WO2010007867A1 - Iii族窒化物結晶の製造方法およびiii族窒化物結晶 - Google Patents

Iii族窒化物結晶の製造方法およびiii族窒化物結晶 Download PDF

Info

Publication number
WO2010007867A1
WO2010007867A1 PCT/JP2009/061699 JP2009061699W WO2010007867A1 WO 2010007867 A1 WO2010007867 A1 WO 2010007867A1 JP 2009061699 W JP2009061699 W JP 2009061699W WO 2010007867 A1 WO2010007867 A1 WO 2010007867A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
iii nitride
nitride crystal
base substrate
main surface
Prior art date
Application number
PCT/JP2009/061699
Other languages
English (en)
French (fr)
Inventor
倫正 宮永
奈保 水原
圭祐 谷崎
一成 佐藤
英章 中幡
聡 荒川
喜之 山本
隆 櫻田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2009801279508A priority Critical patent/CN102099510A/zh
Priority to EP09797795A priority patent/EP2302111A4/en
Priority to US13/054,373 priority patent/US20110110840A1/en
Publication of WO2010007867A1 publication Critical patent/WO2010007867A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Definitions

  • the present invention relates to a method for producing a group III nitride crystal and a group III nitride crystal, for example, a method for producing an aluminum nitride (AlN) crystal and an AlN crystal.
  • a method for producing a group III nitride crystal and a group III nitride crystal for example, a method for producing an aluminum nitride (AlN) crystal and an AlN crystal.
  • the AlN crystal has attracted attention as a substrate material for optical devices and electronic devices because it has an energy band gap of 6.2 eV, a thermal conductivity of about 3.3 WK ⁇ 1 cm ⁇ 1 and a high electrical resistance. .
  • a sublimation method is used as a method for growing a group III nitride semiconductor crystal such as an AlN crystal.
  • the sublimation method include a method of growing by natural nucleation without using a base substrate and a method of growing using a base substrate. In the growth by natural nucleation, it is difficult to stably grow a large group III nitride semiconductor crystal.
  • Patent Document 1 US Pat. No. 5,858,086
  • Patent Document 2 US Pat. No. 6,296,956
  • Patent Document 3 US Pat. No. 001,748
  • Patent Documents 1 to 3 describe that the following steps are performed. That is, a raw material is installed at the lower part of the crucible, and a base substrate such as an SiC substrate is installed at the upper part of the crucible so as to face each other. Then, the raw material is heated to a temperature at which the raw material sublimes. By this heating, the raw material is sublimated to generate a sublimation gas, and an AlN crystal is grown on the surface of the base substrate placed at a lower temperature than the raw material.
  • the AlN crystal is grown at a growth rate of 0.5 mm / hr.
  • it is necessary to heat the temperature of the raw material to a high temperature.
  • the temperature of the base substrate also increases. For this reason, the SiC substrate as a base substrate will deteriorate. For this reason, there is a problem that an AlN crystal having a sufficient thickness cannot be grown.
  • FIG. 14 is a cross-sectional view schematically showing a state where the AlN crystal 213 is grown at a low temperature.
  • AlN grains grow on the main surface 211 a of the base substrate 211, but the grain directions are irregular as indicated by arrows 212. For this reason, the main surface 213a, which is the growth surface of the AlN crystal 213, is not uniform, and a recess 213b is formed. Further, there may be a non-growth region 213d where no AlN crystal grows on the main surface 211a of the base substrate 211.
  • the recess 213b is formed on the main surface 213a of the AlN crystal 213 grown in this way or the non-growth region 213d is formed, a plurality of AlN substrates are sufficiently formed by slicing parallel to the growth direction. I can't.
  • the grain orientation is irregular, orientation misalignment is likely to occur and polycrystals are likely to occur.
  • the AlN crystal 213 under the recess 213b has a problem that defects 213c are likely to occur and the crystallinity is poor.
  • the present invention has been made in view of the above problems, and an object of the present invention is to produce a Group III nitride crystal having a large thickness and growing a high-quality Group III nitride crystal, and Group III nitridation. It is to provide physical crystals.
  • the present inventor has found that the recess 213b and the defect 213c are generated when the AlN crystal 213 as a group III nitride crystal is grown as shown in FIG. It has been found that it is caused by the fact that it is a (0001) plane (c-plane). Further, as a result of earnest research on the reason, the present inventor has found that the crystallinity of the c-plane of the group III nitride crystal is not stable.
  • the method for producing a group III nitride crystal of the present invention includes the following steps. First, a base substrate having a main surface inclined in the ⁇ 1-100> direction from the (0001) plane is prepared. Then, a group III nitride crystal is grown on the main surface of the base substrate by vapor phase growth.
  • a group III nitride crystal is grown on the main surface inclined in the ⁇ 1-100> direction from the (0001) plane.
  • the crystal orientation of the growth surface of the group III nitride crystal grown on the main surface of the base substrate inherits the crystal orientation of the main surface of the base substrate. For this reason, since the growth surface of the group III nitride crystal is a surface with stable crystallinity, it is possible to suppress the formation of a surface on which grains are grown irregularly. That is, a group III nitride crystal can be grown while having a uniform growth surface.
  • the main surface of the base substrate is a surface inclined from -5 ° to 5 ° from the ⁇ 01-10 ⁇ plane.
  • the present inventor has found that a very stable surface of the group III nitride crystal is easily obtained on the main surface of the base substrate tilted by ⁇ 5 ° to 5 ° from the ⁇ 01-10 ⁇ plane. . For this reason, a group III nitride crystal having a high quality and a large thickness can be manufactured more stably.
  • the group III nitride crystal in the step of growing, is grown at 1600 ° C. or higher and lower than 1950 ° C.
  • the raw material of the group III nitride crystal can be easily converted into a gas phase and supplied to the base substrate. Further, when the temperature is 1600 ° C. or higher, the ⁇ 01-10 ⁇ plane is stable, so that a higher quality group III nitride crystal can be obtained. When the temperature is 1900 ° C. or lower, deterioration such as vaporization and decomposition of the base substrate can be effectively suppressed. For this reason, a group III nitride crystal having a large thickness can be grown.
  • a SiC substrate is prepared as a base substrate.
  • the SiC substrate is a material having a small lattice constant difference from the group III nitride crystal and high heat resistance, a high-quality and large group III nitride crystal can be manufactured more stably.
  • the preparing step includes a step of preparing a base group III nitride crystal grown with the (0001) plane as a main surface, and the base group III nitride. Cutting the base substrate from the crystal.
  • the group III nitride crystal can be used as the base substrate.
  • the group III nitride crystal of the base substrate has no or very small lattice constant difference from the group III nitride crystal to be grown. For this reason, it is possible to stably produce a group III nitride crystal having a higher quality and a larger thickness.
  • a group III nitride crystal having a thickness of 1 mm or more is grown in the growing step.
  • the above-described effects of the present invention remarkably appear.
  • a plurality of group III nitride crystals can be produced from the grown group III nitride crystals.
  • the cost of the plurality of group III nitride crystals can be reduced.
  • the preparing step includes a step of flattening the main surface of the base substrate.
  • the method for producing a group III nitride crystal further includes a step of cutting the group III nitride crystal so as to have a nonpolar surface as a main surface.
  • the group III nitride crystal is high quality and has a large thickness, a plurality of group III nitride crystals having a nonpolar surface as the main surface can be cut out. Thereby, the several group III nitride crystal which has a nonpolar surface as a main surface can be manufactured.
  • the group III nitride crystal of the present invention is a group III nitride crystal produced by the method for producing a group III nitride crystal described above, and has a dislocation density of 5 ⁇ 10 6 cm ⁇ 2 or less. is doing.
  • the group III nitride crystal of the present invention is manufactured by the above method for manufacturing a group III nitride crystal. For this reason, since the formation of a growth surface having irregular grains is suppressed, a group III nitride crystal having a low dislocation density as described above can be realized.
  • the group III nitride is formed on the main surface inclined in the ⁇ 1-100> direction from the (0001) plane, which is a stable crystallinity surface. Since a material crystal is grown, a high-quality group III nitride crystal having a large thickness can be grown.
  • FIG. 1 is a cross-sectional view schematically showing a group III nitride crystal in the present embodiment.
  • a group III nitride crystal 10 in the present embodiment will be described with reference to FIG.
  • group III nitride crystal 10 in the present embodiment has a main surface 10a.
  • the main surface 10a is, for example, a nonpolar surface.
  • the nonpolar plane is a plane in a direction orthogonal to a polar plane such as the c plane, and examples thereof include ⁇ 1-100 ⁇ plane (m plane) and ⁇ 11-20 ⁇ plane (a plane). It is done.
  • Group III nitride crystal 10 preferably has a dislocation density of 5 ⁇ 10 6 cm ⁇ 2 or less, more preferably 5 ⁇ 10 5 cm ⁇ 2 or less. In this case, characteristics can be improved when a device is fabricated using the group III nitride crystal 10.
  • the dislocation density can be measured, for example, by counting the number of pits formed by etching in molten KOH (potassium hydroxide) and dividing by the unit area.
  • Group III nitride crystal 10 is, for example, an Al x Ga (1-x) N (0 ⁇ x ⁇ 1) crystal, and is preferably an AlN crystal.
  • FIG. 2 is a flowchart showing a method for producing a group III nitride crystal in the present embodiment. Next, with reference to FIG. 3, a method for manufacturing group III nitride crystal 10 in the present embodiment will be described.
  • FIG. 3 is a cross-sectional view schematically showing the base substrate in the present embodiment.
  • a base substrate 11 having a main surface 11a inclined from the (0001) plane in the ⁇ 1-100> direction is prepared (step S10).
  • the main surface 11a of the base substrate 11 may have a region including a surface other than a surface inclined in the ⁇ 1-100> direction from the (0001) plane, but the ⁇ 1-100> direction from the (0001) plane. It is preferable that the inclined surface appears regularly in a wide area.
  • the main surface 11a of the base substrate 11 it is very preferable that the surface inclined in the ⁇ 1-100> direction from the (0001) plane appears regularly in most regions.
  • the ⁇ 1-100> direction means the [1-100] direction, [10-10] direction, [-1100] direction, [-1010] direction, [01-10] direction, and [0-110] direction. Is included.
  • FIG. 4 is a schematic diagram showing the crystal orientation of the base substrate 11 in the present embodiment.
  • FIG. 5 is a schematic diagram in which the crystal orientation of FIG. 4 is simplified.
  • the main surface 11a of the base substrate 11 will be described with reference to FIGS.
  • the main surface 11a of the base substrate 11 is inclined in the ⁇ 1-100> direction from the (0001) plane.
  • the (0001) plane of the main surface 11a of the base substrate 11 is inclined toward the ⁇ 1-100 ⁇ plane.
  • An example of such a main surface 11a is the (10-11) plane (s-plane) as shown in FIG.
  • the ⁇ 1-100 ⁇ plane is the ⁇ 1-100 ⁇ plane, ⁇ 10-10 ⁇ plane, ⁇ -1100 ⁇ plane, ⁇ -1010 ⁇ plane, ⁇ 01-10 ⁇ plane, and ⁇ 0-110 ⁇ plane Is included.
  • the main surface 11a of the base substrate 11 is preferably inclined from 0.1 ° to less than 80 ° in the ⁇ 1-100> (m-axis) direction from the c-plane.
  • the angle x inclined from the (0001) plane toward the ⁇ 1-100 ⁇ plane is preferably 0.1 ° or more and less than 80 °.
  • the crystallinity is more stable.
  • the main surface 11a of the base substrate 11 is preferably a surface inclined from ⁇ 5 ° to 5 ° from the ⁇ 01-10 ⁇ plane, and from ⁇ 0.5 ° to 0.5 ° from the ⁇ 01-10 ⁇ plane. More preferably, the surface is inclined at an angle of 0 ° or less.
  • the angle y inclined from the ⁇ 01-10 ⁇ plane such as the (10-11) plane toward the ⁇ 1-100 ⁇ plane is ⁇ 5 ° or more and 5 ° or less. It is preferably ⁇ 0.5 ° or more and 0.5 ° or less.
  • the growth surface of the group III nitride crystal to be grown becomes more stable.
  • the main surface 11a of the base substrate 11 is preferably in the vicinity of the ⁇ 10-11 ⁇ plane. In this case, the growth surface of the group III nitride crystal to be grown becomes very stable.
  • the main surface 11a is not particularly limited as long as it is inclined in the ⁇ 1-100> direction from the (0001) plane, and may be further inclined in any direction other than the ⁇ 1-100> direction.
  • the tilt angle in this arbitrary direction is preferably in the range of ⁇ 5 ° to 5 °, for example.
  • the base substrate 11 may be a crystal having the same composition as the group III nitride crystal to be grown or a crystal having a different composition.
  • SiC, sapphire, or the like may be used.
  • the crystal system of the base substrate 11 is preferably hexagonal.
  • the SiC substrate is a material having a small difference in lattice constant from a group III nitride crystal to be grown and a strong high temperature resistance.
  • the main surface 11a of the base substrate 11 has a size of 2 inches or more, for example. Thereby, a large-diameter group III nitride crystal can be grown.
  • FIG. 6 is a cross-sectional view schematically showing a state in which a group III nitride crystal is grown in the present embodiment.
  • a group III nitride crystal 13 is grown on the main surface 11a of the base substrate 11 by a vapor phase growth method (step S20).
  • the vapor phase growth method is not particularly limited. Sublimation method, HVPE (Hydride Vapor Phase Epitaxy) method, MBE (Molecular Beam tax Epitaxy) method, MOCVD (Metal Organic Chemical Vapor Deposition: Metalorganic chemistry
  • a vapor deposition method may be used.
  • the sublimation method is suitably used.
  • a group III nitride crystal having a thickness T13 of preferably 1 mm or more, more preferably 5 mm or more is grown. That is, in the present embodiment, it is preferable to grow a group III nitride bulk crystal. This is preferable when growing a group II nitride bulk crystal because the effects of the present invention are remarkably exhibited. Although there is no upper limit in particular in thickness T13, it is 50 mm or less from a viewpoint which can be manufactured easily, for example.
  • the group III nitride crystal 13 is grown preferably at 1600 ° C. or higher and lower than 1950 ° C., more preferably 1600 ° C. or higher and lower than 1900 ° C., and even more preferably 1650 ° C. or higher and lower than 1900 ° C.
  • the temperature is 1600 ° C. or higher, for example, when the group III nitride crystal 13 is grown by a sublimation method, the raw material can be easily sublimated.
  • the temperature is 1650 ° C. or higher, the raw material can be sublimated more easily.
  • the growth temperature means the temperature of the base substrate 11 when, for example, the group III nitride crystal 13 is grown by the sublimation method.
  • the growth surface of the group III nitride crystal 13 grown in step S ⁇ b> 20 inherits the crystal orientation of the main surface 11 a of the base substrate 11. Therefore, the group III nitride crystal 13 has a main surface 13a inclined in the ⁇ 1-100> direction from the (0001) plane.
  • FIG. 7 is a cross-sectional view schematically showing a state in which a plurality of group III nitride crystals 10 are cut out from group III nitride crystal 13 in the present embodiment.
  • group III nitride crystal 10 having main surface 10a is cut out from group III nitride crystal 13 (step S30).
  • the growth surface (main surface 13a) of group III nitride crystal 13 is inclined in the ⁇ 1-100> direction from the (0001) plane. For this reason, in order to cut out so that it may have a nonpolar surface as the main surface 10a, it cuts out in the direction which intersects with the main surface 11a of the base substrate 11 (direction orthogonal in FIG. 7).
  • the method for cutting out the cocoons is not particularly limited, but the group III nitride crystal 13 can be divided into a plurality of group III nitride crystals by cutting or cleavage. Since group III nitride crystal 13 is composed of a single crystal, it can be easily divided.
  • the term “cutting” means that the group III nitride crystal 13 is mechanically divided by a slicer having an outer peripheral edge of an electrodeposited diamond wheel. Cleaving refers to dividing group III nitride crystal 13 along the crystal lattice plane.
  • the group III nitride crystal 10 shown in FIG. 1 can be manufactured.
  • the group III nitride crystal manufacturing method of the present embodiment is formed on main surface 11a inclined in the ⁇ 1-100> direction from the (0001) plane of base substrate 11. Crystal 13 is grown (step S20).
  • the crystal orientation of the growth surface of the group III nitride crystal 13 grown on the main surface 11 a of the base substrate 11 inherits the crystal orientation of the main surface 11 a of the base substrate 11. For this reason, since the growth surface of the group III nitride crystal 13 becomes a stable surface of crystallinity, it is possible to suppress the formation of a growth surface having irregular grains.
  • the group III nitride crystal 13 is grown at a low temperature, a high-quality crystal can be grown. Therefore, the group III nitride crystal 13 having a high quality and a large thickness T13 can be produced by growing the group III nitride crystal 13 at a low temperature.
  • the group III nitride crystal is of high quality, so that the group III nitride crystal 13 can be stably manufactured with good reproducibility.
  • a high-quality group III nitride crystal 10 By cutting out from the group III nitride crystal 13, a high-quality group III nitride crystal 10 can be produced.
  • Such a high-quality group III nitride crystal 10 has a small dislocation density of, for example, 5 ⁇ 10 6 cm ⁇ 2 or less.
  • the main surface 13a of the group III nitride crystal 13 is in a state in which the formation of irregularities or the like is reduced as compared with the main surface of the group III nitride crystal formed on the (0001) plane. For this reason, for example, in the case of cutting out from the group III nitride crystal 13 as in the present embodiment, more group III nitrides than in the case of cutting out from the group III nitride crystal formed on the (0001) plane. Crystal 10 can be cut out. Further, when the same number of group III nitride crystals 10 are cut out, the formation of recesses can be suppressed, so that the thickness of the group III nitride crystal 13 to be grown can be reduced. Therefore, the cost required for manufacturing the group III nitride crystal 10 can be reduced.
  • the group III nitride crystal 13 manufactured according to the present embodiment includes, for example, light-emitting elements such as light-emitting diodes and laser diodes, rectifiers, bipolar transistors, field-effect transistors, and HEMTs (High-Electron-Mobility-Transistors). ), Etc., temperature sensors, pressure sensors, radiation sensors, semiconductor sensors such as visible-ultraviolet light detectors, SAW devices (surface acoustic wave devices), vibrators, resonators, oscillators, MEMS ( It can be suitably used for a substrate for a device such as a micro-electro-mechanical system component or a piezoelectric actuator.
  • light-emitting elements such as light-emitting diodes and laser diodes, rectifiers, bipolar transistors, field-effect transistors, and HEMTs (High-Electron-Mobility-Transistors).
  • Etc. temperature sensors, pressure sensors, radiation sensors, semiconductor sensors such as visible-ultra
  • FIG. 8 is a flowchart showing a method for producing a group III nitride crystal in the present embodiment.
  • the method for producing a group III nitride crystal in the present embodiment basically has the same configuration as the method for producing a group III nitride crystal in the embodiment.
  • Step S10 for preparing 11 differs in that it includes step S12 for flattening the main surface 11a.
  • FIG. 9 is a cross-sectional view schematically showing the base substrate before being flattened in the present embodiment.
  • a base substrate 11 having a main surface with irregularities is prepared (step S11).
  • the irregularities on the main surface are viewed microscopically, for example, a c-plane appears in the inclined region 11a1 in FIG.
  • step S12 the main surface of the base substrate 11 is flattened (step S12).
  • step S12 on the main surface of the base substrate 11, the region 11a1 in FIG. 9 is removed, and a surface inclined in the ⁇ 1-100> direction from the (0001) plane parallel to the back surface 11b appears regularly in a wide region. Like that.
  • the method for flattening is not particularly limited, for example, it is also possible to thermally sublimate the main surface of the base substrate 11.
  • the main surface of the base substrate 11 is heat-treated at a temperature of 1200 ° C. or higher and 2300 ° C. or lower. Thereby, it is possible to prepare the base substrate 11 having the main surface 11a in which the surface inclined in the ⁇ 1-100> direction from the (0001) plane shown in FIG.
  • the step S10 for preparing the base substrate 11 includes the step S12 for flattening the main surface of the base substrate 11.
  • the main surface 11a of the base substrate 11 can be formed so that a surface inclined in the ⁇ 1-100> direction from the (0001) plane appears regularly in a wide region.
  • the III group nitride crystal 13 which has high quality and large thickness can be manufactured more stably. Therefore, the high-quality group III nitride crystal 10 manufactured by cutting out from the group III nitride crystal 13 can be manufactured more stably.
  • FIG. 10 is a flowchart showing a method for producing a group III nitride crystal in the present embodiment. With reference to FIG. 10, a method for producing a group III nitride crystal in the present embodiment will be described.
  • the method for producing a group III nitride crystal in the present embodiment basically has the same configuration as the method for producing a group III nitride crystal in the first embodiment.
  • the present embodiment is different in that it further includes a step S13 of preparing a base group III nitride crystal grown with the (0001) plane as a main surface and a step S14 of cutting out the base substrate from the base group III nitride crystal. That is, in the present embodiment, base substrate 11 is made of a group III nitride crystal.
  • FIG. 11 is a cross-sectional view schematically showing a state in which an underlying group III nitride crystal is grown in the present embodiment.
  • a base group III nitride crystal 31 grown with the (0001) plane as the main surface 30a is prepared (step S13). This step S13 is performed as follows, for example.
  • the base substrate 30 for growing the base group III nitride crystal 31 is prepared.
  • the base substrate 30 is not particularly limited, and a group III nitride crystal, SiC, sapphire, or the like can be used.
  • a base group III nitride crystal 31 is grown on the main surface 30 a of the base substrate 30.
  • the growth method of the group III nitride crystal 31 is not particularly limited, and a vapor phase growth method such as a sublimation method, HVPE method, MBE method, or MOCVD method, a liquid phase method such as a flux method, a high nitrogen pressure solution method, or the like is employed. be able to.
  • the underlying group III nitride crystal 31 can be prepared.
  • the group III nitride crystal 31 for the underlayer has the same composition ratio as the group III nitride crystal 13 to be grown.
  • FIG. 12 is a cross-sectional view schematically showing a state in which the base substrate is cut out in the present embodiment.
  • the base substrate 11 is cut out from the base group III nitride crystal 31 (step S14).
  • the base substrate 11 having the main surface 11a as described above is cut out from the group III nitride crystal 31 for base.
  • the cutting method is not particularly limited, the base group III nitride crystal 31 can be divided into the base substrate by cutting or cleavage.
  • the main surface 30a of the base substrate 30 is the (0001) plane
  • the main surface 31a that is the growth surface of the base group III nitride crystal 31 is also the (0001) plane.
  • the base substrate 11 In order to cut out the base substrate 11 so as to have the main surface 11a inclined in the ⁇ 1-100> direction from the (0001) plane, the base substrate 11 intersects with the main surface 30a of the base substrate 30 (the direction orthogonal to FIG. 12). Cut out.
  • step S13 and S14 the base substrate 11 shown in FIG. 3 can be prepared. Further, after step S14 for cutting out the base substrate 11, step S12 for flattening the main surface 11a described in the second embodiment may be further performed.
  • a group III nitride crystal is used as the base substrate 11.
  • the base substrate 11 and the group III nitride crystal 13 to be grown can have the same composition or a close composition.
  • the group III nitride crystal 13 having higher quality and larger thickness can be stably manufactured. Therefore, the high-quality group III nitride crystal 10 manufactured by cutting out from the group III nitride crystal 13 can be manufactured more stably.
  • FIG. 13 is a schematic diagram showing the crystal growth apparatus used in this example.
  • the crystal growth apparatus 100 mainly includes a crucible 115, a heating body 119, a reaction vessel 122, and a high-frequency heating coil 123.
  • a heating body 119 is provided around the crucible 115 so as to ensure ventilation between the inside and outside of the crucible 115.
  • a reaction vessel 122 is provided around the heating body 119.
  • a high-frequency heating coil 123 for heating the heating body 119 is provided at the outer central portion of the reaction vessel 122.
  • radiation thermometers 121 a and 121 b for measuring temperatures above and below the crucible 115 are provided at the upper and lower portions of the reaction vessel 122.
  • crystal growth apparatus 100 may include various elements other than those described above, but illustration and description of these elements are omitted for convenience of description.
  • Example 1 an SiC substrate having a main surface 11a inclined by 0.5 ° in the ⁇ 1-100> direction from the (10-11) plane was prepared as the base substrate 11 (step S10). As shown in FIG. 13, the base substrate 11 was placed on the crucible 115 in the reaction vessel 122.
  • AlN powder was prepared as a raw material for the group III nitride crystal, and this raw material 17 was placed in the lower part of the crucible 115.
  • an AlN crystal was grown as a group III nitride crystal 13 on the main surface of the base substrate by sublimation as a vapor phase growth method (step S20). Specifically, while flowing nitrogen gas into the reaction vessel 122, the temperature in the crucible 115 is increased using the high-frequency heating coil 123 so that the temperature of the base substrate 11 is 1800 ° C. and the temperature of the raw material 17 is 2000 ° C. The raw material 17 was sublimated and recrystallized on the main surface 11a of the base substrate 11 to grow an AlN crystal on the base substrate 11 with a growth time of 30 hours.
  • step S20 the nitrogen gas was continuously flowed into the reaction vessel 122, and the exhaust amount of the nitrogen gas was controlled so that the gas partial pressure in the reaction vessel 122 was about 10 kPa to 100 kPa. .
  • the Group III nitride crystal 13 of Example 1 formed on the main surface 11a of the base substrate 11 was manufactured as shown in FIG.
  • Example 2 was basically the same as Example 1, but only Step S10 for preparing the base substrate was different from Example 1.
  • Example 2 an AlN crystal was manufactured according to the Group III nitride crystal manufacturing method of Embodiment 3.
  • a SiC substrate having a (0001) plane as a main surface was prepared as a base substrate 30 of a base III nitride crystal.
  • An AlN single crystal having a thickness of 10 mm was grown on this SiC substrate as a base group III nitride crystal 31 (step S13).
  • the base substrate 11 was cut out so as to have the (10-11) plane formed on the end face of the AlN single crystal as the main surface 11a (step S14).
  • the base substrate 11 having the (10-11) plane as the main surface 11a was prepared.
  • Example 3 was basically the same as Example 2, but only Step S10 for preparing a base substrate was different from Example 2. Specifically, a base substrate 11 having a main surface 11a having a surface inclined by 0.5 ° in the ⁇ 1-100> direction from the (10-12) plane was prepared.
  • Example 4 was basically the same as Example 2, but only Step S10 for preparing a base substrate was different from Example 2. Specifically, the base substrate 11 having the (10-12) plane as the main surface 11a was prepared.
  • Comparative Example 1 was basically the same as example 1, but only step S10 for preparing the base substrate was different from example 1.
  • an SiC substrate having a main surface inclined by 3.5 ° from the (0001) plane in the ⁇ 11-20> direction was prepared as a base substrate.
  • the thickness of the ridge was measured as the smallest thickness of each group III nitride crystal. That is, the distance from the largest recess formed on the surface of the group III nitride crystal to the interface with the base substrate was measured.
  • each group III nitride crystal is immersed in a melt obtained by melting KOH: NaOH (sodium hydroxide) at a ratio of 1: 1 in a platinum crucible at 250 ° C. for 30 minutes to obtain a group III nitride crystal. Etching was performed. Thereafter, each group III nitride crystal was washed, and the number of etch pits generated on the surface with a microscope per unit area was counted. The results are shown in Table 1 below.
  • the growth surface of the group III nitride crystal of Example 2 using the base substrate having the main surface inclined in the ⁇ 1-100> direction from the (0001) plane is composed of a homogeneous (10-11) plane, There was no generation of crystals.
  • the thickness of the group III nitride crystal was as thick as 10 mm. Further, the dislocation density was as low as 1 ⁇ 10 5 cm ⁇ 2 over the entire surface of the group III nitride crystal.
  • the growth surface of the group III nitride crystal of Example 3 using the base substrate having the main surface inclined in the ⁇ 1-100> direction from the (0001) plane is ⁇ 1--100> from the homogeneous (10-12) plane. It consisted of a surface inclined by 0.5 ° in the 100> direction, and no polycrystal was generated. Further, the thickness of the group III nitride crystal was as thick as 5 mm. Further, the dislocation density was as low as 5 ⁇ 10 5 cm ⁇ 2 over the entire surface of the group III nitride crystal.
  • the growth surface of the group III nitride crystal of Example 4 using the base substrate having the main surface inclined in the ⁇ 1-100> direction from the (0001) plane is composed of a homogeneous (10-12) plane, There was no generation of crystals.
  • the thickness of the group III nitride crystal was as thick as 10 mm.
  • the dislocation density was as low as 1 ⁇ 10 5 cm ⁇ 2 over the entire surface of the group III nitride crystal.
  • the growth surface of the Group III nitride crystal of Comparative Example 1 using the base substrate that did not have the main surface inclined in the ⁇ 1-100> direction from the (0001) plane had a three-dimensional hill shape. It was formed, or the unevenness (step) was large, and polycrystal was generated. Further, the thickness of the group III nitride crystal was 4 mm, which was lower than those of Examples 1 to 4. Further, the dislocation density in the vicinity of the region where the misorientation occurred was 1 ⁇ 10 7 cm ⁇ 2 , which was higher than those in Examples 1 to 4.
  • the group III nitride crystal is grown on the main surface inclined in the ⁇ 1-100> direction from the (0001) plane of the base substrate, thereby having a large thickness and a high thickness. It was confirmed that a quality group III nitride crystal was produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

大きな厚みを有し、かつ高品質のIII族窒化物結晶を成長するIII族窒化物結晶の製造方法およびIII族窒化物結晶を提供する。 III族窒化物結晶13の製造方法は、以下の工程を備えている。まず、(0001)面から<1-100>方向に傾斜した主表面11aを有する下地基板11が準備される。そして、気相成長法により下地基板11の主表面11a上にIII族窒化物結晶13が成長される。下地基板11の主表面11aは、{01-10}面から-5°以上5°以下傾斜した面であることが好ましい。

Description

III族窒化物結晶の製造方法およびIII族窒化物結晶
  本発明はIII族窒化物結晶の製造方法およびIII族窒化物結晶に関し、たとえば窒化アルミニウム(AlN)結晶の製造方法およびAlN結晶に関する。
  AlN結晶は、6.2eVのエネルギバンドギャップ、約3.3WK-1cm-1の熱伝導率および高い電気抵抗を有しているため、光デバイスや電子デバイスなどの基板材料として注目されている。
  このようなAlN結晶などのIII族窒化物半導体結晶の成長方法には、たとえば昇華法が用いられる。昇華法として、下地基板を用いない自然核生成により成長する方法と、下地基板を用いて成長する方法とが挙げられる。自然核生成による成長では、大きなIII族窒化物半導体結晶を安定して成長することが困難であった。
  下地基板を用いて成長する方法は、たとえば米国特許第5,858,086号明細書(特許文献1)、米国特許第6,296,956号明細書(特許文献2)および米国特許第6,001,748号明細書(特許文献3)などに開示されている。
  上記特許文献1~3には、以下の工程が実施されることが記載されている。すなわち、坩堝の下部に原料が設置され、坩堝の上部にSiC基板などの下地基板が原料と互いに向かい合うよう設置される。そして、原料が昇華する温度まで原料が加熱される。この加熱により、原料が昇華して昇華ガスが生成され、原料よりも低温に設置されている下地基板の表面にAlN結晶が成長される。
米国特許第5,858,086号明細書 米国特許第6,296,956号明細書 米国特許第6,001,748号明細書
  上記特許文献2および3では、0.5mm/hrの成長速度でAlN結晶を成長させている。このような成長速度を実現するためには、原料の温度を高温に加熱する必要がある。しかし、原料の温度を高温にしようとすると、下地基板の温度も高温になる。このため、下地基板としてのSiC基板は、劣化してしまう。このため、十分な厚みのAlN結晶を成長させることができないという問題があった。
  一方、上記特許文献1では、原料の加熱温度が1800℃と低い。このように原料の温度を低温にすると、図14に示す以下の問題があった。なお、図14は、低温でAlN結晶213を成長させた状態を概略的に示す断面図である。
  すなわち、図14に示すように、下地基板211の主表面211a上にAlNのグレイン(結晶粒)が成長するが、このグレインの向きは矢印212のように不規則である。このため、AlN結晶213の成長面である主表面213aは均質にならず、凹部213bが形成される。また下地基板211の主表面211a上にAlN結晶が成長しない非成長領域213dが存在する場合がある。このように成長させたAlN結晶213の主表面213aに凹部213bが形成されたり、非成長領域213dが形成されると、成長方向に平行にスライスして複数枚のAlN基板を十分に形成することができない。
  また、図14に示すように、グレインの向きが不規則であるので、方位ずれが発生しやすくなったり、多結晶が発生しやすい。特に、凹部213b下のAlN結晶213には、欠陥213cが発生しやすく、結晶性が悪いという問題があった。
  本発明は、上記の課題に鑑みてなされたものであり、その目的は、大きな厚みを有し、かつ高品質のIII族窒化物結晶を成長するIII族窒化物結晶の製造方法およびIII族窒化物結晶を提供することである。
  本発明者は、鋭意研究の結果、図14に示すようにIII族窒化物結晶としてのAlN結晶213を成長したときに凹部213bおよび欠陥213cが発生するのは、AlN結晶213の成長面が(0001)面(c面)であることに起因することを見出した。また、本発明者は、その理由を鋭意研究した結果、III族窒化物結晶のc面の結晶性が安定でないことに起因することを見出した。
  本発明者は上記要因を確かめるべく、鋭意研究した結果、c面を成長面としてAlN結晶を成長すると、(10-11)面と等価な面が現れることを発見した。この(10-11)面は、c面から[10-10]方向に傾斜している。これらから、AlN結晶などのIII族窒化物結晶において、(0001)面から<1-100>方向に傾斜した面の結晶性が安定であることを見出した。
  そこで、本発明のIII族窒化物結晶の製造方法は、以下の工程を備えている。まず、(0001)面から<1-100>方向に傾斜した主表面を有する下地基板が準備される。そして、気相成長法により下地基板の主表面上にIII族窒化物結晶が成長される。
  本発明のIII族窒化物物結晶の製造方法によれば、(0001)面から<1-100>方向に傾斜した主表面上にIII族窒化物結晶を成長している。下地基板の主表面上に成長したIII族窒化物結晶の成長面の結晶方位は、下地基板の主表面の結晶方位を引き継ぐ。このため、III族窒化物結晶の成長面は、結晶性が安定した面になるので、グレインが不規則に成長した面が形成されることを抑制することができる。つまり、均質な成長面を有しながらIII族窒化物結晶を成長することができる。したがって、低温でIII族窒化物結晶を成長しても、高品質な結晶を成長することができる。よって、低温でIII族窒化物結晶を成長することにより、高品質で大きな厚みを有するIII族窒化物結晶を製造することができる。
  上記III族窒化物結晶の製造方法において好ましくは、下地基板の主表面は、{01-10}面から-5°以上5°以下傾斜した面である。
  本発明者は、III族窒化物結晶の結晶性の非常に安定な面が{01-10}面から-5°以上5°以下傾斜した下地基板の主表面上で得られやすいことを見出した。このため、高品質で大きな厚みを有するIII族窒化物結晶をより安定して製造することができる。
  上記III族窒化物結晶の製造方法において好ましくは、上記成長する工程では、1600℃以上1950℃未満でIII族窒化物結晶を成長する。
  1600℃以上の場合、III族窒化物結晶の原料を容易に気相にして下地基板に供給すことができる。また、1600℃以上の場合、{01-10}面が安定であるため、より高品質なIII族窒化物結晶が得られる。1900℃以下の場合、下地基板が気化分解されるなどの劣化を効果的に抑制することができる。このため、大きな厚みを有するIII族窒化物結晶を成長することができる。
  上記III族窒化物結晶の製造方法において好ましくは、上記準備する工程では、下地基板としてSiC基板を準備する。
  SiC基板は、III族窒化物結晶と格子定数の差が小さく、かつ耐熱性の高い材料であるので、高品質で厚みの大きなIII族窒化物結晶をより安定して製造することができる。
  上記III族窒化物結晶の製造方法において好ましくは、上記準備する工程は、(0001)面を主表面として成長された下地用III族窒化物結晶を準備する工程と、この下地用III族窒化物結晶から下地基板を切り出す工程とを含んでいる。
  これにより、III族窒化物結晶を下地基板として用いることができる。下地基板のIII族窒化物結晶は、成長させるIII族窒化物結晶と格子定数差がないか、または非常に小さい。このため、より高品質で、かつ厚みの大きなIII族窒化物結晶を安定して製造することができる。
  上記III族窒化物結晶の製造方法において好ましくは、上記成長する工程では、1mm以上の厚みを有するIII族窒化物結晶を成長する。
  1mm以上の厚みを有するIII族窒化物結晶を成長する場合に、上述した本発明の効果が顕著に現れる。また、成長したIII族窒化物結晶から、複数枚のIII族窒化物結晶を製造することができる。また、複数枚のIII族窒化物結晶のコストを低減することができる。
  上記III族窒化物結晶の製造方法において好ましくは、上記準備する工程は、下地基板の主表面を平坦にする工程を含んでいる。
  これにより、下地基板の主表面において、(0001)面から<1-100>方向に傾斜した面以外の面が現れることを抑制することができる。このため、下地基板の主表面に、(0001)面から<1-100>方向に傾斜した面が広く形成された下地基板を準備することができる。したがって、主表面において安定な面以外の面が形成された領域を低減することができるので、高品質で大きな厚みを有するIII族窒化物結晶をより安定して製造することができる。
  上記III族窒化物結晶の製造方法において好ましくは、上記III族窒化物結晶から無極性面を主表面として有するように切り出す工程をさらに備えている。
  III族窒化物結晶は高品質で大きな厚みを有しているので、無極性面を主表面として有する複数のIII族窒化物結晶を切り出すことができる。これにより、無極性面を主表面として有する複数枚のIII族窒化物結晶を製造することができる。
  本発明のIII族窒化物結晶は、上記いずれかに記載のIII族窒化物結晶の製造方法により製造されたIII族窒化物結晶であって、5×106cm-2以下の転位密度を有している。
  本発明のIII族窒化物結晶は、上記III族窒化物結晶の製造方法により製造されている。このため、グレインが不規則である成長面が形成されることを抑制しているので、上記のような転位密度の低いIII族窒化物結晶を実現することができる。
  本発明のIII族窒化物結晶の製造方法およびIII族窒化物結晶によれば、結晶性の安定した面である(0001)面から<1-100>方向に傾斜した主表面上にIII族窒化物結晶を成長するので、大きな厚みを有し、かつ高品質のIII族窒化物結晶を成長することができる。
本発明の実施の形態1におけるIII族窒化物結晶を概略的に示す断面図である。 本発明の実施の形態1におけるIII族窒化物結晶の製造方法を示すフローチャートである。 本発明の実施の形態1における下地基板を概略的に示す断面図である。 本発明の実施の形態1における下地基板の結晶方位を示す模式図である。 図4の結晶方位を簡略化した模式図である。 本発明の実施の形態1においてIII族窒化物結晶を成長させた状態を概略的に示す断面図である。 本発明の実施の形態1におけるIII族窒化物結晶から複数のIII族窒化物結晶を切り出した状態を概略的に示す断面図である。 本発明の実施の形態2におけるIII族窒化物結晶の製造方法を示すフローチャートである。 本発明の実施の形態2における平坦化される前の下地基板を概略的に示す断面図である。 本発明の実施の形態3におけるIII族窒化物結晶の製造方法を示すフローチャートである。 本発明の実施の形態3における下地用III族窒化物結晶上を成長させた状態を概略的に示す断面図である。 本発明の実施の形態3における下地基板を切り出す状態を概略的に示す断面図である。 実施例に用いた結晶成長装置を示す概略図である。 低温でAlN結晶を成長させた状態を概略的に示す断面図である。
  以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない。また、本明細書中においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
  (実施の形態1)
  図1は、本実施の形態におけるIII族窒化物結晶を概略的に示す断面図である。図1を参照して、本実施の形態におけるIII族窒化物結晶10について説明する。
  図1に示すように、本実施の形態におけるIII族窒化物結晶10は、主表面10aを有している。この主表面10aは、たとえば無極性面である。ここで、無極性面とは、c面などの極性面に対して直交した方向の面であり、たとえば{1-100}面(m面)および{11-20}面(a面)が挙げられる。
  III族窒化物結晶10は、好ましくは5×106cm-2以下、より好ましくは5×105cm-2以下の転位密度を有している。この場合、このIII族窒化物結晶10を用いてデバイスを作製したときに特性を向上することができる。なお、転位密度は、たとえば溶融KOH(水酸化カリウム)中のエッチングによりできるピットの個数を数えて、単位面積で割るという方法によって測定することができる。
  III族窒化物結晶10は、たとえばAlxGa(1-x)N(0≦x≦1)結晶であり、AlN結晶であることが好ましい。
  図2は、本実施の形態におけるIII族窒化物結晶の製造方法を示すフローチャートである。続いて、図3を参照して、本実施の形態におけるIII族窒化物結晶10の製造方法について説明する。
  図3は、本実施の形態における下地基板を概略的に示す断面図である。図2および図3に示すように、まず、(0001)面から<1-100>方向に傾斜した主表面11aを有する下地基板11を準備する(ステップS10)。下地基板11の主表面11aは、(0001)面から<1-100>方向に傾斜した面以外の面を含む領域を有していてもよいが、(0001)面から<1-100>方向に傾斜した面が広い領域に規則的に現れていることが好ましい。下地基板11の主表面11aは、(0001)面から<1-100>方向に傾斜した面がほとんどの領域に規則的に現れていることが非常に好ましい。
  なお、<1-100>方向とは、[1-100]方向、[10-10]方向、[-1100]方向、[-1010]方向、[01-10]方向および[0-110]方向を含んでいる。
  図4は、本実施の形態における下地基板11の結晶方位を示す模式図である。図5は、図4の結晶方位を簡略化した模式図である。ここで、図4および図5を参照して、下地基板11の主表面11aについて説明する。
  図4および図5に示すように、下地基板11の主表面11aは、(0001)面から<1-100>方向に傾斜している。言い換えると、下地基板11の主表面11aは、(0001)面が{1-100}面に向かって傾斜している。このような主表面11aとして、図4に示すように、たとえば(10-11)面(s面)が挙げられる。
  なお、{1-100}面とは、{1-100}面、{10-10}面、{-1100}面、{-1010}面、{01-10}面および{0-110}面を含んでいる。
  下地基板11の主表面11aは、c面から<1-100>(m軸)方向に0.1°以上80°未満傾斜させることが好ましい。言い換えると、図5に示すように、(0001)面から{1-100}面に向かって傾斜している角度xが、0.1°以上80°未満であることが好ましい。この場合、結晶性がより一層安定である。特に、下地基板11の主表面11aは、{01-10}面から-5°以上5°以下傾斜した面であることが好ましく、{01-10}面から-0.5°以上0.5°以下傾斜した面であることがより好ましい。言い換えると、図5に示すように、(10-11)面などの{01-10}面から{1-100}面に向かって傾斜している角度yが-5°以上5°以下であることが好ましく、-0.5°以上0.5°以下であることがより好ましい。この場合、成長させるIII族窒化物結晶の成長面がよりに安定になる。特に、下地基板11の主表面11aは、{10-11}面近傍であることが好ましい。この場合、成長させるIII族窒化物結晶の成長面が非常に安定になる。
  なお、上記主表面11aは、(0001)面から<1-100>方向に傾斜していれば特に限定されず、<1-100>方向以外の任意の方向にさらに傾斜していてもよい。この任意の方向にさらに傾斜している場合には、この任意の方向への傾斜角はたとえば-5°以上5°以下の範囲であることが好ましい。
  下地基板11は、成長させるIII族窒化物結晶と同じ組成の結晶であっても異なる組成の結晶であってもよく、たとえばSiC、サファイヤなどを用いてもよい。なお、下地基板11の結晶系は六方晶であることが好ましい。SiC基板は、成長させるIII族窒化物結晶との格子定数の差が小さく、かつ耐高温の強い材質である。下地基板11としてSiC基板を用いる場合には、4H(Hexagonal)-SiC(4は1周期の積層数)、6H-SiC(6は1周期の積層数)などが、3C(Cubic)-SiCなどよりも好適に用いられる。
  この下地基板11の主表面11aは、たとえば2インチ以上の大きさを有している。これにより、大口径のIII族窒化物結晶を成長させることができる。
  図6は、本実施の形態においてIII族窒化物結晶を成長させた状態を概略的に示す断面図である。次に、図2および図6に示すように、気相成長法により下地基板11の主表面11a上にIII族窒化物結晶13を成長する(ステップS20)。
  気相成長法は特に限定されず、昇華法、HVPE(Hydride Vapor Phase Epitaxy:ハイドライド気相成長)法、MBE(Molecular Beam Epitaxy:分子線エピタキシ)法、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相堆積)法などを用いることができる。このステップS20では、昇華法が好適に用いられる。
  成長するステップS20では、好ましくは1mm以上、より好ましくは5mm以上の厚みT13を有するIII族窒化物結晶を成長する。つまり、本実施の形態では、III族窒化物バルク結晶を成長することが好ましい。II族窒化物バルク結晶を成長する場合に、本発明の効果が顕著に現れるため好適である。厚みT13の上限は特にないが、容易に製造できる観点から、たとえば50mm以下である。
  成長するステップS20では、好ましくは1600℃以上1950℃未満、より好ましくは1600℃以上1900℃未満、より一層好ましくは1650℃以上1900℃未満でIII族窒化物結晶13を成長する。1600℃以上の場合、たとえば昇華法によりIII族窒化物結晶13を成長する場合には、原料を容易に昇華させることができる。1650℃以上の場合、原料をより容易に昇華させることができる。1950℃未満の場合、下地基板11が気化分解されるなどの劣化を効果的に防止できるので、III族窒化物結晶13の厚みT13をより大きく成長することができる。1900℃未満の場合、下地基板11の劣化をより効果的に防止できる。
  上記成長する温度とは、たとえば、昇華法によりIII族窒化物結晶13を成長させる場合には、下地基板11の温度を意味する。
  このステップS20により成長したIII族窒化物結晶13の成長面は、下地基板11の主表面11aの結晶方位を引き継ぐ。このため、III族窒化物結晶13は、(0001)面から<1-100>方向に傾斜した主表面13aを有している。
  図7は、本実施の形態におけるIII族窒化物結晶13から複数のIII族窒化物結晶10を切り出した状態を概略的に示す断面図である。次に、図2および図7に示すように、III族窒化物結晶13から主表面10aを有するIII族窒化物結晶10を切り出す(ステップS30)。
  このステップS30では、III族窒化物結晶13から無極性面を主表面10aとして有するように切り出すことが好ましい。本実施の形態では、III族窒化物結晶13の成長面(主表面13a)が(0001)面から<1-100>方向に傾斜している。このため、無極性面を主表面10aとして有するように切り出すためには、下地基板11の主表面11aと交差する方向(図7では直交する方向)に切り出している。
  切り出す方法は特に限定されないが、切断やへき開などにより、III族窒化物結晶13から複数のIII族窒化物結晶へ分割することができる。III族窒化物結晶13は単結晶からなるので、容易に分割することができる。なお、切断とは、電着ダイヤモンドホイールの外周刃を持つスライサーなどで機械的にIII族窒化物結晶13を分割することをいう。へき開とは、結晶格子面に沿ってIII族窒化物結晶13を分割することをいう。
  上記ステップS10~S30を実施することによって、図1に示すIII族窒化物結晶10を製造することができる。
  以上説明したように、本実施の形態におけるIII族窒化物結晶の製造方法によれば、下地基板11の(0001)面から<1-100>方向に傾斜した主表面11a上にIII族窒化物結晶13を成長させている(ステップS20)。下地基板11の主表面11a上に成長したIII族窒化物結晶13の成長面の結晶方位は、下地基板11の主表面11aの結晶方位を引き継ぐ。このため、III族窒化物結晶13の成長面は結晶性の安定な面になるので、グレインが不規則な成長面が形成されることを抑制することができる。したがって、低温でIII族窒化物結晶13を成長しても、高品質な結晶を成長することができる。よって、低温でIII族窒化物結晶13を成長することにより、高品質で大きな厚みT13を有するIII族窒化物結晶13を製造することができる。特に、本実施の形態では、低温で成長させてもIII族窒化物結晶は高品質になるので、III族窒化物結晶13を再現性よく安定して製造することができる。
  このIII族窒化物結晶13から切り出すことにより、高品質のIII族窒化物結晶10を製造することができる。このような高品質なIII族窒化物結晶10は、たとえば5×106cm-2以下の小さな転位密度を有している。
  またIII族窒化物結晶13の主表面13aは、(0001)面上に形成されたIII族窒化物結晶の主表面よりも、凹凸などの形成が低減された状態である。このため、たとえば(0001)面上に形成されたIII族窒化物結晶から切り出す場合よりも、本実施の形態のようにIII族窒化物結晶13から切り出す場合の方が、多くのIII族窒化物結晶10を切り出すことができる。また同じ数のIII族窒化物結晶10を切り出す場合には、凹部の形成を抑制できるので、成長させるIII族窒化物結晶13の厚みを小さくすることができる。したがって、III族窒化物結晶10を製造するために要するコストを低減することができる。
  以上より本実施の形態により製造されたIII族窒化物結晶13は、たとえば発光ダイオード、レーザダイオードなどの発光素子、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(High Electron Mobility Transistor;高電子移動度トランジスタ)などの電子素子、温度センサ、圧力センサ、放射線センサ、可視-紫外光検出器などの半導体センサ、SAWデバイス(Surface Acoustic Wave Device;表面弾性波素子)、振動子、共振子、発振器、MEMS(Micro Electro Mechanical System)部品、圧電アクチュエータ等のデバイス用の基板などに好適に用いることができる。
  (実施の形態2)
  図8は、本実施の形態におけるIII族窒化物結晶の製造方法を示すフローチャートである。図8を参照して、本実施の形態におけるIII族窒化物結晶の製造方法は、基本的には実施の形態におけるIII族窒化物結晶の製造方法と同様の構成を備えているが、下地基板11を準備するステップS10は、主表面11aを平坦にするステップS12を含んでいる点において異なる。
  図9は、本実施の形態における平坦化される前の下地基板を概略的に示す断面図である。図8および図9に示すように、まず、凹凸が形成された主表面を有する下地基板11を準備する(ステップS11)。この主表面の凹凸をミクロに見ると、図9において傾斜している領域11a1は、たとえばc面が現れている。
  次に、下地基板11の主表面を平坦化する(ステップS12)。このステップS12では、下地基板11の主表面において、図9における領域11a1を取り除いて、裏面11bと平行な(0001)面から<1-100>方向に傾斜した面を広い領域に規則的に現れるようにする。
  平坦化する方法は特に限定されないが、たとえば下地基板11の主表面を熱昇華させることによっても可能である。熱昇華は、たとえば1200℃以上2300℃以下の温度で、下地基板11の主表面を熱処理する。これにより、図3に示す(0001)面から<1-100>方向に傾斜した面が広い領域に規則的に現れた主表面11aを有する下地基板11を準備することができ、好適である。
  その他のステップS20、S30は、実施の形態1とほぼ同様であるので、その説明は繰り返さない。
  本実施の形態によれば、下地基板11を準備するステップS10は、下地基板11の主表面を平坦にするステップS12を含んでいる。これにより、下地基板11の主表面11aに(0001)面から<1-100>方向に傾斜した面を広い領域に規則的に現れるように形成することができる。このため、主表面11aにおいて安定な面以外の面が形成された領域を低減することができるので、高品質で大きな厚みを有するIII族窒化物結晶13をより安定して製造することができる。したがって、このIII族窒化物結晶13から切り出して製造される高品質のIII族窒化物結晶10をより安定して製造することができる。
  (実施の形態3)
  図10は、本実施の形態におけるIII族窒化物結晶の製造方法を示すフローチャートである。図10を参照して、本実施の形態におけるIII族窒化物結晶の製造方法について説明する。
  図10に示すように、本実施の形態におけるIII族窒化物結晶の製造方法は、基本的には実施の形態1におけるIII族窒化物結晶の製造方法と同様の構成を備えているが、(0001)面を主表面として成長された下地用III族窒化物結晶を準備するステップS13と、下地用III族窒化物結晶から下地基板を切り出すステップS14とをさらに含んでいる点において異なる。つまり、本実施の形態では、下地基板11は、III族窒化物結晶よりなる。
  図11は、本実施の形態における下地用III族窒化物結晶上を成長させた状態を概略的に示す断面図である。図10および図11を参照して、まず、(0001)面を主表面30aとして成長された下地用III族窒化物結晶31を準備する(ステップS13)。
このステップS13は、たとえば以下のように実施される。
  まず、下地用III族窒化物結晶31を成長させるための下地基板30を準備する。この下地基板30は特に限定されず、III族窒化物結晶、SiC、サファイヤなどを用いることができる。その後、この下地基板30の主表面30a上に下地用III族窒化物結晶31を成長する。III族窒化物結晶31の成長方法は特に限定されず、昇華法、HVPE法、MBE法、MOCVD法などの気相成長法、フラックス法、高窒素圧溶液法などの液相法などを採用することができる。これにより、下地用III族窒化物結晶31を準備することができる。
  下地用III族窒化物結晶31は、成長させるIII族窒化物結晶13と同一の組成比であることが特に好ましい。
  図12は、本実施の形態における下地基板を切り出す状態を概略的に示す断面図である。次に、図10および図12に示すように、下地用III族窒化物結晶31から下地基板11を切り出す(ステップS14)。
  このステップS14では、下地用III族窒化物結晶31から、上述したような主表面11aを有する下地基板11を切り出す。切り出す方法は特に限定されないが、切断やへき開などにより、下地用III族窒化物結晶31から下地基板へ分割することができる。
  本実施の形態では、下地基板30の主表面30aが(0001)面であるので、下地用III族窒化物結晶31の成長面である主表面31aも(0001)面である。下地基板11が(0001)面から<1-100>方向に傾斜した主表面11aを有するように切り出すためには、下地基板30の主表面30aと交差する方向(図12では直交する方向)に切り出している。
  このステップS13、S14により、図3に示す下地基板11を準備することができる。また、下地基板11を切り出すステップS14後に、実施の形態2で説明した主表面11aを平坦化するステップS12をさらに実施してもよい。
  その他のステップS20、S30は、実施の形態1とほぼ同様であるので、その説明は繰り返さない。
  以上説明したように、本実施の形態におけるIII族窒化物結晶の製造方法によれば、下地基板11としてIII族窒化物結晶を用いている。これにより、下地基板11と成長させるIII族窒化物結晶13とを同一の組成または近い組成にすることができる。このため、下地基板11と成長させるIII族窒化物結晶13との格子定数差は、ない、あるいは非常に小さい。したがって、より高品質で、かつ厚みの大きなIII族窒化物結晶13を安定して製造することができる。したがって、このIII族窒化物結晶13から切り出して製造される高品質のIII族窒化物結晶10をより安定して製造することができる。
  本実施例では、下地基板の(0001)面から<1-100>方向に傾斜した主表面上にIII族窒化物結晶を成長させることの効果について調べた。
  具体的には、図13に示す結晶成長装置100を用いて、昇華法によりAlN結晶を成長し、厚みおよび品質を調べた。なお、図13は、本実施例に用いた結晶成長装置を示す概略図である。
  図13に示すように、結晶成長装置100は、坩堝115と、加熱体119と、反応容器122と、高周波加熱コイル123とを主に備えている。坩堝115の周りには、坩堝115の内部と外部との通気を確保するように加熱体119が設けられている。この加熱体119の周りには、反応容器122が設けられている。この反応容器122の外側中央部には、加熱体119を加熱するための高周波加熱コイル123が設けられている。また、反応容器122の上部および下部には、坩堝115の上方および下方の温度を測定するための放射温度計121a、121bが設けられている。
  なお、上記結晶成長装置100は、上記以外の様々な要素を含んでいてもよいが、説明の便宜上、これらの要素の図示および説明は省略する。
  (実施例1)
  まず、(10-11)面から<1-100>方向に0.5°傾斜した主表面11aを有するSiC基板を下地基板11として準備した(ステップS10)。図13に示すように、この下地基板11を、反応容器122内の坩堝115の上部に載置した。
  次に、III族窒化物結晶の原料としてAlN粉末を準備し、この原料17を坩堝115の下部に収容した。
  次に、気相成長法として昇華法により、下地基板の主表面上にIII族窒化物結晶13としてAlN結晶を成長した(ステップS20)。具体的には、反応容器122内に窒素ガスを流しながら、高周波加熱コイル123を用いて坩堝115内の温度を上昇させ、下地基板11の温度を1800℃、原料17の温度を2000℃にして原料17を昇華させ、下地基板11の主表面11a上で再結晶化させて、成長時間を30時間として、下地基板11上にAlN結晶を成長させた。
  なお、ステップS20のAlN結晶の成長中においては、反応容器122内に窒素ガスを流し続け、反応容器122内のガス分圧が10kPa~100kPa程度になるように、窒素ガスの排気量を制御した。
  以上のステップS10~S20を実施することにより、図6に示すように、下地基板11の主表面11a上に形成された実施例1のIII族窒化物結晶13を製造した。
  (実施例2)
  実施例2は、基本的には実施例1と同様であったが、下地基板を準備するステップS10のみ実施例1と異なっていた。
  具体的には、実施例2は、実施の形態3のIII族窒化物結晶の製造方法にしたがってAlN結晶を製造した。
  まず、下地用III族窒化物結晶の下地基板30として(0001)面を主表面として有するSiC基板を準備した。このSiC基板上に10mmの厚みを有するAlN単結晶を下地用III族窒化物結晶31として成長した(ステップS13)。このAlN単結晶の端面に形成した(10-11)面を主表面11aとして有するように下地基板11を切り出した(ステップS14)。これにより、(10-11)面を主表面11aとして有する下地基板11を準備した。
  次に、実施例1と同様に、下地基板11の主表面11aにAlN結晶を成長させて(ステップS20)、実施例2のIII族窒化物結晶13を製造した。
  (実施例3)
  実施例3は、基本的には実施例2と同様であったが、下地基板を準備するステップS10のみ実施例2と異なっていた。具体的には、(10-12)面から<1-100>方向に0.5°傾斜した面を主表面11aとして有する下地基板11を準備した。
  次に、実施例1と同様に、下地基板11の主表面11aにAlN結晶を成長させて(ステップS20)、実施例3のIII族窒化物結晶13を製造した。
  (実施例4)
  実施例4は、基本的には実施例2と同様であったが、下地基板を準備するステップS10のみ実施例2と異なっていた。具体的には、(10-12)面を主表面11aとして有する下地基板11を準備した。
  次に、実施例1と同様に、下地基板11の主表面11aにAlN結晶を成長させて(ステップS20)、実施例4のIII族窒化物結晶13を製造した。
  (比較例1)
  比較例1は、基本的には実施例1と同様であったが、下地基板を準備するステップS10のみ実施例1と異なっていた。
  具体的には、下地基板として、(0001)面から<11-20>方向に3.5°傾斜した主表面を有するSiC基板を準備した。
  次に、実施例1と同様に、この下地基板の主表面上にAlN結晶を成長させて、比較例1のIII族窒化物結晶を製造した。
  (評価方法)
  実施例1~4および比較例1のIII族窒化物結晶について、外観を観察し、厚みおよび転位密度を測定した。
  厚みは、各々のIII族窒化物結晶において最も厚みの小さい厚みを測定した。つまり、III族窒化物結晶の表面に形成されている最も大きな凹部から、下地基板との界面までの距離を測定した。
  転位密度の測定は、以下のように測定した。まず、KOH:NaOH(水酸化ナトリウム)を1:1の割合で白金坩堝中で250℃で溶融させた融液中に、各々のIII族窒化物結晶を30分間浸漬してIII族窒化物結晶のエッチングを行った。その後、各々のIII族窒化物結晶を洗浄して、顕微鏡にて表面に発生したエッチピットの単位面積当たりの個数をカウントした。その結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
  (評価結果)
  表1に示すように、(0001)面から<1-100>方向に傾斜した主表面を有する下地基板を用いた実施例1のIII族窒化物結晶の成長表面は、均質な(10-11)面から<1-100>方向に0.5°傾斜した面からなり、多結晶の発生等はなかった。また、III族窒化物結晶の厚みは、5mmと厚かった。さらに、転位密度はIII族窒化物結晶の全面で5×105cm-2以下と低かった。
  また(0001)面から<1-100>方向に傾斜した主表面を有する下地基板を用いた実施例2のIII族窒化物結晶の成長表面は、均質な(10-11)面からなり、多結晶の発生等はなかった。また、III族窒化物結晶の厚みは、10mmと厚かった。さらに、転位密度はIII族窒化物結晶の全面で1×105cm-2と低かった。
  また(0001)面から<1-100>方向に傾斜した主表面を有する下地基板を用いた実施例3のIII族窒化物結晶の成長表面は、均質な(10-12)面から<1-100>方向に0.5°傾斜した面からなり、多結晶の発生等はなかった。また、III族窒化物結晶の厚みは、5mmと厚かった。さらに、転位密度はIII族窒化物結晶の全面で5×105cm-2と低かった。
  また(0001)面から<1-100>方向に傾斜した主表面を有する下地基板を用いた実施例4のIII族窒化物結晶の成長表面は、均質な(10-12)面からなり、多結晶の発生等はなかった。また、III族窒化物結晶の厚みは、10mmと厚かった。さらに、転位密度はIII族窒化物結晶の全面で1×105cm-2と低かった。
  一方、(0001)面から<1-100>方向に傾斜した主表面を有していなかった下地基板を用いた比較例1のIII族窒化物結晶の成長表面は、3次元状の丘形状が形成されていたり、凹凸(段差)が大きく形成されており、多結晶の発生があった。また、III族窒化物結晶の厚みは4mmであり、実施例1~4と比較して低かった。さらに、方位ずれが生じた領域近傍の転位密度は1×107cm-2であり、実施例1~4よりも高かった。
  以上より、本実施例によれば、下地基板の(0001)面から<1-100>方向に傾斜した主表面上にIII族窒化物結晶を成長させることによって、大きな厚みを有し、かつ高品質のIII族窒化物結晶を製造することが確認できた。
  以上のように本発明の実施の形態および実施例について説明を行なったが、各実施の形態および実施例の特徴を適宜組み合わせることも当初から予定している。また、今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
  10,13,31  III族窒化物結晶、10a,11a,13a,30a,31a  主表面、11,30  下地基板、11a1  領域、11b  裏面、17  原料、100  結晶成長装置、115  坩堝、119  加熱体、121a,121b  放射温度計、122  反応容器、123  高周波加熱コイル。

Claims (9)

  1.   (0001)面から<1-100>方向に傾斜した主表面を有する下地基板を準備する工程と、
      気相成長法により前記下地基板の前記主表面上にIII族窒化物結晶を成長する工程とを備えた、III族窒化物結晶の製造方法。
  2.   前記下地基板の前記主表面は、{01-10}面から-5°以上5°以下傾斜した面である、請求項1に記載のIII族窒化物結晶の製造方法。
  3.   前記成長する工程では、1600℃以上1950℃未満で前記III族窒化物結晶を成長する、請求項1または2に記載のIII族窒化物結晶の製造方法。
  4.   前記準備する工程では、前記下地基板としてSiC基板を準備する、請求項1~3のいずれかに記載のIII族窒化物結晶の製造方法。
  5.   前記準備する工程は、
      (0001)面を主表面として成長された下地用III族窒化物結晶を準備する工程と、
      前記下地用III族窒化物結晶から前記下地基板を切り出す工程とを含む、請求項1~3のいずれかに記載のIII族窒化物結晶の製造方法。
  6.   前記成長する工程では、1mm以上の厚みを有する前記III族窒化物結晶を成長する、請求項1~5のいずれかに記載のIII族窒化物結晶の製造方法。
  7.   前記準備する工程は、前記下地基板の前記主表面を平坦にする工程を含む、請求項1~6のいずれかに記載のIII族窒化物結晶の製造方法。
  8.   前記III族窒化物結晶から無極性面を主表面として有するように切り出す工程をさらに備えた、請求項1~7のいずれかに記載のIII族窒化物結晶の製造方法。
  9.   請求項1~8のいずれかに記載のIII族窒化物結晶の製造方法により製造されたIII族窒化物結晶であって、
      5×106cm-2以下の転位密度を有する、III族窒化物結晶。
PCT/JP2009/061699 2008-07-17 2009-06-26 Iii族窒化物結晶の製造方法およびiii族窒化物結晶 WO2010007867A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801279508A CN102099510A (zh) 2008-07-17 2009-06-26 Ⅲ族氮化物晶体的制造方法及ⅲ族氮化物晶体
EP09797795A EP2302111A4 (en) 2008-07-17 2009-06-26 METHOD FOR PRODUCING A GROUP III NITRIDE CRYSTAL AND GROUP III NITRIDE CRYSTAL
US13/054,373 US20110110840A1 (en) 2008-07-17 2009-06-26 Method for producing group iii-nitride crystal and group iii-nitride crystal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-186210 2008-07-17
JP2008186210 2008-07-17
JP2009121080A JP2010042980A (ja) 2008-07-17 2009-05-19 Iii族窒化物結晶の製造方法およびiii族窒化物結晶
JP2009-121080 2009-05-19

Publications (1)

Publication Number Publication Date
WO2010007867A1 true WO2010007867A1 (ja) 2010-01-21

Family

ID=41550275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061699 WO2010007867A1 (ja) 2008-07-17 2009-06-26 Iii族窒化物結晶の製造方法およびiii族窒化物結晶

Country Status (6)

Country Link
US (1) US20110110840A1 (ja)
EP (1) EP2302111A4 (ja)
JP (1) JP2010042980A (ja)
KR (1) KR20110052569A (ja)
CN (1) CN102099510A (ja)
WO (1) WO2010007867A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178594A (ja) * 2010-02-26 2011-09-15 Mitsubishi Chemicals Corp 第13族金属窒化物結晶の製造方法、該製造方法により得られる第13族金属窒化物結晶および半導体デバイスの製造方法
US20110248281A1 (en) * 2010-04-08 2011-10-13 Hitachi Cable, Ltd. Nitride semiconductor substrate, production method therefor and nitride semiconductor device
WO2012074031A1 (ja) * 2010-12-01 2012-06-07 三菱化学株式会社 Iii族窒化物半導体基板及びその製造方法、並びに半導体発光デバイス及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9064706B2 (en) 2006-11-17 2015-06-23 Sumitomo Electric Industries, Ltd. Composite of III-nitride crystal on laterally stacked substrates
JP5332168B2 (ja) 2006-11-17 2013-11-06 住友電気工業株式会社 Iii族窒化物結晶の製造方法
JP2012136418A (ja) * 2010-12-01 2012-07-19 Mitsubishi Chemicals Corp Iii族窒化物半導体基板とその製造方法
CN103243389B (zh) 2012-02-08 2016-06-08 丰田合成株式会社 制造第III族氮化物半导体单晶的方法及制造GaN衬底的方法
WO2014123247A1 (ja) * 2013-02-08 2014-08-14 株式会社トクヤマ 窒化アルミニウム粉末
JP5999443B2 (ja) 2013-06-07 2016-09-28 豊田合成株式会社 III 族窒化物半導体結晶の製造方法およびGaN基板の製造方法
JP6015566B2 (ja) * 2013-06-11 2016-10-26 豊田合成株式会社 III 族窒化物半導体のエッチング方法およびIII 族窒化物半導体結晶の製造方法およびGaN基板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858086A (en) 1996-10-17 1999-01-12 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride
US6001748A (en) 1996-06-04 1999-12-14 Sumitomo Electric Industries, Ltd. Single crystal of nitride and process for preparing the same
JP2006347832A (ja) * 2005-06-17 2006-12-28 Sony Corp GaN系化合物半導体層の形成方法、及び、GaN系半導体発光素子の製造方法
JP2007119325A (ja) * 2005-10-31 2007-05-17 Sumitomo Electric Ind Ltd Iii族窒化物結晶およびその成長方法
JP2007277074A (ja) * 2006-01-10 2007-10-25 Ngk Insulators Ltd 窒化アルミニウム単結晶の製造方法及び窒化アルミニウム単結晶
JP2008143772A (ja) * 2006-11-17 2008-06-26 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968968B2 (ja) * 2000-07-10 2007-08-29 住友電気工業株式会社 単結晶GaN基板の製造方法
JP4581490B2 (ja) * 2004-05-31 2010-11-17 日立電線株式会社 Iii−v族窒化物系半導体自立基板の製造方法、及びiii−v族窒化物系半導体の製造方法
EP1982351A4 (en) * 2006-01-20 2010-10-20 Univ California PROCESS FOR IMPROVED GROWTH OF SEMIPOLARM (AL, IN, GA, B) N

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001748A (en) 1996-06-04 1999-12-14 Sumitomo Electric Industries, Ltd. Single crystal of nitride and process for preparing the same
US5858086A (en) 1996-10-17 1999-01-12 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride
US6296956B1 (en) 1996-10-17 2001-10-02 Cree, Inc. Bulk single crystals of aluminum nitride
JP2006347832A (ja) * 2005-06-17 2006-12-28 Sony Corp GaN系化合物半導体層の形成方法、及び、GaN系半導体発光素子の製造方法
JP2007119325A (ja) * 2005-10-31 2007-05-17 Sumitomo Electric Ind Ltd Iii族窒化物結晶およびその成長方法
JP2007277074A (ja) * 2006-01-10 2007-10-25 Ngk Insulators Ltd 窒化アルミニウム単結晶の製造方法及び窒化アルミニウム単結晶
JP2008143772A (ja) * 2006-11-17 2008-06-26 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2302111A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178594A (ja) * 2010-02-26 2011-09-15 Mitsubishi Chemicals Corp 第13族金属窒化物結晶の製造方法、該製造方法により得られる第13族金属窒化物結晶および半導体デバイスの製造方法
US20110248281A1 (en) * 2010-04-08 2011-10-13 Hitachi Cable, Ltd. Nitride semiconductor substrate, production method therefor and nitride semiconductor device
JP2011219304A (ja) * 2010-04-08 2011-11-04 Hitachi Cable Ltd 窒化物半導体基板、その製造方法及び窒化物半導体デバイス
US8592316B2 (en) * 2010-04-08 2013-11-26 Hitachi Cable, Ltd. Nitride semiconductor substrate, production method therefor and nitride semiconductor device
WO2012074031A1 (ja) * 2010-12-01 2012-06-07 三菱化学株式会社 Iii族窒化物半導体基板及びその製造方法、並びに半導体発光デバイス及びその製造方法
JP2012136414A (ja) * 2010-12-01 2012-07-19 Mitsubishi Chemicals Corp Iii族窒化物半導体基板、半導体発光デバイスおよびその製造方法

Also Published As

Publication number Publication date
US20110110840A1 (en) 2011-05-12
EP2302111A4 (en) 2011-10-19
CN102099510A (zh) 2011-06-15
EP2302111A1 (en) 2011-03-30
JP2010042980A (ja) 2010-02-25
KR20110052569A (ko) 2011-05-18

Similar Documents

Publication Publication Date Title
WO2010007867A1 (ja) Iii族窒化物結晶の製造方法およびiii族窒化物結晶
JP5431359B2 (ja) 最初のiii族−窒化物種晶からの熱アンモニア成長による改善された結晶性のiii族−窒化物結晶を生成するための方法
JP3888374B2 (ja) GaN単結晶基板の製造方法
JP4603386B2 (ja) 炭化珪素単結晶の製造方法
JP5560528B2 (ja) Iii族窒化物単結晶インゴットの製造方法、及びiii族窒化物単結晶基板の製造方法
JP2016160151A (ja) Iii族窒化物半導体結晶基板の製造方法
JP2007217227A (ja) GaN結晶の製造方法、GaN結晶基板および半導体デバイス
JP2008013390A (ja) AlN結晶基板の製造方法、AlN結晶の成長方法およびAlN結晶基板
JP2014196242A (ja) AlxGa1−xN結晶基板
JP2008074663A (ja) 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット、及び炭化珪素単結晶基板
JP4664464B2 (ja) モザイク性の小さな炭化珪素単結晶ウエハ
JP4408247B2 (ja) 炭化珪素単結晶育成用種結晶と、それを用いた炭化珪素単結晶の製造方法
JPWO2007023722A1 (ja) GaxIn1−xN(0≦x≦1)結晶の製造方法、GaxIn1−xN(0≦x≦1)結晶基板、GaN結晶の製造方法、GaN結晶基板および製品
JP2006021964A (ja) AlN単結晶およびその成長方法
JP2008230868A (ja) 窒化ガリウム結晶の成長方法および窒化ガリウム結晶基板
JP2004262709A (ja) SiC単結晶の成長方法
JP5370025B2 (ja) 炭化珪素単結晶インゴット
JP2006306722A (ja) GaN単結晶基板の製造方法及びGaN単結晶基板
JPH07267795A (ja) SiC単結晶の成長方法
JP4479706B2 (ja) GaN自立基板の製造方法
JP5152293B2 (ja) モザイク性の小さな炭化珪素単結晶ウエハの製造方法
JP2000044399A (ja) 窒化ガリウム系化合物半導体のバルク結晶製造方法
US12049709B2 (en) Method for growing high-quality heteroepitaxial monoclinic gallium oxide crystal
JP4957751B2 (ja) GaN単結晶体およびその製造方法、ならびに半導体デバイスおよびその製造方法
WO2010008037A1 (ja) AlGaNバルク結晶の製造方法およびAlGaN基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980127950.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117000709

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13054373

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009797795

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE