WO2010024285A1 - 窒化物基板の製造方法および窒化物基板 - Google Patents

窒化物基板の製造方法および窒化物基板 Download PDF

Info

Publication number
WO2010024285A1
WO2010024285A1 PCT/JP2009/064852 JP2009064852W WO2010024285A1 WO 2010024285 A1 WO2010024285 A1 WO 2010024285A1 JP 2009064852 W JP2009064852 W JP 2009064852W WO 2010024285 A1 WO2010024285 A1 WO 2010024285A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
substrate
nitride substrate
region
plane
Prior art date
Application number
PCT/JP2009/064852
Other languages
English (en)
French (fr)
Inventor
荒川 聡
宮永 倫正
隆 櫻田
喜之 山本
英章 中幡
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US13/061,307 priority Critical patent/US8829658B2/en
Priority to EP09809936.9A priority patent/EP2322698A4/en
Priority to JP2010526740A priority patent/JPWO2010024285A1/ja
Priority to CN2009801341903A priority patent/CN102137960B/zh
Publication of WO2010024285A1 publication Critical patent/WO2010024285A1/ja
Priority to US14/461,838 priority patent/US20140357067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides

Definitions

  • the present invention relates to a method for manufacturing a nitride substrate and a nitride substrate.
  • the AlN (aluminum nitride) crystal has a wide energy band gap of 6.2 eV, a high thermal conductivity of about 3.3 WK ⁇ 1 cm ⁇ 1 and a high electrical resistance. For this reason, nitride crystals such as AlN crystals have attracted attention as substrate materials for semiconductor devices such as optical devices and electronic devices.
  • Patent Document 1 Such a method for producing a nitride crystal is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-197276 (Patent Document 1).
  • a group III-V nitride semiconductor substrate is manufactured by the following steps. Specifically, a group III-V nitride semiconductor film is grown on a different substrate having a c-plane or an off angle. Thereafter, a metal film is deposited on the heterogeneous substrate, and heat treatment is performed to form a void in the group III-V nitride semiconductor film. Next, a group III-V nitride semiconductor crystal is deposited on the metal film.
  • the heterogeneous substrate is peeled off to obtain a group III-V compound semiconductor crystal in which the c-axis is substantially perpendicular to the surface or the c-axis is inclined at a predetermined angle with respect to the surface.
  • the rear surface of the group III-V nitride semiconductor crystal is polished to a flat surface.
  • the present invention is to provide a nitride substrate manufacturing method and a nitride substrate for manufacturing a nitride substrate with a controlled off angle of the surface with improved yield.
  • the method for manufacturing a nitride substrate according to one aspect of the present invention includes the following steps. First, a nitride crystal is grown. Then, a nitride substrate including the surface is cut out from the nitride crystal. In this cutting process, the nitride substrate is cut so that the off angle formed by the axis orthogonal to the surface and the m-axis or a-axis is greater than zero.
  • the nitride substrate of the present invention is characterized in that, in a nitride substrate including a surface, an off-angle formed by an axis orthogonal to the surface and an a-axis or m-axis is greater than zero.
  • the nitride substrate is cut out from the nitride crystal so that the entire surface has an off angle. Therefore, it is possible to manufacture a nitride substrate in which the off angle is stably controlled regardless of the state of the grown nitride crystal (that is, not depending on the growth condition of the nitride crystal).
  • step growth which is lateral crystal growth, can be performed. For this reason, since the morphology of an epitaxial layer can be made favorable, crystallinity can be improved.
  • a nitride substrate including a surface whose off angle is controlled so as to form an epitaxial layer with high characteristics on the entire surface of the nitride substrate can be manufactured with improved yield.
  • the method for manufacturing a nitride substrate according to another aspect of the present invention includes the following steps. First, a nitride crystal including a front surface and a back surface opposite to the front surface is grown in the c-axis direction. Then, a nitride substrate is cut out from the nitride crystal. In this cutting process, the nitride substrate is cut out from the nitride crystal along a plane that passes through the front and back surfaces of the nitride crystal and does not pass through a line segment that connects the centers of the radii of curvature of the front and back surfaces of the nitride crystal. .
  • the inventor cut out a nitride substrate from a nitride crystal along a plane passing through a segment connecting the centers of curvature radii of the front and back surfaces of the nitride crystal. It was found to include a portion where the off angle is zero. For this reason, according to the method for manufacturing a nitride substrate in another aspect of the present invention, the off-angle formed by the axis orthogonal to the surface and the a-axis or m-axis is always greater than zero. A controlled nitride substrate can be produced.
  • a nitride substrate in which the off angle is stably controlled can be manufactured regardless of the state of the grown nitride crystal. Therefore, a nitride substrate in which the off angle is controlled to form an epitaxial layer with high characteristics can be manufactured with improved yield.
  • the cutting step includes a surface having a first region and a second region surrounding the first region, and the off angle is the first of the second region.
  • the nitride substrate is cut out so as to take the minimum value at the point.
  • the surface has a first region and a second region surrounding the first region, and the off-angle of the surface is a first point of the second region. Take the minimum value.
  • the off angle of the first region can be made larger, step growth can be further promoted when the epitaxial layer is formed on the nitride substrate. For this reason, an epitaxial layer with higher characteristics can be formed on the first region located on the inner peripheral side.
  • the outer peripheral side is generally low in use frequency
  • the inner peripheral side is generally high in use frequency. Therefore, in this substrate, device, etc., it is possible to further improve the characteristics of a frequently used region, so that a nitride substrate with a controlled off angle to form an epitaxial layer with higher characteristics can be obtained. Can be manufactured.
  • the nitride substrate is cut so that the second region is within 2 mm from the edge of the nitride substrate.
  • the second region is preferably within 2 mm from the edge.
  • region can be used for an epitaxial layer etc. with a high characteristic.
  • the off angle has a maximum value at the second point of the second region, and the off angle monotonously decreases from the second point to the first point. Then, the nitride substrate is cut out.
  • the off angle has a maximum value at the second point of the second region, and the off angle monotonously decreases from the second point to the first point.
  • the off angle is not 0 and variation in the off angle can be suppressed. For this reason, an epitaxial layer or the like having higher characteristics can be formed on the first region located on the inner peripheral side.
  • the nitride substrate is cut out from the nitride crystal along a plane parallel to a plane inclined in the c-axis direction from the a-plane or m-plane.
  • the surface is preferably inclined in the c-axis direction from the a-plane or m-plane.
  • the nitride substrate manufacturing method further includes a step of performing at least one of polishing and grinding of the surface of the nitride substrate after the cutting step.
  • the surface of the nitride substrate can be processed flat. For this reason, an epitaxial layer or the like can be easily formed using this nitride substrate.
  • nitride substrate manufacturing method a plurality of nitride substrates are cut out in the cutting step. Thereby, the manufacturing cost per nitride substrate can be reduced.
  • the nitride substrate is cut out from the nitride crystal while controlling the off angle, thereby forming an axis perpendicular to the surface and the m-axis or a-axis.
  • the nitride substrate can be manufactured with improved yield so that the off angle is larger than zero.
  • FIG. 1 is a perspective view schematically showing a nitride substrate in an embodiment of the present invention. It is a schematic diagram which shows an off angle when the nitride board
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 8, and is a schematic diagram schematically showing the crystal orientation of a nitride crystal.
  • FIG. 9 is a cross-sectional view taken along line XX in FIG. 8 and is a schematic diagram schematically showing the crystal orientation of a nitride crystal. It is sectional drawing which shows the nitride crystal in embodiment of this invention.
  • Example 1 it is the schematic diagram which looked at the nitride crystal of diameter 2R with the surface 22a which can be approximated as a part of circular arc of radius r and center O from the approximate a-axis direction.
  • Example 1 it is the schematic diagram which looked at the nitride crystal of diameter 2R with the surface 22a which can be approximated as a part of circular arc of radius r and center O from the approximate a-axis direction.
  • Example 1 it is a schematic diagram for further considering the cutting plane V2.
  • Example 1 it is a schematic diagram for further considering the cutting plane V2.
  • Example 1 it is a schematic diagram for further considering the cutting plane V2.
  • Example 1 it is a schematic diagram for further considering the cutting plane V2.
  • Example 1 it is a schematic diagram for further considering the cutting plane V2.
  • Example 1 it is a schematic diagram for considering the cutting plane V3.
  • Example 1 it is a schematic diagram for considering the cutting plane V3.
  • Example 1 it is a schematic diagram for considering the cutting plane V4.
  • Example 2 it is a schematic diagram for demonstrating the method of designating the location which cut
  • FIG. 1 is a perspective view schematically showing a nitride substrate in the present embodiment. First, a nitride substrate in the present embodiment will be described with reference to FIG.
  • the nitride substrate 10 includes a surface 11.
  • the surface 11 has a first region 12 and a second region 13 surrounding the first region 12. That is, the first region 12 is located on the inner peripheral side of the surface 11 of the nitride substrate 10, and the second region 13 is located on the outer peripheral side of the surface 11 of the nitride substrate 10.
  • the first region 12 in the present embodiment is a region on the surface 11 of the nitride substrate 10 where an epitaxial layer used for a substrate or a device is formed among the epitaxial layers formed on the surface 11.
  • the second region 13 not used for the substrate or device has a distance t from the edge of 2 mm or less, for example.
  • FIGS. 2 to 5 are schematic diagrams showing off angles when the nitride substrate according to the present embodiment is viewed from above (surface side).
  • the arrows are vectors indicating the magnitude and direction of the off angle. 2 to 5, “a” indicates the a-axis direction, “m” indicates the m-axis direction, and “c” indicates the c-axis direction, and indicates the direction at the center of the surface 11 of the nitride substrate 10.
  • the off-angle formed by the axis perpendicular to the surface 11 and the m-axis or a-axis is larger than 0 over the entire surface 11. That is, the surface 11 does not include a region where the off angle is zero.
  • the off angle of the surface 11 may be the same, or the off angle of the surface 11 may vary as shown in FIG. As shown in FIGS. 2 to 5, the direction of the off angle may be always constant or different (not shown).
  • the off angle of the surface 11 when the off angle of the surface 11 varies, the off angle has a minimum value at the first point 13 a of the second region 13. This off angle has a maximum value at the second point 13 b of the second region 13.
  • the off angle monotonously decreases from the second point 13b to the first point 13a.
  • the monotonic decrease means that the off-angle magnitude is always the same or decreased from the second point 13b toward the first point 13a, and the first point is smaller than the off-angle of the second point 13b.
  • the off angle of the point 13a is small. That is, the monotonous decrease does not include a portion where the off angle increases from the second point 13b toward the first point 13a.
  • the surface 11 is inclined in the c-axis direction from the a-plane or the m-plane.
  • the c-plane means a ⁇ 0001 ⁇ plane and includes a (0001) plane, a (000-1) plane, and a plane parallel to them.
  • the m-axis direction means the ⁇ 1-100> direction, and the [1-100] direction, [10-10] direction, [-1100] direction, [-1010] direction, [01-10] direction, and [01-10] direction 0-110] direction.
  • the a-axis direction means the ⁇ 11-20> direction, and the [11-20] direction, the [1-210] direction, the [-2110] direction, the [ ⁇ 1-120] direction, and the [-12-10] direction. ] Direction and [2-1-10] direction.
  • the off angle in at least the first region 12 of the surface 11 is preferably 0.15 ° or more and less than 2 °, and more preferably 0.3 ° or more and less than 0.7 °. In the case of this range, an epitaxial layer having high characteristics can be formed at least on the first region 12.
  • the nitride substrate 10 of the present embodiment is a plate having a rectangular surface 11.
  • the maximum value of the distance between one point on the edge of the surface 11 and another point is 5 mm or more.
  • the longest diameter is 10 mm or more.
  • Nitride substrate 10 for example an In x Al y a Ga (1-xy) N ( 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ x + y ⁇ 1), gallium nitride (GaN), AlN, AlGaN, etc. It is preferable that
  • FIGS. 6A, 6B and 7 are cross-sectional views schematically showing a nitride crystal in the present embodiment.
  • FIG. 7 shows a growth apparatus that can be used for manufacturing the nitride crystal in the present embodiment.
  • a nitride crystal 22 is first grown.
  • the nitride crystal 22 is an ingot for manufacturing the nitride substrate 10.
  • nitride crystal 22 is grown by, for example, a sublimation method.
  • This growth apparatus 100 is an apparatus for crystal growth by a sublimation method.
  • the growth apparatus 100 mainly includes a crucible 101, a heating body 121, a reaction vessel 123, and a heating unit 125.
  • the crucible 101 is made of, for example, graphite.
  • the crucible 101 has an exhaust port 101a.
  • a heating body 121 is provided around the crucible 101 so as to ensure ventilation between the inside and the outside of the crucible 101.
  • a reaction vessel 123 is provided around the heating body 121.
  • a heating unit 125 such as a high-frequency heating coil for heating the heating body 121 is provided at the outer central portion of the reaction vessel 123.
  • introduction ports 121 a and 123 a for flowing a carrier gas such as nitrogen gas into the crucible 101 arranged in the reaction vessel 123, and a carrier to the outside of the reaction vessel 123 It has discharge ports 121b and 123b for discharging gas.
  • radiation thermometers 127 a and 127 b for measuring temperatures above and below the crucible 101 are provided at the top and bottom of the reaction vessel 123.
  • the growth apparatus 100 may include various elements other than those described above, but illustration and description of these elements are omitted for convenience of explanation.
  • the base substrate 21 is prepared.
  • the underlying substrate is not particularly limited, and may be a different substrate such as a SiC (silicon carbide) substrate, or may be the same material as the nitride crystal 22 to be grown.
  • a SiC substrate having a main surface of (0001) plane is prepared as base substrate 21.
  • the base substrate 21 is placed on the crucible 101. At this time, the surface of the base substrate 21 is flattened, and in order to suppress sublimation of the base substrate 21, for example, the base substrate protective material made of graphite is placed in close contact with the back side.
  • the raw material 17 is prepared.
  • the raw material 17 is, for example, AlN powder. This raw material 17 is installed in the lower part of the crucible 101 so as to face the base substrate 21.
  • the temperature in the crucible 101 is increased by heating the heating element 121 using the heating unit 125 while flowing nitrogen gas into the reaction vessel 123.
  • the raw material 17 is heated to a temperature at which the raw material 17 sublimes.
  • the raw material 17 is sublimated to generate a sublimation gas.
  • This sublimation gas is solidified again on the surface of the base substrate 21 installed at a lower temperature than the raw material 17.
  • the temperature of the base substrate 21 is heated to 2000 ° C. and the temperature of the raw material 17 is set to 2200 ° C. to grow a nitride crystal having a thickness of 30 ⁇ m, and the nitride crystal is further grown for 100 hours. Grow.
  • a nitride crystal having a thickness of 10 mm can be grown. Then, it cools to room temperature (for example, 25 degreeC), and takes out from the growth apparatus 100. FIG. Thereby, a nitride crystal can be grown on the base substrate 21. Thereafter, the raw material 17 is further replenished to further form nitride crystals on the nitride crystals. Thereby, as shown in FIG. 6A or 6B, a nitride crystal 22 having a thickness of 19 mm, for example, is obtained. The surface 22a of the nitride crystal 22 warps in a concave shape. Further, the back surface 22b of the nitride crystal 22 may be warped.
  • the warpage of the front surface 22a and the back surface 22b may be the same as shown in FIG. 6B, or may be different as shown in FIG. 6A.
  • the base substrate 21 may be sublimated due to the growth of the nitride crystal 22.
  • the sublimation method is adopted as the growth method of the nitride crystal 22, but the method is not particularly limited to the sublimation method.
  • the HVPE Hydride Vapor Phase Epitaxy
  • the MBE Molecular Beam
  • vapor phase growth methods such as Epitaxy (molecular beam epitaxy) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, liquid phase methods such as flux method, high nitrogen pressure solution method, etc. it can.
  • the base substrate 21 is prepared.
  • a GaAs (gallium arsenide) substrate whose (111) plane is the main surface is used.
  • a mask is formed on the base substrate 21, and the nitride crystal 22 is grown by the HVPE method.
  • nitride crystal 22 for example, a GaN crystal having a thickness of 10 mm is grown.
  • the base substrate is removed by etching with aqua regia, for example. Thereby, the nitride crystal 22 shown in FIG. 6B is obtained.
  • FIG. 8 is a schematic plan view when the nitride crystal in the present embodiment is viewed from above.
  • 9 and 10 are cross-sectional views taken along lines IX-IX and XX in FIG. 8, and are schematic views schematically showing crystal orientations of nitride crystals.
  • the alternate long and short dash line indicates the c-axis direction, the a-axis direction, or the m-axis direction at each position.
  • the surface 22a of the nitride crystal 22 grown as described above is warped concavely as shown in FIGS. 6 (A), (B), FIG. 9 and FIG.
  • the position of the nitride crystal 22 varies.
  • the directions of the c-axis, a-axis, and m-axis are different.
  • the nitride crystal 22 having a large thickness is grown as an ingot.
  • the surface 22a of the nitride crystal 22 is warped. For this reason, the off-angle formed by the surface 22a of the nitride crystal 22 and the a-axis or m-axis varies depending on the position of the surface 22a. The same applies to the back surface 22b.
  • the directions of the c-axis, m-axis, and a-axis are different for each location of the surface 22a of the nitride crystal 22.
  • the same measurement is performed on the back surface 22b.
  • the inside of the nitride crystal 22 is similarly measured by exposing the portion.
  • the nitride substrate 10 including the surface 11 having the first region 12 and the second region 13 surrounding the first region 12 is cut out from the nitride crystal 22.
  • the nitride substrate 10 is cut so that the off angle formed by the axis orthogonal to the surface 11 and the m-axis or a-axis is greater than zero.
  • the nitride substrate 10 is cut so that the off angle formed by the axis perpendicular to the surface 11 and the m-axis or a-axis takes a minimum value at the first point 13a of the second region 13. Is preferred.
  • the nitride substrate 10 is preferably cut out so that the second region 13 is within 2 mm from the edge of the nitride substrate 10. Further, in the cutting process, the nitride substrate 10 is formed so that the off angle takes a maximum value at the second point of the second region 13 and the off angle monotonously decreases from the second point 13b to the first point 13a. It is preferable to cut out.
  • FIG. 11 is a cross-sectional view showing nitride crystal 22 in the present embodiment.
  • “a” refers to the a-axis direction
  • “m” refers to the m-axis direction
  • “c” refers to the c-axis direction, and represents the direction of each axis at the center of the nitride crystal 22.
  • the curvature radii of the front surface 22a and the back surface 22b can be regarded as the same, for example, as shown in FIG.
  • the nitride substrate 10 is cut out from the crystal 22.
  • the planes T1 and T2 are not orthogonal to the m-axis of the front surface 22a and the back surface 22b of the nitride crystal 22.
  • the off angles of the surface 11 of the nitride substrate 10 cut out along the planes T1 and T2 are as shown in FIGS. 2 and 3, respectively.
  • the plane T2 has a larger off-angle because the inclination from the m-plane to the c-axis direction is larger than that of the plane T1.
  • FIG. 12 is another cross-sectional view showing the nitride crystal 22 in the present embodiment.
  • “a” refers to the a-axis direction
  • “m” refers to the m-axis direction
  • “c” refers to the c-axis direction, and represents each axis at the center of the nitride crystal 22.
  • a plane U1 parallel to a plane inclined in the c-axis direction from the m-plane at the center of the surface 22a.
  • the nitride substrate 10 is cut out from the nitride crystal 22 along U2.
  • the planes U1 and U2 are surfaces inclined from the growth direction of the nitride crystal (center c-axis direction). In the present embodiment, the planes U 1 and U 2 are inclined by 0.2 ° from the plane perpendicular to the c-plane at the center of the surface 22 a of the nitride crystal 22.
  • the planes U1 and U2 are not orthogonal to the m-axis of the front surface 22a and the back surface 22b of the nitride crystal 22.
  • the off angles of the surface 11 of the nitride substrate 10 cut out along the planes U1 and U2 are as shown in FIGS. 4 and 3, respectively, and the directions of the off angles are opposite to each other.
  • FIG. 13 is another cross-sectional view showing nitride crystal 22 in the present embodiment.
  • “a” refers to the a-axis direction
  • “m” refers to the m-axis direction
  • “c” refers to the c-axis direction, and represents the direction of each axis at the center of the surface 22 a of the nitride crystal 22.
  • the radius of curvature of the surface 22a and the back surface 22b of the nitride crystal 22 passes through the surface 22a and the back surface 22b of the nitride crystal 22.
  • Nitride substrate 10 is cut out from nitride crystal 22 along a plane W1 that does not pass through the center (center O1 and center O2) and between them (the line segment connecting center O1 and center O2). That is, the plane W1 is not orthogonal to the m-axis of the front surface 22a and the back surface 22b of the nitride crystal 22. In other words, the plane W1 is not located between the center O1 of the curvature radius of the front surface 22a of the nitride crystal 22 and the center O2 of the curvature radius of the back surface 22b. That is, the plane W ⁇ b> 1 is not orthogonal to the m-axis over the entire nitride crystal 22.
  • the off angle of the surface 11 of the nitride substrate 10 cut out along the plane W1 is as shown in FIG.
  • the curvature radii of the front surface 22a and the back surface 22b means a radius when the curves of the front surface 22a and the back surface 22b of the nitride crystal 22 are approximated to an arc.
  • the “center of curvature radius” means the center of the arc approximated above.
  • the nitride substrate 10 can be cut out from the nitride crystal 22 as shown in FIGS.
  • the nitride substrate 10 is preferably cut out from the nitride crystal 22 along a plane parallel to a plane inclined in the c-axis direction from the a-plane or m-plane, such as the plane U1, U2, W1.
  • nitride substrate 10 is preferably cut out from nitride crystal 22 along a plane parallel to a plane inclined in the c-axis direction from the a-plane or m-plane located at the center of nitride crystal 22.
  • the center of the nitride crystal 22 is the largest of the diameters of the circles inscribed in two arbitrarily specified sides facing each other across the center portion on the surface 22a. Means the center of length. Further, when the surface 22a of the nitride crystal 22 is circular or elliptical, it means the center of the maximum length among the diameters arbitrarily specified on the surface 22a.
  • nitride substrates 10 it is preferable to cut a plurality of nitride substrates 10.
  • the size of the nitride crystal 22 is, for example, 10 mm or more, a plurality of nitride substrates 10 can be easily cut out.
  • the method of cutting the nitride substrate 10 is not particularly limited, and a mechanical removal method such as cutting can be used. Cutting means that the nitride substrate 10 is mechanically cut out from the nitride crystal 22 with a slicer having an outer peripheral blade, a slicer having an inner peripheral blade, a wire saw, or the like.
  • the nitride substrate 10 manufactured in this way does not include a region where the off-angle between the axis perpendicular to the surface and the a-axis or m-axis is zero.
  • polishing and grinding of the surface of the nitride substrate 10 is performed as necessary. Grinding refers to scraping in the thickness direction by contacting the surface while rotating the grindstone. Since the nitride substrate 10 can suppress degranulation during polishing and grinding, the surface 11 can be easily flattened. Note that at least one of polishing and grinding of the back surface of the nitride substrate 10 may be further performed.
  • the nitride substrate 10 is shaped using a grindstone to which diamond abrasive grains are fixed, and then the surface 11 of the nitride substrate 10 is ground or polished using diamond abrasive grains.
  • a plurality of nitride substrates 10 having a thickness of, for example, 400 ⁇ m to 450 ⁇ m can be manufactured.
  • nitride substrate 10 is cut out from nitride crystal 22 along planes T1 and T2 in FIG. 11 and planes U1 and U2 in FIG. 12 that are not orthogonal to the m-axis and a-axis of front surface 22a and back surface 22b. ing.
  • a nitride substrate 10 is manufactured in which the off-angle between the axis perpendicular to the surface and the m-axis or a-axis is greater than zero. be able to.
  • FIG. 14 is a schematic diagram showing an off angle when the nitride substrate obtained in the comparative example is viewed from a direction perpendicular to the surface.
  • a refers to the a-axis direction
  • m refers to the m-axis direction
  • c refers to the c-axis direction, and indicates the direction at the center of the surface 51 of the nitride substrate 50.
  • the arrow is not described because the magnitude of the vector indicating the off angle is 0 on the entire surface 51 of the nitride substrate 50.
  • epitaxial layers are respectively formed on the surface 11 of the manufactured nitride substrate 10 in the present embodiment and the surface 51 of the nitride substrate 50 in the comparative example. Since the epitaxial layer formed on the off-angle region grows laterally, the epitaxial layer grown on the surface 11 of the nitride substrate 10 has a good surface morphology. That is, an epitaxial layer having high characteristics can be formed on the nitride substrate 10 having the surface 11 with the off angle formed on the entire surface as in the present embodiment. For this reason, the characteristics of a substrate, a device and the like manufactured using the epitaxial layer can be improved over a wide range. Therefore, nitride substrate 10 of the present embodiment can control the off angle so that the characteristics of the epitaxial layer formed on surface 11 and the device using the same are improved.
  • an epitaxial layer having high characteristics cannot be formed on a region having an off angle of 0.
  • the epitaxial layer grown on the surface 51 of the nitride substrate 50 in the comparative example cannot obtain a good morphology. That is, an epitaxial layer having high characteristics cannot be formed on the nitride substrate 50 having the surface 51 where the off angle is not formed on the entire surface as in the comparative example. For this reason, the characteristics of the substrate, device, etc. produced using this epitaxial layer cannot be improved. Therefore, the nitride substrate 50 of the comparative example cannot control the off-angle so that the characteristics of the epitaxial layer formed on the surface 51 and the device using the same are improved.
  • the inventor has found that the center O1 of the radius of curvature of the front surface 22a and the back surface 22b of the nitride crystal 22 is shown in FIG.
  • the present inventors have found that the off-angle of the surface of the cut nitride substrate becomes 0 when cut along the planes W2 and W3 passing through O2. For this reason, in the present embodiment, as shown in FIG.
  • nitride substrate 10 in which the off-angle formed by the axis orthogonal to the surface and the m-axis or a-axis is larger than 0 can be manufactured.
  • the nitride crystal passes along the planes W2 and W3 passing through the front surface 22a and the back surface 22b of the nitride crystal 22 and passing through the centers O1 and O2 of the radius of curvature of the front surface 22a and the back surface 22b of the nitride crystal 22.
  • the nitride substrate 50 is cut out from the substrate 22. Accordingly, as shown in FIGS. 15 and 16, the second region 53 having the first point 53a having an off angle of 0 between the axis orthogonal to the surface 51 and the m-axis or a-axis,
  • the nitride substrate 50 including the first region 52 located on the inner peripheral side of the second region 53 is manufactured.
  • 15 and 16 are schematic diagrams showing off angles when the nitride substrate obtained in the comparative example is viewed from a direction perpendicular to the surface.
  • the arrows are vectors indicating the magnitude and direction of the off angle.
  • “a” refers to the a-axis direction
  • “m” refers to the m-axis direction
  • “c” refers to the c-axis direction, and indicates the direction at the center of the surface 51 of the nitride substrate 50.
  • the curvature radii of the front surface 22a and the rear surface 22b of the nitride crystal 22 are different, as shown in FIG. 13, a line segment connecting the centers O1 and O2 of the curvature radii of the front surface 22a and the rear surface 22b of the nitride crystal 22 is obtained.
  • the nitride substrate 10 is cut out from the nitride crystal 22 along the plane W1 that does not pass through, the nitride substrate 10 having the minimum off angle at the first point 13a of the second region 13 can be manufactured. it can.
  • the epitaxial layer formed on the first region 12 located on the inner peripheral side on the surface 11 of the nitride substrate 10 is used for a substrate, a device, or the like.
  • the off-angle of nitride substrate 10 is set so that the off-angle of second region 13 of nitride substrate 10 is a minimum value as a region that is not substantially used for the substrate, device, or the like. I have control. Therefore, when an epitaxial layer is formed using the nitride substrate 10 and used for a substrate, a device, or the like, the off angle can be controlled so that the characteristics of the region to be used, that is, the first region 12 can be further improved. .
  • the nitride substrate 10 is cut out from the nitride crystal 22 so as to have the surface 11 with a controlled off angle. Therefore, it is possible to manufacture nitride substrate 10 in which the off-angle is stably controlled regardless of the state of nitride crystal 22 (that is, not depending on the growth conditions of nitride crystal 22). Therefore, the nitride substrate 10 in which the off-angle is controlled to form an epitaxial layer with high characteristics can be manufactured with improved yield.
  • the nitride crystal 22 When the nitride crystal 22 is grown in the c-axis direction, it generally warps in a concave shape with respect to the c-axis direction. In this embodiment, the nitride substrate 10 is cut out from this warped shape so as to control the distribution of the off-angle formed with the m-axis or the a-axis. For this reason, the nitride substrate 10 in which the off angle formed with the m-axis or a-axis on the surface is controlled can be manufactured with improved yield.
  • a cutting method in a step of cutting a nitride substrate from a nitride crystal so that an off angle formed by an axis orthogonal to the surface and an m-axis or a-axis is larger than 0 was examined.
  • FIGS. 17 and 18 show a 2R diameter nitride crystal having a surface 22a (with radius of curvature r and center of curvature radius O) that can be approximated as part of an arc of radius r and center O. It is the schematic diagram seen from the a-axis direction. Here, for simplification, the thickness of the nitride crystal is ignored.
  • a nitride substrate is obtained by cutting along a plane perpendicular to the surface 22a of the nitride crystal, for example, as represented by the plane V1. To generalize this, all of the surfaces represented by a straight line passing through the center O that have a shared part with the nitride crystal correspond to this.
  • FIGS. 19 to 21 are schematic views for further considering the cutting plane V2.
  • the shape of the nitride crystal is considered as a part of the arc having the radius r and the center O.
  • FIGS. Consider 22a extending to the entire arc.
  • the plane an arbitrary plane passing through the region A in FIGS. 20 and 21
  • the plane V2 corresponds to an arbitrary plane whose distance from the center O is ⁇ .
  • the distance from the center O means the length of a perpendicular drawn from the center O to an arbitrary surface.
  • the plane V2 that can cut the nitride crystal is a part of the arc. This situation is shown in FIG. 22 and FIG. From the nitride crystal, it can be seen that the plane V2 that can cut the nitride substrate whose actual off-angle is ⁇ is the region B in FIGS.
  • the off-angle ⁇ is taken on the left side of the normal line of the surface 22a of the nitride crystal is shown, and the case where it is taken on the right side is omitted.
  • the conditions of the plane V2 for cutting out the nitride substrate whose m-plane off angle is ⁇ are the following two points. That is, the plane V2 is a condition that (1) the distance from the center O is ⁇ and (2) has a shared portion with the surface 22a of the nitride crystal.
  • Cutting method 2 Referring to FIGS. 24 and 25, consider a method of cutting a nitride substrate whose m-plane off angle is in the range of ⁇ 1 to ⁇ 2 ( ⁇ 1 ⁇ 2). 24 and 25 are schematic views for considering the cutting plane V3.
  • the conditions of the plane V3 for cutting a nitride substrate having an m-plane off angle of ⁇ 1 to ⁇ 2 are the following two points. That is, the plane V3 is (1) the distance ⁇ from the center O satisfies r ⁇ sin ⁇ 1 ⁇ ⁇ r ⁇ sin ⁇ 2 (region C in FIGS. 24 and 25), and (2) the surface 22a of the nitride crystal. It is a condition that it has a part.
  • FIG. 26 is a schematic diagram for considering the cutting plane V4.
  • the nitride crystal can be approximated as a part of an arc having a radius r1 and a center O1, a radius r2, and a center O2. It can be seen that the back surface 22b can be approximated as a part of the arc. From the discussion so far, a spherical surface having radii r1 ⁇ sin ⁇ 1 and r1 ⁇ sin ⁇ 2 determined by the range of the off angles ⁇ 1 to ⁇ 2 ( ⁇ 1 ⁇ 2) is considered around the center O1, and similarly r2 ⁇ sin ⁇ 1 around the center O2. A spherical surface of r2 ⁇ sin ⁇ 2 may be considered.
  • the conditions of the plane V4 for cutting out the nitride substrate whose m-plane off angle is ⁇ 1 to ⁇ 2 are the following three points. That is, in the plane V4, (1) the distance ⁇ from the center O1 satisfies r1 ⁇ sin ⁇ 1 ⁇ ⁇ r1 ⁇ sin ⁇ 2 (region D1 in FIG. 26), and (2) the distance ⁇ from the center O2 is r2 ⁇ sin ⁇ 1 ⁇ The condition is that ⁇ ⁇ r2 ⁇ sin ⁇ 2 is satisfied (region D2 in FIG. 26), and (3) the front surface 22a and the back surface 22b of the nitride crystal have a shared portion.
  • the c-plane other than the front and back surfaces of the nitride crystal can be considered by increasing the arc of the center and the radius of curvature.
  • a change in the radius of curvature in the growth thickness direction can be captured more accurately, and the off-angle distribution in the cut nitride substrate can be further improved.
  • the quality of the nitride crystal 22 is not good, or when the nitride crystal 22 is grown in the c-axis direction using a substrate having an off angle as the base substrate 21, the c-plane other than the front surface and the back surface is centered.
  • the center and the radius of curvature in the c-plane inside the nitride crystal 22 can be measured by the X-ray diffraction (XRD) method by exposing the location.
  • the method for cutting a nitride substrate having an off angle with respect to the m-plane has been studied, but the method for cutting a nitride substrate having an off-angle with respect to the a-plane is similarly used. Applicable. That is, the above-described cutting methods 1 to 3 can be applied to a cutting method for cutting a nitride substrate so that an off angle formed by an axis orthogonal to the surface and an m-axis or a-axis is larger than zero.
  • the second region can be cut out within 2 mm from the edge.
  • a nitride crystal is grown, and a nitride substrate is cut out from the nitride crystal so that an off angle formed by an axis perpendicular to the surface and an m-axis or a-axis is larger than zero.
  • the cutting method was examined.
  • a coordinate system fixed to the nitride crystal shown in FIG. 27 was defined to specify the cutting position.
  • FIG. 27 is a schematic diagram for explaining a method of designating a portion for cutting a nitride crystal in this example.
  • the origin of coordinates is the center of the back surface 22b of the nitride crystal
  • the z-axis direction is the wire reciprocating direction of the wire saw.
  • the coordinates of the cutting points 1 and 2 were (x1, y1) and (x2, y2), respectively. Further, since the wire advances in the vertical direction, the nitride crystal is inclined with a jig (not shown) so that the cut surface is vertical.
  • the base substrate 21 was placed on the crucible 101 shown in FIG. At this time, the surface of the base substrate 21 was flattened, and in order to suppress sublimation of the base substrate 21, the base substrate protective material made of graphite was placed in close contact with the back side. Also, an AlN powder raw material was prepared, and this was used as the raw material 17 and was installed at the lower part of the crucible 101 so as to face the base substrate 21.
  • the temperature in the crucible 101 was raised by heating the heating body 121 using the heating unit 125 while flowing nitrogen gas into the reaction vessel 123.
  • the base substrate 21 was heated to 2000 ° C. and the raw material 17 was heated to 2200 ° C. to grow an AlN single crystal having a thickness of 30 ⁇ m, and an AlN single crystal was further grown for 100 hours. Then, it cooled to room temperature and removed the SiC substrate. Thereby, an AlN single crystal as the nitride crystal 22 having a growth thickness of about 10 mm in the c-axis direction was obtained.
  • the single crystal was set on a wire saw with the plane orientation confirmed, and one AlN substrate was sampled by cutting the AlN single crystal along a plane passing through the cutting points 1 and 2 shown in Table 1.
  • Example 1 of the present invention was manufactured.
  • the surface of the nitride substrate of Invention Example 1 could be processed flat by grinding and polishing. For this reason, an epitaxial layer could be more easily produced using the nitride substrate of Invention Example 1 than the nitride substrate of Invention Example 2 that was not ground and polished, which will be described later.
  • the manufactured AlN substrate was subjected to in-plane mapping measurement of the off angle by X-ray diffraction, and the distribution range was examined. As a result, the surface was almost m-plane and did not include the region where the off angle was zero. An AlN substrate having an off angle preferable for epitaxial growth was obtained.
  • invention Example 2 A 3-inch GaAs substrate having a main surface of (111) was prepared, and the entire surface of the GaAs substrate was covered with a thin mask.
  • the mask material SiO 2 (silicon dioxide) was used as having a property that GaN does not grow directly on the mask material.
  • a window was formed in this mask, and GaN was epitaxially grown through this window by the HVPE method.
  • the HVPE furnace used for the growth was provided with a Ga boat above the inside of the vertically long furnace, in which Ga melt was accommodated.
  • a susceptor was provided below the furnace, and a GaAs substrate was set thereon.
  • a mixed gas of hydrogen gas and HCl gas was introduced from the gas inlet. HCl reacted with Ga to synthesize GaCl, and GaCl became gaseous and flowed downward.
  • a mixed gas of hydrogen gas and NH 3 gas was introduced from the gas inlet. GaCl reacted with NH 3 to synthesize GaN and deposited on the GaAs substrate.
  • the temperature was raised and epitaxial growth was performed at a high temperature (1010 ° C.).
  • a GaN single crystal having a thickness of 20 mm was grown as the nitride crystal 22.
  • the base substrate was removed by etching with aqua regia. Thereby, a GaN single crystal as the nitride crystal 22 shown in FIG. 6B was obtained.
  • Example 2 of the present invention grinding and polishing were not performed after cutting, so that the surface could not be processed flat compared to Example 1 of the present invention, but an epitaxial layer could be formed even using this nitride substrate.
  • the GaN substrate had a surface that was substantially m-plane and did not contain an off-angle of 0.
  • Example 3 A GaN single crystal grown in the same HVPE furnace as in Example 2 of the present invention is prepared, and the crystallinity is about 100 seconds on both the front and back surfaces of the GaN single crystal obtained in the same manner. It confirmed using the line diffraction (refer Table 1).
  • the setting direction to the wire saw was changed from that of the present invention example 2 in order to obtain a substantially a-plane substrate.
  • wire slicing was performed on a plane passing through the cutting points 1 and 2 shown in Table 1, and two substrates were collected. After cutting, grinding and polishing were performed in the same manner as in Example 1 of the present invention.
  • a GaN substrate of Invention Example 3 was manufactured.
  • the off-angle distribution was evaluated by X-ray diffraction measurement of the manufactured GaN substrate, it was confirmed that the GaN substrate had a surface substantially free of off-angle 0 on the a-plane.
  • Example 1 A warped AlN single crystal similar to Example 1 of the present invention was prepared and cut with a wire saw along the cutting plane shown in Table 1, which is a cutting method different from that of Examples 1 to 3. After cutting, grinding and polishing were performed in the same manner as in Example 1 of the present invention.

Abstract

 窒化物基板(10)の製造方法は、以下の工程を備えている。まず、窒化物結晶を成長させる。そして、窒化物結晶から、表面(11)を含む窒化物基板(10)を切り出す。この切り出す工程では、表面(11)に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなるように窒化物基板(10)を切り出す。また窒化物結晶をc軸方向に成長させる場合には、切り出す工程では、窒化物結晶の表面および裏面を通り、かつ窒化物結晶の表面および裏面の曲率半径の中心を結んだ線分を通らない平面に沿って、窒化物結晶から窒化物基板(10)を切り出す。

Description

窒化物基板の製造方法および窒化物基板
 本発明は窒化物基板の製造方法および窒化物基板に関する。
 AlN(窒化アルミニウム)結晶は、6.2eVの広いエネルギバンドギャップ、約3.3WK-1cm-1の高い熱伝導率および高い電気抵抗を有している。このため、AlN結晶などの窒化物結晶は、光デバイスや電子デバイスなどの半導体デバイス用の基板材料として注目されている。
 このような窒化物結晶の製造方法が、たとえば特開2007-197276号公報(特許文献1)に開示されている。この特許文献1には、以下の工程によりIII-V族窒化物半導体基板を製造している。具体的には、c面またはオフ角を有する異種基板上にIII-V族窒化物半導体膜を成長させる。その後、異種基板上に金属膜を堆積し、熱処理してIII-V族窒化物半導体膜に空隙を形成する。次に、金属膜上にIII-V族窒化物半導体結晶を堆積させる。次に、異種基板を剥離して、c軸が表面に対して略垂直、またはc軸が表面に対して所定の角度だけ傾斜しているIII-V族化合物半導体結晶を得る。次に、このIII-V族窒化物半導体結晶の裏面を研磨して平坦面とする。このIII-V族窒化物半導体結晶から異種基板、III-V族窒化物半導体膜および金属膜を除去することにより、III-V族窒化物半導体基板を製造している。このように製造されるIII-V族窒化物半導体結晶からなる半導体基板の表面は、アズグロウンである。
特開2007-197276号公報
 しかし、上記特許文献1では、アズグロウンでIII-V族窒化物半導体結晶を成長させている。つまり、III-V族窒化物半導体基板の表面のオフ角は、III-V族窒化物半導体結晶の成長条件のみで制御している。このため、高い歩留まりで、オフ角を制御したIII-V族窒化物半導体基板を製造することは困難であるという問題があった。
 したがって、本発明は、表面のオフ角を制御した窒化物基板を歩留まりを向上して製造する窒化物基板の製造方法および窒化物基板を提供することである。
 本発明の一の局面における窒化物基板の製造方法は、以下の工程を備えている。まず、窒化物結晶を成長させる。そして、窒化物結晶から、表面を含む窒化物基板を切り出す。この切り出す工程では、表面に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなるように窒化物基板を切り出す。
 本発明の窒化物基板は、表面を含む窒化物基板において、表面に直交する軸と、a軸またはm軸とのなすオフ角は、0よりも大きいことを特徴としている。
 本発明の一の局面における窒化物基板の製造方法および窒化物基板によれば、表面の全面においてオフ角を有するように、窒化物結晶から窒化物基板を切り出している。このため、成長させた窒化物結晶の状態によらず(つまり窒化物結晶の成長条件等に依存せず)、安定してオフ角を制御した窒化物基板を製造することができる。このように製造された窒化物基板の表面上にエピタキシャル層を形成させる場合、横方向の結晶成長であるステップ成長をさせることができる。このため、エピタキシャル層のモフォロジーを良好にできるので、結晶性を向上することができる。エピタキシャル層の結晶性を向上できると、このエピタキシャル層を用いて作製した基板、デバイス等の特性を向上することができる。したがって、窒化物基板の全面に特性の高いエピタキシャル層を形成するようにオフ角が制御された表面を含む窒化物基板を、歩留まりを向上して製造することができる。
 本発明の他の局面における窒化物基板の製造方法は、以下の工程を備えている。まず、表面と、この表面と反対側の裏面とを含む窒化物結晶をc軸方向に成長させる。そして、窒化物結晶から、窒化物基板を切り出す。この切り出す工程では、窒化物結晶の表面および裏面を通り、かつ窒化物結晶の表面および裏面の曲率半径の中心を結んだ線分を通らない平面に沿って、窒化物結晶から窒化物基板を切り出す。
 本発明者は鋭意研究の結果、窒化物結晶の表面および裏面の曲率半径の中心を結んだ線分を通る平面に沿って窒化物結晶から窒化物基板を切り出すと、窒化物基板の表面にはオフ角が0である部分を含むことを見い出した。このため、本発明の他の局面における窒化物基板の製造方法によれば、表面に直交する軸と、a軸またはm軸とのなすオフ角は、常に0よりも大きくなるようにオフ角を制御した窒化物基板を製造することができる。また、窒化物結晶からオフ角を制御して窒化物基板を切り出すので、成長させた窒化物結晶の状態によらず、安定してオフ角を制御した窒化物基板を製造することができる。したがって、特性の高いエピタキシャル層を形成するためにオフ角が制御された窒化物基板を、歩留まりを向上して製造することができる。
 上記窒化物基板の製造方法において好ましくは、上記切り出す工程では、第1の領域と、第1の領域を取り囲む第2の領域とを有する表面を含み、オフ角が第2の領域の第1の点で最小値をとるように窒化物基板を切り出す。
 また上記窒化物基板において好ましくは、表面は、第1の領域と、この第1の領域を取り囲む第2の領域とを有し、表面のオフ角は、第2の領域の第1の点で最小値をとる。
 これにより、第1の領域のオフ角をより大きくできるので、窒化物基板上にエピタキシャル層を形成する際にステップ成長をより促進することができる。このため、内周側に位置する第1の領域上に、より特性の高いエピタキシャル層を形成することができる。エピタキシャル層を用いて作製する基板、デバイス等において、外周側は一般的に使用頻度が低く、内周側は一般的に使用頻度が高い。したがって、この基板、デバイス等において、使用される頻度の高い領域の特性をより向上するこができるので、より特性の高いエピタキシャル層を形成するためにオフ角が制御された窒化物基板を、歩留まりを向上して製造することができる。
 上記窒化物基板の製造方法において好ましくは、上記切り出す工程では、第2の領域が窒化物基板のエッジから2mm以内になるように窒化物基板を切り出す。また上記窒化物基板において好ましくは、第2の領域は、エッジから2mm以内である。
 これにより、窒化物基板のエッジから2mm以内の第2の領域を除いた広い領域を第1の領域とすることができる。このため、この広い第1の領域を、特性の高いエピタキシャル層等に使用することができる。
 上記窒化物基板の製造方法において好ましくは、上記切り出す工程では、オフ角が第2の領域の第2の点で最大値をとり、かつ第2の点から第1の点にかけてオフ角が単調減少するように、窒化物基板を切り出す。
 また上記窒化物基板において好ましくは、オフ角は第2の領域の第2の点で最大値をとり、第2の点から第1の点にかけてオフ角が単調減少する。
 これにより、内周側に位置する第1の領域ではオフ角の最小値および最大値を含まないので、オフ角が0でなく、かつオフ角のばらつきを抑制することができる。このため、内周側に位置する第1の領域上に、より特性の高いエピタキシャル層等を形成することができる。
 上記窒化物基板の製造方法において好ましくは、切り出す工程では、a面またはm面からc軸方向に傾斜した平面と平行な平面に沿って窒化物結晶から窒化物基板を切り出す。また上記窒化物基板において好ましくは、表面は、a面またはm面からc軸方向に傾斜している。
 これにより、この窒化物基板を用いて作成したエピタキシャル層等の特性をより向上することができる。
 上記窒化物基板の製造方法において好ましくは、上記切り出す工程後に、窒化物基板の表面の研磨および研削の少なくとも一方を行なう工程をさらに備えている。
 これにより、窒化物基板の表面を平坦に加工することができる。このため、この窒化物基板を用いてエピタキシャル層等を容易に作成することができる。
 上記窒化物基板の製造方法において好ましくは、上記切り出す工程では、複数枚の窒化物基板を切り出す。これにより、窒化物基板の1枚当たりの製造コストを低減することができる。
 本発明の窒化物基板の製造方法および窒化物基板によれば、窒化物結晶からオフ角を制御して窒化物基板を切り出すことによって、表面に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなるように、窒化物基板を歩留まりを向上して製造することができる。
本発明の実施の形態における窒化物基板を概略的に示す斜視図である。 本発明の実施の形態における窒化物基板を上方(表面側)から見たときのオフ角を示す模式図である。 本発明の実施の形態における窒化物基板を上方(表面側)から見たときのオフ角を示す模式図である。 本発明の実施の形態における窒化物基板を上方(表面側)から見たときのオフ角を示す模式図である。 本発明の実施の形態における窒化物基板を上方(表面側)から見たときのオフ角を示す模式図である。 (A)および(B)は、本発明の実施の形態における窒化物結晶を概略的に示す断面図である。 本発明の実施の形態における窒化物結晶の製造に使用可能な成長装置である。 本実施の形態における窒化物結晶を上方から見たときの概略平面図である。 図8においてIX-IX線に沿う断面図であり、窒化物結晶の結晶方位を概略的に示す模式図である。 図8においてX-X線に沿う断面図であり、窒化物結晶の結晶方位を概略的に示す模式図である。 本発明の実施の形態における窒化物結晶を示す断面図である。 本発明の実施の形態における窒化物結晶を示す別の断面図である。 本発明の実施の形態における窒化物結晶を示す別の断面図である。 比較例で得られた窒化物基板を表面に垂直な方向から見たときのオフ角を示す模式図である。 比較例で得られた窒化物基板を垂直な方向から見たときのオフ角を示す模式図である。 比較例で得られた窒化物基板を垂直な方向から見たときのオフ角を示す模式図である。 実施例1において、半径r、中心Oの円弧の一部として近似できるような表面22aを持つ、直径2Rの窒化物結晶を、およそのa軸方向から見た模式図である。 実施例1において、半径r、中心Oの円弧の一部として近似できるような表面22aを持つ、直径2Rの窒化物結晶を、およそのa軸方向から見た模式図である。 実施例1において、切断平面V2をさらに考察するための模式図である。 実施例1において、切断平面V2をさらに考察するための模式図である。 実施例1において、切断平面V2をさらに考察するための模式図である。 実施例1において、切断平面V2をさらに考察するための模式図である。 実施例1において、切断平面V2をさらに考察するための模式図である。 実施例1において、切断平面V3を考察するための模式図である。 実施例1において、切断平面V3を考察するための模式図である。 実施例1において、切断平面V4を考察するための模式図である。 実施例2において、窒化物結晶を切断する箇所を指定する方法を説明するための模式図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。また、本明細書中においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
 図1は、本実施の形態における窒化物基板を概略的に示す斜視図である。まず、図1を参照して、本実施の形態における窒化物基板について説明する。
 図1に示すように、窒化物基板10は、表面11を含んでいる。表面11は、第1の領域12と、第1の領域12を取り囲む第2の領域13とを有している。つまり、第1の領域12は窒化物基板10の表面11において内周側に位置し、第2の領域13は窒化物基板10の表面11において外周側に位置している。本実施の形態における第1の領域12は、窒化物基板10の表面11において、表面11上に形成するエピタキシャル層のうち、基板またはデバイスに用いられるエピタキシャル層を形成する領域である。表面11上に形成するエピタキシャル層のうち、基板またはデバイスに用いられない第2の領域13は、たとえばエッジからの距離tが2mm以内である。
 図2~図5は、本実施の形態における窒化物基板を上方(表面側)から見たときのオフ角を示す模式図である。図2~図5において、矢印はオフ角の大きさと方向とを示すベクトルである。また、図2~図5において、aとはa軸方向、mとはm軸方向、cとはc軸方向を指し、窒化物基板10の表面11の中央での方向を示す。図2~図5に示すように、表面11に直交する軸と、m軸またはa軸とのなすオフ角は、表面11の全面に渡って0よりも大きい。つまり、表面11は、オフ角が0の領域を含んでいない。
 図2~図4に示すように、表面11のオフ角の大きさは同じであってもよく、図5に示すように、表面11のオフ角の大きさにばらつきがあってもよい。また図2~図5に示すようにオフ角の方向は常に一定であってもよく、異なっていてもよい(図示せず)。
 図5に示すように、表面11のオフ角の大きさにばらつきがある場合には、オフ角は、第2の領域13の第1の点13aで最小値をとっている。このオフ角は、第2の領域13の第2の点13bで最大値をとっている。第2の点13bから第1の点13aにかけてオフ角は単調減少している。なお、単調減少とは、第2の点13bから第1の点13aに向けて、オフ角の大きさが常に同じまたは減少しており、かつ第2の点13bのオフ角よりも第1の点13aのオフ角が小さいことを意味する。つまり、単調減少とは、第2の点13bから第1の点13aに向けてオフ角が増加している部分が含まれていない。
 また表面11は、a面またはm面からc軸方向に傾斜している。なお、c面とは、{0001}面を意味し、(0001)面、(000-1)面、およびそれらと平行な面を含んでいる。m軸方向とは、<1-100>方向を意味し、[1-100]方向、[10-10]方向、[-1100]方向、[-1010]方向、[01-10]方向および[0-110]方向を含んでいる。またa軸方向とは、<11-20>方向を意味し、[11-20]方向、[1-210]方向、[-2110]方向、[-1-120]方向、[-12-10]方向および[2-1-10]方向を含んでいる。
 表面11の少なくとも第1の領域12におけるオフ角は、0.15°以上2°未満が好ましく、0.3°以上0.7°未満がより好ましい。この範囲の場合、少なくとも第1の領域12上に、特性の高いエピタキシャル層を形成することができる。
 本実施の形態の窒化物基板10は、表面11が矩形の板状である。表面11が矩形の場合、表面11のエッジ上の一点と、他の点との距離の最大値が5mm以上であることが好ましい。また、表面11が円形または楕円形の場合、最も長い直径が10mm以上であることが好ましい。
 窒化物基板10は、たとえばInxAlyGa(1-x-y)N(0≦x≦1、0≦y≦1、0≦x+y≦1)であり、窒化ガリウム(GaN)、AlN、AlGaNなどであることが好ましい。
 続いて、本実施の形態における窒化物基板の製造方法について説明する。
 図6(A)および(B)は、本実施の形態における窒化物結晶を概略的に示す断面図である。図7は、本実施の形態における窒化物結晶の製造に使用可能な成長装置である。図6(A)、(B)および図7に示すように、まず、窒化物結晶22を成長させる。この窒化物結晶22は、窒化物基板10を製造するためのインゴットである。本実施の形態では、たとえば昇華法により窒化物結晶22を成長させる。
 ここで、図7を参照して、本実施の形態における成長装置100の主要な構成について説明する。この成長装置100は、昇華法により結晶成長する装置である。
 図7に示すように、成長装置100は、坩堝101と、加熱体121と、反応容器123と、加熱部125とを主に備えている。
 坩堝101は、たとえばグラファイト製である。この坩堝101は、排気口101aを有している。この坩堝101の周りには、坩堝101の内部と外部との通気を確保するように加熱体121が設けられている。この加熱体121の周りには、反応容器123が設けられている。この反応容器123の外側中央部には、加熱体121を加熱するための高周波加熱コイルなどの加熱部125が設けられている。
 加熱体121および反応容器123の一方端部には、反応容器123内に配置された坩堝101へたとえば窒素ガスなどのキャリアガスを流すための導入口121a、123aと、反応容器123の外部へキャリアガスを排出するための排出口121b、123bとを有している。また、反応容器123の上部および下部には、坩堝101の上方および下方の温度を測定するための放射温度計127a、127bが設けられている。
 なお、上記成長装置100は、上記以外の様々な要素を含んでいてもよいが、説明の便宜上、これらの要素の図示および説明は省略する。
 まず、下地基板21を準備する。下地基板は特に限定されず、SiC(炭化珪素)基板などの異種基板であってもよく、成長させる窒化物結晶22と同じ材料であってもよい。本実施の形態では、下地基板21として、たとえば(0001)面の主表面を有するSiC基板を準備する。この下地基板21を坩堝101の上部に設置する。このとき、下地基板21の表面は平坦化されており、下地基板21の昇華を抑制するために、裏面側にはたとえばグラファイト製の下地基板保護材が密着するように設置する。
 その後、原料17を準備する。窒化物結晶22としてAlN結晶を成長させる場合には、原料17はたとえばAlN粉末等を用いる。この原料17を、下地基板21と互いに向かい合うように、坩堝101の下部に設置する。
 その後、反応容器123内に窒素ガスを流しながら、加熱部125を用いて加熱体121を加熱することにより、坩堝101内の温度を上昇させる。そして、原料17が昇華する温度まで原料17を加熱する。この加熱により、原料17が昇華して昇華ガスを生成する。この昇華ガスを、原料17よりも低温に設置されている下地基板21の表面に再度固化させる。本実施の形態では、たとえば下地基板21の温度を2000℃に、原料17の温度を2200℃になるように加熱して、30μmの厚みを有する窒化物結晶を成長させ、さらに100時間窒化物結晶を成長させる。これにより、たとえば10mmの厚みを有する窒化物結晶を成長させることができる。その後、室温(たとえば25℃)まで冷却して、成長装置100から取り出す。これにより、下地基板21上に窒化物結晶を成長させることができる。その後、原料17をさらに補充して、窒化物結晶上にさらに窒化物結晶をさせる。これにより、図6(A)または(B)に示すように、たとえば19mmの厚みを有する窒化物結晶22が得られる。この窒化物結晶22の表面22aは、凹状に反っている。また窒化物結晶22の裏面22bも反っている場合がある。表面22aおよび裏面22bの反りは図6(B)のように同様の場合もあり、図6(A)のように異なっている場合もある。なお、図6(B)に示すように、下地基板21は、窒化物結晶22の成長により昇華している場合がある。
 なお、本実施の形態では、窒化物結晶22の成長方法として昇華法を採用したが、特に昇華法に限定されず、たとえばHVPE(Hydride Vapor Phase Epitaxy:ハイドライド気相成長)法、MBE(Molecular Beam Epitaxy:分子線エピタキシ)法、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相堆積)法などの気相成長法、フラックス法、高窒素圧溶液法などの液相法などを採用することができる。
 たとえばHVPE法により窒化物結晶22を成長させる場合は、たとえば以下のように行なう。まず、下地基板21を準備する。下地基板21として、たとえば(111)面が主表面であるGaAs(ガリウム砒素)基板を用いる。その後、下地基板21上にマスクを形成し、HVPE法により窒化物結晶22を成長させる。窒化物結晶22として、たとえば10mmの厚みを有するGaN結晶を成長させる。その後、下地基板をたとえば王水でエッチングして除去する。これにより、図6(B)に示す窒化物結晶22が得られる。
 図8は、本実施の形態における窒化物結晶を上方から見たときの概略平面図である。図9および図10は、図8においてIX-IX線およびX-X線に沿う断面図であり、窒化物結晶の結晶方位を概略的に示す模式図である。図9および図10において、一点鎖線は各位置でのc軸方向、a軸方向またはm軸方向を示す。上述したように成長させた窒化物結晶22の表面22aは、図6(A)、(B)、図9および図10に示すように、凹に反っている。本実施の形態では、窒化物結晶22をc軸方向に成長させているため、あるいは窒化物結晶22において表面22a、裏面22bまたはその内部の格子面の反りのため、窒化物結晶22の位置によってc軸、a軸またはm軸の向きは異なっている。
 なお、本実施の形態では、窒化物結晶22から窒化物基板10を切り出すため、インゴットとして厚みの大きな窒化物結晶22を成長させている。厚みの大きな窒化物結晶22を成長させると、窒化物結晶22の表面22aには反りが生じる。このため、窒化物結晶22の表面22aとa軸またはm軸とのなすオフ角は、表面22aの位置によってばらついている。また、裏面22bについても同様である。
 また窒化物結晶22の表面22aの場所ごとにc軸、m軸、a軸の向きが異なっていることは、たとえばX線回折(X-ray Diffraction:XRD)法により測定される。裏面22bにおいても同様に測定される。また窒化物結晶22の内部についても、その箇所を露出させることで同様に測定される。
 次に、窒化物結晶22から、第1の領域12と、第1の領域12を取り囲む第2の領域13とを有する表面11を含む窒化物基板10を切り出す。この切り出す工程では、表面11に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなるように窒化物基板10を切り出す。
 この切り出す工程では、表面11に直交する軸と、m軸またはa軸とのなすオフ角が、第2の領域13の第1の点13aで最小値をとるように窒化物基板10を切り出すことが好ましい。また第2の領域13が窒化物基板10のエッジから2mm以内になるように窒化物基板10を切り出すことが好ましい。また切り出す工程では、オフ角が第2の領域13の第2の点で最大値をとり、かつ第2の点13bから第1の点13aにかけてオフ角が単調減少するように窒化物基板10を切り出すことが好ましい。
 ここで、切り出す工程をより具体的に説明する。図11は、本実施の形態における窒化物結晶22を示す断面図である。図11において、aとはa軸方向、mとはm軸方向、cとはc軸方向を指し、窒化物結晶22の中央における各軸の方向を表す。窒化物結晶22において表面22aと裏面22bとの曲率半径が同じとみなせる場合には、たとえば図11に示すように、表面22aの中央におけるm面に平行な平面T1、T2に沿って、窒化物結晶22から窒化物基板10を切り出す。この平面T1、T2は、窒化物結晶22の表面22aおよび裏面22bのm軸と直交しない。平面T1、T2に沿って切り出した窒化物基板10の表面11のオフ角は、それぞれ図2および図3に示すようになる。平面T2は、平面T1よりもm面からc軸方向への傾斜が大きいため、オフ角が大きい。
 図12は、本実施の形態における窒化物結晶22を示す別の断面図である。図12において、aとはa軸方向、mとはm軸方向、cとはc軸方向を指し、窒化物結晶22の中央における各軸を表す。窒化物結晶22において表面22aと裏面22bとの曲率半径が同じとみなせる場合には、たとえば図12に示すように、表面22aの中央におけるm面からc軸方向に傾斜した平面と平行な平面U1、U2に沿って、窒化物結晶22から窒化物基板10を切り出す。平面U1、U2は、窒化物結晶の成長方向(中心のc軸方向)から傾斜した面である。本実施の形態では、平面U1、U2は、窒化物結晶22の表面22aの中心におけるc面に垂直な平面から0.2°傾斜させている。この平面U1、U2は、窒化物結晶22の表面22aおよび裏面22bのm軸と直交しない。平面U1、U2に沿って切り出した窒化物基板10の表面11のオフ角は、それぞれ図4および図3に示すようになり、互いにオフ角の向きは逆である。
 図13は、本実施の形態における窒化物結晶22を示す別の断面図である。図13において、aとはa軸方向、mとはm軸方向、cとはc軸方向を指し、窒化物結晶22の表面22aの中心における各軸の方向を表す。図13に示すように、窒化物結晶22をc軸方向に成長させる場合には、窒化物結晶22の表面22aおよび裏面22bを通り、かつ窒化物結晶22の表面22aおよび裏面22bの曲率半径の中心(中心O1と中心O2)、およびそれらの間(中心O1と中心O2とを結んだ線分)を通らない平面W1に沿って、窒化物結晶22から窒化物基板10を切り出す。つまり、平面W1は、窒化物結晶22の表面22aおよび裏面22bのm軸と直交しない。さらに言い換えると、平面W1は、窒化物結晶22の表面22aの曲率半径の中心O1と、裏面22bの曲率半径の中心O2との間に位置しない。つまり、平面W1は、窒化物結晶22の全体にわたってm軸と直交しない。平面W1に沿って切り出した窒化物基板10の表面11のオフ角は、図5に示すようになる。
 ここで、「表面22aおよび裏面22bの曲率半径」とは、窒化物結晶22の表面22aおよび裏面22bの曲線を円弧に近似した時の半径を意味する。また、「曲率半径の中心」とは、上記で近似した円弧の中心を意味する。
 また、たとえばXRD法により測定した窒化物結晶22の結晶方位に基づけば、図11~図13に示すように、窒化物結晶22から窒化物基板10を切り出すことができる。
 なお、平面U1、U2、W1のように、a面またはm面からc軸方向に傾斜した平面と平行な平面に沿って窒化物結晶22から窒化物基板10を切り出すことが好ましい。特に、窒化物結晶22の中央に位置するa面またはm面からc軸方向に傾斜している平面と平行な平面に沿って窒化物結晶22から窒化物基板10を切り出すことが好ましい。窒化物結晶22の中央とは、窒化物結晶22の表面22aが多角形状のとき、その表面22aにおいて中央部を挟んで対向する任意に特定される2辺に内接する円の直径のうち最大の長さの中心を意味する。また窒化物結晶22の表面22aが円状または楕円状のとき、その表面22aにおいて任意に特定される直径のうち最大の長さの中心を意味する。
 この切り出す工程では、複数枚の窒化物基板10を切り出すことが好ましい。窒化物結晶22の大きさがたとえば10mm以上の場合、容易に複数枚の窒化物基板10を切り出すことができる。
 窒化物基板10を切り出す方法は特に限定されず、たとえば切断など機械的な除去方法を用いることができる。切断とは、外周刃を持つスライサー、内周刃を持つスライサー、ワイヤーソーなどで機械的に窒化物結晶22から窒化物基板10を切り出すことをいう。
 このように製造された窒化物基板10は、表面に直交する軸と、a軸またはm軸とのなすオフ角が0である領域を含まない。
 次に、必要に応じて、窒化物基板10の表面の研磨および研削の少なくとも一方を行なう。なお、研削とは、砥石を回転させながら表面に接触させて、厚さ方向に削り取ることをいう。窒化物基板10は、研磨および研削の際に脱粒を抑制できるので、表面11を容易に平坦にすることができる。なお、窒化物基板10の裏面の研磨および研削の少なくとも一方をさらに行なってもよい。
 本実施の形態では、ダイヤモンド砥粒を固定した砥石を用いて窒化物基板10の整形加工をし、その後ダイヤモンド砥粒を用いて窒化物基板10の表面11の研削または研磨をする。
 以上の工程を実施することにより、たとえば400μm~450μmの厚みを有する複数枚の窒化物基板10を製造することができる。
 次に、本実施の形態における窒化物基板10の製造方法により製造される窒化物基板10の効果について説明する。
 本実施の形態では、表面22aおよび裏面22bのm軸およびa軸と直交しない図11の平面T1、T2、図12の平面U1、U2に沿って、窒化物結晶22から窒化物基板10を切り出している。これにより、図2、図3、図4、図3にそれぞれ示すように、表面に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなる窒化物基板10を製造することができる。
 一方、比較例では、表面22aおよび裏面22bの少なくとも一方がm軸またはa軸と直交する図11の平面T3、図12の平面U3に沿って、窒化物結晶22から窒化物基板50(図14参照)を切り出している。この比較例の場合には表面22a、裏面22bがともにm軸またはa軸と直交するので、図14に示すように、窒化物基板50の表面51の全面においてオフ角が0になる。なお、図14は、比較例で得られた窒化物基板を表面に垂直な方向から見たときのオフ角を示す模式図である。図14において、aとはa軸方向、mとはm軸方向、cとはc軸方向を指し、窒化物基板50の表面51の中央での方向を示す。図14において、矢印が記載されていないのは、窒化物基板50の表面51全体において、オフ角を示すベクトルの大きさが0のためである。
 このように、製造した本実施の形態における窒化物基板10の表面11および比較例における窒化物基板50の表面51上にエピタキシャル層をそれぞれ形成させる。オフ角を有する領域上に形成したエピタキシャル層は横方向に結晶成長するため、窒化物基板10の表面11上に成長したエピタキシャル層は良好な表面モフォロジーを有する。つまり、本実施の形態のようにオフ角が全面に形成された表面11を有する窒化物基板10上には、特性の高いエピタキシャル層を形成することができる。このため、エピタキシャル層を用いて作製される基板、デバイス等の特性を広範囲で向上することができる。したがって、本実施の形態の窒化物基板10は、表面11上に形成されるエピタキシャル層およびそれを用いたデバイスの特性が向上するようにオフ角を制御することができる。
 一方、オフ角が0の領域上には特性の高いエピタキシャル層を形成することができない。このため、比較例における窒化物基板50の表面51上に成長したエピタキシャル層は良好なモフォロジーを得られない。つまり、比較例のようにオフ角が全面に形成されていない表面51を有する窒化物基板50上には、特性の高いエピタキシャル層を形成することができない。このため、このエピタキシャル層を用いて作製される基板、デバイス等の特性を向上することはできない。したがって、比較例の窒化物基板50は、表面51上に形成されるエピタキシャル層およびそれを用いたデバイスの特性が向上するようにオフ角を制御することができない。
 さらに、本発明者は窒化物結晶22から窒化物基板10を切り出す位置と角度とについて鋭意研究した結果、図13に示すように、窒化物結晶22の表面22aおよび裏面22bの曲率半径の中心O1、O2を通る平面W2、W3で切断すると、切り出した窒化物基板の表面のオフ角が0になることを本発明者は見出した。このため、本実施の形態では、図13に示すように、窒化物結晶22の表面22aおよび裏面22bを通り、かつ窒化物結晶22の表面22aおよび裏面22bの曲率半径の中心O1、O2を通らない平面W1(曲率半径の中心O1、O2を結んだ線分を通らない平面W1)に沿って、窒化物結晶22から窒化物基板10を切り出している。これにより、図5に示すように、表面に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなる窒化物基板10を製造することができる。
 また比較例として、窒化物結晶22の表面22aおよび裏面22bを通り、かつ窒化物結晶22の表面22aおよび裏面22bの曲率半径の中心O1、O2を通る平面W2、W3に沿って、窒化物結晶22から窒化物基板50を切り出している。これにより、図15および図16に示すように、表面51に直交する軸と、m軸またはa軸とのなすオフ角が0である第1の点53aを有する第2の領域53と、第2の領域53の内周側に位置する第1の領域52とを含む窒化物基板50が製造される。なお、図15および図16は、比較例で得られた窒化物基板を表面に垂直な方向から見たときのオフ角を示す模式図である。図15および図16において、矢印はオフ角の大きさと方向とを示すベクトルである。図15および図16において、aとはa軸方向、mとはm軸方向、cとはc軸方向を指し、窒化物基板50の表面51の中央での方向を示す。
 また窒化物結晶22の表面22aおよび裏面22bの曲率半径が異なる場合には、図13に示すように、窒化物結晶22の表面22aおよび裏面22bの曲率半径の中心O1、O2を結んだ線分を通らない平面W1に沿って、窒化物結晶22から窒化物基板10を切り出すと、第2の領域13の第1の点13aでオフ角の最小値をとる窒化物基板10を製造することができる。
 窒化物基板10の表面11上において、内周側に位置する第1の領域12上に形成されたエピタキシャル層は、基板、デバイス等に使用される。このため、本実施の形態では、基板、デバイス等に実質的に使用しない領域として窒化物基板10の第2の領域13のオフ角が最小値となるように、窒化物基板10のオフ角を制御している。したがって、窒化物基板10を用いてエピタキシャル層を形成して基板、デバイス等に用いる場合に、使用する領域、つまり第1の領域12の特性をより向上できるようにオフ角を制御することができる。
 加えて、本実施の形態では、オフ角が制御された表面11を有するように窒化物結晶22から窒化物基板10を切り出している。このため、窒化物結晶22の状態によらず(つまり窒化物結晶22の成長条件等に依存せず)、安定してオフ角を制御した窒化物基板10を製造することができる。したがって、特性の高いエピタキシャル層を形成するためにオフ角が制御された窒化物基板10を、歩留まりを向上して製造することができる。
 c軸方向に窒化物結晶22を成長させると、一般的にc軸方向に対して凹状に反る。この反りの形状から、本実施の形態ではm軸またはa軸とのなすオフ角の分布を制御するように窒化物基板10を切り出している。このため、表面のm軸またはa軸とのなすオフ角を制御した窒化物基板10を歩留まりを向上して製造することができる。
 本実施例では、窒化物結晶から、表面に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなるように窒化物基板を切り出す工程における切断方法について検討した。
 (切断方法1)
 図17および図18は、半径r、中心Oの円弧の一部として近似できるような(曲率半径rで、曲率半径の中心Oの)表面22aを持つ、直径2Rの窒化物結晶を、およそのa軸方向から見た模式図である。ここでは簡単化のために窒化物結晶の厚みを無視する。
 まず、図17に示す例において、m面のオフ角が0であるような窒化物基板を切り出す方法を考える。この場合、たとえば平面V1で表されるような、窒化物結晶の表面22aに垂直な平面で切断することにより、窒化物基板が得られる。これを一般化すれば、中心Oを通る直線で表されるような面のうち、窒化物結晶と共有部分を持つような面はすべてこれに該当する。
 次に、図18に示す例において、m面のオフ角がβであるような窒化物基板を切り出す方法を考える。この場合、図17の結果を踏まえるとわかるように、中心Oを少し外れた平面V2で表されるような平面で切断すればよい。
 図19~図21は、切断平面V2をさらに考察するための模式図である。図17に示す例および図18に示す例では、窒化物結晶の形状を半径r、中心Oの円弧の一部として考えたが、図20および図21に示すように窒化物結晶の形状(表面22a)を円弧全体へと拡張して考察する。この場合、m面のオフ角がβであるような窒化物基板を切り出すための切断平面V2としては、中心Oの周りの半径ρ(ρ=r×sinβ)の領域を通らないような任意の面(図20および図21における領域Aを通る任意の面)が該当することがわかる。言い換えれば、平面V2は、中心Oからの距離がρであるような任意の面が該当する。中心Oからの距離とは、中心Oから任意の面に対して下ろした垂線の長さを意味している。
 しかし、実際には窒化物結晶は半径r、中心Oの円弧の一部でしかないので、窒化物結晶を切断できる平面V2はこのうちの一部である。この様子を表したのが図22および図23である。窒化物結晶から、実際にオフ角がβであるような窒化物基板を切断できる平面V2は、図22および図23における領域Bの部分であることがわかる。なおここでは簡単のため、オフ角βを窒化物結晶の表面22aの法線の左側にとる場合のみを示し、右側にとる場合を省略している。
 したがって、上記考察に基づくと、m面のオフ角がβであるような窒化物基板を切り出す平面V2の条件は次の2点となることがわかった。すなわち、平面V2は(1)中心Oからの距離がρであることと、(2)窒化物結晶の表面22aと共有部分を持つ、という条件である。
 以上から、窒化物結晶の表面22aを円弧で近似した場合の中心Oの位置、曲率半径r、および窒化物結晶の直径2Rについて、それぞれX線回折、定規、ノギスなどで測定すれば、オフ角がβである窒化物基板を得るための切断平面V2を容易に決定し、切断できることがわかった。
 (切断方法2)
 図24および図25を参照して、m面のオフ角がβ1からβ2(β1<β2)の範囲にあるような窒化物基板を切り出す方法を考える。図24および図25は、切断平面V3を考察するための模式図である。
 上述した切断方法1と同様に考えると、m面のオフ角がβ1からβ2であるような窒化物基板を切り出す平面V3の条件は次の2点となることがわかった。すなわち、平面V3は(1)中心Oからの距離ρがr×sinβ1<ρ<r×sinβ2を満たすこと(図24および図25の領域C)と、(2)窒化物結晶の表面22aと共有部分を持つ、という条件である。
 以上から、窒化物結晶の表面22aを円弧で近似した場合の中心Oの位置、曲率半径r、および窒化物結晶の直径2Rについて、それぞれX線回折、定規、ノギスなどで測定すれば、オフ角がβ1からβ2である窒化物基板を得るための切断平面V3を容易に決定し、切断できることがわかった。
 (切断方法3)
 図26を参照して、上述した切断方法1および2において簡単化のために無視していた窒化物結晶の厚みの影響を考える。図26は、切断平面V4を考察するための模式図である。
 用意した窒化物結晶に対して表面22aと裏面22bとをX線回折測定すると、窒化物結晶は、半径r1、中心O1の円弧の一部として近似できるような表面22aと、半径r2、中心O2の円弧の一部として近似できるような裏面22bとを持つことがわかる。これまでの議論から、中心O1のまわりにはオフ角β1からβ2(β1<β2)の範囲によって決まる半径r1×sinβ1、r1×sinβ2の球面を考え、同じく中心O2のまわりにはr2×sinβ1、r2×sinβ2の球面を考えればよい。
 したがって、m面のオフ角がβ1からβ2であるような窒化物基板を切り出す平面V4の条件は、次の3点となることがわかった。すなわち、平面V4は(1)中心O1からの距離ρがr1×sinβ1<ρ<r1×sinβ2を満たすこと(図26の領域D1)と、(2)中心O2からの距離ρがr2×sinβ1<ρ<r2×sinβ2を満たすこと(図26における領域D2)と、(3)窒化物結晶の表面22aおよび裏面22bと共有部分を持つ、という条件である。
 以上から、窒化物結晶の表面22aおよび裏面22bを円弧で近似した場合の中心O1、O2の位置、曲率半径r1、r2、および窒化物結晶の直径2Rについて、それぞれX線回折、定規、ノギスなどで測定すれば、オフ角がβ1からβ2である窒化物基板を得るための切断平面V4を容易に決定し、切断できることがわかった。
 なお、窒化物結晶の成長厚み方向への曲率半径の変化は、良好な結晶においては単調に変化していると考えられるので、ここで考えたように表面と裏面に着目するだけで精度よく切断ができる。
 また、窒化物結晶の表面および裏面以外のc面についても、同様に中心、曲率半径の円弧を増やして考えることができる。そのように考える効果としては、曲率半径の成長厚み方向の変化をより正確に捉えることができ、切断した窒化物基板内でのオフ角分布をさらに向上できる。たとえば、窒化物結晶22の品質が良好でない場合や、下地基板21としてオフ角を有する基板を用いて窒化物結晶22をc軸方向に成長した場合には、表面および裏面以外のc面について中心、曲率半径の円弧を増やして同様の考察をすることにより、オフ角を制御した基板を採取するための切断面をより精度良く決定することができる。窒化物結晶22の内部のc面における、中心、曲率半径についてはその箇所を露出させるなどして、X線回折(XRD)法により測定できる。
 ここで、上記切断方法1~3では、m面に対してオフ角を有する窒化物基板の切断方法について検討したが、a面に対してオフ角を有する窒化物基板の切断方法にも同様に適用できる。つまり、上記切断方法1~3は、表面に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなるように窒化物基板を切り出す切断方法に適用できる。
 窒化物基板の表面に含まれる第1の領域と、第1の領域を取り囲む第2の領域に関して、第2の領域がエッジから2mm以内になるように窒化物基板を切り出す方法についても同様に考えることができる。すなわち、後述する実施例2で特定する切断点1および2の座標を補正して切断すれば、第2の領域をエッジから2mm以内になるように切り出すことができる。
 本実施例では、窒化物結晶を成長させ、この窒化物結晶から、表面に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなるように窒化物基板を切り出す具体的な切断方法について検討した。この切断方法について検討するために、図27に示す窒化物結晶に固定された座標系を定義して、切断位置の特定した。
 図27は、本実施例において、窒化物結晶を切断する箇所を指定する方法を説明するための模式図である。図27に示すように、座標原点は窒化物結晶の裏面22b中央とし、y軸方向はc軸(=結晶の回転対称な軸)とし、z軸方向はワイヤーソーのワイヤー往復方向とした。オフ角を有するm面(a面)の窒化物基板を採取する際には、a軸(m軸)の向きを手前方向(z方向)とした。切断はこの座標系の指定する2点の切断点(切断点1、2)を通るようにワイヤーを用いて行なった。なお、切断点1および2の座標をそれぞれ(x1,y1)、(x2,y2)とした。また、ワイヤーは鉛直方向に切り進むため、切断面が鉛直になるように治具(図示せず)で窒化物結晶を傾斜させた。
 詳細は、以下の本発明例1~3および比較例1に記載する。本発明例1~3および比較例1の製造条件および製造した窒化物基板の結果を下記の表1に記載する。
Figure JPOXMLDOC01-appb-T000001
 (本発明例1)
 主面が(0001)面である2インチのSiC基板を準備し、これを下地基板21として、昇華法によりAlN単結晶を成長した。
 具体的には、図6に示す坩堝101の上部に下地基板21を設置した。このとき、下地基板21の表面は平坦化されており、下地基板21の昇華を抑制するために、裏面側にはグラファイト製の下地基板保護材が密着するように設置した。またAlN粉末原料を準備し、これを原料17として、下地基板21と互いに向かい合うように、坩堝101の下部に設置した。
 その後、反応容器123内に窒素ガスを流しながら、加熱部125を用いて加熱体121を加熱することにより、坩堝101内の温度を上昇させた。下地基板21の温度を2000℃に、原料17の温度を2200℃になるように加熱して、30μmの厚みを有するAlN単結晶を成長させ、さらに100時間AlN単結晶を成長させた。その後、室温まで冷却し、SiC基板を除去した。これにより、c軸方向に約10mmの成長厚みを有する窒化物結晶22としてのAlN単結晶を得た。
 得られたAlN単結晶の表面と裏面との両方で、結晶性をX線回折を用いて評価したところ、半値幅が100秒程度の良好な単結晶であることがわかった。多くの点での(0002)ロッキングカーブ測定の結果から、この単結晶は反っており、その反りの状態は、c軸方向を上にした状態で上に凹な回転対称な形状であることがわかった。表面の曲率半径は1.0mで、裏面の曲率半径は1.1mであった。c面の形状は円弧で近似できることが確認された。模式的に書くと図26および図27のような状態であることが確認された。
 この単結晶を面方位を確認した状態でワイヤーソーにセットし、表1に示す切断点1、切断点2を通る平面でAlN単結晶を切断することにより、AlN基板1枚を採取した。
 その後、ダイヤモンド砥粒を含む砥石で研削加工を行ない、さらにダイヤモンド砥粒を含むスラリーを用いて研磨を行なった。これにより、本発明例1のAlN基板を製造した。研削・研磨により、本発明例1の窒化物基板の表面を平坦に加工することができた。このため、後述する研削・研磨をしなかった本発明例2の窒化物基板と比べて、本発明例1の窒化物基板を用いてエピタキシャル層をより容易に作製することができた。
 製造したAlN基板について、X線回折でオフ角の面内マッピング測定を行ない、分布の範囲を調べたところ、表面はほぼm面でオフ角がゼロの領域を含まず、表面の全領域において特にエピタキシャル成長に好ましいオフ角を備えたAlN基板が得られた。
 (本発明例2)
 主面が(111)面である3インチのGaAs基板を準備し、このGaAs基板の表面の全体を薄いマスクによって被覆した。マスクの材料はGaNがその上に直接に成長しないような性質を持つものとして、SiO2(二酸化ケイ素)を使用した。このマスクに窓を形成し、この窓を通してGaNをHVPE法によりエピタキシャル成長させた。
 成長に用いたHVPE炉は、縦長の炉の内部上方にGaボートが設けられ、これにはGa融液が収容されていた。炉の下方にはサセプタが設けられ、その上にGaAs基板をセットした。炉の周囲にはヒ-タがあって炉を加熱した。水素ガスとHClガスとの混合ガスがガス導入口から導入された。HClがGaと反応してGaClを合成し、GaClがガス状となって下方へ流れた。ガス導入口から水素ガスとNH3ガスの混合ガスが導入された。GaClがNH3と反応して、GaNを合成し、GaAs基板の上に堆積した。はじめに低温(490℃)でバッファ層を成長した後、昇温して高温(1010℃)でエピタキシャル成長を行なった。このようにして、窒化物結晶22として、20mmの厚みを有するGaN単結晶を成長させた。その後、下地基板を王水でエッチングして除去した。これにより、図6(B)に示す窒化物結晶22としてのGaN単結晶が得られた。
 得られたGaN単結晶の表面と裏面との両方で、本発明例1と同様に結晶性を評価したところ、半値幅が100秒程度であることがわかった。また、反り形状をX線回折を用いて確認した(表1参照)。
 それを元に、表1に記載の切断点1、2を通る平面でワイヤースライスを行なって、2枚のGaN基板を採取し、本発明例2のGaN基板を製造した。本発明例2では切断後に研削・研磨を行なわなかったため、本発明例1と比べ表面を平坦に加工できなかったが、この窒化物基板を用いてもエピタキシャル層を形成できた。
 製造したGaN基板についてオフ角の分布を評価したところ、ほぼm面でオフ角0を含まない表面を有するGaN基板であることを確認した。
 (本発明例3)
 本発明例2と同様のHVPE炉で成長したGaN単結晶を用意し、同様に得られたGaN単結晶の表面と裏面との両方で、結晶性が100秒程度であること、反り形状をX線回折を用いて確認した(表1参照)。
 それを元に、ここでは、ほぼa面の基板を得るために、ワイヤーソーへのセット方向を本発明例2とは変えた。具体的には表1に記載の切断点1、2を通る平面でワイヤースライスを行なって、2枚の基板を採取した。切断後に本発明例1と同様に研削・研磨を行なった。これにより、本発明例3のGaN基板を製造した。
 製造したGaN基板のX線回折測定によりオフ角の分布を評価したところ、ほぼa面でオフ角0を含まない表面を有するGaN基板であることを確認した。
 (比較例1)
 本発明例1と同様の反り形状のAlN単結晶を用意し、本発明例1~3とは異なる切断方法である、表1に記載の切断平面に沿ってワイヤーソーで切断した。切断後に本発明例1と同様に研削・研磨を行なった。
 製造したAlN基板のX線回折測定によりオフ角の分布を評価したところ、m面の基板が得られたが、エピ成長に好ましくないオフ角0のAlN基板であった。
 以上のように本発明の実施の形態および実施例について説明を行なったが、各実施の形態および実施例の特徴を適宜組み合わせることも当初から予定している。また、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 窒化物基板、11,22a 表面、12 第1の領域、13 第2の領域、13a 第1の点、13b 第2の点、17 原料、21 下地基板、22 窒化物結晶、22b 裏面、100 成長装置、101 坩堝、101a 排気口、121 加熱体、121a,123a 導入口、121b,123b 排出口、123 反応容器、125 加熱部、127a,127b 放射温度計、T1,T2,T3,U1,U2,U3,W1,W2,W3,V1,V2,V3,V4 平面、O,O1,O2 中心。

Claims (19)

  1.  窒化物結晶(22)を成長させる工程と、
     前記窒化物結晶(22)から、表面(11)を含む窒化物基板(10)を切り出す工程とを備え、
     前記切り出す工程では、前記表面(11)に直交する軸と、m軸またはa軸とのなすオフ角が0よりも大きくなるように前記窒化物基板(10)を切り出す、窒化物基板(10)の製造方法。
  2.  前記切り出す工程では、第1の領域(12)と、前記第1の領域(12)を取り囲む第2の領域(13)とを有する前記表面(11)を含み、前記オフ角が前記第2の領域(13)の第1の点(13a)で最小値をとるように前記窒化物基板(10)を切り出す、請求の範囲第1項に記載の窒化物基板(10)の製造方法。
  3.  前記切り出す工程では、前記第2の領域(13)が前記窒化物基板(10)のエッジから2mm以内になるように前記窒化物基板(10)を切り出す、請求の範囲第2項に記載の窒化物基板(10)の製造方法。
  4.  前記切り出す工程では、前記オフ角が前記第2の領域(13)の第2の点(13b)で最大値をとり、かつ前記第2の点(13b)から前記第1の点(13a)にかけて前記オフ角が単調減少するように、前記窒化物基板(10)を切り出す、請求の範囲第2項に記載の窒化物基板(10)の製造方法。
  5.  前記切り出す工程では、a面またはm面からc軸方向に傾斜した平面と平行な平面に沿って前記窒化物結晶(22)から前記窒化物基板(10)を切り出す、請求の範囲第1項に記載の窒化物基板(10)の製造方法。
  6.  前記切り出す工程後に、前記窒化物基板(10)の前記表面(11)の研磨および研削の少なくとも一方を行なう工程をさらに備えた、請求の範囲第1項に記載の窒化物基板(10)の製造方法。
  7.  前記切り出す工程では、複数枚の前記窒化物基板(10)を切り出す、請求の範囲第1項に記載の窒化物基板(10)の製造方法。
  8.  表面(22a)と、前記表面(22a)と反対側の裏面(22b)とを含む窒化物結晶(22)をc軸方向に成長させる工程と、
     前記窒化物結晶(22)から、窒化物基板(10)を切り出す工程とを備え、
     前記切り出す工程では、前記窒化物結晶(22)の前記表面(22a)および前記裏面(22b)を通り、かつ前記窒化物結晶(22)の前記表面(22a)および前記裏面(22b)の曲率半径の中心を結んだ線分を通らない平面に沿って、前記窒化物結晶(22)から前記窒化物基板(10)を切り出す、窒化物基板(10)の製造方法。
  9.  前記切り出す工程では、第1の領域(12)と、前記第1の領域(12)を取り囲む第2の領域(13)とを有する表面(11)を含み、前記オフ角が前記第2の領域(13)の第1の点(13a)で最小値をとるように前記窒化物基板(10)を切り出す、請求の範囲第8項にに記載の窒化物基板の製造方法。
  10.  前記切り出す工程では、前記第2の領域(13)が前記窒化物基板(10)のエッジから2mm以内になるように前記窒化物基板(10)を切り出す、請求の範囲第9項に記載の窒化物基板(10)の製造方法。
  11.  前記切り出す工程では、前記オフ角が前記第2の領域(13)の第2の点(13b)で最大値をとり、かつ前記第2の点(13b)から前記第1の点(13a)にかけて前記オフ角が単調減少するように、前記窒化物基板(10)を切り出す、請求の範囲第9項に記載の窒化物基板(10)の製造方法。
  12.  前記切り出す工程では、a面またはm面からc軸方向に傾斜した平面と平行な前記平面に沿って前記窒化物結晶(22)から前記窒化物基板(10)を切り出す、請求の範囲第8項に記載の窒化物基板(10)の製造方法。
  13.  前記切り出す工程後に、前記窒化物基板(10)の表面(11)の研磨および研削の少なくとも一方を行なう工程をさらに備えた、請求の範囲第8項に記載の窒化物基板(10)の製造方法。
  14.  前記切り出す工程では、複数枚の前記窒化物基板(10)を切り出す、請求の範囲第8項に記載の窒化物基板(10)の製造方法。
  15.  表面(11)を含む窒化物基板(10)において、
     前記表面(11)に直交する軸と、a軸またはm軸とのなすオフ角は、0よりも大きいことを特徴とする、窒化物基板(10)。
  16.  前記表面(11)は、第1の領域(12)と、前記第1の領域(12)を取り囲む第2の領域(13)とを有し、
     前記表面(11)の前記オフ角は、前記第2の領域(13)の第1の点(13a)で最小値をとる、請求の範囲第15項に記載の窒化物基板(10)。
  17.  前記第2の領域(13)は、エッジから2mm以内である、請求の範囲第16項に記載の窒化物基板(10)。
  18.  前記オフ角は前記第2の領域(13)の第2の点(13b)で最大値をとり、前記第2の点(13b)から前記第1の点(13a)にかけて前記オフ角が単調減少する、請求の範囲第16項に記載の窒化物基板(10)。
  19.  前記表面(11)は、a面またはm面からc軸方向に傾斜している、請求の範囲第15項に記載の窒化物基板(10)。
PCT/JP2009/064852 2008-09-01 2009-08-26 窒化物基板の製造方法および窒化物基板 WO2010024285A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/061,307 US8829658B2 (en) 2008-09-01 2009-08-26 Method of manufacturing nitride substrate, and nitride substrate
EP09809936.9A EP2322698A4 (en) 2008-09-01 2009-08-26 METHOD FOR MANUFACTURING NITRIDE SUBSTRATE, AND NITRIDE SUBSTRATE
JP2010526740A JPWO2010024285A1 (ja) 2008-09-01 2009-08-26 窒化物基板の製造方法および窒化物基板
CN2009801341903A CN102137960B (zh) 2008-09-01 2009-08-26 制造氮化物衬底的方法和氮化物衬底
US14/461,838 US20140357067A1 (en) 2008-09-01 2014-08-18 Method of manufacturing nitride substrate, and nitride substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008223809 2008-09-01
JP2008-223809 2008-09-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/061,307 A-371-Of-International US8829658B2 (en) 2008-09-01 2009-08-26 Method of manufacturing nitride substrate, and nitride substrate
US14/461,838 Division US20140357067A1 (en) 2008-09-01 2014-08-18 Method of manufacturing nitride substrate, and nitride substrate

Publications (1)

Publication Number Publication Date
WO2010024285A1 true WO2010024285A1 (ja) 2010-03-04

Family

ID=41721452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064852 WO2010024285A1 (ja) 2008-09-01 2009-08-26 窒化物基板の製造方法および窒化物基板

Country Status (6)

Country Link
US (2) US8829658B2 (ja)
EP (1) EP2322698A4 (ja)
JP (2) JPWO2010024285A1 (ja)
CN (1) CN102137960B (ja)
TW (1) TW201016905A (ja)
WO (1) WO2010024285A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102062327B1 (ko) * 2012-09-11 2020-01-03 가부시키가이샤 도쿠야마 질화 알루미늄 기판 및 iii족 질화물 적층체
CN113684539A (zh) * 2016-12-27 2021-11-23 住友化学株式会社 Iii族氮化物层叠体的制造方法、检查方法、以及iii族氮化物层叠体
DE112020006300T5 (de) * 2019-12-24 2022-12-29 Tokuyama Corporation Gruppe-iii-nitrid-einkristallsubstrat und verfahren zu dessen herstellung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335750A (ja) * 1997-06-03 1998-12-18 Sony Corp 半導体基板および半導体装置
JP2005206424A (ja) * 2004-01-22 2005-08-04 Sumitomo Electric Ind Ltd 単結晶窒化ガリウム基板を製造する方法、窒化ガリウム基板、および窒化物半導体エピタクシャル基板
JP2005350315A (ja) * 2004-06-11 2005-12-22 Hitachi Cable Ltd Iii−v族窒化物系半導体自立基板及びその製造方法並びにiii−v族窒化物系半導体
JP2007189221A (ja) * 2006-12-21 2007-07-26 Sharp Corp 窒化物半導体基板、窒化物半導体レーザ素子、窒化物半導体基板の製造方法、および窒化物半導体レーザ素子の製造方法
JP2007197276A (ja) 2006-01-27 2007-08-09 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びその製造方法、並びにiii−v族窒化物系発光素子
JP2007277053A (ja) * 2006-04-07 2007-10-25 Sumitomo Electric Ind Ltd 転位の検出方法、転位数の測定方法、転位密度の測定方法、GaN結晶基板および転位密度の算出方法
JP2007290960A (ja) * 2006-04-25 2007-11-08 Samsung Electro Mech Co Ltd 非極性m面窒化物半導体の製造方法
JP2007534159A (ja) * 2003-11-14 2007-11-22 クリー インコーポレイテッド 高品質ホモエピタキシ用微傾斜窒化ガリウム基板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163323A1 (en) * 1997-10-30 2011-07-07 Sumitomo Electric Industires, Ltd. GaN SINGLE CRYSTAL SUBSTRATE AND METHOD OF MAKING THE SAME
JP2005340747A (ja) * 2003-11-04 2005-12-08 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びその製造方法、iii−v族窒化物系半導体デバイス、iii−v族窒化物系半導体基板のロット
JP4581490B2 (ja) * 2004-05-31 2010-11-17 日立電線株式会社 Iii−v族窒化物系半導体自立基板の製造方法、及びiii−v族窒化物系半導体の製造方法
JP4915128B2 (ja) * 2005-04-11 2012-04-11 日亜化学工業株式会社 窒化物半導体ウエハ及びその製造方法
JP4792802B2 (ja) * 2005-04-26 2011-10-12 住友電気工業株式会社 Iii族窒化物結晶の表面処理方法
JP5129527B2 (ja) 2006-10-02 2013-01-30 株式会社リコー 結晶製造方法及び基板製造方法
JP5332168B2 (ja) 2006-11-17 2013-11-06 住友電気工業株式会社 Iii族窒化物結晶の製造方法
JP2008285364A (ja) * 2007-05-17 2008-11-27 Sumitomo Electric Ind Ltd GaN基板、それを用いたエピタキシャル基板及び半導体発光素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335750A (ja) * 1997-06-03 1998-12-18 Sony Corp 半導体基板および半導体装置
JP2007534159A (ja) * 2003-11-14 2007-11-22 クリー インコーポレイテッド 高品質ホモエピタキシ用微傾斜窒化ガリウム基板
JP2005206424A (ja) * 2004-01-22 2005-08-04 Sumitomo Electric Ind Ltd 単結晶窒化ガリウム基板を製造する方法、窒化ガリウム基板、および窒化物半導体エピタクシャル基板
JP2005350315A (ja) * 2004-06-11 2005-12-22 Hitachi Cable Ltd Iii−v族窒化物系半導体自立基板及びその製造方法並びにiii−v族窒化物系半導体
JP2007197276A (ja) 2006-01-27 2007-08-09 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びその製造方法、並びにiii−v族窒化物系発光素子
JP2007277053A (ja) * 2006-04-07 2007-10-25 Sumitomo Electric Ind Ltd 転位の検出方法、転位数の測定方法、転位密度の測定方法、GaN結晶基板および転位密度の算出方法
JP2007290960A (ja) * 2006-04-25 2007-11-08 Samsung Electro Mech Co Ltd 非極性m面窒化物半導体の製造方法
JP2007189221A (ja) * 2006-12-21 2007-07-26 Sharp Corp 窒化物半導体基板、窒化物半導体レーザ素子、窒化物半導体基板の製造方法、および窒化物半導体レーザ素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2322698A4

Also Published As

Publication number Publication date
EP2322698A4 (en) 2015-07-08
JP2014141413A (ja) 2014-08-07
EP2322698A1 (en) 2011-05-18
TW201016905A (en) 2010-05-01
US20140357067A1 (en) 2014-12-04
US20110156213A1 (en) 2011-06-30
JPWO2010024285A1 (ja) 2012-01-26
JP5812151B2 (ja) 2015-11-11
CN102137960A (zh) 2011-07-27
CN102137960B (zh) 2013-12-11
US8829658B2 (en) 2014-09-09

Similar Documents

Publication Publication Date Title
JP5446622B2 (ja) Iii族窒化物結晶およびその製造方法
JP7255817B2 (ja) GaN結晶の製造方法
KR101749781B1 (ko) 단결정 기판, 이를 이용하여 얻어지는 ⅲ족 질화물 결정 및 ⅲ족 질화물 결정의 제조방법
JP4603386B2 (ja) 炭化珪素単結晶の製造方法
KR20100113529A (ko) Ⅲ족 질화물 결정의 성장 방법
JP6187576B2 (ja) Iii族窒化物結晶
JP4656438B2 (ja) 単結晶GaN基板の製造方法と単結晶GaN基板
WO2010007867A1 (ja) Iii族窒化物結晶の製造方法およびiii族窒化物結晶
JP2007217227A (ja) GaN結晶の製造方法、GaN結晶基板および半導体デバイス
JP2010076967A (ja) 炭化ケイ素基板の製造方法および炭化ケイ素基板
JP5812151B2 (ja) 窒化物基板の製造方法
WO2016136552A1 (ja) C面GaN基板
JP5418437B2 (ja) 単結晶GaN基板
JP2008230868A (ja) 窒化ガリウム結晶の成長方法および窒化ガリウム結晶基板
JP2010030799A (ja) AlN基板の製造方法およびAlN基板
JP2013212945A (ja) 第13族窒化物結晶の製造方法及び第13族窒化物結晶
WO2023210696A1 (ja) n型GaN基板及びn型GaN結晶
JP6982469B2 (ja) Iii族窒化物半導体基板及びiii族窒化物半導体基板の製造方法
JP2013227208A (ja) Iii族窒化物結晶およびiii族窒化物結晶基板
JP2013116841A (ja) 周期表第13族金属窒化物半導体結晶の製造方法、周期表第13族金属窒化物半導体基板および周期表第13族金属窒化物半導体結晶

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134190.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13061307

Country of ref document: US

Ref document number: 2010526740

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809936

Country of ref document: EP