WO2010021115A1 - 熱交換装置とそれを用いた発熱体収納装置 - Google Patents

熱交換装置とそれを用いた発熱体収納装置 Download PDF

Info

Publication number
WO2010021115A1
WO2010021115A1 PCT/JP2009/003903 JP2009003903W WO2010021115A1 WO 2010021115 A1 WO2010021115 A1 WO 2010021115A1 JP 2009003903 W JP2009003903 W JP 2009003903W WO 2010021115 A1 WO2010021115 A1 WO 2010021115A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
heat
environment
heat exchange
Prior art date
Application number
PCT/JP2009/003903
Other languages
English (en)
French (fr)
Inventor
杉山誠
村山拓也
野上若菜
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09808051A priority Critical patent/EP2336699A4/en
Priority to CN2009801323591A priority patent/CN102124295A/zh
Publication of WO2010021115A1 publication Critical patent/WO2010021115A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/206Air circulating in closed loop within cabinets wherein heat is removed through air-to-air heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/16Details or features not otherwise provided for mounted on the roof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a heat exchange device and a heating element storage device using the same.
  • a base station of a mobile phone is also described as a heating element at a certain point because a current of several tens of amperes or more flows. That is, cooling is extremely important for stabilizing the operation.
  • the base station of such a mobile phone has a configuration as shown in FIG. 9 in order to cool it.
  • FIG. 9 is a block diagram of a conventional heat exchange apparatus.
  • a cabinet including a transmitter / receiver serving as a heating element and a heat exchange device 101 mounted at an opening of the cabinet are provided.
  • the heat exchange device 101 includes a main body case 111 having a first suction port 107 for outside air and a first discharge port 108, and a second suction port 109 and a second discharge port 110 for the inside of a cabinet.
  • a first air blowing fan 112 for the open air and a second air blowing fan 113 for the cabinet, and a heat exchanger for performing heat exchange between outdoor air and air in the cabinet in the main body case 111.
  • No. 114 see Patent Document 1.
  • one heat exchanger 114 is provided in one main body case 111. Therefore, the heat exchanger 114 has a stacked area (air passage cross-sectional area) that maximizes the cross-sectional area of the main body case 111. Therefore, in order to obtain the desired heat exchange efficiency, the size of the heat exchanger 114 must increase the area of one heat exchange element. That is, the length of the air passage passing through the heat exchanger 114 becomes long, and as a result, the pressure loss in the heat exchanger 114 becomes large, and the blower (the first blower fan 112, the second The ability of the blower fan 113) also had to be increased.
  • the base station of the mobile phone can be miniaturized, and the heat exchange device itself is also required to be miniaturized.
  • the present invention suppresses the pressure loss in the device, improves the heat exchange efficiency, and as a result, miniaturizes the heat exchange device.
  • this invention is provided with the main body case, the 1st ventilation fan provided in the said main body case, the 2nd ventilation fan, and several heat exchangers, and the said main body case is the 1st in the front. It has a first air inlet for environment and a first outlet, and has a second air inlet for second environment and a second outlet on the back, and the first blower fan has a first air inlet.
  • the air of the first environment sucked from the mouth is blown to the plurality of heat exchangers, and the second blower fan blows the air of the second environment sucked from the second inlet to the plurality of heat exchangers,
  • the plurality of heat exchangers perform heat exchange between the air of the first environment and the air of the second environment in the body case, and the first heat exchanger, the second heat exchanger, and the plurality of heat exchangers
  • the air flow path is disposed substantially in a row, and further includes an air passage between the plurality of heat exchangers and the wall surface of the main body case, the air passage including the first air blowing fan and the first air blowing fan.
  • the present invention relates to a heat exchange device communicating from at least one of the two blower fans to a heat exchanger, and a heating element storage device using the same.
  • FIG. 1 is a perspective view showing an installation example of a heat generating body storage device using a heat exchange device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the heat exchange device according to Embodiment 1 of the present invention.
  • FIG. 3 is an exploded perspective view of the heat exchange device according to the first embodiment of the present invention.
  • FIG. 4 is a detailed perspective view of air passage intersections in the heat exchange device according to Embodiment 1 of the present invention.
  • FIG. 5 is an exploded perspective view of a heat exchange apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional view of a heat exchange device according to Embodiment 3 of the present invention.
  • FIG. 7 is an exploded perspective view of the heat exchange device according to the third embodiment of the present invention.
  • FIG. 8 is an exploded perspective view of the heat exchange device according to the fourth embodiment of the present invention.
  • FIG. 9 is a block diagram of a conventional heat
  • FIG. 1 is a perspective view showing an installation example of a heat generating body storage device using the heat exchange device according to the first embodiment of the present invention.
  • a mobile phone base station 3 is provided on a roof 2 of a building 1.
  • the base station 3 of the mobile phone is a kind of heating element storage device.
  • the base station 3 comprises a box-like cabinet 4, a transmitter / receiver 5 provided in the cabinet 4, and a heat exchange device 6 provided so as to be openable and closable like a door at the front opening of the cabinet 4. .
  • FIG. 2 is a cross-sectional view of the heat exchanger according to the first embodiment.
  • FIG. 3 is an exploded perspective view of the heat exchanger according to the first embodiment.
  • the heat exchange device 6 includes the heat exchanger main body case 11, and in the main body case 11, the first blower fan 12 for the open air (first environment) and the air in the cabinet 4 ( And a second blower fan 13 for a second environment, hereinafter referred to as inside air). Further, in the main body case 11, there are provided a first heat exchanger 14 and a second heat exchanger 15 which perform heat exchange between the external air and the internal air in the main body case 11.
  • a first intake port 7 for outside air and first discharge ports 8a and 8b are provided on the side surface on the outside air side (front side) of the main body case 11.
  • a second air intake port 9 for inside air and second discharge ports 10a and 10b are provided on the side of the cabinet side (rear side) of the main body case 11.
  • the first blower fan 12, the first heat exchanger 14, the second heat exchanger 15, and the second blower fan 13 are substantially aligned in this order from the bottom to the top. It is arranged by.
  • both of the first heat exchanger 14 and the second heat exchanger 15 have a configuration in which a plurality of synthetic resin plates are overlapped at predetermined intervals.
  • the plate has a rectangular shape which is long in the vertical direction, and on the surface thereof, there are respectively provided a plurality of flow straightening walls which divide the surface into lanes.
  • the straightening wall extends from one end of the short side of the plate to the other end, which is an inlet. Further, the straightening wall is curved to one long side before the other end, and is connected to the outlet.
  • both the first heat exchanger 14 and the second heat exchanger 15 have a bottom surface as an inlet on the outside air side. That is, the outside air side inlet of the first heat exchanger is the first inlet 14a, and the outside air side inlet of the second heat exchanger is the first inlet 15a.
  • the outlet on the outside air side of the first heat exchanger is connected to the first outlet 8a, and the outlet on the outside air side of the second heat exchanger is connected to the first outlet 8b.
  • the top surface side of each of the first heat exchanger 14 and the second heat exchanger 15 is an inlet on the inside air side.
  • the inlet on the inside air side of the first heat exchanger is the second inlet 14b
  • the inlet on the inside air side of the second heat exchanger is the second inlet 15b
  • the outlet on the inside air side of the first heat exchanger is connected to the second outlet 10a
  • the outlet on the side of the inside air of the second heat exchanger is connected to the second outlet 10b. Therefore, in the first heat exchanger 14, the outside air flows in from the first inlet 14a and flows out to the first outlet 8a.
  • outside air flows in from the first inlet 15a and flows out to the first outlet 8b.
  • the air passage of the outside air in such a first heat exchanger and the second heat exchanger is an air passage for outside air (a first air passage).
  • the air passage of the inside air in such a first heat exchanger and the second heat exchanger is an air passage for inside air (a second air passage).
  • the air passage for the inside air is the air passage length on the cabinet 4 side (rightward in FIG. 2).
  • a short air flow lane is provided, and a long air flow path long air passage is provided on the outside air side (left side in FIG. 2).
  • a blower lane having a long air passage length is provided on the cabinet 4 side, and a blower lane having a short air passage length is provided on the outside air side.
  • the outside air blowing passage 16 and the inside air blowing passage 17 are configured to intersect. That is, the top surface (second inlet 14b) side of the first heat exchanger 14 and the bottom surface (first inlet 15a) side of the second heat exchanger 15 are partitioned, and the wind is opposed to each other.
  • the road partition plate 18 is provided. A portion where the air paths intersect will be described with reference to FIG.
  • FIG. 4 is a detailed perspective view of air passage intersections in the heat exchange device according to Embodiment 1 of the present invention, and is a perspective view seen from the far side in FIG. In FIG. 4, the space on the lower side of the air passage partition plate 18 (first heat) so that the space above the air passage partition plate 18 (the second heat exchanger 15 side) and the outside air blowing passage 16 communicate with each other.
  • An air passage intersection 19 is provided so that the exchanger 14 side and the inside air blowing passage 17 communicate with each other.
  • the air passage intersection portion 19 is provided with an intersection portion partition plate 19 a so as to be orthogonal to both the side surface 11 a (the front side in FIG. 4) of the main body case 11 and the air passage partition plate 18.
  • the air passage intersection portion 19 is configured by the air passage partition plate 18 and the intersection portion partition plate 19a.
  • FIGS. 2 and 3 the inside air heated to a high temperature by the transmitter / receiver 5 in the cabinet 4 is drawn from the second air inlet 9 of the heat exchange device 6 to the second blower fan 13. Part of the inside air sucked by the second blower fan 13 is sent to the second inlet 15 b of the second heat exchanger 15, and the remaining air passes through the inside air blower passage 17 to the first heat. It is sent to the second inlet 14 b of the exchanger 14. On the other hand, cold outside air is drawn from the first air inlet 7 by the operation of the first blower fan 12.
  • a part of the outside air sucked by the first blower fan is sent to the first inlet 14 a of the first heat exchanger 14, and the remaining outside air passes through the outside air blower 16 to the second heat exchange. It is sent to the first inlet 15 a of the vessel 15.
  • heat exchange is performed between cold outside air and high-temperature inside air. Since the heat is exchanged, the cooled inside air is blown out into the cabinet 4 from the second discharge ports 10a and 10b, and the outside air is discharged again to the outside air from the first discharge ports 8a and 8b.
  • the outside air flowing through the outside air blowing path 16 passes through the cabinet side (left side in FIG. 4) of the intersection part dividing plate 19 a and is led to the inflow port 15 a of the second heat exchanger 15. At this time, the outside air having passed through the air passage intersection 19 is jetted from the long air blowing lane side (left side in FIG. 4) of the second heat exchanger 15.
  • the inside air flowing through the inside air blowing passage 17 passes through the outside air side (right side in FIG. 4) of the intersection portion partition plate 19 a and is led to the inlet 14 b of the first heat exchanger 14. At this time, the inside air that has passed through the air passage intersection 19 is blown out from the long air flow lane side (right side in FIG. 4) of the first heat exchanger 14.
  • the area of one heat exchanger is subjected to heat exchange using two heat exchangers (the first heat exchanger 14 and the second heat exchanger 15) to obtain one heat.
  • the air passage cross sectional area is larger than in the case of the exchanger. That is, using two heat exchangers (the first heat exchanger 14 and the second heat exchanger 15), the sum of the air inlets 14a, 15a or the sum of the air inlets 14b, 15b is Because it becomes larger than when one heat exchanger is used, the air passage cross-sectional area becomes large. Further, the air passage length through which the air per heat exchanger passes can be kept short. Therefore, the wind speed passing through the heat exchanger can be reduced, and the heat exchange efficiency can be improved. In addition, pressure loss per heat exchanger can be reduced. Furthermore, as a result, the heat exchanger itself can be miniaturized.
  • the air passage partition plate 18 may be inclined so that the long air flow lanes in the inlets 15 a and 14 b of the first heat exchanger 14 and the second heat exchanger 15 are wide. Specifically, in FIG. 4, the air passage partition plate 18 is provided between the top surface of the first heat exchanger 14 and the bottom surface of the second heat exchanger 15 so as to be parallel to both There is.
  • the air passage partition plate 18 may be sloped downward from the cabinet side (left side in FIG. 4) to the outside air side (right side in FIG. 4). According to such a configuration, the amount of air to be sent to the long blast lane side can be increased.
  • a heat dissipation device such as a heat dissipation plate may be provided on the air passage partition plate 18 that divides the outside air air blowing passage 16 and the inside air air blowing passage 17. Thereby, heat exchange can be promoted between the outside air blowing passage 16 and the inside air blowing passage 17.
  • the heat dissipating plate be provided with heat dissipating fins in parallel with the direction in which the air in the air path flows.
  • a heat dissipation plate may be provided on the side surface 11 a side of the main body case 11 in the inside air blowing passage 17 through which high temperature inside air passes. This makes it possible to promote heat exchange with the outside air.
  • a heat exchanger in which the air passage intersects with the air passage intersection 19 may be used. As a result, it is possible to realize the intersection of the air paths, and to perform heat exchange between the outside air blowing path 16 and the inside air blowing path 17.
  • the lamination pitch on the outside air side of the second heat exchanger 15 be larger than the lamination pitch on the outside air side of the first heat exchanger 14. That is, since the second heat exchanger 15 is located at a position far from the first blower fan 12, the passage of air to the heat exchanger becomes long. Therefore, when the outside air is sent as it is, the amount of outside air directed to the first heat exchanger is larger than the amount of outside air directed to the second heat exchanger. Therefore, balancing the amount of outside air passing through the first heat exchanger 14 and the second heat exchanger 15 by increasing the lamination pitch of the heat exchangers on the side where the air passage path becomes longer. it can. Therefore, since the performance of each of two heat exchangers can be utilized equally, the heat exchange efficiency as a whole can be improved.
  • the first heat exchanger 14 and the second heat exchanger 14 can be balanced.
  • the lamination pitch on the outside air side of the first heat exchanger 14 and the lamination pitch on the inside air side of the second heat exchanger 15 are made equal, and the lamination pitch on the inside air side of the first heat exchanger 14 and the second It is good to make equal the lamination
  • the rotation direction of the first blower fan 12 is preferably the direction of rotation toward the opening of the outside air blower passage 16 (inner air blower passage 17). That is, when the first blower fan 12 is described as an example, as shown in FIG. 3, when the first blower fan 12 is viewed from the first intake port 7 side, the left side of the first blower fan 12 is The outside air blowing path 16 is provided at the upper side, but the tangential direction arrow indicates the rotating direction of the first air blowing fan 12 on the outside air blowing path 16 side so that the rotation direction of the first air blowing fan 12 is clockwise. (The first blower fan rotational direction 12a) is directed to the outside air blower path 16 side.
  • a tangential arrow (second blower fan rotation direction 13a) indicating the rotation direction of the second blower fan 13 on the inside air blower path 17 side so that the rotation direction of the second blower fan 13 is counterclockwise. But the air flow path 17 side.
  • FIG. 5 is an exploded perspective view of a heat exchange apparatus according to Embodiment 2 of the present invention.
  • the first blower fan 12, the first heat exchanger 14, the second heat exchanger 15, and the second heat exchanger 15 are disposed in the main body case 11.
  • the blower fans 13 are arranged in this order in a row from the bottom.
  • the outside air blowing passage 16 is provided between the side surface 11b of the main body case 11 and the first heat exchanger 14, and the second side surface 11a and the second side 11b face each other.
  • the inside air blowing passage 17 is provided between the heat exchanger 15 and the heat exchanger 15.
  • the top surface of the first heat exchanger 14 and the bottom surface of the second heat exchanger 15 are disposed offset from each other by the horizontal cross section integral of the outside air blowing passage 16 (the inside air blowing passage 17).
  • the inside air of the side of the top surface of the first heat exchanger 14 on the outside air blowing path 16 side and the bottom surface of the second heat exchanger 15 Inside air and outside air are separated by an air passage partition plate 21 connecting the side on the side of the air blowing passage 17. Therefore, the air passage partition plate 21 is provided in the vicinity of an intermediate position between the bottom surface of the first heat exchanger 14 and the top surface of the second heat exchanger 15.
  • the area of one heat exchanger is subjected to heat exchange using two heat exchangers (first heat exchanger 14 and second heat exchanger 15),
  • the air passage cross-sectional area is larger than in the case of one heat exchanger. That is, using two heat exchangers (the first heat exchanger 14 and the second heat exchanger 15), the sum of the air inlets 14a, 15a or the sum of the air inlets 14b, 15b is Because it becomes larger than when one heat exchanger is used, the air passage cross-sectional area becomes large. Further, the air passage length through which the air per heat exchanger passes can be kept short. Therefore, it is possible to reduce the wind speed passing through the heat exchanger to improve the heat exchange efficiency. In addition, pressure loss per heat exchanger can be reduced. Furthermore, as a result, the heat exchanger itself can be miniaturized.
  • the lamination pitch on the outside air side of the second heat exchanger 15 may be larger than the lamination pitch on the outside air side of the first heat exchanger 14. Furthermore, the lamination pitch on the inside air side of the first heat exchanger 14 may be larger than the lamination pitch on the outside air side of the second heat exchanger 15. As a result, the amount of inside air and outside air passing through the first heat exchanger 14 and the second heat exchanger 15 can be balanced. Therefore, since the performance of each of two heat exchangers can be utilized equally, heat exchange efficiency can be improved as the whole apparatus.
  • the lamination pitch on the outside air side of the first heat exchanger 14 and the lamination pitch on the inside air side of the second heat exchanger 15 are made equal, and the lamination pitch on the inside air side of the first heat exchanger 14 and the second It is preferable to equalize the lamination pitch of the heat exchanger 15 on the outside air side.
  • a heat dissipation device such as a heat dissipation plate on the partition plate 21 of the air passage that divides the outside air blowing passage 16 and the inside air blowing passage 17.
  • a heat dissipation plate on the partition plate 21 of the air passage that divides the outside air blowing passage 16 and the inside air blowing passage 17.
  • a heat sink may be provided on the side surface 11 b side of the main body case 11 in the inside air blowing passage 17 through which high temperature inside air passes. Thereby, the heat of high temperature inside air can be released to the outside air, and the heat exchange efficiency can be further improved.
  • the air passage partition plate 21 be inclined so that the space side flowing into the long blowing lane becomes a wide space at the inflow ports of the first heat exchanger 14 and the second heat exchanger 15. That is, in FIG. 5, when inside air is fed from the inside air blowing passage 17 to the inlet 14 b of the first heat exchanger 14, the inside of the air blowing lane has a long front side (outside air side) of the first heat exchanger 14. Because of this, the air passage partition plate 18 is provided with a slope which is lowered from the near side (the outside air side) to the back side (the cabinet side).
  • the back side which is a long air-blowing lane, is inclined so as to widen. According to such a configuration, it is possible to increase the amount of air to be sent to the long blast lane side, and as a result, it is possible to balance the passing air volume between the long and short different blast lanes and to improve the heat exchange efficiency. it can.
  • FIG. 6 is a cross-sectional view of a heat exchange device according to Embodiment 3 of the present invention.
  • FIG. 7 is an exploded perspective view of the heat exchange device according to the third embodiment of the present invention.
  • the first heat exchanger 14, the first blower fan 12, and the second heat exchanger are provided in the main body case 11. 15.
  • the second blower fans 13 are arranged in this order in a row from the bottom.
  • the first heat exchanger 14 has a first inlet 14a for outside air on the top surface and a second inlet 14b for inside air on the bottom.
  • the second heat exchanger 15 has a first inlet 15a for outside air at the bottom and a second inlet 15b for inside at the top surface.
  • An internal air blowing passage 31 is provided between the side surface 11 a of the main body case 11 and the first heat exchanger 14 and the second heat exchanger 15, and the second blowing fan 13 and the first heat exchanger 14 are provided.
  • the inside air heated to a high temperature by the transmitter / receiver 5 in the cabinet 4 is drawn from the second air intake port 9 of the heat exchange device 6 to the second blower fan 13. Ru.
  • the sucked inside air is blown out from the second blower fan 13, and a part thereof is sent to the second inlet 15 b of the second heat exchanger 15, and the remaining air is passed through the inside air blowing passage 31 to the first.
  • cold outside air is drawn into the first blower fan 12 from the first intake port 7.
  • the sucked outside air is blown out from the first blower fan 12 and a part is sent to the first inlet 14 a of the first heat exchanger 14, and the remaining outside air is discharged from the second heat exchanger 15. 1 It is sent to the inflow port 15a.
  • heat exchange is performed between cold outside air and high temperature inside air, and the cooled inside air is discharged from the second discharge ports 10a and 10b to the inside of the cabinet 4
  • the outside air is discharged again to the outside from the first discharge ports 8a and 8b.
  • the area of one heat exchanger is subjected to heat exchange using two heat exchangers (first heat exchanger 14 and second heat exchanger 15),
  • the air passage cross-sectional area is larger than in the case of one heat exchanger. That is, using two heat exchangers (the first heat exchanger 14 and the second heat exchanger 15), the sum of the air inlets 14a, 15a or the sum of the air inlets 14b, 15b is Because it becomes larger than when one heat exchanger is used, the air passage cross-sectional area becomes large. Further, the air passage length through which the air per heat exchanger passes can be kept short. Therefore, the wind speed of the air passing through the heat exchanger can be reduced, and the heat exchange efficiency can be improved. In addition, pressure loss per heat exchanger can be reduced. Furthermore, as a result, the heat exchanger itself can be miniaturized.
  • the lamination pitch on the inside air side of the first heat exchanger 14 be larger than the lamination pitch on the inside air side of the second heat exchanger 15. Furthermore, the lamination pitch on the inside air side of the first heat exchanger 14 may be larger than the lamination pitch on the outside air side of the second heat exchanger 15. As a result, the amount of inside air and outside air passing through the first heat exchanger 14 and the second heat exchanger 15 can be balanced. Therefore, since the performance of each of two heat exchangers can be utilized equally, heat exchange efficiency can be improved as the whole apparatus.
  • a heat dissipation device such as a heat dissipation plate may be provided on the side surface 11 a side of the main body case 11 in the inside air blowing path 31 through which high temperature inside air passes. Thereby, the heat of high temperature inside air can be released to the outside air, and the heat exchange efficiency can be further improved.
  • a heat sink on the wall surface 31a that divides the section (the portion to be the air flow path for the first environment) in which the first air flow fan 12 is provided and the inside air flow path 31. Thereby, heat exchange can be promoted between the air passing through the outside air and the inside air blowing passage 31.
  • FIG. 8 is an exploded perspective view of the heat exchange device according to the fourth embodiment of the present invention. The fourth embodiment will be described with reference to FIG.
  • the first heat exchanger 14, the first blower fan 12, the second heat exchanger 15, the second heat exchanger 15, and the second heat exchanger 15 are provided in the main body case 11.
  • the blower fans 13 are arranged in this order in a row from the bottom.
  • the first heat exchanger 14 is provided with a second inlet 14b for internal air on the top surface and a first inlet 14a for external air on the bottom.
  • the second heat exchanger 15 is provided with a first inlet 15a for outside air at the bottom and a second inlet 15b for inside air at the bottom.
  • An outdoor air blowing passage 32 is provided between the side surface 11 b of the main body case 11 and the first heat exchanger 14 and between the first blowing fan 12.
  • the outside air blowing passage 32 communicates the first blowing fan 12 with the bottom side of the first heat exchanger 14.
  • An internal air blowing passage 33 is provided between the second heat exchanger 15 and the side surface 11 a facing the side surface 11 b.
  • the inside air blowing passage 33 communicates the second blowing fan 13 with the top side of the first heat exchanger 14.
  • a partition plate 34 which forms the inside air blower path 33 is provided.
  • the sucked outside air is blown out into the main body case 11, a part is sent to the first inlet 15a of the second heat exchanger 15, and the rest is transferred to the first heat exchanger via the outside air blowing passage 32. It is sent to the 14th first inlet 14a.
  • heat exchange is performed between cold outside air and high-temperature inside air.
  • the cooled inside air is blown out from the second discharge ports 10a and 10b into the cabinet 4 by heat exchange, and the warmed outside air is discharged again to the outside air from the first discharge ports 8a and 8b.
  • the area of one heat exchanger is subjected to heat exchange using two heat exchangers (first heat exchanger 14 and second heat exchanger 15),
  • the air passage cross-sectional area is larger than in the case of one heat exchanger. That is, using two heat exchangers (the first heat exchanger 14 and the second heat exchanger 15), the sum of the air inlets 14a, 15a or the sum of the air inlets 14b, 15b is Because it becomes larger than when one heat exchanger is used, the air passage cross-sectional area becomes large. Further, the air passage length through which the air per heat exchanger passes can be kept short. Therefore, the wind speed of the air passing through the heat exchanger can be reduced, and the heat exchange efficiency can be improved. In addition, pressure loss per heat exchanger can be reduced. Furthermore, as a result, the heat exchanger itself can be miniaturized.
  • the first heat exchanger 14 is received at the lower part of the first blower fan 12, but the outdoor air blower path 32, the internal air blower path 33 and the partition plate 34 prevent the water from the external air from being directly exposed.
  • a heat dissipation device such as a heat dissipation plate may be provided on the side surface 11 a side of the main body case 11 in the inside air blowing passage 33 through which high temperature inside air passes. Thereby, the heat of high temperature inside air can be released to the outside air, and the heat exchange efficiency can be further improved.
  • the air passage cross-sectional area is increased by using a plurality of heat exchangers as compared with the case where one heat exchanger is used. That is, since the sum of the air inlets of the plurality of heat exchangers is larger than that when one heat exchanger is used, the air passage cross-sectional area becomes large.
  • the air passage length of each heat exchanger can be shortened. Therefore, the wind speed passing through the heat exchanger can be reduced, and the heat exchange efficiency can be improved.
  • pressure loss per heat exchanger can be reduced.
  • the heat exchanger itself can be miniaturized. Therefore, it is useful, for example, as a base station of a communication device with a limited installation area, or as a cooling facility in other outdoor installation devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 本体ケース(11)内に設けられた第1の環境用の第1の送風ファン(12)および第2の環境用の第2の送風ファン(13)と、本体ケース(11)内において第1環境の空気と第2環境の空気との熱交換を行う第1の熱交換器(14)、第2の熱交換器(15)とを備え、第1の送風ファン(12),第2の送風ファン(13)と第1の熱交換器(14)、第2の熱交換器(15)を略一列に配置し、第1の熱交換器(14)、第2の熱交換器(15)と本体ケース(11)の側面(11a)との間に第1、または第2の送風ファンから第1の熱交換器(14)、第2の熱交換器(15)へと連絡する送風路(外気送風路(16)、内気送風路(17))を設けた熱交換器である。この構成により、圧力損失を抑え、熱交換効率を向上させることができ、熱交換器自体を小型化することができる。

Description

熱交換装置とそれを用いた発熱体収納装置
 本発明は、熱交換装置とそれを用いた発熱体収納装置に関する。
 例えば、携帯電話の基地局は、数十アンペア以上の電流が流れることから、ある点では発熱体とも表現される。つまり、冷却をすることがその動作を安定化させるためには極めて重要なものとなる。このような携帯電話の基地局はその冷却を行う為に図9に示すような構成をとっている。
 図9は従来の熱交換装置の構成図である。図9において、発熱体となる送・受信機を収納したキャビネットと、キャビネットの開口部に装着された熱交換装置101とを備えた構成となっている。熱交換装置101は、外気用の第1吸込口107と第1吐出口108およびキャビネット内用の第2吸込口109および第2吐出口110を有する本体ケース111を備える。この本体ケース111内には、外気用の第1の送風ファン112およびキャビネット内用の第2の送風ファン113と、本体ケース111内において室外空気とキャビネット内空気との熱交換を行う熱交換器114とを備える(特許文献1参照)。
 上記従来の熱交換装置においては、1つの本体ケース111内に1つの熱交換器114を備えた構成となっている。そのため、熱交換器114は、本体ケース111の断面積を最大とする積層面積(風路断面積)となる。従って、所望の熱交換効率を得るためには、熱交換器114の大きさは、1枚の熱交換素子の面積を大きくしなければならない。すなわち、熱交換器114内を通過する風路の長さが長くなってしまい、結果として、熱交換器114での圧力損失が大きくなり、選定する送風機(第1の送風ファン112、第2の送風ファン113)の能力も大きくしなければならなかった。また、携帯電話の基地局は小型化がすすみ、熱交換装置本体に対しても、小型化することが要求されている。
特開2000-161875号公報
 本発明は、装置内の圧力損失を抑えて、熱交換効率を向上させ、結果として、熱交換装置を小型化するものである。
 そして、本発明は、本体ケースと、前記本体ケース内に設けられる第1の送風ファンと、第2の送風ファンと、複数の熱交換器と、を備え、前記本体ケースは、前面に第1環境用の第1吸気口と、第1吐出口とを有し、背面に第2環境用の第2吸気口と、第2吐出口とを有し、第1の送風ファンは、第1吸気口から吸入された第1環境の空気を複数の熱交換器へ送風し、第2の送風ファンは、第2吸気口から吸入された第2環境の空気を複数の熱交換器へ送風し、複数の熱交換器は、本体ケース内において第1環境の空気と第2環境の空気との熱交換を行い、第1の熱交換器と第2の熱交換器と複数の熱交換器とを実質的に一列に配置し、さらに複数の熱交換器と本体ケースの壁面との間に送風路を備え、送風路は、第1の送風ファン及び第2の送風ファンのうち少なくとも一つから熱交換器へと通じている熱交換装置とそれを用いた発熱体収納装置に関する。
 これにより、1つの熱交換器を用いた場合に比べ、複数の熱交換器を用いることで風路断面積が大きくなる。すなわち、複数の熱交換器の空気の流入口の総和は、1つの熱交換器を用いた時よりも大きくなるので、風路断面積が大きくなる。また、個々の熱交換器の風路長を短くすることができる。そのため、熱交換器を通過する風速を小さくでき、熱交換効率を向上させることが可能になる。また、熱交換器あたりの圧力損失も低減できる。さらに、その結果、熱交換器自体の小型化も可能となる。
図1は本発明の実施の形態1に係る熱交換装置を用いた発熱体収納装置の設置例を示す斜視図である。 図2は本発明の実施の形態1に係る熱交換装置の断面図である。 図3は本発明の実施の形態1に係る熱交換装置の分解斜視図である。 図4は本発明の実施の形態1に係る熱交換装置における風路交差部の詳細斜視図である。 図5は本発明の実施の形態2に係る熱交換装置の分解斜視図である。 図6は本発明の実施の形態3に係る熱交換装置の断面図である。 図7は本発明の実施の形態3に係る熱交換装置の分解斜視図である。 図8は本発明の実施の形態4に係る熱交換装置の分解斜視図である。 図9は従来の熱交換装置の構成図である。
 以下、本発明の実施の形態について図面を用いて説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る熱交換装置を用いた発熱体収納装置の設置例を示す斜視図である。図1において、ビルディング1の屋上2には携帯電話の基地局3が設けられている。携帯電話の基地局3は、一種の発熱体収納装置である。基地局3は箱状のキャビネット4と、このキャビネット4内に設けた送・受信機5と、キャビネット4の前面開口部にドアのごとく開閉自在に設けた熱交換装置6とにより構成されている。
 この熱交換装置6の構成を、図2、図3を用いて説明する。図2は、実施の形態1に係る熱交換器の断面図である。図3は、実施の形態1に係る熱交換器の分解斜視図である。図2、図3において、熱交換装置6は、熱交換器本体ケース11を備え、この本体ケース11内に、外気(第1環境)用の第1の送風ファン12と、キャビネット4内空気(第2環境、以降、内気と呼ぶ)用の第2の送風ファン13とを備える。さらに本体ケース11内には、本体ケース11内において外気と内気との熱交換を行う第1の熱交換器14及び第2の熱交換器15を備えている。また、本体ケース11の外気側(前面側)の側面には、外気用の第1吸気口7と第1吐出口8a、8bが設けられている。さらに本体ケース11のキャビネット側(背面側)の側面には、内気用の第2吸気口9と第2吐出口10a、10bが設けられている。本体ケース11内において、第1の送風ファン12、第1の熱交換器14、第2の熱交換器15、第2の送風ファン13は、この順で下から上に実質的に一列に並んで配置されている。
 詳細には図示しないが、第1の熱交換器14、第2の熱交換器15はともに、複数の合成樹脂製の板体を、それぞれ所定間隔に離した状態で重ね合わせた構成としている。この板体は上下方向に長い長方形状となっており、その表面には、その表面をレーン状に仕切る複数の整流壁をそれぞれ設けている。整流壁は、流入口となる、板体における短辺の一端から他端側に向けて伸延させている。さらに、この整流壁は、前記他端側の手前で一方の長辺側に湾曲させる形状とし、流出口につながっている。このような整流壁を複数設けることによって、板体上にL字状の複数の送風レーンが形成される。
 図3において、このような第1の熱交換器14、第2の熱交換器15は、ともに、底面を外気側の流入口としている。つまり、第1の熱交換器の外気側の流入口は、第1流入口14aであり、第2の熱交換器の外気側の流入口は第1流入口15aである。また、第1の熱交換器の外気側の流出口は、第1吐出口8aと、第2の熱交換器の外気側の流出口は第1吐出口8bとそれぞれ接続されている。一方、第1の熱交換器14、第2の熱交換器15ともに、天面側を内気側の流入口としている。つまり、第1の熱交換器の内気側の流入口は、第2流入口14bであり、第2の熱交換器の内気側の流入口は第2流入口15bである。また第1の熱交換器の内気側の流出口は、第2吐出口10aと、第2の熱交換器の内気側の流出口は第2吐出口10bとそれぞれ接続されている。よって、第1の熱交換器14においては、外気が第1流入口14aから流入し第1吐出口8aへ流出する。第2の熱交換器15においては、外気が第1流入口15aから流入し第1吐出口8bへ流出する。このような第1の熱交換器と第2の熱交換器における外気の風路が、外気用風路(第1環境用風路)である。同様に、第1の熱交換器14においては、内気が第2流入口14bから流入し第2吐出口10aから流出する。第2の熱交換器15においては、内気が第2流入口15bから流入し第2吐出口10bから流出する。このような第1の熱交換器と第2の熱交換器における内気の風路が内気用風路(第2環境用風路)である。
 図2において、第1の熱交換器14、第2の熱交換器15ともに、内気用風路(第2環境用風路)は、キャビネット4側(図2においては右方)に風路長が短い送風レーンが設けられ、外気側(図2においては左方)に風路長が長い送風レーンが設けられる。一方、外気用風路(第1環境用風路)については、キャビネット4側に風路長が長い送風レーンが設けられ、外気側に風路長が短い送風レーンが設けられる。
 図3において、第1の熱交換器14と本体ケース11の側面11aとの間には、第1の送風ファン12から第2の熱交換器15へと通じる外気送風路16(第1環境用送風路)が設けられている。また、第2の熱交換器15と本体ケース11の側面11aとの間には、第2の送風ファン13から第1の熱交換器14へと通じる内気送風路17(第2環境用送風路)が設けられている。
 また、第1の熱交換器14と第2の熱交換器15との間では、外気送風路16と内気送風路17とが交差するように構成されている。すなわち、第1の熱交換器14の天面(第2流入口14b)側と、第2の熱交換器15の底面(第1流入口15a)側とを仕切り、それぞれに対向するように風路仕切板18が設けられている。この風路が交差する部分について図4を用いて説明する。
 図4は、本発明の実施の形態1に係る熱交換装置における風路交差部の詳細斜視図であり、図3における奥側から見た斜視図である。図4において、風路仕切板18の上側の空間(第2の熱交換器15側)と外気送風路16が連通するよう、さらに、風路仕切板18の下側の空間(第1の熱交換器14側)と内気送風路17が連通するよう、風路交差部19が設けられている。風路交差部19は、本体ケース11の側面11a(図4においては手前側)及び風路仕切板18双方に直交するように交差部仕切板19aが設けられている。風路仕切板18と交差部仕切板19aにより、風路交差部19は構成されている。
 以上のような構成の熱交換装置の動作を説明する。図2、図3において、キャビネット4内で送・受信機5によって高温となった内気は、熱交換装置6の第2吸気口9から第2の送風ファン13に吸引される。第2の送風ファン13により吸引された内気は、一部は第2の熱交換器15の第2流入口15bへと送られ、残りの空気は内気送風路17を経由して第1の熱交換器14の第2流入口14bへと送られる。一方、冷たい外気は,第1の送風ファン12の運転によって第1吸気口7から吸い込まれる。第1の送風ファンにより吸引された外気は、一部は第1の熱交換器14の第1流入口14aへと送られ、残りの外気は外気送風路16を経由して第2の熱交換器15の第1流入口15aへと送られる。第1の熱交換器14、第2の熱交換器15では、冷たい外気と高温の内気との間で熱交換が行われる。熱交換されたことで、冷やされた内気は、第2吐出口10a、10bからキャビネット4内に吹き出され、外気は、第1吐出口8a,8bより再び外気へと放出される。
 ここで、風路交差部19での空気の流れについて説明する。図4において、外気送風路16を流れる外気は、交差部仕切板19aのキャビネット側(図4においては左側)を通過し、第2の熱交換器15の流入口15aへと導かれる。このとき、風路交差部19を通過した外気は、第2の熱交換器15の長い送風レーン側(図4においては左側)から噴出される。同様に、内気送風路17を流れる内気は、交差部仕切板19aの外気側(図4においては右側)を通過し、第1の熱交換器14の流入口14bへと導かれる。このとき風路交差部19を通過した内気は、第1の熱交換器14の長い送風レーン側(図4においては右側)から吹き出される。
 以上のように、一つの熱交換器分の面積を、2つの熱交換器(第1の熱交換器14、第2の熱交換器15)を用いて熱交換をすることにより、1つの熱交換器である場合に比べ、風路断面積が大きくなる。すなわち、2つの熱交換器(第1の熱交換器14、第2の熱交換器15)を用いると、空気の流入口14a、15aの総和、または空気の流入口14b、15bの総和は、一つの熱交換器を用いた時よりも大きくなるので、風路断面積が大きくなるのである。また、熱交換器当たりの空気が通過する風路長を短く抑えることができる。そのため、熱交換器を通過する風速を小さくでき、熱交換効率を向上させることが可能になる。また、熱交換器あたりの圧力損失も低減できる。さらに、その結果、熱交換器自体の小型化も可能となる。
 また、風路仕切板18は、第1の熱交換器14及び第2の熱交換器15の流入口15a及び14bにおける長い送風レーンとなる側が広い空間となるように傾斜させて設けると良い。詳しく説明すると、図4においては、風路仕切板18は、第1の熱交換器14の天面と第2の熱交換器15の底面の間に双方に対して平行になるよう設けられている。この風路仕切板18を、キャビネット側(図4においては左側)から外気側(図4においては右側)に下がり勾配となるように傾斜させるとよい。このような構成によれば、長い送風レーン側に送る空気の量を多くすることができる。結果として長短異なる送風レーン間で通過風量のバランスを取り、熱交換器全体へムラ無く空気を送り込むことができる。よって、熱交換効率を向上できる。またこのように内気及び外気がそれぞれ第1の熱交換器14、第2の熱交換器15の長い送風レーン側に吹き出すことによって、圧力損失の大きい長い送風レーン側により高い圧力がかかる。結果として長短異なる送風レーン間で通過風量のバランスを取り、熱交換効率を向上につなげることができる。
 なお、図示しないが、外気送風路16と内気送風路17を仕切る風路仕切板18に、放熱板などの放熱装置を設けてもよい。これにより、外気送風路16と内気送風路17間で熱交換を促進することができる。また、この放熱板は、風路内の空気が流れる方向に平行に放熱フィンを設けると良い。
 さらに、高温の内気が通過する内気送風路17には、本体ケース11の側面11a側に放熱板を設けてもよい。これにより、外気との熱交換を促進することが可能になる。
 また、風路交差部19に内部で風路が交差する熱交換器を用いてもよい。これにより、風路の交差が実現できるとともに、外気送風路16と内気送風路17間で熱交換することが可能になる。
 また、第2の熱交換器15の外気側の積層ピッチは、第1の熱交換器14の外気側の積層ピッチよりも大きくすると良い。すなわち、第2の熱交換器15は、第1の送風ファン12から遠い位置にあるために熱交換器までの空気の通過経路が長くなる。よって、そのまま、外気を送った場合、第1の熱交換器に向かう外気量のほうが第2の熱交換器へ向かう外気量よりも多くなってしまう。そのため、空気の通過経路が長くなる側の熱交換器の積層ピッチを大きくすることによって、第1の熱交換器14と第2の熱交換器15を通過する外気の量のバランスを取ることができる。よって、2つの熱交換器それぞれの性能を均等に活用することができるので、全体としての熱交換効率を向上できる。
 同様に、第1の熱交換器14の内気側の積層ピッチは、第2の熱交換器15の外気側の積層ピッチよりも大きくすることによって、第1の熱交換器14と第2の熱交換器15を通過する内気の量のバランスを取ることができる。
 さらには、第1の熱交換器14の外気側の積層ピッチと第2の熱交換器15の内気側の積層ピッチを等しくし、第1の熱交換器14の内気側の積層ピッチと第2の熱交換器15の外気側の積層ピッチを等しくするとよい。このような構成によれば、第1の熱交換器14と第2の熱交換器15の熱交換効率のバランスを取ることができ、熱交換装置6全体としての熱交換効率が向上することになる。
 また、第1の送風ファン12(第2の送風ファン13)の回転方向は、外気送風路16(内気送風路17)の開口に向けて回転する方向がよい。すなわち、第1の送風ファン12を例にして説明すると、図3で示すように、第1吸気口7側から第1の送風ファン12を見た場合には、第1の送風ファン12の左側上方に外気送風路16が設けられているが、第1の送風ファン12の回転方向は時計回りになるようにして、外気送風路16側の第1の送風ファン12の回転方向を示す接線矢印(第1の送風ファン回転方向12a)が、外気送風路16側を向くようにする。一方、第2の送風ファン13の回転方向は、反時計周りになるようにして内気送風路17側の第2の送風ファン13の回転方向を示す接線矢印(第2の送風ファン回転方向13a)が、内気送風路17側を向くようにする。このような構成にすることにより、よりスムーズな外気及び内気の流れを作ることができるので、熱交換効率を向上できる。
 (実施の形態2)
 図5を用いて、本発明の実施の形態2について説明する。図5は本発明の実施の形態2に係る熱交換装置の分解斜視図である。
 図5において、本実施の形態2では、実施の形態1と同様、本体ケース11内に、第1の送風ファン12、第1の熱交換器14、第2の熱交換器15、第2の送風ファン13が、この順で下からほぼ一列に並んで配置されている。本実施の形態では、実施の形態1と異なり、本体ケース11の側面11bと第1の熱交換器14との間に外気送風路16が設けられ、側面11bの対面となる側面11aと第2の熱交換器15との間に内気送風路17が設けられている。すなわち、第1の熱交換器14の天面と第2の熱交換器15の底面は外気送風路16(内気送風路17)の水平断面積分だけずらした配置となっている。第1の熱交換器14と第2の熱交換器15との間は、第1の熱交換器14の天面の外気送風路16側の辺と第2の熱交換器15の底面の内気送風路17側の辺とを結ぶ風路仕切板21によって、内気と外気が仕切られている。よって、風路仕切板21は、第1の熱交換器14の底面と第2の熱交換器15の天面のちょうど中間位置付近に設けられている。
 このような構成によれば、一つの熱交換器分の面積を、2つの熱交換器(第1の熱交換器14、第2の熱交換器15)を用いて熱交換をすることにより、1つの熱交換器である場合に比べ、風路断面積が大きくなる。すなわち、2つの熱交換器(第1の熱交換器14、第2の熱交換器15)を用いると、空気の流入口14a、15aの総和、または空気の流入口14b、15bの総和は、一つの熱交換器を用いた時よりも大きくなるので、風路断面積が大きくなるのである。また、熱交換器当たりの空気が通過する風路長を短く抑えることができる。そのため、熱交換器を通過する風速を小さくして熱交換効率を向上させることが可能になる。また、熱交換器あたりの圧力損失も低減できる。さらに、その結果、熱交換器自体の小型化も可能となる。
 また、第1の実施形態と同様、第2の熱交換器15の外気側の積層ピッチは、第1の熱交換器14の外気側の積層ピッチよりも大きくすると良い。さらに、第1の熱交換器14の内気側の積層ピッチは、第2の熱交換器15の外気側の積層ピッチよりも大きくすると良い。これにより、第1の熱交換器14と第2の熱交換器15を通過する内気及び外気の量のバランスを取ることができる。よって、2つの熱交換器それぞれの性能を均等に活用することができるので装置全体として熱交換効率を向上させることができる。
 また、第1の熱交換器14の外気側の積層ピッチと第2の熱交換器15の内気側の積層ピッチを等しくし、第1の熱交換器14の内気側の積層ピッチと第2の熱交換器15の外気側の積層ピッチを等しくするとよい。これにより、第1の熱交換器14と第2の熱交換器15との熱交換効率のバランスがとれるため、全体として熱交換効率を向上させることができる。
 なお、図示しないが、外気送風路16と内気送風路17を仕切る風路の仕切板21には、放熱板などの放熱装置を設けるとよい。これによって、外気送風路16と内気送風路17間で熱交換を促進することができる。
 さらに、高温の内気が通過する内気送風路17には、本体ケース11の側面11b側に放熱板を設けるとよい。これにより、高温の内気の熱を外気へ放出することができ、さらに熱交換効率が向上できる。
 また、風路仕切板21は、第1の熱交換器14及び第2の熱交換器15の流入口において、長い送風レーンへ流入する空間側が広い空間となるように傾斜させると良い。すなわち、図5においては、内気が内気送風路17から第1の熱交換器14の流入口14bに送り込まれる際には、第1の熱交換器14の手前側(外気側)が長い送風レーンとなっているので、風路仕切板18は手前側(外気側)から奥側(キャビネット側)に向かって下がる傾斜が設けられている。この時、逆に第2の熱交換器15の流入口15a側においては、長い送風レーンとなっている奥側が広くなるよう傾斜していることになる。このような構成によれば、長い送風レーン側に送る空気の量を多くすることが可能になり、結果として長短異なる送風レーン間で通過風量のバランスを取り、熱交換効率の向上につなげることができる。
 またこのように内気及び外気がそれぞれ第1の熱交換器14、第2の熱交換器15の長い送風レーン側に吹き出すことによって、圧力損失の大きい長い送風レーン側により高い圧力をかけることになる。結果として長短異なる送風レーン間で通過風量のバランスを取り、熱交換効率の向上につなげることができる。
 (実施の形態3)
 図6、7を用いて実施の形態3について説明する。図6は本発明の実施の形態3に係る熱交換装置の断面図である。図7は本発明の実施の形態3に係る熱交換装置の分解斜視図である。
 図6、図7において、本実施の形態3では、実施の形態1及び2と異なり、本体ケース11内に、第1の熱交換器14、第1の送風ファン12、第2の熱交換器15、第2の送風ファン13が、この順で下からほぼ一列に並んで配置されている。第1の熱交換器14は、天面に外気用の第1流入口14aを有し、底面に内気用の第2流入口14bを有している。第2の熱交換器15は、底面に外気用の第1流入口15aを有し、天面に内気用の第2流入口15bを有している。本体ケース11の側面11aと第1の熱交換器14、第2の熱交換器15との間には、内気送風路31が設けられ、第2の送風ファン13と第1の熱交換器14の第2流入口14bとを連通している。
 以上のような構成の熱交換装置によれば、キャビネット4内で送・受信機5によって高温となった内気は、熱交換装置6の第2吸気口9から第2の送風ファン13に吸引される。吸引された内気は、第2の送風ファン13から吹き出され、一部は第2の熱交換器15の第2流入口15bへと送られ、残りの空気は内気送風路31を通って第1の熱交換器14の第2流入口14bへと送られる。一方、冷たい外気は、第1吸気口7から第1の送風ファン12に吸引される。吸引された外気は、第1の送風ファン12から吹き出され、一部は第1の熱交換器14の第1流入口14aへと送られ、残りの外気は第2の熱交換器15の第1流入口15aへと送られる。第1の熱交換器14、第2の熱交換器15では、冷たい外気と高温の内気との間で熱交換が行われ、冷やされた内気は、第2吐出口10a、10bからキャビネット4内に吹き出され、外気は、第1吐出口8a,8bより再び外部へと放出される。
 このような構成によれば、一つの熱交換器分の面積を、2つの熱交換器(第1の熱交換器14、第2の熱交換器15)を用いて熱交換をすることにより、1つの熱交換器である場合に比べ、風路断面積が大きくなる。すなわち、2つの熱交換器(第1の熱交換器14、第2の熱交換器15)を用いると、空気の流入口14a、15aの総和、または空気の流入口14b、15bの総和は、一つの熱交換器を用いた時よりも大きくなるので、風路断面積が大きくなるのである。また、熱交換器当たりの空気が通過する風路長を短く抑えることができる。そのため、熱交換器を通過する空気の風速を小さくでき、熱交換効率を向上させることが可能になる。また、熱交換器あたりの圧力損失も低減できる。さらに、その結果、熱交換器自体の小型化も可能となる。
 また、第1の熱交換器14の内気側の積層ピッチは、第2の熱交換器15の内気側の積層ピッチよりも大きくすると良い。さらに、第1の熱交換器14の内気側の積層ピッチは、第2の熱交換器15の外気側の積層ピッチよりも大きくすると良い。これにより、第1の熱交換器14と第2の熱交換器15を通過する内気及び外気の量のバランスを取ることができる。よって、2つの熱交換器それぞれの性能を均等に活用することができるので装置全体として熱交換効率を向上させることができる。
 また、図示しないが、高温の内気が通過する内気送風路31には、本体ケース11の側面11a側に放熱板などの放熱装置を設けるとよい。これにより、高温の内気の熱を外気へ放出することができ、さらに熱交換効率が向上できる。
 さらに、第1の送風ファン12を設けた区画(第1環境用の送風路となる部分)と内気送風路31とを仕切る壁面31aには、放熱板を設けると良い。これにより、外気と内気送風路31とを通過する空気の間で熱交換を促進することができる。
 (実施の形態4)
 図8は本発明の実施の形態4に係る熱交換装置の分解斜視図である。図8を用いて第4の実施の形態について説明する。
 図8において、本実施の形態4は、実施の形態3と同様に、本体ケース11内に、第1の熱交換器14、第1の送風ファン12、第2の熱交換器15、第2の送風ファン13が、この順で下からほぼ一列に並んで配置されている。実施の形態3と異なる点として、第1の熱交換器14は、天面に内気用の第2流入口14bを設け、底面に外気用の第1流入口14aを設けている。第2の熱交換器15は、底面に外気用の第1流入口15aを設け、底面に内気用の第2流入口15bを設けている。本体ケース11の側面11bと第1の熱交換器14との間及び第1の送風ファン12との間には、外気送風路32が設けられている。外気送風路32は、第1の送風ファン12と、第1の熱交換器14の底面側とを連通している。側面11bの対面となる側面11aと第2の熱交換器15との間には、内気送風路33が設けられている。内気送風路33は第2の送風ファン13と第1の熱交換器14の天面側とを連通している。第1の送風ファン12と第1の熱交換器14との間及び第1の送風ファン12と側面11aとの間には、内気送風路33を形成する仕切板34が設けられている。
 このような構成による熱交換器の動作を説明する。キャビネット4内で送・受信機5によって高温となった内気は、熱交換装置6の第2吸気口9から第2の送風ファン13に吸引される。吸引された内気は、本体ケース11内に吹き出され、一部は第2の熱交換器15の第2流入口15bへと送られ、残りは内気送風路33を経由して第1の熱交換器14の第2流入口14bへと送られる。一方、冷たい外気は、第1吸気口から第1の送風ファンに吸引される。吸引された外気は、本体ケース11内に吹き出され、一部は第2の熱交換器15の第1流入口15aへ送られ、残りは外気送風路32を経由して第1の熱交換器14の第1流入口14aへと送られる。第1の熱交換器14、第2の熱交換器15ではそれぞれ、冷たい外気と高温の内気との間で熱交換が行われる。熱交換により、冷やされた内気は、第2吐出口10a、10bからキャビネット4内に吹き出され、温まった外気は、第1吐出口8a,8bより再び外気へと放出されることになる。
 このような構成によれば、一つの熱交換器分の面積を、2つの熱交換器(第1の熱交換器14、第2の熱交換器15)を用いて熱交換をすることにより、1つの熱交換器である場合に比べ、風路断面積が大きくなる。すなわち、2つの熱交換器(第1の熱交換器14、第2の熱交換器15)を用いると、空気の流入口14a、15aの総和、または空気の流入口14b、15bの総和は、一つの熱交換器を用いた時よりも大きくなるので、風路断面積が大きくなるのである。また、熱交換器当たりの空気が通過する風路長を短く抑えることができる。そのため、熱交換器を通過する空気の風速を小さくでき、熱交換効率を向上させることが可能になる。また、熱交換器あたりの圧力損失も低減できる。さらに、その結果、熱交換器自体の小型化も可能となる。
 また、第1吸気口7は外気を吸い込むため、雨水などが混入する可能性がある。第1の熱交換器14は、第1の送風ファン12の下部にもうけられているが、外気送風路32、内気送風路33および仕切板34によって外気からの水分が直接さらされることがなくなる。
 なお、図示しないが、高温の内気が通過する内気送風路33には、本体ケース11の側面11a側に放熱板などの放熱装置を設けるとよい。これにより、高温の内気の熱を外気へ放出することができ、さらに熱交換効率が向上できる。
 さらに、第1の送風ファン12を設けた区画(第1環境用の送風路となる部分)と内気送風路33とを仕切る仕切板34には、放熱板を設けると良い。ことこれによって、外気と内気送風路33を通過する空気との間で熱交換を促進することができ、さらに熱交換効率が向上できる。
 以上のように本発明は、1つの熱交換器を用いた場合に比べ、複数の熱交換器を用いることで風路断面積が大きくなる。すなわち、複数の熱交換器の空気の流入口の総和は、1つの熱交換器を用いた時よりも大きくなるので、風路断面積が大きくなるのである。また、個々の熱交換器の風路長を短くすることができる。そのため、熱交換器を通過する風速を小さくでき、熱交換効率を向上させることが可能になる。また、熱交換器あたりの圧力損失も低減できる。さらに、その結果、熱交換器自体の小型化も可能となる。従って、例えば、設置面積が限られる通信機器の基地局や、その他屋外設置機器における冷却設備として有用である。
 1  ビルディング
 2  屋上
 3  基地局
 4  キャビネット
 5  送・受信機
 6  熱交換装置
 7  第1吸気口
 8a  第1吐出口
 8b  第1吐出口
 9  第2吸気口
 10a  第2吐出口
 10b  第2吐出口
 11  本体ケース
 12  第1の送風ファン
 13  第2の送風ファン
 14  第1の熱交換器
 15  第2の熱交換器
 16  外気送風路
 17  内気送風路
 18  風路仕切板
 19  風路交差部
 21  仕切板
 31  内気送風路
 32  外気送風路
 33  内気送風路
 34  仕切板

Claims (16)

  1. 本体ケースと、
    前記本体ケース内に設けられる第1の送風ファンと、
    第2の送風ファンと、
    複数の熱交換器と、を備え、
    前記本体ケースは、
    前面に第1環境用の第1吸気口と、第1吐出口とを有し、
    背面に第2環境用の第2吸気口と、第2吐出口とを有し、
    前記第1の送風ファンは、前記第1吸気口から吸入された第1環境の空気を前記複数の熱交換器へ送風し、
    前記第2の送風ファンは、前記第2吸気口から吸入された第2環境の空気を前記複数の熱交換器へ送風し、
    前記複数の熱交換器は、前記本体ケース内において第1環境の空気と第2環境の空気との熱交換を行い、
    前記第1の熱交換器と前記第2の熱交換器と前記複数の熱交換器とを実質的に一列に配置し、
    さらに前記複数の熱交換器と前記本体ケースの壁面との間に送風路を備え、
    前記送風路は、前記第1の送風ファン及び前記第2の送風ファンのうち少なくとも一つから前記熱交換器へと通じている
    熱交換装置。
  2. 前記複数の熱交換器は、第1の熱交換器と第2の熱交換器とを備え、
    前記本体ケースの1つの側面側から前記第1の送風ファン、前記第1の熱交換器、前記第2の熱交換器、前記第2の送風ファンが順に実質的に一列に配置され、
    前記第1の熱交換器と前記第2の熱交換器の第1環境の空気吸込口が前記第1の送風ファン側に向けられ、
    前記送風路は、前記第1の送風ファンから前記第2の熱交換器へと通じる第1環境用送風路と、前記第2の送風ファンから前記第1の熱交換器へと通じる第2環境用送風路とを備えた
    請求項1記載の熱交換装置。
  3. 前記第1環境用送風路、第2環境用送風路はともに前記本体ケースの同一の側面に沿って形成された
    請求項2記載の熱交換装置。
  4. 前記第1環境用送風路と前記第2環境用送風路は、前記本体ケースの対面する2つの側面にそれぞれ沿って形成された
    請求項2記載の熱交換装置。
  5. 前記第1、第2の熱交換器の第1環境用の積層ピッチおよび第2環境用の積層ピッチのうち少なくともひとつは、前記第1の送風ファンまたは前記第2の送風ファンから遠い側の熱交換器の積層ピッチを近い側の熱交換器の積層ピッチよりも大きくした
    請求項2記載の熱交換装置。
  6. 前記第1の熱交換器に設けられた第1環境用の積層ピッチと前記第2の熱交換器に設けられた第2環境用の積層ピッチとが等しく、前記第1の熱交換器に設けられた第2環境用の積層ピッチと前記第2の熱交換器に設けられた第1環境用の積層ピッチとが等しい
    請求項5記載の熱交換装置。
  7. 前記熱交換器は、第1の熱交換器と第2の熱交換器とを備え、前記本体ケースの1つの側面側から、第1の熱交換器、第1の送風ファン、第2の熱交換器、第2の送風ファンが順に配置された請求項1記載の熱交換装置。
  8. 前記第1、第2の熱交換器の第1環境の空気吸込口が第1の送風ファン側に向き、前記送風路は、第2の送風ファンから第1の熱交換器の第2環境の空気吸込口へと連絡する第2環境用送風路である
    請求項7記載の熱交換装置。
  9. 前記第1の熱交換器の第2環境の空気吸込口および前記第2の熱交換器の第1環境の空気吸込口が第1の送風ファン側に向き、前記送風路は、第1の送風ファンから第1の熱交換器の第1環境の空気吸込口へと連絡する第1環境用送風路と、第2の送風ファンから第1の熱交換器の第2環境の空気吸込口へと連絡する第2環境用送風路を備えた
    請求項7記載の熱交換装置。
  10. 前記第1の熱交換器の第2環境用の積層ピッチは、前記第2の熱交換器の第2環境用の積層ピッチよりも大きい
    請求項7記載の熱交換装置。
  11. 前記第1の熱交換器の第1環境用の積層ピッチは、前記第2の熱交換器の第1環境用の積層ピッチよりも大きい
    請求項10記載の熱交換装置。
  12. 前記第2環境用送風路を形成する前記本体ケースの側面に放熱装置を備えた
      請求項2記載の熱交換装置。
  13. 前記熱交換器は、L字状の送風レーンを設けた板体を積層して構成され、前記送風路の吹出空気は、前記熱交換器の長い送風レーン側に吹き出す
      請求項1記載の熱交換装置。
  14. 前記送風路の第1、第2の熱交換器の空気吸込口に対向した仕切板は、熱交換器の長い送風レーン側が広い空間となるよう、熱交換器の空気吸込口面に対して傾斜した
      請求項13記載の熱交換装置。
  15. 前記第1環境用送風路と前記第2環境用送風路とを仕切る仕切板に熱交換装置を備えた
      請求項2記載の熱交換装置。
  16. 発熱体を収納したキャビネットと、前記キャビネットの開口部に装着された請求項1記載の熱交換装置とを備えた
      発熱体収納装置。
PCT/JP2009/003903 2008-08-18 2009-08-17 熱交換装置とそれを用いた発熱体収納装置 WO2010021115A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09808051A EP2336699A4 (en) 2008-08-18 2009-08-17 HEAT EXCHANGER AND HEAT GENERATING ELEMENT FOR THE DEVICE
CN2009801323591A CN102124295A (zh) 2008-08-18 2009-08-17 热交换装置和使用其的发热体收纳装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008209644A JP2011220537A (ja) 2008-08-18 2008-08-18 熱交換装置とそれを用いた発熱体収納装置
JP2008-209644 2008-08-18

Publications (1)

Publication Number Publication Date
WO2010021115A1 true WO2010021115A1 (ja) 2010-02-25

Family

ID=41707006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003903 WO2010021115A1 (ja) 2008-08-18 2009-08-17 熱交換装置とそれを用いた発熱体収納装置

Country Status (4)

Country Link
EP (1) EP2336699A4 (ja)
JP (1) JP2011220537A (ja)
CN (1) CN102124295A (ja)
WO (1) WO2010021115A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385286B1 (ko) 2014-01-21 2014-04-17 엘지전자 주식회사 공기조화기

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2661165A1 (en) * 2012-05-02 2013-11-06 ABB Research Ltd. Cooling assembly
CN104769365A (zh) * 2012-11-12 2015-07-08 松下知识产权经营株式会社 冷却装置以及搭载有该冷却装置的发热体收纳装置
CN105157156A (zh) * 2015-09-30 2015-12-16 广州市雷子克电气机械有限公司 换热装置
WO2019106824A1 (ja) * 2017-12-01 2019-06-06 三菱電機株式会社 熱交換換気装置
CN215819125U (zh) 2021-01-15 2022-02-11 华为数字能源技术有限公司 一种温控机柜及通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157481A (ja) * 1983-02-23 1984-09-06 Fanuc Ltd 熱交換器
JPH05141736A (ja) * 1991-11-25 1993-06-08 Daikin Ind Ltd 換気装置
JPH10206046A (ja) * 1997-01-27 1998-08-07 Yaskawa Electric Corp 熱交換器
JP2000161875A (ja) * 1998-11-24 2000-06-16 Denso Corp 熱交換器および冷却装置
JP2006337015A (ja) * 2005-05-31 2006-12-14 Lg Electronics Inc 全熱交換器及びこれを用いた換気システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146250A (ja) * 1998-10-30 2000-05-26 Daikin Ind Ltd 換気装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157481A (ja) * 1983-02-23 1984-09-06 Fanuc Ltd 熱交換器
JPH05141736A (ja) * 1991-11-25 1993-06-08 Daikin Ind Ltd 換気装置
JPH10206046A (ja) * 1997-01-27 1998-08-07 Yaskawa Electric Corp 熱交換器
JP2000161875A (ja) * 1998-11-24 2000-06-16 Denso Corp 熱交換器および冷却装置
JP2006337015A (ja) * 2005-05-31 2006-12-14 Lg Electronics Inc 全熱交換器及びこれを用いた換気システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2336699A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385286B1 (ko) 2014-01-21 2014-04-17 엘지전자 주식회사 공기조화기

Also Published As

Publication number Publication date
CN102124295A (zh) 2011-07-13
EP2336699A1 (en) 2011-06-22
EP2336699A4 (en) 2012-04-18
JP2011220537A (ja) 2011-11-04

Similar Documents

Publication Publication Date Title
WO2010021115A1 (ja) 熱交換装置とそれを用いた発熱体収納装置
US20120236499A1 (en) Radiation unit of electronic device and electronic device using same
JP2014053276A (ja) バッテリーシステム
CN206411572U (zh) 插卡式散热机箱
CN204757162U (zh) 空调器
JP5277647B2 (ja) 熱交換装置とそれを用いた発熱体収納装置
WO2009076850A1 (zh) 一种通信设备
JP6205576B2 (ja) 除湿装置
JPH09210390A (ja) 空気調和機
JP5391961B2 (ja) 熱交換装置とそれを用いた発熱体収納装置
JP2004158641A (ja) 電子機器筐体
JP5743685B2 (ja) 冷凍空調システム
JP6632733B2 (ja) 空気調和機の室外機
JP2013245871A (ja) 熱交換気装置
JP2006084106A (ja) 室外機及び空気調和機
JP5389076B2 (ja) 送風機および空気調和機の室外機
JP2000146218A (ja) 空気調和機の室内ユニット
JP3244470B2 (ja) 空気調和機用空冷式室外機
JP2015079818A (ja) 冷却装置およびそれを用いた発熱体収納装置
JP5315837B2 (ja) 熱交換装置とそれを備えた発熱体収納装置
JP5359489B2 (ja) 電子機器
JP5206309B2 (ja) 熱交換装置およびそれを用いた発熱体収納装置
CN211233276U (zh) 移动空调
JP5380928B2 (ja) 熱交換装置およびそれを用いた発熱体収納装置
CN217685390U (zh) 空调室内机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132359.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 332/KOLNP/2011

Country of ref document: IN

Ref document number: 2009808051

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP