JP4776130B2 - プラズマ処理装置、半導体製造装置、およびこれに用いる加熱・冷却ブロック - Google Patents

プラズマ処理装置、半導体製造装置、およびこれに用いる加熱・冷却ブロック Download PDF

Info

Publication number
JP4776130B2
JP4776130B2 JP2001537772A JP2001537772A JP4776130B2 JP 4776130 B2 JP4776130 B2 JP 4776130B2 JP 2001537772 A JP2001537772 A JP 2001537772A JP 2001537772 A JP2001537772 A JP 2001537772A JP 4776130 B2 JP4776130 B2 JP 4776130B2
Authority
JP
Japan
Prior art keywords
heating
cooling
plasma processing
unit
processing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001537772A
Other languages
English (en)
Other versions
JP2003514390A5 (ja
JP2003514390A (ja
Inventor
ベイリー・アンドリュー・ディ.,スリー
シェップ・アラン・エム.
スミス・マイケル・ジー.,アール.
クチ・アンドラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/439,675 external-priority patent/US6302966B1/en
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2003514390A publication Critical patent/JP2003514390A/ja
Publication of JP2003514390A5 publication Critical patent/JP2003514390A5/ja
Application granted granted Critical
Publication of JP4776130B2 publication Critical patent/JP4776130B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【関連出願の説明】
本願は、出典を明記することによりその開示内容全体を本願明細書の一部とする出願番号60/165,496(代理人整理番号LAM1P124,P)、名称「温度制御付き処理チャンバ」に基づき優先権の利益を主張する。本願は、更に、共存出願された以下の米国特許出願と関連している。
【0002】
出願番号09/439,661、名称「改良したプラズマ処理システム及びその方法」(代理人整理番号LAM1P122/P0527)
出願番号09/470,236、名称「動的ガス分配制御付きプラズマ処理システム」(代理人整理番号LAM1P123/P0557)
出願番号09/440,418、名称「均一処理速度を生成する方法及び装置」(代理人整理番号LAM1P125/P0560)
出願番号09/440,794、名称「プラズマ処理システム用材料及びガス化学物質」(代理人整理番号LAM1P128/P0561)
出願番号09/439,759、名称「プラズマの体積を制御する方法及び装置」(代理人整理番号LAM1P129/P0593)
上に記載した各特許出願は、出典を明記することによりその開示内容全体を本願明細書の一部とする。
【0003】
【発明の背景】
【発明の分野】
本発明は、半導体集積回路の製造に関し、特に、プラズマ処理システムの温度制御に関する。
【0004】
【関連技術の説明】
集積回路又はフラットパネルディスプレイ等、半導体ベースのデバイスの製造では、基板表面に材料の層を交互に堆積させ、これらを基板表面からエッチングする。製造処理中には、ボロフォスフォシリケートガラス(BPSG)、ポリシリコン、金属等、様々な材料の層を基板状に堆積させる。この堆積層は、フォトレジスト処理等、既知の手法により、パターン化することができる。その後、堆積層の一部をエッチングし、例えば、相互接続線、バイア、トレンチ、及びその他の様々な特徴を形成することができる。
【0005】
エッチングの処理は、プラズマ励起エッチングを含む、既知の様々な手法により達成できる。プラズマ励起エッチングにおいて、実際のエッチングは、通常、プラズマ処理チャンバ内部で発生する。基板ウェーハ表面に望ましいパターンを形成するために、通常、適切なマスク(フォトレジストマスク等)が施される。基板ウェーハがプラズマ処理チャンバ内にある状態で、その後、適切なエッチャントソースガス(又は複数のガス)からプラズマが生成される。このプラズマは、マスクにより保護されていないエリアをエッチングするのに使用され、これにより、望ましいパターンが形成される。このようにして、堆積層の一部が、エッチングされ、線、バイア、トレンチ、及びその他の特徴が形成される。こうした堆積及びエッチング処理は、望ましい回路が得られるまで反復することができる。
【0006】
説明を容易にするために、図1では、半導体ベースのデバイスの製造に適した簡略化したプラズマ処理装置100を示している。この簡略化したプラズマ処理装置100は、静電チャック(ESC)又はその他のウェーハ支持部104を有するプラズマ処理チャンバ102を含む。このチャック104は、電極として機能し、製造中、ウェーハ106(つまり、基板)を支持する。ウェーハ106の表面は、ウェーハ処理チャンバ102内に放出された適切なエッチャントソースガスによりエッチングされる。このエッチャントソースガスは、シャワーヘッド108を通じて放出される。このプラズマ処理ソースガスは、ガス分配プレートのスルーホール等、他のメカニズムにより放出することもできる。真空プレート110は、ウェーハ処理チャンバ102の壁部112との密閉接触されている。真空プレート110上に設けられたコイル114は、高周波(RF)電源(図示しない)に結合され、シャワーヘッド108を通じて放出されたプラズマ処理ソースガスからプラズマを発生(発火)させるのに使用される。チャック104にも、通常は、エッチング処理中、高周波電源(図示しない)を使用して、高周波電力が加えられる。更にポンプ116が含まれ、これはダクト118を通じて、プロセスガス及びガス生成物をプラズマ処理チャンバ102から抜き出す。
【0007】
当業者に知られているように、エッチング処理等の半導体処理の場合、高い歩留まりを維持するために、処理チャンバ内の多数のパラメータを厳密に制御する必要がある。処理チャンバの温度は、こうしたパラメータの一つである。エッチング許容値(及び結果として生じる半導体ベースのデバイスの性能)は、システム内の構成要素の温度変化に対して非常に敏感であるため、正確な制御が必要となる。更に詳しく述べると、望ましいエッチング特性を達成するために、エッチング処理が実行される際のチャンバ温度は、厳密に制御する必要がある。更に、現代の集積回路のサイズは、縮小化が続いているため、従来のプラズマ処理システムを使用して望ましい特徴を処理することは、更に難しくなりつつある。
【0008】
プラズマ処理装置においては、励起したプロセスガスにより生成されたプラズマが、半導体デバイスの製造に使用され、プラズマを生成するためのプロセスガスの励起は、プラズマ処理装置の様々な構成要素の加熱を引き起こす高エネルギ動作である。この加熱は、プラズマ処理デバイスにより実行される処理の精度及び再現性に影響を与える。サイズの小型化傾向により、半導体デバイスを一貫して精度高く製造するために、プラズマ処理装置に優れた温度制御を提供する必要性は、更に増加している。
【0009】
従来、プラズマ処理チャンバの加熱は、プラズマ処理チャンバに加熱内壁部を設けること、或いはプラズマ処理チャンバを小型加熱ランプで加熱することにより行われてきた。加熱は、通常、処理の開始前に、プラズマ処理チャンバを予熱するために使用される。冷却は、能動的に行われない場合が多く、そのため、対流及び放射による受動的なもののみだった。通常、こうした熱に関するソリューションは、プラズマ処理チャンバのアルミニウムライナ用に設計されているため、更に困難なタスクとなるセラミックライナの加熱又は冷却には、あまり適していない。更に、アルミニウムラインは、深刻な汚染につながり、こうした理由から、セラミックライナが検討されている。
【0010】
前記の観点から、半導体処理設備の優れた温度制御を行う改良されたプラズマ処理システムの必要性が存在する。
【0011】
【発明の概要】
概して、本発明は、プラズマ処理装置の非常に正確な温度制御を達成可能な温度管理システム及び方法に関する。一実施形態として、この温度管理システム及び方法は、半導体デバイスの製造中にプラズマと相互作用するプラズマ処理装置の表面の厳密な温度制御を達成する。本発明が提供する厳密な温度制御は、サイズの小型化が続くにつれ、更に重要性が高まりつつあるプラズマ処理装置の優れたプロセス管理をもたらす。
【0012】
本発明は、システム、装置、機械、又は方法を含む、多数の方法で実施可能である。本発明のいくつかの実施形態について、以下説明する。
【0013】
プラズマ処理装置として、本発明の一実施形態は、少なくとも、壁部及び蓋を有する処理チャンバを含み、この壁部及び蓋は、両方とも内表面及び外表面を有し、この処理チャンバは、プロセスガスにより生成されたプラズマを使用して基板を処理するのに使用され、更に、処理チャンバの外表面に熱的に結合された熱管理システムを含み、この熱管理システムは、処理チャンバの内部温度を調節するために制御される加熱/冷却ブロックを少なくとも一つ含む。
【0014】
半導体製造装置として、本発明の一実施形態は、少なくとも、壁部と底面により形成されるプラズマ処理チャンバと、プラズマ処理チャンバの壁部の頂部に取り外し可能な状態で結合された密閉蓋と、密閉蓋の上面に設けられた高周波電力電極と、密閉蓋又はプラズマ処理チャンバに結合された少なくとも一つの温度センサと、密閉蓋の上面に結合された第一の加熱及び冷却ユニットと、プラズマ処理チャンバの壁部の外表面に結合された第二の加熱及び冷却ユニットとを含む。
【0015】
プラズマ処理装置のプラズマ処理チャンバに温度制御を提供する方法として、この方法は、少なくとも、プラズマ処理チャンバの内部の温度を直接的又は間接的に測定する行為と、測定した温度を目標温度と比較する行為と、プラズマ処理チャンバに熱的に結合された熱制御ブロックを加熱することでプラズマ処理チャンバを加熱する行為と、熱制御ブロックを能動的に冷却することでプラズマ処理チャンバを冷却する行為とを含む。
【0016】
プラズマ処理装置として、本発明の別の実施形態は、少なくとも、壁部及び蓋を有する処理チャンバを含み、この壁部及び蓋は、両方とも内表面及び外表面を有し、この処理チャンバは、プロセスガスにより生成されたプラズマを使用して基板を処理するのに使用され、更に、内部温度が下限目標温度を下回る時に加熱部により処理チャンバを加熱すること、及び内部温度が上限目標温度を上回る時に加熱部を通じて冷却部により処理チャンバを冷却することにより、プロセスチャンバの内部温度を調節する手段を含む。
【0017】
加熱/冷却ブロックとして、本発明の更に別の実施形態によれば、この加熱/冷却ブロックは、サンドイッチ構造を有し、少なくとも、加熱部と、冷却部と、加熱部及び冷却部の間の断熱要素とを含む。
【0018】
本発明には、多数の利点がある。様々な実施形態又は実施により、以下の一つ以上の利点を生み出すことができる。本発明の利点の一つは、本発明により、ドリフトを大幅に減らして、プラズマ処理デバイスの温度を制御できる点である。本発明の別の利点は、プラズマ処理デバイスの温度を高い精度で制御可能にし、デバイス同士の優れたマッチングを可能にする点である。本発明の別の利点は、加熱及び冷却が、両方とも共通の熱インタフェースを通じて行われる点である。本発明の更に別の利点は、共通の熱インタフェースを使用することで、冷却及び加熱の両方を提供できるだけでなく、温度制御される表面において生じる温度プロフィールが、均一で滑らかなものになる点である。更に、温度制御される表面の温度プロフィールは、ウェーハ処理により生じる過渡期間中、空間的及び時間的に不変にすることができる。本発明の更に別の利点は、内部に組み込まれるようなものではなく、容易に取り外し可能な点である。
【0019】
本発明のその他の態様及び利点は、本発明の原理を例として表示する添付の図面を併せて、以下の詳細な説明により明らかになる。
【0020】
本発明は、非常に正確で精度の高いプラズマ処理装置の温度制御を達成することが可能な温度管理システム及び方法に関する。一実施形態において、この温度管理システム及び方法は、半導体デバイスの製造中にプラズマと相互作用するプラズマ処理装置の表面の厳密な温度制御を達成する働きをする。本発明が提供する厳密な温度制御は、サイズの小型化が続くにつれ、更に重要性が高まりつつあるプラズマ処理装置の優れたプロセス管理をもたらす。
【0021】
励起したプロセスガスにより生成されたプラズマを使用して半導体デバイスを製造するプラズマ処理装置において、プラズマを生成するためのプロセスガスの励起は、プラズマ処理装置の様々な構成要素の加熱を引き起こす高エネルギ動作である。本発明は、プラズマ処理装置の非常に正確な温度制御を達成可能な温度管理システム及び方法に関する。一実施形態において、この温度管理システム及び方法は、半導体デバイスの製造に使用されるプラズマと相互作用するプラズマ処理装置の表面の厳密な温度制御を達成する働きをする。
【0022】
一実施において、この温度制御システムは、温度制御されるプラズマ処理装置のプラズマ処理チャンバの外表面に結合された加熱及び冷却ユニットを含む。この加熱及び冷却ユニットは、同じ熱インタフェースを通じて制御される表面に熱を結びつける、或いはこうした表面から熱を切り離す(つまり、加熱又は冷却する)役割を果たす。
【0023】
本発明の実施形態について、図2乃至11を参考に、以下で説明する。しかしながら、当業者が容易に理解できるように、こうした図に関して本明細書で述べる詳細な説明は、例示的な目的のものであり、本発明書は、こうした限定された実施形態の範囲を超えている。
【0024】
図2Aは、本発明の一実施形態による、加熱及び冷却ユニット200を示している。この加熱及び冷却ユニット200は、表面202を加熱又は冷却するために使用される。表面202は、加熱及び冷却の両方が必要な表面と仮定される。例えば、表面202では、最初に加熱を必要とし、その後、冷却が必要になる可能性がある。いかなる場合においても、表面202の温度には、正確で精度の高い制御が必要となる。図2Aに示す加熱及び冷却ユニット200は、コンフォーマル熱インタフェース204と、加熱ブロック206と、断熱部208と、冷却ブロック210とを含む。このコンフォーマル熱インタフェースは、金属含浸シリコンゴム等の材料の薄層で、層の薄さから比較的高い実効熱係数を有し、形状の適合が容易である。したがって、このコンフォーマル熱インタフェース204は、表面202と加熱ブロック206との間での高い熱結合を提供する。加熱ブロック206は、コンフォーマル熱インタフェース204を通じて表面と結合する熱を生成することができる。熱を生成するために、加熱ブロック206は、一つ以上の抵抗要素を含むことができる。この抵抗要素は、制御された電流又は電圧の使用を通じて、加熱ブロック206を加熱することができる。一例として、加熱ブロック206は、アルミニウム等の金属材料で作成される。
【0025】
断熱部208は、加熱ブロック206と冷却ブロック210との間に挟まれる。断熱部208は、例えば、シリコンゴム系物質にすることができる。通常、断熱部208の熱伝導率は、層の厚さから、コンフォーマル熱インタフェース204の熱伝導率よりも大幅に小さい。断熱部208は、加熱ブロック206と冷却ブロック210との間に移行領域を提供し、加熱及び冷却ユニット200に両方のブロックを提供できるようにする役割を果たす。冷却ブロック210は、加熱ブロック206とコンフォーマル熱インタフェース204とを通じて、表面202を冷却することができる。冷却ブロック210は、それ自体が冷却部により冷却される。一実施において、この冷却部は、冷却ブロック210内を貫流する温度制御された液体(例えば、水)である。冷却ブロック210は、例えば、アルミニウム等の金属で作成することができる。
【0026】
図3は、本発明の一実施形態による、プラズマ処理装置300の断面図である。プラズマ処理装置300は、プラズマ処理チャンバ304に熱的に結合された加熱/冷却プレート302を含む。プラズマ処理チャンバ304は、製造中にウェーハ308(つまり、基板)を支持するウェーハ保持メカニズム306を有する。一例として、ウェーハ保持メカニズム306は、静電チャック(ESC)にすることができる。ウェーハ308の表面は、ウェーハ処理チャンバ304内に放出された適切なプラズマ処理ソースガスによりエッチングされる。このプラズマ処理ソースガスは、シャワーヘッド又はガス分配プレートを含め、様々なメカニズムで放出することができる。真空プレート310は、プラズマ処理チャンバ304の壁部との密閉接触を維持する。真空プレート上に設けられたコイル314は、高周波(RF)電源(表示なし)に結合され、プラズマ処理チャンバ304内に放出されたプラズマ処理ソースガスからプラズマを発生(発火)させるのに使用される。ウェーハ保持メカニズム306にも、エッチング処理中、高周波電源(表示なし)を使用して、高周波電力が加えられる場合が多い。更にポンプ316が含まれ、これはダクト316を通じて、プロセスガス及びガス生成物をプラズマ処理チャンバ304から抜き出す。
【0027】
温度制御システム250は、表面252が適切な温度に維持されるように温度制御システム250の全体的な動作を制御する熱マネージャ254を含む。熱マネージャ254は、望ましい温度に維持する必要性に応じて、表面252の加熱及び冷却の両方を制御することができる。熱マネージャ254は、表面252に結合された温度センサ256から、表面252の温度を取得する。温度センサ256から取得した温度に従って、熱マネージャ254は、表面252の加熱又は冷却が必要かどうかを判断する。表面252を加熱する必要があると熱マネージャ254が判断した時、熱マネージャ254は、加熱部258及び加熱部260を起動することができる。通常、加熱部258及び260は、同時に起動され、同様の方法で表面252を加熱する。一方、表面252を冷却する必要があると熱マネージャが判断した時、熱マネージャ254は、冷却部262及び冷却部264を起動することができる。通常、冷却部262及び264は、同時に起動され、同様の方法で表面252を冷却する。図2Bに示すように、冷却部262及び264は、加熱部258及び260を通じて、表面252に結合される。加熱部258及び260を通じて、冷却部を表面252に結合することで、より滑らかな空間的及び時間的温度プロフィールを表面252に提供することが可能となり、これにより、表面252において更に均一な温度プロフィールが生み出される。
【0028】
通常、加熱部258及び260が起動される時、冷却部262及び264は、起動されず、冷却部262及び264が起動される時、加熱部258及び260は、動作を停止される。ただし、一部の状況においては、それぞれの加熱部及び冷却部を、両方とも同時に起動することが有効な場合もある。一実施形態においては、図2Aに示す加熱及び冷却ユニット200のように、加熱部258及び冷却部262の組み合わせと、加熱部260及び冷却部264の組み合わせとを構築することができる。
【0029】
図3は、本発明の一実施形態による、プラズマ処理装置300の断面図である。プラズマ処理装置300は、プラズマ処理チャンバ304に熱的に結合された加熱/冷却プレート302を含む。プラズマ処理チャンバ304は、製造中にウェーハ308(つまり、基板)を支持するウェーハ保持メカニズム306を有する。一例として、ウェーハ保持メカニズム306は、静電チャック(ESC)にすることができる。ウェーハ308の表面は、ウェーハ処理チャンバ304内に放出された適切なプラズマ処理ソースガスによりエッチングされる。このプラズマ処理ソースガスは、シャワーヘット又はガス分配プレートを含め、様々なメカニズムで放出することができる。真空プレート310は、プラズマ処理チャンバ304の壁部との密閉接触を維持する。真空プレート上に設けられたコイル314は、高周波(RF)電源(表示なし)に結合され、プラズマ処理チャンバ304内に放出されたプラズマ処理ソースガスからプラズマを発生(発火)させるのに使用される。ウェーハ保持メカニズム306にも、エッチング処理中、高周波電源(表示なし)を使用して、高周波電力が加えられる場合が多い。更にポンプ316が含まれ、これはダクト316を通じて、プロセスガス及びガス生成物をプラズマ処理チャンバ304から抜き出す。
【0030】
加熱/冷却プレート302は、動作中にプラズマに晒される真空プレート310の内表面が、制御された温度に維持されるように、プラズマ処理装置300の真空プレート310の温度を制御する働きをする。加熱/冷却プレート302は、加熱及び冷却動作を両方とも提供するために、いくつかの異なる材料層により形成される。詳しくは、加熱/冷却プレート302は、真空プレート310と直接的に結合する熱ガスケット320を含む。熱ガスケット320は、真空プレート310の外表面に関するコンフォーマル熱インタフェースを提供する柔らかい材料である。加熱/冷却プレート302は、更に、熱ガスケット320上に設けられる加熱ブロック322を含む。加熱ブロック322は、電流を供給された時に加熱ブロック322を加熱する抵抗要素を含む。断熱部324は、加熱ブロック322上に設けられる。断熱部324は、高温面と低温面との間の熱分離帯を提供する。断熱部324の上には、冷却ブロック326がある。冷却ブロック326は、冷却ブロック326を冷却する役割を果たす複数の冷却部を含む。したがって、加熱/冷却プレート302は、熱ガスケット320と、加熱ブロック322と、断熱部324と、冷却ブロック326とを含むサンドイッチ構造として見ることができる。したがって、真空プレート310の温度は、加熱ブロック322の加熱部又は冷却ブロック326の冷却部の起動を通じて制御することができる。
【0031】
図4は、本発明の別の実施形態による、プラズマ処理装置400の断面図である。プラズマ処理装置400は、図3に示すプラズマ処理装置300と同様である。プラズマ処理装置400は、真空プレート310と結合する加熱/冷却プレート402を含む。加熱/冷却プレート402は、熱ガスケット320と、加熱ブロック322と、断熱部324と、冷却ブロック326とを含むサンドイッチ構造を含む点において、図3に示す加熱/冷却プレート302と同様である。加えて、加熱/冷却プレート402は、加熱ブロック322内のノッチ404と、冷却ブロック326内のノッチ406とを含む。加熱/冷却プレート402は、プラズマ処理チャンバ402内部でプラズマを発生させる役割を果たす高周波コイル314に近接する位置にあり、高周波コイル314の周囲には、大量の高周波(RF)エネルギが存在する可能性がある。その結果、加熱ブロック322及び冷却ブロック326にそれぞれ設けられたノッチ404及び406は、高周波コイル314から加熱ブロック322及び冷却ブロック326の一方又は両方への高周波エネルギの結合を十分に防止する役割を果たす。詳しくは、高周波コイル314を取り囲む導電ループが提供され、電磁エネルギの結合が促進される場合、高周波コイル314は、加熱ブロック322又は冷却ブロック326内で縦環電流を誘導し得る。加えて、高周波コイル314を取り巻かない渦電流も、そのエリアと高周波コイル314との近接性に応じて、エネルギを結合し得る。しかしながら、加熱ブロック322及び冷却ブロック326に設けられたノッチ(又はスロット)は、高周波コイル314からの結合エネルギを受領する役割を果たす導電ループの存在を回避し、渦電流のエリアを減少させるのに役立つ。このように、ノッチ404及び406は、高周波エネルギが加熱/冷却プレート402と結合するのを防止する。潜在的には、高周波エネルギは、加熱/冷却プレート402と結合できる場合、加熱/冷却プレート402に損傷を与え、温度制御を妨害し、プラズマの生成に利用可能な電力を減少させ、及び/又は高周波結合を最小化するために他のコストのかかる手段を取り入れる必要性を生み出す可能性がある。
【0032】
図5は、一実施形態による、図4に示したプラズマ処理装置400が提供する真空プレート310上に設けられた冷却ブロック326の平面図である。冷却ブロック326は、冷却ブロック326を巡回する冷却チューブにより提供される冷却部を含む。図5において、この冷却チューブは、冷却液の入口500と出口502とを有する。この実施形態において、この冷却液は、安全で安価な液体である水(つまり、H2O)にすることができるが、他の液体を使用することもできる。冷却部は、このように、冷却ブロック326を巡回する単一の冷却チューブにより提供される。図5に示すように、単一の冷却チューブを利用して、冷却部を提供することができる。言い換えれば、この実施形態においては、冷却ブロック326内に設けられた冷却チューブの様々な部分により、冷却部を実施することができる。
【0033】
加えて、冷却ブロック326は、図4に示すノッチ404及び406を実施する切断部504及び506も含む。切断部504及び506のパターンは、コイル314から高周波エネルギを受領する役割を果たす冷却ブロック326内の導電ループを防止するのに役立つ。言い換えれば、切断部504及び506は、加熱/冷却プレート302の冷却ブロック326内に高周波エネルギが結合するのを防止するため、或いは少なくとも十分に低減するために、冷却ブロック326内に形成される。
【0034】
図5では、冷却ブロック326の冷却部及び切断部504及び506に関する特定のパターンが例示されているが、当業者が認識するように、代替の冷却部及びノッチを利用することが可能である。例えば、冷却部は、冷却液用の単一の入口及び出口ではなく、複数の流路により提供することができる。更に、冷却部及びノッチ(切断部)については、放射パターンを使用して、異なる配置で同様の効果を達成することができる。
【0035】
図5では、コイル314からの高周波結合を十分に低減する切断部504及び506を有する冷却プレート326を示したが、加熱プレート322も、コイル314からの高周波エネルギを受領する役割を果たす加熱ブロック322内の導電ループを防止するために、同じように切断部によりパターン化することができる。更に、一実施形態において、加熱ブロック322の切断部は、冷却プレート326の切断部504及び506と同じパターンで、重なるように配置され、ただしこれらは断熱部324により分離される。
【0036】
更に、図3乃至5では、真空プレート310上の加熱又は冷却コンポーネントを高周波コイル314の内部に設けた状態を例示していないが、高周波コイルの内部に小型の加熱/冷却プレートを設けて、補助的な加熱又は冷却を行うことも可能である点に注意するべきである。こうした加熱/冷却プレートは、加熱/冷却プレート302、402と同じ方法で準備及び利用できる。
【0037】
図6は、本発明の別の実施形態による、プラズマ処理装置600の断面図である。プラズマ処理装置600は、図3に示すプラズマ処理装置300、或いは図4に示すプラズマ処理装置400と同様である。しかしながら、加えて、プラズマ処理装置600は、加熱/冷却ブロック302、402の冷却ブロック326上に設けられたカバープレート602を含む。カバープレート602は、例えば、ナイロンで作ることができる。
【0038】
加えて、正確な位置を有する支持プレート604を使用することが可能であり、これは、加熱/冷却プレート302、402を真空プレート310に対して正しい位置に保持し、更に、プラズマ処理装置600の保守又は再構成のために加熱/冷却プレート302、402を取り外せるようにする。プラズマ処理装置600は、支持プレート604に関してばね610及び612をガイドするピン606及び608を含む。ばね610及び612は、カバープレート602を押圧し、加熱/冷却プレート302、402を付勢して真空プレート310の外表面に当接させる役割を果たす。したがって、支持部604と、ピン606及び608と、ばね610及び612は、協働し、真空プレート310の外表面との優れた熱接触がある状態で、加熱/冷却プレート302、402を保持する。更に、加熱/冷却プレート302、402は、ピン606及び608を引き込み、加熱/冷却プレート302、402を引き出すことにより、最小限の操作で真空プレート310から取り外すことができる。加熱/冷却プレート302、402を容易に取り外せることで、迅速な修理、保守、又は再構成が可能となり、更に、一貫した位置的及び熱的接触での再組立が可能となる。
【0039】
図7は、本発明の更に別の実施形態による、プラズマ処理装置700の断面図である。プラズマ処理装置700は、図3に示すプラズマ処理装置300と同様だが、複数の側壁部加熱及び冷却ユニットを更に含む。図7では、二つの複数の側壁部加熱及び冷却ユニット702及び704が例示されている。通常、この加熱及び冷却ユニットは、図9に関して下で説明するような均一な方法で、処理チャンバの周囲に設けられる。
【0040】
側壁部加熱及び冷却ユニット702は、熱ガスケット706と、加熱ブロック708と、断熱部710と、冷却ブロック712とを含む。同様に、側壁部加熱及び冷却ユニット704は、熱ガスケット714と、加熱ブロック718と、断熱部720と、冷却ブロック722とを含む。したがって、側壁部加熱及び冷却ユニット702及び704は、図2Aに示す加熱/冷却ブロック200と同様の仕組みを有する。側壁部加熱及び冷却ユニット702及び704は、プラズマ処理チャンバ304の側壁部の外表面と熱的に結合する。側壁部加熱及び冷却ユニット702及び704は、プラズマ処理チャンバ304の側壁部を加熱又は冷却するために制御され、これにより、プラズマ処理チャンバ304の側壁部の内表面の温度を制御する。
【0041】
図7では、真空プレート310上に設けられた加熱/冷却プレート302が例示されているが、この実施形態において、加熱/冷却プレート302はオプションであり、プラズマ処理装置700は、プラズマ処理チャンバ304の側壁部に結合された複数の加熱及び冷却ユニットを提供する動作が可能であり、真空プレート310に結合された加熱/冷却プレート302は、含んでも含まなくてもかまわないと理解するべきである。ただし、加熱/冷却プレート302が、プラズマ処理装置700に設けられる場合、加熱/冷却プレート302は、ノッチ404及び406、或いは支持プレート604と、ピン606及び608と、ばね610及び612とを含むことができる(図4乃至6参照)。
【0042】
加熱及び冷却ユニット702及び704は、全般的には、図2Aに示す加熱/冷却ブロック200に従って設計される。図8Aは、側壁部加熱及び冷却ユニット702及び704の特定の実施形態を示している。
【0043】
図8Aは、側壁部加熱及び冷却ユニット800の一部の平面図を示している。この加熱及び冷却システム800は、プラズマ処理チャンバの壁部802の外表面、更には内表面を加熱又は冷却する機能を果たす。この例において、プラズマ処理チャンバは、円形の設計を有するため、図8Aにおいて、壁部802の例示部分は、湾曲を有するように示されている。図8Aは、更に、壁部802の例示部分と熱的に結合された二つの加熱及び冷却ユニットを示している。図8Aにおいて、それぞれの加熱及び冷却ユニットは、平面断面図として示されている。この加熱及び冷却ユニットは、薄いコンフォーマル熱インタフェースを提供する熱ガスケット804を含む。これにより、この熱ガスケットは、加熱及び冷却ユニットと壁部802の外表面との間に優れた熱結合を提供する。この加熱及び冷却ユニットは、更に、加熱ブロック806を含む。それぞれの加熱ブロック806は、抵抗要素807を含み、抵抗要素807に電流が送られる時、この抵抗要素は、加熱ブロックを加熱する役割を果たす。この加熱及び冷却ユニットは、更に、一対の冷却領域808及び810を含む。これらの冷却領域は、それぞれ、冷却部809及び811を含む。一例として、冷却部809及び811は、冷却液が貫流するチューブに関連づけることができる。この加熱及び冷却ユニットは、更に、冷却領域808と加熱ブロック806との間に断熱部812を含み、冷却領域810と加熱ブロック806との間に断熱部814を含む。断熱部812及び814は、冷却領域808及び810と加熱ブロック806との間の温度差に温度勾配を与えることが可能な領域を提供する。
【0044】
図8Aの壁部802は、単一の構成要素として表示されているが、図8Bでは、壁部がサンドイッチ構造802dである別の実施形態を示している。内壁部要素802aは、プラズマ処理チャンバの用途に適した特定の材料で作ることができる。外壁部要素802bは、内壁部の支持部として機能する物理特性を有する任意の適切な材料で作ることができる。外壁部802aと、二つの壁部要素802a及び802bを接合する接合材料802cは、図8に示す加熱及び冷却システム800による内壁部要素802aの内表面の温度制御を可能にする適度な熱伝導率を有する必要がある。接合材料802cの厚さと組成は、望ましい熱制御性能、内壁部及び外壁部材料802b、802aの間での熱膨張係数の不一致の補正に応じて変化させることができる。接合材料802cの厚さと組成は、更に、内壁部及び外壁部要素の間の電気伝導率を変え、望ましい場合、温度制御を行っている間に内壁部を電気的に浮遊させるために変化させることができる。この構造は、一部の状況において、他にも多数の利点を有する。内壁部802aの材料は、壁部802の構造要件をあまり気にせずに選択できるため、プラズマ処理チャンバの内部体積に面する材料の化学的又は電気的特性に関する選択の幅を広げることができる。加えて、これにより、壁部として望ましいサイズ又は形状では利用できないが、リアクタの内部体積に面する材料が重要となる場所では利用可能な材料を選択することができるようになる。こうした内壁部材料のタイル張りは、タイルの適切な成形と、可能な接合部802eにより図8Bに示す配置とにより達成することができる。
【0045】
図7及び8に示すプラズマ処理チャンバの側壁部で利用する加熱及び冷却ユニットは、図4に示す加熱/冷却プレート302に設けられたノッチ又はスロットを含む必要はなく、これは、プラズマ処理チャンバの側壁部で利用する加熱及び冷却ユニットは、プラズマを発生させる真空プレート上のコイルからの強い高周波結合を受領しないためである。
【0046】
図9は、本発明の一実施形態による、プラズマ処理チャンバ900の断面を示す平面図である。プラズマ処理チャンバ900は、チャンバ壁部902と外部コンテナ壁部904とを表している。一連の加熱/冷却ブロック906は、チャンバ壁部902の外表面と熱的に結合されている。図9に示すように、加熱/冷却ブロック906は、チャンバ壁部902の周囲で、等距離の間隔をあけることができる。この実施形態では、チャンバ壁部902の温度を制御するために設けられた16の加熱/冷却ブロック906が存在している。しかしながら、特にチャンバ壁部902の熱伝導率が大幅に変化する場合、或いは加熱/冷却ブロックの表面積が拡大した場合、異なる数の加熱/冷却ブロックを容易に提供できると認識するべきである。チャンバ壁部902は、図8Bに示すようなサンドイッチ又はタイル壁部構造にすることもできる。更に、それぞれの加熱/冷却ブロック906には、ばね付勢ピン908により、チャンバ壁部902の外表面に対する付勢力が加えられる。ばね付勢ピン908には、加熱ブロック906をチャンバ壁部902の外表面に押しつけるために、外部コンテナ壁部904に対するばね付勢力が加わる。このばね付勢力は、熱結合及び再現性を改善するだけでなく、修理、保守、又は再構成を簡略化する容易な取り外しを可能にする。
【0047】
図10は、チャンバ壁部1002と外部コンテナ壁部1004とが設けられるプラズマ処理チャンバ1000の一部の側面断面図である。一例として、チャンバ壁部1002及び外部コンテナ壁部1004は、図9に例示するチャンバ壁部602及び外部コンテナ壁部904と同様に設けることができる。ここでは、プラズマ処理チャンバ1000は、一対の垂直位置加熱/冷却ブロック、つまり加熱/冷却ブロック1006及び1008を含む。ばね付勢ピン1010及び1012は、それぞれ、加熱/冷却ブロック1006及び1008に、チャンバ壁部1002に対する付勢力を加える。ばね付勢ピン1010及び1012は、外部コンテナ壁部1004に作用する。加えて、ばね付勢ピン1010及び1012は、ハンドル1018に結合される。このハンドル1018により、技術者は、チャンバ壁部1002又は加熱/冷却ブロック1006及び1008自体の保守、修理、交換、又はその他の作業のために、加熱/冷却ブロック1006及び1008をチャンバ壁部から容易に取り外すことができる。ハンドル1018を(外部コンテナ壁部1004とは反対に)引き戻すことで、ばね付勢ピン1010及び1012は、引き込まれ、加熱/冷却ブロック1006及び1008は、チャンバ壁部1002に押しつけられなくなり、この部品をこすることなく相対的に移動させ、容易な取り外し又は作業を行うことができる。
【0048】
図11は、本発明の更に別の実施形態による、プラズマ処理装置1100の断面図である。プラズマ処理装置1100は、加熱/冷却プレート302を含む点において、図3に例示するプラズマ処理装置302と同様である。しかしながら、プラズマ処理装置1100は、プラズマ処理装置1100の他のエリアを冷却する追加コンポーネントを含む。特に、プラズマ処理装置1100は、加熱/冷却プレート302の冷却ブロック310の上に設けられたカバープレート1102を含む。プラズマ処理装置1100は、更に、プラズマ処理チャンバ304に関して、固定された正確な位置を有する支持プレート1104を含む。ピン1106及び1108は、支持プレート1104を通じて、カバープレート1102に向けて提供される。ばね1110及び1112は、それぞれ、ピン1106及び1108に設けられ、加熱/冷却ブロック302を付勢して真空プレート310の表面に当接させる。言い換えれば、ばね1110及び1112は、支持プレート1104からカバープレート1102に向けて力を加え、加熱/冷却プレート302を真空プレート310に押しつけるために使用される。更に又、支持プレート1104は、DCコイル1114及び1116を支持することもできる。このDCコイルの重量は、支持プレート1104とカバープレート1102とが接触している場合、ピン1106、1108及びばね1110、1112装置を不要にする力を加えるのに十分なものにすることができる。DCコイル1114及び1116は、磁界の使用により、プラズマ処理チャンバ304内のプラズマ分布を変更するために使用することができる。DCコイルの動作とプラズマ処理装置に関するその使用方法の補足的な詳細については、本願と共に現在申請中である米国特許出願番号09/439,661(代理人整理番号LAM1P122)、名称「改良したプラズマ処理システム及びその方法」において説明されており、これは、参照により本明細書に組み込むものとする。更に、DCコイル、或いはDCコイル1114及び1116を支持する支持プレート1104を冷却するために、支持プレート1104は、支持プレート1104を冷却する冷却部1118及び1120を含む。一実施形態において、冷却部1118及び1120は、冷却液が貫流するチューブ(チャネル)により提供することができる。これにより、DCコイル1114及び1116が動作する温度を低下させ、動作中にオーバヒートしないようにすること、及び/又は更に均一な動作のために温度を全般的に制御することが可能となる。一実施形態においては、DCコイル1114及び1116の冷却を向上させるために、冷却部1118及び1120は、DCコイル1114及び1116の直下に設けることができる。DCコイル1116、1114及び支持プレート1104の重量を使用して、加熱/冷却プレート302(温度制御サンドイッチ組立体)を真空プレート310(温度制御する表面)に押しつける場合、冷却部1118及び1120付きの冷却支持プレート1104を、冷却ブロック310及びカバープレート1102で代用できる可能性があると考えられる。
【0049】
冷却ブロックでは、普通の水を貫流させて関連する表面を冷却する冷却チューブを利用することができる。一実施形態において、この冷却水の温度は、約摂氏15乃至20度に固定され、流量は、冷却ブロックによる冷却速度を増減させるために制御される。
【0050】
断熱部は、一般に、シリコンゴム等のゴムで形成される。この熱障壁部の温度係数は、一般に、0.1乃至2ワット/mKであり、更に詳しくは約1ワット/mKである。熱ガスケットも、金属含有シリコンゴム等のゴムで形成できる。しかしながら、この熱ガスケットは、加熱/冷却プレートと真空プレートの表面とが優れた熱結合をするように、高い熱伝導率(例えば4ワット/mK)を有する設計となる。この点において、熱ガスケットに使用されるゴムは、熱伝導率を増加させるために、銀含有のものにすることができる。温度センサは、多数の場所に設けることができる。一実施形態において、温度センサは、加熱/冷却プレートが使用するものとして真空プレートの外表面に結合され、加熱及び冷却部が温度のモニタ用に使用するものとして側壁部の適切な位置に結合される。
【0051】
本発明は、プラズマ処理装置の動作中、およそ+/−5℃の範囲でプラズマ処理チャンバの温度を制御することができる。本発明は、更に、適切に配置された加熱及び冷却部を使用して、現行の処理チャンバでの滑らかな空間温度分布を提供することができる。
【0052】
このプラズマ処理チャンバは、十分な熱伝導率(例えば、200ワット/mK超)を有するが熱膨張の問題から金属ライナに比べて加熱及び冷却が困難な炭化ケイ素(SiC)にすることができる。本発明は、炭化ケイ素で作られたプラズマ処理チャンバにおいて温度制御を行うのに特に適している。本発明は、冷却を行うだけでなく、必要に応じて加熱も行う。プラズマ処理チャンバの加熱及び冷却は、プラズマ処理チャンバの外側から有利な形で行われる。
【0053】
本発明には、多数の利点がある。様々な実施形態又は実施により、以下の一つ以上の利点を生み出すことができる。本発明の利点の一つは、本発明により、正確さ及び精度を大幅に向上させて、プラズマ処理デバイスの温度を制御できる点である。本発明の別の利点は、加熱及び冷却が、両方とも共通の熱インタフェースを通じて行われる点である。本発明の更に別の利点は、共通の熱インタフェースを使用することで、冷却及び加熱の両方を提供できるだけでなく、温度制御される表面において生じる温度プロフィールが、均一で滑らかなものになる点である。本発明の更に別の利点は、非侵襲的で、容易に取り外し可能な点である。
本発明の僅かな実施形態についてだけ詳細に説明してきたが、本発明は、本発明の趣旨又は範囲から逸脱しない限り、他の多数の具体的な形態で実施し得ることは理解されたい。従って、本明細書の例は、限定的ではなく例示的なものとしてみなされるべきであり、本発明は、本明細書で述べた詳細に制限されず、前記特許請求の範囲内で変形可能である。
【図面の簡単な説明】
【図1】 半導体ベースのデバイスの製造に適した簡略化したプラズマ処理装置を示す図である。
【図2A】 本発明の一実施形態による、加熱及び冷却ユニットを示す図である。
【図2B】 本発明の一実施形態による、温度制御システムのブロック図である。
【図3】 本発明の一実施形態による、プラズマ処理装置の断面図である。
【図4】 本発明の別の実施形態による、プラズマ処理装置の断面図である。
【図5】 一実施形態による、図4に示したプラズマ処理装置が提供する真空プレート上に設けられた冷却ブロックの平面図である。
【図6】 本発明の別の実施形態による、プラズマ処理装置の断面図である。
【図7】 本発明の更に別の実施形態による、プラズマ処理装置の断面図である。
【図8A】 熱的に結合された二つの加熱及び冷却ユニットを有する側壁部加熱及び冷却システムの一部を示す平面図である。
【図8B】 プラズマ処理装置のチャンバ壁部の代替構造を示す図である。
【図9】 本発明の一実施形態による、プラズマ処理チャンバの断面を示す平面図である。
【図10】 チャンバ壁部と外部コンテナ壁部とが設けられるプラズマ処理チャンバの一部の側面断面図である。
【図11】 本発明の更に別の実施形態による、プラズマ処理装置の断面図である。
【符号の説明】
100…プラズマ処理装置
102…プラズマ処理チャンバ
104…チャック
106…ウェーハ
108…シャワーヘッド
110…真空プレート
112…壁部
114…コイル
116…ポンプ
118…ダクト
200…加熱及び冷却ユニット
202…表面
204…コンフォーマル熱インタフェース
206…加熱ブロック
208…断熱部
210…冷却ブロック
250…温度制御システム
252…表面
254…熱マネージャ
256…温度センサ
258、260…加熱部
262、264…冷却部
300…プラズマ処理装置
302…加熱/冷却プレート
304…プラズマ処理チャンバ
306…ウェーハ保持メカニズム
308…ウェーハ
310…真空プレート
314…コイル
316…ポンプ
320…熱ガスケット
322…加熱ブロック
324…断熱部
326…冷却ブロック
400…プラズマ処理装置
402…加熱/冷却プレート
404、406…ノッチ
500…入口
502…出口
504、506…切断部
600…プラズマ処理装置
602…カバープレート
604…支持プレート
606、608…ピン
610、612…ばね
700…プラズマ処理装置
702、704…側壁部加熱及び冷却ユニット
706、714…熱ガスケット
708、718…加熱ブロック
710、720…断熱部
712、722…冷却ブロック
800…側壁部加熱及び冷却ユニット
802…壁部
802a…内壁部要素
802b…外壁部要素
802c…接合材料
802d…サンドイッチ構造
802e…接合部
804…熱ガスケット
806…加熱ブロック
807…抵抗要素
808、810…冷却領域
809、811…冷却部
812、814…断熱部
900…プラズマ処理チャンバ
902…チャンバ壁部
904…外部コンテナ壁部
906…加熱/冷却ブロック
908…ばね付勢ピン
1000…プラズマ処理チャンバ
1002…チャンバ壁部
1004…外部コンテナ壁部
1006、1008…加熱/冷却ブロック
1010、1012…ばね付勢ピン
1018…ハンドル
1100…プラズマ処理装置
1102…カバープレート
1104…支持プレート
1106、1108…ピン
1110、1112…ばね
1114、1116…DCコイル

Claims (26)

  1. 内表面及び外表面を有する壁部及び蓋を有し、プロセスガスにより生成されたプラズマを使用して基板を処理すべく使用される処理チャンバと、
    プラズマを発生させる高周波エネルギの生成に使用される高周波コイルと、
    前記処理チャンバの外表面に熱的に結合され、前記処理チャンバの内部温度を調節すべく制御される加熱・冷却ブロックを少なくとも一つ含む熱管理システムと、
    を備え、
    前記加熱・冷却ブロックが、
    加熱部と、
    冷却部と、
    前記加熱部と前記冷却部に挟まれた断熱部であって、前記加熱部と前記冷却部との間に、前記熱管理システムと前記処理チャンバの外表面との間の前記熱的な結合の熱伝導率より低い熱伝導率を有する移行領域を備える断熱部と、
    を含み、
    少なくとも一つの前記加熱・冷却ブロックが、前記処理チャンバの外表面に対して機械的に付勢されており、
    前記加熱部及び前記冷却部のうち少なくとも一方が、前記高周波コイルからの高周波結合を最小化するスロットを有する
    プラズマ処理装置。
  2. 前記加熱部が、前記処理チャンバの外表面に熱的に結合され、前記冷却部が、前記断熱部及び前記加熱部を介して、前記処理チャンバの外表面に熱的に結合される請求項1記載のプラズマ処理装置。
  3. 前記加熱・冷却ブロックが、前記処理チャンバの壁部の一つにコンフォーマル熱インタフェースを介して熱的に結合される請求項1または請求項2記載のプラズマ処理装置。
  4. 前記処理チャンバの壁部が、熱的及び/又は電気的に材料を接合したサンドイッチ構成を有する請求項1ないし請求項3のいずれか記載のプラズマ処理装置。
  5. 前記処理チャンバの壁部が、タイル張りにより形成された材料を熱的及び/又は電気的に接合したサンドイッチ構造を有する請求項1または請求項2記載のプラズマ処理装置。
  6. 前記加熱・冷却ブロックが、前記処理チャンバの蓋にコンフォーマル熱インタフェースを介して熱的に結合される請求項1または請求項2のいずれか記載のプラズマ処理装置。
  7. 請求項1ないし請求項6のいずれか記載のプラズマ処理装置であって、
    前記冷却部は、冷却液を巡回させる冷却チューブを備え、
    前記スロットは、前記冷却チューブに沿って配置された
    プラズマ処理装置。
  8. 請求項1ないし請求項7のいずれか記載のプラズマ処理装置であって、
    前記加熱部は、前記冷却部に設けられた前記スロットと同じ配置パターンで、かつ重なる位置にスロットを有する
    プラズマ処理装置。
  9. 前記少なくとも一つの加熱・冷却ブロックが、更に、コンフォーマルガスケットを含み、
    前記加熱部が、前記コンフォーマルガスケットを介して、前記処理チャンバの外表面に熱的に結合され、前記冷却部が、前記断熱部と、前記断熱部と、前記コンフォーマルガスケットとを介して、前記処理チャンバの外表面に熱的に結合される請求項1または請求項2記載のプラズマ処理装置。
  10. 前記処理チャンバの壁部及び蓋の少なくとも内表面が、セラミックである請求項1ないし請求項9のいずれか記載のプラズマ処理装置。
  11. 前記セラミックが、SiCである請求項10記載のプラズマ処理装置。
  12. 前記処理チャンバの壁部及び蓋の少なくとも内表面が、セラミックであり、
    前記加熱部及び前記冷却部が、金属である請求項9記載のプラズマ処理装置。
  13. 前記断熱部及び前記コンフォーマルガスケットが、ゴムである請求項12記載のプラズマ処理装置。
  14. 前記熱ガスケットの熱伝導率が、前記断熱部の熱伝導率よりも高い請求項13記載のプラズマ処理装置。
  15. 前記少なくとも一つの加熱・冷却ブロックが、ばねにより付勢されて前記処理チャンバの外表面に当接する請求項1ないし請求項14のいずれか記載のプラズマ処理装置。
  16. 前記少なくとも一つの加熱・冷却ブロックの機械的な付勢が、ばねにより提供され、
    前記少なくとも一つの加熱・冷却ブロックが、ばねを収縮させることで、前記処理チャンバの外表面の熱的に結合した位置から取り外すことができる
    請求項1ないし請求項14のいずれか記載のプラズマ処理装置。
  17. 壁部と底面とにより形成されたプラズマ処理チャンバと、
    前記プラズマ処理チャンバの壁部の頂部に取り外し可能に結合された密閉蓋と、
    前記密閉蓋の上面に設けられた高周波電力電極と、
    前記密閉蓋又は前記プラズマ処理チャンバに結合された少なくとも一つの温度センサと、
    前記密閉蓋の上面に結合された第一の加熱及び冷却ユニットと、
    前記プラズマ処理チャンバの壁部の外表面に結合された第二の加熱及び冷却ユニットと、
    を備え、
    前記第一の加熱・冷却ユニットは、前記密閉蓋の上面に対して移動可能にかつ機械的に付勢されており、前記第二の加熱・冷却ユニットは、プラズマ処理チャンバの壁部の外表面に対して移動可能かつ機械的に付勢されており、
    前記第一の加熱及び冷却ユニットが、前記高周波電力電極から前記第一の加熱及び冷却ユニットへの高周波エネルギの結合を回避するスロットを有する
    半導体製造装置。
  18. 前記第一の加熱・冷却ユニットは、加熱部と冷却部とを有し、
    前記冷却部は、冷却液を巡回させる冷却チューブを備え、
    前記スロットは、前記冷却チューブに沿って配置された
    請求項17記載の半導体製造装置。
  19. 前記加熱部は、前記冷却部に設けられた前記スロットと同じ配置パターンで、かつ重なる位置にスロットを有する請求項18記載の半導体製造装置。
  20. 前記第一及び第二の加熱及び冷却ユニットが、それぞれ、サンドイッチ構造を有し、
    加熱部と、
    冷却部と、
    前記加熱部と前記冷却部との間に介在する断熱部であって、前記加熱部と前記冷却部との間に、前記密閉蓋の上面への前記第一の加熱及び冷却ユニットの熱的な前記結合または前記壁部の外表面への前記第二の加熱及び冷却ユニットの熱的な前記結合の熱伝導率より低い熱伝導率を有する移行領域を備える断熱部と、
    を含む請求項17ないし請求項19のいずれか記載の半導体製造装置。
  21. 前記第一の加熱及び冷却ユニットの前記加熱部が、前記プラズマ処理チャンバの前記密閉蓋の外表面に熱的に結合され、前記第一の加熱及び冷却ユニットの前記冷却部が、前記断熱部及び前記加熱部を介して、前記プラズマ処理チャンバの前記密閉蓋の外表面に熱的に結合される請求項20記載の半導体製造装置。
  22. サンドイッチ構造を有し、プロセスガスにより生成されたプラズマを用いて基板を処理すべく使用される処理チャンバと共に用いられる加熱・冷却ブロックであって、
    加熱部と、
    冷却部と、
    前記加熱部と前記冷却部との間に介在する断熱部であって、前記加熱部と前記冷却部との間に、前記処理チャンバへの前記加熱・冷却ブロックの熱的な結合の熱伝導率より低い熱伝導率を有する移行領域を備える断熱部と、
    を備え、
    前記加熱・冷却ブロックが、前記処理チャンバの外表面に対して、移動可能かつ機械的に付勢されており、
    前記加熱部及び前記冷却部のうち少なくとも一方が、前記処理チャンバ内にプラズマを発生させる高周波エネルギの生成に使用される高周波コイルからの高周波結合を最小化するスロットを有する
    加熱・冷却ブロック。
  23. 前記加熱部に取り付けられたコンフォーマルガスケットを含む請求項22記載の加熱・冷却ブロック。
  24. 前記断熱部が、ゴム製品であり、前記加熱部及び前記冷却部が、金属である請求項22または請求項23記載の加熱・冷却ブロック。
  25. 請求項22ないし請求項24のいずれか記載の加熱・冷却ブロックであって、
    前記冷却部は、冷却液を巡回させる冷却チューブを備え、
    前記スロットは、前記冷却チューブに沿って配置された
    加熱・冷却ブロック。
  26. 請求項25記載の加熱・冷却ブロックであって、
    前記加熱部は、前記冷却部に設けられた前記スロットと同じ配置パターンで、かつ重なる位置にスロットを有する
    加熱・冷却ブロック。
JP2001537772A 1999-11-15 2000-11-14 プラズマ処理装置、半導体製造装置、およびこれに用いる加熱・冷却ブロック Expired - Lifetime JP4776130B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US16549699P 1999-11-15 1999-11-15
US60/165,496 1999-11-15
US09/439,675 1999-11-15
US09/439,675 US6302966B1 (en) 1999-11-15 1999-11-15 Temperature control system for plasma processing apparatus
PCT/US2000/031411 WO2001037316A1 (en) 1999-11-15 2000-11-14 Temperature control system for plasma processing apparatus

Publications (3)

Publication Number Publication Date
JP2003514390A JP2003514390A (ja) 2003-04-15
JP2003514390A5 JP2003514390A5 (ja) 2009-01-08
JP4776130B2 true JP4776130B2 (ja) 2011-09-21

Family

ID=26861442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001537772A Expired - Lifetime JP4776130B2 (ja) 1999-11-15 2000-11-14 プラズマ処理装置、半導体製造装置、およびこれに用いる加熱・冷却ブロック

Country Status (8)

Country Link
US (1) US20020007795A1 (ja)
EP (1) EP1230663A1 (ja)
JP (1) JP4776130B2 (ja)
KR (1) KR100787848B1 (ja)
CN (1) CN1251294C (ja)
AU (1) AU1490301A (ja)
TW (1) TW508617B (ja)
WO (1) WO2001037316A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278386C (zh) * 2000-09-29 2006-10-04 东京毅力科创株式会社 热处理装置和热处理方法
US6810832B2 (en) 2002-09-18 2004-11-02 Kairos, L.L.C. Automated animal house
KR100549529B1 (ko) * 2003-12-26 2006-02-03 삼성전자주식회사 반도체제조장치
JP4361811B2 (ja) * 2004-01-09 2009-11-11 東京エレクトロン株式会社 半導体製造装置
US7358192B2 (en) * 2004-04-08 2008-04-15 Applied Materials, Inc. Method and apparatus for in-situ film stack processing
US7651583B2 (en) * 2004-06-04 2010-01-26 Tokyo Electron Limited Processing system and method for treating a substrate
US8540843B2 (en) 2004-06-30 2013-09-24 Lam Research Corporation Plasma chamber top piece assembly
US20060000551A1 (en) * 2004-06-30 2006-01-05 Saldana Miguel A Methods and apparatus for optimal temperature control in a plasma processing system
US7780791B2 (en) * 2004-06-30 2010-08-24 Lam Research Corporation Apparatus for an optimized plasma chamber top piece
JP4615335B2 (ja) * 2005-03-11 2011-01-19 東京エレクトロン株式会社 温度制御システム及び基板処理装置
JP2008244224A (ja) * 2007-03-28 2008-10-09 Sumitomo Precision Prod Co Ltd プラズマ処理装置
EP2234463A1 (en) * 2007-12-27 2010-09-29 Sharp Kabushiki Kaisha Plasma treatment apparatus, heating device for the plasma treatment apparatus, and plasma treatment method
JP2010016225A (ja) * 2008-07-04 2010-01-21 Tokyo Electron Ltd 温度調節機構および温度調節機構を用いた半導体製造装置
JP4611409B2 (ja) * 2008-09-03 2011-01-12 晃俊 沖野 プラズマ温度制御装置
JP5430192B2 (ja) * 2009-03-19 2014-02-26 東京エレクトロン株式会社 温度調節装置、温度調節方法、基板処理装置及び対向電極
DE212010000009U1 (de) 2009-09-10 2011-05-26 LAM RESEARCH CORPORATION (Delaware Corporation), California Auswechselbare obere Kammerteile einer Plasmaverarbeitungsvorrichtung
US10595365B2 (en) * 2010-10-19 2020-03-17 Applied Materials, Inc. Chamber lid heater ring assembly
JP5912439B2 (ja) * 2011-11-15 2016-04-27 東京エレクトロン株式会社 温度制御システム、半導体製造装置及び温度制御方法
US20130220975A1 (en) * 2012-02-27 2013-08-29 Rajinder Dhindsa Hybrid plasma processing systems
JP2014067841A (ja) * 2012-09-26 2014-04-17 Spp Technologies Co Ltd チャンバの加熱構造
KR102052074B1 (ko) 2013-04-04 2019-12-05 삼성디스플레이 주식회사 증착 장치, 이를 이용한 박막 형성 방법 및 유기 발광 표시 장치 제조 방법
CN104717817A (zh) * 2013-12-12 2015-06-17 中微半导体设备(上海)有限公司 一种用于电感耦合型等离子处理器射频窗口的加热装置
CN105655220B (zh) * 2014-11-12 2018-01-02 中微半导体设备(上海)有限公司 电感耦合型等离子体处理装置
CN108024436A (zh) * 2016-11-01 2018-05-11 中微半导体设备(上海)有限公司 一种等离子体处理装置
KR102524258B1 (ko) * 2018-06-18 2023-04-21 삼성전자주식회사 온도 조절 유닛, 온도 측정 유닛 및 이들을 포함하는 플라즈마 처리 장치
CN110660707B (zh) * 2018-06-29 2022-06-14 台湾积体电路制造股份有限公司 电浆产生系统及温度调节方法
US11424107B2 (en) 2018-06-29 2022-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Temperature-controlled plasma generation system
US11264252B2 (en) * 2018-10-12 2022-03-01 Applied Materials, Inc. Chamber lid with integrated heater
KR102645259B1 (ko) * 2019-06-07 2024-03-11 주식회사 케이씨텍 기판 처리 장치
KR20210018761A (ko) * 2019-08-09 2021-02-18 에이에스엠 아이피 홀딩 비.브이. 냉각 장치를 포함한 히터 어셈블리 및 이를 사용하는 방법
TWI729945B (zh) * 2020-10-06 2021-06-01 天虹科技股份有限公司 在粉末上形成薄膜的原子層沉積裝置
CN112750676B (zh) * 2020-11-24 2022-07-08 乐金显示光电科技(中国)有限公司 一种等离子体处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245295A (ja) * 1994-03-07 1995-09-19 Tokyo Electron Ltd 処理装置
JPH1064882A (ja) * 1996-05-13 1998-03-06 Applied Materials Inc ポリマ硬化前駆体材料の熱源を有するプラズマリアクタ
JPH10116826A (ja) * 1996-07-15 1998-05-06 Applied Materials Inc 誘導結合型hdp−cvdリアクター
JPH11135296A (ja) * 1997-07-14 1999-05-21 Applied Materials Inc マルチモードアクセスを有する真空処理チャンバ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063233A (en) * 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6024826A (en) * 1996-05-13 2000-02-15 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US5616264A (en) * 1993-06-15 1997-04-01 Tokyo Electron Limited Method and apparatus for controlling temperature in rapid heat treatment system
TW279240B (en) * 1995-08-30 1996-06-21 Applied Materials Inc Parallel-plate icp source/rf bias electrode head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245295A (ja) * 1994-03-07 1995-09-19 Tokyo Electron Ltd 処理装置
JPH1064882A (ja) * 1996-05-13 1998-03-06 Applied Materials Inc ポリマ硬化前駆体材料の熱源を有するプラズマリアクタ
JPH10116826A (ja) * 1996-07-15 1998-05-06 Applied Materials Inc 誘導結合型hdp−cvdリアクター
JPH11135296A (ja) * 1997-07-14 1999-05-21 Applied Materials Inc マルチモードアクセスを有する真空処理チャンバ

Also Published As

Publication number Publication date
TW508617B (en) 2002-11-01
AU1490301A (en) 2001-05-30
CN1423826A (zh) 2003-06-11
KR20020060971A (ko) 2002-07-19
WO2001037316A1 (en) 2001-05-25
EP1230663A1 (en) 2002-08-14
JP2003514390A (ja) 2003-04-15
KR100787848B1 (ko) 2007-12-27
CN1251294C (zh) 2006-04-12
US20020007795A1 (en) 2002-01-24

Similar Documents

Publication Publication Date Title
JP4776130B2 (ja) プラズマ処理装置、半導体製造装置、およびこれに用いる加熱・冷却ブロック
US6302966B1 (en) Temperature control system for plasma processing apparatus
JP7169319B2 (ja) ガス孔に開口縮小プラグを有する大電力静電チャック
US20210296144A1 (en) Substrate support pedestal having plasma confinement features
JP5053632B2 (ja) 基板支持体、プラズマ処理装置及びプラズマ処理装置内の基板を熱的に制御する方法
KR100920280B1 (ko) 처리 장치
JP4481913B2 (ja) 基板ペデスタルアッセンブリ及び処理チャンバー
KR102374523B1 (ko) 유전체 물질들의 화학적 에칭을 위한 챔버 장치
KR101559913B1 (ko) 플라즈마 건식 식각 장치
JP2022020732A (ja) 極めて均一性が高い加熱基板支持アセンブリ
US10811301B2 (en) Dual-zone heater for plasma processing
JP7551765B2 (ja) 基板処理チャンバにおける処理キットのシース及び温度制御
JP7250076B2 (ja) ウエハ処理システム向けの、ボルト留めされたウエハチャックの熱管理のシステム及び方法
JPH10144614A (ja) Cvdプラズマリアクタにおける面板サーマルチョーク
KR102268559B1 (ko) 샤워 헤드 유닛 및 이를 구비하는 기판 처리 시스템
US11532461B2 (en) Substrate processing apparatus
WO2018061336A1 (ja) 基板載置台、および基板載置台の作製方法
CN115867691A (zh) 用于半导体处理腔室的非对称排气泵送板设计
JP2023546605A (ja) 半導体処理のための高温損失ヒータ及び静電チャック
KR102585290B1 (ko) 포커스 링 및 그를 포함하는 플라즈마 장치
JP2024033483A (ja) エッチング方法及びプラズマ処理装置
US20220020612A1 (en) Systems and methods for faceplate temperature control
TWI264079B (en) Method and system for adjusting a chemical oxide removal process using partial pressure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Ref document number: 4776130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term