RU2673783C1 - Способ измерения температуры ионов в d-t плазме - Google Patents

Способ измерения температуры ионов в d-t плазме Download PDF

Info

Publication number
RU2673783C1
RU2673783C1 RU2018105452A RU2018105452A RU2673783C1 RU 2673783 C1 RU2673783 C1 RU 2673783C1 RU 2018105452 A RU2018105452 A RU 2018105452A RU 2018105452 A RU2018105452 A RU 2018105452A RU 2673783 C1 RU2673783 C1 RU 2673783C1
Authority
RU
Russia
Prior art keywords
plasma
detector
gas
neutrons
temperature
Prior art date
Application number
RU2018105452A
Other languages
English (en)
Inventor
Сергей Григорьевич Лебедев
Виктор Эдуардович Янц
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук (ИЯИ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук (ИЯИ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук (ИЯИ РАН)
Priority to RU2018105452A priority Critical patent/RU2673783C1/ru
Application granted granted Critical
Publication of RU2673783C1 publication Critical patent/RU2673783C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Radiation (AREA)
  • Plasma Technology (AREA)

Abstract

Изобретение относится к ядерной физике и физике высокотемпературной плазмы. Способ измерения температуры ионов в D-T плазме включает регистрацию нейтронов из D-T плазмы нейтронным детектором, использование сигналов детектора для формирования энергетического спектра нейтронов, измерение его ширины на полувысоте ΔEn и вычисление по величине ΔEn температуры ионов Ti, при этом регистрацию нейтронов из D-T плазмы проводят газовым пропорциональным детектором, заполненным тормозным газом и спектрометрическим газом, для которого возможны реакции (n, α) на его изотопных составляющих под действием нейтронов с соответствующими энергиями из D-T плазмы, а для формирования энергетического спектра нейтронов используют токовые сигналы детектора, из которых отбирают только те сигналы, форма которых характеризуется двумя пиками от полностью затормозившихся в чувствительном газовом объеме детектора сильноионизирующих ядер-продуктов - α-частицы и тяжелого ядра из реакции (n, α) нейтронов со спектрометрическим газом. Технический результат – повышение точности измерения температуры ионов в D-T плазме. 2 з.п. ф-лы, 4 ил.

Description

Изобретение относится к ядерной физике и физике высокотемпературной плазмы и может найти применение в управляемом термоядерном синтезе для термометрии термоядерной плазмы, при разработке диагностических приборов для управляемого термоядерного синтеза. Контроль температуры необходим для оперативного (в реальном времени) управления процессом подогрева плазмы от внешних источников энергии.
Одной из актуальных проблем в управляемом термоядерном синтезе, например, в проекте INTOR (International Tokamak Reactor), является проблема измерения температуры ионов Ti в D-T плазме. Контроль температуры необходим для оперативного (в реальном времени) управления процессом подогрева плазмы от внешних источников энергии. Требования к методу измерения Ti весьма жестки - Ti должна измеряться с дискретностью ~50 миллисекунд с точностью ΔTi/Ti ≤ 0.1.
Прямая информация о Ti содержится в ширине спектра ΔЕn нейтронов от реакции D+T в горячей плазме. В работе [Brysk Н. Fusion neutron energies and spectra. Plasma Physics. 1973. V. 15. P. 611] показано, что в случае максвелловской плазмы нейтронный спектр имееи гауссову форму. При этом ширина энергетического распределения нейтронного импульса ΔЕn связана с температурой ионов плазмы Ti соотношением
Figure 00000001
, где ΔЕn и Ti измеряются в кэВ, или подобным [Krasilnikov A.V., Amosov V.N., Van Belle P. et al. Study of d-t neutron energy spectra at JET using natural diamond detectors. Nuclear Instruments and Methods in Physics Research A 476 (2002) 500]. Уширение спектра ΔЕn имеет доплеровскую природу и связано с тепловым движением центра масс дейтерия и трития в лабораторной системе координат. Таким образом, измерив полуширину гауссового распределения нейтронного спектра, можно получить и величину температуры ионов плазмы.
Ранее для термометрии термоядерной реакции был предложен радиохимический детектор нейтронов [Д.Н. Абдурашитов, Э.А. Коптелов, С.Г. Лебедев, В.Э. Янц. Газовый радиохимический монитор нейтронов. Приборы и техника эксперимента. 2004. №1, С. 1; Lebedev S.G., Akulinichev S.V., Iljinov A.S., Yants V.E. A gaseous radiochemical method for registration of ionizing radiation and its possible applications in science and economy. Nuclear Instruments and Methods in Physics Research Section A 561 (2006) 90]. В детекторе под действием нейтронов образуется радиоактивный газ и затем измеряется его активность. Основным недостатком указанного метода является временная задержка сигнала из-за транспортировки радиоактивного газа из активной зоны в удаленный пропорциональный счетчик.
Наиболее близким по своей технической сущности и достигаемому результату является способ измерения ΔЕn и температуры ионов Ti в D-T плазме с помощью алмазного детектора нейтронов [Krasilnikov A.V., Amosov V.N., Van Belle P. et al. Study of d-t neutron energy spectra at JET using natural diamond detectors. Nuclear Instruments and Methods in Physics Research A 476 (2002) 500] по реакции n+12C→α+9Be - 5.071 МэВ. Способ включает регистрацию нейтронов из D-T плазмы алмазным нейтронным детектором, использование сигналов детектора для формирования энергетического спектра нейтронов, определение его ширины на полувысоте ΔЕn и вычисление по величине ΔЕn температуры ионов Ti. При эффективном зарядовом сборе в алмазном детекторе возможно достижение энергетического разрешения (при энергии образования электронно-дырочной пары εпары=10 эВ) порядка 0.15% при энергии 9 МэВ. Тогда ΔЕn будет измерено с точностью около 1.5%, а температура Ti с точностью 3-4%. В реальности, с учетом требований высокой загрузки по скорости счета (для обеспечения приемлемой статистики за 50 мс) ~106 с-1 и большого рабочего ресурса - десятки и сотни дней, возможность применения твердотельных детекторов ограничена, учитывая накопление структурных дефектов в кристалле, а, следовательно, и зарядовых ловушек.
Недостатками такого способа являются высокая стоимость и ограниченный рабочий ресурс используемого детектора нейтронов, существование ядерных каналов реакции, отличных от используемого для регистрации нейтронов канала l2C(n,α)9Be, снижающих достоверность результатов, и неполный сбор заряда.
Заявляемый в качестве изобретения, способ измерения температуры ионов в D-T плазме направлен на повышение достоверности результатов, удешевление, расширение возможностей и обеспечение повышения его эффективности за счет значительного удешевления и увеличения рабочего ресурса используемого детектора нейтронов, возможности эффективного использования в условиях сильных электромагнитных помех, оптимизации эффективности за счет правильного выбора параметров детектора и отбора его сигналов для формирования энергетического спектра нейтронов.
Данный технический результат достигается тем, что в способе измерения температуры ионов в D-T плазме, включающем регистрацию нейтронов из D-T плазмы нейтронным детектором, использование сигналов детектора для формирования энергетического спектра нейтронов, измерение его ширины на полувысоте ΔЕn и вычисление по величине ΔЕn температуры ионов Ti, регистрацию нейтронов из D-T плазмы проводят газовым пропорциональным детектором, заполненным тормозным газом и спектрометрическим газом, для которого возможны реакции (n,α) на его изотопных составляющих под действием нейтронов с соответствующими энергиями из D-T плазмы. При этом для формирования энергетического спектра нейтронов используют токовые сигналы детектора, из которых отбирают только те сигналы, форма которых характеризуется двумя пиками от полностью затормозившихся в чувствительном газовом объеме детектора сильноионизирующих ядер-продуктов - α-частицы и тяжелого ядра из реакции (n,α) нейтронов со спектрометрическим газом. В качестве спектрометрического газа могут быть использованы СО2, N2, Ne или другие газы, для которых возможны реакции (n,α) на их изотопных составляющих под действием нейтронов с соответствующими энергиями из D-T плазмы, или их смеси. А в качестве тормозного газа может быть использован Хе или другой газ, или их смеси.
Достижение нового технического результата стало возможным благодаря тому, что в качестве нейтронного детектора предлагается использовать газовый пропорциональный детектор, заполненный тормозным газом и спектрометрическим газом, для которого возможны реакции (n,α) на его изотопных составляющих под действием нейтронов с соответствующими энергиями из D-T плазмы. Также для формирования энергетического спектра нейтронов предлагается использовать токовые сигналы детектора, из которых отбирать только те сигналы, форма которых характеризуется двумя пиками от полностью затормозившихся в чувствительном газовом объеме детектора сильноионизирующих ядер-продуктов - α-частицы и тяжелого ядра из реакции (n,α) нейтронов со спектрометрическим газом. В качестве спектрометрического газа могут быть использованы СО2, N2, Ne или другие газы, для которых возможны реакции (n,α) на их изотопных составляющих под действием нейтронов с соответствующими энергиями из D-Т плазмы, или их смеси. В качестве тормозного газа может быть использован Хе или другой газ, или их смеси.
Сущность заявленного способа поясняется прилагаемыми чертежами.
На фиг. 1. показан пример схемы предполагаемой установки для измерения температуры ионов в D-T плазме с использованием газового пропорционального детектора для регистрации нейтронов. Обозначения: 1 - нейтронный поток, 2 - пропорциональный детектор, 3 - спектрометрический газ, 4 - треки ядер-продуктов, 5 - анод детектора, 6 - катод детектора, 7 - токовый предусилитель, 8 - дигитайзер или цифровой осциллограф, 9 - on-line анализатор, 10 - интегратор.
На фиг. 2 показан пример токового импульса детектора, отобранного анализатором.
На фиг. 3 показан пример спектра нейтронов, измеренного газовым пропорциональным детектором.
На фиг. 4 показан график зависимости ΔЕn-Ti для определения температуры ионов в D-T плазме.
Возможность осуществления заявленного способа измерения температуры ионов в D-T плазме подтверждается следующими пояснениями и примером.
В качестве нейтронного детектора предлагается использовать газовый пропорциональный детектор, заполненный тормозным газом (например, Хе) и спектрометрическим газом, для которого возможны реакции (n,α) на его изотопных составляющих под действием нейтронов из D-T плазмы. В газовых детекторах могут быть использованы различные спектрометрические газы (СО2, N2, Ne и другие, а также их смеси) и соответственно при регистрации нейтронов использованы реакции:
Figure 00000002
Хотя энергия образования заряженной пары в тормозном газе Хе больше чем в алмазе, но при использовании в качестве спектрометрического газа, например, азота (N2), этот недостаток полностью компенсируется более низким порогом (n,α) - реакции на азоте (0.169 МэВ). При использовании СО2 необходимо принять во внимание реакции на всех изотопах углерода и кислорода.
Обычно главным затруднением при использовании газовых пропорциональных детекторов для целей прецизионной нейтронной спектроскопии является так называемый «стеночный эффект». Если треки продуктов реакций (1) выходят за пределы чувствительного объема счетчика («в стенку»), то в амплитудном распределении (в левой части спектра) зарядовых сигналов детектора появляется так называемый «хвост». При таком искажении гауссова распределения точные измерения температурного уширения невозможны.
Для решения проблемы стеночного эффекта предлагается воспользоваться той особенностью реакций (1), что в конечном состоянии появляются два сильноионизирующих ядра-продукта - α-частица и тяжелое ядро (например, 9Ве в реакции с 12С). Если эти ядра полностью тормозятся в газовом объеме счетчика, то на концах треков от альфа-частицы и ядра в газе образуются области с повышенной плотностью ионизации (эффект Брегга). Если проекция трека относительно поля такова, что электроны от этих ионизационных уплотнений приходят на анод детектора с некоторым временным различием (десятки наносекунд), то в токовом сигнале детектора появятся два характерных всплеска (пика). Наличие таких двух пиков в токовом сигнале и является признаком того, что энергия ядер-продуктов полностью поглощена в чувствительном объеме детектора. Наличие газового усиления является необходимым, чтобы подавить вклад в ток от первичной ионной компоненты и является дополнительным преимуществом газового пропорционального детектора в условиях сильных электромагнитных помех. Отбирая для формирования зарядового распределения только сигналы, характеризующиеся двумя токовыми пиками, и отбрасывая все остальные, получаем распределение, очищенное от стеночного эффекта. Это и будет истинным энергетическим распределением. При этом некоторая потеря эффективности не критична и оптимизация эффективности достигается выбором размеров детектора и давления газов.
Для измерения температуры ионов в D-T плазме может быть использована установка, схема которой показана на фиг. 1. Нейтроны 1 регистрируются газовым пропорциональным детектором 2 следующим образом. Для примера рассмотрим спектрометрический газ 3 СО2 и конкретное ядро-мишень 12С, на котором идет реакция 12С(n,α)9Ве. Разлетаясь от точки ядерной реакции нейтрона с ядром 12С ядра, продукты 4Не и 9Ве производят треки 4 ионизации в газовой среде 3 детектора 2 и тормозятся с образованием электронного облака высокой плотности (Брегговское уплотнение) в конце своего пробега. Электроны первичной ионизации трека дрейфуют к аноду 5 по силовым линиям электрического поля, ионы дрейфуют к катоду 6. При этом во внешней цепи индуцируется ток, связанный с движением зарядов. Токовый сигнал от протяженной первичной ионизации является суперпозицией вкладов от каждого элемента трека 4 и представляет собой достаточно гладкую функцию (фиг. 2). При поступлении в область ударной ионизации Брегговских уплотнений за счет большой плотности и малого расстояния от анода в форме токового сигнала (фиг. 2) появляются два характерных всплеска (Брегговские пики). Разделение во времени происходит из-за разницы расстояний от уплотнений до анода 5. Полная длительность токового сигнала зависит от плотности и состава газа, напряжения на детекторе, его размеров и составляет несколько микросекунд. Сигналы с детектора 2 поступают на вход токового предусилителя 7 и далее оцифровываются дигитайзером или цифровым осциллографом 8. Затем они анализируются в on-line анализаторе 9, где происходит идентификация треков 4, которые полностью потеряли энергию в газовом наполнении детектора 2 и характеризуются наличием двух Брегговских токовых всплесков в общем токовом сигнале. Анализ сигналов может заключаться поиске событий появления двух всплесков тока выше уровня дискриминации, устанавливаемого выше наибольшей амплитуды тока для гладкой части сигнала. Отобранные сигналы из анализатора 9 поступают на интегратор 10, где происходит интегрирование токового сигнала (вычисление площади, т.е. вычисление заряда в каждом сигнале) и далее на компьютер для формирования распределения по зарядам (фиг. 3), полуширина на половине высоты которого после калибровки соответствует полуширине нейтронного спектра. Полученную полуширину спектра нейтронов ΔЕn используют для определения температуры ионов плазмы Ti (фиг. 4). Для реальной D-T плазмы полуширина нейтронного импульса будет большой из-за высокой температуры, и линия будет широкой. Варьируя параметры детектора, состав смеси и напряжение на детекторе (от которого зависит газовое усиление) можно добиться наименьшей ширины спектра зарядовых импульсов и наилучшего разрешения.
В качестве примера реализации заявленного способа может служить измерение спектра нейтронов из D-T реакции. Детектор облучают моноэнергетическими нейтронами D-T-генератора с энергией 14 МэВ. Пропорциональный детектор нейтронов представляет собой цельнокварцевую отпаянную конструкцию. Катодом детектора является слой пирографита, полученный разложением изобутана при температуре 950°С. Толщина слоя пирографита ~0.1 мкм. После получения слоя производят удаление пирографита (выжиганием в потоке кислорода) в тех местах, где он не нужен (изоляторы и т.п.). Контакт с катодом осуществляют через боковой капиллярный отвод с пирографитовым внутренним покрытием. С этим покрытием контактирует молибденовая фольга (толщина 10 мкм, ширина 1 мм), вваренная в кварцевое стекло. Аналогичная фольга является анодным выводом. Анодом является вольфрамовая проволока диаметром 20 мкм. Размеры детектора: длина - 250 мм; внутренний диаметр - 18 мм. Наполнение детектора: Хе (2 атм.)+СO2 (2 атм).
Сигналы от детектора поступают на токовый предусилитель (Δƒ=800 МГц) и далее на цифровой осциллограф (с дискретизацией 2 нc). Оцифрованный сигнал on-line анализируется на наличие двух пиков и при наличии таковых записывается и интегрируется. Из интегралов таких сигналов формируют энергетическое распределение и каждые 50-100 миллисекунд определяются ΔЕn и Ti.
Программа on-line анализатора работает по принципу распознавания образов. Первоначально формируется банк эталонных Брегговских сигналов (визуальным отбором). Далее программа выделяет на основе банка эталонов характерные признаки Брегговских сигналов, по которым затем отбираются сигналы детектора.
Детектор содержит около 100 см3 СО2 или 1.6×1021 атомов углерода. Сечение (n,α)-реакции при 14 МэВ составляет σ(n,α)~80 мб. Скорость счета нейтронов при единичном потоке составила N=(1.6×1021)×(8×10-26)≈0.0001 отсчет/нейтр/см2с. При потоке нейтронов Ф~106 нейтр/см2с скорость счета I~100 с-1. При Q реакции ~6 МэВ остается 8 МэВ на ионизацию и при энергии создания пары ионов ~20 эВ образуется ~4×105 пар. Тогда энергетическое разрешение составит ~10-3. Пример измеренного спектра нейтронов показан на фиг. 3.
Данный пример демонстрирует возможность использования газового пропорционального детектора нейтронов для измерения спектра нейтронов из D-T плазмы и температуры ее ионов.
Таким образом, использование настоящего изобретения обеспечивает повышение достоверности результатов, удешевление, расширение возможностей и повышения его эффективности за счет значительного удешевления детектора и увеличения рабочего ресурса используемого детектора нейтронов, возможности эффективного использования в условиях сильных электромагнитных помех, оптимизации эффективности за счет правильного выбора параметров детектора и отбора его сигналов для формирования энергетического спектра нейтронов.

Claims (3)

1. Способ измерения температуры ионов в D-T плазме, включающий регистрацию нейтронов из D-T плазмы нейтронным детектором, использование сигналов детектора для формирования энергетического спектра нейтронов, измерение его ширины на полувысоте ΔEn и вычисление по величине ΔEn температуры ионов Ti, отличающийся тем, что регистрацию нейтронов из D-T плазмы проводят газовым пропорциональным детектором, заполненным тормозным газом и спектрометрическим газом, для которого возможны реакции (n, α) на его изотопных составляющих под действием нейтронов с соответствующими энергиями из D-T плазмы, а для формирования энергетического спектра нейтронов используют токовые сигналы детектора, из которых отбирают только те сигналы, форма которых характеризуется двумя пиками от полностью затормозившихся в чувствительном газовом объеме детектора сильноионизирующих ядер-продуктов - α-частицы и тяжелого ядра из реакции (n, α) нейтронов со спектрометрическим газом.
2. Способ измерения температуры ионов в D-T плазме по п. 1, отличающийся тем, что в качестве спектрометрического газа используют СО2, N2, Ne или другие газы, для которых возможны реакции (n, α) на их изотопных составляющих под действием нейтронов с соответствующими энергиями из D-T плазмы, или их смеси.
3. Способ измерения температуры ионов в D-T плазме по п. 1, отличающийся тем, что в качестве тормозного газа используют Хе, или другой газ, или их смеси.
RU2018105452A 2018-02-13 2018-02-13 Способ измерения температуры ионов в d-t плазме RU2673783C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018105452A RU2673783C1 (ru) 2018-02-13 2018-02-13 Способ измерения температуры ионов в d-t плазме

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018105452A RU2673783C1 (ru) 2018-02-13 2018-02-13 Способ измерения температуры ионов в d-t плазме

Publications (1)

Publication Number Publication Date
RU2673783C1 true RU2673783C1 (ru) 2018-11-29

Family

ID=64603614

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018105452A RU2673783C1 (ru) 2018-02-13 2018-02-13 Способ измерения температуры ионов в d-t плазме

Country Status (1)

Country Link
RU (1) RU2673783C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2776597C1 (ru) * 2021-10-08 2022-07-22 Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук (ИЯИ РАН) Способ термометрии термоядерной плазмы

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU723397A1 (ru) * 1978-11-21 1980-03-25 Днепропетровский Горный Институт Им. Артема Способ измерени температуры плазмы
US8866389B2 (en) * 2008-09-03 2014-10-21 Akitoshi Okino Plasma temperature control apparatus and plasma temperature control method
RU2600512C1 (ru) * 2015-04-23 2016-10-20 Руслан Радикович Гареев Способ измерения температуры плазменного потока и устройство для его реализации

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU723397A1 (ru) * 1978-11-21 1980-03-25 Днепропетровский Горный Институт Им. Артема Способ измерени температуры плазмы
US8866389B2 (en) * 2008-09-03 2014-10-21 Akitoshi Okino Plasma temperature control apparatus and plasma temperature control method
RU2600512C1 (ru) * 2015-04-23 2016-10-20 Руслан Радикович Гареев Способ измерения температуры плазменного потока и устройство для его реализации

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Krasilnikov A.V., Amosov V.N., Van Belle P. et al. Study of d-t neutron energy spectra at JET using natural diamond detectors. Nuclear Instruments and Methods in Physics Research. Volume 476, Issues 1-2, 1 January 2002, Pages 500-505. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2776597C1 (ru) * 2021-10-08 2022-07-22 Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук (ИЯИ РАН) Способ термометрии термоядерной плазмы

Similar Documents

Publication Publication Date Title
Cennini et al. Performance of a three-ton liquid argon time projection chamber
Akhmadaliev et al. Delbrück scattering at energies of 140–450 MeV
Elter et al. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code
Badertscher et al. A search for muon-electron and muon-positron conversion in sulfur
Calviani et al. A fast ionization chamber for fission cross-section measurements at n_TOF
Potashev et al. Hybrid boron-10 gaseous detector for slow and fast neutron simultaneous detection
Hursin et al. Testing of a sCVD diamond detection system in the CROCUS reactor
RU2673783C1 (ru) Способ измерения температуры ионов в d-t плазме
Wen et al. A multi-layered fast ionization chamber prototype for fission cross section measurements
Rios et al. Total fluence influence on the detected magnitude of neutron burst using proportional detectors
Lebedev et al. High-speed gas neutron detector for thermometry of thermonuclear plasma
Anderson et al. Simultaneous nuclide indentification and energy measurement of nuclear reaction products
Czirr A new technique for capture and fission cross-section measurements
RU2776597C1 (ru) Способ термометрии термоядерной плазмы
Suzuki et al. Test of a micromegas detector with helium-based gas mixtures for active target time projection chambers utilizing radioactive isotope beams
Ibaraki et al. Measurements of double-differential neutron emission cross sections of 6Li, 7Li and 9Be for 11.5 MeV and 18.0 MeV neutrons
Iguaz et al. The FIDIAS project: Development of a Micromegas TPC for the detection of low-energy heavy ions
Takeuchi et al. Active beam scattering method for measurement of ion temperature in JFT-2 tokamak plasma
Lebedev et al. Gaseous Neutron Detector for the Thermometry of Thermonuclear Plasma
Carter et al. An ion beam tracking system based on a parallel plate avalanche counter
Sauzet et al. Fast neutron spectroscopy with Mimac-FastN: a mobile and directional fast neutron spectrometer, from 1 MeV up to 15 MeV
Chichester et al. Measurement of the neutron spectrum of a DD electronic neutron generator
Merla et al. Absolute Measurements of Neutron Induced Fission Cross-Sections of 235 U, 238 U, 237 Np and 239 Pu Using the Time Correlated Associated Particle Method (TCAPM)
Cazzaniga et al. Fast neutron measurements with solid state detectors at pulsed spallation sources
Ekdahl Neutron diagnostics for pulsed high‐density thermonuclear plasmas