WO2010025589A1 - 长效姜黄衍生物及其制备方法和在制药中的应用 - Google Patents

长效姜黄衍生物及其制备方法和在制药中的应用 Download PDF

Info

Publication number
WO2010025589A1
WO2010025589A1 PCT/CN2008/001688 CN2008001688W WO2010025589A1 WO 2010025589 A1 WO2010025589 A1 WO 2010025589A1 CN 2008001688 W CN2008001688 W CN 2008001688W WO 2010025589 A1 WO2010025589 A1 WO 2010025589A1
Authority
WO
WIPO (PCT)
Prior art keywords
curcumin
acting
long
group
cancer
Prior art date
Application number
PCT/CN2008/001688
Other languages
English (en)
French (fr)
Inventor
库宝善
周卫东
于凤华
姚海燕
姚广印
Original Assignee
北京鼎国昌盛生物技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200810222059XA external-priority patent/CN101669931B/zh
Priority claimed from CN2008102220602A external-priority patent/CN101669932B/zh
Priority claimed from CN200810222061A external-priority patent/CN101671248A/zh
Application filed by 北京鼎国昌盛生物技术有限责任公司 filed Critical 北京鼎国昌盛生物技术有限责任公司
Priority to US13/062,940 priority Critical patent/US8609723B2/en
Publication of WO2010025589A1 publication Critical patent/WO2010025589A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • C07C69/30Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with trihydroxylic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • C07C69/28Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with dihydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/587Monocarboxylic acid esters having at least two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/88Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with esterified carboxyl groups
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention relates to a curcumin derivative, in particular to a long-acting curcumin derivative having excellent sustained release effect, a preparation method thereof and application in pharmacy. Background technique
  • Curcuminoids is a phenolic pigment extracted from the roots and stems of traditional Chinese medicine turmeric and turmeric. It is usually curcumin, demethoxycurcumin and bis-decyloxycurcumin. A mixture of substances, modern pharmacological studies have shown that it has a variety of pharmacological activities such as anti-cancer, anti-inflammatory, anti-oxidation, hypolipidemic, anti-depression, and has little toxic side effects.
  • Depression is a complex psychological disorder, mainly characterized by low mood, reduced speech, mental and motor retardation, and its incidence increases year by year. Many diseases are often accompanied by depression, which seriously endangers people's health. Antidepressant drugs currently in clinical use generally act by affecting the reabsorption of monoamine transmitters, inhibiting the metabolism of monoamines, or blocking presynaptic inhibitory autonomous or non-autonomous receptors. Although these drugs have a good therapeutic effect on depression, many drugs are not effective and have serious side effects. Therefore, it is a safe and effective anti-depressant drug with low toxicity and side effects from traditional Chinese herbal medicine. The research direction of the field.
  • curcumin has exact anti-tumor activity, and its anti-cancer spectrum is wide, with little side effects. It is a new anti-cancer drug with broad application prospects, and it has entered the pre-clinical toxicological test stage.
  • Turmeric is the main component of traditional Chinese medicine compound Xiaoyao San.
  • the antidepressant effect of curcumin and its derivatives on animal models of depression has been reported in the literature.
  • curcumin has the function of treating various diseases, and has no toxicity and side effects.
  • the application field is very broad, and its main cause is the activity of curcumin polyphenol structure.
  • curcumin mainly contains three kinds of substances: curcumin, demethoxycurcumin, and bis-decyloxycurcumin. Their chemical structures are as follows:
  • Fat is the basic component of the human body. It is mainly metabolized by ⁇ -oxidation after absorption. The half-life of curcumin is extremely short for about 1 hour, and the existing curcumin and its derivatives have low bioavailability and are soluble in water. Sexual and ester-soluble problems.
  • the object of the present invention is to overcome the defects of the existing curcumin and its derivatives, and to provide a novel long-acting curcumin derivative, a preparation method thereof and application in pharmacy, and the technical problem to be solved is to make On the basis of ensuring safety and non-toxic side effects, it strives to increase the ester solubility, prolong the action time, and reduce the dosage, which makes it more suitable for practical use.
  • R1 and R2 are hydrogen or a decyloxy group
  • R3 and R4 are each independently selected from a C1-C50 alkyl group, and the alkyl group includes a linear or branched alkyl group such as ethyl, propyl, isopropyl or tert-butyl.
  • R3 and R4 may also independently be independently selected from C1-C50 unsaturated chain hydrocarbons, including, for example, alkenyl, polydecyl, hydroxy, polyhydroxy, etc., or cyclic aromatic groups.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the ester formed by the esterification reaction of each of the 4" hydroxyl groups is independent.
  • the long-acting curcumin derivative wherein the 4', 4" position of the long-acting curcumin derivative is a C1-C50 unsaturated fatty acid or an acyl group thereof, an aromatic fatty acid or an acyl group thereof With ginger An ester formed by an esterification reaction of a carbon 4', 4" hydroxyl group of a flavin substance.
  • the long-acting curcumin derivative, wherein the curcumin substance is curcumin, demethoxyl curcumin Or double demethoxycurcumin.
  • the aforementioned long-acting curcumin derivative wherein the unsaturated fatty acid includes palmitoleic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid (EPA) or docosahexaene.
  • unsaturated fatty acid includes palmitoleic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid (EPA) or docosahexaene.
  • each of R3 and R4 is independently a decyl group, a linoleic acid group or a salicylic acid group.
  • the preparation method of a long-acting curcumin derivative according to the present invention comprises the following steps: 1) weighing 2 ⁇ 4 mmol of curcumin substance, dissolving in dioxane, adding 0.3 ⁇ 0.73 g of pyridine, Then, 3.6 ⁇ 8.60 mmol of C1-C50 saturated fatty acids, unsaturated fatty acids and aromatics or their acyl substances are added dropwise to the system, and the water bath is reacted for 1 ⁇ 2 hours; 2) the above products are poured into Filtration in petroleum ether, dissolving the precipitate in ethyl acetate, washing twice with 1 mol/L hydrochloric acid solution, washing once with saturated sodium carbonate solution, drying with anhydrous sodium sulfate, filtering, and spinning the filtrate to obtain The crude curcumin alkyl ester; 3) The above crude curcumin alkyl ester was placed in a silica gel
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the above method for producing a long-acting curcumin derivative wherein the fatty acyl group, the unsaturated fatty acyl group or the aromatic acyl group are each a decanoyl chloride, a linoleoyl chloride or a salicyl chloride.
  • curcumin substance is curcumin, demethoxyl curcumin or bisdeoxyl curcumin.
  • the present invention also discloses the use of the above long-acting curcumin derivative for the preparation of an antidepressant drug.
  • the long-acting curcumin derivative comprises a pharmaceutically acceptable carrier, such as an excipient and an additive, and a flavoring agent is prepared into various dosage forms, including powders and tablets. Agents, pellets, capsules, micro-pills, granules or liquid derivatives.
  • the present invention also discloses the use of the above long-acting curcumin derivative for the preparation of an anti-tumor drug.
  • the long-acting curcumin derivative comprises a pharmaceutically acceptable carrier, such as excipients and additives, a flavoring agent, and various dosage forms, including powders and tablets. , pellets, capsules, microcapsules, granules or liquid derivatives.
  • the tumor includes: cervical cancer, kidney cancer, breast cancer, gastric cancer, colon cancer, lung cancer cells, liver cancer, prostate cancer, esophageal cancer, myeloma, nerve glue A tumor, melanoma, lymphoma, bladder cancer, adenocarcinoma, ovarian cancer or skin cancer, etc., and is not limited to the above tumor or cancer.
  • the long-acting curcumin derivative of the present invention has at least the following advantages:
  • Figure 1 is a graph showing the ultraviolet absorption detection of the present invention.
  • Figure 2 is an infrared detection diagram of the present invention.
  • Figure 3 is a nuclear magnetic resonance detection map of the present invention.
  • Figure 4 is a graph showing the determination of curcumin in the mouse of the present invention.
  • Figure 8 is a graph showing the anti-tumor effect of the present invention on tumor-bearing mouse S-180.
  • Fig. 9 is a graph showing the anti-tumor experiment of the tumor-bearing mouse HCT116 of the present invention.
  • Figure 10 is a graph showing the effect of the present invention on tumor cell apoptosis.
  • Figure 11 is a graph showing the survival experiment of the tumor-bearing mice of the present invention.
  • Figures 12(a) and 12(b) are experimental views of the inhibition of different tumor cells by the present invention. The best way to achieve your invention
  • the long-acting curcumin derivative of the present invention is a curcumin-like substance and a C1-C50 saturated fat.
  • the ester formed by the esterification reaction of fatty acids can be expressed as follows:
  • the curcumin alkyl ester formed by the above reaction comprises the following steps: weigh 2 ⁇ 4 mmol of curcumin, dissolve it in 50 ml of dioxane, add 0.3-0.73 g of pyridine, and then 3.6 ⁇ 8.60 mmol of citric acid was added dropwise to the system, and the mixture was reacted for 2 hours in a water bath. The reaction was monitored by TLC, and 3:1 chloroform and ethyl acetate were developed.
  • the above product was poured into 40 ml of petroleum ether, and the precipitate was dissolved in 30 ml of ethyl acetate by filtration, washed twice with 20 ml of a 1 mol/L hydrochloric acid solution, and once with a saturated sodium carbonate solution, and 3 g was added. Drying with anhydrous sodium sulphate for 2 hours, followed by filtration, and the filtrate was dried to give a crude product.
  • the curcumin in this embodiment may also be demethoxyl curcumin or dideoxycurcumin.
  • the raw material of tannic acid added is only one kind of C1-C50 saturated fatty acid substance, which is exemplified. Rather than limiting, other methods of preparing saturated fatty acids are the same as above, except that there is a difference in the amount of raw materials added.
  • the long-acting curcumin derivative of the present invention is an ester formed by esterification of a curcumin substance with a saturated fatty acyl substance of C1-C50, and the reaction structural formula can be expressed as follows:
  • n l ⁇ 49, (: 11 112 11 + 1 (in 0 0 1 (R is a halogen atom such as Cl, Br, I, etc.).
  • the curcumin alkyl ester formed by the above reaction comprises the following steps: weigh 2 ⁇ 4 mmol of curcumin, dissolve it in 50 ml of dioxane, add 0.3-0.73 g of pyridine, and then 3.6 ⁇ 8.60 mmol of decanoyl chloride was added dropwise to the system, and the reaction was carried out for 2 hours in an ice water bath. The reaction was monitored by TLC, and 3:1 of chloroform and ethyl acetate were evaporated.
  • the above product was poured into 40 ml of petroleum ether, and the precipitate was dissolved in 30 ml of ethyl acetate by filtration, washed twice with 20 ml of a 1 mol/L hydrochloric acid solution, and once with a saturated sodium carbonate solution, and 3 g was added.
  • the sodium hydroxide was dried for 2 hours, then filtered, and the filtrate was dried to give a crude product.
  • the curcumin in this embodiment may also be demethoxyl curcumin or dideoxycurcumin.
  • the raw material decanoyl chloride added is only one kind of C1-C50 saturated fatty acyl species, which is exemplified.
  • other methods of preparing saturated fatty acids are the same as above, except that there is a difference in the amount of raw materials added.
  • the curcumin phthalate prepared in this example was confirmed to be curcumin phthalate by ultraviolet absorption detection, infrared absorption detection or nuclear magnetic resonance detection, and its structural formula is as follows:
  • the long-acting curcumin derivative of the present invention is an ester formed by esterification reaction of a curcumin substance with a C1-C50 unsaturated fatty acid or an acyl substance thereof, and the reaction structural formula can be expressed as a Show:
  • n 1 ⁇ 49, C n H2 n -lCOOR (R is a halogen atom such as Cl, Br, I, etc.).
  • R is a halogen atom such as Cl, Br, I, etc.
  • the /L hydrochloric acid solution was washed twice with 20 ml of hydrochloric acid, washed once with a saturated sodium carbonate solution, and dried over 3 g of anhydrous sodium sulfate for 2 hours, then filtered, and the filtrate was dried to give a crude product of curcumin linoleate.
  • the above crude curcumin linoleate was placed in a silica gel column using 7:1 petroleum ether and chlorine. The product was collected by imitation elution, and dried under vacuum to give 1.07 - 1.67 g of the final product curcumin linoleate.
  • the curcumin in this embodiment may also be demethoxyl curcumin or dideoxycurcumin, wherein the raw material linoleoyl chloride may also be palm oleic acid, oleic acid, linolenic acid, peanuts required by the human body.
  • the acylate of tetraenoic acid, DHA or eicosapentaenoic acid (EPA), and other unsaturated fatty acids are prepared in the same manner as above, except that the amount of the raw materials added is different.
  • the linoleic acid chloride in the present embodiment may also be other branched or linear unsaturated fatty acids and unsaturated fatty acids having one or more double bonds and double bonds in different positions and sequences, and have been analyzed by elemental analysis.
  • IR or FAB-M S confirm its structure, its structural formula is as follows:
  • the long-acting curcumin derivative of the present invention is an ester formed by esterification reaction of a curcumin substance with a C1-C50 aromatic fatty acid substance or an acyl group thereof, and the reaction structural formula can be expressed as follows:
  • the curcumin aryl ester formed by the above reaction comprises the following steps: weigh 2 ⁇ 4 mmol of curcumin, dissolve it in 50 ml of dioxane, add 0.3-0.73 g of pyridine, and then 3.6 to 8.60 mmol of salicylic acid or salicyl chloride was added to the system, and the mixture was reacted for 2 hours in a water bath. The reaction was monitored by TLC, and 3:1 of chloroform and ethyl acetate were evaporated.
  • the curcumin in this embodiment may also be demethoxycurcumin or di-demethoxycurcumin, wherein the added salicylic acid or salicyl chloride may also be other aromatic fatty acids or acyl groups thereof.
  • the preparation method is the same as above, except that there is a difference in the amount of raw materials added.
  • the curcumin salicylate prepared in this example was confirmed to have a correct structure by ultraviolet absorption detection, infrared absorption detection or nuclear magnetic resonance detection.
  • the curcumin derivative of the present invention is composed of a curcumin substance and a C1-C50 saturated fatty acid or an acyl group thereof, a C1-C50 unsaturated fatty acid or an acyl group thereof, and C1- The esterification reaction of C50 aromatic fatty acids or their acyl substances. After esterification, curcumin is decomposed into two parts: ester and curcumin. The ester enters the oxidation pathway and metabolizes. Curcumin can exert pharmacodynamic effects. Curcumin after esterification is stronger in ester solubility than simple curcumin. Substance, at the same time, can achieve the purpose of maintaining efficacy.
  • the curcumin derivative of the present invention has the same medicinal use as the curcumin substance of the prior art, and has a sustained release effect superior to curcumin, and can be used for treating depression, cancer, liver fibrosis or chronic renal failure. Illness.
  • the medical use and pharmaceutical effects of the curcumin derivatives of the present invention are demonstrated by animal experiments below.
  • the present inventors conducted various animal experiments, including determination of curcumin in mouse plasma, and acute resistance in mice. Depression experiment, rat chronic stress and anti-depression experiment, rat sugar water preference test and serological test. The results of the real face showed that the curcumin derivative maintained the original curcumin effect, overcoming the short-term defects of curcumin, prolonging the action time of the drug and achieving the expected effect.
  • the experimental protocol and results are as follows:
  • mice subcutaneous injection, dosage: 100 mg/kg body weight, sampling: 5 min, 10 min, 30 min, 45 min, lh, 1.5 h, 2 h, 6 h and 2, 3, 4, 5 after administration
  • the mice took the eyeballs and took blood.
  • Six mice were taken from each blood collection point. The blood was placed in the heparin-coated blood collection tube. After the sample was centrifuged, the supernatant was taken into 0.2 ml, and extracted with ethyl acetate twice. It was vacuum dried and decyl alcohol dissolved in 0.2 ml for HPLC.
  • Preparation of the standard curve Take about 0.5 mg of curcumin and add a certain amount of peanut oil to a concentration of 0.5 mg/ml. Take blank plasma and precisely add different concentrations of curcumin. Standards were prepared together according to the plasma sample preparation method.
  • Curcumin HPLC-MS/MS method Spectral conditions: Column: Waters XTrra C18 reversed phase column (2.1 x 150 mm, 5 ⁇ ); mobile phase: acetonitrile to 0.1% formic acid aqueous solution (97:3, ⁇ / ⁇ ) Flow rate: 300 ⁇ /min; column temperature: 40 °C; injection volume: 20 ⁇ l. Mass spectrometry conditions: ESI ion source, negative ion detection, Curtain Gas (CUR): 10 L/min, Collision Gas (CAD): medium, lonSpray Voltage (IS): - 4500 V, Temperature (TEM): 500.
  • Ion Source Gas 1 (GS1): 40 L/min
  • Ion Sourse Gas 2 (GS2): 40 L/min.
  • MRM Multiple Reaction Monitoring
  • DP Declustering Potential
  • CE Collision Energy
  • EP Entrance Potential
  • mice were bled on the eyeballs at 5 min, 10 min, 30 min, 45 min, lh, 1.5 h, 2 h, 6 h, and 2, 3, 4, 5, 6, and 7 days after administration.
  • HPLC-MS/MS The content of curcumin in plasma.
  • curcumin peaked in the plasma on the first day, and then entered into a blunt period until the 7th day, and the curcumin was still detectable in the mouse plasma.
  • the experiment was divided into 3 groups (24 male ICR mice per group): control group, curcumin group (10 mg/kg), long-acting curcumin group (18.4 mg/kg, one-time feed)
  • Tail-tail experiments were performed on days 3, 7 and 14 after administration, respectively, and the curcumin group did not participate in the experiment on day 14.
  • Approximately 1 cm from the tip of the tip of the mouse was taped to a special iron frame, and the height of the animal was 50 cm from the ground.
  • the behavior of the experimental animals was observed within 6 min, and the cumulative immobility time of the mice in the last 4 min was recorded.
  • mice showed that the dose of curcumin at 10 mg/kg on the 3rd and 7th day after administration had no significant difference in reducing the cumulative time of suspension of the tail. 18.4 mg/kg of long-acting curcumin dose and the control group In comparison, the cumulative immobility time of mice decreased by 50.7% after 3 days of administration, and the cumulative immobility time of mice decreased by 59.5 % after 7 days of administration. After 14 days of administration, the cumulative immobility time of mice decreased by 31.8%. Compared with the group, *P ⁇ 0.05, ** ⁇ 0 ⁇ 01, *** ⁇ 0.001.
  • control group curcumin group (10 mg/kg)
  • long-acting curcumin group (18.4 mg/kg, one-time feeding)
  • Forced swimming test was performed 3 days, 7 days, and 14 days after administration, respectively, and the curcumin group did not participate in the 14th day of the experiment.
  • mice 24 hours before the formal test, the mice were placed in a glass circular cylinder (25 cm high, 10 cm diameter) with a water depth of 10 cm, and the water temperature was 24 ⁇ 1 °C for 15 minutes of forced swimming training. After 24 hours, the mice were again forced to swim for 6 min in a glass jar with a depth of 10 cm to observe and record the inactivity of the mice during the last 4 minutes; when the rats stopped struggling: floating in the water remained still, or On the 3rd and 7th day after the administration, the forced swimming results of the mice showed that there was no significant difference in the cumulative immobility time of the forced swimming test with the 10 mg/kg curcumin dose, 18.4 mg/kg of long-acting turmeric.
  • the cumulative immobility time of mice decreased by 62.1% after 3 days of administration, and the cumulative immobility time of mice decreased by 74.7% after 7 days of administration. After 14 days of administration, the cumulative immobility time of mice decreased. 37.8 %, *P ⁇ 0.05, **P ⁇ 0.01, ***P ⁇ 0.001.
  • mice On the 3rd and 7th day after the administration (long-acting curcumin), the mice were quickly decapitated and the hippocampus was quickly separated on the water, weighed, placed in an Eppendorf tube, and stored in a -80 °C refrigerator.
  • the contents of 5-HT, NA, DA, 5-HIAA and DOPAC in brain tissue were determined by high performance liquid phase electrochemistry. After the sample supernatant was filtered (pore size 0.22 ⁇ ), 20 ⁇ l was injected automatically.
  • the detector operating voltages are: 50, 100, 200, 300, 400 and 500mV.
  • the content of monoamine and its metabolites in brain tissue is expressed in ng/g wet tissue weave.
  • the experiment was divided into 6 groups (12 SD male rats in each group): normal control group, model group, low dose group (4.6 mg/kg), middle dose group (9.2 mg/kg) high dose group (18.4 mg/kg) ) and a positive control group (imipramine).
  • the drug-administered group and the model group were administered once every 7 days, and the amount of each administration was 7 days, and imipramine was administered once a day.
  • Different doses of long-acting curcumin (4.6, 9.2 and 18.4 mg/kg) were administered subcutaneously for 7 days, imipramine (10 mg/kg) was intraperitoneally for 21 days, and 30 minutes after the last dose (imipramine). Start the experiment.
  • rats were normally reared.
  • the chronic stress time course is 20 days, once a day, time: 9:00 am to 2:00 pm, the stress scheme is as follows: high speed horizontal oscillation 45 min; clip tail (lcm from the tail root): lmin; water forbidden 24h Brake 1.5h; fasting 24h; water and water stimulation (water temperature 10 °C) 5min; foot electric shock (1mA, time course ls, 1 time / min): 30 min; cage cage for 24 h; brake 2h ; tail (tail Root 1cm): lmin; water for 24h; high-speed horizontal oscillation for 1.5h; fasting for 24h; clip tail (1cm from tail): lmin; foot shock (lmA, time course ls, 1 time/min): 40 min Water and water stimulation for 5 minutes; change cage for 24 hours; high-speed horizontal oscillation for 60 minutes; foot shock (lmA, time course ls, 1 time/min): 50 min; water for 24h; brake for 2.5h; Raise for 24 hours.
  • the liquid paraffin was taken from the front end of the digital thermometer and smoothly inserted into the anus of the rat about 1 cm. The data was read twice and averaged.
  • Rat forced swimming experiments showed that 4.6, 9.2, and 18.4 mg/kg of long-acting curcumin dose-dependently reduced the cumulative immobility time of forced swimming experiments, and the cumulative immobility time of rats was reduced compared with the model control group. 37.6 %, 49.4 % and 58.9 %.
  • the long-acting curcumin has an antidepressant effect similar to the classic antidepressant imipramine in the forced swimming model (10 mg/kg).
  • the percent inhibition of cumulative immobility time in the imipramine forced swimming test was 40.5%, compared with the control group, *P ⁇ 0.05, **P ⁇ 0.01 and ***p ⁇ o.001.
  • the content of serum dermal ketone was detected by the competition method.
  • the principle was that the antigen in the specimen and a certain amount of the enzyme-labeled antigen competed with the solid phase antibody. The more the amount of antigen in the specimen, the less the enzyme-labeled antigen bound to the solid phase, and the final color development is shallower.
  • the rats were decapitated the next day, taking 5-10 ml of whole blood. Some of the whole blood was placed at room temperature for 20 min and then centrifuged: lOOOOrpm, lOmin, serum was separated, and stored at -80 °C for later use. Detection was performed using a serum corticosterone kit.
  • the serum corticosterone content of the model control group was significantly higher than that of the normal group. There was a significant difference between the two groups.
  • the long-acting curcumin administration group and the imipramine group significantly decreased the corticosterone content, which was different from the model control group. Significant.
  • the curcumin can still be detected in the mice until the 7th day, indicating that the drug persists in the mouse and achieves the intended sustained release.
  • Two kinds of desperate models were administered acutely. Compared with the model group, there was no significant difference in the cumulative immobility time between the curcumin group after 3 days and 7 days, but the cumulative duration of the long-acting curcumin group decreased after 3, 7 and 14 days. And there are significant differences.
  • the measurement of mouse monoamine transmitter showed that 5-HT content was increased in the hippocampus of the long-acting curcumin group on the 3rd and 7th day. This indicates that the antidepressant effect can be maintained for at least a week after a one-time administration of a long-acting curcumin derivative.
  • the long-acting curcumin derivatives retain the inherent antidepressant effect of curcumin, and also have the effect of slow release and prolonged efficacy, and have good clinical application prospects.
  • the long-acting curcumin group promoted cell apoptosis with an apoptosis level of 44.7, and the tumor cell apoptosis level was 22.9 in the control group and 29.1 in the 5-FU group (see also Table 5).
  • the median survival time of the control group was 13.5 days
  • the 95% confidence interval was 9.5 14.7 days
  • the median survival time of the long-acting curcumin group was 17.5 days
  • the 95% confidence interval was 12.8 to 20.2 days.
  • Kaplan-meier analysis showed a statistically significant difference in survival between the two groups.
  • tumor cells Hela cells, renal cancer cells 7860, breast cancer cells, gastric cancer cells, rectal cancer cells, lung cancer cells, liver cancer cells HepG2, prostate cancer cells, esophageal cancer, sarcoma cells, glioma cells, melanoma cell, lymphoma cell, a bladder cancer cell count (X 10 4) under a microscope, the culture in 96 well plates under saturated vapor C0 2 24h, long-acting curcumin were added (final concentration 25 ⁇ ) and a control solvent, after 72h ⁇ method The inhibitory effect of long-acting curcumin on tumor cells was examined. Calculate the inhibition rate.
  • the long-acting curcumin derivative of the present invention inhibits fourteen cells (P ⁇ 0.05), and the inhibition rates of different cell types are different. The results are shown in Table 6 below.
  • Hepatoma cells HepG2 43.7 ⁇ 1.4
  • the long-acting curcumin derivative of the present invention has a significant inhibitory effect on the above different tumor cells, and the inhibition rate thereof is more than 35.5%.
  • the inhibition rate for kidney cancer reached the highest value of 60.6%.
  • a long-acting curcumin is prepared by a chemical synthesis method, and an injection prepared by a conventional method is added to a solvent.
  • Dosage Intramuscular injection of long-acting curcumin 100-500mg every 3-7 days.
  • the long-acting curcumin is prepared by a chemical synthesis method, and an excipient cyclodextrin is added, and tableting is carried out by a conventional method to prepare a tablet or granule.
  • the long-acting curcumin prepared according to the method of the above examples is dissolved in water and an appropriate amount of a solubilizing agent such as polyethylene glycol, and a long-acting curcumin oral solution having a specification of 20 mg/ml is prepared by a conventional method.
  • a solubilizing agent such as polyethylene glycol
  • the soft gelatin material was selected from gelatin and sorbitol, and prepared into a long-acting curcumin capsule having a size of 20 mg/granule.
  • the long-acting curcumin derivative of the invention is an ester obtained by esterifying a curcumin substance, and the sustained release effect is better than that of the simple curcumin substance, which greatly improves the utilization of curcumin in the body. At the same time, the pharmaceutical activity of curcumin is improved, and the medical value is high.
  • the curcumin derivative of the present invention has the same medical use as the curcuminoids of the prior art, and can be used for the treatment of depression, tumor, liver fibrosis or chronic renal failure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Oncology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Hematology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

长效姜黄素衍生物及其制备方法和在制药中的应用
技术领域
本发明涉及一种姜黄素衍生物, 特别是涉及一种具有优良緩释效果的 长效姜黄素衍生物及其制备方法和在制药中的应用。 背景技术
姜黄素 (: curcuminoids, Cur)是从中药姜黄、 郁金的根、 茎中提取出来的 一种酚类色素,通常为姜黄素、 去曱氧基姜黄素和双去曱氧基姜黄素三种物 质的混合物,现代药理研究表明,其具有抗癌、 抗炎、 抗氧化、 降血脂、 抗抑 郁等多种药理活性,且毒副作用小。
抑郁症是一种复杂的心理障碍性疾病, 主要表现为情绪低落, 言语减 少, 精神、 运动迟緩, 其发病率逐年增加, 许多疾病常常并发抑郁症, 严 重危害人的身体健康。 目前临床上使用的抗抑郁症药物一般是通过影响单 胺递质的重吸收、 抑制单胺的代谢或阻断突触前抑制性自主或非自主受体 而发挥作用。 虽然这些药物对抑郁症均有很好的治疗作用, 但许多药物疗 效并不稳定, 而且毒副作用较大, 因此, 从传统的中草药中开发安全有效、 毒副作用小的抗抑郁症药物成为这一领域的研究方向。
目前用于治疗肿瘤的药物种类很多, 但每一种药物在抗癌的同时对正 常组织细胞亦有毒性作用, 还可能引起继发肿瘤以及肝、 肾毒性及骨髓抑 制、 消化道反应、 脱发等不良反应, 而迄今没有发现姜黄素有明显的毒副 作用。 众多细胞试验和动物试验证明姜黄素具有确切的抗肿瘤活性, 其抗 癌谱较广, 毒副作用小, 是一种具有广泛应用前景的抗癌新药, 目前已进 入临床前的毒理试验阶段。
姜黄是中药复方逍遥散中的主要成分, 姜黄素及其衍生物对抑郁动物 模型的抗抑郁作用研究已有文献报道。 从现有的文献来看, 姜黄素具有治 疗多种疾病的功能, 而且无毒、 副作用, 应用领域十分广阔, 其最主要原 因是姜黄素多酚结构的活性。 从其化学结构来看, 姜黄素主要包含三种物 质: 即姜黄素、 去曱氧基姜黄素、 双去曱氧基姜黄素,它们的化学结构如下:
姜黄素
Figure imgf000002_0001
去甲氧基姜黄素
Figure imgf000003_0001
双去甲氧基姜黄素
脂肪是人体的基本成分, 人体吸收后主要以 β -氧化的方式进行代谢, 姜黄素的半衰期极短约 1 小时, 且现有的姜黄素及其衍生物皆存在生物利 用度很低, 其水溶性、 酯溶性较差的问题。
有鉴于上述现有的姜黄素及其衍生物存在的缺陷,本发明人基于从事 此类医药产品多年丰富的实践经验及专业知识,积极加以研究创新,以期创 设一种新的长效姜黄素衍生物及其制备方法和在制药中的应用,能够改进 一般现有的姜黄素及其衍生物类物质的药效,使其更具有实用性。 经过不断 的研究、 设计,并经反复试作及改进后,终于创设出确具实用价值的本发明。 发明内容
本发明的目的在于, 克服现有的姜黄素及其衍生物存在的缺陷, 而提 供一种新的长效姜黄素衍生物及其制备方法和在制药中的应用, 所要解决 的技术问题是使其在保证安全性、 无毒副作用的基础上, 力求达到增加酯 溶性, 延长作用时间, 降低用药量的目的, 从而更加适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种长效姜黄素衍生物, 其具有下列结构式:
Figure imgf000003_0002
R1和 R2为氢或曱氧基; R3和 R4各自独立的选自 C1-C50的烷基,该 烷基包括直链或支链烷基, 如乙基、 丙基、 异丙基、 叔丁基等。 R3 和 R4 还可以各自独立的选自 C1-C50的不饱和链烃, 包括例如烯基、 多浠基、 羟 基、 多羟基等, 或环状芳族基团。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的长效姜黄素衍生物,其中该长效姜黄素衍生物的碳 4', 4"位的基 团为 C1-C50的饱和脂肪酸类或其酰类与姜黄素类物质的碳 4', 4"位羟基各 自独立的发生酯化反应所形成的酯类。
前述的长效姜黄素衍生物, 其中该长效姜黄素衍生物的碳 4', 4"位的 基团为 C1-C50的不饱和脂肪酸类或其酰类、芳香族脂肪酸类或其酰类与姜 黄素类物质的碳 4', 4"位羟基各自独立的发生酯化反应所形成的酯类。 前述的长效姜黄素衍生物, 其中姜黄素类物质是姜黄素、 去曱氧基姜 黄素或双去甲氧基姜黄素。
前述的长效姜黄素衍生物, 其中不饱和脂肪酸类包括棕榈油酸、 油酸、 亚油酸、 亚麻酸、 花生四浠酸、 二十碳五烯酸(EPA )或二十二碳六烯酸
( DHA X
前述的长效姜黄素衍生物, 其中所述 R3和 R4各自独立的为癸烷基、 亚油酸基或水杨酸基。
本发明的目的及解决其技术问题是还可以采用以下技术方案来实现 的。 依据本发明提出的一种长效姜黄素衍生物的制备方法, 包括以下步骤: 1 )称取 2~4 mmol姜黄素类物质, 溶解在二氧六环中, 加入 0.3~0.73克的 吡啶, 然后将 3.6~8.60 mmol的 C1-C50的饱和脂肪酸类、 不饱和脂肪酸类 及芳香族类或其酰类物质逐滴加入到体系中, 水水浴反应 1~2小时; 2 )上 述产物倒入到石油醚中过滤, 将沉淀溶解在乙酸乙酯中, 用 lmol/L的盐酸 溶液洗涤两次, 再用饱和碳酸钠溶液洗涤一次, 加入无水硫酸钠干燥, 然 后过滤, 将滤液旋干, 得粗产物姜黄素烷基酯; 3 )将上述粗产物姜黄素烷 基酯装在硅胶柱中, 使用 7: 1的石油醚和氯仿洗脱, 收集目标产物, 真空 干燥得姜黄素烷基酯。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的长效姜黄素衍生物的制备方法, 其中所述冰水浴反应过程通过 TLC监测, 3: 1的氯仿和乙酸乙酯展开。
前述的长效姜黄素衍生物的制备方法, 其中所述的脂肪酰类、 不饱和 脂肪酰类或芳香族酰类物质各自分别为癸酰氯、 亚油酰氯或水杨酰氯。
前述的长效姜黄素衍生物的制备方法, 其中姜黄素类物质是姜黄素、 去曱氧基姜黄素或双去曱氧基姜黄素。
本发明还公开了一种上述的长效姜黄素衍生物在制备抗抑郁症药物中 的应用。
前述的在制备抗抑郁症药物中的应用, 其中所述的长效姜黄素衍生物 包含有药学可接受的栽体, 如赋形剂和添加剂、 香味剂制成各种剂型, 包 括散剂、 片剂、 微丸、 胶嚢、 微嚢、 颗粒剂或液体衍生物。
前述的在制备抗抑郁症药物中的应用, 其中所述的长效姜黄素衍生物 在制备抗抑郁症的饮料、 食品、 食品添加剂或者保健品中的应用。
另外, 本发明还公开了一种上述的长效姜黄素衍生物在制备抗肿瘤症 药物中的应用。
前述的在制备抗肿瘤症药物中的应用, 其中所述的长效姜黄素衍生物 包含有药学可接受的载体, 如赋形剂和添加剂、 香味剂制成各种剂型, 包 括散剂、 片剂、 微丸、 胶嚢、 微嚢、 颗粒剂或液体衍生物。
前述的在制备抗肿瘤症药物中的应用, 其中所述的长效姜黄素衍生物 在制备抗抑郁症的饮料、 食品、 食品添加剂或者保健品中的应用。
前述的在制备抗肿瘤症药物中的应用, 其中所述的肿瘤症包括: 宫颈 癌、 肾癌、 乳腺癌、 胃癌、 结肠癌、 肺癌细胞、 肝癌、 前列腺癌、 食管癌、 骨髓瘤、 神经胶质瘤、 黑色素瘤、 淋巴瘤、 膀胱癌、 腺癌、 卵巢癌或皮肤 癌等, 且不仅仅局限于上述肿瘤或癌症。
借由上述技术方案, 本发明长效姜黄素衍生物及其制备方法和在制药 中的应用至少具有下列优点:
1 ) 药效延长;
2 ) 酯溶性增加, 生物利用度提高;
3 )安全、 无毒害作用。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1是本发明紫外吸收检测图。
图 2是本发明红外检测图。
图 3是本发明核磁共振检测图。
图 4是本发明小鼠体内姜黄素测定的曲线图。
图 5是本发明小鼠悬尾结果实验图 (n=15 , mean±S.E.M )0
图 6 是本发明对小鼠强迫游泳不动时间的影响实验图 (η=15 , mean±S.E.M )。
图 7 是本发明对大鼠强迫游泳不动时间的影响实验图 (n=15 , mean±S.E.M )。
图 8是本发明对荷瘤小鼠 S-180抗肿瘤实验图。
图 9是本发明荷瘤小鼠 HCT116抗肿瘤实验图。
图 10是本发明对肿瘤细胞凋亡的影响实验图。
图 11是本发明对荷瘤小鼠生存实验图。
图 12 ( a )、 12 ( b )是本发明对不同肿瘤细胞的抑制作用实验图。 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效, 以下结合附图及较佳实施例, 对依据本发明提出的长效姜黄素衍生物及其 制备方法和在制药中的应用其具体实施方式、 方法、 步骤、 特征及其功效, 详细说明如后。
实施例 1
本发明的长效姜黄素衍生物,是采用姜黄素类物质与 C1-C50的饱和脂 肪酸类物质发生酯化反应所形成的酯类, 其反应结构式可表示成如下所示:
Figure imgf000006_0001
其中 n = 1 ~ 49
通过上述反应所生成的姜黄素烷基酯, 其制备方法包括如下步骤: 称取 2~4 mmol 姜黄素类物质, 溶解在 50 毫升的二氧六环中, 加入 0.3-0.73克的吡啶, 然后将 3.6~8.60 mmol的癸酸逐滴加入到体系中 , 水水 浴反应 2小时, 反应过程通过 TLC监测, 3: 1的氯仿和乙酸乙酯展开。
上述产物倒入到 40毫升的石油醚中, 过滤将沉淀溶解在 30毫升的乙 酸乙酯中, 用 lmol/L的盐酸溶液 20毫升洗涤两次, 再用饱和碳酸钠溶液 洗涤一次, 加入 3克无水 4酸钠干燥 2小时, 然后过滤, 将滤液旋干, 得 粗产物姜黄素癸酸酯。
将上述粗产物姜黄素癸酸酯装在硅胶柱中, 使用 7: 1的石油醚和氯仿 洗脱, 收集目标产物, 真空干燥得 1.07 ~ 1.67克终产物姜黄素癸酸酯。
本实施例中的姜黄素还可以是去曱氧基姜黄素或二去曱氧基姜黄素, 其中加入的原料癸酸仅仅是 C1-C50的饱和脂肪酸类物质的一种,是举例性 的, 而非限制性的, 其它的饱和脂肪酸制备方法同上, 只是在原料的加入 量上有区别。
如图 〜3 ^所示,, 本实施例制备的 黄素姿,醋, 通过紫外吸收检测、 酸酯。
实施例 2
本发明的长效姜黄素衍生物,是采用姜黄素类物质与 C1-C50的饱和脂 肪酰类物质发生酯化反应所形成的酯类, 其反应结构式可表示成如下所示:
Figure imgf000006_0002
其中 n = l ~ 49, (: 11 112 11 + 1 ( 0 0 1 中 ( R为鹵素原子如 Cl、 Br、 I等)。
通过上述反应所生成的姜黄素烷基酯, 其制备方法包括如下步骤: 称取 2~4 mmol 姜黄素类物质, 溶解在 50 毫升的二氧六环中, 加入 0.3-0.73克的吡啶, 然后将 3.6~8.60 mmol的癸酰氯逐滴加入到体系中, 冰 水浴反应 2小时, 反应过程通过 TLC监测, 3: 1的氯仿和乙酸乙酯展开。 上述产物倒入到 40毫升的石油醚中, 过滤将沉淀溶解在 30毫升的乙 酸乙酯中, 用 lmol/L的盐酸溶液 20毫升洗涤两次, 再用饱和碳酸钠溶液 洗涤一次, 加入 3克无水 酸钠干燥 2小时, 然后过滤, 将滤液旋干, 得 粗产物姜黄素癸酸酯。
将上述粗产物姜黄素癸酸酯装在硅胶柱中, 使用 7: 1的石油醚和氯仿 洗脱, 收集目标产物, 真空干燥得 1.07 - 1.67克终产物姜黄素癸酸酯。
本实施例中的姜黄素还可以是去曱氧基姜黄素或二去曱氧基姜黄素,其 中加入的原料癸酰氯仅仅是 C1-C50的饱和脂肪酰类物质的一种,是举例性 的,而非限制性的, 其它的饱和脂肪酸制备方法同上, 只是在原料的加入量 上有区别。
如图 1 ~ 3所示, 本实施例制备的姜黄素癸酸酯, 通过紫外吸收检测、 红外吸收检测或核磁共振检测, 证明所得产物为姜黄素癸酸酯, 其结构式 如下所示:
Figure imgf000007_0001
实施例 3
本发明的长效姜黄素衍生物,是采用姜黄素类物质与 C1-C50的不饱和 脂肪酸类或其酰类物质发生酯化反应所形成的酯类, 其反应结构式可表示 成^口下所示:
Figure imgf000007_0002
其中 n = 1 ~ 49, C n H2 n -lCOOR中( R为卤素原子如 Cl、 Br、 I等)。 通过上述反应方程式所生成的姜黄素烯基酯,其制备方法包括如下步 骤:
称取姜黄素类物质 2~4m mo l、 二氯曱烷 140 m l 和吡啶 73. 4 m l , 室 温搅拌下于 l h 内滴加亚油酰氯 0. 229 mo 1 的二氯曱烷 100 m 1溶液, 于 50 °C保温反应 3 h。 反应过程通过 TLC监测, 3: 1的氯仿和乙酸乙酯展开,到 达终点后,搅拌下将反应混合物转至水 200 m 1 和二氯曱烷 200 m 1 的混 合液中,有机相依次用 lmol/L的盐酸溶液 20毫升洗涤两次,再用饱和碳酸 钠溶液洗涤一次, 加入 3克无水硫酸钠干燥 2小时, 然后过滤, 将滤液旋 干, 得粗产物姜黄素亚油酸酯。
将上述粗产物姜黄素亚油酸酯装在硅胶柱中, 使用 7: 1的石油醚和氯 仿洗脱, 收集目标产物, 真空干燥得 1.07 - 1.67克终产物姜黄素亚油酸酯。 本实施例中的姜黄素还可以是去曱氧基姜黄素或二去曱氧基姜黄素, 其中加入的原料亚油酰氯还可以是人体所需的棕榈油酸、 油酸、 亚麻酸、 花生四烯酸、 DHA或二十碳五烯酸(EPA )等的酰化物, 其它的不饱和脂 肪酸制备方法同上, 只是在原料的加入量上有区别。
本实施例中的原料亚油酰氯还可以是其他的支链或直链的不饱和脂肪 酸以及含有 1个到多个双键、 双键处于不同的位置及顺序的不饱和脂肪酸, 已通过元素分析、 IR或 FAB-M S 确证其结构, 其结构式如下所示:
Figure imgf000008_0001
实施例 4
本发明的长效姜黄素衍生物,是采用姜黄素类物质与 C1-C50的芳香族 脂肪酸类物质或其酰类发生酯化反应所形成的酯类, 其反应结构式可表示 成如下所示:
Figure imgf000008_0002
通过上述反应所生成的姜黄素芳香基酯, 其制备方法包括如下步骤: 称取 2~4 mmol 姜黄素类物质, 溶解在 50 毫升的二氧六环中, 加入 0.3-0.73克的吡啶, 然后将 3.6〜8.60 mmol的水杨酸或水杨酰氯加入到体系 中, 水水浴反应 2小时, 反应过程通过 TLC监测, 3: 1的氯仿和乙酸乙酯 展开。
上述产物倒入到 40毫升的石油醚中, 过滤将沉淀溶解在 30毫升的乙 酸乙酯中, 用 lmol/L的盐酸溶液 20毫升洗涤两次, 再用饱和碳酸钠溶液 洗涤一次, 加入 3克无水硫酸钠干燥 2小时, 然后过滤, 将滤液旋干, 得 粗产物姜黄素水杨酸酯。
将上述粗产物姜黄素水杨酸酯装在硅胶柱中, 使用 7: 1的石油醚和氯 仿洗脱, 收集目标产物, 真空干燥得 1.07 - 1.67克终产物姜黄素水杨酸酯。
本实施例中的姜黄素还可以是去曱氧基姜黄素或二去甲氧基姜黄素, 其中加入的原料水杨酸或水杨酰氯还可以是其它的芳香族脂肪酸或其酰类, 制备方法同上, 只是在原料的加入量上有区别。
本实施例制备的姜黄素水杨酸酯, 通过紫外吸收检测、 红外吸收检测 或核磁共振检测,确证结构正确。
通过上述实施例 1 - 6可知, 本发明的姜黄素衍生物是由姜黄素类物质 与 C1-C50的饱和脂肪酸类或其酰类、 C1-C50的不饱和脂肪酸类或其酰类 以及 C1-C50的芳香族脂肪酸类或其酰类物质酯化反应所得。酯化后的姜黄 素进入体内将被分解为酯和姜黄素两部分, 酯进入氧化途径代谢, 姜黄素 可以发挥药效作用, 酯化后的姜黄素在酯溶性上要强于单纯的姜黄素类物 质, 同时可达到维持药效的目的。 本发明的姜黄素衍生物与现有技术的姜 黄素类物质一样医药用途广泛, 且其緩释效果又优于姜黄素, 其可用于治 疗抑郁症、 癌症、 肝纤维化或慢性肾功能衰竭等病症。 以下通过动物实验 证明本发明的姜黄素衍生物的医药用途及其药学效果。
为了进一步考察本发明按照上述制备方法所获得的姜黄素衍生物的长 效性及抗抑郁作用, 本发明人进行了多种动物实验, 其中包括小鼠血浆中 姜黄素的测定、 小鼠急性抗抑郁实验、 大鼠慢性应激抗抑郁实验、 大鼠糖 水偏爱实验及血清学检测。 实脸结果表明该姜黄素衍生物保持了原有的姜 黄素药效作用, 克服了姜黄素作用时间短的缺陷, 延长了药物作用时间, 达到了预期的效果。 实验方案和结果如下:
实验例 1 小鼠血浆中姜黄素的测定
小鼠给药方式: 皮下注射, 给药剂量: 100mg/kg体重, 取样: 给药后 分别于 5min 、 10min、 30min 、 45min、 lh 、 1.5h、 2h、 6h及第 2、 3、 4、 5、 6、 7天小鼠摘眼球取血, 每个取血点 6只小鼠, 将血液置于涂有肝素的 采血管中, 样品离心后取上清 0.2ml, 乙酸乙酯萃取两次, 冷冻真空抽干, 曱醇溶解至 0.2ml, 用于 HPLC测定。
标准曲线的制备: 取 0.5mg左右姜黄素, 加入一定量的花生油使其浓 度为 0.5mg/ml。 取空白血浆, 精密加入不同浓度的姜黄素。 按血浆样品制 备方法一起制备标准品。
姜黄素 HPLC-MS/MS测定方法: 谱条件: 色谱柱: Waters XTrra C18 反相柱(2.1 x 150 mm, 5 μπι ); 流动相: 乙腈比 0.1%甲酸水溶液( 97:3 , ν/ν ); 流速: 300 μΐ/min; 柱温: 40 °C ; 进样量: 20 μ1。 质谱条件: ESI离 子源, 负离子检测, Curtain Gas (CUR): 10 L/min, Collision Gas(CAD): medium, lonSpray Voltage(IS): - 4500 V , Temperature(TEM): 500 。C, Ion Source Gas 1(GS1): 40 L/min, Ion Sourse Gas 2(GS2): 40 L/min。 选择性多反 应监测 (MRM ), 用于定量分析的离子反应及对应 Declustering Potential (DP)、 Collision Energy (CE) 、 Entrance Potential (EP)分别为 m/z 367.1—216.9, DP: - 50 V, CE: - 15 V, EP: - 6 V。
如图 4所示, 小鼠给药后分别于 5min 、 10min、 30min 、 45min、 lh 、 1.5h、 2h、 6h及第 2、 3、 4、 5、 6、 7天小鼠摘眼球取血, HPLC-MS/MS 法姜黄素在血浆中的含量。 如图 4所示, 通过一次性给药后, 在第一天血 浆中姜黄素出现峰值, 之后进入平緩期一直持续到第 7天, 仍然能够在小 鼠体血浆内检测的姜黄素。
实验例 2 急性抗抑郁作用实验
2.1小鼠悬尾实驺
请参阅图 5所示, 实验分 3个组(每组 24只雄性 ICR小鼠): 对照组、 姜黄素组( 10mg/kg )、 长效姜黄素组( 18.4mg/kg,一次性给入 20天的量) 分别于给药后 3天、 7天和 14天进行悬尾实验, 姜黄素组不参与第 14天的 实验。 距小鼠尾尖部末梢约 lcm的部位用胶带粘在特制铁架台上, 动物距 离地面高度为 50cm。 观察 6min内实验动物行为, 并记录最后 4min内小鼠 的累计不动时间。
小鼠悬尾实验显示, 给药后第 3天、 第 7天 10mg/kg的姜黄素剂量对 减少悬尾累计不动时间没有显著性差异, 18.4mg/kg的长效姜黄素剂量与对 照组相比, 给药 3天后小鼠累计不动时间减少了 50.7 %, 给药 7天后小鼠 累计不动时间减少了 59.5 % ,给药 14天后小鼠累计不动时间减少了 31.8 %, 与对照组相比, *P<0.05, ** Ρ<0·01 , *** Ρ<0.001。
2.2 小鼠强迫游泳实验
请参阅图 6所示, 实验分 3个组(每组 24只雄性 ICR小鼠): 对照组、 姜黄素组( 10mg/kg )、 长效姜黄素组( 18.4mg/kg,一次性给入 20天的量) . 分别于给药后 3天、 7天和 14天进行强迫游泳实验, 姜黄素组不参与第 14 天的实验。
正式测试前 24小时, 将小鼠置于水深 10cm的玻璃圓缸(高 25cm, 直 径 10cm ) 内, 水温 24士 1 °C, 作强迫游泳训练 15分钟。 24小时后, 再次将 小鼠置于水深 10cm的玻璃圓缸内强制游泳 6 min, 观察并记录最后 4分钟 内小鼠的累 不动时间; 当 鼠停止挣扎: 浮在水中保持不动, 或仅做一 给药后第 3天、第 7天小鼠强迫游泳结果显示, 10mg/kg的姜黄素剂量 对减少强迫游泳实验的累计不动时间没有显著性差异, 18.4mg/kg 的长效 姜黄素剂量与对照组相比, 给药 3天后小鼠累计不动时间减少了 62.1 % , 给药 7天后小鼠累计不动时间减少了 74.7 %, 给药 14天后小鼠累计不动时 间减少了 37.8 % , *P<0.05, ** P<0.01 , *** P<0.001。
2.3 小鼠脑内单胺及 ^代谢产物含量测定
给药后第 3、 7天(长效姜黄素), 将小鼠快速断头处死, 在水上迅速 分离出海马, 称重后放入 Eppendorf管中, 置于 -80°C冰箱中保存。
每 lOOmg脑组织中加入 200μ1冰冷 Α液( 0.4mol/L HCLO4 ),冰浴中超 声匀浆, 4°C避光静置 60min, 离心 20min(12,000rpm, 4°C), 取上清液, 加 入半量体积的 B 液(0.2mol/L 拧檬酸钾, 0.3mol/L K2HP04和 0.2mol/L EDTA ),涡旋混匀 10 min, 4°C避光静置 60 min,再次离心 20 min( 12,000rpm, 4°C ), 取上清液进行单胺测定。
脑组织中 5-HT、 NA、 DA、 5-HIAA和 DOPAC的含量采用高效液相电 化学法测定。 样品上清液过滤(孔径 0.22μπι )处理后, 取 20μ1自动进样。 色语柱为 Diamonsmm C18 (150x4.6mm I.D., 5μηι),流动相组成: 125mmol/L 枸橼酸-柠檬酸钠緩沖液( p H=4.3 ), 0.1mmol/L EDTA, 1.2mmol/L辛烷 基磺酸钠, 16%曱醇。 流速: 1.0ml/min。 检测器工作电压分别为: 50, 100, 200, 300, 400和 500mV。 脑组织中单胺及其代谢产物的含量以 ng/g湿组 织重表示。
如表 1所示, 长效姜黄素( 18.4mg/kg ) 于第 3、 7增加海马 5-HT的含 量; 去甲肾上腺素水平也明显升高; 海马的 5-HT转换率在长效姜黄素组有 下降趋势。
表 1 长效姜黄素对小鼠海马区 5-HT, NA, DA及其代谢产物的影响 ( n=12 , mean士 S.E.M )
剂 量 海马 (ng/g)
分组
数 (mg kg) 5-HT 5-HIAA 5-HIAA/5-HT Noradrenaline Dopamine DOPAC
532.4±23.6 177.9±14.9 0.34±0.03 245.2± 19.5 18.6±4.6 12.3±2.2 对照组
534.0±26.0 177.1±14.0 0.32±0.02 241.5±28.4 18.9±1.7 12.9±2.7
10 541.2±31.8 175.7±13.8 0.32±0.03 245.6±12.2 19.1±3.6 12.4±1.2 姜黄素
10 534.6±28.9 179.2±14.9 0.33±0.03 246.6±1 1.2 18.8±5.4 1 1.9±1.8 长效姜 18.4 713.1±19.2** 183.4±14.2 0.25±0.02 369.9±12.3** 20.3±5·9 13.1±2.0 黄素 18.4 725.0±30.4** 186.3±8.4 0.25±0.03 372.2±21.6** 21.2±5.6 14.6±2.1 与对照组相比, * Ρ<0.05, ** Ρ<0.01
实验例 3 大鼠慢性应激抗抑郁作用实验
3.1大鼠慢性应激模型的建立
实验分 6个组(每组 12只 SD雄性大鼠): 正常对照组、 模型组、 低剂 量组(4.6mg/kg )、 中剂量组 (9.2mg/kg ) 高剂量组 (18.4mg/kg )和阳性 对照组(丙咪嗪)。 给药组和模型组每 7天给药一次, 每次给药量为 7天的 总量,丙咪嗪每天给药一次。不同剂量的长效姜黄素(4.6, 9.2和 18.4mg/kg ) 皮下一次给药 7天的量, 丙咪嗪 ( 10mg/kg )腹腔注射 21天, 末次给药后 30分钟(丙咪嗪)开始实验。 正常对照组对大鼠进行正常饲养, 除了称量 体重, 测试体温和糖水测试, 不进行任何刺激, 其他各组每组都进行同等 类型, 同等强度的刺激, 实验过程中刺激种类的实施顺序采用不可预知的 方式进行, 并且同种刺激强度逐次递增。
慢性应激时程共计 20天, 每日一次, 时间: 上午 9: 00 ~下午 2: 00 之间, 应激方案如下: 高速水平震荡 45min; 夹尾(距尾根 lcm ): lmin; 禁水 24h ; 制动 1.5h; 禁食 24h ; 水水刺激(水温 10°C ) 5min; 足底电击 ( 1mA, 时程 ls, 1次 /min ): 30 min; 换笼孤养 24 h; 制动 2h; 夹尾(距尾 根 1cm ): lmin; 禁水 24h ; 高速水平震荡 1.5h; 禁食 24h ; 夹尾(距尾 才艮 lcm ): lmin; 足底电击( lmA, 时程 ls, 1次 /min ): 40 min; 水水刺激 5分钟; 换笼孤养 24 h; 高速水平震荡 60min; 足底电击 ( lmA, 时程 ls, 1次 /min ): 50 min; 禁水 24h ; 制动 2.5h; 换笼孤养 24 h。
3.2大鼠体温测定
用数字测温仪前端蘸取液体石蜡顺滑插入大鼠肛门内 1cm左右, 读取 两次数据, 取平均值。
21 天慢性应激后, 与正常大鼠相比, 模型组大鼠体温明显降低, 有极 显著性差异;长效姜黄素给药组大鼠各个剂量都有一定程度的增加, 和应激 对照组相比, 都有极显著性; 丙咪嗪对应激大鼠体温没有明显影响, 如表 2 所示。
表 2 长效姜黄素对慢性应激鼠体温的影响 (°C) (n=10-12, mean士 S.E.M.).
分组 剂量 (mg/kg) 应激前体温 应激后体温
对照组 36.99±0.136 37.05±0.068
模型组 36.93±0.140 36.46±0.122###
长效姜黄素组 4.6 37.06±0.125 37.40±0.079***
9.2 37.06±0.158 37.45±0.074'"
18.4 37.00±0.122 37.48±0.088"*
丙咪。秦组 10 36.83±0.142 36.34±0.083
与对照组相比 # P<0.05, 麵 P<0.001. *P<0.05, 与模型组相比" P<0.01 and *** P<0.001,
3.3大鼠糖水测试
实验前在安静的房间内, 训练动物适应含糖饮水, 每笼同时放置 2个 水瓶, 第 1个 24小时, 2瓶均装有 1%的糖水, 随后 24小时, 1个水瓶装 1%蔗糖水, 1个瓶装纯水,接下来 23小时禁水, 进行动物的基础糖水 /纯水 消耗实验, 同时给予每只大鼠事先定量好的 2瓶水: 1瓶 1%蔗糖水, 1瓶 纯水, 1小时后, 取此 2瓶水并称量, 计算动物的总液体消耗、 糖水消耗、 纯水消耗, 糖水偏爱性 =糖水消耗量 /总液体消耗量 χ 100%, 在连续给予姜黄 素 14天后进行实验。
应激开始前进行的糖水测试表明, 各组之间对糖水的偏爱没有显著差 异, 应激结束后测试结果显示, 与正常对照组相比, 模型组大鼠对糖水的 偏爱性明显降低, 两者之间有极著显著性差异, 长效姜黄素给药组的中剂 量和高剂量对糖水的偏爱有明显的改善作用,与模型对照组有显著性差异, 长效姜黄素给药组的低剂量和丙咪嗪对应激大鼠的糖水偏爱没有影响,如表 3所示。 表 3糖水测试结果 (%) (n=10-12, mean士 S.E.M.).
组别 剂量 (mg/kg) 应激前糖水量(ml ) 应激后糖水量 (ml) 对照组 73.3±8.6 82.9±4.3 模型组 73.3±8.3 59.4±4.8 长效姜黄素组 4.6 60.2±9.2 54.1±4.7
9.2 60.4±9.2 72.8±3.
18.4 66.8±8.6 71.6±2.3* 丙咪 σ秦组 10 74.8±7.8 67.5±5.0 与对照组相比. # ΡΟ.05, 羅 Ρ<0.001, 与模型组相比, *Ρ<0.05, ** Ρ<0.01 and Ύθ.001
3.4大鼠强迫游泳实验
请参阅图 7所示, 正式测试前 24小时, 将大鼠置于水深 23cm的玻璃 圆缸(高 40cm, 直径 18cm ) 内, 水温 24士 1 °C , 作强迫游泳训练 15分钟。 在末次给药后 30min (丙咪嗪), 再次将大鼠置于水深 23cm的玻璃圆缸内 强迫游泳 6 min, 观察并记录 4分钟内大鼠的累计不动时间。 当大鼠停止挣 扎, 浮在水中保持不动, 或仅做一些必要的轻微动作保持头部浮在水面上 的时间视为不动时间。
大鼠强迫游泳实验显示, 4.6, 9.2, 和 18.4mg/kg的长效姜黄素剂量依 赖性减少强迫游泳实验的累计不动时间, 与模型对照组相比, 大鼠累计不 动时间分别减少了 37.6 % , 49.4 %和 58.9 %。 长效姜黄素在强迫游泳模型中 抗抑郁作用与经典抗抑郁药丙咪嗪相似(10mg/kg )。 丙咪嗪强迫游泳实验 中累计不动时间的抑制百分率是 40.5 %,与对照组相比, *P<0.05,** P<0.01 和 *** p<o.001。
3.5血清皮质酮含量测定
本实验采用竟争法检测血清中皮盾酮含量, 其原理是标本中的抗原和 一定量的酶标抗原竟争与固相抗体结合。 标本中抗原量含量愈多, 结合在 固相上的酶标抗原愈少, 最后的显色也愈浅。
21 天应激实验结束后次日断头杀鼠, 取全血 5 ~ 10ml, 其中一部分全 血室温放置 20min后离心: lOOOrpm, lOmin, 分离血清, -80°C冻存备用。 采用血清皮质酮试剂盒检测。
模型对照组大鼠血清皮质酮含量明显高于正常组大鼠, 两者有显著性 差异, 长效姜黄素给药组及丙咪嗪组使皮质酮含量明显下降, 与模型对照 组相比差异有显著性。 如表 4所示。 表 4 长效姜黄素对血清皮质酮的影响 (n=6, mean±S.E.M.)- 组别 剂量 (mg/kg) 血清皮质酮 (nmol/L) 对照组 219.4±12.4
模型组 314.8士25.0#
长效姜黄素组 4.6 239.5±33.7*
9.2 222.9±30.6*
18.4 199.6±28.0**
丙咪嗪组 10 137.0±15.3*"
与对照组相比 # P<0.05,麵 P<0.001, 与模型组相比 *P<0.05, ** P<0.01和 P<0.001
结果
通过对小鼠一次性给药, 小鼠体内持续至第 7天仍然可以检测到姜黄 素, 表明该药物在小鼠体内持续存在, 达到了预期的緩释目的。 两种绝望 模型急性给药, 与模型组相比, 姜黄素组在 3天、 7天后累计不动时间无显 著差异, 但长效姜黄素组在 3、 7、 14天后累计不动时间减少, 并具显著差 异。 小鼠单胺递质的测定结果显示, 一次给药在第 3、 7 天长效姜黄素组海 马区增加 5-HT的含量。 表明一次性给以长效姜黄素衍生物后, 抗抑郁作用 仍可维持至少在一周以上。 在大鼠慢性应激模型中, 长效姜黄素慢性给药 每 7天一次至 21天, 能明显减少游泳累计不动时间, 逆转糖水偏爱实验味 觉快感下降趋势。 应激大鼠血清中皮质酮含量明显增加, 给予长效姜黄素 后皮质酮含量明显下降, 表明在大鼠应激模型中长效姜黄素衍生物具有持 续的抗抑郁作用。
通过对不同的动物模型抗抑郁作用的研究, 长效姜黄素衍生物保留了 姜黄素固有的抗抑郁药效, 同时也起到緩释, 延长药效的效果, 具有良好 的临床应用前景。
以下实验例 4~9将介绍本发明的长效姜黄素衍生物在抗肿瘤症药物中 的动物实验及结果分析。
实验例 4荷瘤小鼠 S-180抗肿瘤实脸
ICR雄性小鼠, 分为 5组(n=15, 每组), 长效姜黄素给药组分高、 中、 低三个剂量; 阳性对照组给予 5-FU; 试验时每只小鼠腋下接种 S-180肉瘤 细胞( x l07 )。 次日开始给药, 长效姜黄素组一次给予 7 天的药量, 5-FU 每天一次给药。 7天后, 小鼠断头处死, 取瘤, 称体重、 瘤重。
请参阅图 8所示, 长效姜黄素给药组与对照组相比瘤重 /体重存在显著 性差异;肿瘤抑制率低剂量组为 28.5%,中剂量组为 57.8%高剂量组 50.1%, 5-FU组为 55.8%。
实验例 5荷瘤小鼠 HCT116抗肿瘤实验
ICR雄性小鼠, 分为 5组(n=15, 每组), 长效姜黄素给药组分高、 中、 低三个剂量; 阳性对照组给予 5-FU; 试验时每只小鼠腋下接种 HCT116细 胞( χ 107 )。 次日开始给药, 长效姜黄素组一次给予 7天的药量, 5-FU每 天一次给药。 7天后, 小鼠断头处死, 取瘤, 称体重、 瘤重。
请参阅图 9所示, 长效姜黄素给药组与对照组相比瘤重 /体重存在显著 性差异;肿瘤抑制率低剂量组为 29.6%,中剂量组为 58.4%高剂量组 49.3%, 5-FU组为 52.8%。
实验例 6长效姜黄素对肿瘤细胞凋亡的影响实验
ICR雄性小鼠(n=15 ) 长效姜黄素组一次性给入 7天的药量; 阳性对 照组为 5-FU, 每天一次给药; 对照组给予溶剂; 试验时每只小鼠腋下接种 S180细胞( x l 07 )。 7天后, 小鼠断头处死, 取瘤。 制备瘤液, 乙醇固定后 流式细胞计测定细胞周期。
请参阅图 10 所示, 长效姜黄素组促进了细胞的凋亡, 其凋亡水平为 44.7, 对照组肿瘤细胞凋亡水平为 22.9, 5-FU组为 29.1 (同时参阅表 5 )。
表 5肉瘤细胞周期测定结果
Figure imgf000015_0001
实脸例 7荷瘤小鼠生存实验
ICR雄性小鼠,分为 2组( n=30,每组),试验时每只小鼠腋下接种 S-180 肉瘤细胞( x l 05 ), 次日开始给药, 长效姜黄素组一次给予 7天的药量, 对 照组给予溶剂, 并记录下各组的生存率。
请参阅图 11 所示, 对照组中位生存时间为 13.5 天, 95%可信区间为 9.5 14.7天,长效姜黄素组中位生存时间为 17.5天, 95%可信区间为 12.8 ~ 20.2天, Kaplan-meier分析显示两组之间生存期的差别具有统计学意义。
实验例 8长效姜黄素对肿瘤细胞抑制作用实猃
将稳定传代的肿瘤细胞 Hela细胞、 肾癌细胞 7860、 乳腺癌细胞、 胃癌 细胞、 直肠癌细胞、 肺癌细胞、 肝癌细胞 HepG2、 前列腺癌细胞、 食管癌、 肉瘤细胞、 神经胶质瘤细胞、 黑色素瘤细胞、 淋巴瘤细胞、 膀胱癌细胞在 显微镜下计数( X 104 ), 于 96孔板 C02饱和水汽下培养 24h,分别加入长效 姜黄素 (终浓度 25μΜ )及对照溶剂, 72h后 ΜΤΤ法检测长效姜黄素对肿 瘤细胞的抑制作用。 计算抑制率。
请参阅图 12 ( a )、 12 ( b )所示, 本发明的长效姜黄素衍生物对十四种 细胞都产生抑制作用 (P<0.05 ), 不同的细胞种类抑制率各不相同, 详细结 果如下表 6所示。
表 6长效姜黄素对肿瘤细胞的增值抑制作用 ( PO.05 ) 细胞种类 抑制率(%)
Hela细胞 37.3 ± 2.4
肾癌细胞 7860 60.6 ± 1.8
乳腺癌细胞 BT474 52.7 ± 1.6
直肠癌细胞 HCT1 16 58.9 ± 2.1
胃癌细胞 MGC80-3 42.6 ± 1.7
肺癌细胞 A549 35.9 ± 1.2
肝癌细胞 HepG2 43.7 ± 1.4
前列腺癌细胞 39.7 ± 1.3
食管癌细胞 35.5 ± U
肉瘤细胞 45.5 ± 1.6
神经胶质瘤细胞 58.8 ± 1.5
黑色素瘤细胞 49.9 ± 2.0.
淋巴瘤细胞 55.8 ± 1.7
膀胱癌细胞 55.2 ± 1.0
从图 12 ( a )、 12 ( b )及表 6可以看出, 本发明的长效姜黄素衍生物对 上述不同肿瘤细胞均产生显著的抑制作用, 且抑制率都达到了 35.5%以上, 其对肾癌的抑制率达到最高值, 为 60.6%。
长效姜黄素衍生物用于制备成医药上的任何可用剂型的实施例:
实施例 1
用化学合成方法制备长效姜黄素, 加入溶剂采用常规方法制备的针剂。 用法用量: 肌注每 3-7日注射一次长效姜黄素 100-500mg。
实施例 2
用化学合成方法制备长效姜黄素, 加入赋形剂环糊精, 采用常规方法 压片, 制成片剂或颗粒剂。
用法用量: 口服, 每 3-7日服用长效姜黄素 100-500mg。
实施例 3
按照上述实施例的方法制备的长效姜黄素, 加入水及适量增溶剂如聚 乙二醇溶解, 采用常规方法制成规格为 20mg/ml的长效姜黄素口服液。
用法用量: 口服, 每 3-7日服用长效姜黄素 100-500ml。
实施例 4
按照上述实施例的方法制备的长效姜黄素, 软胶嚢材质选用明胶和山 梨醇, 制备成规格为 20mg/粒的长效姜黄素胶囊。
用法用量: 口服, 每 3-7日服用长效姜黄素 100-500mg。
长效姜黄素衍生物用于制备食品、 饮料或保健品中的实施例:
实施例 5
在 50kg面粉中加入 1-5克的长效姜黄素及适量营养素和添加剂, 做成 抗抑郁或抗肿瘤功能的面条或饼干。
实施例 6
在 50kg纯净水中加入 1-5克的长效姜黄素及适量橙汁或菠萝、 芒果和 添加剂, 做成抗抑郁或抗肿瘤功能的软饮料。
实施例 7
在 1克高钙片或 lml口服液中加入 10-50mg长效姜黄素做成抗抑郁或 抗肿瘤的保健品。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所 作的任何简单修改、 等同变化与修饰,均仍属于本发明技术方案的范围内。
工业应用性
本发明的长效姜黄素衍生物是将姜黄素类物质进行酯化反应所得的 酯, 其緩释效果优于单纯的姜黄素类物质释放效果, 这使得姜黄素在体内 的利用度大大提高, 同时提高了姜黄素的药物活性, 具有较高的医用价值。 本发明的姜黄素衍生物与现有技术的姜黄素类物质一样医药用途广泛, 其 可用于治疗抑郁症、 肿瘤症、 肝纤维化或慢性肾功能衰竭等病症。

Claims

权 利 要 求
1、 一种长效姜黄素衍生物, 其特征在于其具有下列结构式:
H
Figure imgf000018_0001
其中:
Rl和 R2为氢或曱氧基;
R3和 R4各自独立的选自 C1-C50的烷基。
2、 根据权利要求 1所述的长效姜黄素衍生物, 其特征在于: 其中该长 效姜黄素衍生物的碳 4', 4"位的基团为 C1-C50的饱和脂肪酸类或其酰类、 芳香族脂肪酸类或其酰类与姜黄素类物质的碳 4',4"位羟基各自独立的发生 酯化反应所形成的酯类。
3、 根据权利要求 1所述的长效姜黄素衍生物, 其特征在于: 其中该长 效姜黄素衍生物的碳 4', 4"位的基团为 C1-C50的不饱和脂肪酸类或其酰类、 芳香族脂肪酸类或其酰类与姜黄素类物质的碳 4',4' '位羟基各自独立的发生 酯化反应所形成的酯类。
4、 根据权利要求 2或 3所述的长效姜黄素衍生物, 其特征在于: 所述 姜黄素类物质是姜黄素、 去甲氧基姜黄素或双去曱氧基姜黄素。
5、 根据权利要求 3所述的长效姜黄素衍生物, 其特征在于: 所述不饱 和脂肪酸类包括棕榈油酸、 油酸、 亚油酸、 亚麻酸、 花生四烯酸、 二十碳 五烯酸或二十二碳六烯酸。
6、 根据权利要求 1或 2或 3或 5所述的长效姜黄素衍生物, 其特征在 于: 所述 R3和 R4各自独立的为癸烷基、 亚油酸基或水杨酸基。
7、 一种制备如权利要求 1所述的长效姜黄素衍生物的方法, 其特征在 于其包括以下步骤:
1 )称取 2~4 mmol姜黄素类物质, 溶解在二氧六环中, 加入 0.3~0.73 克的吡啶, 然后将 3.6~8.60 mmol的 C1-C50的脂肪酸类、 不饱和脂肪酸类 及芳香族类或其酰类物质逐滴加入到体系中, 水水浴反应 1~2小时;
2 )上述产物倒入到石油醚中过滤,将沉淀溶解在乙酸乙酯中,用 lmol L 的盐酸溶液洗涤两次, 再用饱和碳酸钠溶液洗涤一次, 加入无水硫酸钠干 燥, 然后过滤, 将滤液旋干, 得粗产物姜黄素烷基酯;
3 )将上述粗产物装在硅胶柱中, 使用 7: 1 的石油醚和氯仿洗脱, 收 集目标产物, 真空干燥得终产物姜黄素烷基酯。
8、根据权利要求 7所述的长效姜黄素衍生物的制备方法,其特征在于: 所述冰水浴反应过程通过薄层层析法检测, 3: 1的氯仿和乙酸乙酯展开。
9、根据权利要求 7所述的长效姜黄素衍生物的制备方法,其特征在于: 所述的脂肪酰类、 不饱和脂肪酰类或芳香族酰类物质各自分别为癸酰氯、 亚油酰氯或水杨酰氯。
10、 根据权利要求 7所述的长效姜黄素衍生物的制备方法, 其特征在 于: 姜黄素类物质是姜黄素、 去曱氧基姜黄素或双去曱氧基姜黄素。
11、 一种如权利要求 1或 2或 3或 5或 7所述的长效姜黄素衍生物在 制备抗抑郁症药物中的应用。
12、 根据权利要求 11所述的应用, 其特征在于所述的长效姜黄素衍生 物包含有药学可接受的载体, 如赋形剂和添加剂、 香味剂制成各种剂型, 包括散剂、 片剂、 微丸、 胶嚢、 微嚢、 颗粒剂或液体衍生物。
13、 根据权利要求 11所述的应用, 其特征在于所述的长效姜黄素衍生 物在制备抗抑郁症的饮料、 食品、 食品添加剂或者保健品中的应用。
14、 一种如权利要求 1或 2或 3或 5或 7所述的长效姜黄素衍生物在 制备抗肿瘤症药物中的应用。
15、 居权利要求 14所述的应用, 其特征在于所述的长效姜黄素衍生 物包含有药学可接受的载体, 如赋形剂和添加剂、 香味剂制成各种剂型, 包括散剂、 片剂、 微丸、 胶嚢、 微嚢、 颗粒剂或液体衍生物。
16、 根据权利要求 14所述的应用, 其特征在于所述的长效姜黄素衍生 物在制备抗肿瘤症的饮料、 食品、 食品添加剂或者保健品中的应用。
17、 根据权利要求 16所述的应用, 其特征在于所述的肿瘤症包括: 白 血病、 宫颈癌、 肾癌、 乳腺癌、 胃癌、 结肠癌、 肺癌细胞、 肝癌、 前列腺 癌、 食管癌、 骨髓瘤、 神经胶质瘤、 黑色素瘤、 淋巴瘤、 膀胱癌、 腺癌、 卵巢癌或皮肤癌。
PCT/CN2008/001688 2008-09-08 2008-09-28 长效姜黄衍生物及其制备方法和在制药中的应用 WO2010025589A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/062,940 US8609723B2 (en) 2008-09-08 2008-09-28 Long acting curcumin derivative, preparation method and pharmaceutical use thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200810222061.7 2008-09-08
CN200810222059XA CN101669931B (zh) 2008-09-08 2008-09-08 长效姜黄素衍生物在制备抗肿瘤症药物中的应用
CN200810222060.2 2008-09-08
CN2008102220602A CN101669932B (zh) 2008-09-08 2008-09-08 长效姜黄素衍生物在制备抗抑郁症药物中的应用
CN200810222061A CN101671248A (zh) 2008-09-08 2008-09-08 长效姜黄素衍生物及其制备方法
CN200810222059.X 2008-09-08

Publications (1)

Publication Number Publication Date
WO2010025589A1 true WO2010025589A1 (zh) 2010-03-11

Family

ID=41796709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001688 WO2010025589A1 (zh) 2008-09-08 2008-09-28 长效姜黄衍生物及其制备方法和在制药中的应用

Country Status (2)

Country Link
US (1) US8609723B2 (zh)
WO (1) WO2010025589A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10660967B2 (en) 2016-10-21 2020-05-26 Augusta University Research Institute, Inc. Curcumin conjugates and methods of use thereof
WO2021105137A1 (en) 2019-11-25 2021-06-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Trem-1 inhibitors for the treatment of vaso-occlusions and tissue injuries in patients suffering from sickle cell disease
WO2022189659A1 (en) 2021-03-12 2022-09-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Trem-1 inhibitors for the treatment of marfan syndrome
WO2023061946A1 (en) 2021-10-11 2023-04-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of trem-1 for predicting and preventing postoperative complications after cardiac surgery with cardiopulmonary by-pass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031122A1 (de) * 2002-10-01 2004-04-15 Dr. André Rieks - Labor Für Enzymtechnologie Gmbh Neue curcumin/tetrahydrocurcumin-derivate für den einsatz in kosmetika, pharmazeutika und bei der ernährung
CN101076336A (zh) * 2004-10-15 2007-11-21 北卡罗来纳查佩尔山大学 新的姜黄素类似物及其用途
CN101170915A (zh) * 2005-05-03 2008-04-30 帝斯曼知识产权资产管理有限公司 姜黄素、去甲氧基姜黄素、二去甲氧基姜黄素的酰基衍生物或姜黄素异噁唑物和它们作为动物饲料添加剂的用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245988B4 (de) * 2002-10-01 2005-01-27 Dr. André Rieks, Labor für Enzymtechnologie GmbH Neue Curcumin-Derivate für den Einsatz in Kosmetika, Pharmazeutika und bei der Ernährung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031122A1 (de) * 2002-10-01 2004-04-15 Dr. André Rieks - Labor Für Enzymtechnologie Gmbh Neue curcumin/tetrahydrocurcumin-derivate für den einsatz in kosmetika, pharmazeutika und bei der ernährung
CN101076336A (zh) * 2004-10-15 2007-11-21 北卡罗来纳查佩尔山大学 新的姜黄素类似物及其用途
CN101170915A (zh) * 2005-05-03 2008-04-30 帝斯曼知识产权资产管理有限公司 姜黄素、去甲氧基姜黄素、二去甲氧基姜黄素的酰基衍生物或姜黄素异噁唑物和它们作为动物饲料添加剂的用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, FUBEI ET AL: "Research overview of curcuminoids in Curcuma Plant", JOURNAL OF GUANGXI TEACHERS EDUCATION UNIVERSITY(NATURAL SCIENCE EDITION), vol. 24, no. 2, June 2007 (2007-06-01), pages 95 - 100 *

Also Published As

Publication number Publication date
US8609723B2 (en) 2013-12-17
US20110183945A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP6636108B2 (ja) アスタキサンチン抗炎症性相乗的組み合わせ
JP6177688B2 (ja) 組成物、及び糖代謝改善剤、並びに組成物の使用
JP2009539780A (ja) 20(s)−プロトパナキサジオールの抗うつ薬製造への使用
CN108137575A (zh) 熊去氧胆酸与小檗碱或左旋肉碱的共轭化合物和其组合物及其方法
CA3084139C (en) Composition for preventing or treating neurodegenerative diseases, containing diterpene-based compound
CN106176716B (zh) 瑞香烷型二萜化合物pimelotide C的新用途
TW201623208A (zh) 牛樟芝化合物、製備方法及其用途
KR102477252B1 (ko) 조현병 관련 정신 장애의 예방 또는 치료용 조성물
JP6389958B2 (ja) 瓦草5環性トリテルペンサポニン類化合物抗腫瘍の薬物用途
WO2010025589A1 (zh) 长效姜黄衍生物及其制备方法和在制药中的应用
CN114209739B (zh) 一种白头翁提取物在制备治疗抗抑郁药物上的应用
WO2017092230A1 (zh) 双黄酮化合物及其治疗癌症和制备药物的用途
TWI432420B (zh) A compound isolated from the monascus, a process for its preparation and use
KR20150109456A (ko) 프로토파녹사다이올 유도체 및 그의 제조방법과 용도
CN108659089B (zh) 一种具有抗氧化作用的甾醇化合物及其在制备药物中的应用
CN103183719B (zh) 皂苷衍生物及其用途
CN106456594A (zh) PPARγ活化剂
CN102408464B (zh) 一种降三萜类皂苷化合物及其制备方法和用途
CN102898322B (zh) 一种化合物及其制法和用途
CN102408466B (zh) 一种新盐角草皂苷及其制备方法和用途
CN106632378A (zh) 一种可抑制肥大细胞脱颗粒的化合物及其制备方法和用途
EP3368543A1 (en) Oxysterols and hedgehog signaling
CN102850208B (zh) 溴化烯炔类化合物及其制备方法和用途
CN101669932B (zh) 长效姜黄素衍生物在制备抗抑郁症药物中的应用
CN104288142B (zh) 木果楝素h及其类似物在制备抗抑郁症药物或食品中的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13062940

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08876866

Country of ref document: EP

Kind code of ref document: A1