WO2010016452A1 - フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物 - Google Patents

フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物 Download PDF

Info

Publication number
WO2010016452A1
WO2010016452A1 PCT/JP2009/063723 JP2009063723W WO2010016452A1 WO 2010016452 A1 WO2010016452 A1 WO 2010016452A1 JP 2009063723 W JP2009063723 W JP 2009063723W WO 2010016452 A1 WO2010016452 A1 WO 2010016452A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine compound
meth
general formula
group
acrylate
Prior art date
Application number
PCT/JP2009/063723
Other languages
English (en)
French (fr)
Inventor
太田黒 庸行
潤 野口
洋三 山科
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to EP09804935A priority Critical patent/EP2311899A4/en
Priority to US13/057,193 priority patent/US20130053506A1/en
Priority to CN2009801302097A priority patent/CN102112524B/zh
Priority to KR1020107025785A priority patent/KR101235227B1/ko
Priority to JP2010506469A priority patent/JP4556151B2/ja
Publication of WO2010016452A1 publication Critical patent/WO2010016452A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5036Polyethers having heteroatoms other than oxygen having nitrogen containing -N-C=O groups
    • C08G18/5039Polyethers having heteroatoms other than oxygen having nitrogen containing -N-C=O groups containing amide groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers

Definitions

  • the present invention relates to a fluorine compound having excellent stain resistance, compatibility with resins and the like, and excellent coating film smoothness, and relates to an active energy ray-curable resin composition using the fluorine compound.
  • an active energy ray-curable resin has been used as a hard coating material for plastics and the like because it can easily impart surface hardness, scratch resistance, etc. by simply applying and curing to the plastic surface.
  • these hard coating materials are not only improved in coating film hardness or scratch resistance, but also in anti-contamination for contamination contamination, dust adhesion prevention and electrostatic damage prevention. Functions such as sex are required.
  • Patent Document 1 As a fluorine compound, a urethane acrylate having a poly (perfluoroalkylene ether) chain obtained by reacting a polyisocyanate with a poly (perfluoroalkylene ether) having a hydroxyl group and a monomer having a hydroxyl group and an acryloyl group. has been proposed.
  • Patent Document 2 poly (perfluoroalkylene ether) having a hydroxyl group and a monomer having a hydroxyl group and an acroyl group are reacted with triisocyanate, which is a diisocyanate trimer, as a fluorine compound.
  • triisocyanate which is a diisocyanate trimer
  • the urethane acrylate having a poly (perfluoroalkylene ether) chain described in Patent Documents 1 and 2 is produced in terms of production of a poly (perfluoroalkylene ether) having a hydroxyl group and an acrylic unit having a hydroxyl group with respect to the triisocyanate compound. Since it is difficult to react the monomer with an appropriate ratio, a compound having only an acroyl group or a compound having only a poly (perfluoroalkylene ether) chain is generated as a by-product, and poly ( There was a problem that it was impossible to obtain only a compound having both a perfluoroalkylene ether) chain and an acroyl group.
  • a compound having only a poly (perfluoroalkylene ether) chain often has a high molecular weight, and when used in an active energy ray-curable resin composition, the compatibility with other components is low.
  • the wire curable resin composition is used as a coating film, there is a problem such as cloudiness.
  • such a urethane acrylate having a poly (perfluoroalkylene ether) chain has problems such as low compatibility between a compound having only a poly (perfluoroalkylene ether) chain and a compound having only an acryloyl group, resulting in phase separation. Also had.
  • An object of the present invention is to provide a fluorine compound having excellent compatibility with a resin or the like and having a cured coating film excellent in stain resistance, and a method for producing the same. Furthermore, it is providing the active energy ray hardening-type resin composition from which the cured coating film excellent in the stain resistance using the said fluorine compound is obtained.
  • the present invention provides a fluorine compound represented by the following general formula (1).
  • X 1 represents a poly (perfluoroalkylene ether) chain
  • R 1 to R 4 each independently represents a hydrogen atom, an alkyl group, the following general formula (2) or ( 3) wherein at least one of R 1 and R 2 is the following general formula (2) or (3), and at least one of R 3 and R 4 is the following general formula ( 2) or (3).
  • X 2 represents a linear or branched hydrocarbon group
  • X 3 represents an oxygen atom or a sulfur atom
  • X 4 represents a linear or branched alkylene group
  • R 5 represents a hydrogen atom or a methyl group
  • p represents an integer of 1 to 5.
  • X 2 represents a linear or branched hydrocarbon group
  • X 3 represents an oxygen atom or a sulfur atom
  • R 5 represents a hydrogen atom or a methyl group.
  • p represents an integer of 1 to 5.
  • the present invention provides a production method suitable for the fluorine compound, an active energy ray-curable resin composition containing the fluorine compound, the fluorine compound, or an active energy ray-curable resin composition using the fluorine compound.
  • An article having a cured coating film is provided.
  • the fluorine compound of the present invention has excellent compatibility with resins, etc., and its cured coating film has excellent stain resistance and a high content of fluorine atoms. Therefore, when used alone, the low refractive index has excellent stain resistance. Can be obtained. Further, when the fluorine compound of the present invention is added as an additive to the active energy ray-curable resin, a hard coat material having excellent stain resistance can be obtained.
  • the fluorine compound of the present invention is a protective film for protecting articles requiring such characteristics from contamination and scratches, an antireflection film for use in flat panel displays such as liquid crystal displays, plasma displays, and organic EL displays, and antiglare. Useful for films and the like.
  • a coating material for a protective film for a polarizing plate of a liquid crystal display typified by a TAC film
  • a black matrix paint, ink or black resist used for a color filter of a liquid crystal display typified by a TAC film
  • a touch panel typified by a TAC film
  • a mobile phone casing typified by a mobile phone
  • hard coat materials such as liquid crystal displays
  • optical members such as optical fiber clad materials, optical lenses, and optical waveguides
  • liquid crystal sealing materials various optical sealing materials, optical adhesives, and the like.
  • Example 2 is an IR spectrum of the fluorine compound (1) obtained in Example 1.
  • 3 is an IR spectrum of the fluorine compound (2) obtained in Example 2.
  • 3 is an IR spectrum of the fluorine compound (3) obtained in Example 3.
  • 4 is an IR spectrum of the fluorine compound (4) obtained in Example 4.
  • 4 is an IR spectrum of the fluorine compound (5) obtained in Example 5.
  • 4 is an IR spectrum of the fluorine compound (6) obtained in Example 6.
  • 4 is an IR spectrum of the fluorine compound (7) obtained in Example 7.
  • the fluorine compound of the present invention is represented by the following general formula (1).
  • X 1 represents a poly (perfluoroalkylene ether) chain
  • R 1 to R 4 each independently represents a hydrogen atom, an alkyl group, the following general formula (2) or ( 3) wherein at least one of R 1 and R 2 is the following general formula (2) or (3), and at least one of R 3 and R 4 is the following general formula ( 2) or (3).
  • X 2 represents a linear or branched hydrocarbon group
  • X 3 represents an oxygen atom or a sulfur atom
  • X 4 represents a linear or branched alkylene group
  • R 5 represents a hydrogen atom or a methyl group
  • p represents an integer of 1 to 5.
  • X 2 represents a linear or branched hydrocarbon group
  • X 3 represents an oxygen atom or a sulfur atom
  • R 5 represents a hydrogen atom or a methyl group.
  • p represents an integer of 1 to 5.
  • X 1 in the general formula (1) represents a poly (perfluoroalkylene ether) chain, and specific examples thereof include those represented by the following general formula (4).
  • k, m and n each independently represent an integer of 0 to 50. However, k, m and n are not all 0.
  • the general formula (4) has, as perfluoroalkylene, a poly (perfluoropropylene ether) chain block having structural units of perfluoropropylene, perfluoroethylene and perfluoromethylene, but having continuous structural units of perfluoropropylene.
  • a poly (perfluoroethylene ether) chain block in which perfluoroethylene structural units are continuous, or a poly (perfluoroethylene ether) chain block in which perfluoromethylene structural units are continuous is bonded.
  • a structural unit, a perfluoroethylene structural unit, or a perfluoromethylene structural unit may be randomly bonded.
  • k, m and n each independently represent an integer of 0 to 50, more preferably an integer of 0 to 20. However, k, m, and n are not all zero.
  • the number average molecular weight is preferably in the range of 800 to 3,000, particularly 1,000 to 2,000.
  • the weight average molecular weight is preferably in the range of 1,500 to 20,000, particularly 2,000 to 5,000. Therefore, it is preferable that k, m, and n in the general formula (4) are integers having these molecular weights.
  • the coating film hardness, curability, compatibility and the like are favorable, which is preferable.
  • X 2 in the general formula (2) or (3) represents a linear or branched hydrocarbon group, and the hydrocarbon group is selected depending on the number of p.
  • p is 1, for example, methylene group, ethylene group, propylene group, butylene group and the like can be mentioned. These may have a substituent.
  • a hydrocarbon group represented by the following general formula (6) may be mentioned.
  • q represents an integer of 3 or more, and is p-1.
  • "*" is in the general formula (6), the general formula (1) represents a site bonded to the nitrogen atom in the remaining binding sites, and X 3 in the general formula (2) or (3) Represents the binding site.
  • X 3 in the general formula (2) or (3) is an oxygen atom or a sulfur atom.
  • X 4 in the general formula (2) represents a linear or branched alkylene group, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, the following formula (7), and the formula (8). It is done. These may have a substituent.
  • R 5 in the general formula (2) or (3) is a hydrogen atom or a methyl group.
  • a hydrogen atom is preferable because it has excellent radical polymerizability and high curability.
  • both ends are carboxyl groups or carboxylic acid alkyl esters.
  • a first step of reacting a certain poly (perfluoroalkylene ether) with an alkylamine having a hydroxyl group or a thiol group, and a second step of reacting the reaction product obtained in the first step with a (meth) acrylate having an isocyanate group examples include steps.
  • the alkylamine having a hydroxyl group or a thiol group is a primary or secondary amine such as monoethanolamine, 2-mercaptoethanol, 2-amino-1-ethanol, 6-amino-1-hexanol, serinol, Primary amines such as tris (hydroxymethyl) methylamine, bis-homotris, 1-amino-1-deoxy-D-sorbitol; N- (methylamino) ethanol, 2- (t-butylamino) ethanol, diethanolamine, diisopropanol Secondary amines such as amine, N-methyl-D-glucamine, disorbitylamine, 1-amino-2-methyl-propanethiol, 3-pyrrolidinol, 2-pyrrolidinemethanol and the like can be mentioned.
  • Primary amines such as tris (hydroxymethyl) methylamine, bis-homotris, 1-amino-1-deoxy-D-sorbitol
  • Examples of the (meth) acrylate having an isocyanate group include 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate, 1,1-bis (methacryloyloxymethyl) ethyl.
  • Examples include isocyanate, 2- (acryloylethoxy) -ethyl isocyanate, 2- (methacryloylethoxy) -ethyl isocyanate, and the like.
  • the reaction conditions in the first step are preferably a reaction temperature of 80 to 180 ° C. and a reaction time of 0.5 to 5.0 hours.
  • (meth) acrylate having an isocyanate group is added dropwise to the reaction product obtained in the first step while maintaining the temperature at 40 to 130 ° C., and then the reaction temperature is 60 to The reaction is preferably carried out at 120 ° C. for a reaction time of 1 to 10 hours.
  • the reaction can be performed without solvent, but when the alkylamine having a hydroxyl group or thiol group to be used does not melt and become a liquid even at the reaction temperature, the alkylamine is dissolved in order to facilitate the reaction. It is effective to use a solvent.
  • the solvent examples include ester solvents such as ethyl acetate and butyl acetate; ether solvents such as diisopropyl ether and dimethoxyethane; halogen solvents such as dichloromethane and dichloroethane; aromatic solvents such as toluene and xylene; methyl ethyl ketone and methyl Examples thereof include ketone solvents such as isobutyl ketone; alcohol solvents such as methanol, ethanol and isopropanol; aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide. Among these, ether solvents and alcohol solvents are preferable.
  • the reaction proceeds, when poly (perfluoroalkylene ether) having carboxyl groups at both ends is used, water is generated, and both ends are poly (perfluoroalkyl).
  • alkylene ether When alkylene ether) is used, alcohol is produced. Therefore, it is preferable to carry out the reaction while removing water or alcohol under reduced pressure because the reaction proceeds smoothly.
  • azeotropic dehydration using toluene or the like can be applied.
  • poly (perfluoroalkylene ether) having both ends of a carboxylic acid alkyl ester group is reacted with an alkylamine having a hydroxyl group or a thiol group, and the resulting alcohol is removed under reduced pressure conditions.
  • the method of performing is preferable because the reaction proceeds more smoothly.
  • the reaction can be performed without a solvent or using a solvent.
  • the solvent include ester solvents such as ethyl acetate and butyl acetate; ether solvents such as diisopropyl ether and dimethoxyethane; halogen solvents such as dichloromethane and dichloroethane; aromatic solvents such as toluene and xylene; methyl ethyl ketone and methyl
  • ketone solvents such as isobutyl ketone; aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide.
  • ester solvents; ketone solvents; ether solvents are preferable.
  • a urethanization catalyst examples include amines such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphines such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyl Organic tin compounds such as tin diacetate and tin octoate; organometallic compounds such as zinc octoate and the like. Moreover, it is preferable to use an organic tin compound and amines together because the urethanization reaction proceeds smoothly.
  • a poly (perfluoroalkylene ether) chain is used as a production method when any one of R 1 to R 4 in the general formula (1) which is the fluorine compound of the present invention is the general formula (3).
  • the reaction product obtained in the first step (meth) is a reaction of a compound having both ends with a carboxyl group or a carboxylic acid alkyl ester and an alkylamine having a hydroxyl group or a thiol group.
  • the method of passing through the 2nd process with which acrylic acid, (meth) acrylic acid halide, or (meth) acrylic anhydride is made to react is mentioned.
  • alkylamine having a hydroxyl group or a thiol group the same ones as described above can be used.
  • reaction conditions in the first step the same method as described above can be used.
  • Examples of the second step include a method of passing through the second step of reacting the reaction product obtained in the first step with (meth) acrylic acid, (meth) acrylic acid halide, or (meth) acrylic anhydride.
  • aromatic solvents such as toluene and xylene
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone
  • the desired compound is obtained by azeotropic dehydration under reflux using an acid catalyst.
  • the acid catalyst include methanesulfonic acid, p-toluenesulfonic acid, cresolsulfonic acid, and cation exchange resin.
  • the reaction can be performed without a solvent or using a solvent.
  • the solvent is an aromatic solvent such as toluene or xylene; an aprotic polar solvent such as methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, or dimethyl sulfoxide; an ester solvent such as ethyl acetate or butyl acetate; Examples include ether solvents such as ether and dimethoxyethane; halogen solvents such as dichloromethane and dichloroethane. Among these, ester solvents, ketone solvents, and ether solvents are preferable.
  • amines such as triethylamine are used for the purpose of neutralizing the hydrogen halide generated by the reaction.
  • the reaction temperature is preferably 10 to 60 ° C., and the reaction time is preferably 0.5 to 5 hours. After completion of the reaction, the desired compound is obtained by filtering or washing with water to remove the amine salt.
  • the solvent is an aromatic solvent such as toluene or xylene; an aprotic polar solvent such as methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, or dimethyl sulfoxide; ethyl acetate, butyl acetate, or the like
  • Ester solvents such as diisopropyl ether and dimethoxyethane; halogen solvents such as dichloromethane and dichloroethane.
  • ester solvents, ketone solvents, and ether solvents are preferable.
  • the reaction is promoted by an acid catalyst.
  • the acid catalyst examples include mineral acids such as sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, cresolsulfonic acid and the like.
  • the reaction temperature is preferably 20 to 100 ° C. and the reaction time is preferably 0.5 to 8.0 hours. After completion of the reaction, the desired compound is obtained by neutralizing and removing by-product (meth) acrylic acid with caustic water or the like.
  • the blending amount is 0.01 to 10.0 parts by mass in 100 parts by mass of the nonvolatile content in the resin composition. It is preferable. In particular, the amount is preferably 0.05 to 3.0 parts by mass because the coating film surface can be efficiently modified without impairing physical properties such as the coating film hardness inherent to the resin composition to be added.
  • Examples of the main component of the active energy ray-curable resin composition include a polymerizable monomer (A) and a polymerizable resin (B).
  • A polymerizable monomer
  • B polymerizable resin
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • (meth) acrylic acid refers to one or both of methacrylic acid and acrylic acid.
  • examples of the monofunctional monomer include N-vinylcaprolactam, N-vinylpyrrolidone, N-vinylcarbazole, vinylpyridine, acrylamide, N, N-dimethyl (meth) acrylamide, and isobutoxymethyl.
  • These monofunctional monomers can be used alone or in combination of two or
  • Examples of the polyfunctional monomer in the polymerizable monomer (A) include trimethylolpropane tri (meth) acrylate, triethylene oxide-modified trimethylolpropane tri (meth) acrylate, tripropylene oxide-modified glycerin tri (meth) acrylate, Ethylene oxide-modified glycerol tri (meth) acrylate, triepichlorohydrin-modified glycerol tri (meth) acrylate, 1,3,5-triacroylhexahydro-s-triazine, tris (acryloyloxyethyl) isocyanurate, pentaerythritol Tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, tetraethylene oxide modified pentaerythritol tetra (meth) acrylate, ditrimethylolprop Tetra (meth) acrylate, diethylene oxide modified
  • polymerizable resin (B) epoxy (meth) acrylate, aliphatic polyisocyanate or aromatic polyisocyanate obtained by reacting a compound having a plurality of glycidyl groups with (meth) acrylic acid, and (meth) acrylate having a hydroxyl group; The urethane (meth) acrylate etc. which made this react are mentioned.
  • These polymerizable resins (B) can be used alone or in combination of two or more.
  • Examples of the epoxy (meth) acrylate include reacting (meth) acrylic acid with a glycidyl group of an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, or a cresol novolac type epoxy resin. Can be mentioned.
  • an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, or a cresol novolac type epoxy resin.
  • Examples of the aliphatic polyisocyanate used as a raw material for the urethane (meth) acrylate include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, 2-methyl-1,5.
  • -Pentane diisocyanate 3-methyl-1,5-pentane diisocyanate, dodecamethylene diisocyanate, 2-methylpentamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate , Norbornane diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated Li diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated tetramethylxylylene diisocyanate, cyclohexyl diisocyanate, and the like.
  • aromatic polyisocyanate used as the raw material for the urethane (meth) acrylate examples include tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, 1,5-naphthalene diisocyanate, tolidine diisocyanate, and p-phenylene. Diisocyanate etc. are mentioned.
  • the (meth) acrylate having a hydroxyl group used as a raw material for urethane (meth) acrylate for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, pentanediol mono (meth) Mono (meth) acrylates of dihydric alcohols such as acrylate, hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, and hydroxypivalic acid neopentyl glycol mono (meth) acrylate; trimethylolpropane di (meth) acrylate , Ethoxylated trimethylolpropane (meth) acrylate, propoxylated trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, di (meth) Mono-
  • the reaction between the aliphatic polyisocyanate or aromatic polyisocyanate described above and the (meth) acrylate having a hydroxyl group can be performed by a conventional method in the presence of a urethanization catalyst.
  • a urethanization catalyst include amines such as pyridine, pyrrole, triethylamine, diethylamine and dibutylamine; phosphines such as triphenylphosphine and triethylphosphine; dibutyltin dilaurate, octyltin trilaurate, octyltin diacetate, dibutyl Organic tin compounds such as tin diacetate and tin octoate; organometallic compounds such as zinc octoate and the like.
  • urethane (meth) acrylate resins those obtained by the reaction of an aliphatic polyisocyanate and a (meth) acrylate having a hydroxyl group are particularly preferred from the viewpoint of excellent transparency of the cured coating film and excellent curability.
  • the active energy ray-curable resin composition of the present invention refers to a composition that cures when irradiated with active energy rays.
  • the active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a photopolymerization initiator (C) is added to the active energy ray curable resin composition. If necessary, a photosensitizer is further added.
  • ionizing radiation such as electron beam, ⁇ -ray, ⁇ -ray, and ⁇ -ray is used, it cures quickly without using a photopolymerization initiator or photosensitizer. There is no.
  • Examples of the photopolymerization initiator (C) include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators.
  • Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy.
  • examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide.
  • Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 -Thioxanthone compounds such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; Aminobenzophenone compounds such as Michler-ketone, 4,4'-diethylaminobenzophenone; -2-chloro acridone, 2-ethyl anthraquinone, 9,10-phenanthrenequinone, camphorquinone, and the like.
  • These photopolymerization initiators (C) can be used alone or in combination of two or more.
  • the photosensitizer examples include amines such as aliphatic amines and aromatic amines, ureas such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiouronium-p-toluenesulfonate, and the like. And the like.
  • photopolymerization initiators and photosensitizers are preferably used in an amount of 0.01 to 20 parts by weight, more preferably 0.000 parts by weight, based on 100 parts by weight of the nonvolatile component in the active energy ray-curable resin composition. 3 to 10 parts by mass.
  • the active energy ray-curable resin composition of the present invention can be used to adjust the viscosity and refractive index, or to adjust the color tone of the coating film within the range that does not impair the effects of the present invention, depending on the purpose of use, characteristics, etc.
  • Other compounding materials for the purpose of adjusting other paint properties and coating film properties include, for example, various organic solvents, acrylic resins, phenol resins, polyester resins, urethane resins, urea resins, melamine resins, alkyd resins, epoxy resins, polyamides.
  • resins such as resin, polycarbonate resin, petroleum resin, fluororesin, PTFE (polytetrafluoroethylene), polyethylene, carbon, titanium oxide, alumina, copper, silica fine particles, etc.
  • polymerization initiator polymerization Inhibitors
  • antistatic agents antifoaming agents
  • viscosity modifiers light stabilizers, weathering stabilizers, heat stabilizers, antioxidants
  • prevention Agents slip agents, waxes, gloss modifiers, mold release agents
  • compatibilizers compatibilizers, conductivity modifiers, pigments, dyes, dispersants, dispersion stabilizers, silicone-based and hydrocarbon-based surfactants can be used in combination. .
  • the organic solvent in the above-mentioned blending component imparts the suitability for application to the base material both when used as an active energy ray-curable resin composition using the fluorine compound. Therefore, it is useful to use as a diluent solvent for viscosity adjustment.
  • the diluent solvent include aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol and isopropyl alcohol; esters such as ethyl acetate and ethyl sorbacetate; ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. Etc. These solvents can be used alone or in combination of two or more.
  • the base material examples include a plastic base material; a ceramic base material such as glass; a metal base material such as iron and aluminum, and is particularly useful for a plastic base material.
  • the plastic substrate material include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resins such as polypropylene, polyethylene, and polymethylpentene-1; and cellulose resins such as triacetyl cellulose; Examples thereof include polystyrene resin, polyamide resin, polycarbonate resin, norbornene resin, modified norbornene resin, and cyclic olefin copolymer. Moreover, what bonded together 2 or more types of base materials which consist of these resin may be used.
  • These plastic substrates may be in the form of a film or a sheet.
  • Examples of the method of applying the fluorine compound of the present invention or the active energy ray-curable resin composition using the fluorine compound to a substrate include gravure coating, roll coating, comma coating, air knife coating, kiss coating, spray coating, Examples include a transfer coat, a dip coat, a spinner coat, a wheeler coat, a brush coat, a solid coat with a silk screen, a wire bar coat, and a flow coat. Also, printing methods such as offset printing and letterpress printing may be used. Among these, gravure coating, roll coating, comma coating, air knife coating, kiss coating, wire bar coating, and flow coating are preferable because a coating film having a more constant thickness can be obtained.
  • Examples of the active energy ray for curing the fluorine compound of the present invention or the active energy ray-curable resin composition using the fluorine compound include active energy rays such as light, electron beam, and radiation.
  • Specific energy sources or curing devices include, for example, germicidal lamps, ultraviolet fluorescent lamps, carbon arc, xenon lamps, high pressure mercury lamps for copying, medium or high pressure mercury lamps, ultrahigh pressure mercury lamps, electrodeless lamps, metal halide lamps, natural light, etc.
  • an electron beam using a scanning type or curtain type electron beam accelerator include, for example, germicidal lamps, ultraviolet fluorescent lamps, carbon arc, xenon lamps, high pressure mercury lamps for copying, medium or high pressure mercury lamps, ultrahigh pressure mercury lamps, electrodeless lamps, metal halide lamps, natural light, etc.
  • an electron beam using a scanning type or curtain type electron beam accelerator include, for example, germicidal lamps, ultraviolet fluorescent lamps, carbon arc, xenon lamps, high pressure mercury lamps for copying, medium or high pressure mercury lamps
  • the active energy ray is ultraviolet light, and irradiation is preferably performed in an inert gas atmosphere such as nitrogen gas from the viewpoint of increasing the polymerization efficiency. Further, if necessary, heat may be used as an energy source, and heat treatment may be performed after curing by irradiation with active energy rays.
  • a protective film for a polarizing plate of a liquid crystal display typified by a TAC film, a fluorine compound of the present invention, or a color filter of a liquid crystal display using an active energy ray-curable resin composition using the fluorine compound as a black matrix
  • a touch panel typified by a TAC film, a fluorine compound of the present invention, or a color filter of a liquid crystal display using an active energy ray-curable resin composition using the fluorine compound as a black matrix
  • Examples include a touch panel, a cellular phone casing, a cellular phone liquid crystal display, an optical fiber clad material, an optical lens, and an optical waveguide.
  • Example 1 In a 50 ml reaction vessel, poly (perfluoroalkylene ether) having both ends represented by the following formula being carboxylic acid ethyl ester (the number of perfluoroethylene groups (m) per molecule is 8 on average, perfluoromethylene 30 g (0.02 mol) of the number of groups (n having an average of 5 groups) and 2.56 g (0.042 mol) of monoethanolamine were added, and the mixture was heated and stirred at 100 ° C. for 2 hours. After confirming that the reaction solution became transparent and uniform, the mixture was further heated and stirred for 3 hours under reduced pressure while removing the ethanol produced. After cooling to 60 ° C.
  • poly (perfluoroalkylene ether) having both ends represented by the following formula being carboxylic acid ethyl ester (the number of perfluoroethylene groups (m) per molecule is 8 on average, perfluoromethylene 30 g (0.02 mol) of the number of groups (n having an average of 5 groups)
  • MEK methyl ethyl ketone
  • Example 2 Instead of the monoethanolamine used in Example 1, 4.41 g (0.042 mol) of diethanolamine was used, the amount of MEK was 61.8 g, and the amount of 2-acryloyloxyethyl isocyanate was 13.1 g (0.093 mol). (Mole)) was carried out in the same manner as in Example 1 to obtain a MEK solution (nonvolatile content: 40% by mass) of the fluorine compound (2).
  • Example 3 In a 50 ml reaction vessel, poly (perfluoroalkylene ether) having both ends of carboxylic acid ethyl ester (average number of perfluoroethylene groups (m) per molecule is 8 and number of perfluoromethylene groups (n) is 30 g (0.02 mol) of an average of 5) and 5.08 g (0.042 mol) of tris (hydroxymethyl) aminomethane were added, and the mixture was heated and stirred at 120 ° C. for 2 hours. After confirming that the reaction solution became transparent and uniform, the mixture was further heated and stirred under reduced pressure for 3 hours. After cooling to 60 ° C. or lower, 79.3 g of MEK was added.
  • Example 4 In a 50 ml reaction vessel, poly (perfluoroalkylene ether) having both ends of carboxylic acid ethyl ester (average number of perfluoroethylene groups (m) per molecule is 8 and number of perfluoromethylene groups (n) is (Average 5) 30 g (0.02 mol) and N-methyl-D-glucamine 8.20 g (0.042 mol) and 38.4 g of dimethoxyethane (DME) were added and the mixture was refluxed for 4 hours. Stir with heating. As a result of confirming the IR spectrum of the contents, the ethyl ester absorption band 1800 cm ⁇ 1 disappeared, and an amide absorption band 1710 cm ⁇ 1 was newly confirmed.
  • poly (perfluoroalkylene ether) having both ends of carboxylic acid ethyl ester (average number of perfluoroethylene groups (m) per molecule is 8 and number of perfluoromethylene groups (n) is (Average
  • DME was distilled off under reduced pressure. Next, 45.37 g of MEK and 0.02 g of dibutyltin dilaurate were added, the internal temperature was adjusted to 60 ° C., and 29.65 g of 2-acryloyloxyethyl isocyanate was added dropwise over 1 hour while maintaining 60-70 ° C. . After completion of the dropwise addition, the mixture was further stirred at 80 ° C. for 6 hours to obtain a MEK solution of fluorine compound (4) (nonvolatile content: 40% by mass).
  • Example 5 In a 50 ml reaction vessel, poly (perfluoroalkylene ether) having both ends of carboxylic acid ethyl ester (average number of perfluoroethylene groups (m) per molecule is 8 and number of perfluoromethylene groups (n) is 30 g (0.02 mol) on average, 1.28 g (0.21 mol) monoethanolamine and 2.54 g (0.21 mol) tris (hydroxymethyl) aminomethane were added at 120 ° C. The mixture was heated and stirred for 2 hours. After confirming that the reaction solution became transparent and uniform, the mixture was further heated and stirred under reduced pressure for 3 hours. After cooling to 60 ° C. or lower, 68.5 g of MEK was added.
  • Example 6 In a 50 ml reaction vessel, poly (perfluoroalkylene ether) having both ends of carboxylic acid ethyl ester (average number of perfluoroethylene groups (m) per molecule is 8 and number of perfluoromethylene groups (n) Was 5 on average) and 30 g (0.02 mol) of diethanolamine and 0.041 mol (0.042 mol) were added and stirred at 100 ° C. for 2 hours. After confirming that the reaction solution became transparent and uniform, the mixture was further heated and stirred for 3 hours under reduced pressure while removing the ethanol produced. After cooling to 40 ° C. or lower, 200 g of ethyl acetate was added.
  • Example 7 Instead of diethanolamine used in Example 6, 5.08 g (0.042 mol) of trishydroxymethylaminomethane and 13.4 g (0.121 mol) of triethylamine were used, and the amount of acrylic acid chloride was 11.4 g (0 .126 mol) was carried out in the same manner as in Example 1 to obtain an ethyl acetate solution of fluorine compound (7) (nonvolatile content adjusted to 40% by mass).
  • An active energy ray-curable resin composition was prepared using the fluorine compounds (1) to (7) obtained in Examples 1 to 7 and the fluorine compound (8) obtained in Comparative Example 1.
  • Example 8 10 g of UV curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80 mass%; polyfunctional urethane acrylate), MEK solution of fluorine compound (1) obtained in Example 1 (nonvolatile content 40 mass) %) 0.5 g (0.2 g as fluorine compound (1)), photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd .; 1-hydroxycyclohexyl-phenyl ketone) 0.32 g and MEK 5.7 g Were mixed uniformly to obtain an active energy ray-curable resin composition (1).
  • UV curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80 mass%; polyfunctional urethane acrylate)
  • MEK solution of fluorine compound (1) obtained in Example 1 (nonvolatile content 40 mass) %) 0.5 g (0.2 g as fluorine compound (1)), photopolymerization initiator (“Ir
  • Example 9 The amount of the MEK solution (nonvolatile content 40% by mass) of the fluorine compound (1) used in Example 8 is 0.5 to 1.5 g (0.6 g as the fluorine compound (1)), and the amount of MEK is 5.7 g.
  • the active energy ray-curable resin composition (2) was obtained in the same manner as in Example 6 except that the amount was changed from 5.1 to 5.1 g.
  • Example 10 10 g of UV curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80 mass%; polyfunctional urethane acrylate), MEK solution of fluorine compound (2) obtained in Example 2 (nonvolatile content 40 mass) %) 0.5 g (0.2 g as fluorine compound (2)), photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd .; 1-hydroxycyclohexyl-phenyl ketone) 0.32 g and MEK 5.7 g Were mixed uniformly to obtain an active energy ray-curable resin composition (3).
  • UV curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80 mass%; polyfunctional urethane acrylate)
  • MEK solution of fluorine compound (2) obtained in Example 2 (nonvolatile content 40 mass) %) 0.5 g (0.2 g as fluorine compound (2)), photopolymerization initiator (“Ir
  • Example 11 The amount of the MEK solution (nonvolatile content 40% by mass) of the fluorine compound (2) used in Example 8 is 0.5 to 1.5 g (0.6 g as the fluorine compound (2)), and the amount of MEK is 5.7 g.
  • the active energy ray-curable resin composition (4) was obtained in the same manner as in Example 8, except that the amount was changed from 5.1 to 5.1 g.
  • Example 12 10 g of UV curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80 mass%; polyfunctional urethane acrylate), MEK solution of fluorine compound (3) obtained in Example 3 (nonvolatile content 40 mass) %) 0.5 g (0.2 g as fluorine compound (3)), photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd .; 1-hydroxycyclohexyl-phenyl ketone) 0.32 g and MEK 5.7 g Were mixed uniformly to obtain an active energy ray-curable resin composition (5).
  • UV curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80 mass%; polyfunctional urethane acrylate), MEK solution of fluorine compound (3) obtained in Example 3 (nonvolatile content 40 mass) %) 0.5 g (0.2 g as fluorine compound (3)), photopolymerization initiator (“Irg
  • Example 13 The amount of the MEK solution (nonvolatile content 40% by mass) of the fluorine compound (3) used in Example 12 was 0.5 to 1.5 g (0.6 g as the fluorine compound (3)), and the amount of MEK was 5.7 g.
  • the active energy ray-curable resin composition (6) was obtained in the same manner as in Example 10 except that the amount was changed from 5.1 to 5.1 g.
  • Example 14 10 g of UV curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80 mass%; polyfunctional urethane acrylate), MEK solution of fluorine compound (4) obtained in Example 4 (nonvolatile content 40 mass) %) 0.5 g (0.2 g as fluorine compound (4)), photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd .; 1-hydroxycyclohexyl-phenylketone) 0.32 g and MEK 5.7 g Were mixed uniformly to obtain an active energy ray-curable resin composition (7).
  • UV curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80 mass%; polyfunctional urethane acrylate), MEK solution of fluorine compound (4) obtained in Example 4 (nonvolatile content 40 mass) %) 0.5 g (0.2 g as fluorine compound (4)), photopolymerization initiator (“
  • Example 15 The amount of the MEK solution (nonvolatile content: 40% by mass) of the fluorine compound (4) used in Example 14 was 0.5 to 1.5 g (0.6 g as the fluorine compound (4)), and the amount of MEK was 5.7 g.
  • the active energy ray-curable resin composition (8) was obtained in the same manner as in Example 12 except that the amount was changed from 5.1 to 5.1 g.
  • Example 16 Ultraviolet curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80% by mass; polyfunctional urethane acrylate) 10 g, MEK solution of fluorine compound (5) obtained in Example 5 (nonvolatile content 40% by mass) %) 0.5 g (0.2 g as fluorine compound (5)), photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd .; 1-hydroxycyclohexyl-phenylketone) 0.32 g and MEK 5.7 g Were mixed uniformly to obtain an active energy ray-curable resin composition (9).
  • Example 17 The amount of the MEK solution (nonvolatile content 40% by mass) of the fluorine compound (5) used in Example 16 was 0.5 to 1.5 g (0.6 g as the fluorine compound (5)), and the amount of MEK was 5.7 g.
  • the active energy ray-curable resin composition (10) was obtained in the same manner as in Example 14 except that the amount was changed from 5.1 to 5.1 g.
  • Example 18 MEK solution of fluorine compound (3) obtained in Example 3 (nonvolatile content 40% by mass) 20 g (8 g as fluorine compound (3)) and photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd.) ; 1-hydroxycyclohexyl-phenyl ketone) 0.32 g was uniformly mixed to obtain a resin solution of the fluorine compound (3) alone.
  • photopolymerization initiator Irgacure 184 manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Example 19 UV-curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80% by mass; polyfunctional urethane acrylate) 10 g, ethyl acetate solution of the fluorine compound (6) obtained in Example 6 (nonvolatile content 40) 0.2 g (0.08 g as fluorine compound (6)), photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals; 1-hydroxycyclohexyl-phenylketone) 0.32 g and MEK. 88 g was uniformly mixed to obtain an active energy ray-curable resin composition (11).
  • Example 20 The amount of the fluorine compound (6) in ethyl acetate solution (nonvolatile content: 40% by mass) used in Example 19 was 0.2 to 0.6 g (0.24 g as the fluorine compound (6)), and the amount of MEK was 5.
  • An active energy ray-curable resin composition (12) was obtained in the same manner as in Example 3 except that the amount was changed from 88 g to 5.71 g.
  • UV-curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80% by mass; polyfunctional urethane acrylate) 10 g, ethyl acetate solution of the fluorine compound (7) obtained in Example 7 (nonvolatile content 40) % By weight) 0.2 g (0.008 g as the fluorine compound (7)), photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd .; 1-hydroxycyclohexyl-phenyl ketone) 0.32 g and MEK5. 88 g was uniformly mixed to obtain an active energy ray-curable resin composition (13).
  • Example 22 The amount of the fluorine compound (7) in ethyl acetate solution (nonvolatile content 40% by mass) used in Example 21 was 0.2 to 0.6 g (0.24 g as the fluorine compound (7)), and the amount of ethyl acetate was 5
  • An active energy ray-curable resin composition (14) was obtained in the same manner as in Example 21 except that the amount was changed from 0.88 g to 5.71 g.
  • Example 23 20 g of an ethyl acetate solution (nonvolatile content: 40% by mass) of the fluorine compound (7) obtained in Example 7 (8 g as the fluorine compound (7)) and a photopolymerization initiator (“Irgacure 184 manufactured by Ciba Specialty Chemicals Co., Ltd.) ”; 1-hydroxycyclohexyl-phenyl ketone) 0.32 g was uniformly mixed to obtain a resin solution of the fluorine compound (7) alone.
  • a photopolymerization initiator (“Irgacure 184 manufactured by Ciba Specialty Chemicals Co., Ltd.) ”; 1-hydroxycyclohexyl-phenyl ketone) 0.32 g was uniformly mixed to obtain a resin solution of the fluorine compound (7) alone.
  • Comparative Example 3 The amount of the MEK solution (nonvolatile content 40% by mass) of the fluorine compound (8) used in Comparative Example 2 is 0.5 to 1.5 g (0.6 g as the fluorine compound (8)), and the amount of MEK is 5.7 g.
  • the active energy ray-curable resin composition (16) was obtained in the same manner as in Comparative Example 2, except that the amount was changed from 5.1 to 5.1 g.
  • UV curable resin (“Unidic 17-806” manufactured by DIC Corporation, nonvolatile content 80% by mass; polyfunctional urethane acrylate), photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd.); 1- Hydroxycyclohexyl-phenylketone) (0.32 g) and MEK (6.0 g) were uniformly mixed to obtain an active energy ray-curable resin composition (17).
  • UV irradiation device GS-YUASA high pressure mercury lamp, 120 W
  • UV irradiation was performed (in an air atmosphere, a dose of 5 kJ / m 2 ) to obtain a cured coating film.
  • C Oil-based ink is repelled linearly (the line width is 50% or more and less than 90% of the width of the tip of the felt pen).
  • D The oil-based ink is repelled (the line width is 90% or more and less than 100% of the width of the tip of the felt pen).
  • E Does not repel oil-based ink.
  • the finger is pressed against the surface of the cured coating film of the active energy ray-curable resin composition obtained above, and the adhesion state of the fingerprint is observed with an optical microscope (magnification 40 times) and adhered to the area of the pressed finger.
  • the area ratio of the obtained fingerprint was evaluated according to the following criteria.
  • C The area of the attached fingerprint is 60% or more and less than 95%.
  • D The area of the attached fingerprint is 95% or more.
  • Fingerprint wiping test Using the sample with the fingerprint attached in the above fingerprint adhesion test, wipe off the fingerprint stain with a wiping cloth (“JK Wiper 150-S” manufactured by Nippon Paper Crecia Co., Ltd.) until the fingerprint stain cannot be visually confirmed. The number of times was measured. In addition, in this test, it becomes an evaluation result that fingerprint wiping property is low, so that there are many wiping frequency
  • Tables 1 to 3 show the compositions of the active energy ray-curable resin compositions obtained in Examples 8 to 23 and Comparative Examples 2 to 4 and the evaluation results of these cured coating films.
  • Table 2 shows the evaluation results (Examples 18 and 23) of the cured coating films of the fluorine compounds (3) and (7) alone.
  • “A” of “compatibility” in Examples 18 and 23 indicates that there is no phase separation by the fluorine compound alone.
  • “-” in “Compatibility” of Comparative Example 4 represents no evaluation.
  • Comparative Examples 2 and 3 use a fluorine compound obtained by reacting poly (perfluoroalkylene ether) having a hydroxyl group at both ends, a diisocyanate and an acrylate having a hydroxyl group.
  • a compound having only a poly (perfluoroalkylene ether) chain is always included, the compatibility with other ultraviolet curable resins is low, and there is a problem that the resin composition becomes cloudy when the amount added is large.
  • oil-based ink and fingerprint adhesion prevention are not sufficient, and particularly fingerprint adhesion cannot be sufficiently prevented, and satisfactory antifouling properties are not obtained.
  • the dirt wiping property was not sufficient.
  • Comparative Example 4 was an example in which no fluorine compound was used, but it was found that oil-based ink and fingerprints adhered and did not have antifouling properties. Further, the wiping property of dirt was very low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polyethers (AREA)

Abstract

 下記一般式(1)で表されるフッ素化合物によって、樹脂等への相溶性に優れ、その硬化塗膜が耐汚染性に優れるフッ素化合物及び該化合物を用いた活性エネルギー線硬化型樹脂組成物を提供する。(上記一般式(1)中、Xは、ポリ(パーフルオロアルキレンエーテル)鎖を表し、R~Rは、各々独立して、水素原子、アルキル基、下記一般式(2)又は(3)を表す。ただし、R及びRのうち、少なくとも1つは、下記一般式(2)又は(3)であり、R及びRのうち、少なくとも1つは、下記一般式(2)又は(3)である。)

Description

フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物
 本発明は、耐汚染性に優れ、かつ樹脂等への相溶性、塗膜平滑性に優れるフッ素化合物に関し、当該フッ素化合物を用いた活性エネルギー線硬化型樹脂組成物に関する。
 従来、活性エネルギー線硬化型樹脂は、プラスチック表面に塗布・硬化するだけで、容易に表面硬度、耐擦傷性等を付与できるため、プラスチック用ハードコート材等に用いられている。また、このようなハードコート材には、単に塗膜硬度あるいは耐擦傷性の向上に留まらず、さらに汚染物質の汚れ付着に対する耐汚染性、埃付着防止や静電気障害の防止を目的とした帯電防止性などの機能が求められている。
 この中で耐汚染性向上を目的として耐汚染性に有効なポリ(パーフルオロアルキレンエーテル)と、耐汚染性の持続性向上を目的として重合性基とを分子内に導入したフッ素化合物を含有する活性エネルギー線硬化型樹脂組成物が提案されている(例えば、特許文献1及び2を参照。)。特許文献1では、フッ素化合物として、ポリイソシアネートに、水酸基を有するポリ(パーフルオロアルキレンエーテル)、水酸基及びアクロイル基を有する単量体等を反応させたポリ(パーフルオロアルキレンエーテル)鎖を有するウレタンアクリレートが提案されている。
 また、特許文献2では、フッ素化合物として、ジイソシアネートの3量体であるトリイソシアネートに、水酸基を有するポリ(パーフルオロアルキレンエーテル)と、水酸基及びアクロイル基を有する単量体とを反応させたポリ(パーフルオロアルキレンエーテル)鎖を有するウレタンアクリレートが提案されている。
 しかしながら、前記特許文献1、2記載のポリ(パーフルオロアルキレンエーテル)鎖を有するウレタンアクリレートは製造上、トリイソシアネート化合物に対して、水酸基を有するポリ(パーフルオロアルキレンエーテル)と水酸基を有するアクリル系単量体とを適切な割合で反応させることが困難であることから、アクロイル基のみを有する化合物や、ポリ(パーフルオロアルキレンエーテル)鎖のみを有する化合物が副生成物として生じ、分子内にポリ(パーフルオロアルキレンエーテル)鎖とアクロイル基の両方を有する化合物のみを得ることができない問題があった。
 また、ポリ(パーフルオロアルキレンエーテル)鎖のみを有する化合物は高分子量となることが多く、活性エネルギー線硬化型樹脂組成物に用いた場合、他の成分との相溶性が低いため、当該活性エネルギー線硬化型樹脂組成物を塗膜とした場合に白濁するなどの問題もあった。さらに、このようなポリ(パーフルオロアルキレンエーテル)鎖を有するウレタンアクリレートは、ポリ(パーフルオロアルキレンエーテル)鎖のみ有する化合物とアクリロイル基のみ有する化合物との相溶性が低く、相分離を生じる等の問題も有していた。
特開2001-019736号公報 国際公開WO2003/002628号公報
 本発明の課題は、樹脂等への相溶性に優れ、硬化塗膜とした場合、その硬化塗膜が耐汚染性に優れるフッ素化合物及びその製造方法を提供することである。さらには、当該フッ素化合物を用いた耐汚染性に優れた硬化塗膜が得られる活性エネルギー線硬化型樹脂組成物を提供することである。
 本発明者らは、このような問題に鑑み、鋭意研究を行った結果、ポリ(パーフルオロアルキレンエーテル)鎖を有し、かつ両末端がカルボキシル基又はカルボン酸アルキルエステルである化合物と、水酸基又はチオール基を有するアルキルアミンとを反応させた後、さらにイソシアネート基を有する(メタ)アクリレート、又は(メタ)アクリル酸、(メタ)アクリル酸ハライドもしくは(メタ)アクリル酸無水物を反応させることにより得られるフッ素化合物が、樹脂等への相溶性に優れ、かつ当該フッ素化合物、あるいは当該フッ素化合物を用いた活性エネルギー線硬化型樹脂組成物の硬化塗膜は耐汚染性に優れることを見出し、本発明を完成させた。
 すなわち、本発明は、下記一般式(1)で表されるフッ素化合物を提供するものである。
Figure JPOXMLDOC01-appb-C000004
(上記一般式(1)中、Xは、ポリ(パーフルオロアルキレンエーテル)鎖を表し、R~Rは、各々独立して、水素原子、アルキル基、下記一般式(2)又は(3)を表す。ただし、R及びRのうち、少なくとも1つは、下記一般式(2)又は(3)であり、R及びRのうち、少なくとも1つは、下記一般式(2)又は(3)である。)
Figure JPOXMLDOC01-appb-C000005
(上記一般式(2)中、Xは、直鎖又は分岐の炭化水素基を表し、Xは、酸素原子又は硫黄原子を表し、Xは、直鎖又は分岐のアルキレン基を表し、Rは、水素原子又はメチル基を表す。また、pは、1~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000006
(上記一般式(3)中、Xは、直鎖又は分岐の炭化水素基を表し、Xは、酸素原子又は硫黄原子を表し、Rは、水素原子又はメチル基を表す。また、pは、1~5の整数を表す。)
 さらに、本発明は、上記フッ素化合物に適した製造方法、上記フッ素化合物を含有する活性エネルギー線硬化型樹脂組成物、当該フッ素化合物、あるいは当該フッ素化合物を用いた活性エネルギー線硬化型樹脂組成物の硬化塗膜を有する物品を提供するものである。
 本発明のフッ素化合物は、樹脂等への相溶性に優れ、その硬化塗膜は耐汚染性に優れ、かつフッ素原子の含有量が高いため、単独で用いると耐汚染性に優れた低屈折率の硬化塗膜を得ることができる。また、活性エネルギー線硬化型樹脂に添加剤として本発明のフッ素化合物を加えると、耐汚染性に優れるハードコート材等を得ることができる。
 したがって、本発明のフッ素化合物は、このような特性が要求される物品を汚染、傷から守る保護フィルム、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイに用いられる反射防止フィルム、防眩フィルムなどに有用である。
 また、TACフィルムに代表される液晶ディスプレイの偏光板用保護フィルムのコート材;液晶ディスプレイのカラーフィルターに用いられるブラックマトリクス用の塗料、インキ又はブラックレジスト;タッチパネル、携帯電話の筐体、携帯電話の液晶ディスプレイなどのハードコート材;光ファイバクラッド材、光学レンズ、光導波路などの光学部材;液晶封止材、各種光学用シール材、光学用接着剤などに幅広く利用することが可能である。
実施例1で得られたフッ素化合物(1)のIRスペクトルである。 実施例2で得られたフッ素化合物(2)のIRスペクトルである。 実施例3で得られたフッ素化合物(3)のIRスペクトルである。 実施例4で得られたフッ素化合物(4)のIRスペクトルである。 実施例5で得られたフッ素化合物(5)のIRスペクトルである。 実施例6で得られたフッ素化合物(6)のIRスペクトルである。 実施例7で得られたフッ素化合物(7)のIRスペクトルである。
 本発明のフッ素化合物は、下記一般式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000007
(上記一般式(1)中、Xは、ポリ(パーフルオロアルキレンエーテル)鎖を表し、R~Rは、各々独立して、水素原子、アルキル基、下記一般式(2)又は(3)を表す。ただし、R及びRのうち、少なくとも1つは、下記一般式(2)又は(3)であり、R及びRのうち、少なくとも1つは、下記一般式(2)又は(3)である。)
Figure JPOXMLDOC01-appb-C000008
(上記一般式(2)中、Xは、直鎖又は分岐の炭化水素基を表し、Xは、酸素原子又は硫黄原子を表し、Xは、直鎖又は分岐のアルキレン基を表し、Rは、水素原子又はメチル基を表す。また、pは、1~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000009
(上記一般式(3)中、Xは、直鎖又は分岐の炭化水素基を表し、Xは、酸素原子又は硫黄原子を表し、Rは、水素原子又はメチル基を表す。また、pは、1~5の整数を表す。)
 ここで、一般式(1)中のXは、ポリ(パーフルオロアルキレンエーテル)鎖を表すが、具体的には下記一般式(4)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000010
(上記一般式(4)中、k、m及びnは、それぞれ独立して0~50の整数を表す。ただし、k、m及びnがすべて0の場合はない。)
 上記一般式(4)は、パーフルオロアルキレンとして、パーフルオロプロピレン、パーフルオロエチレン及びパーフルオロメチレンの構造単位を有するが、パーフルオロプロピレンの構造単位が連続したポリ(パーフルオロプロピレンエーテル)鎖のブロック、パーフルオロエチレンの構造単位が連続したポリ(パーフルオロエチレンエーテル)鎖のブロック、パーフルオロメチレンの構造単位が連続したポリ(パーフルオロエチレンエーテル)鎖のブロックが結合したものでも、パーフルオロプロピレンの構造単位、パーフルオロエチレンの構造単位、パーフルオロメチレンの構造単位がランダムに結合したものでもよい。
 また、上記一般式(4)中のk、m及びnは、それぞれ独立して0~50の整数を表すが、より好ましくは0~20の整数である。ただし、k、m及びnがすべて0の場合はない。
 上記一般式(4)の分子量は、数平均分子量(ポリスチレン換算)が800~3,000、特に1,000~2,000の範囲であることが好ましい。また、重量平均分子量(ポリスチレン換算)が1,500~20,000、特に2,000~5,000の範囲であることが好ましい。したがって、上記一般式(4)中のk、mおよびnは、これらの分子量となる整数であることが好ましい。この分子量の範囲であれば、活性エネルギー線硬化型樹脂組成物に用いた場合、塗膜硬度、硬化性、相溶性等が良好となるので好ましい。
 一般式(2)又は(3)中のXは、直鎖又は分岐の炭化水素基を表すが、pの数により、炭化水素基は選択される。pが1の場合は、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。これらは、置換基を有していても構わない。
 また、pが2又は3の場合は、例えば、下記一般式(5)で表される炭化水素基等が挙げられる。ここで、pが2の場合は、sは1であり、tは2である。また、pが3の場合は、sは0であり、tは3である。また、Rは、炭素原子数1~4のアルキル基である。なお、一般式(5)中の「*」は、一般式(1)中の窒素原子と結合する部位を表し、残りの結合部位は、一般式(2)又は(3)中のXと結合する部位を表す。
Figure JPOXMLDOC01-appb-C000011
 さらに、pが4以上の場合は、例えば、下記一般式(6)で表される炭化水素基等が挙げられる。ここで、qは3以上の整数を表し、p-1である。なお、一般式(6)中の「*」は、一般式(1)中の窒素原子と結合する部位を表し、残りの結合部位は、一般式(2)又は(3)中のXと結合する部位を表す。
Figure JPOXMLDOC01-appb-C000012
 前記一般式(2)又は(3)中のXは、酸素原子又は硫黄原子である。
 前記一般式(2)中のXは、直鎖又は分岐のアルキレン基を表すが、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、下記式(7)、式(8)等が挙げられる。これらは、置換基を有していても構わない。
Figure JPOXMLDOC01-appb-C000013
 前記一般式(2)又は(3)中のRは、水素原子又はメチル基であるが、一般にラジカル重合においては水素原子の方が、ラジカル重合性が優れ、硬化性が高いので好ましい。
 前記一般式(1)で表される本発明のフッ素化合物の製造方法としては、一般式(1)中のR~Rのいずれか1つが前記一般式(2)である場合と、前記一般式(3)である場合とで異なる。
 本発明のフッ素化合物である一般式(1)中のR~Rのいずれか1つが前記一般式(2)である場合の製造方法としては、両末端がカルボキシル基又はカルボン酸アルキルエステルであるポリ(パーフルオロアルキレンエーテル)と、水酸基又はチオール基を有するアルキルアミンとを反応させる第一工程と、第一工程で得られた反応物にイソシアネート基を有する(メタ)アクリレートを反応させる第二工程を経る方法が挙げられる。
 前記水酸基又はチオール基を有するアルキルアミンは、1級又は2級のアミンであり、例えば、モノエタノールアミン、2-メルカプトエタノール、2-アミノ-1-エタノール、6-アミノ-1-ヘキサノール、セリノール、トリス(ヒロドキシメチル)メチルアミン、ビス-ホモトリス、1-アミノ-1-デオキシ-D-ソルビトール等の1級アミン;N-(メチルアミノ)エタノール、2-(t-ブチルアミノ)エタノール、ジエタノールアミン、ジイソプロパノールアミン、N-メチル-D-グルカミン、ジソルビチルアミン、1-アミノ-2-メチル-プロパンチオール、3-ピロリジノール、2-ピロリジンメタノール等の2級アミンが挙げられる。
 前記イソシアネート基を有する(メタ)アクリレートとしては、2-アクリロイルオキシエチルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、1,1-ビス(メタクリロイルオキシメチル)エチルイソシアネート、2-(アクリロイルエトキシ)-エチルイソシアネート、2-(メタクリロイルエトキシ)-エチルイソシアネート等が挙げられる。
 上記第一工程での反応条件としては、反応温度80~180℃、反応時間0.5~5.0時間とするのが好ましい。また、上記第二工程での反応条件としては、第一工程で得られた反応物にイソシアネート基を有する(メタ)アクリレートを40~130℃に保ちながら滴下して加え、その後、反応温度60~120℃、反応時間1~10時間反応させるのが好ましい。
 第一工程では、無溶媒でも反応可能であるが、用いる水酸基又はチオール基を有するアルキルアミンが反応温度においても融解して液体にならない場合、反応を円滑に進行させるため、前記アルキルアミンを溶解する溶媒を使用することが有効である。溶媒としては、例えば、酢酸エチル、酢酸ブチル等のエステル系溶媒;ジイソプロピルエーテル、ジメトキシエタン等のエーテル系溶媒;ジクロロメタン、ジクロロエタンなどのハロゲン系溶媒;トルエン、キシレン等の芳香族系溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒などが挙げられる。これらの中でも、エーテル系溶媒、アルコール系溶媒が好ましい。
 上記の第一工程では、反応の進行ともに、両末端がカルボキシル基であるポリ(パーフルオロアルキレンエーテル)を使用した場合には水が生成し、両末端がカルボン酸アルキルエステルであるポリ(パーフルオロアルキレンエーテル)を使用した場合はアルコールが生成する。したがって、減圧条件下で水又はアルコールを除去しながら反応を行うと、反応を円滑に進行するので好ましい。また、水を除去する方法としてはトルエン等を使用した共沸脱水も適用できる。
 さらに、第一工程は、両末端がカルボン酸アルキルエステル基であるポリ(パーフルオロアルキレンエーテル)と、水酸基又はチオール基を有するアルキルアミンとを反応させ、生成するアルコールを減圧条件下で除去しながら行う方法が、より反応が円滑に進行するため好ましい。
 一方、第二工程では、反応は無溶媒でも、溶媒を使用しても可能である。溶媒としては、例えば、酢酸エチル、酢酸ブチル等のエステル系溶媒;ジイソプロピルエーテル、ジメトキシエタン等のエーテル系溶媒;ジクロロメタン、ジクロロエタンなどのハロゲン系溶媒;トルエン、キシレン等の芳香族系溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤;ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒などが挙げられる。これらの中でも、エステル系溶剤;ケトン系溶剤;エーテル系溶媒が好ましい。
 また、第二工程で反応を促進させるため、ウレタン化触媒の存在下で反応させることが好ましい。ウレタン化触媒としては、例えば、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン等のアミン類;トリフェニルフォスフィン、トリエチルフォスフィン等のフォスフィン類;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクタン酸錫等の有機錫化合物;オクタン酸亜鉛等の有機金属化合物などが挙げられる。また、有機錫化合物とアミン類を併用すると、ウレタン化反応が円滑に進行するため好ましい。
 次に、本発明のフッ素化合物である一般式(1)中のR~Rのいずれか1つが前記一般式(3)である場合の製造方法としては、ポリ(パーフルオロアルキレンエーテル)鎖を有し、かつ両末端がカルボキシル基又はカルボン酸アルキルエステルである化合物と、水酸基又はチオール基を有するアルキルアミンとを反応させる第一工程と、第一工程で得られた反応物に(メタ)アクリル酸、(メタ)アクリル酸ハライド又は(メタ)アクリル酸無水物を反応させる第二工程を経る方法が挙げられる。
 前記水酸基又はチオール基を有するアルキルアミンは、上記したものと同様のものを用いることができる。
 上記第一工程での反応条件としては、上記した方法と同様の方法を用いることができる
 第二工程は、第一工程で得られた反応物に(メタ)アクリル酸又は(メタ)アクリル酸ハライド又は(メタ)アクリル酸無水物を反応させる第二工程を経る方法が挙げられる。
 (メタ)アクリル酸を脱水縮合する場合、トルエン、キシレン等の芳香族系溶媒;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤などが挙げられる。反応は酸触媒を使用して、還流下、共沸脱水することで目的の化合物が得られる。酸触媒としては、メタンスルホン酸、p-トルエンスルホン酸、クレゾールスルホン酸、陽イオン交換樹脂等が挙げられる。
 (メタ)アクリル酸ハライドを反応させる場合、反応は無溶媒でも、溶媒を使用しても可能である。溶媒を使用する場合、溶媒としてはトルエン、キシレン等の芳香族系溶媒;メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジイソプロピルエーテル、ジメトキシエタン等のエーテル系溶媒;ジクロロメタン、ジクロロエタン等のハロゲン系溶媒などが挙げられる。これらの中でも、エステル系溶剤、ケトン系溶剤及びエーテル系溶媒が好ましい。また、反応で生成するハロゲン化水素を中和する目的で、トリエチルアミンなどのアミン類が使用される。反応温度10~60℃、反応時間0.5~5時間とするのが好ましい。反応終了後、濾過又は水洗し、アミン塩を除去することで目的の化合物が得られる。
 (メタ)アクリル酸無水物を反応させる場合、溶媒としてはトルエン、キシレン等の芳香族系溶媒;メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジイソプロピルエーテル、ジメトキシエタン等のエーテル系溶媒;ジクロロメタン、ジクロロエタン等のハロゲン系溶媒などが挙げられる。これらの中でも、エステル系溶剤、ケトン系溶剤及びエーテル系溶媒が好ましい。反応は酸触媒により促進される。酸触媒として硫酸などの鉱酸、メタンスルホン酸、p-トルエンスルホン酸、クレゾールスルホン酸などが挙げられる。反応温度20~100℃、反応時間0.5~8.0時間とするのが好ましい。反応終了後、副成する(メタ)アクリル酸を苛性水などで中和、除去することで目的の化合物が得られる。
 本発明のフッ素化合物を添加剤として、活性エネルギー線硬化型樹脂組成物に用いる場合、その配合量は、樹脂組成物中の不揮発分100質量部中に0.01~10.0質量部であることが好ましい。特に、被添加される樹脂組成物本来の塗膜硬度などの物性を損なわず、かつ効率的に塗膜表面を改質できることから、0.05~3.0質量部であることが好ましい。
 上記活性エネルギー線硬化型樹脂組成物の主成分としては、重合性モノマー(A)、重合性樹脂(B)が挙げられる。なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいう。
 前記重合性モノマー(A)のうち単官能モノマーとしては、例えば、N-ビニルカプロラクタム、N-ビニルピロリドン、N-ビニルカルバゾール、ビニルピリジン、アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、t-オクチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、アクリロイルモルホリン、ラウリル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチレンジエチレングリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、メチルトリエチレンジグリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等が挙げられる。これらの単官能モノマーは、単独で用いることも、2種以上を併用することもできる。
 前記重合性モノマー(A)のうち多官能モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリエチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリプロピレンオキシド変性グリセリントリ(メタ)アクリレート、トリエチレンオキシド変性グリセリントリ(メタ)アクリレート、トリエピクロロヒドリン変性グリセリントリ(メタ)アクリレート、1,3,5-トリアクロイルヘキサヒドロ-s-トリアジン、トリス(アクリロイロオキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、テトラエチレンオキシド変性ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレンオキシド変性ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート、アルキル変性ジペンタエリスリトールテトラアクリレート、ε-カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサエチレンオキサイド変性ソルビトールヘキサ(メタ)アクリレート、ヘキサキス(メタクリロイルオキシエチル)シクロトリホスファゼン等が挙げられる。これらの多官能モノマーは、単独で用いることも、2種以上を併用することもできる。
 前記重合性樹脂(B)としては、グリシジル基を複数有する化合物に(メタ)アクリル酸を反応させたエポキシ(メタ)アクリレート、脂肪族ポリイソシアネート又は芳香族ポリイソシアネートと水酸基を有する(メタ)アクリレートとを反応させたウレタン(メタ)アクリレート等が挙げられる。これらの重合性樹脂(B)は、単独で用いることも、2種以上を併用することもできる。
 前記エポキシ(メタ)アクリレートとしては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のエポキシ樹脂のグリシジル基に(メタ)アクリル酸を反応させたものが挙げられる。
 前記ウレタン(メタ)アクリレートの原料として用いる脂肪族ポリイソシアネートとしては、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、2-メチル-1,5-ペンタンジイソシアネート、3-メチル-1,5-ペンタンジイソシアネート、ドデカメチレンジイソシアネート、2-メチルペンタメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネート、シクロヘキシルジイソシアネート等が挙げられる。
 また、前記ウレタン(メタ)アクリレートの原料として用いる芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート、p-フェニレンジイソシアネート等が挙げられる。
 一方、ウレタン(メタ)アクリレートの原料として用いる水酸基を有する(メタ)アクリレートとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ペンタンジオールモノ(メタ)アクリレート、ヘキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレート等の2価アルコールのモノ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパン(メタ)アクリレート、プロポキシ化トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジ(メタ)アクリロイルオキシエチル-ヒドロキシエチル-イソシアヌレート等の3価のアルコールのモノ又はジ(メタ)アクリレート、あるいは、これらのアルコール性水酸基の一部をε-カプロラクトンで変性した水酸基を有するモノ及びジ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の1分子中に1つの水酸基と3つ以上の(メタ)アクリロイル基を有する化合物、あるいは、この化合物の水酸基をε-カプロラクトンで変性した多官能(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリオキシブチレン-ポリオキシプロピレンモノ(メタ)アクリレート等のブロック構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート等のランダム構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物等が挙げられる。
 上記した脂肪族ポリイソシアネート又は芳香族ポリイソシアネートと水酸基を有する(メタ)アクリレートとの反応は、ウレタン化触媒の存在下、常法により行うことができる。ウレタン化触媒としては、例えば、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン等のアミン類;トリフェニルフォスフィン、トリエチルフォスフィン等のフォスフィン類;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクタン酸錫等の有機錫化合物;オクタン酸亜鉛等の有機金属化合物などが挙げられる。
 これらのウレタン(メタ)アクリレート樹脂の中でも、特に脂肪族ポリイソシアネートと水酸基を有する(メタ)アクリレートとの反応によって得られるものが、硬化塗膜の透明性に優れ、硬化性に優れる点から好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は、活性エネルギー線を照射すると硬化する組成物をいう。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線のような電離放射線をいう。この活性エネルギー線として紫外線を用いる場合には、活性エネルギー線硬化型樹脂組成物中に光重合開始剤(C)を添加する。また、必要であればさらに光増感剤を添加する。一方、電子線、α線、β線、γ線のような電離放射線を用いる場合には、光重合開始剤や光増感剤を用いなくても速やかに硬化するので、特にこれらを添加する必要はない。
 前記光重合開始剤(C)としては、分子内開裂型光重合開始剤及び水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。
 一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン等が挙げられる。これらの光重合開始剤(C)は、単独で用いることも、2種以上を併用することもできる。
 また、前記光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン類、o-トリルチオ尿素等の尿素類、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物等が挙げられる。
 これらの光重合開始剤及び光増感剤の使用量は、活性エネルギー線硬化型樹脂組成物中の不揮発成分100質量部に対し、各々0.01~20質量部が好ましく、より好ましくは0.3~10質量部である。
 さらに、本発明の活性エネルギー線硬化型樹脂組成物は、用途、特性等の目的に応じ、本発明の効果を損なわない範囲で、粘度や屈折率の調整、あるいは、塗膜の色調の調整やその他の塗料性状や塗膜物性の調整を目的に各種の配合材料として、例えば、各種有機溶剤、アクリル樹脂、フェノール樹脂、ポリエステル樹脂、ウレタン樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリカーボネート樹脂、石油樹脂、フッ素樹脂等の各種樹脂、PTFE(ポリテトラフルオロエチレン)、ポリエチレン、カーボン、酸化チタン、アルミナ、銅、シリカ微粒子等の各種の有機又は無機粒子、重合開始剤、重合禁止剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、酸化防止剤、防錆剤、スリップ剤、ワックス、艶調整剤、離型剤、相溶化剤、導電調整剤、顔料、染料、分散剤、分散安定剤、シリコーン系、炭化水素系界面活性剤等を併用することができる。
 上記の配合成分中の有機溶剤は、本発明のフッ素化合物を単独で用いる場合、当該フッ素化合物を用いた活性エネルギー線硬化型樹脂組成物として用いる場合ともに、基材への塗工適性を付与するため、粘度調整用の希釈溶剤として用いることが有用である。希釈溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素;メタノール、エタノール、イソプロピルアルコール等のアルコール類;酢酸エチル、エチルソルブアセテート等のエステル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類などが挙げられる。これらの溶剤は、単独で用いることも、2種以上を併用することもできる。
 この基材としては、例えば、プラスチック基材;ガラス等のセラミック基材;鉄、アルミニウム等の金属基材等が挙げられ、特にプラスチック基材に有用である。プラスチック基材の材質としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリプロピレン、ポリエチレン、ポリメチルペンテン-1等のポリオレフィン系樹脂;トリアセチルセルロース等のセルロース系樹脂;ポリスチレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ノルボルネン系樹脂、変性ノルボルネン系樹脂、環状オレフィン共重合体等が挙げられる。また、これらの樹脂からなる基材を2種以上貼り合わせたものであってもよい。これらのプラスチック基材は、フィルム状であってもシート状であってもよい。
 本発明のフッ素化合物、あるいは当該フッ素化合物を用いた活性エネルギー線硬化型樹脂組成物を基材に塗布する方法としては、例えば、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、スプレーコート、かけ渡しコート、ディップコート、スピンナーコート、ホイーラーコート、刷毛塗り、シルクスクリーンによるベタコート、ワイヤーバーコート、フローコート等が挙げられる。また、オフセット印刷、活版印刷等の印刷方式でもよい。これらの中でも、グラビアコート、ロールコート、コンマコート、エアナイフコート、キスコート、ワイヤーバーコート、フローコートは、より厚みが一定な塗膜が得られるため好ましい。
 本発明のフッ素化合物、あるいは当該フッ素化合物を用いた活性エネルギー線硬化型樹脂組成物を硬化させる活性エネルギー線としては、光、電子線、放射線等の活性エネルギー線が挙げられる。具体的なエネルギー源又は硬化装置としては、例えば殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧または高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、または走査型、カーテン型電子線加速器による電子線等が挙げられる。
 これらの中でも特に活性エネルギー線が紫外線であることが好ましく、重合効率化の点で窒素ガス等の不活性ガス雰囲気下で照射することが好ましい。また、必要に応じて熱をエネルギー源として併用し、活性エネルギー線を照射して硬化した後、熱処理を行ってもよい。
 本発明のフッ素化合物、あるいは当該フッ素化合物を用いた活性エネルギー線硬化型樹脂組成物の硬化塗膜を有する物品としては、例えば、物品を汚染、傷から守る保護フィルム;液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイに用いられる反射防止フィルム、防眩フィルムなどが挙げられる。
 また、TACフィルムに代表される液晶ディスプレイの偏光板用保護フィルム、本発明のフッ素化合物、あるいは当該フッ素化合物を用いた活性エネルギー線硬化型樹脂組成物をブラックマトリクスに用いた液晶ディスプレイのカラーフィルター、タッチパネル、携帯電話の筐体、携帯電話の液晶ディスプレイ、光ファイバクラッド材、光学レンズ、光導波路なども挙げられる。
 以下に実施例及び比較例を挙げて、本発明をさらに詳しく説明する。
(実施例1)
 50mlの反応容器に、下式で表される両末端がカルボン酸エチルエステルであるポリ(パーフルオロアルキレンエーテル)(1分子当たりのパーフルオロエチレン基の数(m)が平均8個、パーフルオロメチレン基の数(n)が平均5個のもの)30g(0.02モル)及びモノエタノールアミン2.56g(0.042モル)を投入し、100℃で2時間、加熱攪拌した。反応液が透明均一になったことを確認した後、さらに減圧下で、生成するエタノールを除去しながら3時間加熱攪拌した。60℃以下に冷却した後に、メチルエチルケトン(以下、「MEK」という。)を57.7g投入した。次いで、ジブチル錫ジラウレート0.02gを加え、このものに、2-アクリロイルオキシエチルイソシアネート5.93g(0.042モル)を、内温50~60℃に保ちながら、30分間で滴下した。滴下終了後、さらに80℃で4時間攪拌して、フッ素化合物(1)のMEK溶液(不揮発分40質量%)を得た。
Figure JPOXMLDOC01-appb-C000014
 得られたフッ素化合物(1)のMEK溶液からMEKを留去した後、スペクトル分析を行った結果、以下のスペクトルを得た。
[IRスペクトル]
810,1410,1650cm-1:アクリロイル基
1710cm-1:アミド基
1200cm-1:-CF
H-NMRスペクトル]
(ppm、400MHz、溶媒:アセトン-d、基準:TMS)
3.35~3.50(m、2H)
3.50~3.70(m、2H)
4.10~4.25(m、4H)
5.88(d、J=10.4Hz、2H)
6.14(dd、J=17.2、10.4Hz、2H)
6.37(d、J=17.6Hz、2H)
 上記のIR及びNMRスペクトル分析の結果から、フッ素化合物(1)は、下記に示した構造式の化合物であることを同定した。
Figure JPOXMLDOC01-appb-C000015
(実施例2)
 実施例1で用いたモノエタノールアミンに代えて、ジエタノールアミン4.41g(0.042モル)とし、MEKの量を61.8gとし、2-アクリロイルオキシエチルイソシアネートの量を13.1g(0.093モル)とした以外は、実施例1と同様な方法で行い、フッ素化合物(2)のMEK溶液(不揮発分40質量%)を得た。
 得られたフッ素化合物(2)のMEK溶液からMEKを留去した後、スペクトル分析を行った結果、以下のスペクトルを得た。
[IRスペクトル]
810,1410,1650cm-1:アクリロイル基
1710cm-1:アミド基
1200cm-1:-CF
H-NMRスペクトル]
(ppm、400MHz、溶媒:アセトン-d、基準:TMS)
3.20~3.60(m、12H)
3.65~3.95(m、4H)
4.10~4.40(m、16H)
4.90~5.00(br、4H)
5.88~5.95(m、4H)
6.10~6.25(m、4H)
6.30~6.50(m、4H)
 上記のIR及びNMRスペクトル分析の結果から、フッ素化合物(2)は、下記に示した構造式の化合物であることを同定した。
Figure JPOXMLDOC01-appb-C000016
(実施例3)
 50ml反応容器に、両末端がカルボン酸エチルエステルであるポリ(パーフルオロアルキレンエーテル)(1分子当たりのパーフルオロエチレン基の数(m)が平均8個、パーフルオロメチレン基の数(n)が平均5個のもの)30g(0.02モル)及びトリス(ヒドロキシメチル)アミノメタン5.08g(0.042モル)を投入し、120℃で2時間、加熱攪拌した。反応液が透明均一になったのを確認した後、さらに減圧下で3時間加熱攪拌した。60℃以下に冷却した後に、MEKを79.3g投入した。次いで、ジブチル錫ジラウレート0.02gを加え、このものに、2-アクリロイルオキシエチルイソシアネート17.8g(0.126モル)を、内温50~60℃に保ちながら、30分間で滴下した。滴下終了後、さらに80℃で4時間攪拌して、フッ素化合物(3)のMEK溶液(不揮発分40質量%)を得た。
 得られたフッ素化合物(3)のMEK溶液からMEKを留去した後、スペクトル分析を行った結果、以下のスペクトルを得た。
[IRスペクトル]
810,1410,1650cm-1:アクリロイル基
1710cm-1:アミド基
1200cm-1:-CF
H-NMRスペクトル]
(ppm、400MHz、溶媒:アセトン-d、基準:TMS)
3.35~3.50(m、12H)
4.10~4.25(m、12H)
4.30~4.50(m、12H)
5.88(d、J=10.4Hz、6H)
6.05~6.20(m、6H)
6.37(d、J=17.2Hz、6H)
 上記のIR及びNMRスペクトル分析の結果から、フッ素化合物(3)は、下記に示した構造式の化合物であることを同定した。
Figure JPOXMLDOC01-appb-C000017
(実施例4)
 50ml反応容器に、両末端がカルボン酸エチルエステルであるポリ(パーフルオロアルキレンエーテル)(1分子当たりのパーフルオロエチレン基の数(m)が平均8個、パーフルオロメチレン基の数(n)が平均5個のもの)30g(0.02モル)及びN-メチル―D-グルカミン8.20g(0.042モル)およびジメトキシエタン(DME)を38.4gを投入し、還流下で4時間、加熱攪拌した。内容物のIRスペクトルを確認した結果、エチルエステル吸収帯 1800cm-1が消失し、新たにアミド吸収帯1710cm-1を確認した。減圧下でDMEを留去した。次いでMEK45.37g、ジブチル錫ジラウレート0.02gをを投入し、内温を60℃としたのち、2-アクリロイルオキシエチルイソシアネート29.65gを、60-70℃を維持しながら1時間かけて滴下した。滴下終了後、さらに80℃で6時間攪拌して、フッ素化合物(4)のMEK溶液(不揮発分40質量%)を得た。
 得られたフッ素化合物(4)のMEK溶液からMEKを留去した後、スペクトル分析を行った結果、以下のスペクトルを得た。
[IRスペクトル]
810,1410,1636cm-1:アクリロイル基
1706cm-1:アミド基
1200cm-1:-CF
H-NMRスペクトル]
(ppm、400MHz、溶媒:アセトン-d、基準:TMS)
2.80~3.05(m、8H)
3.35~3.55(m、20H)
4.10~4.35(m、26H)
5.85~5.95(m、10H)
6.05~6.20(m、10H)
6.30~6.55(m、10H)
 上記のIR及びNMRスペクトル分析の結果から、フッ素化合物(4)は、下記に示した構造式の化合物であることを同定した。
Figure JPOXMLDOC01-appb-C000018
(実施例5)
 50ml反応容器に、両末端がカルボン酸エチルエステルであるポリ(パーフルオロアルキレンエーテル)(1分子当たりのパーフルオロエチレン基の数(m)が平均8個、パーフルオロメチレン基の数(n)が平均5個のもの)30g(0.02モル)、モノエタノールアミン1.28g(0.21モル)及びトリス(ヒドロキシメチル)アミノメタン2.54g(0.21モル)を投入し、120℃で2時間、加熱攪拌した。反応液が透明均一になったことを確認した後、さらに減圧下で3時間加熱攪拌した。60℃以下に冷却した後に、MEKを68.5g投入した。次いで、ジブチル錫ジラウレート0.02gを加え、このものに、2-アクリロイルオキシエチルイソシアネート11.9g(0.084モル)を、内温50~60℃を保ちながら、30分間で滴下した。滴下終了後、さらに80℃で4時間攪拌して、フッ素化合物(5)のMEK溶液(不揮発分40質量%)を得た。
 得られたフッ素化合物(5)のMEK溶液からMEKを留去した後、スペクトル分析を行った結果、以下のスペクトルを得た。
[IRスペクトル]
810,1410,1650cm-1:アクリロイル基
1710cm-1:アミド基
1200cm-1:-CF
H-NMRスペクトル]
(ppm、400MHz、溶媒:アセトン-d、基準:TMS)
3.30~3.85(m、12H)
4.10~4.60(m、14H)
4.30~4.50(m、12H)
5.88(d、J=10.4Hz、4H)
6.13(dd、J=17.2、10.4Hz、4H)
6.37(d、J=16.0Hz、4H)
 上記のIR及びNMRスペクトル分析の結果から、フッ素化合物(5)は、下記に示した構造式の化合物を主成分とする混合物であることを同定した。
Figure JPOXMLDOC01-appb-C000019
(実施例6)
 50mlの反応容器に、両末端がカルボン酸エチルエステルであるポリ(パーフルオロアルキレンエーテル)(1分子当たりのパーフルオロエチレン基の数(m)が平均8個、パーフルオロメチレン基の数(n)が平均5個のもの)30g(0.02モル)及びジエタノールアミン4.41g(0.042モル)を投入し、100℃で2時間、加熱攪拌した。反応液が透明均一になったことを確認した後、さらに減圧下で、生成するエタノールを除去しながら3時間加熱攪拌した。40℃以下に冷却した後に、酢酸エチルを200g投入した。次いで、トリエチルアミン8.90g(0.09モル)を加え、このものに、アクリル酸クロライド7.60g(0.084モル)を、内温40℃以下に保ちながら、30分間で滴下した。滴下終了後、さらに室温で4時間攪拌した。次いで、反応液を水、飽和食塩水で洗浄することでフッ素化合物(6)の酢酸エチル溶液(不揮発分を40質量%に調整)を得た。
 得られたフッ素化合物(6)の酢酸エチル溶液から酢酸エチルを留去した後、スペクトル分析を行った結果、以下のスペクトルを得た。
[IRスペクトル]
810,1410,1650cm-1:アクリロイル基
1720cm-1:アミド基
1200cm-1:-CF
H-NMRスペクトル]
(ppm、400MHz、溶媒:アセトン-d、基準:TMS)
3.50~3.95(m、8H)
4.30~4.90(m、8H)
5.89(d、J=10.4Hz、4H)
6.13(dd、J=17.2、10.4Hz、4H)
6.40(d、J=17.6Hz、4H)
 上記のIR及びNMRスペクトル分析の結果から、フッ素化合物(6)は、下記に示した構造式の化合物であることを同定した。
Figure JPOXMLDOC01-appb-C000020
(実施例7)
 実施例6で用いたジエタノールアミンに代えて、トリスヒドロキシメチルアミノメタン5.08g(0.042モル)とし、トリエチルアミン13.4g(0.121モル)とし、アクリル酸クロライドの量を11.4g(0.126モル)とした以外は、実施例1と同様な方法で行い、フッ素化合物(7)の酢酸エチル溶液(不揮発分を40質量%に調整)を得た。
 得られたフッ素化合物(7)の酢酸エチル溶液から酢酸エチルを留去した後、スペクトル分析を行った結果、以下のスペクトルを得た。
[IRスペクトル]
810,1410,1650cm-1:アクリロイル基
1720cm-1:アミド基
1200cm-1:-CF
H-NMRスペクトル]
(ppm、400MHz、溶媒:アセトン-d、基準:TMS)
4.65(s、12H)
5.89(d、J=10.4Hz、4H)
6.12(dd、J=17.2、10.4Hz、4H)
6.42(d、J=17.6Hz、4H)
 上記のIR及びNMRスペクトル分析の結果から、フッ素化合物(7)は、下記に示した構造式の化合物であることを同定した。
Figure JPOXMLDOC01-appb-C000021
(比較例1)
 200mlの3口フラスコに、ヘキサメチレンジイソシアナート3量体(住友バイエルウレタン株式会社製「SUMIDUR N3300」、NCO基含有率21.9%)38.4gをメチルエチルケトン(以下、「MEK」という。)148gに溶解させ、ジブチル錫ジラウレート0.4gを加えた。空気雰囲気下、内温60℃で、両末端が水酸基であるポリ(パーフルオロアルキレンエーテル)(ソルベイ・ソレクシス株式会社製「フルオロリンクD10\H」)50.0gを攪拌しながら3時間かけて滴下し、さらに6時間撹拌した。次いで、2-ヒドロキシエチルアクリレート8.13gを10分で滴下し3時間撹拌した。IRスペクトルによってNCO基の吸収が完全に消失したのを確認した後、フッ素化合物(8)のMEK溶液(不揮発分40質量%)を得た。
 得られたフッ素化合物(8)のMEK溶液からMEKを留去した後、IRスペクトル分析を行った結果、アクリロイル基、ヌレート環及び-CF-に帰属できるIR吸収の存在を確認した。
[IRスペクトル]
810,1410,1650cm-1:アクリロイル基
1690cm-1:ヌレート環
1200cm-1:-CF
 上記の実施例1~7で得られたフッ素化合物(1)~(7)及び比較例1で得られたフッ素化合物(8)を用いて、活性エネルギー線硬化型樹脂組成物を調製した。
(実施例8)
 紫外線硬化型樹脂(DIC株式会社製「ユニディック17-806」、不揮発分80質量%;多官能ウレタンアクリレート)10g、実施例1で得られたフッ素化合物(1)のMEK溶液(不揮発分40質量%)0.5g(フッ素化合物(1)として0.2g)、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32g及びMEK5.7gを均一に混合して、活性エネルギー線硬化型樹脂組成物(1)を得た。
(実施例9)
 実施例8で用いたフッ素化合物(1)のMEK溶液(不揮発分40質量%)の量を0.5gから1.5g(フッ素化合物(1)として0.6g)、MEKの量を5.7gから5.1gに変更した以外は、実施例6と同様にして、活性エネルギー線硬化型樹脂組成物(2)を得た。
(実施例10)
 紫外線硬化型樹脂(DIC株式会社製「ユニディック17-806」、不揮発分80質量%;多官能ウレタンアクリレート)10g、実施例2で得られたフッ素化合物(2)のMEK溶液(不揮発分40質量%)0.5g(フッ素化合物(2)として0.2g)、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32g及びMEK5.7gを均一に混合して、活性エネルギー線硬化型樹脂組成物(3)を得た。
(実施例11)
 実施例8で用いたフッ素化合物(2)のMEK溶液(不揮発分40質量%)の量を0.5gから1.5g(フッ素化合物(2)として0.6g)、MEKの量を5.7gから5.1gに変更した以外は、実施例8と同様にして、活性エネルギー線硬化型樹脂組成物(4)を得た。
(実施例12)
 紫外線硬化型樹脂(DIC株式会社製「ユニディック17-806」、不揮発分80質量%;多官能ウレタンアクリレート)10g、実施例3で得られたフッ素化合物(3)のMEK溶液(不揮発分40質量%)0.5g(フッ素化合物(3)として0.2g)、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32g及びMEK5.7gを均一に混合して、活性エネルギー線硬化型樹脂組成物(5)を得た。
(実施例13)
 実施例12で用いたフッ素化合物(3)のMEK溶液(不揮発分40質量%)の量を0.5gから1.5g(フッ素化合物(3)として0.6g)、MEKの量を5.7gから5.1gに変更した以外は、実施例10と同様にして、活性エネルギー線硬化型樹脂組成物(6)を得た。
(実施例14)
 紫外線硬化型樹脂(DIC株式会社製「ユニディック17-806」、不揮発分80質量%;多官能ウレタンアクリレート)10g、実施例4で得られたフッ素化合物(4)のMEK溶液(不揮発分40質量%)0.5g(フッ素化合物(4)として0.2g)、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32g及びMEK5.7gを均一に混合して、活性エネルギー線硬化型樹脂組成物(7)を得た。
(実施例15)
 実施例14で用いたフッ素化合物(4)のMEK溶液(不揮発分40質量%)の量を0.5gから1.5g(フッ素化合物(4)として0.6g)、MEKの量を5.7gから5.1gに変更した以外は、実施例12と同様にして、活性エネルギー線硬化型樹脂組成物(8)を得た。
(実施例16)
 紫外線硬化型樹脂(DIC株式会社製「ユニディック17-806」、不揮発分80質量%;多官能ウレタンアクリレート)10g、実施例5で得られたフッ素化合物(5)のMEK溶液(不揮発分40質量%)0.5g(フッ素化合物(5)として0.2g)、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32g及びMEK5.7gを均一に混合して、活性エネルギー線硬化型樹脂組成物(9)を得た。
(実施例17)
 実施例16で用いたフッ素化合物(5)のMEK溶液(不揮発分40質量%)の量を0.5gから1.5g(フッ素化合物(5)として0.6g)、MEKの量を5.7gから5.1gに変更した以外は、実施例14と同様にして、活性エネルギー線硬化型樹脂組成物(10)を得た。
(実施例18)
 実施例3で得られたフッ素化合物(3)のMEK溶液(不揮発分40質量%)20g(フッ素化合物(3)として8g)及び光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32gを均一に混合して、フッ素化合物(3)単独の樹脂溶液を得た。
(実施例19)
 紫外線硬化型樹脂(DIC株式会社製「ユニディック17-806」、不揮発分80質量%;多官能ウレタンアクリレート)10g、実施例6で得られたフッ素化合物(6)の酢酸エチル溶液(不揮発分40質量%)0.2g(フッ素化合物(6)として0.08g)、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32g及びMEK5.88gを均一に混合して、活性エネルギー線硬化型樹脂組成物(11)を得た。
(実施例20)
 実施例19で用いたフッ素化合物(6)の酢酸エチル溶液(不揮発分40質量%)の量を0.2gから0.6g(フッ素化合物(6)として0.24g)、MEKの量を5.88gから5.71gに変更した以外は、実施例3と同様にして、活性エネルギー線硬化型樹脂組成物(12)を得た。
(実施例21)
 紫外線硬化型樹脂(DIC株式会社製「ユニディック17-806」、不揮発分80質量%;多官能ウレタンアクリレート)10g、実施例7で得られたフッ素化合物(7)の酢酸エチル溶液(不揮発分40質量%)0.2g(フッ素化合物(7)として0.008g)、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32g及びMEK5.88gを均一に混合して、活性エネルギー線硬化型樹脂組成物(13)を得た。
(実施例22)
 実施例21で用いたフッ素化合物(7)の酢酸エチル溶液(不揮発分40質量%)の量を0.2gから0.6g(フッ素化合物(7)として0.24g)、酢酸エチルの量を5.88gから5.71gに変更した以外は、実施例21と同様にして、活性エネルギー線硬化型樹脂組成物(14)を得た。
(実施例23)
 実施例7で得られたフッ素化合物(7)の酢酸エチル溶液(不揮発分40質量%)20g(フッ素化合物(7)として8g)及び光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32gを均一に混合して、フッ素化合物(7)単独の樹脂溶液を得た。
(比較例2)
 紫外線硬化型樹脂(DIC株式会社製「ユニディック17-806」、不揮発分80質量%;多官能ウレタンアクリレート)10g、比較例1で得られたフッ素化合物(8)のMEK溶液(不揮発分40質量%)0.5g(フッ素化合物(8)として0.2g)、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32g及びMEK5.7gを均一に混合して、活性エネルギー線硬化型樹脂組成物(15)を得た。
(比較例3)
 比較例2で用いたフッ素化合物(8)のMEK溶液(不揮発分40質量%)の量を0.5gから1.5g(フッ素化合物(8)として0.6g)、MEKの量を5.7gから5.1gに変更した以外は、比較例2と同様にして、活性エネルギー線硬化型樹脂組成物(16)を得た。
(比較例4)
 紫外線硬化型樹脂(DIC株式会社製「ユニディック17-806」、不揮発分80質量%;多官能ウレタンアクリレート)10g、光重合開始剤(チバ・スペシャルティ・ケミカルズ株式会社製「イルガキュア184」;1-ヒドロキシシクロヘキシル-フェニルケトン)0.32g及びMEK6.0gを均一に混合して、活性エネルギー線硬化型樹脂組成物(17)を得た。
(フッ素化合物の相溶性試験)
 上記の実施例8~23及び比較例2~4で得られた活性エネルギー線硬化型樹脂組成物を調製後、透明のガラス容器に入れ、目視で樹脂組成物の濁りを観察し、下記の基準にしたがって相溶性を評価した。
 A:濁りがなく透明である。
 B:やや濁りがある。
 C:濁りがある。
(評価用サンプルの作製)
 上記の実施例8~23及び比較例2~4で得られた活性エネルギー線硬化型樹脂組成物(1)~(17)、実施例18で得られたフッ素化合物(3)単独の樹脂溶液及び実施例23で得られたフッ素化合物(7)単独の樹脂溶液を、厚さ125μmのPETフィルム(東洋紡社製、コスモシャインA4100、易接着処理品)上に、バーコーター(#05)で塗布後、60℃で5分乾燥した(乾燥後の膜厚:10μm)。次いで、紫外線照射装置(GS-ユアサ社製、高圧水銀ランプ、120W)を用いて、紫外線を照射して(空気雰囲気下、照射量5kJ/m)、硬化塗膜を得た。
(油性インク付着性試験)
 上記で得られた活性エネルギー線硬化型樹脂組成物の硬化塗膜の表面に、青色の油性フェルトペン(寺西化学工業株式会社製「マジックインキ(登録商標)」)で線を描き、油性インクの付着性を目視で観察し、下記の基準にしたがって評価した。
 AA:油性インクを玉状にはじく。
 A:油性インクを玉状にはじかず、線状にはじく(線幅がフェルトペンのペン先の幅の25%未満)。
 B:油性インクを玉状にはじかず、線状にはじく(線幅がフェルトペンのペン先の幅の25%以上50%未満)。
 C:油性インクを線状にはじく(線幅がフェルトペンのペン先の幅の50%以上90%未満)。
 D:油性インクを線状にはじく(線幅がフェルトペンのペン先の幅の90%以上100%未満)。
 E:油性インクをはじかない。
(指紋付着性試験)
 上記で得られた活性エネルギー線硬化型樹脂組成物の硬化塗膜の表面に、指を押し付け、指紋の付着状態を光学顕微鏡(倍率40倍)で観察し、押し付けた指の面積に対して付着した指紋の面積比率から下記の基準にしたがって評価した。
 A:付着した指紋の面積が30%未満である。
 B:付着した指紋の面積が30%以上60%未満である。
 C:付着した指紋の面積が60%以上95%未満である。
 D:付着した指紋の面積が95%以上である。
(指紋拭き取り性試験)
 上記の指紋付着性試験で指紋が付着した試料を用いて、ワイピングクロス(日本製紙クレシア株式会社製「JKワイパー150-S」)で指紋汚れを拭き取り、目視で指紋汚れが確認できなくなるまでの拭き取り回数を測定した。なお、この試験では、拭き取り回数が多いほど、指紋拭き取り性が低いという評価結果となる。
 上記の実施例8~23及び比較例2~4で得られた活性エネルギー線硬化型樹脂組成物の組成及びこれらの硬化塗膜の評価結果を表1~3に示す。また、フッ素化合物(3)及び(7)の単独での硬化塗膜の評価結果(実施例18及び23)を表2に示す。なお、表2中の実施例18及び23の「相溶性」の「A」はフッ素化合物単独での相分離がないことを表す。また、表2中の比較例4の「相溶性」の「-」は評価なしを表す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表1及び2に示した実施例8~23の評価結果から、本発明のフッ素化合物は、他の樹脂との相溶性に優れることが分かった。また、本発明のフッ素化合物を用いた活性エネルギー線硬化型樹脂組成物の硬化塗膜は、油性インク及び指紋付着性が低く、防汚性に優れることが分かった。さらに、汚れが付着しても、容易に汚れを拭き取ることができることが分かった。
 また、表2に示した実施例18及び23の評価結果から、本発明のフッ素化合物を単独で用いて、硬化塗膜とした場合でも、油性インク及び指紋付着性が低く、防汚性に優れることが分かった。さらに、汚れが付着しても、容易に汚れを拭き取ることができることが分かった。
 一方、表3に示した比較例2~4の評価結果から、以下のことが分かった。
 比較例2及び3は、両末端が水酸基であるポリ(パーフルオロアルキレンエーテル)、ジイソシアネート及び水酸基を有するアクリレートを反応させて得られたフッ素化合物を用いたものだが、当該フッ素化合物中には、合成上、必ずポリ(パーフルオロアルキレンエーテル)鎖のみを有する化合物が含まれるため、他の紫外線硬化型樹脂との相溶性が低く、添加量が多いと樹脂組成物が濁る問題があった。また、油性インク及び指紋付着防止が充分ではなく、特に指紋の付着を充分に防止することができず、満足できる防汚性を有しないことが分かった。さらに、汚れの拭き取り性も充分ではないことが分かった。
 比較例4は、フッ素化合物を用いなかった例であるが、油性インク及び指紋が付着し、防汚性を有しないことが分かった。また、汚れの拭き取り性も非常に低いものであった。

Claims (5)

  1.  下記一般式(1)で表されるフッ素化合物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、Xは、ポリ(パーフルオロアルキレンエーテル)鎖を表し、R~Rは、各々独立して、水素原子、アルキル基、下記一般式(2)又は(3)を表す。ただし、R及びRのうち、少なくとも1つは、下記一般式(2)又は(3)であり、R及びRのうち、少なくとも1つは、下記一般式(2)又は(3)である。)
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)中、Xは、直鎖又は分岐の炭化水素基を表し、Xは、酸素原子又は硫黄原子を表し、Xは、直鎖又は分岐のアルキレン基を表し、Rは、水素原子又はメチル基を表す。また、pは、1~5の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(3)中、Xは、直鎖又は分岐の炭化水素基を表し、Xは、酸素原子又は硫黄原子を表し、Rは、水素原子又はメチル基を表す。また、pは、1~5の整数を表す。)
  2.  請求項1記載のフッ素化合物を含有することを特徴とする活性エネルギー線硬化型樹脂組成物。
  3.  請求項1記載のフッ素化合物の硬化塗膜を有することを特徴とする物品。
  4.  請求項2記載の活性エネルギー線硬化型樹脂組成物の硬化塗膜を有することを特徴とする物品。
  5.  ポリ(パーフルオロアルキレンエーテル)鎖を有し、かつ両末端がカルボキシル基又はカルボン酸アルキルエステルである化合物と、水酸基又はチオール基を有するアルキルアミンとを反応させた後、さらにイソシアネート基を有する(メタ)アクリレート、又は(メタ)アクリル酸、(メタ)アクリル酸ハライドもしくは(メタ)アクリル酸無水物を反応させることを特徴とする請求項1記載のフッ素化合物の製造方法。
PCT/JP2009/063723 2008-08-08 2009-08-03 フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物 WO2010016452A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09804935A EP2311899A4 (en) 2008-08-08 2009-08-03 FLUORINE COMPOUND AND ACTIVE ENERGY RAY-CURABLE RESIN COMPOSITION COMPRISING SAME
US13/057,193 US20130053506A1 (en) 2008-08-08 2009-08-03 Fluorine compound and active energy ray-curable resin composition using same
CN2009801302097A CN102112524B (zh) 2008-08-08 2009-08-03 含氟化合物以及使用其的活性能量射线固化型树脂组合物
KR1020107025785A KR101235227B1 (ko) 2008-08-08 2009-08-03 불소 화합물 및 그것을 사용한 활성 에너지선 경화형 수지 조성물
JP2010506469A JP4556151B2 (ja) 2008-08-08 2009-08-03 フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008205499 2008-08-08
JP2008-205499 2008-08-08
JP2008253245 2008-09-30
JP2008-253245 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010016452A1 true WO2010016452A1 (ja) 2010-02-11

Family

ID=41663670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063723 WO2010016452A1 (ja) 2008-08-08 2009-08-03 フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物

Country Status (7)

Country Link
US (1) US20130053506A1 (ja)
EP (1) EP2311899A4 (ja)
JP (1) JP4556151B2 (ja)
KR (1) KR101235227B1 (ja)
CN (1) CN102112524B (ja)
TW (1) TW201012847A (ja)
WO (1) WO2010016452A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122391A1 (ja) * 2010-03-31 2011-10-06 Dic株式会社 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化性組成物
JP2012177054A (ja) * 2011-02-28 2012-09-13 Topcon Corp 指紋付着低減コート液、及びその製造方法、並びに指紋付着低減コート液を塗布した物品
JP2012241060A (ja) * 2011-05-17 2012-12-10 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物
JP2013076029A (ja) * 2011-09-30 2013-04-25 Tdk Corp ハードコート剤組成物及びこれを用いたハードコートフィルム
CN103502306A (zh) * 2011-06-17 2014-01-08 Dic株式会社 含氟固化性树脂、活性能量射线固化性组合物及其固化物
JP2014167596A (ja) * 2012-03-30 2014-09-11 Fujifilm Corp 重合性組成物、それを用いた、反射防止フィルム、偏光板、及び画像表示装置
US20140296363A1 (en) * 2013-03-26 2014-10-02 Fuji Xerox Co., Ltd. Surface protective film
WO2016159023A1 (ja) * 2015-03-31 2016-10-06 Jnc株式会社 コーティング剤、皮膜、積層体、表面保護物品
JP2017211541A (ja) * 2016-05-26 2017-11-30 凸版印刷株式会社 カラーフィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置
WO2020162323A1 (ja) * 2019-02-06 2020-08-13 日産化学株式会社 フレキシブルハードコート用硬化性組成物
US20210214485A1 (en) * 2018-09-04 2021-07-15 Threebond Co., Ltd. Curable resin composition and cured material
WO2023112714A1 (ja) * 2021-12-14 2023-06-22 信越化学工業株式会社 含フッ素活性エネルギー線硬化性組成物、硬化物、並びに物品
WO2023112713A1 (ja) * 2021-12-14 2023-06-22 信越化学工業株式会社 フルオロポリエーテル基含有アクリル化合物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162572A (ja) * 2010-02-04 2011-08-25 Dic Corp フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物
TWI433882B (zh) 2010-04-05 2014-04-11 Mitsubishi Rayon Co 活性能量線硬化性樹脂組成物與使用該組成物之奈米凹凸構造體及其製造方法、以及具備奈米凹凸構造體的撥水性物品
US9346961B2 (en) 2012-03-30 2016-05-24 Fujifilm Corporation Polymerizable composition and antireflective film, polarizing plate and image display device using the same
JP5835069B2 (ja) * 2012-04-05 2015-12-24 信越化学工業株式会社 防汚性付与ハードコート組成物
JP5690792B2 (ja) 2012-09-28 2015-03-25 富士フイルム株式会社 重合性組成物、それを用いた、反射防止フィルム、偏光板、及び画像表示装置、並びに撥水ないし撥油膜
CN108928118B (zh) * 2017-05-26 2020-01-14 精工爱普生株式会社 喷嘴板、液体喷射头、液体喷射装置以及喷嘴板的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099160A (ja) * 1983-09-19 1985-06-03 ミネソタ マイニング アンド マニユフアクチユアリング コンパニ− ペルフルオロポリエ−テル組成物
JPH0874846A (ja) * 1995-06-19 1996-03-19 Ntn Corp 直線移動用キャリッジ及びその製造方法
JPH1049856A (ja) * 1996-08-07 1998-02-20 Kao Corp 磁気記録媒体
JP2001019736A (ja) 1999-06-11 2001-01-23 Ausimont Spa フッ素化オリゴウレタン
WO2003002628A1 (en) 2001-06-27 2003-01-09 Daikin Industries, Ltd. Surface-treating agent composition and process for producing the same
JP2005527677A (ja) * 2002-05-24 2005-09-15 スリーエム イノベイティブ プロパティズ カンパニー 弗素化ポリエーテルを含むフルオロケミカル組成物および該組成物による繊維基材の処理
JP2008038015A (ja) * 2006-08-07 2008-02-21 Yunimatekku Kk 含フッ素ポリエーテル(メタ)アクリレートおよびその製造法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321404A (en) * 1980-05-20 1982-03-23 Minnesota Mining And Manufacturing Company Compositions for providing abherent coatings
US4705699A (en) * 1983-09-19 1987-11-10 Minnesota Mining And Manufacturing Company Method of coating magnetic recording media with perfluoropolyether compositions which are soluble in non-fluorinated solvents
EP0322624A1 (de) * 1987-12-23 1989-07-05 Siemens Aktiengesellschaft Flüssiges, strahlenhärtbares Harz zur Isolierung dünner Leitungen
NL1001472C2 (nl) * 1995-10-23 1997-04-25 Oce Nederland Bv Verlengde difunctionele perfluorpolyether oliën en daarmee bereide rubbers.
TWI230712B (en) * 1998-09-15 2005-04-11 Novartis Ag Polymers
US7615283B2 (en) * 2006-06-13 2009-11-10 3M Innovative Properties Company Fluoro(meth)acrylate polymer composition suitable for low index layer of antireflective film
JP2010152311A (ja) * 2008-07-22 2010-07-08 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099160A (ja) * 1983-09-19 1985-06-03 ミネソタ マイニング アンド マニユフアクチユアリング コンパニ− ペルフルオロポリエ−テル組成物
JPH0874846A (ja) * 1995-06-19 1996-03-19 Ntn Corp 直線移動用キャリッジ及びその製造方法
JPH1049856A (ja) * 1996-08-07 1998-02-20 Kao Corp 磁気記録媒体
JP2001019736A (ja) 1999-06-11 2001-01-23 Ausimont Spa フッ素化オリゴウレタン
WO2003002628A1 (en) 2001-06-27 2003-01-09 Daikin Industries, Ltd. Surface-treating agent composition and process for producing the same
JP2005527677A (ja) * 2002-05-24 2005-09-15 スリーエム イノベイティブ プロパティズ カンパニー 弗素化ポリエーテルを含むフルオロケミカル組成物および該組成物による繊維基材の処理
JP2008038015A (ja) * 2006-08-07 2008-02-21 Yunimatekku Kk 含フッ素ポリエーテル(メタ)アクリレートおよびその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2311899A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122391A1 (ja) * 2010-03-31 2011-10-06 Dic株式会社 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化性組成物
JP4873107B2 (ja) * 2010-03-31 2012-02-08 Dic株式会社 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化性組成物
US8716361B2 (en) 2010-03-31 2014-05-06 Dic Corporation Curable fluorine-containing resin and active-energy-ray-curable composition including the same
JP2012177054A (ja) * 2011-02-28 2012-09-13 Topcon Corp 指紋付着低減コート液、及びその製造方法、並びに指紋付着低減コート液を塗布した物品
JP2012241060A (ja) * 2011-05-17 2012-12-10 Yokohama Rubber Co Ltd:The 硬化性樹脂組成物
CN103502306A (zh) * 2011-06-17 2014-01-08 Dic株式会社 含氟固化性树脂、活性能量射线固化性组合物及其固化物
JP2013076029A (ja) * 2011-09-30 2013-04-25 Tdk Corp ハードコート剤組成物及びこれを用いたハードコートフィルム
JP2014167596A (ja) * 2012-03-30 2014-09-11 Fujifilm Corp 重合性組成物、それを用いた、反射防止フィルム、偏光板、及び画像表示装置
US9290602B2 (en) * 2013-03-26 2016-03-22 Fuji Xerox Co., Ltd. Surface protective film
JP2014209179A (ja) * 2013-03-26 2014-11-06 富士ゼロックス株式会社 表面保護膜
US20140296363A1 (en) * 2013-03-26 2014-10-02 Fuji Xerox Co., Ltd. Surface protective film
WO2016159023A1 (ja) * 2015-03-31 2016-10-06 Jnc株式会社 コーティング剤、皮膜、積層体、表面保護物品
JPWO2016159023A1 (ja) * 2015-03-31 2017-07-13 Jnc株式会社 コーティング剤、皮膜、積層体、表面保護物品
RU2699632C2 (ru) * 2015-03-31 2019-09-06 ДжейЭнСи КОРПОРЭЙШН Покрывающий агент, покрывающая пленка, ламинат и изделие с защищенной поверхностью
US10513586B2 (en) 2015-03-31 2019-12-24 Jnc Corporation Coating agent, coating film, laminate and surface-protected article
JP2017211541A (ja) * 2016-05-26 2017-11-30 凸版印刷株式会社 カラーフィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置
US20210214485A1 (en) * 2018-09-04 2021-07-15 Threebond Co., Ltd. Curable resin composition and cured material
US11739175B2 (en) * 2018-09-04 2023-08-29 Threebond Co., Ltd. Curable resin composition and cured material
WO2020162323A1 (ja) * 2019-02-06 2020-08-13 日産化学株式会社 フレキシブルハードコート用硬化性組成物
WO2023112714A1 (ja) * 2021-12-14 2023-06-22 信越化学工業株式会社 含フッ素活性エネルギー線硬化性組成物、硬化物、並びに物品
WO2023112713A1 (ja) * 2021-12-14 2023-06-22 信越化学工業株式会社 フルオロポリエーテル基含有アクリル化合物

Also Published As

Publication number Publication date
EP2311899A1 (en) 2011-04-20
EP2311899A4 (en) 2012-05-09
KR101235227B1 (ko) 2013-02-20
KR20110008237A (ko) 2011-01-26
US20130053506A1 (en) 2013-02-28
CN102112524B (zh) 2013-02-27
CN102112524A (zh) 2011-06-29
JP4556151B2 (ja) 2010-10-06
TW201012847A (en) 2010-04-01
JPWO2010016452A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP4556151B2 (ja) フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物
JP2011162572A (ja) フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物
TWI589612B (zh) 含氟硬化性樹脂及使用其之活性能量線硬化性組成物
TWI507426B (zh) A fluorine-containing polymerizable resin and an active energy ray-hardening composition using the resin and a hardened product
JP5488188B2 (ja) 含フッ素重合性重合体及びそれを用いた活性エネルギー線硬化型組成物
JP5187471B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物
JP5584989B2 (ja) 表面修飾シリカ粒子及びそれを用いた活性エネルギー線硬化型樹脂組成物
JPWO2014136787A1 (ja) 含フッ素エーテル化合物、ハードコート層形成用組成物およびハードコート層を有する物品
TW201704372A (zh) 表面處理方法
JP5720921B2 (ja) 含フッ素多官能チオール、活性エネルギー線硬化型塗料組成物及びその硬化物
JP2013095817A (ja) アルコキシシラン縮合物及びそれを用いた活性エネルギー線硬化型組成物
WO2018056370A1 (ja) 耐擦傷性ハードコート材
JP5887834B2 (ja) 含フッ素重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物
JP5939419B2 (ja) フッ素原子含有シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物、その硬化物及び物品
WO2011122392A1 (ja) 含フッ素スチレン化合物及びそれを用いた活性エネルギー線硬化性組成物
JP6449089B2 (ja) 親水性コーティング樹脂組成物
JP5605305B2 (ja) 重合性フッ素表面修飾シリカ粒子及びそれを用いた活性エネルギー線硬化性組成物
JP2011074247A (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
WO2021256131A1 (ja) 含フッ素重合性樹脂、活性エネルギー線硬化性組成物、硬化塗膜及び物品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130209.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010506469

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107025785

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009804935

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009804935

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13057193

Country of ref document: US