WO2010016535A1 - 光ファイバケーブル - Google Patents

光ファイバケーブル Download PDF

Info

Publication number
WO2010016535A1
WO2010016535A1 PCT/JP2009/063918 JP2009063918W WO2010016535A1 WO 2010016535 A1 WO2010016535 A1 WO 2010016535A1 JP 2009063918 W JP2009063918 W JP 2009063918W WO 2010016535 A1 WO2010016535 A1 WO 2010016535A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
cable
fiber cable
sheath
dynamic friction
Prior art date
Application number
PCT/JP2009/063918
Other languages
English (en)
French (fr)
Inventor
星野 豊
昌義 塚本
晃一 水野
今田 栄治
圭一郎 杉本
慎一 丹羽
Original Assignee
古河電気工業株式会社
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 日本電信電話株式会社 filed Critical 古河電気工業株式会社
Priority to EP09805018.0A priority Critical patent/EP2309295A4/en
Priority to BRPI0917118-5A priority patent/BRPI0917118B1/pt
Priority to US13/054,968 priority patent/US8837886B2/en
Publication of WO2010016535A1 publication Critical patent/WO2010016535A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4402Optical cables with one single optical waveguide

Definitions

  • the present invention relates to an optical fiber cable suitable for laying work in a pipeline.
  • one or a plurality of optical fiber cables may be laid through the pipe.
  • FTTH Fiber to the home
  • a new optical fiber cable is additionally inserted into a pipe line in which a predetermined number of optical fiber cables have already been inserted. There is a need to do that.
  • a method of inserting a cable into a pipeline As a method of inserting a cable into a pipeline, a method of inserting a cable by inserting a cable rod into the pipeline, attaching a cable to the end of the cable, and pulling the cable rod is generally used.
  • the wire rod is inserted into the pipe, and then the cable is pulled in, so that the wire rod and the cable and two wires are required. Therefore, in order to increase the work efficiency, a method of inserting the cable by pushing the cable into the pipeline may be adopted. In this construction method, the cable is inserted only once into the conduit, and the work efficiency is improved.
  • Patent Document 1 discloses an optical fiber cable in which high-density polyethylene resin is used as a jacket material and surface friction resistance is reduced.
  • JP 2007-272199 A Japanese Patent No. 3929629
  • the optical fiber cable described in Patent Document 1 can realize a low friction characteristic, it sometimes cracks due to the crystal part of the cable jacket and deteriorates mechanical characteristics such as impact characteristics. In addition, since it contains crystals, the productivity may deteriorate due to wear of the screw of the extruder. Moreover, although the optical fiber cable described in Patent Document 2 can realize low friction characteristics, it uses high-density polyethylene, and since the material is hard, mechanical characteristics such as impact characteristics may be deteriorated.
  • the present invention has been made in view of the above, and is suitable for cable laying in a construction method for inserting a cable by pushing the cable into a pipeline, and does not deteriorate productivity. Is to provide.
  • an optical fiber cable according to the present invention is an optical fiber cable having at least an optical fiber core and a sheath covering the optical fiber core.
  • the dynamic friction coefficient between optical fiber cables is 0.17 or more and 0.34 or less, and the dynamic friction coefficient with a sheet made of polyvinyl chloride is 0.30 or more and 0.40 or less.
  • the optical fiber cable according to the present invention is characterized in that the base resin of the sheath material contains 5 mass% or more and 15 mass% or less of silicon resin.
  • an optical fiber cable that is suitable for cable laying in a construction method for inserting a cable by pushing the cable into a pipeline and that does not deteriorate manufacturability and mechanical characteristics. Can be obtained.
  • FIG. 1 is a cross-sectional view showing an embodiment of the optical fiber cable of the present invention.
  • the optical fiber cable of the present invention has, for example, one so-called optical fiber core wire 1 having a resin coating made of an ultraviolet curable resin or a thermosetting resin on the outer periphery of a glass optical fiber.
  • a sheath 3 made of, for example, non-halogen flame retardant polyolefin or the like.
  • reference numerals 6 and 6 denote both sides of the optical fiber core 1 (left and right in FIG. 1) at a predetermined distance from the optical fiber core 1, and the center is the optical fiber core wire.
  • a tension member having an outer diameter of about 0.5 mm made of, for example, an aramid fiber bundle or FRP using an aramid fiber as a reinforcing fiber, and a steel wire or the like, positioned so as to be positioned on substantially the same plane as the center of 1. .
  • the tension members 6 and 6 are used to protect an optical fiber having inferior mechanical strength when it receives an external force in its longitudinal direction. In FIG. 1, the distances from the center of the optical fiber core 1 to the centers of the tension members 6 and 6 are substantially equal.
  • Numerals 7 and 7 are notches provided as necessary on both surfaces of the outer surface of the sheath 3 facing each other. If this notch 7 is provided, the sheath 3 can be easily cut during cable laying or the like, and the internal optical fiber core wire 1 can be easily taken out.
  • the coefficient of dynamic friction between the optical fiber cables on the surface of the sheath 3 is 0.17 or more and 0.34 or less, and polyvinyl chloride (hereinafter referred to as PVC) is used.
  • PVC polyvinyl chloride
  • the dynamic friction coefficient with the sheet is 0.30 or more and 0.40 or less.
  • the optical fiber cable of the present invention has a small coefficient of dynamic friction between the optical fiber cables, the laying operation can be easily performed even when laying multiple lines. Furthermore, since the coefficient of dynamic friction with the sheet made of PVC is small, the friction with the existing cable can be reduced, and the laying operation can be easily performed.
  • the reason why the material of the sheet is PVC is that PVC is most commonly used as a sheath material of an existing cable. Further, the optical fiber cable of the present invention does not deteriorate manufacturability and mechanical properties.
  • FIG. 2 is a schematic view showing a method for measuring the dynamic friction coefficient between optical fiber cables on the surface of the sheath 3.
  • two 150 mm long optical fiber cables 15 shown in FIG. 1 are arranged in parallel on the base 10, and a 300 mm long optical fiber cable 20, which is a sample for measuring the friction coefficient, is placed on this. Pile up.
  • the sample (measurement sample) optical fiber cable 20 the above-described 150 mm long optical fiber cables 15 and 15 are further stacked as shown in FIG. Thereafter, a holding plate 12 that slides up and down while being guided by a plurality of slide guides 11 provided vertically on the base 10 is placed in parallel with the base 10. At this time, the same optical fiber cables 15 and 20 as those of the present invention are used.
  • the weight 13 is placed on the holding plate 12, and a constant load of 19.6N is applied in the direction of the arrow.
  • the sample optical fiber cable 20 is pulled out at a speed of 100 mm / min using the load cell.
  • F D friction force
  • the friction coefficient ⁇ F D /19.6N Asked.
  • the test environment was a temperature of 23 ⁇ 2 ° C. and a humidity of 50 ⁇ 10%.
  • FIG. 3 is a schematic diagram showing a method for measuring the dynamic friction coefficient with the sheet made of PVC on the surface of the sheath 3.
  • the 150 mm long optical fiber cables 15 and 15 are made of PVC having a width of 5 mm, a thickness of 1 mm, and a length of 150 mm.
  • the other points are the same as the method of measuring the dynamic friction coefficient between the optical fiber cables on the surface of the sheath 3 shown in FIG.
  • the surface roughness Ra of the sheet 35 was 0.8. Further, the surface roughness Ra of an existing cable made of PVC is generally 0.7 to 1.0.
  • the bent portions are provided at positions of 3 m, 4 m, 14 m, 15 m, and 16 m from the incoming line side, and the pipelines are on a plane parallel to the floor surface from the incoming line side to 3 m, and from 15 m to 20 m, It is arranged on a plane perpendicular to the floor from 3m to 15m.
  • optical fiber cable having a circular cross section in which a sheath having a diameter of 8.7 mm is made of PVC is already installed in the pipe.
  • the optical fiber cable 20 as a sample was inserted into the pipe line 40 by pushing it, and the number of pieces that could be inserted was counted. In addition, 30 evaluations were inserted.
  • Manufacturability was evaluated by the motor load fluctuation of the extruder at the time of sheath extrusion. At this time, a case where the motor load fluctuation of the extruder was 5% or more was evaluated as x. This is because when the motor load fluctuates, the outer diameter fluctuates.
  • FIG. 5 is a schematic view showing an impact test method.
  • a 300 g iron rod 52 having a cylindrical diameter of 20 mm was dropped from a height of 1 m from a vertical direction in a state where the iron plate 51 was horizontally arranged and the optical fiber cable 20 was placed thereon so that the long side thereof was in the horizontal direction.
  • the impact tester 50 is provided with a guide cylinder 53 having an inner diameter slightly larger than the outer diameter of the iron bar 52 so that the dropping trajectory of the iron bar 52 does not deviate from the vertical direction. The iron bar 52 falls.
  • a chamfer of R 5 mm is applied to a corner portion between the end surface and the side surface of the iron bar 52 that collides with the optical fiber cable 20. At this time, the case where the sheath cracked and the tension member was exposed was marked with x. When such an optical fiber cable is actually laid, problems such as corrosion of the tension member may occur.
  • Table 1 shows the results obtained by each evaluation described above.
  • the cable is connected to the conduit.
  • the dynamic friction coefficient between the optical fiber cables on the sheath surface is 0.17 or more and 0.34 or less and the dynamic friction coefficient with the sheet made of PVC is 0.30 or more and 0.40 or less
  • the cable is connected to the conduit.
  • optical fiber cable shown in FIG. 1, only the example using the single optical fiber core wire 1 as the optical fiber core wire 1 is shown, but a plurality of optical fibers are arranged in parallel in a plane, You may use what is called an optical fiber tape core wire to which this was collectively covered. Also, the number of sheets is not limited to one and may be a plurality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

本発明の目的は、ケーブルを管路に押し込むことによって、ケーブルを挿通する工法でのケーブル布設に好適であり、しかも製造性および機械特性を悪化させることがない光ファイバケーブルを提供することにある。 本発明の光ファイバケーブルは、少なくとも光ファイバ心線1と光ファイバ心線1を覆うシース3とを有する光ファイバケーブルにおいて、シース3表面の光ファイバケーブル20同士の動摩擦係数が0.17以上0.34以下であり、ポリ塩化ビニル(PVC)からなるシートとの動摩擦係数が0.30以上0.40以下であることを特徴とする。

Description

光ファイバケーブル
 本発明は、管路内への布設作業に適した光ファイバケーブルに関するものである。
 従来から、光ファイバケーブルでは、1本あるいは複数本の光ファイバケーブルが管路内に挿通されて布設される場合がある。特に、FTTH(Fiber to the home)に代表される光ファイバ網の拡張が進展する近年においては、既に所定本数の光ファイバケーブルが挿通された管路内に新たな光ファイバケーブルを追加的に挿通する必要が生じている。
 ケーブルを管路内に挿通する方法としては、ケーブルを引き込むための通線ロッドを管路に挿入し、その端部にケーブルを取り付け、通線ロッドを引き込むことによりケーブルを挿通する工法が一般的に採用されている。しかしながら、本工法では通線ロッドを管路内に挿通し、その後、ケーブルを引き込むという流れになり、通線ロッド及びケーブルと2回の通線が必要となっている。
 そこで、作業効率を上げるため、ケーブルを管路に押し込むことによって、ケーブルを挿通する工法が採用されることがある。この工法では、ケーブルを管路内に挿通する1回だけの通線となり、作業効率が良くなる。
 ところで、この工法では、ケーブル表面の摩擦係数が高いと既設ケーブル及び多条布設した際のケーブル同士の滑り性が悪くなり、管路の長さが長いと摩擦によりケーブルを押し込んでもケーブル先端が送り込まれず、それ以上挿通できなくなることがあった。
 これらを解決する方法として、オレフィン系樹脂に結晶径3~10μmのタルクを添加し、当該タルクを添加したオレフィン系樹脂混合物を前記外被とすることで滑性および耐摩耗性を改善した光ファイバケーブルが特許文献1に開示されている。また、高密度ポリエチレン樹脂を外被材として用い、表面摩擦抵抗を小さくした光ファイバケーブルが特許文献2に開示されている。
特開2007-272199号公報 特許第3929629号公報
 しかしながら、特許文献1に記載の光ファイバケーブルは、低摩擦特性を実現できるものの、ケーブル外被の結晶部をきっかけに亀裂が入り、衝撃特性等の機械特性を悪化させることがあった。また、結晶を含んでいるため押出機のスクリューを摩耗させる等により、製造性が悪化することがあった。また、特許文献2に記載の光ファイバケーブルは、低摩擦特性を実現できるものの、高密度ポリエチレンを使用しており、材料が硬いためやはり衝撃特性等の機械特性を悪化させることがあった。
 本発明は、上記に鑑みてなされたものであって、ケーブルを管路に押し込むことによって、ケーブルを挿通する工法でのケーブル布設に好適であり、しかも製造性を悪化させることがない光ファイバケーブルを提供することにある。
 上述した課題を解決し、目的を達成するために、本発明に係る光ファイバケーブルは、少なくとも光ファイバ心線と該光ファイバ心線を覆うシースとを有する光ファイバケーブルにおいて、前記シース表面の前記光ファイバケーブル同士の動摩擦係数が0.17以上0.34以下であり、ポリ塩化ビニルからなるシートとの動摩擦係数が0.30以上0.40以下であることを特徴とする。
 また、本発明に係る光ファイバケーブルは、前記シース材のベース樹脂には、シリコン樹脂が5質量%以上15質量%以下含まれていることを特徴とする。
 以上のようにしてなる本発明によれば、ケーブルを管路に押し込むことによって、ケーブルを挿通する工法でのケーブル布設に好適であり、しかも製造性および機械特性を悪化させることがない光ファイバケーブルを得ることができる。
本発明の光ファイバケーブルの一実施例を示す横断面図である。 光ファイバケーブル同士のシースの表面の動摩擦係数を測定する方法を示す概略図である。 PVCからなるシートとのシースの表面の動摩擦係数を測定する方法を示す概略図である。 光ファイバケーブルの管路への挿通性の評価方法を示す概略図である。 衝撃試験方法を示す概略図である。
 以下に図を用いて本発明の光ファイバケーブルを詳細に説明する。
 図1は、本発明の光ファイバケーブルの一実施例を示す横断面図である。図1に示すように、本発明の光ファイバケーブルは、例えば、ガラス光ファイバの外周に、紫外線硬化性樹脂あるいは熱硬化性樹脂等からなる樹脂被覆を有する、いわゆる光ファイバ心線1を1本配し、これに、例えば、ノンハロゲン難燃性ポリオレフィン等からなるシース3を施したものである。
 尚、図1において、符号6、6は光ファイバ心線1の両側(図1にあっては左右方向)に、光ファイバ心線1と所定間隔を置いて、しかもその中心が光ファイバ心線1の中心と略同一平面上に位置するように位置決めされた、例えば、アラミド繊維束あるいは強化繊維としてアラミド繊維を用いたFRP、および鋼線等からなる外径0.5mm程度のテンションメンバである。このテンションメンバ6、6は機械的強度に劣る光ファイバが、その長手方向に外力を受けた場合、これを保護するために用いられている。図1では光ファイバ心線1の中心から各テンションメンバ6、6の各中心までの間隔はほぼ等しくなっている。
 また、符号7、7はシース3の対向する外表面の両面に必要に応じて設けた切欠である。この切欠7を設けておくと、ケーブル布設等の際、シース3を容易に切り裂くことができ、内部の光ファイバ心線1を簡単に取り出せる。
 このようにしてなる本発明の光ファイバケーブルは、シース3の表面の光ファイバケーブル同士の動摩擦係数を0.17以上0.34以下とし、ポリ塩化ビニル(polyvinyl chloride;以降、PVCと呼ぶ)からなるシートとの動摩擦係数を0.30以上0.40以下としている。
 このような動摩擦係数を有する光ファイバケーブルとするためには、シース材のベース樹脂に、シリコン樹脂を5質量%以上15質量%以下含ませる方法等がある。
 本発明の光ファイバケーブルは、光ファイバケーブル同士の動摩擦係数が小さいので、多条布設する際にも容易に布設作業を行うことができる。
 さらにPVCからなるシートとの動摩擦係数が小さいので、既設ケーブルとの摩擦を低減でき、容易に布設作業を行うことができる。
 なおここでシートの材質をPVCとしたのは、PVCが既設ケーブルのシース材料として最も一般的に用いられているからである。
 また、本発明の光ファイバケーブルは、製造性および機械特性を悪化させることがない。
 以下に前述した動摩擦係数の限定根拠を、実施例を用いて説明する。
 シース樹脂としてノンハロゲン難燃性ポリエチレンからなる樹脂を用い、ベース樹脂に含有するシリコン樹脂の配合量および結晶の種類と配合量を変化させることにより、シース表面の光ファイバケーブル同士の動摩擦係数、PVCからなるシートとの動摩擦係数を変化させた図1に示す光ファイバケーブルを製造し、管路への挿通性および製造性を評価した。なお、シース表面粗さRaは0.5~0.9であった。
 また、テンションメンバ6、6としては亜鉛めっき鋼線を用いた。
 光ファイバケーブルの寸法は、長辺の長さ(図1においては左右方向の長さ)が約2.0mm、短辺の長さ(図1における上下方向、すなわち幅)が約1.6mmである。
 以下に、各評価方法および評価基準を説明する。
[光ファイバケーブル同士の動摩擦係数]
 まず図2により、シース3の表面の光ファイバケーブル同士の動摩擦係数を測定する方法を説明する。図2はシース3の表面の光ファイバケーブル同士の動摩擦係数を測定する方法を示す概略図である。
 具体的には、ベース10上に図1に示す150mm長の光ファイバケーブル15を2本隣接して並行に並べ、この上に摩擦係数を測定する試料である300mm長の光ファイバケーブル20を俵積みする。この試料用(測定サンプル)光ファイバケーブル20上に、前述した150mm長の光ファイバケーブル15、15を図2のようにさらに俵積みする。
 その後、ベース10上に垂直に立設させた複数本のスライドガイド11によってガイドしながら上下にスライドする抑え板12をベース10と平行に載せる。このとき光ファイバケーブル15、20は本発明の光ファイバケーブルと同じものを使用する。
 次に、抑え板12上に錘13を載せ、一定の荷重19.6Nを矢印方向に加える。この状態でロードセルを用いて試料用の光ファイバケーブル20を手前方向に100mm/minの速度で引き抜く。
 このとき、摩擦力(引抜力)Fとして、動き初めのピーク摩擦力を過ぎて最低点を示した点より60mmの位置での値を採用し、摩擦係数μ=F/19.6Nを求めた。試料数nはn=3とした。
 なお、試験環境は、温度23±2℃、湿度50±10%とした。
 ところで光ファイバケーブル15、20は、試験が1回(n=1)完了する毎に交換した。
[PVCからなるシートとの動摩擦係数]
 図3はシース3の表面のPVCからなるシートとの動摩擦係数を測定する方法を示す概略図である。
 具体的には、図2に示すシース3の表面の光ファイバケーブル同士の動摩擦係数を測定する方法において、150mm長の光ファイバケーブル15、15を幅5mm、厚さ1mm、長さ150mmのPVCからなるシート35に変えたものであり、それ以外の点は図2に示すシース3の表面の光ファイバケーブル同士の動摩擦係数を測定する方法と同じである。
 なお、シート35の表面粗さRaは0.8であった。また、PVCからなる既設のケーブルの表面粗さRaは一般的には0.7~1.0である。
[管路への挿通性]
 管路への挿通性は図4に示す管路40を用いて評価した。
 この管路40は内径22mm、全長が20mの合成樹脂製であり、図4に示すように曲げ半径R=6mm、90度の曲げ部が5箇所形成されている。なお、曲げ部は、入線側から3m、4m、14m、15m、16mの位置にそれぞれ設けられ、管路は、入線側から3mまで、および15m~20mまでは床面と平行な平面上に、3m~15mまでは床面と垂直な平面上に配置されている。
 さらに管路内には直径8.7mmのシースがPVCからなる断面が円形の光ファイバケーブルが既設されている。
 この管路40内に試料である光ファイバケーブル20を押し込むことにより挿通し、挿通できた本数を数えた。なお、評価本数は30本を挿通した。
[製造性]
 製造性はシース押し出し時の押出機のモータ負荷変動により評価した。
 このとき押出機のモータ負荷変動が5%以上のものを×とした。モータの負荷変動が生じると、外径変動が発生するためである。
[衝撃試験]
 機械特性の評価として衝撃試験を行った。図5は衝撃試験方法を示す概略図である。
 鉄板51を水平に配置し、その上に光ファイバケーブル20を長辺が水平方向になるように載せた状態で、鉛直方向から円筒直径20mmの300gの鉄棒52を高さ1mから落とした。
 なお、鉄棒52の落下の軌道が鉛直方向からずれないように、衝撃試験機50には鉄棒52の外径よりも内径がわずかに大きいガイド筒53が設置されており、このガイド筒53内で鉄棒52が落下するようになっている。
 また、鉄棒52の光ファイバケーブル20と衝突する端面と側面の間の角部にはR=5mmの面取りが施されている。
 このときシースに亀裂が入り、テンションメンバが露出したものを×とした。このような光ファイバケーブルは、実際に敷設された場合にテンションメンバの腐食等の問題が発生することがある。
 以上に述べた各評価により得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すようにシース表面の光ファイバケーブル同士の動摩擦係数が0.34以下、および、PVCからなるシートとの動摩擦係数が0.40以下を満たすサンプル3~7では、通線本数がいずれも30本以上であり、管路への挿通を容易に行うことができた。
 また、シース表面の光ファイバケーブル同士の動摩擦係数が0.17以上、および、PVCからなるシートとの動摩擦係数が0.30以上を満たすサンプル3~5では、良好な製造性が得られた。
 さらに全てのサンプルにおいて、良好な機械特性が得られた。
 すなわち、シース表面の前記光ファイバケーブル同士の動摩擦係数が0.17以上0.34以下であり、PVCからなるシートとの動摩擦係数が0.30以上0.40以下であれば、ケーブルを管路に押し込むことによって、ケーブルを挿通する工法でのケーブル布設に好適であり、しかも製造性および機械特性を悪化させることがなかった。
 ところで図1に示す光ファイバケーブルにあっては、光ファイバ心線1として単心の光ファイバ心線1を用いた例のみ示しているが、複数本の光ファイバを平面状に並行に並べ、これに一括被覆を施した、いわゆる光ファイバテープ心線を用いてもよい。
 またその枚数も1枚に限らず複数枚であってもよい。
1 光ファイバ心線
3 シース
6 テンションメンバ
7 切欠
10 ベース
11 スライドガイド
12 抑え板
13 錘
15、20 光ファイバケーブル
35 シート

Claims (2)

  1.  少なくとも光ファイバ心線と該光ファイバ心線を覆うシースとを有する光ファイバケーブルにおいて、
     前記シース表面の前記光ファイバケーブル同士の動摩擦係数が0.17以上0.34以下であり、ポリ塩化ビニル(PVC)からなるシートとの動摩擦係数が0.30以上0.40以下であることを特徴とする光ファイバケーブル。
  2.  前記シース材のベース樹脂には、シリコン樹脂が5質量%以上15質量%以下含まれていることを特徴とする請求項1に記載の光ファイバケーブル。
PCT/JP2009/063918 2008-08-07 2009-08-06 光ファイバケーブル WO2010016535A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09805018.0A EP2309295A4 (en) 2008-08-07 2009-08-06 FIBER OPTIC CABLE
BRPI0917118-5A BRPI0917118B1 (pt) 2008-08-07 2009-08-06 Cabo de fibra óptica
US13/054,968 US8837886B2 (en) 2008-08-07 2009-08-06 Optical fiber cable having a sheath and for setting in a conduit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008204563A JP5638745B2 (ja) 2008-08-07 2008-08-07 光ファイバケーブル
JP2008-204563 2008-08-07

Publications (1)

Publication Number Publication Date
WO2010016535A1 true WO2010016535A1 (ja) 2010-02-11

Family

ID=41663752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063918 WO2010016535A1 (ja) 2008-08-07 2009-08-06 光ファイバケーブル

Country Status (5)

Country Link
US (1) US8837886B2 (ja)
EP (1) EP2309295A4 (ja)
JP (1) JP5638745B2 (ja)
BR (1) BRPI0917118B1 (ja)
WO (1) WO2010016535A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090880A1 (ja) 2007-01-24 2008-07-31 The Furukawa Electric Co., Ltd. 光ファイバケーブル
JP5638745B2 (ja) * 2008-08-07 2014-12-10 古河電気工業株式会社 光ファイバケーブル
JP4653213B2 (ja) 2008-12-25 2011-03-16 古河電気工業株式会社 光ファイバケーブル
JP2011232448A (ja) * 2010-04-26 2011-11-17 Fujikura Ltd 光ファイバドロップケーブル
JP2013257396A (ja) * 2012-06-12 2013-12-26 Fujikura Ltd 光ファイバケーブル
MX2016006740A (es) 2013-12-04 2016-08-12 3M Innovative Properties Co Revestimiento acuoso de friccion baja para cables de telecomunicacion.
JP6605795B2 (ja) * 2014-10-06 2019-11-13 古河電気工業株式会社 インドアケーブル
US10234649B2 (en) * 2017-07-03 2019-03-19 Wesco Distribution, Inc. Fabric encased micro tubes for air blown fibers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193856A (ja) * 1998-12-24 2000-07-14 Showa Electric Wire & Cable Co Ltd ケーブル外被およびこれを用いた光ファイバケーブル
JP2001264601A (ja) * 2000-03-17 2001-09-26 Sumitomo Electric Ind Ltd 光ケーブル
JP2004272069A (ja) * 2003-03-11 2004-09-30 Showa Electric Wire & Cable Co Ltd 光ファイバケーブル
WO2006051898A1 (ja) * 2004-11-11 2006-05-18 Sumitomo Electric Industries, Ltd. 光ケーブル
JP2007272199A (ja) 2005-11-15 2007-10-18 Daiden Co Ltd 光ファイバケーブル

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8619308D0 (en) 1986-08-07 1986-09-17 Telephone Cables Ltd Optical cables
JPH01190762A (ja) * 1988-01-26 1989-07-31 Mitsubishi Petrochem Co Ltd 光学ガラスファイバー二次被覆用樹脂組成物
WO1993005424A1 (en) 1991-09-10 1993-03-18 Neste Oy Optical cable
US5807977A (en) * 1992-07-10 1998-09-15 Aerojet General Corporation Polymers and prepolymers from mono-substituted fluorinated oxetane monomers
US6133931A (en) * 1992-11-09 2000-10-17 Matsushita Electric Industrial Co., Ltd. Thermal recording method and ink sheet used therein
US5561731A (en) * 1995-06-15 1996-10-01 Siecor Corporation Flexible casing for optical ribbons
US5876910A (en) * 1997-10-20 1999-03-02 Eastman Kodak Company Aqueous coating compositions for surface protective layers for imaging elements
JP2001035265A (ja) * 1999-07-26 2001-02-09 Sumitomo Electric Ind Ltd 管路引込み用ケーブル
KR100709496B1 (ko) * 1999-09-16 2007-04-20 스미토모덴키고교가부시키가이샤 광섬유
US6398190B1 (en) * 2000-10-30 2002-06-04 Milliken & Company Cable assembly and method
JP2003043324A (ja) * 2001-08-01 2003-02-13 Sumitomo Electric Ind Ltd パイプ挿通用光ファイバユニットおよびその挿通方法
US6728455B2 (en) * 2001-09-04 2004-04-27 Fujikura Ltd. Optical fiber drop cable and manufacturing method thereof
US6775445B2 (en) * 2002-01-11 2004-08-10 Fujikura Ltd. Optical fiber drop cable
KR100638963B1 (ko) * 2004-09-01 2006-10-25 엘에스전선 주식회사 공기압 포설용 튜브 및 이를 이용한 튜브케이블
JP2006163209A (ja) * 2004-12-09 2006-06-22 Sumitomo Electric Ind Ltd 光ファイバケーブル
US7368174B2 (en) * 2005-12-14 2008-05-06 Lord Corporation Aqueous dispersion coating composition having noise and/or friction abatement properties
US7455941B2 (en) * 2005-12-21 2008-11-25 Xerox Corporation Imaging member with multilayer anti-curl back coating
JP4900938B2 (ja) 2006-11-16 2012-03-21 住友電気工業株式会社 ドロップケーブル
WO2008090880A1 (ja) * 2007-01-24 2008-07-31 The Furukawa Electric Co., Ltd. 光ファイバケーブル
JP2008216747A (ja) * 2007-03-06 2008-09-18 Ricoh Co Ltd 像担持体、潤滑剤成形物、潤滑剤塗布装置、画像形成装置、及び、プロセスカートリッジ
JP5638745B2 (ja) * 2008-08-07 2014-12-10 古河電気工業株式会社 光ファイバケーブル
WO2011092850A1 (ja) * 2010-01-29 2011-08-04 富士電機システムズ株式会社 電子写真用感光体、その製造方法および電子写真装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193856A (ja) * 1998-12-24 2000-07-14 Showa Electric Wire & Cable Co Ltd ケーブル外被およびこれを用いた光ファイバケーブル
JP3929629B2 (ja) 1998-12-24 2007-06-13 昭和電線ケーブルシステム株式会社 ケーブル外被およびこれを用いた光ファイバケーブル
JP2001264601A (ja) * 2000-03-17 2001-09-26 Sumitomo Electric Ind Ltd 光ケーブル
JP2004272069A (ja) * 2003-03-11 2004-09-30 Showa Electric Wire & Cable Co Ltd 光ファイバケーブル
WO2006051898A1 (ja) * 2004-11-11 2006-05-18 Sumitomo Electric Industries, Ltd. 光ケーブル
JP2007272199A (ja) 2005-11-15 2007-10-18 Daiden Co Ltd 光ファイバケーブル

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIROSHI NAKAMURA ET AL.: "Hikari Fiber Cable Gaihi no Tei Masatsuka ni Kansuru Kento (1)", 1999 NEN IEICE COMMUNICATIONS SOCIETY TAIKAI KOEN RONBUNSHU 2, 16 August 1999 (1999-08-16), pages 205, XP008140392 *
MASAYOSHI TSUKAMOTO ET AL.: "Tei Masatsu Hikari Drop Cable no Kaihatsu", PROCEEDINGS OF THE 2006 IEICE GENERAL CONFERENCE TSUSHIN 2, - 8 March 2006 (2006-03-08), pages 338, XP008140391 *
NOBUHIRO UMEO ET AL.: "Tajo Fusetsu ni Tekishita Hikari Cable-yo Sheath Zairyo no Kento", MITSUBISHI CABLE INDUSTRIES REVIEW, 10 January 2001 (2001-01-10), pages 30 - 35, XP008140394 *
See also references of EP2309295A4
YOSHIAKI NAGAO ET AL.: "Tei Masatsu Oyobi Tai Mamosei o Kojo saseta Nannen Hikari Drop Cable", 2006 NEN IEICE COMMUNICATIONS SOCIETY TAIKAI KOEN RONBUNSHU 2, 7 September 2006 (2006-09-07), pages 199, XP008140396 *
YOSHINORI KUROSAWA ET AL.: "Hikari Cable-yo Tei Masatsu Sheath no Kento", 1998 NEN IEICE COMMUNICATIONS SOCIETY TAIKAI KOEN RONBUNSHU 2, 7 September 1998 (1998-09-07), pages 364, XP008140395 *

Also Published As

Publication number Publication date
US20110150402A1 (en) 2011-06-23
EP2309295A1 (en) 2011-04-13
BRPI0917118B1 (pt) 2019-04-09
US8837886B2 (en) 2014-09-16
EP2309295A4 (en) 2015-03-04
JP5638745B2 (ja) 2014-12-10
BRPI0917118A2 (pt) 2015-11-17
JP2010039378A (ja) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5638745B2 (ja) 光ファイバケーブル
US6928217B2 (en) Fiber optic cable having a strength member
US6934452B2 (en) Optical fiber cables
US7050688B2 (en) Fiber optic articles, assemblies, and cables having optical waveguides
EP3008504B1 (en) Coupling system for a fiber optic cable
JP5320088B2 (ja) 光ファイバケーブルの布設方法
CN116547576A (zh) 纤维光学线缆、其制造方法及用途
JP2011033783A (ja) 押出成形体及びケーブル
JP2010256467A (ja) 光ファイバドロップケーブル
JP2007183477A (ja) 光ファイバケーブル
JP2013007882A (ja) 光ファイバケーブル
JP2008180827A (ja) 光ファイバケーブル
JP2004272069A (ja) 光ファイバケーブル
JP2011033744A (ja) 光ケーブル
WO2013187109A1 (ja) 光ファイバケーブル
KR20090038282A (ko) 광섬유 케이블
KR20200138872A (ko) 난연 광케이블
Sato et al. Designs of New UHFC Optical Fiber Cables with Freeform Ribbons and Installation Characteristics
JP5075224B2 (ja) 光ファイバケーブル
JP6010901B2 (ja) 光ファイバケーブル
JP5205476B2 (ja) 光ファイバケーブル
JP4927795B2 (ja) 光ファイバケーブル
JP2780311B2 (ja) 光ファイバケーブル
Tsukamoto et al. Development of low friction indoor cable
JP2023155697A (ja) 光ケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009805018

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13054968

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0917118

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110207