊急安全遮断モードの4つの動作モードで動作する。
スタートモードとは、太陽電池モジュール6に太陽光が当たり始めたときのモードである。このとき、太陽電池モジュール6は、太陽光を受けて電力を発電する。そして、太陽電池モジュール6で発電された電力から電力供給部41が生成した駆動電力によって遮断装置4aが駆動される。遮断装置4aが駆動されて制御部43が信号受信部42を介してインバータ3の制御部3cからの制御信号を受信すると、制御部43はリレー44の開閉部44a,44bを閉状態とする。
同様に、太陽電池モジュール6で発電された電力から遮断装置4bの電力供給部51が生成した駆動電力によって遮断装置4bが駆動される。遮断装置4bが駆動されて制御部53が信号受信部52を介してインバータ3の制御部3cからの制御信号を受信すると、制御部53はリレー54の開閉部54a,54bを閉状態とする。遮断装置4cにおいても、遮断装置4aと同様の動きをする。これにより、グループ6A~6Fが複数の遮断装置4(遮断装置4a~4c)を介してストリング2接続され、太陽電池モジュール6で発電された電力がインバータ3に出力される。
アクティブモードは、太陽電池モジュール6が日中に太陽光を受けて発電している状態であり、実質的にスタートモードと同じである。したがって、アクティブモードでは、グループ6A~6Fが複数の遮断装置4(遮断装置4a~4c)を介して接続された状態にあり、太陽電池モジュール6が発電された電力がインバータ3に出力される。
通常遮断モードは、夜間、或いは雨などの天候の影響で、太陽電池モジュール6が太陽光を受けていないときのモード、又は太陽電池モジュール6の発電が不安定なときのモードである。通常遮断モードにおいて、太陽電池モジュール6の発電がないときは、インバータ3の制御部3cから制御信号は出力されておらず、遮断装置4a~4cの第1開閉部及び第2開閉部が全て開状態にある。
通常遮断モードにおいて、天候の不安定等の理由により、太陽電池モジュール6の発電が不安定なときは、インバータ3の制御部3cから制御信号が出力されている。例えば、グループ6Bの発電量が不安定な場合は、グループ6Bの太陽電池モジュール6から供給される電力に応じてリレー44の開閉部44a,44bがON状態又はOFF状態となる。なお、グループ6Bの発電量が小さい場合でも、リレー44の開閉部44a,44bがON状態であれば、他の太陽電池モジュールグループが発電した電力を、バイパス素子46を介してインバータ3へ伝搬させることができる。
緊急安全遮断モードは、スタートモード、或いはアクティブモード中に、電路8a~8fを遮断して、太陽電池モジュール6からインバータ3への電力の出力を停止させるモードである。本実施形態では、図1に示すように、操作スイッチ35がインバータ3に接続されており、複数の遮断装置4がスタートモード、或いはアクティブモード中のときに操作スイッチ35が操作されると、複数の遮断装置4の動作モードが緊急安全遮断モードに切り替わる。
詳細には、操作スイッチ35が操作されると、制御部3cは、制御信号の出力を停止する。信号検出部47が制御信号の一定周期停止を検出すると、信号受信部42及び制御部43を介して、リレー44の開閉部44a,44bが開状態となる。これにより、グループ6Aとグループ6Bとの接続、並びにグループ6Bとグループ6Cとの接続が遮断される。
同様に、遮断装置4bは、制御信号の一定周期停止を検出すると、リレー54の開閉部54a,54bを開状態に制御する。これにより、グループ6Cとグループ6Dとの接続、並びにグループ6Dとグループ6Eとの接続が遮断される。同様に、遮断装置4cは、制御信号の一定周期停止を検出すると、リレー64の開閉部64a,64bを開状態に制御する。これにより、グループ6Eとグループ6Fとの接続、並びにグループ6Fとインバータ3との接続が遮断される。これにより、全てのグループ6A~6Fが互いに分断されることで、ストリング2の開放電圧が165V以下に分断される。
上記構成の太陽光発電システム1では、複数の太陽電池モジュールグループ6A~6Fのそれぞれは、開放電圧が165Vであるため、安全性の高い太陽光発電システムを提供することができる。また、1個の遮断装置4aで複数のグループの接続を遮断できるので、太陽電池モジュール6毎に遮断装置を設置する場合に比べて、複数の遮断装置4の設置コストの低減を図ることができる。また、ストリング2単位で太陽電池モジュール6とインバータ3とを遮断する場合に比べて、より安全性の高い太陽光発電システムを提供することができる。さらに、グループ6Bでの発電量が小さくなっても、他の太陽電池モジュールグループが発電した電力を、バイパス素子46を介してインバータ3へ伝搬させることができる。なお、遮断装置4b及び遮断装置4cによって遮断装置4aと同様の作用効果を得ることができる。
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
複数の太陽電池モジュールグループのグループ数や、それぞれのグループが含む太陽電池モジュールの数は、前記実施形態に限定されるものではない。ストリング2は、グループ毎の開放電圧が165V以下になるように複数の太陽電池モジュールグループにグループ分けされていればよい。同様に、前記実施形態では、複数の遮断装置4は、3つの遮断装置4a~4cを含んでいたが、複数の遮断装置4の数は、前記実施形態に限定されない。
図6に簡略に示すように、複数の遮断装置4は、遮断時において、ストリング2の開放電圧が165V以下に分断されるように配置されていればよい。図6では、複数の遮断装置4は、4つの遮断装置4a~4dを含む。また、グループ6A,6C,6E,6Gのそれぞれは、互いに直列に接続された3つの太陽電池モジュール6を含み、グループ6B,6D,6F,6Hのそれぞれは、1つの太陽電池モジュール6を含む。したがって、グループ6A,6C,6E,6Gの開放電圧は、150Vであり、グループ6B,6D,6F,6Hの開放電圧は、50Vである。或いは、複数のモジュールグループのうち、少なくとも1つのグループが2つの太陽電池モジュール6を含んでもよい。
図7に簡略して示すように、複数の遮断装置4は、複数の太陽電池モジュールグループのそれぞれに配置されてもよい。この場合、複数の太陽電池モジュールグループのそれぞれは、複数の太陽電池モジュール6を含むことが好ましい。
前記実施形態では、遮断装置4aのリレー44が第1開閉部44aと第2開閉部44bの2つの接点を備えていたが、図8に簡略に示すように、リレー44は、単一の接点を備える2つのリレーで構成してもよい。すなわち、遮断装置4aは、第1開閉部44aと第2開閉部44bとを独立して開閉制御可能な構成であってもよい。同様に、遮断装置4bは、第1開閉部54aと第2開閉部54bとを独立して制御可能な構成であってもよい。同様に、遮断装置4cは、第1開閉部64aと第2開閉部64bとを独立して制御可能な構成であってもよい。
前記実施形態では、電力線通信によって複数の遮断装置4に制御信号を出力していたが、Wifi(登録商標)等の無線通信によって複数の遮断装置4に制御信号を出力してもよい。或いは、インバータ3と複数の遮断装置4は、無線通信によって相互通信可能な構成であってもよい。
緊急安全遮断モード及び通常遮断モードの一部(図5の「発電なし」のとき)以外のモードにおいてインバータ3からの制御信号が停止され、緊急安全遮断モード及び通常遮断モードの一部の時に、インバータ3からの制御信号が出力されてもよい。この場合、複数の遮断装置4は、インバータ3からの制御信号の受信時にリレーの第1開閉部及び第2開閉部を開状態とし、制御信号が受信されないときにリレーの第1開閉部及び第2開閉部を閉状態としてもよい。
1 太陽光発電システム
2 ストリング
3 インバータ
4 複数の遮断装置
4a 遮断装置(第1遮断装置の一例)
4b 遮断装置(第2遮断装置の一例)
6 太陽電池モジュール
44a 第1開閉部
44b 第2開閉部
45 バイパス回路
46 第1バイパス素子(バイパス素子の一例)
47 信号受信部

Claims (14)

  1. 1つ又は直列に接続された複数の太陽電池モジュールをそれぞれ含み互いに直列に接続された複数の太陽電池モジュールグループを含むストリングと、
    前記ストリングに接続され、前記ストリングから出力される直流電力を交流電力に変換するインバータと、
    前記インバータからの制御信号に応じて前記複数の太陽電池モジュールグループ同士の接続を遮断する複数の遮断装置と、
    を備え、
    前記複数の太陽電池モジュールグループのそれぞれは、開放電圧が所定の開放電圧以下であり、
    前記複数の太陽電池モジュールグループは、第1グループと、前記第1グループに接続される第2グループと、前記第2グループに接続される第3グループとを含み、
    前記複数の遮断装置は、前記第2グループの陽極側の端子に接続される第1開閉部と、前記第2グループの陰極側の端子に接続される第2開閉部とを含む第1遮断装置を含む、
    太陽光発電システム。
  2. 前記第1遮断装置は、前記第2グループに並列接続されるバイパス素子をさらに含む、
    請求項1に記載の太陽光発電システム。
  3. 前記第1遮断装置は、前記第1開閉部と前記第2開閉部とを独立して開閉制御可能である、
    請求項1に記載の太陽光発電システム。
  4. 前記第1遮断装置は、前記第2グループで発電される電力によって駆動される、
    請求項1に記載の太陽光発電システム。
  5. 前記複数の太陽電池モジュールグループの前記第1グループ、前記第2グループ及び前記第3グループの少なくとも1つは、直列に接続された前記複数の太陽電池モジュールを含む、
    請求項1に記載の太陽光発電システム。
  6. 前記第1遮断装置は、
    前記インバータからの前記制御信号を受信する信号受信部と、
    前記複数の太陽電池モジュールグループ同士の接続が遮断された状態において、前記信号受信部が前記インバータからの前記制御信号を受信するためのバイパス回路と、
    をさらに含む、
    請求項1に記載の太陽光発電システム。
  7. 前記複数の太陽電池モジュールグループは、前記第3グループに接続される第4グループと、前記第4グループに接続される第5グループとをさらに含み、
    前記複数の遮断装置は、前記第4グループの陽極側の端子に接続される第3開閉部と、前記第4グループの陰極側の端子に接続される第4開閉部とを含む第2遮断装置をさらに含む、
    請求項1に記載の太陽光発電システム。
  8. 前記第2遮断装置は、前記第4グループに並列接続されるバイパス素子をさらに含む、
    請求項7に記載の太陽光発電システム。
  9. 前記第2遮断装置は、前記第3開閉部と前記第4開閉部とを独立して開閉制御可能である、
    請求項7に記載の太陽光発電システム。
  10. 前記第2遮断装置は、前記第4グループで発電される電力によって駆動される、
    請求項7に記載の太陽光発電システム。
  11. 前記複数の太陽電池モジュールグループの前記第3グループ、前記第4グループ及び前記第5グループの少なくとも1つは、直列に接続された前記複数の太陽電池モジュールを含む、
    請求項7に記載の太陽光発電システム。
  12. 前記ストリングの前記複数の太陽電池モジュールグループのそれぞれは、前記開放電圧が165V以下である、
    請求項1から11のいずれか1項に記載の太陽光発電システム。
  13. 前記インバータは、電力線通信によって前記複数の遮断装置に前記制御信号を出力する、
    請求項1から11のいずれか1項に記載の太陽光発電システム。
  14. 前記インバータは、無線通信によって前記複数の遮断装置に前記制御信号を出力する、
    請求項1から11のいずれか1項に記載の太陽光発電システム。
JP2022076266A 2022-05-02 2022-05-02 太陽光発電システム Pending JP2023165346A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022076266A JP2023165346A (ja) 2022-05-02 2022-05-02 太陽光発電システム
US18/138,737 US20230353088A1 (en) 2022-05-02 2023-04-25 Solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022076266A JP2023165346A (ja) 2022-05-02 2022-05-02 太陽光発電システム

Publications (1)

Publication Number Publication Date
JP2023165346A true JP2023165346A (ja) 2023-11-15

Family

ID=88511732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022076266A Pending JP2023165346A (ja) 2022-05-02 2022-05-02 太陽光発電システム

Country Status (2)

Country Link
US (1) US20230353088A1 (ja)
JP (1) JP2023165346A (ja)

Also Published As

Publication number Publication date
US20230353088A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
JP5672520B2 (ja) 三相グリッドへ電力を供給するための電力発生システム及びインバータ
US11451048B2 (en) Rapid shutdown device and photovoltaic system
KR20200030819A (ko) 전원 공급 장치 및 전원 공급 시스템
JP7176611B2 (ja) 太陽光発電システム
KR102374263B1 (ko) 전원 공급 시스템
JP2023165346A (ja) 太陽光発電システム
WO2021024339A1 (ja) 太陽光発電システム
JP2024018471A (ja) 太陽光発電システム
JP2023122447A (ja) 太陽光発電システム
JP2024018469A (ja) 太陽光発電システム
JP2023122444A (ja) 太陽光発電システム
JP2024018470A (ja) 太陽光発電システム
US20220247349A1 (en) Solar power generation system
US11967927B2 (en) Solar power generation system
JP2023165347A (ja) 太陽光発電システム
US11967926B2 (en) Solar power generation system
JP2023122449A (ja) 太陽光発電システム
JP2023122446A (ja) 太陽光発電システム
KR20200030822A (ko) 전원 공급 장치 및 전원 공급 시스템
US20230268876A1 (en) Solar power generation system
US20240039469A1 (en) Solar power generation system
JP2023122450A (ja) 太陽光発電システム
US20210288519A1 (en) Power supply system
JP2023122452A (ja) 太陽光発電システム
KR20200030953A (ko) 전원 공급 시스템