WO2010023980A1 - イオン発生装置及び空気清浄装置 - Google Patents

イオン発生装置及び空気清浄装置 Download PDF

Info

Publication number
WO2010023980A1
WO2010023980A1 PCT/JP2009/055141 JP2009055141W WO2010023980A1 WO 2010023980 A1 WO2010023980 A1 WO 2010023980A1 JP 2009055141 W JP2009055141 W JP 2009055141W WO 2010023980 A1 WO2010023980 A1 WO 2010023980A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
air
ion generator
generators
ions
Prior art date
Application number
PCT/JP2009/055141
Other languages
English (en)
French (fr)
Inventor
津田 務
一郎 吉村
西田 弘
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008220329A external-priority patent/JP4528851B2/ja
Priority claimed from JP2008220327A external-priority patent/JP4431625B2/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to KR1020127024218A priority Critical patent/KR101310038B1/ko
Priority to EP09809635A priority patent/EP2338527A4/en
Priority to US13/061,099 priority patent/US9005529B2/en
Priority to KR1020117006853A priority patent/KR101286808B1/ko
Publication of WO2010023980A1 publication Critical patent/WO2010023980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • B03C3/383Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames using radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • F24F8/194Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages by filtering using high voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/13Dispensing or storing means for active compounds
    • A61L2209/134Distributing means, e.g. baffles, valves, manifolds, nozzles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an ion generating device and an air cleaning device for discharging ions generated by an ion generating unit together with air sucked by a blower into a room and purifying indoor air.
  • Air in the living room is contaminated with various substances such as mite dust, pollen and other allergens, floating fungi, viruses, and offensive odors.
  • various substances such as mite dust, pollen and other allergens, floating fungi, viruses, and offensive odors.
  • the density of houses has increased. It is necessary to actively ventilate because pollutants are likely to stay indoors.
  • pollutants are likely to stay indoors.
  • the air purifier includes a blower housed in a housing having a suction port on a rear surface and a discharge port on an upper portion, a filter that allows the air sucked from the suction port to pass through the blower, and an ion generator that generates ions.
  • disassembles indoor pollutants, and cleans indoor air.
  • the ion generator has a positive electrode and a negative electrode that are spaced apart from each other. By applying a potential between the positive electrode and the negative electrode, positive ions are released from the positive electrode, and negative ions are released from the negative electrode. The released positive ions and negative ions are included in the air sucked by the blower, and are discharged into the room from the discharge port together with the air.
  • an ion generator that generates positive and negative ions is disposed in the middle of an internal ventilation path, and the generated ions are discharged together with the air in the ventilation path to an external space.
  • the ions released to the outside together with the air inactivate the suspended particles in the living space and kill the floating bacteria, so that the air in the entire living space is cleaned.
  • a general ion generator generates positive and negative ions by generating a corona discharge by applying a high-voltage AC drive voltage between a needle electrode and a counter electrode or between a discharge electrode and a dielectric electrode. Let Since the generated ions are colorless and odorless, it is not easy to confirm whether or not ions are actually generated.
  • Patent Document 2 discloses a technique for detecting whether or not ions are generated.
  • Patent Document 3 discloses a technique for optimally controlling the amount of ions generated by detecting the amount of ions generated.
  • an ion generator that generates positive and negative ions is disposed in the middle of an internal ventilation path, and the generated ions are discharged together with air to an external space.
  • the ions charging the water molecules in the clean air inactivate the suspended particles in the living space and kill the floating bacteria, so the air in the entire living space is cleaned.
  • a standard ion generator generates a corona discharge by applying a high-voltage alternating current drive voltage between the needle electrode and the counter electrode or between the discharge electrode and the counter electrode, thereby generating positive and negative ions. generate. Further, an ion generator in which each of the above-described electrodes and a circuit for generating a driving voltage are integrated is disclosed (see, for example, Patent Document 4), and an air cleaner incorporating the ion generator has been put into practical use. .
  • the amount of ions generated by the ion generator and the amount of ions in the room released from the discharge port together with the air were measured, and the amount of ions in the room compared to the amount of ions generated by the ion generator. was found to be relatively small.
  • This invention is made
  • the main objective is by arrange
  • the ions generated by the ion generator can be efficiently contained in the air sucked by the blower, the difference between the amount of ions generated by the ion generator and the amount of ions in the room can be reduced, and the amount of ions in the room
  • the present invention has been made in view of such circumstances, and an object of the present invention is to reduce the amount of ions distributed in the released space by driving a plurality of ion generators intermittently. It is an object of the present invention to provide an ion generation device having an extended operating life without causing it to occur, and an air cleaning device including the ion generation device.
  • an ion generation device having an extended operating life without causing it to occur, and an air cleaning device including the ion generation device.
  • a plurality of ion generators are collectively arranged and brought close to each other, there is a concern that the ion generation efficiency of the entire ion generator is reduced due to mutual interference.
  • an object of the present invention is the case where the ion generators are collectively disposed by disposing a plurality of ion generators.
  • an object of the present invention is to provide an ion generator capable of suppressing mutual interference and reducing a decrease in ion generation efficiency, and an air cleaning device including the ion generator.
  • An ion generator includes a housing having a suction port and a discharge port, a blower accommodated in the housing, a filter through which air sucked from the suction port by the blower, and an ion that generates ions. And an air purifier that discharges the ions generated by the ion generator together with the air sucked by the blower from the discharge port.
  • the flow is arranged in a laminar flow portion where the flow becomes a laminar flow.
  • the ions generated by the ion generation unit can be included in the air in a laminar flow unit in which the air flow becomes a laminar flow.
  • the amount of ions contained in the air can be increased, and the amount of ions released into the room can be increased. Therefore, the cleaning of indoor air can be further enhanced.
  • the blower includes an impeller, and includes an air conditioning body that regulates an airflow generated by the rotation of the impeller, and the ion generating unit is disposed on the air conditioning body.
  • a configuration is preferable. According to the present invention, ions can be efficiently included in the air that is conditioned by the air conditioning body and flows through the laminar flow, so that the amount of ions discharged from the discharge port together with the air can be further increased. it can.
  • the ion generator which concerns on this invention sets it as the structure where the said air conditioning body is the casing which accommodates the said impeller.
  • the ions generated by the ion generator can be efficiently included in the air. The amount of ions released from the discharge port together with air can be further increased.
  • the blower includes an impeller and a casing that accommodates the impeller, and is arranged between the casing and the discharge port, and the air is supplied to the discharge port. It is preferable to have a configuration in which a flow path is provided for the flow, and the ion generation unit is disposed in the flow path and the casing.
  • ions can be included in the laminar air flowing through a relatively narrow passage in the casing, and ions are generated in the air blown from the outlet of the casing to the passage.
  • the ions generated by the part can be included. Therefore, the ions generated by the ion generator can be more efficiently contained in the air, and the amount of ions released from the discharge port together with the air can be further increased.
  • the casing has an arc-shaped guide surface for guiding an air flow generated by the rotation of the impeller, and a tangent line of the arc-shaped guide surface from a part of the arc-shaped guide surface. It is preferable to have a configuration in which a blow-out opening that is open in one direction is provided, and the ion generation unit is arranged on the arc-shaped guide surface.
  • ions can be included in the laminar air flowing at a high wind speed through a relatively narrow passage in the casing. Therefore, the ions generated by the ion generator can be more efficiently contained in the air, and the amount of ions released from the discharge port together with the air can be further increased.
  • the ion generator which concerns on this invention sets it as the structure which the said ion generation part is spaced apart and arranged in the direction which cross
  • the ions generated by the ion generator can be more efficiently contained in the air, and the amount of ions released from the discharge port together with the air can be further increased.
  • the ion generator which concerns on this invention sets it as the structure by which the said ion generating part is distribute
  • the existing casing can increase the number of locations where ions are included in the laminar air in a relatively narrow passage in the casing. Therefore, the ions generated by the ion generator can be more efficiently contained in the air, and the amount of ions released from the discharge port together with the air can be further increased.
  • each of the ion generators is arranged so that there is no overlap in the flow direction.
  • the ions generated by each of the ion generators can be included in the laminar air without being canceled, and the ions can be more efficiently included in the air. The amount of ions released from can be further increased.
  • the ion generator according to the present invention has a holding body that holds each of the ion generating portions, the holding body is curved in the flow direction, and a portion corresponding to each of the ion generating portions is opened. It is preferable that each of the ion generating portions is arranged in the opening of the curved surface. According to the present invention, the curved surface of the holding body can be brought into contact with the arcuate guiding surface of the casing for guiding the airflow generated by the rotation of the impeller, so that the plurality of ion generating portions have the same shape. And the ion generation amount of each of the ion generation units can be made uniform.
  • the air purifying apparatus which concerns on this invention is provided with the ion generator as described above, It is characterized by the above-mentioned.
  • the ions generated by the ion generator can be included in the air in a laminar flow part in which the air flow becomes a laminar flow. Therefore, the ions generated by the ion generator can be efficiently contained in the air, the amount of ions contained in the air can be increased, and the amount of ions released into the room can be increased. Air purification can be further enhanced.
  • An ion generator includes a drive circuit that drives each of a plurality of ion generators that generate ions, and the drive circuit periodically connects each of the ion generators to each other. It is configured to drive at different phases.
  • the drive circuit periodically drives each of the plurality of ion generators with different phases.
  • each ion generator is prevented from being influenced by the ions generated by other ion generators (hereinafter referred to as interference), and the energization ratio is reduced to extend the operating life.
  • the ion generator according to the present invention is characterized in that at least one of the plurality of ion generators is separated from other ion generators.
  • At least one ion generator is separated from other ion generators.
  • the ion generators interfere with each other at least by separating the most frequently driven ion generators from each other, thereby reducing the amount of ions generated.
  • the ion generator according to the present invention includes a blower fan that blows out ions generated by the plurality of ion generators to the outside.
  • the blower fan blows out the ions generated by the plurality of ion generators to the outside. This prevents the generated ions from staying in the vicinity of the ion generator and reducing the amount of ions generated, and further suppresses interference between the ion generators. Lead to.
  • the ion generator according to the present invention includes two ion generators, and the drive circuit is configured to alternately drive the respective ion generators.
  • the drive circuit drives the two ion generators alternately.
  • the ion generators are alternately driven in a cycle that maximizes the amount of ions generated by the two ion generators, compared to when the two ion generators are continuously driven.
  • An air purifying apparatus comprises the ion generating apparatus according to any one of the above-described inventions, and a purifier that purifies air that should contain ions generated by the ion generating apparatus.
  • the air purified by the purifier includes the ions generated by the ion generator according to any one of the above-described inventions. Thereby, it is suppressed that several ion generators mutually receive influence, and the ion generator with which the operation life of each ion generator was extended is applied to an air purifier.
  • m positive ion
  • O 2 ⁇ (H 2 O) n negative ion
  • the ion concentration can be tens of thousands / cm 3 in a space with a small volume such as an experimental apparatus, at most 2 to 3,000 in a large space such as an actual living space or work space.
  • the concentration was limited to / cm 3 .
  • the inventors have a laboratory level of 7,000 cells / cm 3 , avian influenza virus up to 99% in 10 minutes, and 50,000 cells / cm 3 , 99.9%. I found that it can be removed. The meaning of each removal rate indicates that 10 / cm 3 and 1 / cm 3 remain, respectively, assuming that 1,000 viruses / cm 3 were present in the air. In other words, by increasing the ion concentration from 7,000 / cm 3 to 50,000 / cm 3 , the remaining virus becomes 1/10. From this, it can be said that it is very important for infection prevention and environmental purification to make the ion concentration high throughout the living space and the working space where people live.
  • the ion generator according to the present invention is based on the above knowledge, and includes a plurality of ion generators in which positive and negative ion generators are arranged in parallel and generate ions from each of the ion generators.
  • the plurality of ion generators are arranged so that the parallel arrangement directions of the positive and negative ion generation portions are aligned, and the ion generation portions are biased so as not to overlap in the parallel arrangement direction. It is characterized by being.
  • the ion generation is performed so that the juxtaposed direction is substantially perpendicular to the direction of the airflow flowing in the vicinity of each ion generating portion.
  • the ions generated by each of the ion generators are prevented from overlapping and interfering with each other.
  • the plurality of ion generators are arranged in a direction intersecting the juxtaposed direction, and each of the plurality of ion generators is directed to one side in a direction perpendicular to the arranged direction.
  • the ion generating part is configured to generate ions.
  • ions are generated on one side in a direction substantially perpendicular to the arrangement direction of the ion generator, so that the arrangement direction flows in the vicinity of each ion generation section.
  • the ions generated by each of the ion generators efficiently flow through the ventilation path together with the airflow.
  • the ion generator includes an opening in each of the positive and negative ion generators, and a deviation amount of the ion generator in the juxtaposition direction is the parallel of the openings. It is more than the length of the installation direction.
  • the juxtaposed direction is substantially perpendicular to the direction of the airflow flowing in the vicinity of the openings of the respective ion generating portions.
  • the ions generated by each of the ion generators are prevented from overlapping and interfering with each other.
  • the ion generator is biased to one side in the juxtaposed direction, and the sum of the bias amounts of the ion generators in the juxtaposed direction is the plus and minus It is characterized by being not more than the separation distance of the ion generating part.
  • each of the positive ion generators and each of the negative ion generators is separately located on both sides of the parallel direction, so that the parallel direction passes through the vicinity of each ion generator.
  • the positive and negative ions generated by each ion generator are prevented from overlapping and interfering with each other. To do.
  • An air purifying apparatus comprises the ion generating apparatus according to any one of the above-described inventions, and a purifier that purifies air that should contain ions generated by the ion generating apparatus.
  • the air purified by the purifier includes the ions generated by the ion generator according to any one of the above-described inventions.
  • the ion generator which suppresses that the ion which each of a some ion generating part generate
  • the ions generated by the ion generation unit can be included in the air in a laminar flow unit that is configured to have a laminar flow of air. It can be efficiently contained in the air, and the amount of ions contained in the air can be increased. Therefore, the amount of ions released into the room can be increased.
  • each of the plurality of ion generators is periodically driven with different phases.
  • the ion generators are inhibited from being affected by the ions generated by the other ion generators, and the ratio of energization is reduced to extend the operating life of the ion generator. . Therefore, the service life can be extended without substantially reducing the amount of ions distributed in the released space.
  • the ion generator when the ion generator is placed in the air passage so that the direction in which the ion generators are juxtaposed is substantially perpendicular to the direction of the airflow flowing in the vicinity of each ion generator, It suppresses that the ion which each of a generation
  • the structure of the ion generator of the air purifying apparatus which concerns on this invention is shown, (a) is a front view, (b) is a side view. It is a sketch which measures the air blown out from the discharge port of the air purifying apparatus concerning this invention installed in the indoor floor indoors.
  • It is a vertical side view which shows the structure of the air purifying apparatus which concerns on embodiment of this invention. It is a front view which shows the structure of the principal part.
  • FIG. 1 is a longitudinal side view showing the configuration of the air purifying apparatus according to the present invention
  • FIG. 2 is a front view showing the configuration of the main part
  • FIG. 3 is a side view showing the configuration of the main part
  • FIG. 4 is the configuration of the ion generator.
  • (A) is a front view and (b) is a side view.
  • the air purifying apparatus shown in FIG. 1 includes a housing 1 having a suction port 11 in a rear wall 1a and a discharge port 12 in a top wall 1b, a blower 2 disposed in a lower portion of the housing 1, and a suction Arranged between the blower 2 and the discharge port 12, which is arranged inside the port 11, passes the air sucked from the suction port 11 by the blower 2, removes foreign matters in the air, and becomes clean air.
  • the ion generation which has the duct 4 as the flow path for allowing the air to flow to the discharge port 12 and the two ion generators 51 and 52 and includes the positive ions and the negative ions in the air blown by the blower 2 And 5.
  • positive ions and negative ions generated by the ion generators 51 and 52 are included in the air blown by the blower 2, and the positive ions and negative ions are discharged from the discharge port 12 to the outside together with the air. It is configured.
  • the housing 1 has a bottom wall 1c having a rectangular shape in plan view, a front wall 1d continuous with two sides of the bottom wall 1c, a side wall continuous with the other two sides of the rear wall 1a and the bottom wall 1c, and a top wall 1b. Form a rectangular parallelepiped.
  • the rear wall 1a is provided with a rectangular suction port 11 whose longitudinal direction is up and down, and the top wall 1b is provided with a rectangular discharge port 12 whose longitudinal direction is on both side walls.
  • the blower 2 has a cylindrical shape and is a centrifugal type having an impeller 21 arranged so that a rotation axis is front and rear, and a casing 22 in which the impeller 21 is rotatably accommodated, and drives the impeller 21.
  • a motor 6 is attached to the front side of the casing 22.
  • the impeller 21 is a multi-blade impeller having a plurality of blades 21a whose rotation center side is displaced in the rotation direction with respect to the outer edge, in other words, a sirocco impeller (sirocco fan) having a cylindrical shape.
  • the impeller 21 has a bearing plate at one end, and the output shaft of the motor 6 is attached to a shaft hole formed in the center of the bearing plate, and air sucked into the central cavity from the opening at the other end It is comprised so that it may discharge
  • the casing 22 guides the airflow generated by the rotation of the impeller 21 to the rotational direction of the impeller 21 to form a laminar flow, and an arcuate guide wall 22a for increasing the speed of the airflow, and the arcuate guide wall 22a.
  • a blowout port 22b opened upward from a part of the arcuate guide wall 22a to one side in the tangential direction of the arcuate guide wall 22a, and an arcuate partition wall 22c disposed between the peripheral surface of the impeller 21 and the arcuate guide wall 22a And have.
  • the air outlet 22b has a rectangular tube shape protruding from a part of the arc-shaped guide wall 22a to one side in the tangential direction of the arc-shaped guide wall 22a.
  • the casing 22 has a deep dish shape, and corresponds to the casing main body 2a having an arc-shaped guide wall 22a, an arc-shaped partition wall 22c, and an opening for the air outlet 22b, and the opening of the impeller 21. And a cover plate 2b that closes the open side of the casing body 2a.
  • the cover plate 2b is attached to the casing body 2a by a plurality of male screws.
  • the arc-shaped guide wall 22a constitutes an air conditioning body that regulates the airflow generated by the rotation of the impeller 21, and a circle between the arc-shaped guide wall 22a and the arc-shaped partition wall 22c.
  • An arcuate flow path 22d is a laminar flow portion F.
  • a through hole corresponding to the ion generating portions 51 and 52 and a mounting hole that is separated from the through hole are formed, and are screwed into the mounting hole.
  • the ion generator 5 is attached by a male screw.
  • the duct 4 has a rectangular tube shape whose lower end is connected to the air outlet 22b and whose upper end is open, and is integrally formed with the casing body 2a and the cover plate 2b.
  • the duct 4 includes a side wall 4a disposed along one tangential direction of the arc-shaped guide surface 22a from the air outlet 22b, and another side wall 4b in which a separation distance from the air outlet 22b to the one side wall gradually increases.
  • the rear wall 4c is connected to the one side wall 4a and the other side wall 4b, and the front wall 4d is arranged vertically and the front wall 4d is gradually shortened from the air outlet 22b to the rear wall 4c.
  • the duct 4 has a laminar flow portion F on the side facing the impeller 21 of the front wall 4d, and the air blown from the outlet 22b is laminar along the one side wall 4a, the rear wall 4c, and the front wall 4d. It is configured to guide to.
  • the front wall 4d is provided with a through hole corresponding to the ion generating portions 51 and 52 and a mounting hole that is separated from the through hole.
  • the ion generator 5 faces the laminar flow part F, is fitted into the through hole in the front wall, and is fixed by a male screw inserted into the mounting hole.
  • the ion generator 5 includes two ion generators 51 and 52 that are separated from each other in a direction intersecting with the flow direction of the air blown by the blower 2, a power supply unit that supplies a voltage to the ion generators 51 and 52, Parts 51 and 52 and a holding body 53 for holding the power feeding part.
  • the ion generator 5 is configured such that when the power supply unit supplies a voltage to the ion generation units 51 and 52, the ion generation units 51 and 52 undergo corona discharge to generate ions.
  • the ion generation parts 51 and 52 have sharp discharge electrode convex parts 51a and 52a, and induction electrode rings 51b and 52b surrounding the discharge electrode convex parts 51a and 52a, and the induction electrode rings 51b and 52b respectively. Discharge electrode convex portions 51a and 52a are arranged at the center.
  • the ion generator 5 is configured such that one ion generation unit 51 generates positive ions and the other ion generation unit 52 generates negative ions.
  • the ion generator 5 is attached to the arc-shaped guide wall 22a constituting the air conditioning body of the casing 22 and the front wall 4d of the duct 4, and generates two ions at a position intersecting the flow direction through which air flows. Parts 51 and 52 are arranged.
  • Three ion generators 5 attached to the arc-shaped guide wall 22 a of the casing 22 are held by one holding body 53.
  • the three ion generators 5 are spaced apart from each other in the flow direction (the arc direction of the arc-shaped guide wall 22a) and cross in the flow direction (the rotation axis direction of the impeller 21). It is relatively biased.
  • the ion generators 51 and 52 of the three ion generators 5 are arranged so that the polarities in the relatively deviating directions are equal and do not overlap in the flow direction.
  • Respective ion generating portions 51 and 52 face the casing 22 from the through holes.
  • the attachment side of the holding body 53 to the casing 22 has a curved surface 53b that is curved in the flow direction and that is open at three locations corresponding to the ion generating portions 51 and 52, respectively.
  • the ion generators 51 and 52 are arranged in the respective openings 53a.
  • the air purifier configured as described above is placed near the wall in the living room so that the suction port 11 is on the wall side.
  • the impeller 21 rotates, indoor air is sucked into the housing 1 from the suction port 11, an air flow path is generated between the suction port 11 and the discharge port 12, and the sucked air Foreign matter such as dust inside is removed by the filter 3 to become clean air.
  • the air that has passed through the filter 3 is sucked into the casing 22 of the blower 2.
  • the air sucked into the casing 22 becomes an air flow along the arc-shaped partition wall 22c around the impeller 21, and the arc-shaped flow path 22d between the arc-shaped partition wall 22c and the arc-shaped guide wall 22a.
  • the airflow is rectified by the arcuate guide wall 22a and becomes a laminar flow at the laminar flow part F of the arcuate passage 22d.
  • the air flowing through the laminar flow in the laminar flow portion F is guided to the air outlet 22b along the circular arc guide wall 22a as indicated by the two-dot chain line arrow X in FIG. It is blown in.
  • the ions generated by the ion generating portions 51 and 52 are relatively distributed along the arc-shaped induction wall 22a.
  • the passage of the narrow laminar flow portion F can be efficiently included in the air flowing through the laminar flow.
  • the air flowing along the arc-shaped guide wall 22a flows at a high wind speed, ions can be more efficiently contained in the air.
  • the ion generator 5 since the ion generator 5 has two ion generating parts 51 and 52 arranged at a position intersecting with the air flow direction, and increases the number of places where ions are included in the air for the first time, the ions are made more efficient. Can be included in the air.
  • three ion generators 5 are arranged apart from each other in the flow direction of the clean air, and the three ion generators 5 are relatively biased in a direction crossing the flow direction to generate ions.
  • the ion generators 51 and 52 of each of the vessels 5 are arranged so as not to overlap in the flow direction. This arrangement of the ion generator 5 increases the number of locations where ions are first included in the air, so that the positive ions generated by the ion generators 51 and 52 of the ion generator 5 and the negative ions are prevented from being canceled out. It is. Therefore, ions can be more efficiently contained in the air without increasing the size of the casing 22.
  • the positive ions and the negative ions included in the air flowing in the laminar flow are mixed when the air is blown out from the outlet 22 b of the casing 22 into the duct 4.
  • the duct 4 is configured to allow air to flow through the laminar flow along the one side wall 4a, the rear wall 4c, and the front wall 4d, and the ion generators 51 and 52 are provided in the front wall 4d through which the air flows. Is arranged. Therefore, the positive ion and the negative ion generated by the ion generators 51 and 52 arranged in the duct 4 are included in the air containing the positive ion and the negative ion in the casing 22 of the blower 2. And the amount of ions in the air can be increased.
  • FIG. 5 is a sketch for measuring the air blown out from the discharge port of the air purifying apparatus according to the present invention installed on the indoor floor.
  • Table 1 shows data showing the results of measuring the amount of ions in the room. When the amount of ions at points A to E in the room of the conventional air purifier equipped with the ion generator and the air purifier according to the present invention was measured, the results shown in Table 1 were obtained.
  • the room has a floor area of 5.1 m ⁇ 5.7 m, and the air purifier is placed on a floor spaced 0.3 m from one wall on the 5.7 m side.
  • the measurement point A is a place separated by 0.1 m from one wall on the 5.1 m side in the room, and is a point of 1, 3, 5 points on the 5.7 m side.
  • the measurement point C is the center of the room on the 5.1 m side, and is the 1, 3, and 5 points on the 5.7 m side.
  • the measurement point E is a place which is separated by 0.1 m from the other wall on the 5.1 m side in the room, and is 1, 3, 5 places on the 5.7 m side.
  • the measurement time is 20 minutes from the start of blowing, and the amount of ions is the number of positive ions (number / cm 3 ) and the number of negative ions (number / cm 3 ) in the air.
  • the average sterilization ion amount at the measurement point is 39,611 (pieces / cm 3 ) and the increase rate is 154%, which demonstrates that the amount of ions released into the room can be increased.
  • I was able to.
  • positive ions H + (H 2 O) m (m is an arbitrary integer) and negative ions O 2 ⁇ (H 2 O) n (n is an arbitrary integer) are sent into the air to react with ions. It has been known to sterilize floating bacteria and the like. However, since the ions recombine with each other and disappear, even if a high concentration can be achieved in the immediate vicinity of the ion generating element, the concentration decreases sharply as the transmission distance increases.
  • the ion concentration can be tens of thousands / cm 3 in a small capacity space such as an experimental device, it is at most 2 to 3,000 / cm in a large space such as an actual living space or work space.
  • the limit was 3 concentration.
  • the inventors have found that avian influenza virus can be removed by 99% in 10 minutes and 99.9% in 50,000 cells / cm 3 when the ion concentration is 7000 cells / cm 3 at the laboratory level. .
  • the meaning of both removal rates indicates that 10 / cm 3 and 1 / cm 3 remain, respectively, assuming that 1,000 viruses / cm 3 were present in the air.
  • the three ion generators 5 are arranged on the circular arc guide wall 22a of the casing having the laminar flow portion F in which the air flow is a laminar flow, and the air flow is performed.
  • One ion generator 5 is arranged on the front wall 4d of the duct 4 having a laminar flow portion F that becomes laminar flow.
  • the ion generator 5 should just be the structure distribute
  • FIG. 6 is a longitudinal side view showing the structure of the air purifying apparatus according to the present invention
  • FIG. 7 is a front view showing the structure of the main part
  • FIG. 8 is a side view showing the structure of the main part.
  • a duct 4 as a wind guide path for guiding the clean air to the discharge port 12, and an ion generator 5 for generating positive ions and negative ions in the clean air blown by the blower 2.
  • the positive ions and negative ions generated by the generator 5 are discharged from the discharge port 12 to the outside together with the clean air blown by the blower 2.
  • the housing 1 includes a bottom wall 1c having a rectangular shape in plan view, a front wall 1d continuous with two sides of the bottom wall 1c, a side wall continuous with the other two sides of the rear wall 1a and the bottom wall 1c, and a top wall 1b. And forms a substantially rectangular parallelepiped.
  • the rear wall 1a is provided with a rectangular suction port 11 whose longitudinal direction is up and down, and the ceiling wall 1b is provided with a rectangular discharge port 12 whose longitudinal direction is on both side walls.
  • the blower 2 has a cylindrical shape, is a centrifugal type having an impeller (blower fan) 21 arranged so that a rotation axis is front and rear, and a casing 22 in which the impeller 21 is rotatably accommodated.
  • a motor 6 that drives the car 21 is attached to the front side of the casing 22.
  • the impeller 21 is a multi-blade impeller having a plurality of blades 21a whose rotation center side is displaced in the rotation direction with respect to the outer edge, in other words, a sirocco impeller (sirocco fan) having a cylindrical shape.
  • the impeller 21 has a bearing plate at one end, the output shaft of the motor 6 is attached to a shaft hole formed at the center of the bearing plate, and the air sucked into the central cavity from the opening at the other end Is discharged from between the blades 21a on the outer peripheral portion.
  • the casing 22 guides the airflow generated by the rotation of the impeller 21 in the rotation direction of the impeller 21, and increases the speed of the airflow from the arc-shaped guide wall 22a and a part of the arc-shaped guide wall 22a. It has the blower outlet 22b opened upward to one side of the tangential direction of the circular arc guide wall 22a.
  • the air outlet 22b has a rectangular tube shape protruding from a part of the arc-shaped guide wall 22a to one side in the tangential direction of the arc-shaped guide wall 22a.
  • the casing 22 has a deep dish shape, the casing main body 2a having an arcuate guide wall 22a and an opening for the air outlet 22b, and a portion corresponding to the opening of the impeller 21 are opened, and the casing main body 2a is opened. And a lid plate 2b that closes the open side of the lid.
  • the lid plate 2b is attached to the casing body 2a by a plurality of male screws.
  • a through hole corresponding to the ion generator 5 and a mounting hole that is spaced apart from the through hole are provided, and a male screw that is screwed into the mounting hole The ion generator 5 is attached.
  • the duct 4 has a rectangular tube shape whose lower end is connected to the air outlet 22b and whose upper end is open, and is integrally formed with the casing body 2a and the cover plate 2b. Further, the duct 4 has a separation distance between one side wall 4a arranged along one of the tangential directions of the arc-shaped guide surface 22a from one side of the outlet 22b and the one side wall from the other side of the outlet 22b.
  • the other side wall 4b which becomes gradually longer, and the front wall 4d which continues to the one side wall 4a and the other side wall 4b and which is arranged in the vertical direction and the front wall 4d where the separation distance from the rear wall 4c from the outlet 22b gradually becomes shorter.
  • the duct 4 is comprised so that the clean air blown out from the blower outlet 22b may be guide
  • the front wall 4d is provided with a through hole corresponding to the ion generator 5 and a mounting hole spaced from the through hole, and the ion generator 5 is mounted by a male screw screwed into the mounting hole.
  • the air purifier configured as described above is placed near the wall in the living room so that the suction port 11 is on the wall side.
  • the impeller 21 is rotated by the drive of the blower 2, indoor air is sucked into the housing 1 from the suction port 11, a wind passage is generated between the suction port 11 and the discharge port 12, and the sucked air is Foreign matter such as dust is removed by the filter 3 to become clean air.
  • the clean air that has passed through the filter 3 is sucked into the casing 22 of the blower 2.
  • the clean air sucked into the casing 22 becomes a laminar flow by the arc-shaped guide wall 22 a around the impeller 21.
  • This laminar flow is guided along the arc-shaped guide wall 22a to the outlet 22b, and is blown out into the duct 4 from the outlet 22b.
  • the ion generator 5 is arranged on the arc-shaped induction wall 22a of the casing 22 in the blower 2, the ion generator 5 generates ions in the clean air flowing along the arc-shaped induction wall 22a. .
  • the duct 4 is configured to guide clean air into a laminar flow along the one side wall 4a, the rear wall 4c, and the front wall 4d, and the ion generator 5 is disposed on the front wall 4d that guides the clean air to the laminar flow. Is arranged. For this reason, in addition to the positive ions and negative ions generated in the clean air in the casing 22 of the blower 2, the ion generator 5 disposed in the duct 4 further increases the amount of positive ions and negative ions. It is like that.
  • FIG. 9 is a block diagram showing a schematic configuration of a control system of the air cleaning device.
  • the central part of the control system is the CPU 30, which is connected to the ROM 31 for storing information such as programs, the RAM 32 for storing temporarily generated information, and the timer 33 for measuring time. Yes.
  • the CPU 30 executes processes such as input / output and calculation in accordance with a control program stored in the ROM 31 in advance.
  • the CPU 30 further includes an operation unit 35 for accepting operations such as operation and stop of the air purifier, a display unit 36 composed of an LCD for displaying information such as operation contents and operation states, and the motor 6 of the blower 2.
  • a blower drive circuit 37 for driving is connected to the bus.
  • the output interfaces 34 and 34 connected to the CPU 30 by bus are connected to the control inputs PC1 and PC2 of the ion generator drive circuits (drive circuits) 38 and 38, respectively.
  • One end of the output of each ion generator drive circuit 38, 38 is connected to the cathode of a DC power source E1 whose anode is connected to the power input V1 and V2 of the ion generator 5, 5, and the other end is Are connected to the ground inputs G1 and G2 of the ion generators 5 and 5, respectively.
  • the CPU 30 every time the timer 33 measures a predetermined time, the CPU 30 alternately reverses on / off of the control inputs PC1 and PC2 of the ion generator drive circuits 38 and 38 via the output interfaces 34 and 34. . Thereby, each of the ion generator drive circuits 38 and 38 alternately connects / disconnects the ground inputs G1 and G2 of the ion generators 5 and 5 and the cathode of the DC power supply E1.
  • FIG. 10 is a flowchart showing a processing procedure of the CPU 30 for driving the ion generators 5 and 5. The following processing is executed at any time, and is executed again every time the processing ends. Note that the contents of FLG1 are stored in the RAM 32.
  • the CPU 30 causes the timer 33 to start measuring 1 second (step S11). Thereafter, the CPU 30 determines whether or not the timer 33 has finished counting time (step S12). If it is determined that the time measurement has not ended (step S12: NO), the CPU 30 waits until the timer 33 ends the time measurement. If it is determined that the time measurement has ended (step S12: YES), the CPU 30 determines whether FLG1 is set (step S13).
  • step S13 If it is determined that FLG1 is set (step S13: YES), the CPU 30 clears FLG1 (step S14). Thereafter, the CPU 30 turns off the output of one output interface 34 to turn off the control input PC1 of the ion generator drive circuit 38 (step S15), and turns on the output of the other output interface 34 to drive the ion generator.
  • the control input PC2 of the circuit 38 is turned on (step S16), and the process ends.
  • step S13 If it is determined in step S13 that FLG1 is not set (step S13: NO), the CPU 30 sets FLG1 (step S17). Thereafter, the CPU 30 turns on the output of one output interface 34 to turn on the control input PC1 of the ion generator drive circuit 38 (step S18), and turns off the output of the other output interface 34 to drive the ion generator.
  • the control input PC2 of the circuit 38 is turned off (step S19), and the process ends.
  • FIG. 11 is a timing chart of drive signals input to the control inputs PC1 and PC2 from the output interfaces 34 and 34, respectively. Each drive signal alternately repeats on for 1 second / off for 1 second with a duty of 50%. As a result, the ion generator drive circuits 38 and 38 alternately connect / disconnect the power supply to the ion generators 5 and 5 every other second. Accordingly, the ion generators 5 and 5 are alternately driven every second.
  • FIG. 12 is a circuit diagram showing a connection example of the ion generator 5 and the ion generator drive circuit 38.
  • the ion generator 5 includes a first booster circuit 5a that boosts a DC voltage applied between the power supply input V1 (or V2) and the ground input G1 (or G2), and a voltage boosted by the first booster circuit 5a.
  • a second booster circuit 5b that further boosts the voltage and an ion generation element I11 that generates ions by applying a voltage boosted by the second booster circuit 5b.
  • the first booster circuit 5a includes a series circuit composed of a diode D11 having an anode connected to a power input V1 (or V2) and resistors R11 and R12, and a starting resistor R13 having one end connected to the resistor R12 side of the series circuit. And a step-up transformer T11 having one end of the primary winding T11a connected to a connection point between the resistor R12 and the resistor R13.
  • the other end of the starting resistor R13 is connected to the cathode of the diode D12 whose anode is connected to the ground potential, the base of the NPN transistor Q11 whose emitter is grounded, and one end of the secondary winding T11c of the step-up transformer T11. It is connected to one end of the base winding T11b of the step-up transformer T11 via the limiting resistor R14.
  • the other end of the primary winding T11a is connected to the collector of the NPN transistor Q11, and the other end of the base winding T11b is connected to the ground potential.
  • the other end of the secondary winding T11c is connected to the anode of the diode D13, and the cathode of the diode D13 is connected to the charging capacitor C11 and the second booster circuit 5b whose other ends are connected to the ground potential.
  • the second booster circuit 5b includes a booster transformer T12 having one end of the primary winding T12a connected to the first booster circuit 5a via a two-terminal thyristor S11.
  • the other end of the primary winding T12a is connected to the ground potential, and both ends of the secondary winding T12b are connected to the ion generating element I11.
  • the ion generating element I11 includes a diode D14 and a diode D15 each having a cathode and an anode connected to one end of the secondary winding T12b of the step-up transformer T12, and a minus side needle connected to the anode of the diode D14 and the cathode of the diode D15, respectively.
  • the electrode N11 and the plus side needle electrode N12 and the counter electrode P11 connected to the other end of the secondary winding T12b are provided.
  • the ion generator driving circuit 38 includes an NPN transistor Q12 having a collector and an emitter connected to the ground input G1 (or G2) and the cathode of the DC power supply E1, respectively, and a resistor R16 connected between the base and emitter of the NPN transistor Q12. And a resistor R15 connected between the base of the NPN transistor Q12 and the control input PC1 (or PC2).
  • the NPN transistor Q12 when the drive signal shown in FIG. 11 is given to the control input PC1 (or PC2), the NPN transistor Q12 is turned on, and between the power input V1 (or V2) and the ground input G1 (or G2). DC12V of the DC power supply E1 is applied to.
  • the collector current of the NPN transistor Q11 starts to flow due to the base current flowing through the diode D11, the resistors R11 and R12, and the starting resistor R13, and a voltage is generated across the primary winding T11a of the step-up transformer T11.
  • a voltage corresponding to the turn ratio of the primary winding T11a and the base winding T11b is generated at both ends of the base winding T11b.
  • the base winding T11b of the step-up transformer T11 has the same polarity as the primary winding T11a, the voltage generated at both ends of the base winding T11b accelerates the increase in the collector current of the NPN transistor Q1, thereby causing the primary winding. It acts to increase the voltage across At this time, since the polarity of the secondary winding T11c is set so that a voltage is generated in a direction in which the diode D13 is not conducted, no current flows through the secondary winding.
  • the two-terminal thyristor S11 When charging of the charging capacitor C11 proceeds and the terminal voltage reaches the breakover voltage of the two-terminal thyristor S11 (105 V in this embodiment), the two-terminal thyristor S11 starts to conduct like a Zener diode.
  • the conducting current reaches a breakover current (for example, 1 mA)
  • the two-terminal thyristor S11 is substantially short-circuited, and the charge charged in the charging capacitor C11 is discharged to the ground potential through the primary winding T12a of the step-up transformer T12. To do.
  • the ion generating element I11 to which a high voltage is applied from the secondary winding T12b of the step-up transformer T12 via the diodes D14 and D15 causes the minus side needle electrode N11, the plus side needle electrode N12, and the counter electrode P11 to Negative ions and positive ions are generated respectively.
  • FIG. 13 shows an ion concentration and an ion balance when one ion generator 5 is always turned on (driven) and alternately turned on / off, and an ion concentration when the ion generator 5 is always turned on.
  • FIG. 14 is a graph plotting average values of the ratios of ion concentrations in FIG. 13.
  • the ion concentration is the number of positive ions (units / cm 3 ) and the number of negative ions (units / cm 3 ) per unit volume
  • the ion balance is the ion concentration of negative ions relative to the ion concentration of positive ions. It is shown as a ratio.
  • the horizontal axis represents the on / off time (seconds), and the vertical axis represents the ion concentration ratio (%).
  • FIG. 15 shows the ion concentration and ion balance when the two ion generators 5 are always turned on and alternately turned on / off, and the ion concentration when the two ion generators 5 are always turned on.
  • FIG. 16 is a graph plotting the average value of the ion concentration ratios in FIG. 15.
  • FIG. 15 also shows side examples for the ratios of ion concentration, ion balance, and ion concentration when one ion generator 5 is always turned on.
  • the unit of ion concentration and ion balance in FIG. 15 is the same as in FIG. In FIG. 16, the horizontal axis represents the on / off time (seconds), and the vertical axis represents the ion concentration ratio (%).
  • the ion generator drive circuit drives each of the two ion generators periodically at different phases.
  • interference between the ion generators is suppressed, and the ratio of energization of the ion generators is reduced, so that the operation life as the ion generator is extended. Therefore, the operating life can be extended and the life of the ion generator can be extended without substantially reducing the amount of ions distributed in the released space.
  • the ion generator disposed on the arcuate induction wall of the casing is separated from the ion generator disposed on the front wall of the duct. Therefore, the rate at which the ion generators interfere with each other and the amount of ions generated decreases can be reduced.
  • the impeller of the blower blows out the ions generated by the two ion generators to the outside. Accordingly, interference between the ion generators can be further suppressed, and the generated ions can be efficiently guided to the outside.
  • the ion generator drive circuit drives the two ion generators alternately every second for a period of 2 seconds at which the amount of ions is maximized. Therefore, compared to when two ion generators are driven continuously, the amount of ions generated is hardly reduced and the operating life of the ion generator using each ion generator is doubled. Can be made.
  • the air purified by the filter includes ions generated by the ion generator of the ion generator. Therefore, it is possible to apply to the air cleaning device an ion generator that has an extended operating life without substantially reducing the amount of ions distributed in the released space.
  • the ion generator is driven by repetition of 1 second on / one second off with a duty of 50%.
  • the present invention is not limited to this, for example, a duty smaller than 50%.
  • the service life may be further extended, and the driving may be performed at a cycle different from 2 seconds.
  • the number of ion generators is not limited to two, but may be three or more.
  • the output interface 34 and the ion generator drive circuit 38 of FIG. 9 may be added one by one.
  • the PC3 drive signal is added to the drive signals of the respective ion generators shown in FIG. 11, and the duty of each drive signal is set to 33 so that the ON periods of the PC1 drive signal, the PC2 drive signal, and the PC3 drive signal do not overlap. %And it is sufficient.
  • FIG. 17 is a longitudinal side view showing the structure of the air purifying apparatus according to the present invention
  • FIG. 18 is a front view showing the structure of the main part
  • FIG. 19 is a side view showing the structure of the main part
  • FIG. FIG. 17 is a longitudinal side view showing the structure of the air purifying apparatus according to the present invention
  • FIG. 18 is a front view showing the structure of the main part
  • FIG. 19 is a side view showing the structure of the main part
  • reference numeral 1 denotes a substantially rectangular parallelepiped housing, and the housing 1 is provided with a suction port 11 for taking in indoor air into the rear wall 1a.
  • a filter (purifier) 3 for removing foreign substances from the air sucked from the suction port 11 by the blower 2 disposed in the lower part of the housing 1 to obtain clean air is disposed.
  • a duct 4 is arranged as a wind guide path for guiding the clean air to the discharge port 12 of the top wall 1 b of the housing 1.
  • the housing 1 has a bottom wall 1c having a rectangular shape in plan view that is continuous with the lower side of the rear wall 1.
  • One side of the front side of the bottom wall 1c is connected to the front wall 1d, and the other two sides are connected to the side wall.
  • the suction port 11 of the rear wall 1a has a rectangular shape whose longitudinal direction is up and down, and the discharge port 12 of the top wall 1b has a rectangular shape whose longitudinal direction is both side walls.
  • the blower 2 has a cylindrical shape and is a centrifugal type having an impeller 21 arranged so that a rotation axis is front and rear, and a casing 22 in which the impeller 21 is rotatably accommodated, and drives the impeller 21.
  • a motor 6 is attached to the front side of the casing 22.
  • the impeller 21 is a multi-blade impeller having a plurality of blades 21a whose rotation center side is displaced in the rotation direction with respect to the outer edge, in other words, a sirocco impeller (sirocco fan) having a cylindrical shape.
  • the impeller 21 has a bearing plate at one end, the output shaft of the motor 6 is attached to a shaft hole formed at the center of the bearing plate, and the air sucked into the central cavity from the opening at the other end Is discharged from between the blades 21a on the outer peripheral portion.
  • the casing 22 guides the airflow generated by the rotation of the impeller 21 in the rotation direction of the impeller 21, and increases the speed of the airflow from the arc-shaped guide wall 22a and a part of the arc-shaped guide wall 22a. It has the blower outlet 22b opened upward to one side of the tangential direction of the circular arc guide wall 22a.
  • the air outlet 22b has a rectangular tube shape protruding from a part of the arc-shaped guide wall 22a to one side in the tangential direction of the arc-shaped guide wall 22a.
  • the casing 22 has a deep dish shape, the casing main body 2a having an arcuate guide wall 22a and an opening for the air outlet 22b, and a portion corresponding to the opening of the impeller 21 are opened, and the casing main body 2a is opened. And a lid plate 2b that closes the open side of the lid.
  • the lid plate 2b is attached to the casing body 2a by a plurality of male screws.
  • the arc-shaped guide wall 22a of the casing 22 has a through hole corresponding to the ion generator 500 and a mounting hole spaced from the through hole, and the ion generator 500 is provided by a male screw screwed into the mounting hole. Is attached.
  • the duct 4 has a rectangular tube shape whose lower end is connected to the air outlet 22b and whose upper end is open, and is integrally formed with the casing body 2a and the cover plate 2b. Further, the duct 4 has a one-side wall 4a arranged along one of the tangential directions of the arc-shaped guide surface 22a from one side of the outlet 22b, and a separation distance from the other side of the outlet 22b. Has a side wall 4b that gradually increases, a rear wall 4c that is connected to the one side wall 4a and the other side wall 4b, and a front wall 4d in which the separation distance from the rear wall 4c from the outlet 22b is gradually shortened. .
  • the duct 4 is comprised so that the clean air blown out from the blower outlet 22b may be guide
  • the front wall 4d has a through hole corresponding to the ion generator 5 and a mounting hole spaced from the through hole, and the ion generator 5 is mounted by a male screw screwed into the mounting hole.
  • the ion generator 5 includes two ion generators (positive and negative ion generators) each having circular openings 51a and 52a separated in a direction substantially perpendicular to the flow direction of the clean air blown by the blower 2. ) 51 and 52 are arranged side by side. Each of the ion generation parts 51 and 52 has a sharp discharge electrode on the inner back side of the openings 51a and 52a, and a counter electrode surrounding the discharge electrode.
  • One ion generation unit 51 is configured to generate positive ions
  • the other ion generation unit 52 is configured to generate negative ions to the side to which the openings 51a and 52a are directed.
  • the ion generator 500 includes three ion generators 5, 5, 5 and a holding body 501 that holds the ion generators 5, 5, 5, and each ion generator 5, 5, 5 generates ions.
  • the portions 51 and 52 face the casing 22 from the through hole.
  • the attachment side of the holding body 501 to the casing 22 has a curved surface that curves in the flow direction, and the ion generators 5, 5, and 5 are arranged on the curved surface. Further, the tangent line of the curved surface at the position where each of the ion generators 5, 5, and 5 is arranged is substantially parallel to the respective openings 51a and 52a.
  • the ion generators 5, 5, 5 of the ion generator 500 are juxtaposed apart from each other in the flow direction (the arc direction of the arc-shaped guide wall 22 a), and the adjacent ion generators 5, 5 are They are deviated from each other by deviation amounts L5 and L6 in a direction substantially perpendicular to the flow direction (that is, the direction in which the ion generating portions 51 and 52 are arranged in parallel) (see FIG. 20).
  • the ion generators 51 and 52 of each of the ion generators 5, 5, and 5 have the same plus / minus direction in the deviating direction and are arranged non-overlapping in the flow direction.
  • the deviation amounts L5 and L6 of the adjacent ion generators 5 and 5 are longer by the distance L1 and the distance L2 than the apertures 52a and 52a of the negative ion generators 52 and 52, respectively. As a result, there is no overlap between the airflows flowing along the ion generators 51 and 52.
  • the amount of deviation of each of the ion generators 5, 5, and 5 is equal to or greater than the length of the openings 51a and 52a in the juxtaposed direction.
  • the deviation amount L4 of the ion generators 5 and 5 in FIG. 20 is set to be equal to or longer than the opening length L3 of the opening 51a of the positive ion generator 51. Thereby, there is no overlap between the airflows flowing along the openings 51a and 52a.
  • the total sum of the deviation amounts of the ion generator 5 is set to be equal to or less than the separation distance between the ion generators 51 and 52.
  • the sum of the deviation amounts L5 and L6 of the adjacent ion generators 5, 5, and 5 is equal to or less than the separation distance between the positive and negative ion generators 51 and 52.
  • the air purifier configured as described above is placed near the wall in the living room so that the suction port 11 is on the wall side.
  • the impeller 21 rotates, the indoor air is sucked into the housing 1 from the suction port 11, a wind passage is generated between the suction port 11 and the discharge port 12, and the sucked air is Foreign matter such as dust is removed by the filter 3 to become clean air.
  • the clean air that has passed through the filter 3 is sucked into the casing 22 of the blower 2.
  • the clean air sucked into the casing 22 becomes a laminar flow by the arc-shaped guide wall 22 a around the impeller 21.
  • This laminar flow is guided along the arc-shaped guide wall 22a to the outlet 22b, and is blown out into the duct 4 from the outlet 22b.
  • the ion generating device 500 is arranged on the arc-shaped induction wall 22a of the casing 22 in the blower 2, positive ions and ions are introduced into the clean air that flows along the arc-shaped induction wall 22a. Generates negative ions.
  • the duct 4 is configured to guide clean air into a laminar flow along the one side wall 4a, the rear wall 4c, and the front wall 4d, and the ion generator 5 is disposed on the front wall 4d that guides the clean air to the laminar flow. Is arranged. Therefore, in addition to the positive ions and negative ions generated in the clean air in the casing 22 of the blower 2, the ion generator 5 disposed in the duct 4 further increases the amount of positive ions and negative ions. It is.
  • the positive ions and the negative ions generated by the ion generator 500 and the ion generator 5 are discharged from the discharge port 12 to the outside together with the clean air blown by the blower 2.
  • the three ion generators having the positive and negative ion generators arranged in parallel are arranged so that the positive and negative directions of the respective ion generators are aligned in the parallel direction. It arrange
  • ion generators are arranged in a direction intersecting with the direction in which the respective ion generators are juxtaposed, and each ion generator emits ions to one side in a direction substantially orthogonal to the arranged direction. generate.
  • the ion generator is arranged in the ventilation path so that the arrangement direction is substantially parallel to the direction of the airflow flowing in the vicinity of each ion generation unit. Therefore, even when the ion generators are collectively arranged, the ions generated by each of the ion generators can be efficiently passed along with the airflow.
  • the amount of deviation of the ion generators in the juxtaposed direction is set to be not less than the length of the openings in the juxtaposed direction. Then, the ion generator is disposed in the ventilation path so that the juxtaposed direction is substantially perpendicular to the direction of the airflow that flows in the vicinity of each ion generation unit. Thereby, there is no overlap between the ions generated by the respective ion generators through the openings. Therefore, even when the ion generators are collectively arranged, mutual interference can be suppressed and reduction in ion generation efficiency can be reduced.
  • the direction in which the ion generator is biased is aligned on one side, and the sum of the deviation amounts of the ion generators arranged adjacent to each other in the juxtaposed direction is separated from the positive and negative ion generators. Below the distance. Then, the ion generator is disposed in the ventilation path so that the juxtaposed direction is substantially perpendicular to the direction of the airflow that flows in the vicinity of each ion generation unit. Thereby, there is no overlap between the ions generated by the positive ion generators and the negative ion generators that are separately located on both sides in the juxtaposed direction. Therefore, even when the ion generators are collectively arranged, mutual interference can be suppressed and reduction in ion generation efficiency can be reduced.
  • the air purified by the filter includes ions generated by the ion generator of the ion generator. Therefore, even when ion generators are collectively disposed, an ion generator capable of suppressing mutual interference and reducing a decrease in ion generation efficiency is applied to an air cleaning device. Is possible.
  • the ion generator has an opening, but the present invention is not limited to this.
  • the discharge electrode is formed of a dielectric covered with a protective layer.
  • the ion generating part may not have an opening.
  • the number of ion generators arranged in the ion generator is not limited to 3, and may be 2 or 4 or more.

Abstract

吸込口及び放出口を有するハウジングと、羽根車21及び該羽根車21を収容してあるケーシング22と、ハウジング内に収容されている送風機2と、送風機2が吸込口から吸込む空気を通過させるフィルタと、プラスイオン及びマイナスイオンを発生させる二つのイオン発生部とを備える。イオン発生部を、ケーシング22の円弧形誘導壁22aに配置する。イオン発生部が発生したプラスイオン及びマイナスイオンを、円弧形誘導壁22aに沿って層流の状態で通流する空気に効率的に含ませる。

Description

イオン発生装置及び空気清浄装置
 本発明は、イオン発生部が発生したイオンを、送風機により吸込まれた空気とともに室内へ放出し、室内の空気を清浄にするためのイオン発生装置及び空気清浄装置に関する。
 居住室内の空気は、ダニの粉じん、花粉等のアレル物質、浮遊するカビ菌、ウイルス、異臭等の様々の物質で汚染されており、また、近年では住宅の高密度化が進んだこともあり、汚染物質が室内に留まりやすいので、積極的に換気を行う必要がある。しかし、大気汚染のひどい地域の室内、花粉症の居住者が入居、労働する室内では、窓を開放して換気することが思うに任せないことが多く、空気清浄装置が使用される。
 空気清浄装置は、後面に吸込口を有し、上部に放出口を有するハウジング内に収容されている送風機と、該送風機が前記吸込口から吸込む空気を通過させるフィルタと、イオンを発生させるイオン発生部とを備える。そして、イオン発生部が発生したイオンを、前記送風機により吸込まれた空気とともに前記放出口から室内へ放出し、室内の汚染物質をイオンが分解し、室内空気を清浄化するように構成されている(例えば、特許文献1参照)。
 イオン発生部は、離隔して並置されたプラス電極及びマイナス電極を有し、プラス電極及びマイナス電極間に電位を与えることにより、プラス電極からプラスイオンが放出され、マイナス電極からマイナスイオンが放出される。放出されたプラスイオン及びマイナスイオンが、前記送風機により吸込まれた空気に含まされ、この空気とともに放出口から室内へ放出される。
 近年、居住空間内に正(プラス)及び/又は負(マイナス)のイオンを放出することにより、居住空間内の空気を清浄化する技術が盛んに用いられている。例えば、空気清浄機では、内部の通風路の途中に正及び負のイオンを発生させるイオン発生器を配設し、発生させたイオンを通風路の空気と共に外部の空間へ放出するようにしている。
 空気と共に外部へ放出されたイオンは、居住空間において浮遊粒子を不活性化させ、浮遊細菌を死滅させるため、居住空間全体の空気が清浄化される。
 一般的なイオン発生器は、針電極と対向電極との間又は放電電極と誘電電極との間に高圧交流の駆動電圧を印加することにより、コロナ放電を発生させて正及び負のイオンを発生させる。発生したイオンは、無色無臭であるため、実際にイオンが発生しているか否かを確認することは容易ではない。
 これに対し、特許文献2では、イオンの発生の有無を検出する技術が開示されている。また、特許文献3では、イオンの発生量を検出してイオンの発生量を最適に制御する技術が開示されている。
 近年、空気中の水分子を正(プラス)及び/又は負(マイナス)のイオンで帯電させることにより、居住空間内の空気を清浄化する技術が盛んに用いられている。例えば、空気清浄機では、内部の通風路の途中に正及び負のイオンを発生させるイオン発生装置を配設し、発生させたイオンを空気と共に外部の空間へ放出するようにしている。
 清浄空気中の水分子を帯電させているイオンは、居住空間において浮遊粒子を不活性化させ、浮遊細菌を死滅させるため、居住空間全体の空気が清浄化される。
 標準的なイオン発生装置は、針電極と対向電極との間、又は放電電極と対向電極との間に高圧交流の駆動電圧を印加することにより、コロナ放電を発生させて正及び負のイオンを発生させる。また、上述した各電極と駆動電圧を発生させる回路とを一体化したイオン発生器が開示されており(例えば、特許文献4参照)、イオン発生器を組み込んだ空気清浄機が実用化されている。
 一方、単体のイオン発生器では、イオンの発生量に限界があるため、複数のイオン発生器を備えて発生させるイオンの量を増加させる試みがなされている。この場合、イオンの発生に好条件の通風路にイオン発生器を配置するには、安全面の要請を含めてスペース上の制約が多い。このように限られたスペースに複数のイオン発生器を収容するためには、イオン発生器を集合的に配設することが好ましい。
特開2002-257408号公報 特開2007-114177号公報 特開2008-059795号公報 特開2008-123917号公報
 従来の空気清浄装置において、イオン発生部が発生するイオン量と、空気とともに放出口から放出された室内のイオン量とを測定したところ、イオン発生部が発生するイオン量に比べて室内のイオン量が比較的少ないことが分かった。
 本発明は斯かる事情に鑑みてなされたものであり、主たる目的は、送風機により吸込まれた空気の通流が層流となるようになしてある層流部にイオン発生部を配することにより、イオン発生部が発生したイオンを、送風機により吸込まれた空気に効率的に含ませることができ、イオン発生部が発生するイオン量と室内のイオン量との差を低減でき、室内のイオン量を多くすることができるイオン発生装置及び空気清浄装置を提供することにある。
 しかしながら、イオン発生器の稼動が長期にわたることで、コロナ放電に伴うスパッタ蒸発によって放電電極が損耗した場合、又は化学物質、塵埃等の異物が放電電極に累積的に付着した場合、イオンの発生量が減少してイオン発生器が製品寿命に達するという問題がある。安定したイオンの発生を確保するには、イオン発生器の定期メンテナンス及び寿命管理が必要とされており、これをメンテナンスフリーとすることが望まれる。
 本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、複数のイオン発生器を夫々間欠的に駆動させることにより、放出された空間に分布するイオンの量を殆ど低減させることなく稼動寿命を延長したイオン発生装置及び該イオン発生装置を備える空気清浄装置を提供することにある。
 しかしながら、複数のイオン発生器を集合的に配設して互いに近接させた場合、相互の干渉により、イオン発生器全体としてイオンの発生効率が低下することが懸念される。
 本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、複数のイオン発生器を偏倚させて配設することにより、イオン発生器を集合的に配設した場合であっても相互の干渉を抑制して、イオンの発生効率の低下を軽減できるイオン発生装置及び該イオン発生装置を備える空気清浄装置を提供することにある。
 本発明に係るイオン発生装置は、吸込口及び放出口を有するハウジングと、該ハウジング内に収容されている送風機と、該送風機が前記吸込口から吸込む空気を通過させるフィルタと、イオンを発生させるイオン発生部とを備え、該イオン発生部が発生したイオンを、前記送風機により吸込まれた空気とともに前記放出口から放出するようになしてある空気清浄装置において、前記イオン発生部は、前記空気の通流が層流となる層流部に配してあることを特徴とする。
 この発明にあっては、イオン発生部が発生したイオンを、空気の通流が層流となるようになしてある層流部で空気に含ませることができるため、イオン発生部が発生したイオンを空気に効率的に含ませることができ、空気に含まれるイオン量を増すことができ、室内へ放出されたイオン量を多くすることができる。因って、室内空気の清浄化をより一層高めることができる。
 また、本発明に係るイオン発生装置は、前記送風機は羽根車を有し、該羽根車の回転により発生する気流を整風する整風体を備え、該整風体に前記イオン発生部を配してある構成とするのが好ましい。
 この発明にあっては、整風体により整風にされて層流に通流する空気にイオンを効率的に含ませることができるため、空気とともに放出口から放出されるイオン量をより一層増すことができる。
 また、本発明に係るイオン発生装置は、前記整風体は前記羽根車を収容してあるケーシングである構成とするのが好ましい。
 この発明にあっては、ケーシング内の比較的狭い通路を通流する層流の空気にイオンを含ませることができるため、イオン発生部が発生したイオンを効率的に空気に含ませることができ、空気とともに放出口から放出されるイオン量をより一層増すことができる。
 また、本発明に係るイオン発生装置は、前記送風機は、羽根車及び該羽根車を収容してあるケーシングを有し、該ケーシング及び前記放出口の間に配され、前記空気を前記放出口へ通流させる通流路を有し、該通流路及び前記ケーシングに前記イオン発生部を配してある構成とするのが好ましい。
 この発明にあっては、ケーシング内の比較的狭い通路を通流する層流の空気にイオンを含ませることができ、さらに、ケーシングの吹出口から通流路へ吹出された空気に、イオン発生部が発生したイオンを含ませることができる。因って、イオン発生部が発生したイオンをより一層効率的に空気に含ませることができ、空気とともに放出口から放出されるイオン量をより一層増すことができる。
 また、本発明に係るイオン発生装置は、前記ケーシングは、前記羽根車の回転により発生する気流を誘導する円弧形誘導面及び該円弧形誘導面の一部から円弧形誘導面の接線方向一方へ開放されている吹出口を有し、前記円弧形誘導面に前記イオン発生部を配してある構成とするのが好ましい。
 この発明にあっては、ケーシング内の比較的狭い通路を高風速で通流する層流の空気にイオンを含ませることができる。因って、イオン発生部が発生したイオンをより一層効率的に空気に含ませることができ、空気とともに放出口から放出されるイオン量をより一層増すことができる。
 また、本発明に係るイオン発生装置は、前記イオン発生部は、前記空気が通流する通流方向と交差する方向に離隔して複数配してある構成とするのが好ましい。
 この発明にあっては、ケーシング内の比較的狭い通路で層流の空気にイオンを含ませる箇所を多くすることができる。因って、イオン発生部が発生したイオンをより一層効率的に空気に含ませることができ、空気とともに放出口から放出されるイオン量をより一層増すことができる。
 また、本発明に係るイオン発生装置は、前記イオン発生部は、前記通流方向へ離隔し、且つ前記通流方向と交差する方向へ相対的に偏倚した位置に複数配してある構成とするのが好ましい。
 この発明にあっては、ケーシング内の比較的狭い通路で層流の空気にイオンを含ませる箇所を、既存のケーシングで多くすることができる。因って、イオン発生部が発生したイオンをより一層効率的に空気に含ませることができ、空気とともに放出口から放出されるイオン量をより一層増すことができる。
 また、本発明に係るイオン発生装置は、前記イオン発生部夫々は、前記通流方向の重なりがないように配してある構成とするのが好ましい。
 この発明にあっては、イオン発生部夫々が発生したイオンが打ち消されることなく層流の空気に含ませることができ、イオンをより一層効率的に空気に含ませることができ、空気とともに放出口から放出されるイオン量をより一層増すことができる。
 また、本発明に係るイオン発生装置は、前記イオン発生部夫々を保持する保持体を有し、該保持体は、前記通流方向へ湾曲し、且つ前記イオン発生部夫々に対応する箇所が開口している湾曲面を有し、該湾曲面の前記開口に前記イオン発生部夫々を配してある構成とするのが好ましい。
 この発明にあっては、ケーシングの、羽根車の回転により発生する気流を誘導する円弧形誘導面に保持体の湾曲面を対接させることができるため、複数のイオン発生部を同形状にすることができ、イオン発生部夫々のイオン発生量を均等にすることができる。
 また、本発明に係る空気清浄装置は、前述に記載のイオン発生装置を備えることを特徴とする。
 この発明にあっては、イオン発生部が発生したイオンを、空気の通流が層流となるようになしてある層流部で空気に含ませることができる。因って、イオン発生部が発生したイオンを空気に効率的に含ませることができ、空気に含まれるイオン量を増すことができ、室内へ放出されたイオン量を多くすることができ、室内空気の清浄化をより一層高めることができる。
 本発明に係るイオン発生装置は、イオンを発生させる複数のイオン発生器の夫々を駆動する駆動回路を備えたイオン発生装置において、前記駆動回路は、前記各イオン発生器の夫々を周期的に互いに異なる位相で駆動するように構成してあることを特徴とする。
 本発明にあっては、駆動回路が、複数のイオン発生器の夫々を、周期的に互いに異なる位相で駆動する。
 これにより、各イオン発生器は、互いに他のイオン発生器が発生させたイオンの影響を受けること(以下、干渉という)が抑止されると共に、通電される割合が減少して稼動寿命が延長される。
 本発明に係るイオン発生装置は、前記複数のイオン発生器の少なくとも1つは、他のイオン発生器から離隔させてあることを特徴とする。
 本発明にあっては、少なくとも1つのイオン発生器を、他のイオン発生器から離隔する。
 これにより、複数のイオン発生器を互いに異なる位相で駆動させる場合、少なくとも最も高頻度で駆動されるイオン発生器を他から離隔することにより、イオン発生器同士が干渉してイオンの発生量が減少する割合が低下する。
 本発明に係るイオン発生装置は、前記複数のイオン発生器が発生させたイオンを外部へ吹き出す送風ファンを備えることを特徴とする。
 本発明にあっては、送風ファンが、複数のイオン発生器が発生させたイオンを外部に吹き出す。
 これにより、発生したイオンがイオン発生器の近傍に滞留してイオンの発生量が減少することを抑止すると共に、イオン発生器同士の干渉を更に抑止し、加えて、発生したイオンを効率よく外部へ導く。
 本発明に係るイオン発生装置は、前記イオン発生器を2つ備え、前記駆動回路は、夫々のイオン発生器を交互に駆動するように構成してあることを特徴とする。
 本発明にあっては、駆動回路が、2つのイオン発生器を交互に駆動する。
 これにより、2つのイオン発生器が発生させるイオンの量を最大にする周期で夫々のイオン発生器を交互に駆動させたときは、2つのイオン発生器を連続して駆動させたときと比較して、イオンの発生量に大差がなく、且つ、夫々のイオン発生器を用いたイオン発生装置の稼動寿命が倍増する。
 本発明に係る空気清浄装置は、上述した発明の何れか1つに記載のイオン発生装置と、該イオン発生装置が発生させたイオンを含ましめるべき空気を浄化する浄化器とを備えることを特徴とする。
 本発明にあっては、浄化器で浄化した空気に、上述した発明の何れか1つに記載のイオン発生装置が発生させたイオンを含ましめる。
 これにより、複数のイオン発生器同士が互いに影響を受け合うことが抑止され、且つ各イオン発生器の稼動寿命が延長されたイオン発生装置が、空気清浄装置に適用される。
 上述したように、従来、正のイオンであるH(HO)(mは任意の自然数)、及び負のイオンであるO (HO)(nは任意の自然数)が、イオンの反応によって空気中の浮遊細菌等を殺菌することは知られていた。しかしながら、前記イオンは各々が再結合して消滅するため、イオン発生器の極近傍では高濃度が実現できても、イオン発生器からの距離が遠くなればなるほど急激にその濃度が減少するものである。従って、実験装置のような容積の小さい空間ではイオン濃度を数万個/cmとすることが出来ても、実際の居住空間や作業空間等、容積の大きい空間ではせいぜい2~3,000個/cmの濃度とするのが限度であった。
 一方発明者らは、実験室レベルで前記イオン濃度が7,000個/cmの場合、トリインフルエンザウイルスを10分間で99%まで、50,000個/cmの場合は、99.9%まで除去できることを発見した。夫々の除去率が持つ意味は、空気中に1,000個/cmのウイルスが存在したと仮定した場合、夫々10個/cm及び1個/cmが残留することを示す。換言すれば、イオン濃度を7,000個/cmから50,000個/cmに高めることによって、残留するウイルスが1/10になるのである。
 このことから、人などが生活する居住空間及び作業空間の全体にわたってイオン濃度を高濃度にすることが、感染症予防や環境浄化において非常に重要なことであるといえる。
 本発明に係るイオン発生装置は、以上のような知見に基づくものであり、プラス及びマイナスのイオン発生部を並設してあり、夫々のイオン発生部からイオンを発生させるイオン発生器を複数備えたイオン発生装置において、前記複数のイオン発生器は、夫々のプラス及びマイナスのイオン発生部の並設方向を整合させ、且つ前記イオン発生部同士に前記並設方向の重なりがないように偏倚させてあることを特徴とする。
 本発明にあっては、イオン発生部同士に並設方向の重なりがないため、該並設方向が各イオン発生部の近傍を夫々通流する気流の方向と略垂直をなすように、イオン発生装置を通風路に置いたときは、各イオン発生部の夫々が発生させるイオンに重なりが生じて相互に干渉することを抑止する。
 本発明に係るイオン発生装置は、前記複数のイオン発生器は、前記並設方向と交差する方向に配設してあり、配設した方向と垂直的に交差する方向の一方の側へ、夫々のイオン発生部がイオンを発生させるようにしてあることを特徴とする。
 本発明にあっては、イオン発生器の配設方向と略直交する方向の一方の側へイオンを発生させるようにしてあるため、前記配設方向が各イオン発生部の近傍を夫々通流する気流の方向と略平行となるように、イオン発生装置を通風路に置いたときは、各イオン発生部の夫々が発生させるイオンが、前記気流と共に効率よく通風路を通流する。
 本発明に係るイオン発生装置は、前記イオン発生器は、前記プラス及びマイナスのイオン発生部の夫々に開口を備え、前記イオン発生器の前記並設方向への偏倚量は、前記開口の前記並設方向の長さ以上であることを特徴とする。
 本発明にあっては、イオン発生部の開口同士に並設方向の重なりがないため、該並設方向が各イオン発生部の開口の近傍を夫々通流する気流の方向と略垂直をなすように、イオン発生装置を通風路に置いたときは、各イオン発生部の夫々が発生させるイオンに重なりが生じて相互に干渉することを抑止する。
 本発明に係るイオン発生装置は、前記イオン発生器は、前記並設方向の一方の側へ偏倚させてあり、前記イオン発生器の前記並設方向への偏倚量の総和は、前記プラス及びマイナスのイオン発生部の離隔距離以下であることを特徴とする。
 本発明にあっては、プラスの各イオン発生部とマイナスの各イオン発生部とが並設方向の両側に分離して位置するため、前記並設方向が各イオン発生部の近傍を夫々通流する気流の方向と略垂直をなすように、イオン発生装置を通風路に置いたときは、各イオン発生部の夫々が発生させるプラス及びマイナスのイオンに重なりが生じて相互に干渉することを抑止する。
 本発明に係る空気清浄装置は、上述した発明の何れか1つに記載のイオン発生装置と、該イオン発生装置が発生させたイオンを含ましめるべき空気を浄化する浄化器とを備えることを特徴とする。
 本発明にあっては、浄化器で浄化した空気に、上述した発明の何れか1つに記載のイオン発生装置が発生させたイオンを含ましめる。
 これにより、複数のイオン発生部の夫々が発生させるイオンに重なりが生じて相互に干渉することを抑止するイオン発生装置が、空気清浄装置に適用される。
 本発明によれば、イオン発生部が発生したイオンを、空気の通流が層流となるようになしてある層流部で空気に含ませることができるため、イオン発生部が発生したイオンを空気に効率的に含ませることができ、空気に含まれるイオン量を増すことができる。因って、室内へ放出されるイオン量を多くすることができる。
 本発明によれば、複数のイオン発生器の夫々を周期的に互いに異なる位相で駆動させる。これにより、各イオン発生器は、互いに他のイオン発生器が発生させたイオンの影響を受けることが抑止されると共に、通電される割合が減少してイオン発生装置としての稼動寿命が延長される。従って、放出された空間に分布するイオンの量を殆ど減少させることなく稼動寿命を延長することができる。
 本発明によれば、イオン発生部の並設方向が各イオン発生部の近傍を夫々通流する気流の方向と略垂直をなすように、イオン発生装置を通風路に置いたときは、各イオン発生部の夫々が発生させるイオンに重なりが生じて相互に干渉することを抑止する。
 従って、イオン発生器を集合的に配設した場合であっても相互の干渉を抑制して、イオンの発生効率の低下を軽減することができる。
本発明に係る空気清浄装置の構成を示す縦断側面図である。 本発明に係る空気清浄装置の要部の構成を示す正面図である。 本発明に係る空気清浄装置の要部の構成を示す側面図である。 本発明に係る空気清浄装置のイオン発生器の構成を示すもので、(a) は正面図、(b) は側面図である。 室内の床に据えられた本発明に係る空気清浄装置の放出口から吹出された空気を室内で測定する見取図である。 本発明の実施の形態に係る空気清浄装置の構成を示す縦断側面図である。 要部の構成を示す正面図である。 要部の構成を示す側面図である。 空気清浄装置の制御系の概略構成を示すブロック図である。 イオン発生器を駆動させるCPUの処理手順を示すフローチャートである。 出力インタフェースの夫々から制御入力へ入力される駆動信号のタイミングチャートである。 イオン発生器及びイオン発生器駆動回路の接続例を示す回路図である。 1個のイオン発生器を常時オン(駆動)させた場合及び交互にオン/オフさせた場合のイオン濃度及びイオンバランスと、常時オンさせた場合のイオン濃度に対するオン/オフさせた場合のイオン濃度の比とについて、室内での測定例を示す図表である。 図13のイオン濃度の比の平均値をプロットしたグラフである。 2個のイオン発生器を常時オンさせた場合及び交互にオン/オフさせた場合のイオン濃度及びイオンバランスと、2個常時オンさせた場合のイオン濃度に対するオン/オフさせた場合のイオン濃度の比とについて、室内での測定例を示す図表である。 図15のイオン濃度の比の平均値をプロットしたグラフである。 本発明の実施の形態に係る空気清浄装置の構成を示す縦断側面図である。 要部の構成を示す正面図である。 要部の構成を示す側面図である。 イオン発生装置の外観を示す正面図である。
符号の説明
 1  ハウジング
 11 吸込口
 12 放出口
 2  送風機
 21 羽根車
 22 ケーシング
 22a 円弧形誘導壁
 22b 吹出口
 3  フィルタ
 4  ダクト
 5  イオン発生器
 51,52 イオン発生部
 53 保持体
 F  層流部
 2  送風機
 3  フィルタ(浄化器)
 4  ダクト
 5  イオン発生器
 6  モータ
 12 放出口
 21 羽根車(送風ファン)
 22 ケーシング
 30 CPU
 31 ROM
 32 RAM
 33 タイマ
 37 送風機駆動回路
 38 イオン発生器駆動回路(駆動回路)
 1  ハウジング
 2  送風機
 3  フィルタ(浄化器)
 4  ダクト
 5  イオン発生器
 6  モータ
 11 吸込口
 12 放出口
 21 羽根車
 22 ケーシング
 22a 円弧形誘導壁
 51,52 イオン発生部(プラス及びマイナスのイオン発生部)
 51a,52a 開口
 500 イオン発生装置
 501 保持体
 L3 開口長
 L4,L5,L6 偏倚量
 実施の形態1
 以下本発明をその実施の形態を示す図面に基づいて詳述する。ここでは、空気清浄装置を例に説明する。図1は本発明に係る空気清浄装置の構成を示す縦断側面図、図2は要部の構成を示す正面図、図3は要部の構成を示す側面図、図4はイオン発生器の構成を示すもので、(a) は正面図、(b) は側面図である。
 図1に示した空気清浄装置は、後壁1aに吸込口11を有し、天壁1bに放出口12を有するハウジング1と、該ハウジング1内の下部に配されている送風機2と、吸込口11の内側に配され、送風機2が吸込口11から吸込む空気を通過させ、該空気中の異物を除去して清浄の空気にするフィルタ3と、送風機2及び放出口12の間に配され、前記空気を前記放出口12へ通流させる通流路としてのダクト4と、二つのイオン発生部51,52を有し、送風機2が送風する空気にプラスイオン及びマイナスイオンを含ませるイオン発生器5とを備える。この空気清浄装置は、イオン発生部51,52が発生するプラスイオン及びマイナスイオンを、送風機2が送風する空気に含ませ、空気とともにプラスイオン及びマイナスイオンを放出口12から外部へ放出すように構成されている。
 ハウジング1は平面視矩形をなす底壁1cと、該底壁1cの二辺に連なる前壁1d、後壁1a及び底壁1cの他の二辺に連なる側壁と、天壁1bとを有する略直方体をなす。後壁1aにはその長手方向が上下となり、長方形をなす吸込口11が設けられ、天壁1bにはその長手方向が両側壁側となり、長方形をなす放出口12が設けられている。
 送風機2は、円筒形状をなし、回転軸が前後となるように配される羽根車21及び該羽根車21を回転自在に収容してあるケーシング22を有する遠心形であり、羽根車21を駆動するモータ6が、ケーシング22の前側部に取付けられている。
 羽根車21は、外縁に対し回転中心側が回転方向へ変位する複数の羽根21aを有する多翼羽根車、換言すると円筒形状をなすシロッコ羽根車(シロッコファン)である。この羽根車21の一端には軸受板を有し、該軸受板の中心に開設されている軸孔にモータ6の出力軸が取付けられ、他端の開口から中心部の空洞へ吸込んだ空気を外周部の羽根21a間から放出するように構成されている。
 ケーシング22は、羽根車21の回転により発生する気流を羽根車21の回転方向へ誘導して層流とし、気流の速度を速めるための円弧形誘導壁22aと、該円弧形誘導壁22aの一部から円弧形誘導壁22aの接線方向一方へ上向きに開放された吹出口22bと、羽根車21の周面及び円弧形誘導壁22a間に配されている円弧形仕切壁22cとを有する。吹出口22bは円弧形誘導壁22aの一部から円弧形誘導壁22aの接線方向一方へ突出する角筒形状をなしている。また、ケーシング22は、深皿形をなし、円弧形誘導壁22aと円弧形仕切壁22c及び吹出口22b用の開放部とを有するケーシング本体2aと、羽根車21の前記開口と対応する箇所が開放され、ケーシング本体2aの開放側を閉塞する蓋板2bとを備え、該蓋板2bがケーシング本体2aに複数本の雄螺子により取付けられている。尚、円弧形誘導壁22aが、羽根車21の回転により発生する気流を整風する整風体を構成しており、また、円弧形誘導壁22aと円弧形仕切壁22cとの間の円弧状通流路22dが層流部Fになっている。
 このように構成されたケーシング2の円弧形誘導壁22aには、イオン発生部51,52に対応する貫通孔及び貫通孔と離隔する取付孔が開設されており、該取付孔に捩込まれる雄螺子によりイオン発生器5が取付けられている。
 ダクト4は、その下端が吹出口22bに連なり、その上端が開放されている角筒形をなし、ケーシング本体2a及び蓋板2bと一体に成形されている。また、ダクト4は、吹出口22bから円弧形誘導面22aの接線方向一方に沿って配された一側壁4aと、吹出口22bから前記一側壁との離隔距離が漸次長くなる他側壁4bと、一側壁4a及び他側壁4bに連なり、鉛直に配された後壁4c及び吹出口22bから後壁4cとの離隔距離が漸次短くなる前壁4dとを有する。ダクト4は、前壁4dの羽根車21に面する側が層流部Fになっており、吹出口22bから吹出された空気を、一側壁4a、後壁4c及び前壁4dに沿って層流に誘導するように構成されている。また、前壁4dにはイオン発生部51,52に対応する貫通孔及び貫通孔と離隔する取付孔が開設されている。イオン発生器5は、層流部Fに臨ませて前壁の貫通孔にはめ込まれ、取付孔に挿入される雄螺子により固定される。
 イオン発生器5は、送風機2が送風する空気の通流方向と交差する方向へ離隔した二つのイオン発生部51,52と、イオン発生部51,52に電圧を供給する給電部と、イオン発生部51,52及び給電部を保持する保持体53とを備える。イオン発生器5は、給電部がイオン発生部51,52に電圧を供給することにより、イオン発生部51,52がコロナ放電し、イオンを発生するように構成されている。
 イオン発生部51,52は、尖鋭状をなす放電電極凸部51a,52a、及び該放電電極凸部51a,52aを囲繞する誘導電極環51b,52bを有し、誘導電極環51b,52b夫々の中心部に放電電極凸部51a,52aを配してある。イオン発生器5は、一方のイオン発生部51がプラスのイオンを発生し、他方のイオン発生部52がマイナスのイオンを発生するように構成されている。
 イオン発生器5は、ケーシング22の整風体を構成する円弧形誘導壁22aと、ダクト4の前壁4dとに取付けられ、空気が通流する通流方向と交差する位置に二つのイオン発生部51,52を配してある。
 ケーシング22の円弧形誘導壁22aに取付けられるイオン発生器5は、3個を一つの保持体53に保持してある。3個のイオン発生器5は、前記通流方向(円弧形誘導壁22aの円弧方向)へ離隔して並置され、且つ前記通流方向と交差する方向(羽根車21の回転軸方向)へ相対的に偏倚している。また、3個のイオン発生器5のイオン発生部51,52は、相対的に偏倚する方向の極性を等しくし、且つ前記通流方向の重なりがないように配してあり、イオン発生器5夫々のイオン発生部51,52が前記貫通孔からケーシング22内に臨んでいる。また、保持体53のケーシング22への取付側は前記通流方向へ湾曲し、且つイオン発生部51,52夫々に対応する3箇所が開口されている湾曲面53bを有し、該湾曲面53bの夫々の開口53aに前記イオン発生部51,52を配してある。
 以上のように構成された空気清浄装置は吸込口11が壁側となるように居住室内の壁の近くに据えられる。
 送風機2の駆動により、羽根車21が回転し、室内の空気が吸込口11からハウジング1内へ吸込まれ、吸込口11及び放出口12間に空気の通流路が発生し、吸込まれた空気中の塵埃等の異物はフィルタ3により除去されて清浄の空気となる。
 フィルタ3を通過した空気は、送風機2のケーシング22内に吸込まれる。この際、ケーシング22内に吸込まれた空気は、羽根車21周りの円弧形仕切壁22cに沿う気流となりつつ円弧形仕切壁22c及び円弧形誘導壁22a間の円弧状通流路22dへ送出される。気流は円弧形誘導壁22aにより整流され、円弧状通流路22dの層流部Fにて層流となる。層流部Fにて層流に通流する空気が円弧形誘導壁22aに沿って図2の2点鎖線の矢印Xで示す如く、吹出口22bへ誘導され、該吹出口22bからダクト4内へ吹出される。
 送風機2におけるケーシング22の円弧形誘導壁22aにはイオン発生部51,52を配してあるため、イオン発生部51,52が発生したイオンを、円弧形誘導壁22aに沿って比較的狭い層流部Fの通路を層流に通流する空気に効率的に含ませることができる。また、円弧形誘導壁22aに沿って通流する空気は高風速で通流するため、イオンをより一層効率的に空気に含ませることができる。
 また、イオン発生器5は、空気の通流方向と交差する位置に二つのイオン発生部51,52を配し、空気に初めてイオンを含ませる箇所を多くしてあるため、イオンをより一層効率的に空気に含ませることができる。
 また、イオン発生器5は、清浄空気の通流方向へ離隔して3個を配し、且つ3個のイオン発生器5を前記通流方向と交差する方向へ相対的に偏倚させ、イオン発生器5夫々のイオン発生部51,52を前記通流方向の重なりがないように配してある。このイオン発生器5の配置により、空気に初めてイオンを含ませる箇所を多くし、イオン発生器5夫々のイオン発生部51,52が発生したプラスイオンと、マイナスイオンとが打ち消されるのを防ぐようにしてある。因って、ケーシング22を大型にすることなく、イオンをより一層効率的に空気に含ませることができる。
 以上のように層流に通流する空気に含ませたプラスイオン及びマイナスイオンは、空気がケーシング22の吹出口22bからダクト4内へ吹出される際に混じり合う。
 ダクト4は、一側壁4a、後壁4c及び前壁4dに沿って空気を層流に通流させるように構成されており、この層流に通流させる前壁4dにイオン発生部51,52を配してある。因って、送風機2のケーシング22内でプラスイオン及びマイナスイオンを含ませてある空気に、さらにダクト4に配してあるイオン発生部51,52が発生したプラスイオン及びマイナスイオンを含ませることができ、空気中のイオン量を増すことができる。
 図5は室内の床に据えられた本発明に係る空気清浄装置の放出口から吹出された空気を室内で測定する見取図である。表1は室内でのイオン量を測定した結果を示すデータである。イオン発生器を備える従来の空気清浄装置と、本発明に係る空気清浄装置との室内A~E点でのイオン量を測定したところ、表1に示す結果が得られた。図5において、室内は、5.1m×5.7mの床面積であり、空気清浄装置は5.7m側の一の壁に対し0.3m離隔した床に据えてある。また、測定点Aは室内の5.1m側の一の壁に対し0.1m離隔した箇所で、5.7m側の1,3,5点の箇所である。測定点Cは室内の5.1m側の中央で、5.7m側の1,3,5点の箇所である。測定点Eは室内の5.1m側の他の壁に対し0.1m離隔した箇所で、5.7m側の1,3,5点の箇所である。また、測定時間は吹出開始から20分間、イオン量は空気中のプラスイオン数(個/cm)、マイナスイオン数(個/cm)である。
Figure JPOXMLDOC01-appb-T000001
 表1の測定結果により、測定点平均の除菌イオン量は39,611(個/cm)、増加率は154%であり、室内へ放出されたイオン量を多くすることができることを実証することができた。
 また、従来から正イオンH(HO)m(mは任意の整数)、負イオンO (H2 O)n(nは任意の整数)を空気中に送出し、イオンの反応によって浮遊細菌等を殺菌することは知られていた。しかし、前記イオンは各々が再結合して消滅するため、イオン発生素子の極近傍では高濃度が実現できても、送出する距離が遠くなればなるほど急激にその濃度が減少してしまっていた。従って、実験装置のような小容量の空間ではイオン濃度を数万個/cmとすることが出来ても、実際の居住空間や作業空間等の大きな空間ではせいぜい2~3,000個/cmの濃度とするのが限度であった。
 一方発明者らは、実験室レベルで前記イオン濃度が7000個/cmの時には、トリインフルエンザウイルスが10分間で99%、50,000個/cmにおいては99.9%除去できることを発見した。双方の除去率が持つ意味は、空気中に1,000個/cmのウイルスが存在したと仮定すると、各々10個/cm及び1個/cmが残留することを示す。つまり、イオン濃度を7,000個/cmから50,000個/cmに高めることによって、残留するウイルスが1/10になるのである。
 このことから、人などが生活する居住空間や作業空間において、高濃度のイオンを送出するだけではなく、空間全体にイオン濃度を高濃度にすることが感染症予防や環境浄化において非常に重要なことであることがわかる。
 尚、以上説明した実施例の形態では、空気の通流が層流となる層流部Fを有するケーシングの円弧形誘導壁22aに3個のイオン発生器5を配し、空気の通流が層流となる層流部Fを有するダクト4の前壁4dに1個のイオン発生器5を配してある。その他、イオン発生器5は空気の通流が層流となるようになしてある層流部Fに配する構成であればよく、イオン発生器5を配する箇所は特に制限されない。例えば、吹出口22bの円弧形誘導壁22aに連なる箇所、及び円弧形誘導壁22a、ダクト4の前壁4dの少なくとも1箇所に配する構成とする。
 実施の形態2
 以下、本発明に係るイオン発生装置を空気清浄装置に適用した実施の形態について説明する。図6は本発明に係る空気清浄装置の構成を示す縦断側面図、図7は要部の構成を示す正面図、図8は要部の構成を示す側面図である。
 図6に示した空気清浄装置は、吸込口11を有する後壁1aと、天壁1bに放出口12を有するハウジング1と、該ハウジング1内の下部に配されている送風機2と、吸込口11の内側に配され、送風機2が吸込口11から吸込む空気を通過させ、該空気中の異物を除去して清浄空気にするフィルタ(浄化器)3と、送風機2及び放出口12の間に配され、前記清浄空気を前記放出口12へ導風する導風路としてのダクト4と、送風機2が送風する清浄空気中にプラスイオン及びマイナスイオンを発生させるイオン発生器5とを備え、イオン発生器5が発生させるプラスイオン及びマイナスイオンを、送風機2が送風する清浄空気とともに放出口12から外部へ放出するように構成されている。
 ハウジング1は、平面視矩形をなす底壁1cと、該底壁1cの二辺に連なる前壁1d、後壁1a及び底壁1cの他の二辺に連なる側壁と、天壁1bとを有し、略直方体をなす。後壁1aには、その長手方向が上下となり長方形をなす吸込口11が設けられ、天壁1bには、その長手方向が両側壁側となり長方形をなす放出口12が設けられている。
 送風機2は、円筒形状をなし、回転軸が前後となるように配される羽根車(送風ファン)21及び該羽根車21を回転自在に収容してあるケーシング22を有する遠心形であり、羽根車21を駆動するモータ6が、ケーシング22の前側部に取り付けられている。
 羽根車21は、外縁に対し回転中心側が回転方向へ変位する複数の羽根21aを有する多翼羽根車、換言すると円筒形状をなすシロッコ羽根車(シロッコファン)である。また、羽根車21は、一端に軸受板を有し、該軸受板の中心に開設されている軸孔にモータ6の出力軸が取り付けられ、他端の開口から中心部の空洞へ吸込んだ空気を外周部の羽根21a間から放出するように構成されている。
 ケーシング22は、羽根車21の回転により発生する気流を羽根車21の回転方向へ誘導し、気流の速度を増すための円弧形誘導壁22aと、該円弧形誘導壁22aの一部から円弧形誘導壁22aの接線方向の一方へ上向きに開放された吹出口22bとを有する。吹出口22bは円弧形誘導壁22aの一部から円弧形誘導壁22aの接線方向の一方へ突出する角筒形状をなしている。また、ケーシング22は、深皿形をなし、円弧形誘導壁22a及び吹出口22b用の開放部を有するケーシング本体2aと、羽根車21の前記開口と対応する箇所が開放され、ケーシング本体2aの開放側を閉塞する蓋板2bとを備え、該蓋板2bがケーシング本体2aに複数本の雄螺子により取り付けられている。
 このように構成されたケーシング22の円弧形誘導壁22aには、イオン発生器5に対応する貫通孔及び貫通孔と離隔する取付孔が開設されており、該取付孔に捩込まれる雄螺子によりイオン発生器5が取り付けられている。
 ダクト4は、その下端が吹出口22bに連なり、その上端が開放されている角筒形をなし、ケーシング本体2a及び蓋板2bと一体に成形されている。また、ダクト4は、吹出口22bの一側から円弧形誘導面22aの接線方向の一方に沿って配された一側壁4aと、吹出口22bの他側から前記一側壁との離隔距離が漸次長くなる他側壁4bと、一側壁4a及び他側壁4bに連なり、鉛直方向に配された後壁4c及び吹出口22bから後壁4cとの離隔距離が漸次短くなる前壁4dとを有する。そして、ダクト4は、吹出口22bから吹出された清浄空気を、一側壁4a、後壁4c及び前壁4dに沿って層流に誘導するように構成されている。前壁4dには、イオン発生器5に対応する貫通孔及び貫通孔と離隔する取付孔が開設されており、該取付孔に捩込まれる雄螺子によりイオン発生器5が取り付けられている。
 以上のように構成された空気清浄装置は、吸込口11が壁側となるように居住室内の壁の近くに据えられる。送風機2の駆動により羽根車21が回転し、室内の空気が吸込口11からハウジング1内へ吸込まれ、吸込口11及び放出口12間に風の通風路が発生し、吸込まれた空気は、塵埃等の異物がフィルタ3により除去されて清浄空気となる。
 フィルタ3を通過した清浄空気は、送風機2のケーシング22内に吸込まれる。この際、ケーシング22内に吸込まれた清浄空気は、羽根車21周りの円弧形誘導壁22aにより層流となる。この層流は、円弧形誘導壁22aに沿って吹出口22bへ誘導され、該吹出口22bからダクト4内へ吹き出される。送風機2におけるケーシング22の円弧形誘導壁22aにはイオン発生器5を配してあるため、該イオン発生器5が円弧形誘導壁22aに沿って流通する清浄空気中にイオンを発生させる。
 ダクト4は、一側壁4a、後壁4c及び前壁4dに沿って清浄空気を層流に誘導するように構成されており、この層流に清浄空気を誘導する前壁4dにイオン発生器5を配してある。このため、送風機2のケーシング22内において清浄空気中に発生したプラスイオン及びマイナスイオンに加えて、更に、ダクト4に配してあるイオン発生器5が、プラスイオン及びマイナスイオンの量を増加させるようにしてある。
 図9は、空気清浄装置の制御系の概略構成を示すブロック図である。制御系の中枢となるのはCPU30であり、CPU30は、プログラム等の情報を記憶するROM31、一時的に発生した情報を記憶するRAM32、及び時間を計時するためのタイマ33と互いにバス接続されている。CPU30は、ROM31に予め格納されている制御プログラムに従って入出力、演算等の処理を実行する。
 CPU30には、更に、空気清浄装置の運転、停止等の操作を受け付けるための操作部35と、操作の内容、運転状態等の情報を表示するLCDからなる表示部36と、送風機2のモータ6を駆動するための送風機駆動回路37とがバス接続されている。
 CPU30にバス接続された出力インタフェース34,34の出力側の夫々は、イオン発生器駆動回路(駆動回路)38,38の制御入力PC1及びPC2に接続されている。各イオン発生器駆動回路38,38の出力の一端の夫々は、陽極がイオン発生器5,5の電源入力V1及びV2に接続されている直流電源E1の陰極に接続されており、他端は、イオン発生器5,5の接地入力G1及びG2に接続されている。
 上述した構成において、タイマ33が所定時間を計時する都度、CPU30が、出力インタフェース34,34を介して、イオン発生器駆動回路38,38の制御入力PC1及びPC2のオン/オフを交互に反転させる。これにより、イオン発生器駆動回路38,38の夫々が、イオン発生器5,5の接地入力G1及びG2の夫々と、直流電源E1の陰極との接続を交互に接/断する。
 図10は、イオン発生器5,5を駆動させるCPU30の処理手順を示すフローチャートである。以下の処理は、随時実行され、処理が終了する都度、再び実行されるようにしてある。
 尚、FLG1の内容は、RAM32に記憶されるものとする。
 CPU30は、タイマ33に1秒の計時を開始させる(ステップS11)。その後、CPU30は、タイマ33が計時を終了したか否かを判定する(ステップS12)。計時を終了していないと判定した場合(ステップS12:NO)、CPU30は、タイマ33が計時を終了するまで待機する。計時を終了したと判定した場合(ステップS12:YES)、CPU30は、FLG1がセットされているか否かを判定する(ステップS13)。
 FLG1がセットされていると判定した場合(ステップS13:YES)、CPU30は、FLG1をクリアする(ステップS14)。その後、CPU30は、一の出力インタフェース34の出力をオフさせてイオン発生器駆動回路38の制御入力PC1をオフさせる(ステップS15)と共に、他の出力インタフェース34の出力をオンさせてイオン発生器駆動回路38の制御入力PC2をオンさせ(ステップS16)、処理を終了する。
 ステップS13でFLG1がセットされていないと判定した場合(ステップS13:NO)、CPU30は、FLG1をセットする(ステップS17)。その後、CPU30は、一の出力インタフェース34の出力をオンさせてイオン発生器駆動回路38の制御入力PC1をオンさせる(ステップS18)と共に、他の出力インタフェース34の出力をオフさせてイオン発生器駆動回路38の制御入力PC2をオフさせ(ステップS19)、処理を終了する。
 図11は、出力インタフェース34,34の夫々から制御入力PC1,PC2へ入力される駆動信号のタイミングチャートである。夫々の駆動信号は、デューティ50%で交互に1秒オン/1秒オフを繰り返す。これにより、イオン発生器駆動回路38,38の夫々は、イオン発生器5,5への電源供給を1秒おきに交互に接/断する。従ってイオン発生器5,5が1秒おきに交互に駆動される。
 図12は、イオン発生器5及びイオン発生器駆動回路38の接続例を示す回路図である。イオン発生器5は、電源入力V1(又はV2)及び接地入力G1(又はG2)の間に印加された直流電圧を昇圧する第1の昇圧回路5aと、第1の昇圧回路5aが昇圧した電圧を更に昇圧する第2の昇圧回路5bと、第2の昇圧回路5bが昇圧した電圧を印加されてイオンを発生させるイオン発生素子I11とを備える。
 第1の昇圧回路5aは、電源入力V1(又はV2)にアノードが接続されたダイオードD11及び抵抗R11,R12からなる直列回路と、該直列回路の抵抗R12側に一端が接続された起動抵抗R13と、抵抗R12及び抵抗R13の接続点に一次巻線T11aの一端が接続された昇圧トランスT11とを備える。
 起動抵抗R13の他端は、アノードを接地電位に接続されたダイオードD12のカソードと、エミッタ接地のNPNトランジスタQ11のベースと、昇圧トランスT11の二次巻線T11cの一端とに接続されると共に、制限抵抗R14を介して昇圧トランスT11のベース巻線T11bの一端に接続されている。
 一次巻線T11aの他端は、NPNトランジスタQ11のコレクタに、ベース巻線T11bの他端は、接地電位に夫々接続されている。二次巻線T11cの他端は、ダイオードD13のアノードに接続され、ダイオードD13のカソードは、他端が接地電位に接続された充電用コンデンサC11及び第2の昇圧回路5bに接続されている。
 第2の昇圧回路5bは、二端子サイリスタS11を介して第1の昇圧回路5aに一次巻線T12aの一端が接続された昇圧トランスT12を備える。一次巻線T12aの他端は接地電位に接続され、二次巻線T12bは、両端がイオン発生素子I11に接続されている。
 イオン発生素子I11は、カソード及びアノードが夫々昇圧トランスT12の二次巻線T12bの一端に接続されたダイオードD14及びダイオードD15と、ダイオードD14のアノード及びダイオードD15のカソードに夫々接続されたマイナス側針電極N11及びプラス側針電極N12と、二次巻線T12bの他端に接続された対向電極P11とを備える。
 イオン発生器駆動回路38は、接地入力G1(又はG2)及び直流電源E1の陰極に夫々コレクタ及びエミッタが接続されたNPNトランジスタQ12と、該NPNトランジスタQ12のベース及びエミッタ間に接続された抵抗R16と、前記NPNトランジスタQ12のベース及び制御入力PC1(又はPC2)の間に接続された抵抗R15とを備える。
 上述した構成において、制御入力PC1(又はPC2)に図11に示す駆動信号が与えられた場合、NPNトランジスタQ12がオンして、電源入力V1(又はV2)及び接地入力G1(又はG2)の間に直流電源E1のDC12Vが印加される。この場合、ダイオードD11、抵抗R11,R12及び起動抵抗R13を介して流入したベース電流により、NPNトランジスタQ11のコレクタ電流が流れ始め、昇圧トランスT11の一次巻線T11aの両端に電圧が発生する。これにより、ベース巻線T11bの両端に、一次巻線T11a及びベース巻線T11bの巻数比に応じた電圧が発生する。
 一方、昇圧トランスT11のベース巻線T11bは、一次巻線T11aと同極性であるため、ベース巻線T11bの両端に発生した電圧は、NPNトランジスタQ1のコレクタ電流の増加を加速させて一次巻線の両端の電圧を増加させるように作用する。このとき、二次巻線T11cの極性は、ダイオードD13が導通しない方向の電圧が発生するように設定されているため、二次巻線には電流が流れない。
 その後、NPNトランジスタQ11のコレクタ電流が増加する割合が減少した場合、一次巻線T11aの両端の電圧は低下し始め、ベース巻線T11bの両端の電圧も低下してベース電流及びコレクタ電流が減少するため、一次巻線T11aの両端の電圧は更に加速度的に低下する。このとき、二次巻線T11cの両端には、ダイオードD13が導通する方向に電圧が発生して充電用コンデンサC11を充電する。
 充電用コンデンサC11の充電が進行して端子電圧が二端子サイリスタS11のブレークオーバー電圧(本実施の形態では105V)に達した場合、二端子サイリスタS11は、ツエナーダイオードのように導通し始める。導通する電流がブレークオーバー電流(例えば1mA)に達した場合、二端子サイリスタS11は略短絡状態となり、充電用コンデンサC11に充電された電荷が、昇圧トランスT12の一次巻線T12aを通じて接地電位に放電する。
 このとき、二次巻線T12bには、昇圧されたインパルス状の高電圧が発生する。これにより、昇圧トランスT12の二次巻線T12bからダイオードD14及びD15を介して高電圧を印加されたイオン発生素子I11が、マイナス側針電極N11及びプラス側針電極N12と、対向電極P11との間で夫々マイナスイオン及びプラスイオンを発生させる。
 図13は、1個のイオン発生器5を常時オン(駆動)させた場合及び交互にオン/オフさせた場合のイオン濃度及びイオンバランスと、常時オンさせた場合のイオン濃度に対するオン/オフさせた場合のイオン濃度の比とについて、室内での測定例を示す図表であり、図14は、図13のイオン濃度の比の平均値をプロットしたグラフである。図13において、イオン濃度は、単位容積当たりのプラスイオン数(個/cm)及びマイナスイオン数(個/cm)であり、イオンバランスは、プラスイオンのイオン濃度に対するマイナスイオンのイオン濃度の比で示してある。また、図14において、横軸はオン/オフ時間(秒)であり、縦軸はイオン濃度の比(%)を示す。
 図13及び図14の測定例では、イオン発生器5をオン/オフさせるデューティを50%に保ってオン時間及びオフ時間を0.5秒から5秒の間で変化させた場合、常時オンさせた場合に対して、イオン濃度の比が平均値で85.7%から75.0%まで低下している。このうち、0.5秒及び1秒オン/オフさせた場合のイオン濃度の比は85.7%であり、14.3%の低下に抑えられることが示される。換言すれば、1秒から2秒周期で間欠的に駆動させた場合、常時駆動させた場合と比較してイオン濃度に大差が生じないことが示される。
 図15は、2個のイオン発生器5を常時オンさせた場合及び交互にオン/オフさせた場合のイオン濃度及びイオンバランスと、2個常時オンさせた場合のイオン濃度に対するオン/オフさせた場合のイオン濃度の比とについて、室内での測定例を示す図表であり、図16は、図15のイオン濃度の比の平均値をプロットしたグラフである。図15には、また、1個のイオン発生器5を常時オンさせた場合のイオン濃度、イオンバランス及びイオン濃度の比について、側定例を併記してある。図15でのイオン濃度及びイオンバランスの単位は、図13の場合と同様である。また、図16において、横軸はオン/オフ時間(秒)であり、縦軸はイオン濃度の比(%)を示す。
 図15及び図16の測定例では、イオン発生器5をオン/オフさせるデューティを50%に保ってオン時間及びオフ時間を0.5秒から5秒の間で変化させた場合、2個常時オンさせた場合と比較して、イオン濃度の比が平均値で92.2%から90.5%まで低下している。このうち、1秒オン/オフさせた場合のイオン濃度の比は平均92.2%であり、7.8%の低下に抑えられることが示される。一方、1個のイオン発生器5を常時オンさせた場合のイオン濃度の比は89.4%であり、2個をオン/オフさせることによって、1個を常時オンさせるより高いイオン濃度が得られることが示される。
 以上のように、本実施の形態によれば、イオン発生器駆動回路が、2つのイオン発生器の夫々を、周期的に互いに異なる位相で駆動する。
 これにより、イオン発生器同士が干渉することが抑止されると共に、イオン発生器に通電される割合が減少してイオン発生装置としての稼動寿命が延長される。従って、放出された空間に分布するイオンの量を殆ど減少させることなく稼動寿命を延長してイオン発生装置としての長寿命化を図ることができる。
 また、ケーシングの円弧形誘導壁に配したイオン発生器を、ダクトの前壁に配したイオン発生器から離隔してある。
 従って、イオン発生器同士が干渉してイオンの発生量が減少する割合を低下させることができる。
 更にまた、送風機の羽根車が、2つのイオン発生器が発生させたイオンを外部に吹き出す。
 従って、イオン発生器同士の干渉を更に抑止することができると共に、発生したイオンを効率よく外部へ導くことができる。
 更にまた、イオン発生器駆動回路が、2つのイオン発生器を、イオンの量が最大となる2秒周期で交互に1秒ずつ駆動する。
 従って、2つのイオン発生器を連続して駆動させたときと比較して、イオンの発生量を殆ど低下させることがなく、且つ、夫々のイオン発生器を用いたイオン発生装置の稼動寿命を倍増させることができる。
 更にまた、フィルタで浄化した空気に、イオン発生装置のイオン発生器が発生させたイオンを含ましめる。
 従って、放出された空間に分布するイオンの量を殆ど低減させることなく稼動寿命を延長したイオン発生装置を、空気清浄装置に適用することが可能となる。
 尚、本実施の形態にあっては、イオン発生器をデューティ50%で1秒オン/1秒オフの繰り返しにより駆動させているが、これに限定されるものではなく、例えば50%より小さいデューティにして、更に稼動寿命を延ばすようにしてもよく、2秒とは異なる周期で駆動させるようにしてもよい。
 また、イオン発生器の個数は2個に限定されるものではなく、3個以上を備えるようにしてもよい。例えば3個のイオン発生器を備える場合は、図9の出力インタフェース34及びイオン発生器駆動回路38を夫々1つずつ追加すればよい。更に、図11に示す各イオン発生器の駆動信号にPC3駆動信号を追加し、PC1駆動信号、PC2駆動信号、及びPC3駆動信号のオン期間が重ならないように、夫々の駆動信号のデューティを33%とすればよい。
 実施の形態3
 以下、本発明に係るイオン発生装置を空気清浄装置に適用した実施の形態について説明する。図17は本発明に係る空気清浄装置の構成を示す縦断側面図、図18は要部の構成を示す正面図、図19は要部の構成を示す側面図、図20はイオン発生装置の外観を示す正面図である。
 図中1は略直方体をなすハウジングであり、ハウジング1は、後壁1aに室内の空気を取り込むための吸込口11を備える。吸込口11の前方には、ハウジング1内の下部に配された送風機2によって吸込口11から吸込まれた空気から異物を除去して清浄空気にするためのフィルタ(浄化器)3が配設されている。送風機2の上方には、ハウジング1の天壁1bが有する放出口12へ前記清浄空気を導風する導風路としてのダクト4が配されている。
 ハウジング1は、後壁1の下辺に連なる平面視矩形の底壁1cを有し、底壁1cの前側の一辺は前壁1dに、他の二辺は側壁に連なっている。後壁1aの吸込口11は、長手方向が上下の長方形をなし、天壁1bの放出口12は、長手方向が両側側壁となる長方形をなしている。
 送風機2は、円筒形状をなし、回転軸が前後となるように配される羽根車21及び該羽根車21を回転自在に収容してあるケーシング22を有する遠心形であり、羽根車21を駆動するモータ6が、ケーシング22の前側部に取り付けられている。
 羽根車21は、外縁に対し回転中心側が回転方向へ変位する複数の羽根21aを有する多翼羽根車、換言すると円筒形状をなすシロッコ羽根車(シロッコファン)である。また、羽根車21は、一端に軸受板を有し、該軸受板の中心に開設されている軸孔にモータ6の出力軸が取り付けられ、他端の開口から中心部の空洞へ吸込んだ空気を外周部の羽根21a間から放出するように構成されている。
 ケーシング22は、羽根車21の回転により発生する気流を羽根車21の回転方向へ誘導し、気流の速度を増すための円弧形誘導壁22aと、該円弧形誘導壁22aの一部から円弧形誘導壁22aの接線方向の一方へ上向きに開放された吹出口22bとを有する。吹出口22bは円弧形誘導壁22aの一部から円弧形誘導壁22aの接線方向の一方へ突出する角筒形状をなしている。また、ケーシング22は、深皿形をなし、円弧形誘導壁22a及び吹出口22b用の開放部を有するケーシング本体2aと、羽根車21の前記開口と対応する箇所が開放され、ケーシング本体2aの開放側を閉塞する蓋板2bとを備え、該蓋板2bがケーシング本体2aに複数本の雄螺子により取り付けられている。
 ケーシング22の円弧形誘導壁22aには、イオン発生装置500に対応する貫通孔及び該貫通孔と離隔する取付孔が開設されており、該取付孔に捩込まれる雄螺子によりイオン発生装置500が取り付けられている。
 ダクト4は、その下端が吹出口22bに連なり、その上端が開放されている角筒形をなし、ケーシング本体2a及び蓋板2bと一体に成形されている。また、ダクト4は、吹出口22bの一方の側から円弧形誘導面22aの接線方向の一方に沿って配された一側壁4aと、吹出口22bの他側から前記一側壁との離隔距離が漸次長くなる他側壁4bと、一側壁4a及び他側壁4bに連なり、鉛直方向に配された後壁4c及び吹出口22bから後壁4cとの離隔距離が漸次短くなる前壁4dとを有する。そして、ダクト4は、吹出口22bから吹出された清浄空気を、一側壁4a、後壁4c及び前壁4dに沿って層流に誘導するように構成されている。また、前壁4dにはイオン発生器5に対応する貫通孔及び貫通孔と離隔する取付孔が開設されており、該取付孔に捩込まれる雄螺子によりイオン発生器5が取り付けられている。
 イオン発生器5には、送風機2が送風する清浄空気の通流方向と略垂直に交差する方向へ離隔した円形の開口51a,52aを夫々有する2つのイオン発生部(プラス及びマイナスのイオン発生部)51,52を並設してある。イオン発生部51,52の夫々は、開口51a及び52aの内奥側に尖鋭状をなす放電電極、及び該放電電極を囲繞する対向電極を有する。そして、一方のイオン発生部51がプラスのイオンを、他方のイオン発生部52がマイナスのイオンを、夫々開口51a,52aが向けられた側へ発生させるように構成されている。
 イオン発生装置500は、3つのイオン発生器5,5,5と、該イオン発生器5,5,5を保持する保持体501とからなり、各イオン発生器5,5,5夫々のイオン発生部51,52が前記貫通孔からケーシング22内に臨むようにしてある。保持体501のケーシング22への取付側は前記通流方向へ湾曲する湾曲面を有し、該湾曲面に前記イオン発生器5,5,5を配してある。また、各イオン発生器5,5,5が配された位置における前記湾曲面の接線は、夫々の開口51a,52aと略平行となるようにしてある。
 イオン発生装置500の各イオン発生器5,5,5は、前記通流方向(円弧形誘導壁22aの円弧方向)へ離隔して並置されており、隣り合うイオン発生器5,5は、前記通流方向と略垂直に交差する方向(即ち、イオン発生部51,52の並設方向)へ互いに偏倚量L5及びL6だけ偏倚している(図20参照)。各イオン発生器5,5,5夫々のイオン発生部51,52は、偏倚する方向のプラス・マイナスの向きを同一とし、且つ前記通流方向に非重なりに配してある。換言すれば、隣り合うイオン発生器5,5の偏倚量L5及びL6は、夫々マイナスのイオン発生部52,52が有する開口52a,52aの口径より距離L1及び距離L2だけ長くしてある。これにより、各イオン発生部51,52に沿って通流する気流同士に重なりが生じない。
 また、各イオン発生器5,5,5の前記偏倚量は、開口51a,52aの前記並設方向の長さ以上としてある。換言すれば、例えば、図20のイオン発生器5、5の偏倚量L4は、プラスのイオン発生部51が有する開口51aの開口長L3以上となるようにしてある。これにより、各開口51a,52aに沿って通流する気流同士に重なりが生じない。
 更に、イオン発生器5の前記偏倚量の総和は、イオン発生部51,52の離隔距離以下としてある。換言すれば、隣り合うイオン発生器5,5,5の偏倚量L5,L6の和は、プラス及びマイナスのイオン発生部51,52の離隔距離以下である。これにより、イオン発生部51,51,51に沿って通流する気流と、イオン発生部52,52,52に沿って通流する気流とが前記並設方向の両側に分離される。
 上述のとおり構成された空気清浄装置は、吸込口11が壁側となるように居住室内の壁の近くに据えられる。送風機2の駆動により、羽根車21が回転し、室内の空気が吸込口11からハウジング1内へ吸込まれ、吸込口11及び放出口12間に風の通風路が発生し、吸込まれた空気は、塵埃等の異物がフィルタ3により除去されて清浄空気となる。
 フィルタ3を通過した清浄空気は、送風機2のケーシング22内に吸込まれる。この際、ケーシング22内に吸込まれた清浄空気は、羽根車21周りの円弧形誘導壁22aにより層流となる。この層流は、円弧形誘導壁22aに沿って吹出口22bへ誘導され、該吹出口22bからダクト4内へ吹き出される。送風機2におけるケーシング22の円弧形誘導壁22aにはイオン発生装置500を配してあるため、該イオン発生装置500が円弧形誘導壁22aに沿って通流する清浄空気中にプラスイオン及びマイナスイオンを発生させる。
 ダクト4は、一側壁4a、後壁4c及び前壁4dに沿って清浄空気を層流に誘導するように構成されており、この層流に清浄空気を誘導する前壁4dにイオン発生器5を配してある。このため、送風機2のケーシング22内において清浄空気中に発生したプラスイオン及びマイナスイオンに加えて、更に、ダクト4に配してあるイオン発生器5がプラスイオン及びマイナスイオンの量を増加させるようにしてある。イオン発生装置500及びイオン発生器5の夫々が発生させたプラスイオン及びマイナスイオンは、送風機2が送風する清浄空気とともに放出口12から外部へ放出されるように構成されている。
 以上のように、本実施の形態によれば、プラス及びマイナスのイオン発生部を並設した3つのイオン発生器を、夫々のイオン発生部のプラス・マイナスの向きが並設方向に揃うように保持体上に配設する。また、プラス及びマイナスのイオン発生部同士が前記並設方向に非重なりとなるように、各イオン発生器を前記並設方向に偏倚させる。そして、前記並設方向が各イオン発生部の近傍を夫々通流する気流の方向と略垂直をなすように、イオン発生装置を通風路に配設する。これにより、各イオン発生部の夫々が発生させるイオンに重なりが生じない。
 従って、イオン発生器を集合的に配設した場合であっても相互の干渉を抑制して、イオンの発生効率の低下を軽減することができる。
 また、3つのイオン発生器を、夫々のイオン発生部の並設方向と交差する方向に配設し、配設した方向と略直交する方向の一方の側へ、夫々のイオン発生部がイオンを発生させる。また、前記配設方向が各イオン発生部の近傍を夫々通流する気流の方向と略平行となるように、イオン発生装置を通風路に配設する。
 従って、イオン発生器を集合的に配設した場合であっても、各イオン発生部の夫々が発生させるイオンを前記気流と共に効率よく通流させることができる。
 更にまた、イオン発生器の前記並設方向への偏倚量を、開口の前記並設方向についての長さ以上とする。そして、前記並設方向が各イオン発生部の近傍を夫々通流する気流の方向と略垂直をなすように、イオン発生装置を通風路に配設する。これにより、各イオン発生部の夫々が開口を介して発生させるイオンに重なりが生じない。
 従って、イオン発生器を集合的に配設した場合であっても、相互の干渉を抑制して、イオンの発生効率の低下を軽減することができる。
 更にまた、イオン発生装置を偏倚させる方向を一方の側へ揃え、隣り合って配設されたイオン発生器の、前記並設方向への偏倚量の和を、プラス及びマイナスのイオン発生部の離隔距離以下とする。そして、前記並設方向が各イオン発生部の近傍を夫々通流する気流の方向と略垂直をなすように、イオン発生装置を通風路に配設する。これにより、並設方向の両側に分離して位置するプラスの各イオン発生部とマイナスの各イオン発生部とが夫々発生させるイオンに重なりが生じない。
 従って、イオン発生器を集合的に配設した場合であっても、相互の干渉を抑制して、イオンの発生効率の低下を軽減することができる。
 更にまた、フィルタで浄化した空気に、イオン発生装置のイオン発生器が発生させたイオンを含ましめる。
 従って、イオン発生器を集合的に配設した場合であっても相互の干渉を抑制して、イオンの発生効率の低下を軽減することが可能なイオン発生装置を、空気清浄装置に適用することが可能となる。
 尚、本実施の形態にあっては、イオン発生部が開口を有しているが、これに限定されるものではなく、例えば、放電電極が保護層に覆われた誘電体で形成されており、イオン発生部が開口を有しないものであってもよい。
 また、イオン発生装置に配設するイオン発生器の数は3に限定されるものではなく、2又は4以上であってもよい。

Claims (19)

  1.  吸込口及び放出口を有するハウジングと、該ハウジング内に収容されている送風機と、該送風機が前記吸込口から吸込む空気を通過させるフィルタと、イオンを発生させるイオン発生部とを備え、該イオン発生部が発生したイオンを、前記送風機により吸込まれた空気とともに前記放出口から放出するようになしてある空気清浄装置において、前記イオン発生部は、前記空気の通流が層流となる層流部に配してあることを特徴とするイオン発生装置。
  2.  前記送風機は羽根車を有し、該羽根車の回転により発生する気流を整風する整風体を備え、該整風体に前記イオン発生部を配してある請求項1記載のイオン発生装置。
  3.  前記送風機は、羽根車及び該羽根車を収容してあるケーシングを有し、該ケーシング及び前記放出口の間に配され、前記空気を前記放出口へ通流させる通流路を有し、該通流路及び前記ケーシングに前記イオン発生部を配してある請求項1記載のイオン発生装置。
  4.  前記ケーシングは、前記羽根車の回転により発生する気流を誘導する円弧形誘導壁及び該円弧形誘導壁の一部から円弧形誘導壁の接線方向一方へ開放されている吹出口を有し、前記円弧形誘導壁に前記イオン発生部を配してある請求項3記載のイオン発生装置。
  5.  前記イオン発生部は、前記空気が通流する通流方向と交差する方向に離隔して複数配してある請求項1から4のいずれか一つに記載のイオン発生装置。
  6.  前記イオン発生部は、前記通流方向へ離隔し、且つ前記通流方向と交差する方向へ相対的に偏倚した位置に複数配してある請求項1から4のいずれか一つに記載のイオン発生装置。
  7.  前記イオン発生部夫々は、前記通流方向の重なりがないように配してある請求項6記載のイオン発生装置。
  8.  前記イオン発生部夫々を保持する保持体を有し、該保持体は、前記通流方向へ湾曲し、且つ前記イオン発生部夫々に対応する箇所が開口している湾曲面を有し、該湾曲面の前記開口に前記イオン発生部夫々を配してある請求項7記載のイオン発生装置。
  9.  請求項1から8までのいずれか一つに記載のイオン発生装置を備える空気清浄装置。
  10.  イオンを発生させる複数のイオン発生器の夫々を駆動する駆動回路を備えたイオン発生装置において、
     前記駆動回路は、前記各イオン発生器の夫々を周期的に互いに異なる位相で駆動するように構成してあることを特徴とするイオン発生装置。
  11.  前記複数のイオン発生器の少なくとも1つは、他のイオン発生器から離隔させてあることを特徴とする請求項10に記載のイオン発生装置。
  12.  前記複数のイオン発生器が発生させたイオンを外部へ吹き出す送風ファンを備えることを特徴とする請求項10又は11に記載のイオン発生装置。
  13.  前記イオン発生器を2つ備え、
     前記駆動回路は、夫々のイオン発生器を交互に駆動するように構成してあること
     を特徴とする請求項10から12までの何れか1項に記載のイオン発生装置。
  14.  請求項10から13までの何れか1項に記載のイオン発生装置と、
     該イオン発生装置が発生させたイオンを含ましめるべき空気を浄化する浄化器と
     を備えることを特徴とする空気清浄装置。
  15.  プラス及びマイナスのイオン発生部を並設してあり、夫々のイオン発生部からイオンを発生させるイオン発生器を複数備えたイオン発生装置において、
     前記複数のイオン発生器は、夫々のプラス及びマイナスのイオン発生部の並設方向を整合させ、且つ前記イオン発生部同士に前記並設方向の重なりがないように偏倚させてあることを特徴とするイオン発生装置。
  16.  前記複数のイオン発生器は、前記並設方向と交差する方向に配設してあり、配設した方向と垂直的に交差する方向の一方の側へ、夫々のイオン発生部がイオンを発生させるようにしてあることを特徴とする請求項15に記載のイオン発生装置。
  17.  前記イオン発生器は、前記プラス及びマイナスのイオン発生部の夫々に開口を備え、
     前記イオン発生器の前記並設方向への偏倚量は、前記開口の前記並設方向の長さ以上であること
     を特徴とする請求項15又は16に記載のイオン発生装置。
  18.  前記イオン発生器は、前記並設方向の一方の側へ偏倚させてあり、
     前記イオン発生器の前記並設方向への偏倚量の総和は、前記プラス及びマイナスのイオン発生部の離隔距離以下であることを特徴とする請求項15から17までの何れか1項に記載のイオン発生装置。
  19.  請求項15から18までの何れか1項に記載のイオン発生装置と、
     該イオン発生装置が発生させたイオンを含ましめるべき空気を浄化する浄化器と
     を備えることを特徴とする空気清浄装置。
PCT/JP2009/055141 2008-08-28 2009-03-17 イオン発生装置及び空気清浄装置 WO2010023980A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127024218A KR101310038B1 (ko) 2008-08-28 2009-03-17 이온 발생 장치 및 공기 청정 장치
EP09809635A EP2338527A4 (en) 2008-08-28 2009-03-17 ION GENERATION DEVICE AND AIR CLEANING DEVICE
US13/061,099 US9005529B2 (en) 2008-08-28 2009-03-17 Ion generating apparatus and air purifying apparatus
KR1020117006853A KR101286808B1 (ko) 2008-08-28 2009-03-17 이온 발생 장치 및 공기 청정 장치

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-220324 2008-08-28
JP2008220329A JP4528851B2 (ja) 2008-08-28 2008-08-28 イオン発生装置
JP2008-220329 2008-08-28
JP2008220324 2008-08-28
JP2008-220327 2008-08-28
JP2008220327A JP4431625B2 (ja) 2008-08-28 2008-08-28 イオン発生装置

Publications (1)

Publication Number Publication Date
WO2010023980A1 true WO2010023980A1 (ja) 2010-03-04

Family

ID=41721159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055141 WO2010023980A1 (ja) 2008-08-28 2009-03-17 イオン発生装置及び空気清浄装置

Country Status (7)

Country Link
US (1) US9005529B2 (ja)
EP (3) EP2338527A4 (ja)
KR (2) KR101310038B1 (ja)
CN (1) CN201663347U (ja)
MY (2) MY164591A (ja)
SG (1) SG178801A1 (ja)
WO (1) WO2010023980A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628477B2 (ja) * 2009-06-19 2011-02-09 シャープ株式会社 イオン発生方法と、イオン発生装置およびそれを用いた電気機器
US9387271B2 (en) 2012-01-26 2016-07-12 Tim Zwijack Techniques for infusing ion clusters into a target environment
JP6200679B2 (ja) * 2012-10-01 2017-09-20 シャープ株式会社 微小粒子拡散装置および照明装置
US9808547B2 (en) 2013-04-18 2017-11-07 Dm Tec, Llc Sanitizer
US10165662B2 (en) 2013-11-20 2018-12-25 Koganei Corporation Ion generator
WO2015091579A1 (en) * 2013-12-17 2015-06-25 Luftmed Gmbh Ion-generating apparatus and method for sterilization and for removing smog
US9950086B2 (en) 2014-03-12 2018-04-24 Dm Tec, Llc Fixture sanitizer
US9700643B2 (en) 2014-05-16 2017-07-11 Michael E. Robert Sanitizer with an ion generator
US20160051829A1 (en) * 2014-06-17 2016-02-25 Amir Porat Multifunctional device for the treatment of headache and mood disorders
US10124083B2 (en) 2015-06-18 2018-11-13 Dm Tec, Llc Sanitizer with an ion generator and ion electrode assembly
CN110945293B (zh) * 2017-07-27 2022-12-27 尔森私人有限公司 离子产生装置
KR102454764B1 (ko) * 2020-12-28 2022-10-13 엘지전자 주식회사 공기조화기
KR102400760B1 (ko) * 2021-01-22 2022-05-20 엘지전자 주식회사 공기조화기

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090058A (ja) * 2000-09-14 2002-03-27 Sharp Corp 冷蔵庫
JP2002257408A (ja) 2001-03-02 2002-09-11 Sharp Corp 空気調和機
JP2004347264A (ja) * 2003-05-23 2004-12-09 Sharp Corp 送風装置、ルーバ及びそれを備えた空気調節装置
JP2007114177A (ja) 2005-09-21 2007-05-10 Sharp Corp イオン検出装置及びイオン発生装置
JP2007322090A (ja) * 2006-06-02 2007-12-13 Sharp Corp 冷蔵庫
JP2008059795A (ja) 2006-08-29 2008-03-13 Sharp Corp イオン発生装置
JP2008123917A (ja) 2006-11-14 2008-05-29 Sharp Corp イオン発生装置及びイオン発生装置の製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951172A (en) 1988-07-20 1990-08-21 Ion Systems, Inc. Method and apparatus for regulating air ionization
JPH02152561A (ja) 1988-12-06 1990-06-12 Sanyo Electric Co Ltd 空気清浄機
JP3859762B2 (ja) 1996-04-18 2006-12-20 泰資 薩谷 気体における発生イオン密度の制御方法
US6958134B2 (en) * 1998-11-05 2005-10-25 Sharper Image Corporation Electro-kinetic air transporter-conditioner devices with an upstream focus electrode
US20020122751A1 (en) 1998-11-05 2002-09-05 Sinaiko Robert J. Electro-kinetic air transporter-conditioner devices with a enhanced collector electrode for collecting more particulate matter
JP2001110590A (ja) 1999-10-04 2001-04-20 Kasuga Electric Works Ltd 直流除電器
JP2007205712A (ja) 2000-12-27 2007-08-16 Sharp Corp 貯蔵庫
JP2003090571A (ja) * 2001-09-20 2003-03-28 Sharp Corp 空気改質機器
US6668563B2 (en) 2002-02-09 2003-12-30 Bernard J. Mirowsky Air treatment system for airplanes
JP2004329639A (ja) 2003-05-09 2004-11-25 Daikin Ind Ltd 放電装置及び空気浄化装置
JP2005076906A (ja) 2003-08-28 2005-03-24 Sharp Corp 空気調節装置
CN100346839C (zh) 2003-10-07 2007-11-07 陈锦星 等离子纳米催化消毒净化器
JP2005243288A (ja) 2004-02-24 2005-09-08 Zexel Valeo Climate Control Corp イオン発生器及びこれを搭載した空気清浄装置
JP2005328904A (ja) * 2004-05-18 2005-12-02 Sharp Corp イオン発生装置およびこれを用いた空気調節装置
JP2005337610A (ja) * 2004-05-27 2005-12-08 Shimizu Corp 空気イオン搬送装置
JP4483441B2 (ja) 2004-07-13 2010-06-16 住友金属鉱山株式会社 高イリジウム、ルテニウム含有液からのロジウム精製方法
JP2006046732A (ja) 2004-08-02 2006-02-16 Sharp Corp 加湿装置
JP2006198029A (ja) * 2005-01-18 2006-08-03 Sharp Corp 空気浄化装置
JP2007012422A (ja) * 2005-06-30 2007-01-18 Sharp Corp イオン発生装置
JP2007021099A (ja) 2005-07-21 2007-02-01 Sharp Corp 空気清浄機
JP2007029497A (ja) 2005-07-28 2007-02-08 Sharp Corp イオン発生機能付電気機器
JP2007040648A (ja) * 2005-08-05 2007-02-15 Sharp Corp 空気調和機
JP4653650B2 (ja) 2005-12-05 2011-03-16 シャープ株式会社 イオン発生素子、イオン発生装置及び電気機器
US20090042502A1 (en) 2005-12-30 2009-02-12 Halla Climate Control Corp. Vehicle Air Purifier with a Negative and Positive Ion Generator and Air Conditioning System Using the Same
JP4718344B2 (ja) 2006-02-22 2011-07-06 三菱電機株式会社 空気浄化装置およびそれを用いた空気浄化方法
JP4624289B2 (ja) 2006-03-24 2011-02-02 シャープ株式会社 イオン発生装置および空気調和機
JP2008014527A (ja) 2006-07-04 2008-01-24 Sharp Corp 空気調和機
KR101339629B1 (ko) 2008-08-28 2013-12-09 샤프 가부시키가이샤 이온 검출 장치 및 이온 발생 장치
KR101268175B1 (ko) 2009-03-26 2013-05-27 샤프 가부시키가이샤 이온 발생 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090058A (ja) * 2000-09-14 2002-03-27 Sharp Corp 冷蔵庫
JP2002257408A (ja) 2001-03-02 2002-09-11 Sharp Corp 空気調和機
JP2004347264A (ja) * 2003-05-23 2004-12-09 Sharp Corp 送風装置、ルーバ及びそれを備えた空気調節装置
JP2007114177A (ja) 2005-09-21 2007-05-10 Sharp Corp イオン検出装置及びイオン発生装置
JP2007322090A (ja) * 2006-06-02 2007-12-13 Sharp Corp 冷蔵庫
JP2008059795A (ja) 2006-08-29 2008-03-13 Sharp Corp イオン発生装置
JP2008123917A (ja) 2006-11-14 2008-05-29 Sharp Corp イオン発生装置及びイオン発生装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2338527A4

Also Published As

Publication number Publication date
SG178801A1 (en) 2012-03-29
EP2338527A1 (en) 2011-06-29
KR20110059628A (ko) 2011-06-02
EP2537535A1 (en) 2012-12-26
KR101286808B1 (ko) 2013-07-17
KR20120120442A (ko) 2012-11-01
EP2338527A4 (en) 2012-04-11
MY157580A (en) 2016-06-30
EP2537536B1 (en) 2013-09-25
CN201663347U (zh) 2010-12-01
US9005529B2 (en) 2015-04-14
EP2537535B1 (en) 2013-08-28
MY164591A (en) 2018-01-15
US20110150710A1 (en) 2011-06-23
EP2537536A1 (en) 2012-12-26
KR101310038B1 (ko) 2013-09-24

Similar Documents

Publication Publication Date Title
WO2010023980A1 (ja) イオン発生装置及び空気清浄装置
WO2010023979A1 (ja) イオン検出装置及びイオン発生装置
JP2008012059A (ja) 空気清浄機
JP2007021411A (ja) 電気集塵機および空気調和機
JP4864442B2 (ja) 空気清浄機及び空気清浄方法
JP2014018326A (ja) 空気調和機
JP4406673B1 (ja) イオン発生装置及び空気清浄装置
JP2005076906A (ja) 空気調節装置
JP5150412B2 (ja) イオン拡散装置
JP4431625B2 (ja) イオン発生装置
JP2011010991A (ja) 空気清浄機
JP3051083B2 (ja) 空気清浄機
JP2004286385A (ja) 換気装置並びにこれを用いた建物
JP2011115569A (ja) 殺菌・不活化装置及びこれを用いた空気清浄装置
JP2006017359A (ja) 空気清浄機
WO2016147792A1 (ja) 空気清浄機
JP4913705B2 (ja) 給気口構造及び換気システム及びこれを用いた建物
JP2004286384A (ja) 給気口構造及び換気システム及びこれを用いた建物
WO2010119733A1 (ja) イオン発生装置及び空気清浄装置
JP2011158247A (ja) イオン発生素子の取付構造及びこれを用いた送風構造並びに空調装置及び空調システム
JP2004057298A (ja) 空気清浄システム
JP2010055959A (ja) イオン発生装置
US20220313863A1 (en) Devices and systems for concentrated biogenic ionization
JP2011047644A (ja) 給気口構造及び換気システム及びこれを用いた建物
JP2012112592A (ja) 空気調節装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13061099

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009809635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117006853

Country of ref document: KR

Kind code of ref document: A