WO2010027013A1 - プラズマ温度制御装置及びプラズマ温度制御方法 - Google Patents
プラズマ温度制御装置及びプラズマ温度制御方法 Download PDFInfo
- Publication number
- WO2010027013A1 WO2010027013A1 PCT/JP2009/065394 JP2009065394W WO2010027013A1 WO 2010027013 A1 WO2010027013 A1 WO 2010027013A1 JP 2009065394 W JP2009065394 W JP 2009065394W WO 2010027013 A1 WO2010027013 A1 WO 2010027013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma
- temperature
- gas
- temperature control
- plasma gas
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001816 cooling Methods 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000009529 body temperature measurement Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 description 139
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000001307 helium Substances 0.000 description 7
- 229910052734 helium Inorganic materials 0.000 description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- -1 dry air Chemical compound 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/0006—Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2240/00—Testing
- H05H2240/10—Testing at atmospheric pressure
Definitions
- the present invention relates to a plasma temperature control apparatus and a plasma temperature control method for controlling plasma temperature.
- the temperature of plasma is almost determined by the type of gas that generates plasma, the flow rate of gas, the amount of energy to be applied, the method of generating plasma, the atmosphere in the plasma generation chamber, and the like.
- the reaction rate and the treatment result are controlled by controlling the temperature of a treatment object (for example, a substrate in the case of a semiconductor treatment).
- a treatment object for example, a substrate in the case of a semiconductor treatment.
- the method of controlling the temperature of the processing object is adopted, there is a disadvantage that the object that can be processed is limited.
- the energy supplied to the plasma gas is reduced by increasing the flow rate of the gas introduced into the plasma relative to the energy supplied to the plasma generation chamber.
- the temperature of the plasma is reduced to some extent by lowering the temperature or reducing the amount of energy input to the plasma.
- a significant temperature drop could not be obtained.
- a pulse power supply is used to generate plasma, and power is supplied to the plasma intermittently, reducing the total amount of energy applied to the plasma (minimizing 0.2W to 3W) and lowering the plasma temperature. Is measuring. There is also an attempt to cool the discharge electrode, which is also intended to suppress the “temperature rise” of the electrode and plasma (see Non-Patent Document 1).
- Non-Patent Document 2 pages 235, 236, and 245.
- the temperature of the plasma can be controlled only by controlling the power applied to the plasma and the gas flow rate.
- the present invention can generate plasma below room temperature, particularly below zero, and more accurately control the plasma temperature in a wide temperature range from low temperature to high temperature. It is an object of the present invention to provide a possible plasma temperature control device and a plasma temperature control method.
- a plasma temperature control device is a plasma generator that converts plasma gas into plasma, and plasma that controls the temperature of the plasma gas supplied to the plasma generator. And a gas temperature control unit for controlling the temperature of the plasma gas generated by controlling the temperature of the plasma gas.
- plasma temperature and “plasma temperature” mean the motion temperature of atoms or molecules constituting plasma in a non-thermal equilibrium state, that is, the temperature of translation, rotation, and vibration (hereinafter referred to as gas temperature).
- gas temperature the temperature of translation, rotation, and vibration
- electron temperature the kinetic temperature of electrons
- the plasma temperature control apparatus is the plasma temperature control apparatus according to claim 1, wherein the plasma gas temperature control unit controls the temperature of the plasma gas higher or lower than room temperature.
- the plasma temperature control apparatus is the plasma temperature control apparatus according to claim 1 or 2, wherein the plasma gas temperature control unit controls the temperature of the plasma gas at a temperature lower than room temperature.
- the temperature of the plasma generated in the plasma generation unit is lower than room temperature.
- the plasma temperature control device is the plasma temperature control device according to any one of claims 1 to 3, wherein the plasma gas temperature control unit includes a plasma gas cooling unit and a plasma gas control unit.
- a heating unit is provided, the cooling unit cools the plasma gas, and the heating unit controls the temperature of the plasma gas by heating the cooled plasma gas.
- the plasma temperature control device is the plasma temperature control device according to any one of claims 1 to 4, further comprising a temperature measurement unit that measures the temperature of the plasma, and the temperature measurement unit.
- the plasma temperature measured in step (b) is fed back to the plasma gas temperature control unit to control the temperature of the plasma gas.
- the plasma temperature control method according to claim 6 is the plasma temperature control method for controlling the temperature of the plasma, wherein the temperature of the plasma gas is controlled by controlling the temperature of the plasma gas higher or lower than room temperature.
- the temperature of the plasma is controlled to an arbitrary temperature by controlling.
- the temperature of the plasma gas is controlled to be higher or lower than room temperature, so that the plasma temperature can be drastically lowered or increased, and a wide temperature range from low temperature to high temperature. In the range, the plasma temperature can be controlled more accurately.
- the plasma temperature control unit is provided with the plasma gas cooling unit and the heating unit, and the cooperation of these controls the temperature of the plasma gas. It becomes possible to accurately control the temperature of the plasma gas. Furthermore, the plasma temperature can be precisely controlled by measuring the plasma temperature with the plasma temperature measurement unit and applying feedback to the plasma temperature control unit.
- the plasma temperature control apparatus and the plasma temperature control method of the present invention it is possible to significantly reduce the plasma temperature and generate a plasma below room temperature, particularly below zero.
- the plasma temperature can be controlled more accurately in a wide temperature range from low temperature to high temperature.
- the block diagram which shows one Embodiment of the plasma temperature control apparatus of this invention Overall schematic diagram of the plasma temperature control apparatus of FIG. 2 is a graph showing the relationship between the plasma temperature and the time before and after the start of cooling in the plasma temperature control apparatus of FIG. The graph which shows the relationship between the plasma temperature and the time after a cooling start in the plasma temperature control apparatus of FIG. The block diagram which shows the plasma temperature control apparatus of other embodiment. Control diagram of plasma temperature obtained by the plasma temperature control device of FIG.
- the plasma temperature control apparatus of the present invention can arbitrarily control the temperature of the plasma by adjusting the temperature of the plasma gas using the plasma gas temperature control unit. For example, by adjusting the temperature of the plasma gas, the plasma temperature is less than zero degrees Celsius, and further, the temperature is close to the boiling point of the material used as the plasma gas (for example, when helium gas is used as the plasma gas) It is possible to obtain a plasma temperature having an absolute temperature of 10K or less.
- the plasma temperature control apparatus includes a plasma generation unit that converts plasma gas into plasma, a plasma gas temperature control unit that controls the temperature of the plasma gas supplied to the plasma generation unit, and the like.
- the plasma gas is a gas that is generated as plasma before it becomes plasma, and is generally also called plasma gas.
- the plasma gas temperature control unit may be any device as long as it can control the plasma gas higher or lower than room temperature and can control the temperature of the plasma gas.
- the plasma gas in addition to a rare gas such as argon or helium, various gases such as oxygen, hydrogen, nitrogen, methane, chlorofluorocarbon, air, water vapor, or a mixture thereof can be used.
- the plasma may be in a largely ionized state, mostly in neutral particles, partially in an ionized state, or in an excited state.
- the plasma temperature control apparatus can be applied to a wide range of fields such as DLC thin film generation, plasma processing, plasma CVD, trace element analysis, nanoparticle generation, plasma light source, plasma processing, gas treatment, and plasma sterilization.
- FIG. 1 is a block diagram showing an embodiment of a plasma temperature control apparatus 10 of the present invention.
- the plasma control apparatus 10 of the present embodiment includes a plasma gas supply unit 20, a plasma gas temperature control unit 30, a plasma generation unit 40, a power source 50, and the like.
- the plasma generator 40 may have any structure and principle as long as the plasma gas can be converted into plasma, such as an inductively coupled plasma method, a microwave plasma method using a cavity resonator, a parallel plate, Various methods and means such as a coaxial electrode method can be used.
- the power source 50 for generating plasma can use various forms from direct current to alternating current, high frequency, microwaves and the like, and may generate plasma by introducing light such as laser, shock waves, etc. from the outside.
- the plasma generating unit 40 may generate plasma by combustion of a combustible gas, a combustible liquid, a combustible solid, or the like.
- the plasma generator 40 may generate plasma by combining these plural methods and means.
- a plasma generator for atmospheric pressure is adopted as the plasma generator 40, and plasma generation is performed under atmospheric pressure.
- FIG. 2 shows an overall schematic diagram of the plasma temperature control apparatus 10 of FIG.
- an atmospheric pressure high frequency non-equilibrium plasma generation device which is a parallel plate type / capacitive coupling type plasma generation device, or the like is employed, and the plasma generation unit 40 is operated under normal plasma generation conditions.
- the power supply 50 supplied to the plasma generation unit 40 uses a high frequency power supply 52, and a high frequency matching circuit 54 is arranged for matching with the plasma generation unit 40. In this way, the high frequency power supply 52 supplies power to the plasma generator 40.
- the plasma gas temperature control unit 30 introduces the plasma gas into the plasma generation unit 40 through the gas pipe 12 through the cooler 32 using liquid nitrogen, at a low temperature.
- the cooler 32 put liquid nitrogen into the container, and adjusted the temperature by putting the gas pipe 12 for the plasma gas into and out of the container.
- the plasma gas is sent from the plasma gas storage unit 22 through the gas pipe 12 to the cooler 32 through the pressure regulator 24 and the flow rate regulator 26.
- the temperature of the plasma gas is measured by the plasma gas temperature measurement unit 34 in the gas pipe 12 before the plasma generation unit 40 as necessary.
- the heat insulating material 14 is disposed around or inside the gas pipe 12 and the plasma generation unit 40.
- the heat insulating material 14 it is possible to use cotton, asbestos, foamed polystyrene, sponge, polyester, foamed rubber, foamed urethane, gas such as dry air, insulating gas such as SF 6, epoxy, acrylic, oil, paraffin and the like.
- insulating gas such as SF 6, epoxy, acrylic, oil, paraffin and the like.
- the plasma piping and the plasma generation unit may be cooled in advance or the temperature may be adjusted.
- the plasma temperature is measured by the plasma temperature measuring unit 60.
- the plasma temperature measurement unit 60 installs a thermocouple 62 at the plasma ejection outlet of the plasma generation unit 40 and measures the plasma temperature (gas temperature Tg).
- the thermocouple 62 was enclosed with aluminum tape (not shown) to suppress disturbance from the outside.
- the aluminum tape was bent so that the temperature sensitive part of the thermocouple 62 did not contact the plasma generation unit 40.
- the plasma temperature measured by the plasma temperature measurement unit 60 is displayed on the temperature display unit 64.
- This experiment was conducted for the purpose of confirming whether or not the plasma temperature can be controlled by controlling the plasma gas introduced into the plasma generation unit 40. Specifically, in the plasma control apparatus 10 shown in FIG. 2, the plasma gas is passed through the gas pipe 12 through the cooler 32 filled with liquid nitrogen and sufficiently cooled. Introduced. And the plasma temperature before and after introduce
- FIG. 3 employs an atmospheric pressure high-frequency non-equilibrium plasma generator as the plasma generator 40, helium gas is used as the plasma gas, its temperature and flow rate are ⁇ 163 ° C. and 15 liters (L) / min, The relationship between the plasma temperature and the time before and after the start of cooling when RF power of 60 W is supplied from the power supply 50 is shown.
- the scale 0 on the horizontal axis in FIG. 3 indicates the point in time when the cooled plasma gas is introduced into the plasma generating unit 40, that is, the start of plasma cooling.
- the standard plasma temperature of helium plasma generated by the atmospheric pressure high frequency non-equilibrium plasma generator is 80 to 100 ° C.
- the plasma temperature was changed from 80 ° C. to 40 ° C. 2 minutes after the start of cooling, -10 ° C. after 8 minutes, and about ⁇ 23.7 ° C. after 12 minutes.
- the plasma generator 40 employs a dielectric barrier discharge type atmospheric pressure plasma jet as the plasma generator 40, uses helium gas as the plasma gas, and has a temperature and flow rate of about ⁇ 170 ° C. and 10 liters (L) / L. Further, the relationship between the plasma temperature and the time after the start of cooling in the case where 90 kV and 73 W AC power is supplied from the power supply 50 is shown. As shown in FIG. 4, the plasma temperature, which was about 44 ° C. at the start of cooling, dropped to about ⁇ 90 ° C. about 8 minutes after the start of cooling.
- the plasma temperature can be controlled by changing the temperature of the plasma gas. Even when the temperature of the plasma gas was changed, the plasma did not become unstable at least in the visible range, and no disappearance phenomenon was observed.
- the temperature of the plasma gas can be controlled.
- the temperature of the plasma gas can be controlled by controlling the temperature of the electrodes. .
- FIG. 5 is a block diagram showing another embodiment of the plasma temperature control apparatus 10.
- the plasma gas temperature control unit 30 of this embodiment includes a plasma gas cooling unit 36 that cools the plasma gas and a plasma gas heating unit 38 that heats the cooled plasma gas.
- the temperature of the plasma gas is first cooled by the plasma gas cooling unit 36 and heated by the plasma gas heating unit 38 to be controlled to a predetermined temperature. Thereby, the temperature of the plasma gas can be accurately controlled relatively easily.
- the plasma gas temperature can be precisely controlled by measuring the plasma temperature with the plasma temperature measuring unit 60 and feeding it back to the plasma gas temperature control unit 30.
- the plasma gas temperature control unit 30 includes the plasma gas heating unit 38, feedback may be applied to the plasma gas heating unit 38 to control the plasma gas heating unit 38.
- the plasma temperature can be controlled more accurately.
- FIG. 6 shows a graph of plasma temperature control by the plasma temperature control apparatus 10 of FIG. From FIG. 6, according to the plasma temperature control apparatus 10 of this embodiment, it was confirmed that the plasma temperature can be arbitrarily controlled.
- the temperature of plasma generated by a general corona discharge or barrier discharge plasma apparatus ranges from about 25 ° C. to about 100 ° C.
- the plasma control apparatus 10 of the present embodiment the plasma is more accurately detected in a wide temperature range from about ⁇ 90 to about 200 ° C. or higher (temperature defined by the melting point of the material that becomes the high temperature portion). It is possible to control the temperature.
- the plasma temperature control device 10 can be used for many applications.
- the plasma temperature is set to the same temperature as that of a human body at about 36.5 ° C., thereby reducing damage and burden when the human body is irradiated. Therefore, direct plasma irradiation to the human body becomes possible, and application to the medical field and dental field can be expected.
- the plasma temperature in gas phase synthesis and surface treatment, can be controlled to an optimum temperature for a desired chemical reaction or catalytic reaction, so that various gas phase synthesis and surface treatment can be performed.
- the temperature of the plasma to be irradiated by controlling the temperature of the plasma to be irradiated, the temperature of the processing object can be controlled, and the reaction rate and the processing result can be controlled.
- the plasma gas temperature could not be controlled.
- nanoparticle production is possible. This is advantageous for gas phase synthesis.
- the present embodiment it is possible to generate a plasma having a low gas temperature and a high electron temperature, that is, so-called high non-equilibrium as compared with the conventional plasma apparatus. Furthermore, the plasma non-equilibrium can be controlled by controlling the plasma gas temperature using the plasma temperature control apparatus and the plasma temperature control method of the present embodiment.
- the heat insulating effect can be enhanced, and condensation or condensation can be achieved. It is possible to prevent abnormal discharge, power loss, high frequency impedance change and the like due to electrical insulation performance deterioration due to frost. In addition to enhancing the insulation of the high voltage section and making it difficult to cause abnormal discharge, it is also effective for downsizing the apparatus.
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
- constituent elements over different embodiments may be appropriately combined.
- various modifications can be made without departing from the scope of the present invention.
- the said embodiment employ
- the temperature of the plasma gas is lowered by passing the plasma gas through a gas pipe through a cooler filled with liquid nitrogen.
- the plasma gas may be cooled by passing it through other refrigerants such as dry ice or ice water, or may be cooled using a refrigerator, a Peltier element, a heat pump heat exchanger, or the like.
- the plasma gas may be adiabatically expanded using an expander, a Joule-Thomson valve, or the like.
- the plasma gas is supplied to the plasma gas supply path and the plasma generation unit, or the liquid or solid plasma gas is directly supplied to the plasma gas. You may supply to a supply path or a plasma generation part.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
12・・・ガス配管
14・・・断熱材
20・・・プラズマ用ガス供給部
22・・・プラズマ用ガス保存部
24・・・圧力調節器
26・・・流量調節器
30・・・プラズマ用ガス温度制御部
32・・・冷却機
34・・・プラズマ用ガス温度測定部
36・・・プラズマ用ガス冷却部
38・・・プラズマ用ガス加熱部
40・・・プラズマ発生部
50・・・電源
60・・・プラズマ温度測定部
62・・・熱電対
64・・・温度表示部
Claims (6)
- プラズマ用ガスをプラズマにするプラズマ発生部と、
プラズマ発生部に供給するプラズマ用ガスの温度を制御するプラズマ用ガス温度制御部と、を備え、
プラズマ用ガスの温度を制御してプラズマ発生部で発生するプラズマの温度を制御する、プラズマ温度制御装置。 - 請求項1に記載のプラズマ温度制御装置において、
プラズマ用ガス温度制御部は、プラズマ用ガスの温度を室温より高く又は低く制御する、プラズマ温度制御装置。 - 請求項1または請求項2に記載のプラズマ温度制御装置において、
プラズマ用ガス温度制御部は、プラズマ用ガスの温度を室温より低温で制御して、プラズマ発生部で発生するプラズマの温度を室温より低温にする、プラズマ温度制御装置。 - 請求項1乃至請求項3のいずれか1項に記載のプラズマ温度制御装置において、
プラズマ用ガス温度制御部は、プラズマ用ガスの冷却部と加熱部を備え、
冷却部は、プラズマ用ガスを冷却し、加熱部は、冷却されたプラズマ用ガスを加熱してプラズマ用ガスの温度を制御する、プラズマ温度制御装置。 - 請求項1乃至請求項4のいずれか1項に記載のプラズマ温度制御装置において、
プラズマの温度を測定する温度測定部を備え、
温度測定部で測定されたプラズマ温度をプラズマ用ガス温度制御部にフィードバックして、プラズマ用ガスの温度を制御する、プラズマ温度制御装置。 - プラズマの温度を制御するプラズマ温度制御方法において、
プラズマ用ガスの温度を室温より高く又は低く制御することにより、プラズマのプラズマ用ガスの温度を制御して、プラズマの温度を任意の温度に制御する、プラズマ温度制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980138949.5A CN102172105B (zh) | 2008-09-03 | 2009-09-03 | 等离子体温度控制装置和等离子体温度控制方法 |
US13/061,926 US8866389B2 (en) | 2008-09-03 | 2009-09-03 | Plasma temperature control apparatus and plasma temperature control method |
EP09811538.9A EP2328389B1 (en) | 2008-09-03 | 2009-09-03 | Plasma temperature control apparatus and plasma temperature control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-225485 | 2008-09-03 | ||
JP2008225485A JP4611409B2 (ja) | 2008-09-03 | 2008-09-03 | プラズマ温度制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010027013A1 true WO2010027013A1 (ja) | 2010-03-11 |
Family
ID=41797179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/065394 WO2010027013A1 (ja) | 2008-09-03 | 2009-09-03 | プラズマ温度制御装置及びプラズマ温度制御方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8866389B2 (ja) |
EP (1) | EP2328389B1 (ja) |
JP (1) | JP4611409B2 (ja) |
KR (1) | KR101603812B1 (ja) |
CN (1) | CN102172105B (ja) |
MY (1) | MY155509A (ja) |
SG (1) | SG193813A1 (ja) |
WO (1) | WO2010027013A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3609299A4 (en) * | 2017-04-04 | 2020-04-01 | Fuji Corporation | PLASMA GENERATION SYSTEM |
JP2021531153A (ja) * | 2018-07-25 | 2021-11-18 | イオン バイオテック エセ.エレ. | ヒトおよび動物の患者における、血液凝固、及び潰瘍およびその他皮膚疾患治療に用いる電気医療装置 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5933222B2 (ja) * | 2011-11-08 | 2016-06-08 | 東京エレクトロン株式会社 | 温度制御方法、制御装置及びプラズマ処理装置 |
GB2501933A (en) * | 2012-05-09 | 2013-11-13 | Linde Ag | device for providing a flow of non-thermal plasma |
KR101477676B1 (ko) * | 2013-03-29 | 2014-12-31 | 한양대학교 산학협력단 | 플라즈마의 라디칼 제어 장치 및 방법 |
US10037869B2 (en) | 2013-08-13 | 2018-07-31 | Lam Research Corporation | Plasma processing devices having multi-port valve assemblies |
JP2015144078A (ja) * | 2014-01-31 | 2015-08-06 | 富士機械製造株式会社 | 大気圧プラズマ発生装置 |
WO2015120113A1 (en) * | 2014-02-05 | 2015-08-13 | Weinberg Medical Physics Llc | Electromagnetic devices with integrated cooling |
JP6307591B2 (ja) * | 2014-03-03 | 2018-04-04 | 富士機械製造株式会社 | 大気圧プラズマ発生装置 |
US9666415B2 (en) * | 2015-02-11 | 2017-05-30 | Ford Global Technologies, Llc | Heated air plasma treatment |
CN105430861A (zh) * | 2015-12-15 | 2016-03-23 | 大连理工大学 | 一种温度可控的低温等离子体产生方法 |
JP7141823B2 (ja) | 2017-12-18 | 2022-09-26 | サカタインクス株式会社 | プラズマ硬化型オフセット印刷用インキ組成物、並びにそれを用いた印刷物の製造方法及び印刷方法 |
RU2673783C1 (ru) * | 2018-02-13 | 2018-11-29 | Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук (ИЯИ РАН) | Способ измерения температуры ионов в d-t плазме |
EP3845613A4 (en) | 2018-08-28 | 2022-05-11 | Sakata INX Corporation | PLASMA CURING INK COMPOSITION AND ADDITIVE FOR PLASMA CURING INK COMPOSITIONS |
CN109316935A (zh) * | 2018-11-06 | 2019-02-12 | 广州市真诚环保科技股份有限公司 | 一种恶臭气体的低温等离子电离方法 |
CN110015729B (zh) * | 2019-03-26 | 2020-10-27 | 西安交通大学 | 等离子体处理水的控温与水蒸气冷凝装置及方法 |
WO2020254430A1 (en) * | 2019-06-17 | 2020-12-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Medical device for applying plasma |
JP7448120B2 (ja) | 2019-11-14 | 2024-03-12 | 国立研究開発法人農業・食品産業技術総合研究機構 | プラズマを用いてゲノム編集酵素を植物細胞内に導入する方法 |
CN111556641B (zh) * | 2020-06-05 | 2021-04-16 | 清华大学 | 一种低温范围的裸露电极型大气压等离子体发生器系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007227068A (ja) * | 2006-02-22 | 2007-09-06 | Noritsu Koki Co Ltd | ワーク処理装置 |
JP2007227297A (ja) * | 2006-02-27 | 2007-09-06 | Noritsu Koki Co Ltd | プラズマ発生装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6168126A (ja) * | 1984-09-10 | 1986-04-08 | Ishikawajima Harima Heavy Ind Co Ltd | 湿式排煙脱硫・脱硝方法 |
JPH08181111A (ja) * | 1994-12-22 | 1996-07-12 | Hitachi Ltd | 表面処理装置および表面処理方法 |
US20050236109A1 (en) * | 1995-03-16 | 2005-10-27 | Toshio Masuda | Plasma etching apparatus and plasma etching method |
JPH0957092A (ja) * | 1995-08-25 | 1997-03-04 | Sumitomo Metal Ind Ltd | プラズマ処理装置 |
JPH1167732A (ja) * | 1997-08-22 | 1999-03-09 | Matsushita Electron Corp | プラズマプロセスのモニタリング方法およびモニタリング装置 |
JP3805134B2 (ja) * | 1999-05-25 | 2006-08-02 | 東陶機器株式会社 | 絶縁性基板吸着用静電チャック |
JP4776130B2 (ja) * | 1999-11-15 | 2011-09-21 | ラム リサーチ コーポレーション | プラズマ処理装置、半導体製造装置、およびこれに用いる加熱・冷却ブロック |
JP2002299316A (ja) * | 2001-03-29 | 2002-10-11 | Toshiba Corp | プラズマ処理方法 |
US6811651B2 (en) * | 2001-06-22 | 2004-11-02 | Tokyo Electron Limited | Gas temperature control for a plasma process |
JP2003203904A (ja) * | 2002-01-04 | 2003-07-18 | Canon Inc | マイクロ波プラズマ処理装置及びプラズマ処理方法 |
JP4478440B2 (ja) * | 2003-12-02 | 2010-06-09 | キヤノン株式会社 | ロードロック装置および方法 |
JP4472638B2 (ja) * | 2004-01-07 | 2010-06-02 | 財団法人大阪産業振興機構 | 排気ガスの処理方法及び装置 |
JP4330467B2 (ja) * | 2004-02-26 | 2009-09-16 | 東京エレクトロン株式会社 | プロセス装置及び該プロセス装置内のパーティクル除去方法 |
CN100372052C (zh) * | 2004-06-18 | 2008-02-27 | 友达光电股份有限公司 | 可调节输入气体温度的制作设备 |
US20060000551A1 (en) * | 2004-06-30 | 2006-01-05 | Saldana Miguel A | Methods and apparatus for optimal temperature control in a plasma processing system |
GB0516695D0 (en) * | 2005-08-15 | 2005-09-21 | Boc Group Plc | Microwave plasma reactor |
JP4997842B2 (ja) * | 2005-10-18 | 2012-08-08 | 東京エレクトロン株式会社 | 処理装置 |
JP4954734B2 (ja) * | 2007-01-30 | 2012-06-20 | 東京エレクトロン株式会社 | 基板処理装置及びガス供給方法 |
KR101508026B1 (ko) * | 2007-10-31 | 2015-04-08 | 램 리써치 코포레이션 | 컴포넌트 바디와 액체 냉각제 사이의 열 전도도를 제어하기 위해 가스 압력을 이용하는 온도 제어 모듈 |
DK2599506T3 (en) * | 2007-11-06 | 2018-10-08 | Creo Medical Ltd | Microwave Plasma Masterization Applicator |
-
2008
- 2008-09-03 JP JP2008225485A patent/JP4611409B2/ja active Active
-
2009
- 2009-09-03 MY MYPI2011000936A patent/MY155509A/en unknown
- 2009-09-03 US US13/061,926 patent/US8866389B2/en active Active
- 2009-09-03 KR KR1020117006844A patent/KR101603812B1/ko active IP Right Grant
- 2009-09-03 SG SG2013063599A patent/SG193813A1/en unknown
- 2009-09-03 CN CN200980138949.5A patent/CN102172105B/zh active Active
- 2009-09-03 WO PCT/JP2009/065394 patent/WO2010027013A1/ja active Application Filing
- 2009-09-03 EP EP09811538.9A patent/EP2328389B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007227068A (ja) * | 2006-02-22 | 2007-09-06 | Noritsu Koki Co Ltd | ワーク処理装置 |
JP2007227297A (ja) * | 2006-02-27 | 2007-09-06 | Noritsu Koki Co Ltd | プラズマ発生装置 |
Non-Patent Citations (3)
Title |
---|
"Micro-/Nano-Plasma Technology and Industrial Applications", 27 December 2006, CMC PRESS |
See also references of EP2328389A4 |
THE 35TH IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS 2008) ORAL SESSION 1E ON MONDAY, JUNE, vol. 16, June 2008 (2008-06-01) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3609299A4 (en) * | 2017-04-04 | 2020-04-01 | Fuji Corporation | PLASMA GENERATION SYSTEM |
JP2021531153A (ja) * | 2018-07-25 | 2021-11-18 | イオン バイオテック エセ.エレ. | ヒトおよび動物の患者における、血液凝固、及び潰瘍およびその他皮膚疾患治療に用いる電気医療装置 |
JP7335958B2 (ja) | 2018-07-25 | 2023-08-30 | メディカル プラズマズ,エセ.エレ. | ヒトおよび動物の患者における、血液凝固、及び潰瘍およびその他皮膚疾患治療に用いる電気医療装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20110056393A (ko) | 2011-05-27 |
SG193813A1 (en) | 2013-10-30 |
EP2328389A1 (en) | 2011-06-01 |
US20110156590A1 (en) | 2011-06-30 |
KR101603812B1 (ko) | 2016-03-15 |
EP2328389A4 (en) | 2014-09-10 |
US8866389B2 (en) | 2014-10-21 |
JP4611409B2 (ja) | 2011-01-12 |
CN102172105B (zh) | 2014-06-04 |
MY155509A (en) | 2015-10-30 |
CN102172105A (zh) | 2011-08-31 |
EP2328389B1 (en) | 2018-01-03 |
JP2010061938A (ja) | 2010-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010027013A1 (ja) | プラズマ温度制御装置及びプラズマ温度制御方法 | |
CN107039229B (zh) | 蚀刻方法 | |
Hong et al. | Microplasma jet at atmospheric pressure | |
Stauss et al. | Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids | |
Kim et al. | A cold micro plasma jet device suitable for bio-medical applications | |
US10665432B2 (en) | Temperature control method | |
JP5188696B2 (ja) | ウエハ載置用電極 | |
CN103298233B (zh) | 高密度阴极等离子体源 | |
Shneider et al. | Dynamic contraction of the positive column of a self-sustained glow discharge in air flow | |
CN106952798B (zh) | 蚀刻方法 | |
JP2015516662A (ja) | プラズマ流を提供するための装置 | |
JP2017022216A (ja) | プラズマ処理装置 | |
JP2009245593A (ja) | マイクロ波プラズマ処理装置 | |
JP2009289432A (ja) | プラズマ発生装置及びプラズマ生成方法 | |
JP2005150606A (ja) | プラズマ処理装置 | |
Mohanta et al. | Investigation of subsonic to supersonic transition of a low-pressure plasma torch jet | |
Wright et al. | Controlling pressure in microsystem packages by on-chip microdischarges between thin-film titanium electrodes | |
Henriques et al. | Nitrogen dissociation in N2–Ar microwave plasmas | |
Belov | Use of high-frequency cold plasma ablation technology for electrosurgery with minimized invasiveness | |
Mozetič et al. | Atomic oxygen concentration in a flowing post-discharge reactor | |
Wang et al. | Numerical study on the characteristics of nitrogen discharge at high pressure with induced plasma | |
JP2012111666A (ja) | 沿面放電型オゾナイザー | |
Antipov et al. | Generation of moderate temperature plasma jets based on a transverse microwave discharge in a waveguide | |
JP2013184861A (ja) | オゾン発生装置及びオゾン発生方法 | |
JPH07161696A (ja) | 基板冷却装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980138949.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09811538 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13061926 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1719/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009811538 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117006844 Country of ref document: KR Kind code of ref document: A |