WO2010024109A1 - ドライバ状態推定装置 - Google Patents

ドライバ状態推定装置 Download PDF

Info

Publication number
WO2010024109A1
WO2010024109A1 PCT/JP2009/064022 JP2009064022W WO2010024109A1 WO 2010024109 A1 WO2010024109 A1 WO 2010024109A1 JP 2009064022 W JP2009064022 W JP 2009064022W WO 2010024109 A1 WO2010024109 A1 WO 2010024109A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering angle
steering
value
detected
torque
Prior art date
Application number
PCT/JP2009/064022
Other languages
English (en)
French (fr)
Inventor
英樹 酒井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN2009801004613A priority Critical patent/CN101801754B/zh
Priority to EP09809051.7A priority patent/EP2316704B1/en
Priority to US12/678,245 priority patent/US8930080B2/en
Publication of WO2010024109A1 publication Critical patent/WO2010024109A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • B60K28/066Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver actuating a signalling device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Definitions

  • the present invention relates to a driver state estimation device that estimates a driving state of a driver based on an operation state of a steering wheel.
  • the detected value of the rudder angle sensor is A / D converted and processed in the arithmetic and control unit.
  • the detected value of the rudder angle sensor may be lower than the resolution of the A / D converter depending on the traveling state. In this case, the estimation accuracy of the driving state of the driver is lowered.
  • An object of the present invention is to provide a driver state estimation device that can improve the estimation accuracy of the driving state of the driver.
  • the present invention relates to a driver state estimation device that estimates a driving state of a driver based on a steering operation state, a steering angle detection unit that detects a steering angle of the steering, a steering torque detection unit that detects a steering torque applied to the steering, A steering angle estimation unit that estimates the steering angle of the steering based on the steering torque detected by the steering torque detection unit when the steering angle detected by the steering angle detection unit is smaller than a predetermined value.
  • the steering angle detected by the steering angle detection unit becomes smaller than a predetermined value
  • the steering angle of the steering is estimated based on the steering torque detected by the steering torque detection unit, for example, Even if the steering angle of the actual steering is very small during straight running, the steering angle is estimated from the steering torque. Thereby, the estimation accuracy of the driving state of the driver can be improved.
  • the steering angle estimation unit estimates the steering angle of the steering by multiplying the steering torque detected by the steering torque detection unit by a coefficient.
  • the steering angle of the steering is substantially proportional to the steering torque. Therefore, the steering angle can be easily and reliably estimated by multiplying the steering torque by a coefficient.
  • the steering angle estimation unit estimates the steering angle of the steering based on the steering torque using the steering angle value as an initial value. .
  • the steering angle detected by the steering angle detector is larger than a predetermined value, the steering angle that is substantially proportional to the steering torque can be estimated from the steering torque.
  • the present invention it is possible to improve the estimation accuracy of the driving state of the driver. This makes it possible to accurately determine the driver's arousal level and the like while traveling.
  • FIG. 3 is a timing diagram showing an estimated steering angle value obtained by the steering angle estimation processing procedure shown in FIG. 2 together with an example of a detected steering angle value and a detected steering torque value. It is a graph which shows the relationship between a steering angle and a steering torque. It is a flowchart which shows the detail of the other steering angle estimation process procedure performed by the steering angle estimation part shown in FIG.
  • FIG. 6 is a timing diagram showing a steering angle estimation value obtained by the steering angle estimation processing procedure shown in FIG. 5 together with another example of a steering angle detection value and a steering torque detection value.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a driver state estimation apparatus according to the present invention.
  • a driver state estimation device 1 of the present embodiment includes a steering angle sensor 2 (steering angle detection unit) that detects a steering angle of a steering (not shown), and a steering torque sensor 3 (steering) that detects a steering torque applied to the steering.
  • ECU Electronic Control Unit
  • the ECU 4 includes a CPU, a memory such as a ROM and a RAM, an input / output circuit such as an A / D converter, and the like.
  • the ECU 4 includes a steering angle estimation unit 5 (steering angle estimation unit) and a driver state estimation unit 6.
  • the steering angle estimation unit 5 estimates the steering angle of the steering based on at least one of the steering angle detected by the steering angle sensor 2 and the steering torque detected by the steering torque sensor 3.
  • the driver state estimation unit 6 estimates the driving state (sleeping etc.) of the driver based on the estimation result of the rudder angle estimation unit 5. For example, the driver state estimation unit 6 compares the standard deviation of the steering angle estimated by the steering angle estimation unit 5 with a threshold, and estimates that the driver is drowsy when the standard deviation of the steering angle exceeds the threshold.
  • FIG. 2 is a flowchart showing details of the steering angle estimation processing procedure executed by the steering angle estimation unit 5.
  • the steering angle (steering angle detection value) MA detected by the steering angle sensor 2 and the steering torque (steering torque detection value) MT detected by the steering torque sensor 3 are input (step S11).
  • the steering angle detection value MA and the steering torque detection value MT are A / D converted by the A / D converter and input to the CPU.
  • FIG. 3 is an example of a case where the vehicle is traveling straight on the highway, and shows a state where the steering is slightly turned off occasionally. In a state where the vehicle is traveling completely straight, the steering angle detection value MA is zero.
  • step S11 After performing step S11, it is determined whether or not the steering angle detection value MA is 0 (step S12). When it is determined that the steering angle detection value MA is 0, the steering angle estimation value MA est is obtained based on the steering torque detection value MT (step S13), and the process returns to step S11.
  • step S12 when it is determined in step S12 that the detected steering angle MA is not 0, the detected steering angle MA is set to the estimated steering angle MA est (step S14), and the process returns to step S11.
  • the steering angle estimation value MA est as shown in FIG. Will be obtained.
  • the steering angle LSB (Least Significant Bit) detected by the rudder angle sensor 2 is as rough as 1.5 degrees.
  • LSB is a concept used synonymously with a quantization unit for A / D conversion.
  • the steering angle detected by the rudder angle sensor 2 is likely to be less than the resolution of the A / D converter, so that it is difficult to accurately measure the steering angle by the rudder angle sensor 2.
  • the LSB of the steering torque detected by the steering torque sensor 3 is much finer than the LSB of the steering angle detected by the steering angle sensor 2 as shown in FIG.
  • the estimated steering angle MA est is obtained by multiplying the detected steering torque MT by the proportional coefficient ⁇ , so that the actual steering angle of the steering is Even when the steering angle is smaller than the LSB of the steering angle detected by the steering angle sensor 2, the steering angle at that time can be estimated.
  • the driving state such as the driver's drowsiness during driving can be estimated with high accuracy.
  • the steering angle detection value MA est is obtained by multiplying the steering torque detection value MT by the proportional coefficient ⁇ .
  • Such a calculation may be performed when is smaller than LSB (below the resolution of the A / D converter).
  • FIG. 5 is a flowchart showing details of another steering angle estimation processing procedure executed by the steering angle estimation unit 5.
  • Step S21 first both the steering angle detected value MA O and the steering torque detection value MT O initialized to 0 (zero) (Step S21).
  • the steering angle detected value MA O is the value when the steering angle detected value MA has changed
  • the steering torque detection value MT O is the steering torque detection value MT at the time of the steering angle detected value MA has changed is there.
  • step S22 the steering angle detection value MA and the steering torque detection value MT are input in the same manner as in step S11 shown in FIG. 2 (step S22).
  • FIG. 6 is also an example of a case where the vehicle is traveling straight on the highway, as in FIG. 3, and shows a state where the steering is slightly turned off occasionally.
  • step S22 it is determined whether or not the steering angle detection value MA (n) input this time is the same value as the steering angle detection value MA (n-1) input last time (step S23).
  • the currently input steering angle detected value MA (n) is determined to be the same value as the steering angle detection value MA entered last (n-1)
  • the current steering angle detected value MA O and the steering torque by using the detected value MT O and the currently input steering torque detection value MT (n) the following (B) obtains the steering angle estimated value MA est by equation (Step S24), it returns to Step S22.
  • MA est MA O + ⁇ ⁇ [MT (n) -MT O] ... (B)
  • the present steering angle detected value MA O adding the multiplied by a proportional coefficient ⁇ to the difference of the current input steering torque detection value MT (n) and the present steering torque detection value MT O
  • the steering angle estimated value MA est is calculated.
  • step S23 when it is determined in step S23 that the steering angle detection value MA (n) input this time is not the same value as the steering angle detection value MA (n-1) input last time, the steering angle detection input this time is detected.
  • the value MA (n) as a new steering angle detected value MA O currently input steering angle detected value MT (n) is a new steering angle detected value MT O (Step S25).
  • Step S24 using the new steering angle detected value MA O and the steering angle detected value MT O, obtains the steering angle estimated value MA est by the formula (B) (Step S24).
  • the steering angle estimation value MA est at this time is the steering angle detection value MA (n) input this time from the equation (B).
  • the steering angle estimation value MA est as shown in FIG. Will be obtained.
  • the steering angle estimation value MA est is obtained using the steering torque detection value MT regardless of the magnitude of the steering angle detection value MA.
  • the steering angle estimation value MA est is obtained based on the steering torque detection value MT using the steering angle detection value MA as an initial value. Even if the angle is very small, the steering angle at that time can be estimated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Traffic Control Systems (AREA)

Abstract

 ドライバ状態推定装置1は、ステアリングの操舵角を検出する舵角センサ2と、ステアリングに加わる操舵トルクを検出する操舵トルクセンサ3と、舵角推定部5及びドライバ状態推定部6を有するECU4とを備えている。舵角推定部5は、舵角センサ2で検出された操舵角(操舵角検出値)MAと操舵トルクセンサ3で検出された操舵トルク(操舵トルク検出値)MTとを入力した後、操舵角検出値MAが0であるかどうかを判断し、操舵角検出値MAが0であるときは、操舵トルクに対する操舵角の勾配(比例係数)αを操舵トルク検出値MTに乗じることで操舵角推定値MAestを求め、操舵角検出値MAが0でないときは、操舵角検出値MAを操舵角推定値MAestとする。

Description

ドライバ状態推定装置
 本発明は、ステアリングの操作状態に基づいてドライバの運転状態を推定するドライバ状態推定装置に関するものである。
 従来のドライバ状態推定装置としては、例えば特許文献1に記載されているように、ステアリング操作が滑らかに行われたと仮定した場合の操舵角推定値と舵角センサにより検出された操舵角との操舵誤差を算出し、その操舵誤差の分布に基づいて運転操作状態を監視するものが知られている。
特開2002-36905号公報
 しかしながら、上記従来技術においては、以下の問題点が存在する。即ち、舵角センサの検出値は、演算制御装置においてA/D変換されて処理される。しかし、一般に舵角センサの検出値のLSB(Least Significant Bit)は比較的粗いため、走行状態によっては舵角センサの検出値がA/D変換器の分解能を下回ることがある。この場合には、ドライバの運転状態の推定精度が低下してしまう。
 本発明の目的は、ドライバの運転状態の推定精度を向上させることができるドライバ状態推定装置を提供することである。
 本発明は、ステアリングの操作状態に基づいてドライバの運転状態を推定するドライバ状態推定装置において、ステアリングの操舵角を検出する操舵角検出部と、ステアリングに加わる操舵トルクを検出する操舵トルク検出部と、操舵角検出部で検出された操舵角が所定値よりも小さいときに、操舵トルク検出部で検出された操舵トルクに基づいてステアリングの操舵角を推定する操舵角推定部とを備えている。
 このように本発明においては、操舵角検出部で検出された操舵角が所定値よりも小さくなると、操舵トルク検出部で検出された操舵トルクに基づいてステアリングの操舵角を推定することにより、例えば直進走行中に実際のステアリングの操舵角が微小であっても、その操舵角が操舵トルクから推定されるようになる。これにより、ドライバの運転状態の推定精度を向上させることができる。
 好ましくは、操舵角推定部は、操舵トルク検出部で検出された操舵トルクに係数を乗じることで、ステアリングの操舵角を推定する。ステアリングの操舵角は、操舵トルクにほぼ比例する。従って、操舵トルクに係数を乗じることで、操舵角を容易に且つ確実に推定することができる。
 また、好ましくは、操舵角推定部は、操舵角検出部で検出された操舵角の値が変化したときに、当該操舵角の値を初期値として操舵トルクに基づいてステアリングの操舵角を推定する。この場合には、操舵角検出部で検出された操舵角が所定値よりも大きくても、操舵トルクとほぼ比例関係にある操舵角を操舵トルクから推定することができる。
 本発明によれば、ドライバの運転状態の推定精度を向上させることができる。これにより、走行中におけるドライバの覚醒度等を正確に判定することが可能となる。
本発明に係わるドライバ状態推定装置の一実施形態を示す概略構成図である。 図1に示した舵角推定部により実行される操舵角推定処理手順の詳細を示すフローチャートである。 図2に示した操舵角推定処理手順により得られる操舵角推定値を操舵角検出値及び操舵トルク検出値の一例と共に示すタイミング図である。 操舵角と操舵トルクとの関係を示すグラフである。 図1に示した舵角推定部により実行される他の操舵角推定処理手順の詳細を示すフローチャートである。 図5に示した操舵角推定処理手順により得られる操舵角推定値を操舵角検出値及び操舵トルク検出値の他の例と共に示すタイミング図である。
 1  ドライバ状態推定装置
 2  舵角センサ
 3  操舵トルクセンサ
 4  ECU
 5  舵角推定部
 6  ドライバ状態推定部
 以下、本発明に係わるドライバ状態推定装置の好適な実施形態について、図面を参照して詳細に説明する。
 図1は、本発明に係わるドライバ状態推定装置の一実施形態を示す概略構成図である。同図において、本実施形態のドライバ状態推定装置1は、図示しないステアリングの操舵角を検出する舵角センサ2(操舵角検出部)と、ステアリングに加わる操舵トルクを検出する操舵トルクセンサ3(操舵トルク検出部)と、これらの舵角センサ2及び操舵トルクセンサ3と接続されたECU(Electronic Control Unit)4とを備えている。
 ECU4は、CPU、ROMやRAM等のメモリ、A/D変換器等の入出力回路等により構成されている。ECU4は、舵角推定部5(操舵角推定部)と、ドライバ状態推定部6とを有している。
 舵角推定部5は、舵角センサ2で検出された操舵角及び操舵トルクセンサ3で検出された操舵トルクの少なくとも一方に基づいて、ステアリングの操舵角を推定する。
 ドライバ状態推定部6は、舵角推定部5の推定結果に基づいて、ドライバの運転状態(居眠り等)を推定する。ドライバ状態推定部6は、例えば舵角推定部5で推定された操舵角の標準偏差を閾値と比較し、操舵角の標準偏差が閾値を越えると、ドライバが眠気を催していると推定する。
 図2は、舵角推定部5により実行される操舵角推定処理手順の詳細を示すフローチャートである。
 同図において、まず舵角センサ2で検出された操舵角(操舵角検出値)MAと、操舵トルクセンサ3で検出された操舵トルク(操舵トルク検出値)MTとを入力する(手順S11)。このとき、操舵角検出値MA及び操舵トルク検出値MTは、A/D変換器によりA/D変換されてCPUに入力される。
 ここで、A/D変換された後の操舵角検出値MA及び操舵トルク検出値MTの一例を図3に示す。図3は、高速道路において車両が直進走行している場合の例であり、時折ステアリングが僅かに切られている状態を示している。車両が完全に直進走行している状態では、操舵角検出値MAは0となる。
 手順S11を実施した後、操舵角検出値MAが0であるかどうかを判断する(手順S12)。操舵角検出値MAが0であると判断されたときは、操舵トルク検出値MTに基づいて操舵角推定値MAestを求め(手順S13)、上記手順S11に戻る。
 具体的には、ステアリングの操舵角は、図4に示すように、操舵トルクに概ね比例する。従って、操舵トルクに対する操舵角の勾配(比例係数)αを予め定義しておく。そして、下記(A)式により操舵角推定値MAestを算出する。
   MAest=α×MT   …(A)
 一方、手順S12で操舵角検出値MAが0でないと判断されたときは、操舵角検出値MAを操舵角推定値MAestに設定し(手順S14)、上記手順S11に戻る。
 このような操舵角推定処理手順を実行することにより、図3に示すような操舵角検出値MA及び操舵トルク検出値MTが入力されると、同図に示すような操舵角推定値MAestが得られることとなる。
 ところで、通常のドライバは直進走行時にステアリングを2度も切ることは少ないが、舵角センサ2で検出される操舵角のLSB(Least Significant Bit)は1.5度と粗い。なお、LSBは、A/D変換の量子化単位と同義に使用される概念である。このため、直進走行する状況においては、舵角センサ2で検出される操舵角がA/D変換器の分解能を下回り易くなるため、舵角センサ2により操舵角を正確に計測することが困難となる。他方、操舵トルクセンサ3で検出される操舵トルクのLSBは、図3にも示すように、舵角センサ2で検出される操舵角のLSBに比べてはるかに細かい。
 そこで本実施形態では、操舵角検出値MAが0であるときは、操舵トルク検出値MTに比例係数αを乗じて操舵角推定値MAestを求めるようにしたので、実際のステアリングの操舵角が舵角センサ2で検出される操舵角のLSBよりも小さい場合であっても、その時の操舵角を推定することができる。これにより、走行状態にかかわらず、走行中におけるドライバの眠気等の運転状態を高精度に推定することができる。
 なお、本実施形態では、操舵角検出値MAが0であるときに、操舵トルク検出値MTに比例係数αを乗じて操舵角推定値MAestを求めるようにしたが、例えば操舵角検出値MAがLSBよりも小さい(A/D変換器の分解能を下回った)ときに、そのような計算を行っても良い。
 図5は、舵角推定部5により実行される他の操舵角推定処理手順の詳細を示すフローチャートである。
 同図において、まず操舵角検出値MA及び操舵トルク検出値MTを何れも0(ゼロ)に初期設定する(手順S21)。なお、操舵角検出値MAは、操舵角検出値MAが変化した時点での当該値であり、操舵トルク検出値MTは、操舵角検出値MAが変化した時点における操舵トルク検出値MTである。
 続いて、図2に示す手順S11と同様に、操舵角検出値MA及び操舵トルク検出値MTを入力する(手順S22)。
 ここで、A/D変換された後の操舵角検出値MA及び操舵トルク検出値MTの他の例を図6に示す。図6も、図3と同様に、高速道路において車両が直進走行している場合の例であり、時折ステアリングが僅かに切られている状態を示している。
 手順S22を実施した後、今回入力された操舵角検出値MA(n)が前回入力された操舵角検出値MA(n-1)と同じ値であるかどうかを判断する(手順S23)。今回入力された操舵角検出値MA(n)が前回入力された操舵角検出値MA(n-1)と同じ値であると判断されたときは、現在の操舵角検出値MA及び操舵トルク検出値MTと今回入力された操舵トルク検出値MT(n)とを用いて、下記(B)式により操舵角推定値MAestを求め(手順S24)、上記手順S22に戻る。
   MAest=MA+α×[MT(n)-MT]   …(B)
 具体的には、現在の操舵角検出値MAに、今回入力された操舵トルク検出値MT(n)と現在の操舵トルク検出値MTとの差分に比例係数αを乗じたものを加えることにより、操舵角推定値MAestを算出する。
 一方、手順S23で今回入力された操舵角検出値MA(n)が前回入力された操舵角検出値MA(n-1)と同じ値でないと判断されたときは、今回入力された操舵角検出値MA(n)を新たな操舵角検出値MAとし、今回入力された操舵角検出値MT(n)を新たな操舵角検出値MTとする(手順S25)。そして、新たな操舵角検出値MA及び操舵角検出値MTを用いて、上記(B)式により操舵角推定値MAestを求める(手順S24)。この時の操舵角推定値MAestは、上記(B)式から、今回入力された操舵角検出値MA(n)となる。
 このような操舵角推定処理手順を実行することにより、図6に示すような操舵角検出値MA及び操舵トルク検出値MTが入力されると、同図に示すような操舵角推定値MAestが得られることとなる。
 本処理手順では、操舵角検出値MAの大小にかかわらず、操舵トルク検出値MTを用いて操舵角推定値MAestを求めるようにしている。このとき、操舵角検出値MAが変化すると、その操舵角検出値MAを初期値として操舵トルク検出値MTを基に操舵角推定値MAestを求めるので、上記と同様に、実際のステアリングの操舵角が微小であっても、その時の操舵角を推定することができる。

Claims (3)

  1.  ステアリングの操作状態に基づいてドライバの運転状態を推定するドライバ状態推定装置において、
     前記ステアリングの操舵角を検出する操舵角検出部と、
     前記ステアリングに加わる操舵トルクを検出する操舵トルク検出部と、
     前記操舵角検出部で検出された操舵角が所定値よりも小さいときに、前記操舵トルク検出部で検出された操舵トルクに基づいて前記ステアリングの操舵角を推定する操舵角推定部と、
     を備えるドライバ状態推定装置。
  2.  前記操舵角推定部は、前記操舵トルク検出部で検出された操舵トルクに係数を乗じることで、前記ステアリングの操舵角を推定する請求項1記載のドライバ状態推定装置。
  3.  前記操舵角推定部は、前記操舵角検出部で検出された操舵角の値が変化したときに、当該操舵角の値を初期値として前記操舵トルクに基づいて前記ステアリングの操舵角を推定する請求項1または2記載のドライバ状態推定装置。
PCT/JP2009/064022 2008-08-28 2009-08-07 ドライバ状態推定装置 WO2010024109A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801004613A CN101801754B (zh) 2008-08-28 2009-08-07 驾驶员状态推断装置
EP09809051.7A EP2316704B1 (en) 2008-08-28 2009-08-07 Device for estimating state of driver
US12/678,245 US8930080B2 (en) 2008-08-28 2009-08-07 Driver state estimation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008219789A JP4483984B2 (ja) 2008-08-28 2008-08-28 ドライバ状態推定装置
JP2008-219789 2008-08-28

Publications (1)

Publication Number Publication Date
WO2010024109A1 true WO2010024109A1 (ja) 2010-03-04

Family

ID=41721281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064022 WO2010024109A1 (ja) 2008-08-28 2009-08-07 ドライバ状態推定装置

Country Status (5)

Country Link
US (1) US8930080B2 (ja)
EP (1) EP2316704B1 (ja)
JP (1) JP4483984B2 (ja)
CN (1) CN101801754B (ja)
WO (1) WO2010024109A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10880340B2 (en) 2008-11-26 2020-12-29 Free Stream Media Corp. Relevancy improvement through targeting of information based on data gathered from a networked device associated with a security sandbox of a client device
DE102010039949A1 (de) * 2010-08-30 2012-03-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erkennung fehlender Fahreraktivität am Lenkrad eines Kraftfahrzeugs
JP5558322B2 (ja) 2010-11-25 2014-07-23 大和化成工業株式会社 クリップ
DE102012203209A1 (de) * 2011-03-02 2012-09-06 Continental Teves Ag & Co. Ohg Intelligente Fahrzeugsensoreinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153629A (ja) * 1983-02-18 1984-09-01 Nissan Motor Co Ltd 居眠り運転警報装置
JPH079879A (ja) * 1993-06-28 1995-01-13 Mitsubishi Motors Corp 車両用覚醒度検出装置
JPH08268190A (ja) * 1995-03-31 1996-10-15 Isuzu Motors Ltd 居眠り警告装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360528B2 (ja) * 1996-06-19 2002-12-24 日産自動車株式会社 車両運動制御装置
US6061610A (en) * 1997-10-31 2000-05-09 Nissan Technical Center North America, Inc. Method and apparatus for determining workload of motor vehicle driver
JP2002036905A (ja) 2000-07-28 2002-02-06 Nissan Motor Co Ltd 車両用運転操作監視装置
JP3891288B2 (ja) * 2003-03-28 2007-03-14 株式会社ジェイテクト 電気式動力舵取装置
JP4294401B2 (ja) * 2003-07-25 2009-07-15 富士重工業株式会社 車両用走行支援装置
DE602005013375D1 (de) * 2004-04-30 2009-04-30 Nsk Ltd Steuervorrichtung für elektrische servolenkvorrichtung
CN100460261C (zh) 2005-08-02 2009-02-11 日产自动车株式会社 车辆转向设备和车辆转向方法
CN2823083Y (zh) 2005-08-19 2006-10-04 比亚迪股份有限公司 一种汽车线传转向控制装置
DE602006018446D1 (de) * 2006-07-24 2011-01-05 Yokohama Rubber Co Ltd Vorrichtung und Verfahren zur Bewertung von Fahrfähigkeit sowie Vorrichtung und Verfahren zur Information der Effizienz des Fahrerstresses bezüglich des Fahrbetriebs
DE102007001362A1 (de) * 2007-01-09 2008-07-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrerermüdungserkennung mittels Drehmomentsensorik
JP5073323B2 (ja) * 2007-03-12 2012-11-14 本田技研工業株式会社 ステアリング保持状態判定装置、ドライバ覚醒度推定装置および適正進路維持装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153629A (ja) * 1983-02-18 1984-09-01 Nissan Motor Co Ltd 居眠り運転警報装置
JPH079879A (ja) * 1993-06-28 1995-01-13 Mitsubishi Motors Corp 車両用覚醒度検出装置
JPH08268190A (ja) * 1995-03-31 1996-10-15 Isuzu Motors Ltd 居眠り警告装置

Also Published As

Publication number Publication date
EP2316704B1 (en) 2019-03-20
JP2010052590A (ja) 2010-03-11
CN101801754B (zh) 2013-12-04
US8930080B2 (en) 2015-01-06
EP2316704A1 (en) 2011-05-04
US20100211268A1 (en) 2010-08-19
EP2316704A4 (en) 2018-04-25
CN101801754A (zh) 2010-08-11
JP4483984B2 (ja) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4852964B2 (ja) 電動パワーステアリング装置の制御装置
EP1935753A1 (en) Electric power steering system
JP2004074845A (ja) セルフアライニングトルク基準値演算装置及び路面摩擦状態推定装置
US20150367884A1 (en) Detection of change in surface friction using electric power steering signals
WO2010024109A1 (ja) ドライバ状態推定装置
EP2537739B1 (en) Control method for motor of electrically assisted bicycle
JP4404693B2 (ja) 車両用操舵装置
JP4956035B2 (ja) 車両制御装置
JP2010158951A (ja) 電動パワーステアリング制御装置
JP4550910B2 (ja) 車両挙動検出装置
JP5122258B2 (ja) 電動パワーステアリング制御装置
JP4601650B2 (ja) 車両挙動状態推定装置
WO2009157473A1 (ja) 運転者状態推定装置
KR20080104872A (ko) 조향 제어 방법 및 이를 이용한 전동식 파워 조향 장치
JP2009202849A (ja) 電動パワーステアリング装置
JP5025686B2 (ja) 車両挙動制御装置
JP4244911B2 (ja) 操舵補助装置及び操舵状態判定装置
JP2008247248A (ja) 車両用操舵装置
JP2006076484A (ja) 電動パワーステアリング装置の制御装置
JP4440279B2 (ja) 車両挙動検出装置
JP2007145153A (ja) 車両用操舵制御装置
JP2009154586A (ja) 電動パワーステアリング装置
JP2007161099A (ja) 車両用操舵制御装置
JP2006160005A (ja) 車両用操舵装置
KR20080073132A (ko) 전동식 파워 스티어링 시스템의 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100461.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009809051

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12678245

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE