WO2010026775A1 - 溶銑の脱硫方法 - Google Patents

溶銑の脱硫方法 Download PDF

Info

Publication number
WO2010026775A1
WO2010026775A1 PCT/JP2009/004414 JP2009004414W WO2010026775A1 WO 2010026775 A1 WO2010026775 A1 WO 2010026775A1 JP 2009004414 W JP2009004414 W JP 2009004414W WO 2010026775 A1 WO2010026775 A1 WO 2010026775A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot metal
metal
cao
cao powder
desulfurization
Prior art date
Application number
PCT/JP2009/004414
Other languages
English (en)
French (fr)
Inventor
八木恒
熊倉政宣
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BRPI0919179-8A priority Critical patent/BRPI0919179B1/pt
Priority to CN2009801343275A priority patent/CN102144038B/zh
Priority to KR1020117004978A priority patent/KR101260149B1/ko
Publication of WO2010026775A1 publication Critical patent/WO2010026775A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Definitions

  • the present invention relates to a method for desulfurizing hot metal by immersing an immersion free board and an injection lance in hot metal in a hot metal ladle and blowing an inert gas and CaO powder from the injection lance, and in particular, the reaction efficiency of CaO.
  • the present invention relates to a hot metal desulfurization method, in which metal Al is added to increase the temperature.
  • the hot metal desulfurization process is performed as one step of the hot metal pretreatment.
  • S sulfur
  • Patent Document 1 discloses that the Al concentration is 0.01 to 0.1 times that of Si in the hot metal and 0.2 to 1.0 times that in S to be desulfurized.
  • a hot metal desulfurization method is disclosed in which Al is added and then CaO as a desulfurizing agent is blown into the hot metal together with a carrier gas.
  • Patent Document 2 discloses that Si in the hot metal is blown up to an amount equivalent to 15% by mass (hereinafter simply referred to as%) of the CaO blowing amount determined according to the S content of the hot metal.
  • a hot metal desulfurization method in which an amount of Al determined according to the amount of S is blown into the hot metal with CaO simultaneously with CaO.
  • the method described in Patent Document 2 is processed in the air without using an immersion free board or the like, it reacts with CaO because oxygen in the air reacts with the added Al. Therefore, it is practically difficult to reduce the amount of Al consumed and to desulfurize the residual S concentration to a level of 50 ppm or less (see FIG. 3 of Patent Document 2).
  • This invention is made
  • the present inventor obtained the following technical knowledge as a result of repeating various experimental and theoretical studies to solve the above-mentioned problems.
  • the present invention basically immerses an immersion free board and an injection lance in the hot metal in the hot metal ladle, and blows an inert gas and CaO powder from the injection lance to desulfurize the hot metal.
  • the hot metal desulfurization method is assumed. And in order to raise the reaction efficiency of CaO, the desulfurization method of the hot metal which adds metal Al at a predetermined timing is fundamental.
  • metal Al is added until 30% by mass of the total amount of CaO powder to be used is blown, and the reaction time by the permanent reaction after CaO hatching (CaO—Al 2 O 3 formation) is secured.
  • the blast furnace slag on the hot metal in the hot metal ladle is removed before the treatment. desirable. More specifically, it is desirable to discharge the blast furnace slag in the hot metal ladle before immersing the immersion free board and the injection lance in the hot metal in the hot metal ladle. That is, loss of metal Al due to oxidation of the added metal Al by the blast furnace slag can be reduced, and thereby the reaction efficiency of the CaO powder can be increased.
  • the desulfurization capacity of metallic Mg has a desulfurization efficiency that is more than four times higher than that of CaO powder after the introduction of metallic Al in the high S concentration range of 100 ppm or more. Can increase the processing speed. This is particularly effective when it is assumed that the S concentration contained in the molten iron is high and the processing time is long.
  • the present inventor has come up with a hot metal desulfurization method capable of achieving a desulfurization treatment capacity capable of reducing the residual S concentration to 50 ppm or less at a low cost and in a short time.
  • the gist is as follows.
  • the hot metal desulfurization method of the present invention is a method of immersing an immersion free board and an injection lance in hot metal in a hot metal ladle, and blowing the inert gas and CaO powder from the injection lance to desulfurize the hot metal.
  • the oxygen partial pressure reaches 0.1 MPa or less by blowing the inert gas into the immersion free board, and 30% by mass of the total amount of the CaO powder to be used is blown. Adding Al to the surface of the hot metal.
  • the blast furnace slag in the hot metal ladle is 0.5 t before the immersion freeboard and the injection lance are immersed in the hot metal in the hot metal ladle. You may further provide the process of excreting until it becomes below.
  • the injection lance is blown into the hot metal in the hot metal ladle while blowing the inert gas and the CaO powder from the injection lance.
  • the metal Al may be poured into the exposed portion of the surface of the hot metal formed by immersing and blowing the inert gas and the CaO powder after the immersion.
  • the pore diameter of the CaO powder may be 3 ⁇ m or more.
  • the injection lance is added together with the introduction of the metal Al.
  • metal Mg may be blown.
  • the hot metal desulfurization method according to the above (1) of the present invention after the oxygen partial pressure in the immersion freeboard reaches 0.1 MPa or less, until 30% by mass of the total amount of CaO powder to be used is blown. In the meantime, metal Al is thrown into the hot metal. As a result, loss due to oxidation reaction of metal Al or the like can be reduced, and a reaction time due to a permanent reaction after CaO hatching (CaO—Al 2 O 3 formation) can be secured. Therefore, the metal Al to be added can be used effectively, thereby increasing the reaction efficiency of CaO.
  • the desulfurization treatment time can be greatly shortened. For this reason, it is particularly effective when it is assumed that the S concentration contained in the molten iron is high and the processing time is long.
  • the addition timing of metal Al in the relationship between the oxygen partial pressure in the immersion free board and the amount of blown CaO powder is optimized. Therefore, since the reaction efficiency of the CaO powder is improved, a desulfurization treatment capacity with a residual S concentration of 50 ppm or less can be achieved at a low cost and in a short time.
  • the horizontal axis indicates the CaO blowing ratio
  • the vertical axis indicates the oxygen partial pressure PO 2 .
  • the horizontal axis indicates the CaO blowing rate
  • the vertical axis indicates the CaO-k value.
  • FIG. 2A to 2E are schematic views showing a hot metal desulfurization method according to an embodiment of the present invention, and the best mode for carrying out the present invention will be described below with reference to these drawings.
  • the blast furnace slag 2 floating on the upper surface of the hot metal 1 in the hot metal ladle 3 is removed until the blast furnace slag 2 in the hot metal ladle 3 becomes 0.5 t (thickness 10 mm) or less.
  • the hot metal ladle 3 is transferred below the immersion free board 4.
  • the injection lance 5 formed of a refractory is lowered together with the immersion free board 4 from the position shown in FIG. 2A, and the lower part of the immersion free board 4 is immersed in the hot metal 1 in the hot metal ladle 3.
  • the descent operation is stopped (FIG. 2B).
  • the amount of inert gas and CaO powder blown in the blowing step varies depending on conditions such as the concentration of S contained in the hot metal 1, the amount of treated hot metal, and the amount of desulfurization.
  • 11 Nm 3 / min can be used as the blowing speed of the inert gas
  • 200 kg / min can be used as the blowing speed of the CaO powder.
  • nitrogen gas or argon gas as the kind of inert gas.
  • the air in the immersion free board 4 is sequentially discharged from the exhaust pipe 4a.
  • the oxygen partial pressure in the immersion free board 4 is 0.1 MPa or less and the amount of CaO powder blown does not reach 30% by mass of the total amount to be blown.
  • metal Al 6 (hereinafter simply referred to as metal Al) is charged into the hot metal 1 from the charging port 4 b at the top of the immersion free board 4.
  • the relationship between the amount of inert gas blown in advance and the oxygen partial pressure in the immersion free board 4 is obtained in advance, and the oxygen partial pressure in the immersion free board 4 is determined based on this relationship.
  • an exhaust gas oxygen concentration meter may be provided in the exhaust pipe 4a to measure the oxygen partial pressure in the exhaust gas, and the oxygen partial pressure in the immersion free board 4 may be determined based on this measured value. Further, it may be determined by calculation using the following equations (1) to (3).
  • the metal Al is added after the oxygen in the immersion free board 4 is replaced with an inert gas and the oxygen partial pressure reaches 0.1 MPa or less, the loss of the metal Al due to the oxidation is almost eliminated.
  • the CaO-k value indicating the desulfurization treatment capacity is improved according to the reaction formula of 3CaO + 3S + 2Al ⁇ 3CaS + Al 2 O 3 .
  • the oxygen partial pressure in the immersion free board 4 corresponding to this range reaches 0.01 MPa or less, and as shown in FIG.
  • the charging is started on the hot metal 1 where Al is exposed from the charging port 4b.
  • the timing of completing the addition of metal Al is until 30% by mass of the total amount (total mass) of CaO powder to be used is blown.
  • the reason for this is that even if 30% by mass of the total amount of CaO powder to be used is blown and Al is added, the CaO powder blown into the hot metal 1 has already floated from the hot metal 1 to the hot metal 1 This is because CaO stacked on the surface of the hot metal 1 is not activated even if metal Al is added here.
  • the addition of metal Al and the injection of metal Mg are performed until 30% by mass of the total amount of CaO powder used is blown, and when it reaches a predetermined amount, the CaO powder is stopped. Infuse only. Even during the CaO powder blowing period, the molten metal Al can maintain the state contributing to the desulfurization reaction for the remaining processing time. Of course, CaO that has hatched after blowing 30% by mass of the total amount of CaO powder used can still contribute to the desulfurization reaction even if it floats, but because the remaining processing time is short, only that much. The time that contributes to the desulfurization reaction is shortened.
  • metal Al is introduced into the hot metal 1 at the timing optimized as described above, and this metal Al is introduced into the blast furnace in the hot metal ladle 3. It reacts with the slag 2 and changes to Al 2 O 3 . Therefore, from the viewpoint of increasing the treatment efficiency by maintaining the desulfurization reactivity of the CaO powder at a high level, as described above, before the immersion free board 4 and the injection lance 5 are immersed in the hot metal 1 in the hot metal pan 3.
  • the blast furnace slag 2 in the hot metal ladle 3 is preferably discharged. Thereby, the loss of metal Al by the oxidation reaction with the blast furnace slag 2 can be reduced, and the reaction efficiency of CaO can be increased.
  • the lower limit of the residual amount of blast furnace slag 2 Is preferably 0.1 t or more.
  • the reaction efficiency of the CaO powder for example, it is desirable to blow in a CaO powder having a pore diameter of 3 ⁇ m or more (preferably 5 ⁇ m or more) typified by salt-burned lime and a diameter of 30 ⁇ m or less.
  • a CaO powder having a pore diameter of 3 ⁇ m or more preferably 5 ⁇ m or more
  • the contact area between the CaO powder and the hot metal 1 is greatly expanded.
  • the area to be converted into CaO—Al 2 O 3 can be expanded and the effect of adding Al can be exhibited more remarkably.
  • the particle size of the CaO powder is not particularly limited, and for example, a powder having a particle size of 0.2 mm or less can be used. By using a powder having a particle size of 0.2 mm or less, the effect of the metal Al can be exhibited remarkably.
  • CaO powder and metal Al are used as the flux. From the viewpoint of shortening the processing time, it is desirable to use CaO powder, metal Al, and metal Mg in combination. . More specifically, it is desirable that metal Mg be blown from the injection lance 5 in addition to the inert gas and CaO powder when the metal Al is charged. Since the desulfurization capacity of metal Mg is higher than that of CaO powder, the desulfurization time can be greatly shortened by using metal Mg together. Therefore, the processing time can also be adjusted by blowing metal Mg in an amount corresponding to the S concentration contained in the hot metal 1 from the injection lance 5. This is particularly effective when the concentration of S contained in the hot metal 1 is high and the processing time exceeds the cycle time.
  • metal Mg exhibits a very high desulfurization efficiency when the S concentration is high (0.01% or more), while the desulfurization efficiency decreases as the S concentration decreases (0.01% or less). Since it has characteristics, it is necessary to use a large amount of metal Mg when performing desulfurization treatment using only CaO powder and metal Mg.
  • the average particle size of metal Al added from the upper part of the immersion free board was 30 mm, and the particle size of metal Mg blown from the injection lance simultaneously with the CaO powder was 300 ⁇ m or less.
  • CaO powder except for Invention Examples 3 and 4, ordinary quicklime having an average pore diameter of about 1 ⁇ m was used.
  • Comparative Example 1 is an example in which the addition start time of metal Al is early (that is, added when the oxygen partial pressure in the immersion free board is higher than 0.1 MPa).
  • Comparative Example 2 is an example in which the addition start timing of metal Al is late (that is, added from the time when it exceeds 30% by mass of the total amount of CaO powder used.
  • Comparative Example 3 has no addition of metal Al, This is an example in which metal Mg was blown only in the initial stage of treatment.
  • Comparative example 4 is an example in which the addition position of metal Al is not on the hot metal surface but on the blast furnace iron. Was bad.
  • each of Invention Examples 1 to 6 satisfied the subject condition of the present invention, and a good desulfurization rate was obtained as compared with Comparative Examples 1 to 4.
  • Inventive Example 1 was insufficient in discharging the blast furnace slag in the hot metal ladle when immersing the immersion freeboard, and the amount of balance furnace slag was large, and the desulfurization rate slightly decreased compared to Inventive Example 2.
  • Invention Example 3 used a salt-baked CaO powder having an average pore diameter of 5 ⁇ m, so that a good desulfurization rate could be obtained.
  • Invention Example 5 used metallic Mg together in the initial stage of desulfurization, it was possible to obtain a good desulfurization rate, and the desulfurization treatment time could be shortened as compared with Invention Example 6 in which metal Mg was not used.
  • the present invention it is possible to provide a hot metal desulfurization method capable of exhibiting a processing capability of stably desulfurizing a residual S concentration to 50 ppm or less in a low cost and in a short time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

 この溶銑の脱硫方法は、溶銑鍋内の溶銑中に浸漬フリーボード及びインジェクションランスを浸漬して、このインジェクションランスから不活性ガス及びCaO粉体を吹き込んで前記溶銑を脱硫する方法であって、前記浸漬フリーボード内への前記不活性ガス吹き込みにより酸素分圧が0.1MPa以下に達し、かつ、使用する前記CaO粉体の総量の30質量%を吹き込むまでの間に、金属Alを前記溶銑の表面上に添加する工程を備える。

Description

溶銑の脱硫方法
 本発明は、溶銑鍋内の溶銑中に浸漬フリーボード及びインジェクションランスを浸漬して、このインジェクションランスから不活性ガス及びCaO粉体を吹き込んで溶銑の脱硫を行う方法に関し、特に、CaOの反応効率を高めるために金属Alを添加する、溶銑の脱硫方法に関する。
 本願は、2008年9月5日に、日本国に出願された特願2008-228502号に基づき優先権を主張し、その内容をここに援用する。
 高炉から出銑される溶銑には鋼の品質に悪影響を及ぼす硫黄(S)が多く含まれるため、溶銑予備処理の一工程として、溶銑の脱硫処理が行われる。一方、近年においては、高級鋼製造に対する要請が高まっており、より安価な低硫化処理方法の採用が望まれている。
 従来より、溶銑の脱硫処理には安価なCaO(石灰)を主成分とする脱硫剤が広く使用されているが、脱硫反応に寄与するCaOの割合は一般的に低い。そこで、脱硫反応効率を高めるために、蛍石(CaF)、ソーダ灰、マグネシウム(Mg)、カルシウムカーバイト(CaC)などの脱硫補助剤や脱硫剤が使用されている。しかしながら、蛍石を使用すると、処理後スラグにフッ素(F)が混入してしまうという課題が生じ、また、ソーダ灰を使用すると、処理後スラグにナトリウム(Na)が混入してしまうという課題が生じる。よって、スラグのリサイクルを考えた場合には、いずれの使用も、環境保全の観点から好ましくない。また、Mg、CaCを多量に使用することは、生産コストを抑える上で望ましくない。このように、蛍石やソーダ灰等を使用せず、かつ安価な溶銑の脱硫処理技術が望まれている。
 蛍石やソーダ灰、Mg、CaCを使用しない溶銑の脱硫方法としては、Alを添加する脱硫方法が古くから知られている(例えば、特許文献1、2参照)。
 特許文献1には、Al濃度が溶銑のSiに対して0.01~0.1倍、および脱硫されるSに対して0.2~1.0倍の濃度になる様に、予め溶銑にAlを添加し、その後、脱硫剤であるCaOをキャリアガスとともに溶銑中に吹き込む溶銑の脱硫方法が開示されている。
 しかしながら、Alを単独で添加するとスプラッシュが発生して操業上多くの困難を伴う。また、Alの事前添加の終了を待ってCaOの吹込みを行うと脱硫処理時間が延びる。その結果、溶銑温度が低下して後工程における昇熱処理が必要となり、生産コストも上昇する。
 この問題を改善する方法として、特許文献2には、溶銑のS含有量に応じて定められるCaO吹込量の15質量%(以下単に%と称す)相当量を吹き込むまでに、溶銑中のSi,S量に応じて定められる量のAlをCaOと同時にキャリアガスにより溶銑中に吹き込む、溶銑の脱硫方法が提案されている。
 しかしながら、この特許文献2に記載の方法は、浸漬フリーボード等を使用することなく、大気中で処理している事から、大気中の酸素と添加したAlとが反応するため、CaOと反応することにより消費されるAl量が少なくなり、残留S濃度が50ppm以下の水準まで脱硫することは、事実上困難である(特許文献2の第3図参照)。
特開昭54-037020号公報 特開昭55-110711号公報
 本発明は、上記事情に鑑みてなされたものであって、低コストかつ短時間で残留S濃度を50ppm以下に安定して脱硫する処理能力を発揮できる、溶銑の脱硫方法の提供を課題とする。
 本発明者は、上記課題を解決すべく様々な実験的検討および理論的検討を重ねた結果、以下の技術的知見を得た。
 (A)本発明は、基本的に、溶銑鍋内の溶銑中に浸漬フリーボードとインジェクションランスとを浸漬して、このインジェクションランスから不活性ガスとCaO粉体とを吹き込んで溶銑を脱硫する、溶銑の脱硫方法を前提としている。そして、CaOの反応効率を高めるために、所定のタイミングで金属Alを添加する溶銑の脱硫方法を基本とする。
 この場合、浸漬フリーボード内の酸素が不活性ガスと置換される前に金属Alを添加すると、添加した金属Alの大半が酸素と反応してAlに変化するので、CaOの反応効率向上に寄与できず、CaOの反応効率を高めるために添加した金属Alが無駄に消費される。
 一方、浸漬フリーボード内の酸素が不活性ガスに置換された後に金属Alを添加すると、前記した酸化による金属Alの損失が低減されるので、生石灰表面から発生する脱硫放出酸素をAlが消費し、生石灰表面にS吸収能の高い液相であるCaO-Alが形成されて滓化されることから、脱硫処理能力が向上する。
 例えば、360tの溶銑に対して、Al品位が90%の金属Al:35kgの投入と、CaO品位が98%のCaO:1300kgとの吹込(吹込み速度:200kg/min)を行った場合、処理開始からの酸素分圧変化と処理効率との関係は、図1の(a)及び(b)に示す様になる。尚、処理効率はCaO-k値(=ln(処理前S濃度/処理後S濃度)/単位溶銑量当りの生石灰量)で示す。
 この図1から理解出来るように、処理効率であるCaO-k値を0.5以上にするには、少なくとも浸漬フリーボード内の酸素分圧POが0.1MPa以下に達してから金属Alを溶銑中に添加する必要がある。望ましくは、CaO-k値が約0.55で飽和状態になるので、溶銑中への金属Alの添加に際しては、浸漬フリーボード内の酸素分圧POが0.01MPa以下に達してから金属Alを溶銑中に投入することが望ましい。
 図1に示すように、CaO粉体を溶銑中に吹込み始め(処理開始)てから総量に対しておよそ30質量%の吹き込み割合に達した以降に金属Alを添加する場合には、CaO-k値が緩やかな勾配をもって低下する。換言すると、使用するCaO粉体の総量の30質量%を吹き込んだ後になって金属Alを添加したとしても、溶銑中に吹き込んだCaO粉体がすでに溶銑内から浮上して溶銑表面に積み重なった状態となっている。そのため、溶銑内部においては前記した3CaO+3S+2Al→3CaS+Alの反応が進行せず、これにより、処理効率を示すCaO-k値が低下する。
 したがって、使用するCaO総量の30質量%を吹き込むまでの間に金属Alを溶銑に投入する必要がある。また、この金属Alの添加によってCaO粉体表面にCaO-Alが形成されて低融点化するので、CaO粉体と溶銑の濡れ性が向上してパーマネント反応の反応効率が向上する。したがって、使用するCaO粉体の総量の30質量%を吹き込むまでの間に金属Alを添加して、CaO滓化(CaO-Al形成)後のパーマネント反応による反応時間を確保しておく技術的意味合いもある。
 (B)浮上後のCaO粉体の脱硫反応性を高く維持して上記パーマネント反応効率を高める観点からは、上記処理を行う前に溶銑鍋内の溶銑上にある高炉スラグを除滓することが望ましい。より具体的には、溶銑鍋内の溶銑中に浸漬フリーボードとインジェクションランスを浸漬する前に、溶銑鍋内の高炉スラグを排滓することが望ましい。つまり、添加する金属Alが高炉スラグにより酸化されることによる金属Alの損失を低減でき、これによりCaO粉体の反応効率を高めることができる。
 (C)金属Alの投入位置に関しては、不活性ガスの吹き込みによる溶銑の撹拌によりその近傍の高炉スラグが排除されて溶銑表面が暴露状態となっている部分が発生することから、その部分に投入することが望ましい。これによって、スラグとの酸化反応による金属Alの損失を低減でき、CaO粉体の反応効率も高めることができる。
 (D)また、CaO粉体の反応効率を高める観点からは、例えば、塩焼石灰に代表される気孔径3μm以上のCaO粉体を吹き込むことが望ましい。CaO粉体表面の気孔内に溶銑が侵入することで、CaO粉体と溶銑との間における接触面積が大幅に拡大して、CaO粉体の反応効率を高めることができる。
 (E)脱硫処理速度を上げる観点からは、脱硫処理の初期にCaO粉体、金属Al、および金属Mgを併用することが望ましい。即ち、溶銑中にCaO粉体の吹き込みが開始された段階から溶銑S濃度が100ppm以上の脱硫初期においては、金属Alの投入と共に、インジェクションランスからCaO粉体に加えて金属Mgを吹き込むことが望ましい。金属Mgの脱硫処理能力は、100ppm以上の高S濃度域において、金属Al投入後のCaO粉体よりも脱S効率が脱硫材原単位で比較すると4倍以上高いので、金属Mgを併用することで処理速度を上げることができる。特に、溶銑に含まれるS濃度が高くて処理時間が長時間になると想定される様な場合には有効である。
 上記の知見に基づき、本発明者は、低コストかつ短時間で残留S濃度が50ppm以下にできる脱硫処理能力を達成し得る溶銑の脱硫方法に想到した。その要旨とするところは以下に示す通りである。
 (1)本発明の溶銑の脱硫方法は、溶銑鍋内の溶銑中に浸漬フリーボード及びインジェクションランスを浸漬して、このインジェクションランスから不活性ガス及びCaO粉体を吹き込んで前記溶銑を脱硫する方法であって、前記浸漬フリーボード内への前記不活性ガス吹き込みにより酸素分圧が0.1MPa以下に達し、かつ、使用する前記CaO粉体の総量の30質量%を吹き込むまでの間に、金属Alを前記溶銑の表面上に添加する工程を備える。
 (2)上記(1)に記載の溶銑の脱硫方法は、前記溶銑鍋内の前記溶銑中に前記浸漬フリーボード及び前記インジェクションランスを浸漬する前に、前記溶銑鍋内の高炉スラグが0.5t以下になるまで排滓する工程をさらに備えてもよい。
 (3)上記(1)または(2)に記載の溶銑の脱硫方法では、前記インジェクションランスから前記不活性ガス及び前記CaO粉体を吹き込みながら、このインジェクションランスを前記溶銑鍋内の前記溶銑中に浸漬し、この浸漬後における前記不活性ガス及び前記CaO粉体の吹き込みにより形成される前記溶銑の前記表面の暴露部分に、前記金属Alを投入するようにしてもよい。
 (4)上記(1)に記載の溶銑の脱硫方法では、前記CaO粉体の気孔径を3μm以上としてもよい。
 (5)上記(1)または(2)に記載の溶銑の脱硫方法では、前記インジェクションランスから前記不活性ガス及び前記CaO粉体を吹き込み開始する初期段階に、前記金属Alの投入と共に前記インジェクションランスから前記CaO粉体に加えて金属Mgを吹き込むようにしてもよい。
 本発明の上記(1)に記載の溶銑の脱硫方法では、浸漬フリーボード内の酸素分圧が0.1MPa以下に達した後から、使用するCaO粉体の総量の30質量%を吹き込むまでの間に、金属Alを溶銑中に投入する。これにより、金属Alの酸化反応等による損失を低減でき、また、CaO滓化(CaO-Al形成)後のパーマネント反応による反応時間を確保することができる。したがって、添加する金属Alを有効に利用でき、これによりCaOの反応効率を高めることができる。
 上記(2)に記載の場合、溶銑鍋内の高炉スラグをあらかじめ排滓する工程をさらに備えるので、高炉スラグとの酸化反応による金属Alの損失を低減でき、CaO粉体の反応効率を高めることができる。換言すると、CaO粉体の脱硫反応性を高位に維持することができ、処理効率を高めることができる。
 上記(3)に記載の場合、更に、高炉スラグが溶銑表面を覆っていない暴露状態となった部分から直接、溶銑内に金属Alを投入することにより、この金属Alと高炉スラグとの酸化反応による金属Alの損失を低減できる。
 上記(4)に記載の場合、気孔径3μm以上のCaO粉体を吹き込むので、CaO粉体と溶銑との接触面積が大幅に拡大して、CaO粉体の反応効率を高めることができる。
 上記(5)に記載の場合、CaO粉体、金属Al、および金属Mgを併用するので、脱硫処理時間を大幅に短縮できる。このため、溶銑に含まれるS濃度が高くて処理時間が長くなると想定される様な場合に、特に有効である。
 以上説明のように、本発明の溶銑の脱硫方法によれば、浸漬フリーボード内の酸素分圧と吹き込んだCaO粉体量との関係における金属Alの添加タイミングを最適化している。よって、CaO粉体の反応効率が向上するので、低コストかつ短時間で残留S濃度が50ppm以下の脱硫処理能力を達成することができる。
処理開始からの、酸素分圧変化と処理効率との関係を示すグラフである。(a)のグラフでは、横軸がCaO吹込み割合を示し、縦軸が酸素分圧POを示す。また、(b)のグラフでは、横軸がCaO吹込み割合を示し、縦軸がCaO-k値を示す。 本発明の一実施形態に係る脱硫方法を示す模式図である。 同脱硫方法の続きを示す模式図である。 同脱硫方法の続きを示す模式図である。 同脱硫方法の続きを示す模式図である。 同脱硫方法の続きを示す模式図である。
 図2A~2Eは、本発明の一実施形態に係る、溶銑の脱硫方法を示す模式図であり、これらを参照して本発明を実施するための最良の形態を以下に説明する。
 先ず、溶銑鍋3内の高炉スラグ2が0.5t(厚さ10mm)以下になる迄、この溶銑鍋3内の溶銑1の上面に浮上している高炉スラグ2を除去する。その後、溶銑鍋3を浸漬フリーボード4の下方に移送する。
 そして、図2Aに示す位置から浸漬フリーボード4と共に、耐火物で形成されたインジェクションランス5を下降させ、この浸漬フリーボード4の下部を溶銑鍋3内の溶銑1内に浸漬させてから、その降下動作を停止させる(図2B)。
 上述の様に浸漬フリーボード4の下部を溶銑1内に浸漬させた後、インジェクションランス5の上端より、不活性ガス及びCaO粉体の供給を開始する。そして、このインジェクションランス5をさらに降下させて、図2Cに示すように、このインジェクションランス5の下部を溶銑1の中へさらに深く浸漬させた状態で、その降下動作を停止させる。この様に、このインジェクションランス5から不活性ガスと共にCaO粉体を吹き出しながら、このインジェクションランス5を溶銑1中に浸漬させると、インジェクションランス5の先端の詰まりを防止出来るので望ましい。
 尚、上記吹き込み工程における不活性ガス及びCaO粉体の吹き込み量は、溶銑1に含まれるS濃度、処理溶銑量、脱硫量等の条件に応じて異なる。しかしながら、例えば、不活性ガスの吹き込み速度として11Nm/min、CaO粉体の吹き込み速度として200kg/minを用いることができる。また、不活性ガスの種類としては、窒素ガスやアルゴンガスを用いるのが望ましい。
 この状態でインジェクションランス5の下端から不活性ガス及びCaO粉体の吹き込みを継続することにより、浸漬フリーボード4内の空気を排気管4aから順次排出する。そして、この浸漬フリーボード4内の酸素分圧が0.1MPa以下になった状態でかつ、CaO粉体の吹き込み量が吹き込み予定の総量の30質量%に達しない間に、図2Dに示す様に、金属Al6(以下、単純に金属Alと記す)を、浸漬フリーボード4の上部にある投入口4bから溶銑1に投入する。
 なお、実機において予め、不活性ガスの吹き込み量とこの浸漬フリーボード4内の酸素分圧との関係を求めておき、この関係を基にして、浸漬フリーボード4内の酸素分圧を決定しても良い。または、排気管4aに排ガス中酸素濃度計を設けて排気ガス中の酸素分圧を計測し、この計測値に基づいて、浸漬フリーボード4内の酸素分圧を決定しても良い。さらには、下式(1)~(3)により算出して決定しても良い。
 PO/PO(0)=exp(-VN2/V×T1)・・・(1)
 PO=0.2×exp(-VN2/V×T1)・・・(2)
 PO(0)=0.2(初期酸素分圧)・・・(3)
 但し、
 VN2(吹き込み不活性ガス体積)=吹き込み不活性ガス速度Nm/min×(溶銑温度(℃)+273)/273×処理時間
 V(補正体積)=浸漬フリーボード4の全容積×(1/4)
 尚、浸漬フリーボード内の酸素分圧が0.1MPa以下に達しない状態で金属Alを添加すると、金属Alは軽量であるので溶銑1の内部になかなか沈み込まない。このため、添加した金属Alの大半が大気中の酸素と反応して単独でAlに変化する。したがって、CaOの反応効率を高めるために添加した金属Alが無駄に消費され、CaOの反応効率向上に寄与できないことになる。
 しかし、浸漬フリーボード4内の酸素が不活性ガスに置換され、酸素分圧が0.1MPa以下に達した後に金属Alを添加すると、上述した酸化による金属Alの損失が殆どなくなる。その結果、溶銑1中では、3CaO+3S+2Al→3CaS+Alの反応式に従い、脱硫処理能力を示すCaO-k値が向上する。より望ましくは、CaO-k値は約0.55で飽和するので、この範囲に対応する浸漬フリーボード4内の酸素分圧が0.01MPa以下に達してから、図2Dに示すように、金属Alを投入口4bから暴露している溶銑1上に投入を開始する。
 金属Alの添加を終了するタイミングは、使用するCaO粉体の総量(総質量)の30質量%を吹き込むまでとする。この理由は、使用するCaO粉体の総量の30質量%を吹き込んだ後になって金属Alを添加したとしても、溶銑1中に吹き込んだCaO粉体は既に溶銑1の内部から浮上して溶銑1の表面に積み重なった状態となっているため、ここに金属Alを添加したとしても、溶銑1の表面に積み重なったCaOは活性化しないからである。
 しかし、使用するCaO粉体の総量の30質量%を吹き込む迄に金属Alを添加する場合は、溶銑1の表面に積み重なった状態のCaO粉体が少なく、添加して溶融した金属Alの殆どがCaO粉体と接触して、CaOの滓化(CaO粉体表面にCaO-Alが形成された状態)に消費されるため、生石灰の利用効率が高まる。
 図2Eに示すように、金属Alの添加及び金属Mgの吹込みを、CaO粉体の使用総量の30質量%が吹き込まれる迄に行い、なおかつ所定量に達した段階で停止し、CaO粉体のみを吹き込む。
 このCaO粉体の吹き込み期間においても、上述の溶融した金属Alは、脱硫反応に寄与している状態を、残りの処理時間の間、維持することができる。勿論、CaO粉体の使用総量の30質量%を吹き込んだ後に滓化したCaOも、浮上してもなお脱硫反応に寄与することができるが、残された処理時間が短いために、その分だけ脱硫反応に寄与する時間が短くなる。
 本実施形態においては、CaO粉体の反応効率を最大限に高めるために、上述のように最適化したタイミングで金属Alを溶銑1中に投入するが、この金属Alは溶銑鍋3内の高炉スラグ2とも反応してAlに変化する。
 したがって、CaO粉体の脱硫反応性を高位に維持して処理効率を高める観点からは、上述した様に、溶銑鍋3内の溶銑1中に浸漬フリーボード4及びインジェクションランス5を浸漬する前に、溶銑鍋3内の高炉スラグ2を排滓することが望ましい。これにより、高炉スラグ2との酸化反応による金属Alの損失を低減でき、CaOの反応効率を高めることができる。
 なお、高炉スラグ2の残滓量は少ないほど好ましく、0.5t以下にすることが望ましい。溶銑鍋3の内部直径にもよるが、排滓量が多くなればなる程、排滓の作業時間が長くなり過ぎて生産性を低下する恐れがあるので、高炉スラグ2の残滓量の下限値は、0.1t以上とすることが好ましい。
 また、CaO粉体の反応効率を高める観点からは、例えば、塩焼石灰に代表される気孔径3μm以上(好ましくは5μm以上)、直径30μm以下のCaO粉体を吹き込むことが望ましい。CaO粉体表面の気孔内に溶銑が侵入することでCaO粉体と溶銑1との間の接触面積が大幅に拡大する。その結果、CaO-Al化する面積が拡大してAlの添加効果をより顕著に発揮させることができる。
 なお、CaO粉体の粒径は特に限定されるものではなく、例えば、粒径0.2mm以下の粉体を使用することができる。粒径0.2mm以下の粉体を使用することで、前記した金属Alによる作用を顕著に発揮できる。
 以上説明した本実施形態に係る脱硫方法では、フラックスとしてCaO粉体及び金属Alを使用するが、処理時間を短縮する観点からは、CaO粉体、金属Al、および金属Mgを併用することが望ましい。より具体的には、金属Alの投入時に、不活性ガス及びCaO粉体に加えて、金属Mgをインジェクションランス5から吹き込むことが望ましい。金属Mgの脱硫処理能力はCaO粉体よりも高いので、金属Mgを併用することで脱硫処理時間を大幅に短縮できる。したがって、溶銑1に含まれるS濃度に応じた量の金属Mgをインジェクションランス5から吹き込むことで、処理時間を調整することもできる。これは、溶銑1に含まれるS濃度が高くて処理時間がサイクルタイムを超過するような場合に特に有効である。
 また、CaO粉体、金属Al、および金属Mgを併用することにより、CaO粉体と金属Mgのみで脱硫処理する場合と比較して、金属Mgの使用量を大幅に削減することができる。
 これは、以下の理由による。すなわち、金属Mgが、S濃度が高い場合(0.01%以上)には非常に高い脱硫効率を示す一方、S濃度が低く(0.01%以下)なるにつれてその脱硫効率が低くなっていく特性を有するため、CaO粉体と金属Mgのみで脱硫処理する場合には大量の金属Mgを使用する必要がある。これに対し、CaO粉体、金属Al、および金属Mgを併用する場合には、脱硫処理開始直後のS濃度が高いときには金属Mgがその高い脱硫処理能力を発揮し、処理時間の経過とともにS濃度が低くなってきたときには金属Alの添加によって活性化されたCaOが安定した脱硫処理能力を発揮する。よって、金属Mgの使用量を抑えることができる。したがって、CaO粉体、金属Al、および金属Mgを併用することで、処理時間の短縮のみならず生産コストの削減をも図ることができる。
 次に、本発明の実施例を、表1を参照して以下に説明する。ただし、本実施例の条件は、本発明の実施可能性および顕著な効果を立証するために採用した条件であり、本発明は、この条件のみに限定されるものではない。本実施例では、直径5mかつ高さ6mの溶銑鍋と、直径3mかつ高さ8mの浸漬フリーボードとを使用した。更に、インジェクションランスの浸漬深さを2.2mとし、キャリアガスとしてNガスを用い、その流量は11Nm/minとした。また、浸漬フリーボードの上部より添加する金属Alの平均粒度を30mm、CaO粉体と同時にインジェクションランスから吹き込む金属Mgの粒度を300μm以下とした。また、CaO粉体は、発明例3,4を除き、平均気孔径1μm程度の通常の生石灰を使用した。
 比較例1は、金属Alの添加開始時期が早い(即ち、浸漬フリーボード内の酸素分圧が0.1MPaよりも高いときに添加した)例である。比較例2は、金属Alの添加開始タイミングが遅い(即ち、CaO粉体の総使用量の30質量%を超えた時期より添加した例である。比較例3は、金属Alの添加が無く、処理初期のみ金属Mgを吹き込んだ例である。比較例4は、金属Alの添加位置が溶銑表面上ではなく、高炉滓上である例である。これら比較例1~4の何れも、脱硫率が悪かった。
 一方、発明例1~6は、何れも、本発明の課題条件を満足するものであり、各比較例1~4に比較して良好な脱硫率を得る事が出来た。
 発明例1は、浸漬フリーボードを浸漬する際の、溶銑鍋内の高炉滓の排出が不足して残高炉滓量が多く、発明例2に比較して若干脱硫率が低下した。また、発明例3は、平均気孔径が5μmの塩焼きCaO粉体を使用したので、良好な脱硫率を得ることが出来た。更に、発明例5は、脱硫初期に金属Mgを併用したので、良好な脱硫率を得ることが出来ると共に、金属Mgを使用しなかった発明例6に比較して脱硫処理時間も短縮できた。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、低コストかつ短時間で残留S濃度を50ppm以下に安定して脱硫する処理能力を発揮できる、溶銑の脱硫方法を提供することができる。
 1  溶銑
 2  高炉スラグ、脱Sスラグ
 3  溶銑鍋
 4  浸漬フリーボード
 4a 排気管
 4b 投入口
 5  インジェクションランス
 6  金属Al

Claims (5)

  1.  溶銑鍋内の溶銑中に浸漬フリーボード及びインジェクションランスを浸漬して、このインジェクションランスから不活性ガス及びCaO粉体を吹き込んで前記溶銑を脱硫する方法であって、
     前記浸漬フリーボード内への前記不活性ガス吹き込みにより酸素分圧が0.1MPa以下に達し、かつ、使用する前記CaO粉体の総量の30質量%を吹き込むまでの間に、金属Alを前記溶銑の表面上に添加する工程を備える
    ことを特徴とする溶銑の脱硫方法。
  2.  前記溶銑鍋内の前記溶銑中に前記浸漬フリーボード及び前記インジェクションランスを浸漬する前に、前記溶銑鍋内の高炉スラグが0.5t以下になるまで排滓する工程をさらに備える
    ことを特徴とする請求項1に記載の溶銑の脱硫方法。
  3.  前記インジェクションランスから前記不活性ガス及び前記CaO粉体を吹き込みながら、このインジェクションランスを前記溶銑鍋内の前記溶銑中に浸漬し、
     この浸漬後における前記不活性ガス及び前記CaO粉体の吹き込みにより形成される前記溶銑の前記表面の暴露部分に、前記金属Alを投入する
    ことを特徴とする請求項1または2に記載の溶銑の脱硫方法。
  4.  前記CaO粉体の気孔径が3μm以上であることを特徴とする請求項1または2に記載の溶銑の脱硫方法。
  5.  前記インジェクションランスから前記不活性ガス及び前記CaO粉体を吹き込み開始する初期段階に、前記金属Alの投入と共に前記インジェクションランスから前記CaO粉体に加えて金属Mgを吹き込む
    ことを特徴とする請求項1または2に記載の溶銑の脱硫方法。
PCT/JP2009/004414 2008-09-05 2009-09-07 溶銑の脱硫方法 WO2010026775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0919179-8A BRPI0919179B1 (pt) 2008-09-05 2009-09-07 Process for the dusulfurization of fused gas iron.
CN2009801343275A CN102144038B (zh) 2008-09-05 2009-09-07 铁液的脱硫方法
KR1020117004978A KR101260149B1 (ko) 2008-09-05 2009-09-07 용선의 탈황 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008228502A JP4445564B2 (ja) 2008-09-05 2008-09-05 溶銑の脱硫方法
JP2008-228502 2008-09-05

Publications (1)

Publication Number Publication Date
WO2010026775A1 true WO2010026775A1 (ja) 2010-03-11

Family

ID=41796954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004414 WO2010026775A1 (ja) 2008-09-05 2009-09-07 溶銑の脱硫方法

Country Status (5)

Country Link
JP (1) JP4445564B2 (ja)
KR (1) KR101260149B1 (ja)
CN (1) CN102144038B (ja)
BR (1) BRPI0919179B1 (ja)
WO (1) WO2010026775A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572534A4 (en) * 2017-01-19 2019-11-27 JFE Steel Corporation DEHUMPING TREATMENT METHOD FOR MELTED STEEL AND DEGREASING AGENT
US10687403B2 (en) 2016-03-21 2020-06-16 Koninklijke Philips N.V. Adaptive lighting system for a mirror component and a method of controlling an adaptive lighting system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493737B2 (ja) * 2009-11-10 2014-05-14 新日鐵住金株式会社 溶銑の脱硫方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110711A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Desulfurization of molten pig iron
JPH06330128A (ja) * 1993-05-17 1994-11-29 Kawasaki Steel Corp 溶銑の脱硫剤及びそれを用いた脱硫方法
JP2001348607A (ja) * 2000-06-07 2001-12-18 Nippon Steel Corp 密閉型フリーボードを用いた溶銑脱硫方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1030532C (zh) * 1994-01-08 1995-12-20 中国冶金技术公司 使用铝渣进行的钢铁冶炼方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110711A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Desulfurization of molten pig iron
JPH06330128A (ja) * 1993-05-17 1994-11-29 Kawasaki Steel Corp 溶銑の脱硫剤及びそれを用いた脱硫方法
JP2001348607A (ja) * 2000-06-07 2001-12-18 Nippon Steel Corp 密閉型フリーボードを用いた溶銑脱硫方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10687403B2 (en) 2016-03-21 2020-06-16 Koninklijke Philips N.V. Adaptive lighting system for a mirror component and a method of controlling an adaptive lighting system
EP3572534A4 (en) * 2017-01-19 2019-11-27 JFE Steel Corporation DEHUMPING TREATMENT METHOD FOR MELTED STEEL AND DEGREASING AGENT

Also Published As

Publication number Publication date
KR101260149B1 (ko) 2013-05-02
CN102144038A (zh) 2011-08-03
BRPI0919179A2 (pt) 2015-12-15
BRPI0919179B1 (pt) 2017-11-21
CN102144038B (zh) 2013-06-19
JP4445564B2 (ja) 2010-04-07
KR20110049846A (ko) 2011-05-12
JP2010059518A (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
TWI660049B (zh) 鋼液的脫硫處理方法及脫硫劑
JP5082417B2 (ja) 極低硫低窒素高清浄度鋼の溶製方法
WO2010026775A1 (ja) 溶銑の脱硫方法
JP6816777B2 (ja) スラグのフォーミング抑制方法および転炉精錬方法
JP5967139B2 (ja) 溶銑の予備処理方法
TWI685577B (zh) 高錳鋼的冶煉方法
JP5412927B2 (ja) 精錬容器耐火物へのスラグ付着抑制方法
JP3000864B2 (ja) 溶鋼の真空脱硫精錬方法
JP6361885B2 (ja) 溶銑の精錬方法
JP6806288B2 (ja) 鋼の製造方法
JP2007270178A (ja) 極低硫鋼の製造方法
JP6915522B2 (ja) スラグのフォーミング抑制方法および転炉精錬方法
JP4534734B2 (ja) 低炭素高マンガン鋼の溶製方法
JP2000345224A (ja) 溶銑の脱硫方法
JP6443192B2 (ja) FeSi合金粒を用いたスラグの改質方法
JP2019167610A (ja) 溶銑予備処理方法
JP3947288B2 (ja) 溶鉄の脱硫方法
JPH0987730A (ja) 溶鋼の昇熱精錬方法
JP4360239B2 (ja) 真空脱ガス設備における溶鋼の脱硫処理方法
JP6828498B2 (ja) 溶鋼の脱硫方法
JP5574468B2 (ja) 鋳鉄の精錬方法及び精錬装置
JP2000119731A (ja) 溶鉄の精錬方法
JP2005200762A (ja) 溶銑の脱硫方法
JP3697960B2 (ja) 溶銑の予備処理方法
JP2897647B2 (ja) 低水素極低硫鋼の溶製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134327.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117004978

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1717/DELNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09811305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0919179

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110303