WO2010029664A1 - 架橋アクリレート系繊維およびその製造方法 - Google Patents

架橋アクリレート系繊維およびその製造方法 Download PDF

Info

Publication number
WO2010029664A1
WO2010029664A1 PCT/JP2009/002428 JP2009002428W WO2010029664A1 WO 2010029664 A1 WO2010029664 A1 WO 2010029664A1 JP 2009002428 W JP2009002428 W JP 2009002428W WO 2010029664 A1 WO2010029664 A1 WO 2010029664A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
crosslinked acrylate
treatment
fibers
acrylonitrile
Prior art date
Application number
PCT/JP2009/002428
Other languages
English (en)
French (fr)
Inventor
孝郎 山内
孝二 田中
Original Assignee
日本エクスラン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エクスラン工業株式会社 filed Critical 日本エクスラン工業株式会社
Priority to EP09812813.5A priority Critical patent/EP2327831B1/en
Priority to CN200980123608.0A priority patent/CN102066649B/zh
Priority to JP2009531508A priority patent/JP4487083B2/ja
Publication of WO2010029664A1 publication Critical patent/WO2010029664A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with hydrogen peroxide or peroxides of metals; with persulfuric, permanganic, pernitric, percarbonic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties

Definitions

  • the present invention relates to a crosslinked acrylate fiber and a method for producing the same. More specifically, the present invention relates to a crosslinked acrylate fiber having a color that does not cause discomfort in appearance even when used in combination with other fibers for industrial materials in the industrial material field.
  • Cross-linked acrylate fibers are known to have various functions such as moisture absorption and desorption, moisture absorption exothermicity, deodorant properties, antibacterial properties, and flame retardancy, and are expected to expand into various fields. is there.
  • moisture absorption and desorption moisture absorption exothermicity
  • deodorant properties deodorant properties
  • antibacterial properties antibacterial properties
  • flame retardancy flame retardancy
  • Patent Documents 1 to 3 have been studied to improve whiteness, and crosslinked acrylate fibers having practical whiteness are obtained.
  • Patent Document 4 discloses black cross-linked acrylate-based fibers obtained using black original acrylic fibers as a raw material. Further, in Patent Documents 5 and 6, studies are made on various colors by dyeing crosslinked acrylate fibers. However, with respect to dyeing, further examination is necessary to make it practically sufficient in terms of hue stability, dyeing spots, dyeing fastness, and the like.
  • the restrictions on the color of the crosslinked acrylate fiber cannot be ignored in the industrial material field.
  • various types of industrial material fibers are often mixed and commercialized, and the color of such industrial material fibers is often similar to a gold color.
  • the appearance of the product is uncomfortable.
  • White is less uncomfortable than pink or black, but is costly and difficult to adopt because it takes many steps to improve whiteness.
  • the conventional cross-linked acrylate fiber is in a situation where it is difficult to develop in the industrial material field, despite having various functions as described above.
  • the cross-linked acrylate fiber has flame retardancy.
  • the carboxyl group in the fiber is a magnesium salt type
  • the cross-linked acrylate fiber is extremely high that is not found in general organic fiber. It is known to have flame retardancy (Patent Document 7).
  • the magnesium salt type crosslinked acrylate fiber has a feature of slow moisture absorption / release, that is, a low moisture absorption / release rate (Patent Document 8). For this reason, continuous heat generation by moisture absorption is possible, which is particularly useful in the clothing field.
  • magnesium salt-type crosslinked acrylate fibers cannot achieve both high flame retardancy and high moisture absorption / release rate, and cannot be developed for applications requiring such characteristics.
  • An object of the present invention is a cross-linked acrylate which has an unfavorable appearance in color even in combination with other industrial material fibers in the industrial material field, which has not been provided in the prior art, and is advantageous in terms of cost. It is to provide a system fiber. Another object of the present invention is to provide a cross-linked acrylate fiber having both high flame retardancy and high moisture absorption / release rate.
  • a crosslinking introduction treatment with a hydrazine compound for the acrylonitrile fiber, (a) a crosslinking introduction treatment with a hydrazine compound, (b) a peroxide treatment, (c) a hydrolysis treatment with an alkaline metal compound, (a), ( The crosslinked acrylate fiber according to [1], wherein the crosslinked acrylate fiber is obtained in the order of b), (c), or (a) and then (b) and (c).
  • the crosslinked acrylate fiber is characterized in that at least some of the carboxyl groups have magnesium ions as counter ions, have a limiting oxygen index of 30 to 50, and a saturated moisture absorption of 20 to 60% by weight.
  • the cross-linked acrylate fiber of the present invention has a color similar to a gold color, there is no sense of incongruity even when mixed with a fiber for industrial materials, and the number of manufacturing steps is small, so the cost can be suppressed. It can be suitably used in the field. Further, in the crosslinked acrylate fiber of the present invention, even when the magnesium salt type is adopted, it is possible to express a high moisture absorption / release rate, and the high flame retardance that could not be realized by the conventional crosslinked acrylate fiber. Since it is possible to achieve both high performance and a high moisture absorption / release rate, it becomes possible to develop applications where such characteristics are required.
  • FIG. 1 shows the moisture absorption curves of the crosslinked acrylate fibers of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the present invention is described in detail below.
  • the cross-linked acrylate fiber of the present invention has a color similar to a gold color not found in conventional cross-linked acrylate fibers, and does not cause a sense of incongruity even when mixed with fibers for industrial materials.
  • such colors are represented by JIS-Z-8729 with L * of 60 to 75, a * of 5.0 to 14.5, and b * of 23.0 to 30.0.
  • the color is preferably a color having L * of 65 to 75, a * of 7.0 to 13.0, and b * of 23.5 to 27.0.
  • the crosslinked acrylate fiber of the present invention is obtained by subjecting the acrylonitrile fiber to (a) a crosslinking introduction treatment with a hydrazine compound, (b) a treatment with a peroxide, and (c) a hydrolysis treatment with an alkaline metal compound. Can be obtained in the order of (a), (b), (c), or (b) and (c) after applying (a).
  • the acrylonitrile fiber employed in the present invention is produced from an acrylonitrile polymer according to a known method, and the composition of the polymer is preferably 40% by weight or more, more preferably Is 50% by weight or more, more preferably 80% by weight or more.
  • a crosslinked structure is introduced into the fiber by reacting the nitrile group of the acrylonitrile copolymer that forms the acrylonitrile fiber with the hydrazine compound.
  • the cross-linked structure greatly affects the fiber properties. If the copolymerization composition of acrylonitrile is too small, the cross-linked structure must be reduced, and the fiber properties may be insufficient. It becomes easy to obtain a favorable result by making a polymerization composition into the said range.
  • copolymer components other than acrylonitrile in the acrylonitrile-based polymer include sulfonic acid group-containing monomers such as methallylsulfonic acid and p-styrenesulfonic acid, and salts thereof, and carboxylic acid groups such as (meth) acrylic acid and itaconic acid.
  • examples thereof include monomers such as a monomer and a salt thereof, styrene, vinyl acetate, (meth) acrylic acid ester, (meth) acrylamide and the like, and are not particularly limited as long as the monomer is copolymerizable with acrylonitrile.
  • the form of the acrylonitrile fiber employed in the present invention may be any form such as short fiber, tow, yarn, knitted fabric, non-woven fabric, etc., and may be employed as an intermediate product in the manufacturing process, waste fiber, or the like.
  • the treatment (a) by treating the acrylonitrile fiber with a solution containing a hydrazine compound, the nitrile group of the acrylonitrile fiber reacts with hydrazine, and a crosslinked structure is formed in the fiber.
  • the hydrazine-based compound include hydrazine hydrate, hydrazine hydrochloride, hydrazine sulfate, neutral hydrazine sulfate, and hydrazine carbonate.
  • the treatment conditions include a method of immersing the acrylonitrile fiber in an aqueous solution to which the hydrazine compound is added so that the concentration of hydrazine is 3 to 40% by weight, and treating within 50 hours at 50 to 120 ° C. Can be mentioned.
  • the fiber obtained by the treatment (a) is treated with a solution containing a peroxide.
  • the color of the finally obtained crosslinked acrylate fiber can be made a color that approximates the gold color.
  • the peroxide used for the treatment include hydrogen peroxide, ammonium persulfate, and potassium persulfate.
  • the treatment conditions include soaking the fiber in an aqueous solution having a peroxide concentration of 1 to 15% by weight, preferably 3 to 8% by weight, and treating at 50 to 120 ° C. for 0.5 to 20 hours. . Prior to this treatment, it is desirable to thoroughly wash the fibers with water and remove as much of the chemical remaining in the treatment (a) as possible.
  • Treatment (c) is a hydrolysis treatment with an alkaline metal compound.
  • the nitrile group or amide group present in the fiber is hydrolyzed to form a carboxyl group.
  • the carboxyl group is a factor that develops characteristics such as moisture absorption and desorption, moisture absorption exothermic property, and deodorant property in the crosslinked acrylate fiber.
  • the total carboxyl group amount is 1 to 12 mmol / g, preferably 3 to 10 mmol / g, more preferably 3 to 8 mmol / g of carboxyl groups are formed.
  • the amount of carboxyl groups formed can be adjusted depending on the processing conditions.
  • an amide group is produced
  • Examples of the alkaline metal compound used in the treatment (c) include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as sodium carbonate.
  • Examples of the treatment conditions include immersing the fiber in an aqueous solution of an alkaline metal compound having a concentration of 1 to 10% by weight, preferably 1 to 5% by weight, and treating at 50 to 120 ° C. for 1 to 10 hours.
  • the counter ion of the formed carboxyl group is a metal ion corresponding to the used alkaline metal compound.
  • the crosslinked acrylate fiber of the present invention can be obtained. Further, nitrates, sulfates, hydrochlorides and the like can be obtained.
  • Ion exchange treatment with metal salts acid treatment with nitric acid, sulfuric acid, hydrochloric acid, formic acid, etc., or pH adjustment treatment with alkaline metal compounds, etc., to give the carboxyl group in the fiber a desired salt-type carboxyl group or H-type carboxyl
  • properties such as moisture absorption / release properties, moisture absorption exothermic properties, deodorizing properties, antibacterial properties, and flame retardancy by converting them into groups or mixing different types of salt-type carboxyl groups.
  • the kind of metal constituting the base carboxyl group is one kind from alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and other metals such as manganese, copper, zinc and silver.
  • alkali metals such as lithium, sodium and potassium
  • alkaline earth metals such as magnesium and calcium
  • other metals such as manganese, copper, zinc and silver.
  • a plurality of types can be selected according to required characteristics.
  • salt-type carboxyl groups such as sodium, potassium, magnesium and calcium are suitable.
  • a conventional crosslinked acrylate fiber which is not subjected to peroxide treatment. Compared to the above, even if the metal type of the salt-type carboxyl group is the same and the saturated moisture absorption rate is the same, it has the feature that the moisture absorption rate can be increased relatively, and it exhibits better moisture absorption and desorption it can.
  • a magnesium salt type carboxyl group or a zinc salt type carboxyl group as the salt type carboxyl group.
  • the amount of these salt-type carboxyl groups is preferably 2 mmol / g or more as an absolute amount and 50% or more based on the total amount of carboxyl groups, and more preferably 2 mmol / g or more as an absolute amount and total amount.
  • a crosslinked acrylate fiber having a magnesium salt-type carboxyl group can be obtained by immersing the fiber after the treatment (c) in an aqueous solution containing magnesium ions such as an aqueous magnesium nitrate solution. Moreover, when it is desired to control the amount of the magnesium salt type carboxyl group more accurately, the following method can also be employed.
  • the fiber after the treatment (c) is immersed in an acid aqueous solution such as nitric acid so that all the carboxyl groups in the fiber are H-type carboxyl groups.
  • the obtained fiber is immersed in an alkaline aqueous solution containing sodium ions such as an aqueous sodium hydroxide solution to convert the H-type carboxyl group into a sodium salt-type carboxyl group.
  • the amount of carboxyl groups converted to the sodium salt type can be changed by adjusting the pH.
  • a magnesium salt-type carboxyl group by immersing in an aqueous solution containing magnesium ions such as an aqueous magnesium nitrate solution.
  • a sodium salt type carboxyl group is converted to a magnesium salt type carboxyl group, and an H type carboxyl group is hardly converted to a magnesium salt type carboxyl group. That is, it is possible to control the magnesium salt type carboxyl group amount by controlling the sodium salt type carboxyl group amount by adjusting the pH.
  • the magnesium salt-type crosslinked acrylate fiber of the present invention obtained as described above has a flame retardancy equivalent to that of a conventionally known magnesium salt-type crosslinked acrylate fiber, and has a critical oxygen index of 30 to 50, Preferably 35-50 can be expressed. Further, the fiber has a saturated moisture absorption rate of 20 to 60% by weight, preferably 30 to 60% by weight, and the moisture absorption rate is the same for 5 minutes in a 20 ° C. and 65% RH atmosphere. Compared to the conventional magnesium salt-type crosslinked acrylate fiber having a high rate, it achieves both high flame retardancy and high moisture absorption rate, both of which have not been achieved before.
  • the zinc salt type crosslinked acrylate fiber can be obtained in the same manner as the magnesium salt type crosslinked acrylate fiber described above.
  • an aqueous solution containing zinc ions such as an aqueous zinc chloride solution, an aqueous zinc nitrate solution, or an aqueous zinc sulfate solution may be used in place of the aqueous solution containing magnesium ions such as the aqueous magnesium nitrate solution described above.
  • the reason why a crosslinked acrylate fiber having a color similar to a gold color is obtained is not certain, but the pink color of the conventional crosslinked acrylate fiber is derived from a tetrazine ring structure formed by a crosslinking introduction treatment with a hydrazine compound. Therefore, it is presumed that the tetrazine ring structure was changed by the peroxide treatment in the present invention.
  • Total amount of carboxyl groups About 1 g of a sufficiently dried sample is precisely weighed (W1 [g]), 200 ml of a 1 mol / l hydrochloric acid aqueous solution is added thereto, and the mixture is allowed to stand for 30 minutes, filtered through a glass filter, added with water and washed with water. After repeating this treatment three times, the filtrate is sufficiently washed with water until the pH of the filtrate becomes 5 or more. Next, after putting this sample in 200 ml of water and adding 1 mol / l hydrochloric acid aqueous solution to pH 2, a titration curve is obtained with a 0.1 mol / l sodium hydroxide aqueous solution according to a conventional method.
  • the consumption amount (V1 [ml]) of an aqueous sodium hydroxide solution consumed by carboxyl groups is determined from the titration curve, and the total carboxyl group amount is calculated by the following formula.
  • Total carboxyl group content [mmol / g] (0.1 ⁇ V1) / W1
  • a sufficiently dried sample is precisely weighed and acid-decomposed with a mixed solution of concentrated sulfuric acid and concentrated nitric acid according to a conventional method, and then the metal contained in the form of a salt of a carboxyl group is quantified by atomic absorption spectrophotometry according to a conventional method.
  • the amount of salt-type carboxyl groups is calculated by dividing by the atomic weight of the metal.
  • LOI Litered oxygen index
  • Example 1 A spinning stock solution was prepared by dissolving acrylonitrile-based polymer of 90% acrylonitrile and 10% methyl acrylate in 48% sodium thiocyanate aqueous solution, and spinning, washing, stretching, crimping and heat treatment were carried out according to ordinary methods. 9 dtex, 70 mm raw fiber was obtained. This raw fiber was immersed in a 15% hydrazine aqueous solution at a bath ratio of 1:10 and treated under conditions of 120 ° C. and 1 hour. The obtained fiber was washed with water, immersed in a 4% ammonium persulfate aqueous solution at a bath ratio of 1:10, and peroxide-treated at 100 ° C. for 1 hour.
  • the obtained fiber is immersed in a 5% aqueous sodium hydroxide solution at a bath ratio of 1:10, hydrolyzed under conditions of 110 ° C. for 1 hour, and washed with water to obtain a sodium salt type crosslinked acrylate fiber. It was.
  • the evaluation results of the properties of the obtained fiber are shown in Table 1 and FIG.
  • Example 1 a sodium salt type crosslinked acrylate fiber was obtained in the same manner except that the peroxide treatment was not performed. The evaluation results of the properties of the obtained fiber are shown in Table 1 and FIG.
  • Example 2 The crosslinked acrylate fiber obtained in Example 1 was treated with 1 mol / l nitric acid aqueous solution to convert the carboxyl group to H type, washed with water, adjusted to pH 12 with 1 mol / l sodium hydroxide, washed with water, sodium A fiber having a salt-type carboxyl group was obtained.
  • an aqueous solution containing magnesium nitrate in an amount equivalent to 1.2 times the amount of carboxyl groups of the fiber, performing a conversion treatment to a magnesium salt type at 50 ° C. for 1 hour, and washing with water
  • a magnesium salt type crosslinked acrylate fiber was obtained.
  • the evaluation results of the properties of the obtained fiber are shown in Table 1 and FIG.
  • Example 2 a magnesium salt type crosslinked acrylate fiber was obtained in the same manner except that the crosslinked acrylate fiber obtained in Comparative Example 1 was used in place of the crosslinked acrylate fiber obtained in Example 1. The evaluation results of the properties of the obtained fiber are shown in Table 1 and FIG.
  • Example 3 sodium salt type crosslinked acrylate fiber was obtained in the same manner except that the peroxide treatment was performed with 3% hydrogen peroxide solution. Table 1 shows the evaluation results of the properties of the obtained fibers.
  • Example 4 The raw material fiber employed in Example 1 was immersed in a 15% hydrazine aqueous solution at a bath ratio of 1:10, treated at 120 ° C. for 1 hour, and washed with water. The obtained fiber was immersed in an aqueous solution containing 4% ammonium persulfate and 5% sodium hydroxide at a bath ratio of 1:10, and simultaneous treatment with peroxide treatment and hydrolysis treatment at 100 ° C. for 1 hour. And washed with water to obtain a sodium salt type crosslinked acrylate fiber. The evaluation results of the properties of the obtained fiber are shown in Table 1.
  • Example 5 A spinning stock solution in which acrylonitrile-based polymer of 88% acrylonitrile and 12% vinyl acetate was dissolved in 48% sodium thiocyanate aqueous solution was prepared, and spinning, washing, stretching, crimping and heat treatment were carried out in accordance with a conventional method, and 0.9 dtex was obtained. , 70 mm raw fiber was obtained. This raw fiber was immersed in a 15% aqueous hydrazine solution at a bath ratio of 1:10 and treated under conditions of 120 ° C. and 1.5 hours. The obtained fiber was washed with water, immersed in a 3% aqueous potassium persulfate solution at a bath ratio of 1:10, and peroxide-treated at 60 ° C.
  • the obtained fiber is immersed in a 5% aqueous sodium hydroxide solution at a bath ratio of 1:10, hydrolyzed at 110 ° C. for 1 hour, and washed with water to obtain a sodium salt type crosslinked acrylate fiber. It was. Subsequently, the fiber is treated with a 1 mol / l nitric acid aqueous solution to convert the carboxyl group to H type, washed with water, adjusted to pH 12 with 1 mol / l sodium hydroxide, washed with water, and a fiber having a sodium salt type carboxyl group. Got.
  • Example 6 The crosslinked acrylate fiber obtained in Example 1 was treated with 1 mol / l nitric acid aqueous solution to convert the carboxyl group to H type, washed with water, adjusted to pH 12 with 1 mol / l sodium hydroxide, washed with water, sodium A fiber having a salt-type carboxyl group was obtained. By immersing the fiber in an aqueous solution containing magnesium nitrate equivalent to 1.6 times the amount of carboxyl groups of the fiber, converting to a magnesium salt type at 50 ° C. for 1 hour, and washing with water A magnesium salt type crosslinked acrylate fiber was obtained. Table 1 shows the evaluation results of the properties of the obtained fibers.
  • the crosslinked acrylate fibers of Comparative Examples 1 and 2 have a pink color, but the crosslinked acrylate fibers of Examples 1 to 6 subjected to peroxide treatment have a gold color. is there.
  • the crosslinked acrylate fibers of Examples 1 and 2 have a lower amount of salt-type carboxyl groups than the crosslinked acrylate fibers of Comparative Examples 1 and 2, respectively, but 5 minutes from the start of moisture absorption. Looking at the moisture absorption rate later, in the case of the sodium salt type, it was 28% in Example 1 compared to 20% in Comparative Example 1, and in the case of the magnesium salt type, it was performed against 2% of Comparative Example 2. In Example 2, it is 6%, and the improvement in the moisture absorption rate is remarkable in the magnesium salt type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

 本発明は、従来技術では提供されていなかった、産業資材分野において、他の産業資材用繊維と併用しても外観上の違和感を惹起しない色を有し、コスト面でも有利な架橋アクリレート系繊維を提供する。アクリロニトリル系繊維に対して、(a)ヒドラジン系化合物による架橋導入処理、(b)過酸化物による処理、(c)アルカリ性金属化合物による加水分解処理の各処理を、(a)、(b)、(c)の順に施すか、または、(a)を施した後、(b)および(c)を同時に施すことにより、JIS-Z-8729に記載の表示方法において、Lが60~75、aが5.0~14.5、bが23.0~30.0である色を有する架橋アクリレート系繊維を得ることができる。架橋アクリレート系繊維中の少なくとも一部のカルボキシル基がマグネシウムイオンを対イオンとすることにより、高難燃性と高吸放湿速度の両方を達成できる。

Description

架橋アクリレート系繊維およびその製造方法
 本発明は、架橋アクリレート系繊維およびその製造方法に関する。詳しくは、本発明は、産業資材分野において、他の産業資材用繊維と併用しても、外観上の違和感を惹起しない色を有する架橋アクリレート系繊維に関するものである。
 架橋アクリレート系繊維は、吸放湿性、吸湿発熱性、消臭性、抗菌性、難燃性などさまざまな機能を有することが知られており、さまざまな分野への展開が期待されている繊維である。しかし、該繊維の色は桃色であるうえに、後加工や経時によりさらに濃い色相となるため、用途展開が制限されるという課題を有している。この課題に対して、衣料分野への展開を目的に多くの検討が行われている。
 例えば、特許文献1~3では白度を向上させる検討がなされており、実用的な白度を有する架橋アクリレート系繊維が得られている。また、特許文献4には黒原着アクリル繊維を原料として得られる黒色の架橋アクリレート系繊維が開示されている。さらに、特許文献5、6では架橋アクリレート系繊維を染色によってさまざまな色とする検討がなされている。しかし、染色については、色相の安定性、染め斑、染色堅牢度などの面から実用上十分とするにはさらなる検討が必要である。
 以上のように、従来技術においては、架橋アクリレート系繊維の色について、衣料分野への展開を目的として、さまざまな検討が行われてきたが、実用上、限られた色しか提供されていない。
 一方、架橋アクリレート系繊維の色の制約は産業資材分野においても無視できないものである。産業資材分野においては、さまざまな種類の産業資材用繊維を混用して製品化が行われることが多く、かかる産業資材用繊維の色としては、ゴールド色に近似する色のものが多い。このため、上述のような色の架橋アクリレート系繊維を併用した場合、製品の外観に違和感を生じてしまう。白については桃色や黒に比べ違和感は小さくはなるが、白度向上に多くの工程を費やすためコストが高く採用しにくい。このように、従来の架橋アクリレート系繊維は、上述のようなさまざまな機能を有しているにもかかわらず、産業資材分野に展開しにくい状況にある。
 また、上述のように架橋アクリレート系繊維は難燃性を有するが、中でも、繊維中のカルボキシル基をマグネシウム塩型とした場合、架橋アクリレート系繊維は一般の有機系繊維にはみられない極めて高い難燃性を有することが知られている(特許文献7)。さらに、かかるマグネシウム塩型架橋アクリレート系繊維は徐吸放湿性、すなわち、吸放湿速度が遅いという特徴も有している(特許文献8)。このため、吸湿による持続的な発熱が可能となり、特に衣料分野において有用である。
 しかしながら、このことは従来技術おいて、マグネシウム塩型架橋アクリレート系繊維では、高難燃性と高吸放湿速度を両立できないことを示しており、かかる特性を求められる用途には展開できない。
特開平9-158040号公報 特開2000-303353号公報 特開2002-294556号公報 特開2003-89971号公報 特開2003-278079号公報 特開2006-70421号公報 国際公開第2006/027911号パンフレット 国際公開第2006/027910号パンフレット
 本発明の目的は、従来技術では提供されていなかった、産業資材分野において、他の産業資材用繊維と併用しても外観上の違和感を惹起しない色を有し、コスト面でも有利な架橋アクリレート系繊維を提供することである。また、本発明の別の目的は、高難燃性と高吸放湿速度の両方を有する架橋アクリレート系繊維を提供することである。
 本発明の上記目的は、以下の手段により達成される。すなわち、
[1]JIS-Z-8729に記載の表示方法において、Lが60~75、aが5.0~14.5、bが23.0~30.0である色を有する架橋アクリレート系繊維。
[2]アクリロニトリル系繊維に対して、(a)ヒドラジン系化合物による架橋導入処理、(b)過酸化物による処理、(c)アルカリ性金属化合物による加水分解処理の各処理を、(a)、(b)、(c)の順に施すか、または、(a)を施した後、(b)および(c)を同時に施して得られることを特徴とする[1]に記載の架橋アクリレート系繊維。
[3]架橋アクリレート系繊維中の少なくとも一部のカルボキシル基がマグネシウムおよび/または亜鉛のイオンを対イオンとしていることを特徴とする[1]または[2]に記載の架橋アクリレート系繊維。
[4]架橋アクリレート系繊維中の少なくとも一部のカルボキシル基がマグネシウムイオンを対イオンとし、限界酸素指数が30~50であり、かつ飽和吸湿率が20~60重量%であることを特徴とする[3]に記載の架アクリレート系繊維。
[5]アクリロニトリル系繊維に対して、(a)ヒドラジン系化合物による架橋導入処理、(b)過酸化物による処理、(c)アルカリ性金属化合物による加水分解処理の各処理を、(a)、(b)、(c)の順に施すことを特徴とする架橋アクリレート系繊維の製造方法。
[6]アクリロニトリル系繊維に対して、(a)ヒドラジン系化合物による架橋導入処理、(b)過酸化物による処理、(c)アルカリ性金属化合物による加水分解処理の各処理を、(a)を施した後、(b)および(c)を同時に施すことを特徴とする架橋アクリレート系繊維の製造方法。
 本発明の架橋アクリレート系繊維はゴールド色に近似する色を有しているため、産業資材用繊維と混用しても違和感を生じず、また、製造工程数が少なくコストを抑制できるため、産業資材分野において好適に使用することができる。また、本発明の架橋アクリレート系繊維においては、マグネシウム塩型を採用した場合でも、高吸放湿速度を発現させることが可能であり、従来の架橋アクリレート系繊維では実現できていなかった高難燃性と高吸放湿速度を両立させることが可能であるため、かかる特性を求められる用途への展開が可能となる。
図1は実施例1、2および比較例1、2の架橋アクリレート系繊維の吸湿曲線を示す。
 以下に本発明を詳細に説明する。
 本発明の架橋アクリレート系繊維は、従来の架橋アクリレート系繊維にはないゴールド色に近似する色を有しており、産業資材用繊維と混用しても違和感を生じさせることがない。かかる色は、具体的には、JIS-Z-8729に記載の表示方法において、Lが60~75、aが5.0~14.5、bが23.0~30.0である色であり、Lが65~75、aが7.0~13.0、bが23.5~27.0である色であることが好ましい。
 かかる本発明の架橋アクリレート系繊維は、アクリロニトリル系繊維に対して、(a)ヒドラジン系化合物による架橋導入処理、(b)過酸化物による処理、(c)アルカリ性金属化合物による加水分解処理の各処理を、(a)、(b)、(c)の順に施すか、または、(a)を施した後、(b)および(c)を同時に施すことにより得ることができる。
 本発明に採用するアクリロニトリル系繊維は、アクリロニトリル系重合体から公知の方法に準じて製造されるものであるが、該重合体の組成としてはアクリロニトリルが40重量%以上であることが好ましく、より好ましくは50重量%以上、さらに好ましくは80重量%以上である。本発明においては、後述するようにアクリロニトリル系繊維を形成するアクリロニトリル系共重合体のニトリル基とヒドラジン系化合物を反応させることで繊維中に架橋構造を導入する。架橋構造は繊維物性に大きく影響するものであり、アクリロニトリルの共重合組成が少なすぎる場合には架橋構造が少なくならざるを得なくなり、繊維物性が不十分となる可能性があるが、アクリロニトリルの共重合組成を上記範囲とすることで良好な結果を得られやすくなる。
 アクリロニトリル系重合体におけるアクリロニトリル以外の共重合成分としては、メタリルスルホン酸、p-スチレンスルホン酸等のスルホン酸基含有単量体及びその塩、(メタ)アクリル酸、イタコン酸等のカルボン酸基含有単量体及びその塩、スチレン、酢酸ビニル、(メタ)アクリル酸エステル、(メタ)アクリルアミド等の単量体などが挙げられ、アクリロニトリルと共重合可能な単量体であれば特に限定されない。
 また、本発明に採用するアクリロニトリル系繊維の形態としては、短繊維、トウ、糸、編織物、不織布等いずれの形態のものでもよく、また、製造工程中途品、廃繊維などでも採用できる。
 処理(a)においては、アクリロニトリル系繊維をヒドラジン系化合物を含有する溶液で処理することにより、アクリロニトリル系繊維のニトリル基とヒドラジンが反応し、繊維中に架橋構造が形成される。ヒドラジン系化合物としては、水加ヒドラジン、塩酸ヒドラジン、硫酸ヒドラジン、中性硫酸ヒドラジン、炭酸ヒドラジンなどを挙げることができる。処理条件としては、ヒドラジン濃度として3~40重量%となるように上記のヒドラジン系化合物を添加した水溶液に上述したアクリロニトリル系繊維を浸漬し、50~120℃、5時間以内で処理する方法などが挙げられる。
 処理(b)においては、処理(a)を施されて得られた繊維を過酸化物を含有する溶液で処理する。かかる処理を施すことにより、最終的に得られる架橋アクリレート系繊維の色をゴールド色に近似する色とすることができる。該処理に用いる過酸化物としては、過酸化水素、過硫酸アンモニウム、過硫酸カリウムなどを挙げることができる。処理条件としては、過酸化物濃度1~15重量%、好ましくは3~8重量%の水溶液に繊維を浸漬し、50~120℃で0.5~20時間処理するといった例を挙げることができる。なお、この処理の前には、繊維を十分に水洗し、処理(a)で残留した薬剤をできるだけ除去しておくことが望ましい。
 処理(c)はアルカリ性金属化合物による加水分解処理である。該処理により、繊維中に存在しているニトリル基やアミド基が加水分解され、カルボキシル基が形成される。カルボキシル基は架橋アクリレート系繊維において吸放湿性、吸湿発熱性、消臭性などの特性を発現させる要因であり、一般的には全カルボキシル基量として1~12mmol/g、好ましくは3~10mmol/g、さらに好ましくは3~8mmol/gのカルボキシル基を形成することが望ましい。形成されるカルボキシル基の量は、処理条件によって調整することができる。なお、アミド基は処理(a)の際に一部のニトリル基から生成される。
 処理(c)に用いるアルカリ性金属化合物としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物や炭酸ナトリウムなどのアルカリ金属炭酸塩を挙げることができる。処理条件としては、アルカリ性金属化合物の濃度1~10重量%、好ましくは1~5重量%の水溶液に繊維を浸漬し、50~120℃で1~10時間処理するといった例を挙げることができる。なお、形成されるカルボキシル基の対イオンは、使用したアルカリ性金属化合物に対応した金属イオンとなる。
 上述した処理(b)と(c)は同時に施すことも可能である。この場合、上述した過酸化物およびアルカリ性金属化合物の両方を含む溶液に処理(a)を施されて得られた繊維を浸漬して処理すればよい。
 以上のように、アクリロニトリル系繊維に対して、処理(a)~(c)を施すことにより、本発明の架橋アクリレート系繊維を得ることができるが、さらに、硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、硝酸、硫酸、塩酸、蟻酸などによる酸処理、あるいは、アルカリ性金属化合物などによるpH調整処理などを施すことにより繊維中のカルボキシル基を所望の塩型カルボキシル基あるいはH型カルボキシル基に変換したり、異種の塩型カルボキシル基を混在させたりして、吸放湿性、吸湿発熱性、消臭性、抗菌性、難燃性など特性を調整することも可能である。
 ここで、塩基カルボキシル基を構成する金属種類としては、リチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属、マンガン、銅、亜鉛、銀などのその他の金属などから1種あるいは複数種を必要な特性に応じて選択することができる。
 例えば、吸放湿性に関しては、ナトリウム、カリウム、マグネシウム、カルシウムなどの塩型カルボキシル基が適しているが、本発明の架橋アクリレート系繊維においては、過酸化物処理を施さない従来の架橋アクリレート系繊維と比較すると、両者で塩型カルボキシル基の金属種類が同じで飽和吸湿率も同等である場合でも、相対的に吸湿速度を高くできるという特徴を有しており、より優れた吸放湿性を発現できる。
 また、産業資材分野で重視される難燃性を高めるには、塩型カルボキシル基としてマグネシウム塩型カルボキシル基あるいは亜鉛塩型カルボキシル基を選択することが望ましい。そして、これらの塩型カルボキシル基の量としては、好ましくは、絶対量として2mmol/g以上かつ全カルボキシル基量に対して50%以上であり、より好ましくは、絶対量として2mmol/g以上かつ全カルボキシル基量に対して60%以上、あるいは、絶対量として3mmol/g以上かつ全カルボキシル基量に対して50%以上であり、最も好ましくは、絶対量として3mmol/g以上かつ全カルボキシル基量に対して60%以上である。かかる塩型カルボキシル基とする方法について、マグネシウム塩型カルボキシル基を例に挙げて以下に説明する。
 マグネシウム塩型カルボキシル基を有する架橋アクリレート系繊維とするには、処理(c)後の繊維を硝酸マグネシウム水溶液などのマグネシウムイオンを含有する水溶液に浸漬することで得ることができる。また、マグネシウム塩型カルボキシル基量をより正確に制御したい場合には、以下に示す方法を採用することもできる。
 まず、処理(c)後の繊維を、硝酸などの酸水溶液に浸漬して繊維中のカルボキシル基を全てH型カルボキシル基とする。次いで得られた繊維を水酸化ナトリウム水溶液などのナトリウムイオンを含有するアルカリ性水溶液に浸漬して、H型カルボキシル基をナトリウム塩型カルボキシル基とする。このとき、pHを調整することでナトリウム塩型に変換されるカルボキシル基量を変化させることができる。
 続いて、硝酸マグネシウム水溶液などのマグネシウムイオンを含有する水溶液に浸漬することにより、マグネシウム塩型カルボキシル基に変換することができる。ここで、マグネシウム塩型カルボキシル基に変換されるのはナトリウム塩型カルボキシル基であって、H型カルボキシル基はマグネシウム塩型カルボキシル基にほとんど変換されない。すなわち、pH調整によってナトリウム塩型カルボキシル基量を制御することを通じて、マグネシウム塩型カルボキシル基量を制御することが可能である。また、ナトリウム塩型カルボキシル基のマグネシウム塩型カルボキシル基への変換は可逆反応であるため、マグネシウムイオンを含有する水溶液中のマグネシウムイオンの量により化学平衡を移動させ、マグネシウム塩型カルボキシル基量を制御することも可能である。
 上述のようにして得られる本発明のマグネシウム塩型架橋アクリレート系繊維は、従来知られているマグネシウム塩型架橋アクリレート系繊維と同等の難燃性を有しており、限界酸素指数30~50、好ましくは35~50を発現することができる。さらに、該繊維は20~60重量%、好ましくは30~60重量%の飽和吸湿率を有し、吸湿速度については、20℃65%RH雰囲気下での5分間吸湿率が同程度の飽和吸湿率を有する従来のマグネシウム塩型架橋アクリレート系繊維に比べて2倍以上高くなり、従来になかった高難燃性と高吸湿速度の両立を実現するものである。
 また、亜鉛塩型架橋アクリレート系繊維ついても、上述したマグネシウム塩型架橋アクリレート系繊維と同様の方法で得ることができる。この場合、上述の硝酸マグネシウム水溶液などのマグネシウムイオンを含有する水溶液に代えて、塩化亜鉛水溶液、硝酸亜鉛水溶液、硫酸亜鉛水溶液などの亜鉛イオンを含有する水溶液を用いればよい。
 本発明において、ゴールド色に近似する色の架橋アクリレート系繊維が得られる理由は定かではないが、従来の架橋アクリレート系繊維の桃色がヒドラジン系化合物による架橋導入処理よって形成されるテトラジン環構造に由来するものと考えられていることから、本発明における過酸化物処理により、テトラジン環構造が変化したことによるものと推察される。
 以下実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の部及び百分率は、断りのない限り重量基準で示す。まず、各特性の評価方法および評価結果の表記方法について説明する。
[全カルボキシル基量]
 十分乾燥した試料約1gを精秤し(W1[g])、これに200mlの1mol/l塩酸水溶液を加え30分間放置したのちガラスフィルターで濾過し水を加えて水洗する。この処理を3回繰り返したのち、濾液のpHが5以上になるまで十分に水洗する。次にこの試料を200mlの水に入れ1mol/l塩酸水溶液を添加してpH2にした後、0.1mol/l水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。該滴定曲線からカルボキシル基に消費された水酸化ナトリウム水溶液消費量(V1[ml])を求め、次式によって全カルボキシル基量を算出する。
 全カルボキシル基量[mmol/g]=(0.1×V1)/W1
[塩型カルボキシル基量]
 十分乾燥した試料を精秤し、常法に従って濃硫酸と濃硝酸の混合溶液で酸分解したのち、カルボキシル基の塩の形で含有される金属を常法に従って原子吸光光度法により定量し、該金属の原子量で除することにより塩型カルボキシル基量を算出する。
[飽和吸湿率]
 試料約5.0gを熱風乾燥器で105℃、16時間乾燥して重量を測定する(W2[g])。次に該試料を温度20℃、65%RHに調節した恒温恒湿器に24時間入れる。このようにして吸湿した試料の重量を測定する(W3[g])。以上の測定結果から、次式によって算出する。
 飽和吸湿率[%]={(W3-W2)/W2}×100
[吸湿曲線]
 試料約2.5gを熱風乾燥機で105℃、16時間乾燥して重量を測定する(W4[g])。続いて試料を円筒状メッシュカゴ(直径7.5cm、高さ9.8cm)に素早くふんわりとした状態となるように押し付けずに入れ、カゴごとすぐに20℃×65%RHに調節した恒温恒湿器に入れる。恒温恒湿器に入れた時点を吸湿開始時点として、5分、10分、20分および30分経過した時の吸湿した試料の重量を測定する(W5[g])。以上の測定結果から、次式によって各測定時点での吸湿率を算出し、吸湿曲線を求める。
 吸湿率[%]={(W5-W4)/W4}×100
[限界酸素指数(LOI)]
 試料繊維を用いて目付180g/mの不織布を作成し、該不織布に対してJIS-K-7201-2測定法に準拠してLOIを測定した。この数値が大きいほど難燃性が高いことを意味する。
[繊維の色]
 解繊した試料をミノルタ株式会社製測色計CR300(D65光源)を用いて3回測色し、JIS-Z-8729に記載の表示方法によるL、a、bのそれぞれの平均値を求める。
[実施例1]
 アクリロニトリル90%及びアクリル酸メチル10%のアクリロニトリル系重合体を48%のチオシアン酸ナトリウム水溶液で溶解した紡糸原液を作成し、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、0.9dtex、70mmの原料繊維を得た。この原料繊維を15%水加ヒドラジン水溶液に浴比1:10として浸漬し、120℃、1時間の条件で処理した。得られた繊維を水洗した後、4%過硫酸アンモニウム水溶液に浴比1:10として浸漬し、100℃、1時間の条件で過酸化物処理した。次いで、得られた繊維を、5%水酸化ナトリウム水溶液に浴比1:10として浸漬し、110℃、1時間の条件で加水分解し、水洗を行うことでナトリウム塩型架橋アクリレート系繊維を得た。得られた繊維の特性の評価結果を表1および図1に示す。
[比較例1]
 実施例1において、過酸化物処理を行わないこと以外は同様にして、ナトリウム塩型架橋アクリレート系繊維を得た。得られた繊維の特性の評価結果を表1および図1に示す。
[実施例2]
 実施例1で得られた架橋アクリレート系繊維を1mol/l硝酸水溶液で処理して、カルボキシル基をH型に変換し、水洗後、1mol/l水酸化ナトリウムでpH12に調整後、水洗し、ナトリウム塩型カルボキシル基を有する繊維を得た。該繊維を該繊維のカルボキシル基量の1.2倍等量の硝酸マグネシウムを含有する水溶液に浸漬し、50℃、1時間の条件でマグネシウム塩型への変換処理を行い、水洗を行うことでマグネシウム塩型架橋アクリレート系繊維を得た。得られた繊維の特性の評価結果を表1および図1に示す。
[比較例2]
 実施例2において、実施例1で得られた架橋アクリレート系繊維に代えて比較例1で得られた架橋アクリレート系繊維を用いること以外は同様にしてマグネシウム塩型架橋アクリレート系繊維を得た。得られた繊維の特性の評価結果を表1および図1に示す。
[実施例3]
 実施例1において、過酸化物処理を3%過酸化水素水で行うこと以外は同様にして、ナトリウム塩型架橋アクリレート系繊維を得た。得られた繊維の特性の評価結果を表1に示す。
[実施例4]
 実施例1で採用した原料繊維を15%水加ヒドラジン水溶液に浴比1:10として浸漬し、120℃、1時間の条件で処理し、水洗した。得られた繊維を4%の過硫酸アンモニウムと5%の水酸化ナトリウムを含有する水溶液に浴比1:10として浸漬し、100℃、1時間の条件で過酸化物処理・加水分解処理の同時処理を施し、水洗を行うことでナトリウム塩型架橋アクリレート系繊維を得た。得られた繊維の特性の評価結果を表1に示す。
[実施例5]
 アクリロニトリル88%及び酢酸ビニル12%のアクリロニトリル系重合体を48%のチオシアン酸ナトリウム水溶液で溶解した紡糸原液を作成し、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、0.9dtex、70mmの原料繊維を得た。この原料繊維を15%水加ヒドラジン水溶液に浴比1:10として浸漬し、120℃、1.5時間の条件で処理した。得られた繊維を水洗した後、3%過硫酸カリウム水溶液に浴比1:10として浸漬し、60℃、30分の条件で過酸化物処理した。次いで、得られた繊維を、5%水酸化ナトリウム水溶液に浴比1:10として浸漬し、110℃、1時間の条件で加水分解し、水洗を行うことでナトリウム塩型架橋アクリレート系繊維を得た。続いて該繊維を1mol/l硝酸水溶液で処理して、カルボキシル基をH型に変換し、水洗後、1mol/l水酸化ナトリウムでpH12に調整後、水洗し、ナトリウム塩型カルボキシル基を有する繊維を得た。該繊維を該繊維のカルボキシル基量の1.3倍等量の硫酸亜鉛を含有する水溶液に浸漬し、50℃、1時間の条件で亜鉛塩型への変換処理を行い、水洗を行うことで亜鉛塩型架橋アクリレート系繊維を得た。得られた繊維の特性の評価結果を表1に示す。
[実施例6]
 実施例1で得られた架橋アクリレート系繊維を1mol/l硝酸水溶液で処理して、カルボキシル基をH型に変換し、水洗後、1mol/l水酸化ナトリウムでpH12に調整後、水洗し、ナトリウム塩型カルボキシル基を有する繊維を得た。該繊維を該繊維のカルボキシル基量の1.6倍等量の硝酸マグネシウムを含有する水溶液に浸漬し、50℃、1時間の条件でマグネシウム塩型への変換処理を行い、水洗を行うことでマグネシウム塩型架橋アクリレート系繊維を得た。得られた繊維の特性の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、比較例1および2の架橋アクリレート系繊維は桃色を有するものであるが、過酸化物処理を行った実施例1~6の架橋アクリレート系繊維はゴールド色を有するものである。また、図1からわかるように、実施例1および2の架橋アクリレート系繊維はそれぞれ比較例1および2の架橋アクリレート系繊維に比べて塩型カルボキシル基量が低いにもかかわらず、吸湿開始5分後の吸湿率で見ると、ナトリウム塩型の場合、比較例1の20%に対して、実施例1では28%であり、マグネシウム塩型の場合、比較例2の2%に対して、実施例2では6%となっており、マグネシウム塩型において、吸湿速度の向上が顕著である。

Claims (6)

  1.  JIS-Z-8729に記載の表示方法において、Lが60~75、aが5.0~14.5、bが23.0~30.0である色を有する架橋アクリレート系繊維。
  2.  アクリロニトリル系繊維に対して、(a)ヒドラジン系化合物による架橋導入処理、(b)過酸化物による処理、(c)アルカリ性金属化合物による加水分解処理の各処理を、(a)、(b)、(c)の順に施すか、または、(a)を施した後、(b)および(c)を同時に施して得られることを特徴とする請求項1に記載の架橋アクリレート系繊維。
  3.  架橋アクリレート系繊維中の少なくとも一部のカルボキシル基がマグネシウムおよび/または亜鉛のイオンを対イオンとしていることを特徴とする請求項1または2に記載の架橋アクリレート系繊維。
  4.  架橋アクリレート系繊維中の少なくとも一部のカルボキシル基がマグネシウムイオンを対イオンとし、限界酸素指数が30~50であり、かつ飽和吸湿率が20~60重量%であることを特徴とする請求項3に記載の架橋アクリレート系繊維。
  5.  アクリロニトリル系繊維に対して、(a)ヒドラジン系化合物による架橋導入処理、(b)過酸化物による処理、(c)アルカリ性金属化合物による加水分解処理の各処理を、(a)、(b)、(c)の順に施すことを特徴とする架橋アクリレート系繊維の製造方法。
  6.  アクリロニトリル系繊維に対して、(a)ヒドラジン系化合物による架橋導入処理、(b)過酸化物による処理、(c)アルカリ性金属化合物による加水分解処理の各処理を、(a)を施した後、(b)および(c)を同時に施すことを特徴とする架橋アクリレート系繊維の製造方法。
PCT/JP2009/002428 2008-09-10 2009-06-01 架橋アクリレート系繊維およびその製造方法 WO2010029664A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09812813.5A EP2327831B1 (en) 2008-09-10 2009-06-01 A cross-linked acrylate fiber and a method for manufacturing it
CN200980123608.0A CN102066649B (zh) 2008-09-10 2009-06-01 交联丙烯酸系纤维和其制造方法
JP2009531508A JP4487083B2 (ja) 2008-09-10 2009-06-01 架橋アクリレート系繊維およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-231582 2008-09-10
JP2008231582 2008-09-10

Publications (1)

Publication Number Publication Date
WO2010029664A1 true WO2010029664A1 (ja) 2010-03-18

Family

ID=42004930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002428 WO2010029664A1 (ja) 2008-09-10 2009-06-01 架橋アクリレート系繊維およびその製造方法

Country Status (5)

Country Link
EP (1) EP2327831B1 (ja)
JP (2) JP4487083B2 (ja)
KR (1) KR101593726B1 (ja)
CN (1) CN102066649B (ja)
WO (1) WO2010029664A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718890B (zh) * 2010-10-06 2021-02-11 美商再生元醫藥公司 含有抗-介白素-4受體(il-4r)抗體之安定化配製物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056358B2 (ja) * 2007-11-02 2012-10-24 日本エクスラン工業株式会社 可染性架橋アクリレート系繊維およびその製造方法ならびに該繊維を染色して得られる染色された架橋アクリレート系繊維
JP6228511B2 (ja) * 2014-05-29 2017-11-08 日本エクスラン工業株式会社 分散性の良好な架橋アクリレート系繊維
KR102334183B1 (ko) * 2016-09-26 2021-12-03 도요보 가부시키가이샤 흡습 발열성 섬유
TWI771378B (zh) * 2017-03-23 2022-07-21 日商日本Exlan工業股份有限公司 吸溼性粒狀綿及含有該粒狀綿之中綿
JP7441429B2 (ja) 2019-06-20 2024-03-01 日本エクスラン工業株式会社 イオン交換繊維および該繊維を含有するイオン交換フィルター

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158040A (ja) 1995-11-29 1997-06-17 Toyobo Co Ltd 改善された高吸放湿性繊維及びその製造方法
JP2000303353A (ja) 1999-04-16 2000-10-31 Japan Exlan Co Ltd 高白度吸湿性繊維及び該繊維の製造方法
JP2002294556A (ja) 2001-01-26 2002-10-09 Japan Exlan Co Ltd 高白度吸湿性合成繊維及び該繊維の製造方法
JP2003089971A (ja) 2001-09-18 2003-03-28 Japan Exlan Co Ltd 黒色高吸放湿性繊維
JP2003278079A (ja) 2002-03-22 2003-10-02 Japan Exlan Co Ltd 反応染料可染性架橋アクリレート系繊維及び繊維構造体並びにそれらの製造方法
WO2006027910A1 (ja) 2004-09-07 2006-03-16 Japan Exlan Company Limited 徐吸放湿性架橋アクリル系繊維
JP2006070421A (ja) 2004-08-03 2006-03-16 Japan Exlan Co Ltd 架橋アクリレート系繊維の染色方法および該染色方法で染色された架橋アクリレート系繊維を含む繊維製品
WO2006027911A1 (ja) 2004-09-07 2006-03-16 Japan Exlan Company Limited 高度難燃吸湿性繊維および繊維構造物
WO2009057235A1 (ja) * 2007-11-02 2009-05-07 Japan Exlan Company Limited 可染性架橋アクリレート系繊維およびその製造方法ならびに該繊維を染色して得られる染色された架橋アクリレート系繊維

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126996A (ja) * 1974-03-29 1975-10-06
JPH02210062A (ja) * 1989-01-24 1990-08-21 Toray Ind Inc 高吸水性高強度アクリル繊維およびその製造法
JP3196577B2 (ja) * 1995-06-05 2001-08-06 日本エクスラン工業株式会社 pH緩衝性吸湿性アクリル系繊維及びその製造方法
JP2000136432A (ja) * 1998-10-28 2000-05-16 Japan Exlan Co Ltd 染色性に優れた耐熱複合アクリル繊維
JP2998958B1 (ja) * 1999-03-18 2000-01-17 東邦レーヨン株式会社 架橋アクリル系吸湿繊維及びその製造方法
US7537823B2 (en) * 2001-01-26 2009-05-26 Japan Exlan Company Limited High-whiteness hygroscopic fiber
CN1247849C (zh) * 2001-07-25 2006-03-29 日本爱克兰工业株式会社 非常白且高吸湿性和脱湿性的纤维结构及生产该纤维结构的方法
JP4032295B2 (ja) * 2002-07-16 2008-01-16 東洋紡績株式会社 ユニフォーム
JP2004149989A (ja) * 2002-11-01 2004-05-27 Teijin Ltd アクリル系繊維の処理方法
JP4338574B2 (ja) * 2004-04-13 2009-10-07 東邦テナックス株式会社 着色吸放湿発熱繊維及び同混紡糸の製造方法
CN100494556C (zh) * 2004-08-03 2009-06-03 日本爱克兰工业株式会社 交联丙烯酸酯类纤维的染色方法以及含有用该染色方法染色的交联丙烯酸酯类纤维的纤维制品
KR101317504B1 (ko) * 2006-04-28 2013-10-15 니혼 엑스란 고교 (주) 복합섬유의 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158040A (ja) 1995-11-29 1997-06-17 Toyobo Co Ltd 改善された高吸放湿性繊維及びその製造方法
JP2000303353A (ja) 1999-04-16 2000-10-31 Japan Exlan Co Ltd 高白度吸湿性繊維及び該繊維の製造方法
JP2002294556A (ja) 2001-01-26 2002-10-09 Japan Exlan Co Ltd 高白度吸湿性合成繊維及び該繊維の製造方法
JP2003089971A (ja) 2001-09-18 2003-03-28 Japan Exlan Co Ltd 黒色高吸放湿性繊維
JP2003278079A (ja) 2002-03-22 2003-10-02 Japan Exlan Co Ltd 反応染料可染性架橋アクリレート系繊維及び繊維構造体並びにそれらの製造方法
JP2006070421A (ja) 2004-08-03 2006-03-16 Japan Exlan Co Ltd 架橋アクリレート系繊維の染色方法および該染色方法で染色された架橋アクリレート系繊維を含む繊維製品
WO2006027910A1 (ja) 2004-09-07 2006-03-16 Japan Exlan Company Limited 徐吸放湿性架橋アクリル系繊維
WO2006027911A1 (ja) 2004-09-07 2006-03-16 Japan Exlan Company Limited 高度難燃吸湿性繊維および繊維構造物
WO2009057235A1 (ja) * 2007-11-02 2009-05-07 Japan Exlan Company Limited 可染性架橋アクリレート系繊維およびその製造方法ならびに該繊維を染色して得られる染色された架橋アクリレート系繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2327831A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718890B (zh) * 2010-10-06 2021-02-11 美商再生元醫藥公司 含有抗-介白素-4受體(il-4r)抗體之安定化配製物

Also Published As

Publication number Publication date
EP2327831A4 (en) 2012-09-05
JP4487083B2 (ja) 2010-06-23
CN102066649B (zh) 2013-05-15
KR20110053254A (ko) 2011-05-19
EP2327831A1 (en) 2011-06-01
JPWO2010029664A1 (ja) 2012-02-02
CN102066649A (zh) 2011-05-18
JP5029975B2 (ja) 2012-09-19
KR101593726B1 (ko) 2016-02-18
EP2327831B1 (en) 2014-01-22
JP2010095843A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
JP5029975B2 (ja) 架橋アクリレート系繊維
JPH05132858A (ja) 高吸放湿性繊維及びその製造方法
JP5056358B2 (ja) 可染性架橋アクリレート系繊維およびその製造方法ならびに該繊維を染色して得られる染色された架橋アクリレート系繊維
CN109689951B (zh) 改性丙烯腈系纤维、该纤维的制造方法和含有该纤维的纤维结构体
JP2998958B1 (ja) 架橋アクリル系吸湿繊維及びその製造方法
JP2006070421A (ja) 架橋アクリレート系繊維の染色方法および該染色方法で染色された架橋アクリレート系繊維を含む繊維製品
JP3334865B2 (ja) 高白度吸湿性繊維及び該繊維の製造方法
JP2010216051A (ja) 高白度耐変色性架橋アクリレート系繊維
JPH04185764A (ja) 消臭性繊維及びその製造方法
JP3196577B2 (ja) pH緩衝性吸湿性アクリル系繊維及びその製造方法
JP5141914B2 (ja) 高白度耐変色性架橋アクリレート系繊維およびその製造方法
WO2002059415A1 (fr) Fibre hygroscopique a blancheur elevee et procede de fabrication correspondant
JP5169241B2 (ja) 吸湿性複合繊維
JPH0284528A (ja) 難燃性繊維の製造法
JP7177982B2 (ja) 吸湿性アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JP3698204B2 (ja) 高白度吸湿性合成繊維及び該繊維の製造方法
JP7187911B2 (ja) 吸湿性アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JP7177987B2 (ja) 易脱捲縮性吸湿アクリロニトリル系繊維、該繊維の製造方法および該繊維を含有する繊維構造体
JP4058678B2 (ja) 資材
JP4032295B2 (ja) ユニフォーム
WO2021100322A1 (ja) 物質除去性複合体、ならびに該複合体を含有する繊維構造物、樹脂成型物およびフィルター
WO2014064662A2 (en) Composition and process for weigthing silk
JP4058677B2 (ja) 繊維構造体
JPH11302489A (ja) アクリル樹脂改質剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123608.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009531508

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117007384

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009812813

Country of ref document: EP