JP2004074845A - セルフアライニングトルク基準値演算装置及び路面摩擦状態推定装置 - Google Patents

セルフアライニングトルク基準値演算装置及び路面摩擦状態推定装置 Download PDF

Info

Publication number
JP2004074845A
JP2004074845A JP2002234586A JP2002234586A JP2004074845A JP 2004074845 A JP2004074845 A JP 2004074845A JP 2002234586 A JP2002234586 A JP 2002234586A JP 2002234586 A JP2002234586 A JP 2002234586A JP 2004074845 A JP2004074845 A JP 2004074845A
Authority
JP
Japan
Prior art keywords
self
aligning torque
sat
slip angle
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002234586A
Other languages
English (en)
Other versions
JP3860518B2 (ja
Inventor
Hidekazu Ono
小野 英一
Shoji Inagaki
稲垣 匠二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002234586A priority Critical patent/JP3860518B2/ja
Priority to US10/626,577 priority patent/US20040133330A1/en
Priority to DE10337086A priority patent/DE10337086A1/de
Publication of JP2004074845A publication Critical patent/JP2004074845A/ja
Application granted granted Critical
Publication of JP3860518B2 publication Critical patent/JP3860518B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)

Abstract

【課題】路面摩擦状態を推定するための判定基準であるSAT基準値を高精度に演算する。
【解決手段】SAT推定部23は、操舵トルクとアシストトルクの和に基づいてSAT推定値を得る。SATモデル値演算部25は、スリップ角に基づいてSATモデル値を演算する。SAT比演算部26は、SAT推定値とSATモデル値との比を演算する。SAT基準値演算部27は、所定時間内のSAT比の最大値が閾値を超えた場合に、荷重増加やタイヤ空気圧低下によってタイヤと路面間の接地長が増加し、SAT勾配が大きくなったと判定して、SATモデル値を上方修正してSAT基準値を求める。
【選択図】    図2

Description

【0001】
【発明の属する技術分野】
本発明は、セルフアライニングトルク基準値演算装置及び路面摩擦状態推定装置に係り、特に、路面摩擦状態を推定するための判定基準となるセルフアライニングトルク基準値を演算するセルフアライニングトルク基準値演算装置及び路面摩擦状態推定装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
セルフアライニングトルク(以下「SAT」という。)を利用してグリップ状態を推定するものとして、特願2001−212683号明細書には、前輪スリップ角に基づいてセルフアライニングトルク(以下「SAT」という。)基準値を演算すると共に、ドライバの操舵トルクとパワーステアリング装置のアシストトルクから操舵系の摩擦を除去してSAT推定値を演算し、SAT基準値及びSAT推定値の比に基づいてグリップ状態を推定する技術(以下「従来技術1」という。)が記載されている。
【0003】
ところで、車両の積載荷重が増加して前輪の荷重が増加した場合や、前輪の空気圧が低下した場合では、タイヤと路面間の接地長が増加する結果、SATのスリップ角に対する勾配が増加する。この場合、従来技術1は、タイヤと路面間の接地長の変化を考慮することなく、スリップ角のみに基づくSAT基準値を用いてグリップ状態を推定するので、正確にグリップ状態を推定できないという問題点があった。
【0004】
本発明は、上述した課題を解決するために提案されたものであり、タイヤと路面間の接地長が変化した場合であっても、路面摩擦状態を推定するための判定基準であるSAT基準値を高精度に演算するセルフアライニングトルク基準値演算装置、及びこのSAT基準値を用いて路面摩擦状態を推定する路面摩擦状態推定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明は、セルフアライニングトルクを推定するセルフアライニングトルク推定手段と、スリップ角を推定するスリップ角推定手段と、前記スリップ角推定手段により推定されたスリップ角を用いて、セルフアライニングトルクモデル値を演算するセルフアライニングトルクモデル値演算手段と、前記セルフアライニングトルク推定手段により推定されたセルフアライニングトルクと、前記セルフアライニングトルクモデル値演算手段により演算されたセルフアライニングトルクモデル値と、の比であるセルフアライニングトルク比を演算するセルフアライニングトルク比演算手段と、前記セルフアライニングトルク比演算手段により演算されたセルフアライニングトルク比の最大値が閾値を超えたときに、前記セルフアライニングトルク比と前記セルフアライニングトルクモデル値とに基づくセルフアライニングトルク基準値を演算するセルフアライニングトルク基準値演算手段と、を備えている。
【0006】
セルフアライニングトルク推定手段は、タイヤに生じたセルフアライニングトルクを推定する。なお、セルフアライニングトルクの推定手法は特に限定されるものではない。スリップ角推定手段は、前記タイヤのスリップ角を推定する。
【0007】
セルフアライニングトルクモデル値演算手段は、スリップ角推定手段により推定されたスリップ角を用いて、設計の基準となるノミナル接地長の状態において高グリップ状態を仮定したモデル、すなわちスリップ角0で線形化された線形モデルのセルフアライニングトルクモデル値を演算する。このセルフアライニングトルクモデル値は、変数としてスリップ角のみを用いて演算された値であり、路面摩擦状態の変化、例えばタイヤと路面間の接地長の変化などは考慮していない。
【0008】
セルフアライニングトルク比演算手段は、セルフアライニングトルクとセルフアライニングトルクモデル値との比であるセルフアライニングトルク比を演算する。ここで、タイヤと路面間の接地長が初期状態のまま一定であれば、セルフアライニングトルク比も一定になっている。しかし、上記接地長が変化した場合、これに伴ってセルフアライニングトルクも変化し、さらにセルフアライニングトルク比も変化する。
【0009】
そこで、セルフアライニングトルク基準値演算手段は、セルフアライニングトルク比の最大値が閾値を超えたときに、セルフアライニングトルク比とセルフアライニングトルクモデル値とに基づいて、路面摩擦状態の判定基準となるセルフアライニングトルク基準値を演算する。
【0010】
したがって、請求項1に記載の発明によれば、タイヤと路面間の接地長の変化に応じてセルフアライニングトルク比の最大値が変化したときは、セルフアライニングトルク比とセルフアライニングトルクモデル値とに基づいてセルフアライニングトルク基準値を演算することによって、タイヤと路面間の接地長の変化に応じた最適なセルフアライニングトルク基準値を求めることができる。
【0011】
請求項2に記載の発明は、請求項1に記載の発明において、前記セルフアライニングトルク基準値演算手段は、前記セルフアライニングトルク比の最大値が閾値を超えていないときは、前記セルフアライニングトルクモデル値をセルフアライニングトルク基準値として出力するものである。
【0012】
セルフアライニングトルク基準値演算手段は、セルフアライニングトルク比の最大値が閾値を超えていないときは、タイヤと路面間の接地長が一定のままなので、ノミナル接地長の状態を仮定したセルフアライニングトルクモデル値をセルフアライニングトルク基準値としてそのまま出力する。
【0013】
したがって、請求項2に記載の発明によれば、セルフアライニングトルク比の最大値と閾値とを比較してタイヤと路面間の接地長が変化の有無を判定し、上記接地長が変化しない場合のセルフアライニングトルク基準値を求めることができる。
【0014】
請求項3に記載の発明は、請求項1または2に記載の発明において、前記スリップ角推定手段により推定されたスリップ角にハイパスフィルタ処理を施すハイパスフィルタと、横力を演算する横力演算手段と、前記横力演算手段により演算された横力をスリップ角に換算するスリップ角換算手段と、前記スリップ角換算手段により換算されたスリップ角にローパスフィルタ処理を施すローパスフィルタと、前記ハイパスフィルタによりハイパスフィルタ処理されたスリップ角と、前記ローパスフィルタによりフィルタ処理されたスリップ角とを加算する加算手段と、を更に備え、前記セルフアライニングトルクモデル値演算手段は、前記加算手段により加算されたスリップ角に基づいて、セルフアライニングトルクモデル値を演算するものである。
【0015】
ハイパスフィルタは、スリップ角推定手段により推定されたスリップ角にハイパスフィルタ処理を施すことで、バンク路走行時にスリップ角に含まれるドリフト誤差を除去し、セルフアライニングトルクに対して位相遅れのない高周波成分を抽出する。
【0016】
横力演算手段は、前記タイヤに生じた横力を演算する。ここで、横力とタイヤのスリップ角の間には、略線形の関係が存在する。そこで、スリップ角換算手段は、このような関係を考慮して、横力からスリップ角を換算する。ローパスフィルタは、換算されたスリップ角にローパスフィルタ処理を施すことで、高周波領域に含まれる外乱ノイズ等の変動成分を除去し、バンク路走行時で正確な低周波成分を抽出する。
【0017】
加算手段は、ハイパスフィルタ処理済みのスリップ角と、ローパスフィルタ処理済みのスリップ角とを加算することで、外乱ノイズやドリフト誤差がなく、セルフアライニングトルクに対して位相遅れのないスリップ角を演算する。
【0018】
したがって、請求項3に記載の発明によれば、直線水平路やバンク路を走行する場合であっても、外乱ノイズやドリフト誤差がなく、セルフアライニングトルクに対して位相遅れのないセルフアライニングトルク基準値を演算することができる。
【0019】
請求項4に記載の発明は、請求項1から3のいずれか1項に記載のセルフアライニングトルク基準値演算装置と、前記セルフアライニングトルク推定手段により推定されたセルフアライニングトルクと、前記セルフアライニングトルク基準値演算装置により演算されたセルフアライニングトルク基準値とに基づいて、路面摩擦状態を推定する路面摩擦状態推定手段と、を備えている。
【0020】
したがって、請求項4に記載の発明によれば、タイヤと路面間の接地長が変化した場合でも、その変化に応じた判定基準であるセルフアライニングトルク基準値を用いることにより、路面摩擦状態を高精度に推定することができる。
【0021】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しながら詳細に説明する。
【0022】
[第1の実施形態]
図1は、本発明の第1の実施形態に係る路面摩擦状態推定装置の構成を示すブロック図である。路面摩擦状態推定装置は、例えば電動式パワーステアリング装置が搭載された車両に用いることができるが、後述するように油圧式パワーステアリング装置が搭載された車両にも用いることができる。
【0023】
路面摩擦状態推定装置は、操舵トルクを検出する操舵トルクセンサ11と、モータ電流を検出する電流センサ12と、操舵角を検出する操舵角センサ13と、車速を検出する車速センサ14と、横加速度を検出する横加速度センサ15と、各センサから出力された信号を用いて路面摩擦状態を推定する電子制御ユニット(以下「ECU」という。)20とを備えている。
【0024】
操舵トルクセンサ11は、ステアリングシャフトと同軸上に取り付けられており、操舵軸に作用する操舵トルクに応じたセンサ信号を出力して、ECU20に供給する。電流センサ12は、電動式パワーステアリング装置で使用される電動モータのモータ電流に応じたセンサ信号を出力して、ECU20に供給する。
【0025】
操舵角センサ13は、ドライバの操舵による操舵角θに応じたセンサ信号を出力し、ECU20に供給する。車速センサ14は、車速(車体速度)uに応じたセンサ信号を出力して、ECU20に供給する。また、横加速度センサ15は、車両の横方向の加速度(横加速度)に応じたセンサ信号を出力し、ECU20に供給する。
【0026】
図2は、ECU20の機能的な構成を示すブロック図である。ECU20は、操舵トルクを検出する操舵トルク検出部21と、アシストトルクを検出するアシストトルク検出部22と、SATを推定するSAT推定部23と、スリップ角を推定するスリップ角推定部24と、スリップ角に基づいてSATモデル値を演算するSATモデル値演算部25と、を備えている。
【0027】
ECU20は、さらに、SAT推定値とSATモデル値との比を演算するSAT比演算部26と、SAT基準値を演算するSAT基準値演算部27と、グリップ度を推定するグリップ度推定部28と、路面摩擦係数(以下「路面μ」という。)を推定する路面μ推定部29とを備えている。
【0028】
操舵トルク検出部21は、操舵トルクセンサ11のセンサ信号に基づいて、ドライバが操舵したときに作用する操舵トルクを検出し、検出した操舵トルクをSAT推定部23に供給する。
【0029】
アシストトルク検出部22は、電流センサ12のセンサ信号に基づくモータ電流と、予め設定されたパラメータ(例えば、ピニオンリード、ボールネジリード、アシストモータトルク係数)とに基づいて、電動式パワーステアリング装置に作用するアシストトルクを検出し、アシストトルクをSAT推定部23に供給する。なお、アシストトルク検出部22は、上記モータ電流の代わりに、電動式パワーステアリング装置のモータに出力する電流指令値を使ってもよい。
【0030】
SAT推定部23は、操舵トルク検出部21で検出された操舵トルクと、アシストトルク検出部22で検出されたアシストトルクとの和を演算することで、操舵系の摩擦を除去して、路面とタイヤ間で発生するSATを推定する。
【0031】
図3は、操舵トルクとアシストトルクの和に対するSAT推定値を示す図である。2本の直線の幅は、操舵系の摩擦によるヒステリシス特性の大きさを表したものである。また、それぞれの直線の傾きは1である。
【0032】
図4は、ヒステリシス特性の除去方法を説明するために表した操舵トルクとアシストトルクの和に対するSAT推定値を示す図である。
【0033】
操舵トルクとアシストトルクの和がゼロ、スリップ角もゼロとなる直進状態では、ヒステリシス特性は発生しておらず、このときのSAT推定値は0となる。
【0034】
次に操舵が行われ、SATが発生した場合、SAT推定値は、操舵トルクとアシストトルクの和に対し傾きKで演算される。具体的には、SAT推定部23は、離散化されたロジックにより、次の(1)式を演算する。
【0035】
【数1】
Figure 2004074845
【0036】
ただし、TSATはSAT推定値、TDAは操舵トルクとアシストトルクの和である。また、クーロン摩擦等によって操舵トルクとアシストトルクの和が変動しても、SAT推定値の変動は小さいことを表現するために、傾きKは1に比較して小さく設定されている。
【0037】
操舵が行われた場合、(1)式によるSAT推定値は、図4におけるA点まで達する。さらに、操舵トルクとアシストトルクの和が増加する場合には、SAT推定値は、モデルの下限を示す直線、すなわち(2)式に従って増加する。
【0038】
【数2】
Figure 2004074845
【0039】
さらに操舵が行われ、B点まで達したところで切り増しが終了し、操舵トルクとアシストトルクの和が減少し始めた場合には、傾きKで(1)式に従ってSAT推定値は減少する。この領域では、操舵トルクとアシストトルクの和の変動に対し、SAT推定値の変動は小さくなるように設定されている。これは、旋回時の保舵状態において、ドライバの操舵力が多少変化しても、パワーステアリング装置のクーロン摩擦等の影響によってSAT推定値に影響が現れないようにしたものである。
【0040】
なお、B点からSATの減少によって到達したC点において、再び操舵トルクとアシストトルクの和が増加する場合には、(1)式に従いB点に向かってSAT推定値は増加する。また、切戻しによりC点からさらに操舵トルクとアシストトルクの和が減少し、モデルの上限に達した場合には、SAT推定値は上限を示す直線、すなわち(2)式に従って減少する。このような2種類の傾きの設定によって、ヒステリシス特性が除去される。そして、SAT推定部23は、このようにして得られたSAT推定値をSAT比演算部26及びグリップ度推定部28に供給する。
【0041】
スリップ角推定部24は、操舵角センサ13のセンサ信号に基づく操舵角θ[rad]と、車速センサ14のセンサ信号に基づく車速u[m/s]とに基づいて、前輪タイヤのスリップ角である前輪スリップ角α[rad]を推定する。ここで、前輪スリップ角αは、車両運動の動特性を利用すると、(3)式及び(4)式の状態方程式によって表される。
【0042】
【数3】
Figure 2004074845
【0043】
ただし、v:横速度[m/s]、r:ヨーレート[rad/s]、u:車速[m/s]、c:前輪コーナリングパワー[N/rad]、c:後輪コーナリングパワー[N/rad]、L:前軸重心間距離[m]、L:後軸重心間距離[m]、M:車両質量[kg]、I:ヨー慣性[kgm]、g:ハンドル実舵間ギヤ比である。
【0044】
上記(3)式及び(4)式をサンプル時間τで離散化し、車速uの関数として表現すると、次の(5)式及び(6)式が得られる。
【0045】
【数4】
Figure 2004074845
【0046】
ただし、kはサンプリング番号である。また、(5)式のA及びBは、次の(7)式で表される。
【0047】
【数5】
Figure 2004074845
【0048】
スリップ角推定部24は、サンプル時間τ毎に、(5)から(7)式に従って演算することで前輪スリップ角αを推定し、前輪スリップ角αをSATモデル値演算部25に供給する。
【0049】
SATモデル値演算部25は、前輪スリップ角αを用いてSATモデル値を演算する。ここで、SATモデル値とは、設計の基準となるノミナル接地長の状態において高グリップ状態を仮定したモデル、すなわちスリップ角0で線形化された線形モデルのSAT値をいう。具体的には、次の(8)式を演算する。
【0050】
【数6】
Figure 2004074845
【0051】
ただし、K:車両の荷重変化やタイヤ空気圧低下がない場合のSATモデル値の前輪スリップ角に対する原点勾配(SAT勾配)である。SATモデル値は、(8)式のように原点勾配Kと前輪スリップ角αの積で表され、車両の荷重変化やタイヤ空気圧低下がなく、かつ高グリップ状態の理論的なSAT値である。そして、SATモデル値演算部25は、(8)式に従って演算されたSATモデル値をSAT比演算部26に供給する。
【0052】
SAT比演算部26は、SAT推定部23で得られたSAT推定値と、SATモデル値演算部25で演算されたSATモデル値とを用いて、SAT推定値のSATモデル値に対する比であるSAT比(SAT推定値/SATモデル値)を演算する。ここでは、オンライン同定法を用いてSAT比を演算する。具体的には、次の(9)式から(11)式に従ってSAT比を導出する。
【0053】
【数7】
Figure 2004074845
【0054】
ただし、θ:推定パラメータ(第1要素:SAT推定値のSATモデル値に対する比、第2要素:操舵中立点移動などによって生じるドリフト成分)、λ:忘却係数、k:サンプル点番号である。
【0055】
図5は、SATモデル値とSAT推定値との関係を示す図である。(9)式から(11)式のSAT比の演算アルゴリズムは、図5に示す直線の勾配を第1要素、上記直線の切片を第2要素とする推定パラメータθを求めるものである。なお、操舵中立点移動がない場合には、第2要素の切片は0となる。
【0056】
ここで、荷重変化やタイヤ空気圧低下は、応答速度が比較的遅いものである。そこで、SAT比の演算アルゴリズムは、速い応答を必要としないので、ドライバが操舵を何回か繰り返したときの図5に示す軌跡に基づいて推定パラメータθを求めることが好ましく、本実施形態ではオンラインの最小自乗法を適用している。
【0057】
SAT基準値演算部27は、SAT比演算部26から供給されたSAT比に基づいて、SATモデル値演算部25で演算されたSATモデル値を必要に応じて修正することでSAT基準値を演算する。
【0058】
具体的には、SAT基準値演算部27は、所定時間内のSAT比の最大値が閾値を超えたか否かを判定し、所定時間内のSAT比の最大値が閾値を超えていないときは、SATモデル値をそのままSAT基準値として出力する。
【0059】
一方、所定時間内のSAT比の最大値が閾値を超えたときは、荷重増加やタイヤ空気圧低下によってタイヤと路面間の接地長が増加し、SAT勾配が大きくなったと判定して、SATモデル値を上方修正してSAT基準値を求める。上方修正のための演算式は次の(12)式である。
【0060】
【数8】
Figure 2004074845
【0061】
ただし、TSAT0m:SAT基準値、TSAT0:修正前のSATモデル値、γ:上方修正のためのパラメータであり、本実施形態では所定時間内のSAT比の最大値である。また、閾値としては、例えば「1.2」を用いることができる。なお、走行中に空気圧の調圧は行われないことを考慮して、一定時間以上の停止状態が続かない限り、γは減少しないパラメータとして設定してもよい。そして、SAT基準値演算部27は、以上のようにして求められたSAT基準値TSATm0をグリップ度推定部28に供給する。
【0062】
グリップ度推定部28は、SAT推定部23で推定されたSAT推定値TSATと、SAT基準値演算部27で演算されたSAT基準値TSATm0とに基づいて、次の(13)式に従って、グリップ度εを推定する。
【0063】
【数9】
Figure 2004074845
【0064】
なお、グリップ度推定部28は、上述した手法によってグリップ度εを推定する場合に限らず、例えば、SAT基準値TSATm0とSAT推定値TSATの関数でグリップ度εを表してもよいし、SAT基準値TSATm0とSAT推定値TSATの2次元マップでグリップ度εを記述してもよい。
【0065】
路面μ推定部29は、グリップ度推定部28で推定されたグリップ度εが所定の判定基準以下(例えば、ε≦0.5)の状態になったときに、当該グリップ度εと横加速度センサ15のセンサ信号に基づく横加速度gとから路面μを推定する。
【0066】
ここで、路面μは、次の(14)式によって表される。
【0067】
【数10】
Figure 2004074845
【0068】
ただし、gは重力加速度である。また、gfyは前輪位置横加速度であり、次の(15)式で表される。
【0069】
【数11】
Figure 2004074845
【0070】
このように求められる路面μは、グリップ度εが小さいほど、すなわち限界に近いほど推定精度が向上する。そこで、路面μ推定部29は、上述のように、グリップ度εが所定の判定基準以下になったときに、(14)式及び(15)式に従って路面μを推定する。
【0071】
以上のように、第1の実施形態に係る路面摩擦状態推定装置は、タイヤと路面間の接地長が初期状態の場合には、SATモデル値をSAT基準値として演算し、当該SAT基準値とSAT推定値に基づいて路面摩擦状態を推定する。
【0072】
そして、積載荷重の増加やタイヤ空気圧低下によってタイヤと路面間の接地長が増加して、SATのスリップ角に対する勾配が増加した場合には、SATモデル値だけでなく現在のSAT推定値も考慮してSAT基準値を演算することができる。これにより、上記路面摩擦状態は、タイヤと路面間の接地長の変化に応じて、横方向の摩擦力余裕に相当するグリップ度εを高精度に推定することができる。そして、グリップ度εが判定基準以下になったときには、路面μを高精度に推定することができる。
【0073】
[第2の実施形態]
つぎに、本発明の第2の実施形態について説明する。なお、第1の実施形態と同様の部位には同様の符号を付し、重複する説明は省略する。
【0074】
図6は、第2の実施形態に係る路面摩擦状態推定装置の構成を示すブロック図である。路面摩擦状態推定装置は、図1に示した構成に加えて、ヨーレートを検出するヨーレートセンサ16を更に備えている。
【0075】
図7は、ECU20の機能的な構成を示すブロック図である。ECU20は、図2に示す構成に加えて、スリップ角にハイパスフィルタ処理を施すハイパスフィルタ31と、車両の前輪横力を演算する横力演算部32と、前輪横力をスリップ角に換算するスリップ角換算部33と、換算されたスリップ角にローパスフィルタ処理施すローパスフィルタ34と、フィルタ処理済みの2つのスリップ角を加算する加算器35と、を備えている。
【0076】
ハイパスフィルタ31は、スリップ角推定部24で推定された前輪スリップ角αにハイパスフィルタ処理を施す。ここで、スリップ角推定部24で推定された前輪スリップ角αは、バンク路走行時に操舵中立点が移動した場合には低周波領域にドリフト誤差を含んでしまうが、高周波領域にはSAT推定値に対して位相遅れのない信号成分を含んでいる。そこで、ハイパスフィルタ31は、前輪スリップ角αにハイパスフィルタ処理を施すことで、低周波領域のドリフト誤差を除去すると共に、SAT推定値に対して位相遅れのない高周波成分のみを抽出する。
【0077】
ハイパスフィルタ31は、1次の離散フィルタによって構成される。ここで、連続時間における1次ハイパスフィルタは、(16)式の伝達関数によって表される。
【0078】
【数12】
Figure 2004074845
【0079】
ただし、ωは折点周波数である。(16)式をTustin変換などの手法を用いて変換すると、離散時間のハイパスフィルタを設計することができる。Tustin変換において、サンプリング時間をT、時間進みオペレータをzとした場合、sは(17)式で表される。
【0080】
【数13】
Figure 2004074845
【0081】
(17)式を(16)式に代入すると、離散時間のハイパスフィルタは、(18)式で表される。
【0082】
【数14】
Figure 2004074845
【0083】
ハイパスフィルタ31は、(18)式に従って前輪スリップ角αにハイパスフィルタ処理を施し、フィルタ処理された前輪スリップ角αを加算器35に供給する。
【0084】
横力演算部32は、横加速度センサ15のセンサ信号に基づく横加速度gと、ヨーレートセンサ16のセンサ信号に基づくヨーレートrとを用いて、前輪タイヤに生じた横力である前輪横力Fを演算する。
【0085】
ここで、前輪横力Fは、横加速度gについては次の(19)式の運動方程式を満たし、ヨーレートrについては次の(20)式の運動方程式を満たす。
【0086】
【数15】
Figure 2004074845
【0087】
ただし、F:後輪横力である。また、横加速度gは、次の(21)式の通りである。
【0088】
【数16】
Figure 2004074845
【0089】
(19)式及び(20)式を整理すると、前輪横力Fは(22)式のようになる。
【0090】
【数17】
Figure 2004074845
【0091】
そこで、横力演算部32は、ヨーレートrと横加速度gとを用いて、(14)式に従って前輪横力Fを演算し、前輪横力Fをスリップ角換算部33に供給する。
【0092】
スリップ角換算部33は、横力演算部32から供給された前輪横力Fを前輪コーナリングパワーcで除算することで、前輪横力Fを前輪スリップ角αに換算する。具体的には、次の(23)式を演算する。
【0093】
【数18】
Figure 2004074845
【0094】
ローパスフィルタ34は、スリップ角換算部33で演算された前輪スリップ角αにローパスフィルタ処理を施す。ここで、スリップ角換算部33で演算された前輪スリップ角αは、高周波領域に路面外乱の影響を受けたノイズや位相遅れ等の変動成分を含んでいるものの、バンク路走行時であっても影響されない低周波成分を含んでいる。そこで、ローパスフィルタ34は、前輪スリップ角αにローパスフィルタ処理を施すことで、高周波領域の変動成分を除去すると共に、正確に演算された低周波成分のみを抽出する。
【0095】
具体的には、ローパスフィルタ34は、ハイパスフィルタ31と同じ折点周波数を有する1次の離散フィルタとして構成されている。ここで、連続時間における1次ローパスフィルタは、次の(24)式の伝達関数によって表される。
【0096】
【数19】
Figure 2004074845
【0097】
(24)式をTustin変換すると、離散時間のローパスフィルタとなり、次の(25)式で表される。
【0098】
【数20】
Figure 2004074845
【0099】
ローパスフィルタ34は、(25)式に従って前輪スリップ角αにローパスフィルタ処理を施し、フィルタ処理された前輪スリップ角αを加算器35に供給する。
【0100】
なお、折れ点周波数は、特に限定されるものではないが、路面外乱に伴うノイズを除去できるように、また、バンク路進入時に路面カント変化速度に対応できるような周波数であるのが好ましい。
【0101】
加算器35は、ハイパスフィルタ31から供給された前輪スリップ角αと、ローパスフィルタ34から供給された前輪スリップ角αとを加算して、統合スリップ角αを演算する。すなわち、次の(26)式を演算する。
【0102】
【数21】
Figure 2004074845
【0103】
ここで、ハイパスフィルタ31の伝達関数とローパスフィルタ34の伝達関数の和は、1となる。これは、同一信号をハイパスフィルタとローパスフィルタに入力し、各フィルタの出力を加算した場合、元の信号が復元されることを意味している。したがって、加算器35は、ドリフト誤差やノイズ等の影響を受けないスリップ角αを演算することができる。
【0104】
SATモデル値演算部25は、加算器35で得られた統合スリップ角αを用いて、車両の荷重変化やタイヤ空気圧低下がない場合のSATモデル値を演算する。具体的には、次の(27)式を演算する。
【0105】
【数22】
Figure 2004074845
【0106】
これにより、SATモデル値演算部25は、バンク路走行時の操舵中立点移動によるドリフト誤差や、路面外乱等によるノイズの影響を受けることなく、車両の荷重変化やタイヤ空気圧低下がない場合のSATモデル値を高精度に演算することができる。
【0107】
SAT比演算部26は、SAT推定部23で得られたSAT推定値と、SATモデル値演算部25で演算されたSATモデル値とを用いて、SAT比(SAT推定値/SATモデル値)を演算する。本実施形態では、次の(28)式から(30)式に従ってSAT比を導出する。
【0108】
【数23】
Figure 2004074845
【0109】
ただし、θ:推定パラメータ(SAT推定値のSATモデル値に対する比)である。つまり、推定パラメータθはSAT比のみとなる。また、第1の実施形態における(10)式及び(11)式のP[k]は2行2列の行列であったのに対して、(29)式及び(30)式のP[k]はスカラー値となる。
【0110】
したがって、本実施形態に係るSAT比演算部26は、操舵中立点移動によるドリフト誤差を考慮する必要がないので、指定パラメータθの2次要素が不要になり、SAT比を演算する際のオンライン同定演算の負荷を大きく低減することができる。なお、SAT基準値演算部27、グリップ度推定部28は、グリップ度推定部29は、それぞれ第1の実施形態と同様に演算処理を実行する。
【0111】
以上のように、本実施形態に係る路面摩擦状態推定装置は、ハイパスフィルタ31及びローパスフィルタ34によって抽出された統合スリップ角からSAT基準値TSATm0を演算し、SAT基準値TSATm0とSAT推定部23で推定されたSAT推定値TSATとの比を演算することで、グリップ度ε及び路面μを高精度に推定することができる。
【0112】
特に、路面摩擦状態推定装置は、ハイパスフィルタ31及びローパスフィルタ34を用いることで、バンク路走行時の操舵中立点の移動によるドリフト誤差を除去すると共に、路面外乱の影響を受けることなく、精度よく路面摩擦状態を推定することができる。さらに、路面摩擦状態推定装置は、ドリフト誤差を考慮することなくSAT比を演算するので、オンライン同定演算の負荷を大きく低減することができる。
【0113】
ここで、ハイパスフィルタ31及びローパスフィルタ34の折点周波数は、固定であってもよいが、バンク路進入時の路面カント変化速度(路面が傾く変化速度)以上に設定されることが必要である。ここで、路面カント変化速度は車速に比例するものである。そこで、ハイパスフィルタ31及びローパスフィルタ34は、車速が大きくなるに従って、高周波数の折点周波数になるように構成されてもよい。
【0114】
路面摩擦状態推定装置は、このような構成のハイパスフィルタ31及びローパスフィルタ34を備えることで、高速でバンクに進入する場合であっても、正確に路面摩擦状態を推定することができる。
【0115】
また、ハイパスフィルタ31及びローパスフィルタ34は、スリップ角推定値αとスリップ角換算値αとの偏差が大きくなるに従って、高周波数の折点周波数になるように構成されてもよい。その理由として、スリップ角推定値αとスリップ角換算値αとの偏差が大きくなった時は、バンク路走行時や、横力とスリップ角との関係が線形性を有しない非線形領域になった時である。このような時、操舵中立点変化やタイヤの非線形の影響を受けない前輪横力Fに基づくスリップ角換算値αを利用するのが好ましい。
【0116】
路面摩擦状態推定装置は、このような構成のハイパスフィルタ31及びローパスフィルタ34を備えることで、車両運動状態に応じて、操舵角に基づくスリップ角推定値αよりも前輪横力Fに基づくスリップ角換算値αを使用する割合を高めることができる。この結果、例えば急激にバンク路に進入した場合や、急激にスピン状態に陥った場合であっても、正確に路面摩擦状態を推定することができる。
【0117】
なお、本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲に記載された範囲内で様々な設計上の変更を行うことができる。
【0118】
例えば、上述した実施の形態では、電動式パワーステアリング装置を用いてグリップ度や路面μを推定する場合を例に挙げて説明したが、油圧式パワーステアリング装置を用いることもできる。この場合、油圧式パワーステアリング装置の油圧等を計測して操舵トルク及びアシストトルクに対応するトルクをそれぞれ検出することで、上述した実施の形態と同様にしてグリップ度や路面μを推定することができる。
【0119】
また、上述した実施の形態では、1次伝達関数を用いてハイパスフィルタ31及びローパスフィルタ34を表したが、その他の関数を用いてもよい。
【0120】
【発明の効果】
本発明に係るセルフアライニングトルク基準値演算装置は、セルフアライニングトルクとセルフアライニングトルクモデル値との比であるセルフアライニングトルク比を演算し、セルフアライニングトルク比の最大値が閾値を超えたときに、セルフアライニングトルク比とセルフアライニングトルクモデル値とに基づくセルフアライニングトルク基準値を演算することにより、タイヤと路面間の接地長の変化を検出して、その接地長に最適なセルフアライニングトルク基準値を演算することができる。
【0121】
また、本発明に係る路面摩擦状態推定装置は、セルフアライニングトルク推定手段により推定されたセルフアライニングトルクと、セルフアライニングトルク基準値演算装置により演算されたセルフアライニングトルク基準値とに基づいて、路面摩擦状態を推定することにより、タイヤと路面間の接地長の変化に対応して高精度に路面摩擦状態を推定することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る路面摩擦状態推定装置の構成を示すブロック図である。
【図2】ECUの機能的な構成を示すブロック図である。
【図3】操舵トルクとアシストトルクの和に対するSAT推定値を示す図である。
【図4】ヒステリシス特性の除去方法を説明するために表した操舵トルクとアシストトルクの和に対するSAT推定値を示す図である。
【図5】SATモデル値とSAT推定値との関係を示す図である。
【図6】本発明の第2の実施形態に係る路面摩擦状態推定装置の構成を示すブロック図である。
【図7】第2の実施形態に係るECUの機能的な構成を示すブロック図である。
【符号の説明】
21 操舵トルク検出部
22 アシストトルク検出部
23 SAT推定部
24 スリップ角推定部
25 SATモデル値演算部
26 SAT比演算部
27 SAT基準値演算部
28 グリップ度推定部
29 路面μ推定部

Claims (4)

  1. セルフアライニングトルクを推定するセルフアライニングトルク推定手段と、
    スリップ角を推定するスリップ角推定手段と、
    前記スリップ角推定手段により推定されたスリップ角を用いて、セルフアライニングトルクモデル値を演算するセルフアライニングトルクモデル値演算手段と、
    前記セルフアライニングトルク推定手段により推定されたセルフアライニングトルクと、前記セルフアライニングトルクモデル値演算手段により演算されたセルフアライニングトルクモデル値と、の比であるセルフアライニングトルク比を演算するセルフアライニングトルク比演算手段と、
    前記セルフアライニングトルク比演算手段により演算されたセルフアライニングトルク比の最大値が閾値を超えたときに、前記セルフアライニングトルク比と前記セルフアライニングトルクモデル値とに基づくセルフアライニングトルク基準値を演算するセルフアライニングトルク基準値演算手段と、
    を備えたセルフアライニングトルク基準値演算装置。
  2. 前記セルフアライニングトルク基準値演算手段は、
    前記セルフアライニングトルク比の最大値が閾値を超えていないときに、前記セルフアライニングトルクモデル値をセルフアライニングトルク基準値として出力する
    請求項1に記載のセルフアライニングトルク基準値演算装置。
  3. 前記スリップ角推定手段により推定されたスリップ角にハイパスフィルタ処理を施すハイパスフィルタと、
    横力を演算する横力演算手段と、
    前記横力演算手段により演算された横力をスリップ角に換算するスリップ角換算手段と、
    前記スリップ角換算手段により換算されたスリップ角にローパスフィルタ処理を施すローパスフィルタと、
    前記ハイパスフィルタによりハイパスフィルタ処理されたスリップ角と、前記ローパスフィルタによりフィルタ処理されたスリップ角とを加算する加算手段と、を更に備え、
    前記セルフアライニングトルクモデル値演算手段は、前記加算手段により加算されたスリップ角に基づいて、セルフアライニングトルクモデル値を演算する
    請求項1または2に記載のセルフアライニングトルク基準値演算装置。
  4. 請求項1から3のいずれか1項に記載のセルフアライニングトルク基準値演算装置と、
    前記セルフアライニングトルク推定手段により推定されたセルフアライニングトルクと、前記セルフアライニングトルク基準値演算装置により演算されたセルフアライニングトルク基準値とに基づいて、路面摩擦状態を推定する路面摩擦状態推定手段と、
    を備えた路面摩擦状態推定装置。
JP2002234586A 2002-08-12 2002-08-12 路面摩擦状態推定装置 Expired - Fee Related JP3860518B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002234586A JP3860518B2 (ja) 2002-08-12 2002-08-12 路面摩擦状態推定装置
US10/626,577 US20040133330A1 (en) 2002-08-12 2003-07-25 Self aligning torque reference value calculating apparatus, method thereof, and road surface friction state estimating apparatus, method thereof
DE10337086A DE10337086A1 (de) 2002-08-12 2003-08-12 Vorrichtung und Verfahren zur Berechnung eines Rückstellmoment-Referenzwertes, und Vorrichtung und Verfahren zur Abschätzung des Reibungszustandes einer Straßenoberfläche

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234586A JP3860518B2 (ja) 2002-08-12 2002-08-12 路面摩擦状態推定装置

Publications (2)

Publication Number Publication Date
JP2004074845A true JP2004074845A (ja) 2004-03-11
JP3860518B2 JP3860518B2 (ja) 2006-12-20

Family

ID=31492455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234586A Expired - Fee Related JP3860518B2 (ja) 2002-08-12 2002-08-12 路面摩擦状態推定装置

Country Status (3)

Country Link
US (1) US20040133330A1 (ja)
JP (1) JP3860518B2 (ja)
DE (1) DE10337086A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081006A (ja) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp 車両用走行制御装置
JP2009006985A (ja) * 2007-05-25 2009-01-15 Nsk Ltd 電動パワーステアリング装置
JP2009062036A (ja) * 2007-08-10 2009-03-26 Nsk Ltd 車両用舵角推定装置及びそれを搭載した電動パワーステアリング装置
JP2013216267A (ja) * 2012-04-11 2013-10-24 Toyota Motor Corp 車両制御装置
CN107380254A (zh) * 2016-04-25 2017-11-24 操纵技术Ip控股公司 使用系统状态预测的电动助力转向控制
US10442441B2 (en) 2015-06-15 2019-10-15 Steering Solutions Ip Holding Corporation Retractable handwheel gesture control
US10496102B2 (en) 2016-04-11 2019-12-03 Steering Solutions Ip Holding Corporation Steering system for autonomous vehicle
WO2021111943A1 (ja) * 2019-12-02 2021-06-10 Toyo Tire株式会社 走行支援システムおよび走行支援方法
WO2023048085A1 (ja) * 2021-09-27 2023-03-30 日立Astemo株式会社 車両制御装置および車両制御システム

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3939612B2 (ja) * 2002-08-12 2007-07-04 株式会社豊田中央研究所 路面摩擦状態推定装置
EP1727725B1 (de) * 2004-03-23 2010-09-15 Continental Teves AG & Co. oHG Reifenseitenkraftbestimmung in elektrischen lenksystemen
DE102005002614A1 (de) * 2005-01-20 2006-08-03 Bayerische Motoren Werke Ag Lenksystem für ein Kraftfahrzeug
DE102006022391A1 (de) * 2006-05-12 2007-11-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Verbesserung des Fahrkomforts bei einem Lenkassistenzsystem
DE102006054805B4 (de) * 2006-11-21 2009-11-26 Continental Automotive Gmbh Verfahren und Vorrichtung zum Schätzen einer Reibkennzahl
EP1995150A3 (en) * 2007-05-25 2009-05-06 NSK Ltd. Electric power steering apparatus
US8290662B2 (en) * 2008-04-25 2012-10-16 Ford Global Technologies, Llc System and method for tire cornering power estimation and monitoring
KR100963967B1 (ko) * 2008-11-19 2010-06-15 현대모비스 주식회사 전동식 파워스티어링 시스템의 조향 보상방법
ATE534567T1 (de) * 2009-04-07 2011-12-15 Gm Global Tech Operations Inc Reibwertschätzung und erfassung für ein elektrisches servolenksystem
DE102009002245B4 (de) * 2009-04-07 2018-05-03 Robert Bosch Automotive Steering Gmbh Verfahren zur Ermittlung des Reibwerts zwischen Reifen und Fahrbahn in einem Fahrzeug
EP2489577B1 (en) * 2011-02-16 2017-12-13 Steering Solutions IP Holding Corporation Electric power steering control methods and systems using hysteresis compensation
US8634986B2 (en) * 2011-03-30 2014-01-21 GM Global Technology Operations LLC Friction-based state of health indicator for an electric power steering system
US10272919B2 (en) * 2014-10-09 2019-04-30 Gm Global Technology Operations, Llc Methods and systems for estimating road surface friction coefficient using self aligning torque
US9616773B2 (en) 2015-05-11 2017-04-11 Uber Technologies, Inc. Detecting objects within a vehicle in connection with a service
US20170168500A1 (en) * 2015-12-10 2017-06-15 Uber Technologies, Inc. System and method to determine traction ability of vehicles in operation
US10712160B2 (en) 2015-12-10 2020-07-14 Uatc, Llc Vehicle traction map for autonomous vehicles
US9841763B1 (en) 2015-12-16 2017-12-12 Uber Technologies, Inc. Predictive sensor array configuration system for an autonomous vehicle
US9840256B1 (en) 2015-12-16 2017-12-12 Uber Technologies, Inc. Predictive sensor array configuration system for an autonomous vehicle
US9990548B2 (en) 2016-03-09 2018-06-05 Uber Technologies, Inc. Traffic signal analysis system
US9944314B2 (en) * 2016-04-13 2018-04-17 Ford Global Technologies, Llc Steering assist system and related methods
US10459087B2 (en) 2016-04-26 2019-10-29 Uber Technologies, Inc. Road registration differential GPS
US9672446B1 (en) 2016-05-06 2017-06-06 Uber Technologies, Inc. Object detection for an autonomous vehicle
US10852744B2 (en) 2016-07-01 2020-12-01 Uatc, Llc Detecting deviations in driving behavior for autonomous vehicles
US10384708B2 (en) 2016-09-12 2019-08-20 Steering Solutions Ip Holding Corporation Intermediate shaft assembly for steer-by-wire steering system
US10399591B2 (en) 2016-10-03 2019-09-03 Steering Solutions Ip Holding Corporation Steering compensation with grip sensing
US10310605B2 (en) 2016-11-15 2019-06-04 Steering Solutions Ip Holding Corporation Haptic feedback for steering system controls
US10780915B2 (en) 2016-12-07 2020-09-22 Steering Solutions Ip Holding Corporation Vehicle steering system having a user experience based automated driving to manual driving transition system and method
US10449927B2 (en) 2017-04-13 2019-10-22 Steering Solutions Ip Holding Corporation Steering system having anti-theft capabilities
US10882527B2 (en) 2017-11-14 2021-01-05 Neapco Intellectual Property Holdings, Llc Torque modulation to linearize tire slip characteristics
US11334753B2 (en) 2018-04-30 2022-05-17 Uatc, Llc Traffic signal state classification for autonomous vehicles
CN114245782B (zh) * 2019-08-09 2023-12-05 日本电产株式会社 电动助力转向装置、在电动助力转向装置中使用的控制装置以及控制方法
CN113978470B (zh) * 2021-12-13 2024-01-12 郑州轻工业大学 轮胎与路面摩擦力在线快速估计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956931A (en) * 1973-11-06 1976-05-18 Uniroyal Inc. Method for determining the preferred direction of rotation of a tire
JPH07186926A (ja) * 1993-12-28 1995-07-25 Mazda Motor Corp 車両のトラクション制御装置
DE19910967C1 (de) * 1999-03-12 2000-09-21 Avl Deutschland Gmbh Verfahren zum Simulieren des Verhaltens eines Fahrzeugs auf einer Fahrbahn
JP2002012160A (ja) * 2000-06-29 2002-01-15 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
JP2003341500A (ja) * 2002-05-24 2003-12-03 Aisin Seiki Co Ltd アンチスキッド制御装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081006A (ja) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp 車両用走行制御装置
US8155818B2 (en) 2006-09-28 2012-04-10 Mitsubishi Electric Corporation Vehicle control system
JP2009006985A (ja) * 2007-05-25 2009-01-15 Nsk Ltd 電動パワーステアリング装置
JP2009062036A (ja) * 2007-08-10 2009-03-26 Nsk Ltd 車両用舵角推定装置及びそれを搭載した電動パワーステアリング装置
JP2013216267A (ja) * 2012-04-11 2013-10-24 Toyota Motor Corp 車両制御装置
US10442441B2 (en) 2015-06-15 2019-10-15 Steering Solutions Ip Holding Corporation Retractable handwheel gesture control
US10496102B2 (en) 2016-04-11 2019-12-03 Steering Solutions Ip Holding Corporation Steering system for autonomous vehicle
CN107380254A (zh) * 2016-04-25 2017-11-24 操纵技术Ip控股公司 使用系统状态预测的电动助力转向控制
CN107380254B (zh) * 2016-04-25 2020-09-01 操纵技术Ip控股公司 使用系统状态预测的电动助力转向控制
WO2021111943A1 (ja) * 2019-12-02 2021-06-10 Toyo Tire株式会社 走行支援システムおよび走行支援方法
WO2023048085A1 (ja) * 2021-09-27 2023-03-30 日立Astemo株式会社 車両制御装置および車両制御システム

Also Published As

Publication number Publication date
DE10337086A1 (de) 2004-03-04
JP3860518B2 (ja) 2006-12-20
US20040133330A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP2004074845A (ja) セルフアライニングトルク基準値演算装置及び路面摩擦状態推定装置
JP4019813B2 (ja) 物理量推定装置、路面摩擦状態推定装置、操舵角中立点推定装置、及び空気圧低下推定装置
JP3939612B2 (ja) 路面摩擦状態推定装置
JP4127062B2 (ja) 横加速度センサのドリフト量推定装置、横加速度センサの出力補正装置及び路面摩擦状態推定装置
JP4926715B2 (ja) 車両を安定化させる際に車両操作者を支援するための方法及び装置
US5740040A (en) Electric power steering apparatus with enhanced road feel
EP1627790B1 (en) Estimating method for road friction coefficient and vehicle slip angle estimating method
JP2001334921A (ja) 車両の路面摩擦係数推定装置
EP2998201B1 (en) Control apparatus for electric-powered power steering apparatus
JP3800901B2 (ja) 車線追従走行制御装置
JP5195132B2 (ja) 車両用舵角推定装置及びそれを搭載した電動パワーステアリング装置
JP4071529B2 (ja) セルフアライニングトルク推定装置及び横グリップ度推定装置
JP2005324737A (ja) 車両の走行状態制御装置
US20220274643A1 (en) Steering holding determination device, steering control device, and steering device
JP2002332882A (ja) 車両の旋回速度の調整方法及び装置
JP2005041244A (ja) 荷重移動状態推定装置及びローリング状態推定装置
JP4251023B2 (ja) タイヤグリップ度推定装置
JP3217700B2 (ja) 車体横すべり角検出装置
JP3201282B2 (ja) 車両用ヨーレイト推定装置
JP6187272B2 (ja) 路面状態判定装置
JP2001133391A (ja) 路面摩擦係数推定装置
JP2008247248A (ja) 車両用操舵装置
JP3801437B2 (ja) タイヤ特性判定装置
JP2004045402A (ja) 路面摩擦状態推定装置
JP3781905B2 (ja) 車両挙動検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees