WO2010014548A2 - Procédé pour la préparation de cis-alcène perfluoré - Google Patents

Procédé pour la préparation de cis-alcène perfluoré Download PDF

Info

Publication number
WO2010014548A2
WO2010014548A2 PCT/US2009/051847 US2009051847W WO2010014548A2 WO 2010014548 A2 WO2010014548 A2 WO 2010014548A2 US 2009051847 W US2009051847 W US 2009051847W WO 2010014548 A2 WO2010014548 A2 WO 2010014548A2
Authority
WO
WIPO (PCT)
Prior art keywords
perfluorinated
cis
process according
aromatic amine
hexafluoro
Prior art date
Application number
PCT/US2009/051847
Other languages
English (en)
Other versions
WO2010014548A3 (fr
Inventor
Michael Van Der Puy
Jing-Ji Ma
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to CN2009801300180A priority Critical patent/CN102112420A/zh
Priority to MX2011000995A priority patent/MX2011000995A/es
Priority to EP09803441A priority patent/EP2310347A4/fr
Priority to JP2011521221A priority patent/JP2011529893A/ja
Publication of WO2010014548A2 publication Critical patent/WO2010014548A2/fr
Publication of WO2010014548A3 publication Critical patent/WO2010014548A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/628Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with lead

Definitions

  • the present disclosure relates to a process for the preparation of a perfluorinated cis-alkene, and more specifically the preparation of cis- 1,1, 1,4 ,4,4- hexafluoro-2-butene.
  • Fluorocarbon based fluids have found widespread use in industry in a number of applications, including as refrigerants, aerosol propellants, blowing agents, heat transfer media, and gaseous dielectrics. Because of the suspected environmental problems associated with the use of some of these fluids, including
  • I 5 the relatively high global warming potentials (GWP) associated therewith, it is desirable to use fluids having the lowest possible greenhouse warming potential in addition to zero ozone depletion potential (ODP).
  • ODP ozone depletion potential
  • Fluorinated butenes having zero ozone depletion and low global warming potential have been identified as potentially filling this need.
  • the toxicity, boiling point, and other physical properties in this class of chemicals vary greatly from isomer to isomer.
  • One fluorobutene having valuable properties is cis-
  • the large difference in boiling points may mean that only one isomer is suitable and the other isomer therefore represents a yield loss.
  • Another reason such a mixture is undesirable is that a good means for recycling the undesired trans-isomer is lacking.
  • a suitable process will provide the cis:tra ⁇ s isomers in a ratio of 10: 1 or better.
  • the conversion was only 82 % and the product was a mixture of cis-hexafluoro-2-butene (41 % yield) and hexafluorobutane (25 % yield).
  • the amount of over-reduced material should be less than 10 %. Still more preferably, the total amount of trans-isomer and butane are together less than 10 %.
  • alkynes to alkenes include Pd/C, Pd/BaSO 4 , Pd/BaCO 3 , and Pd/CaCO 3 .
  • the use of quinoline as a catalyst modifier has been recommended whether the catalyst is Pd/C, Pd/BaSO 4 , or Lindlar's catalyst, Pd/CaCO 3 /Pb (M. Hudlicky, Reductions in Organic Chemistry, 2 nd Ed., ACS Monograph 188, 1996, p 8).
  • the Lindlar catalyst is probably the most common one used for the reduction of hydrocarbon alkynes to cis-alkenes, modified further by the addition of an aromatic amine such as quinoline or pyridine.
  • aromatic amine such as quinoline or pyridine.
  • the amines while often useful in improving reaction selectivity, are not desirable from the standpoint of their
  • the quality of the quinoline used may also affect the outcome.
  • the PdVCaCO 3 ZPb catalyst, modified with pyridine, was successfully used in the reduction of an alkyne bearing a single fluorine on the carbon adjacent to the triple bond to give the corresponding cis-alkene (M. Prakesch, D. Gree, and R. Gree, J. Org. Chem., 66 (2001) 3146).
  • fluorocarbons often behave quite differently compared to non-fluorinated alkanes, and perfluorinated compounds may behave quite differently than even partially fluorinated compounds of similar structure.
  • SUMMARY 30 A process for the preparation of perfluorinated cis-alkenes comprising: reducing a perfluorinated alkyne with hydrogen over a palladium catalyst in the presence of a non-aromatic amine catalyst modifier to form a product comprising the perfluorinated cis-alkene, wherein the perfluorinated alkyne has the general structure: 3S RfC ⁇ CRf wherein Rf is a perfluorinated alkyl group having a carbon number in the range between about 1 to 6.
  • the process is for the preparation of cis- 1,1,1, 4,4,4-hexafluoro-2- butene comprising: reducing hexafluoro-2-butyne with hydrogen over a palladium catalyst in the presence of a non-aromatic amine catalyst modifier to form a product comprising the cis- 1,1,1 ,4,4,4,-hexafluoro-2-butene.
  • the over reduction to CF 3 CH 2 CH 2 CF 3 is less than 10 mole %, and wherein the cis- 1 , 1 , 1 ,4,4,4,- hexafluoro-2-butene product has less than about 10 mole % of trans- 1,1, 1,4,4,4- hexafluoro-2-butene.
  • the reduction step is carried out at a temperature in the range between about O 0 C to about 15O 0 C.
  • the reduction step is carried out at a temperature in the range between about 25°C to about 75°C.
  • the reduction step is preferably carried out in the presence of a reaction solvent.
  • the reaction solvent is at least one solvent selected from the group consisting of: alkanes, aryls, alcohols, acids and esters.
  • the reaction solvent is at least one solvent selected from the group consisting of: heptane, toluene, methanol, ethanol, acetic acid and ethyl acetate.
  • the reduction step is conducted at a pressure in the range between about 10 to 350 psig (72 to 2532 kPa), more preferably in the range between about 20 to 100 psig (145 to 723 kPa).
  • hydrogen is added as needed to during the reduction step to avoid over-reduction.
  • the palladium catalyst includes palladium and a catalyst support, wherein the catalyst support is at least one material selected from the group consisting of: calcium carbonate, barium carbonate and sulfate, charcoal, activated carbon, and alumina.
  • Preferred catalyst supports are calcium and barium carbonate, while calcium carbonate is most preferred.
  • the non-aromatic amine catalyst modifier is at least one selected from the group consisting of: alkali metal hydroxides, metals and metal salts.
  • the alkali metal hydroxide is preferably KOH.
  • the metal is at least one metal selected from the group consisting of: lead, zinc, ruthenium, copper, iron and tin.
  • the preferred catalyst modifier is lead.
  • the process further comprises the step of distilling the cis- 1,1, 1,4 ,4,4,- hexafluoro-2-butene product such that it has a cis- 1,1,1 ,4,4,4,-hexafluoro-2-butene concentration in the range between about 90 to 99.9%.
  • the starting material for this disclosure can be obtained by a variety of methods.
  • the latter in turn can be prepared by the reductive dimerization of CF 3 CCI 3 (S Tomioka et al, Chemistry Letters, 1991, 1825).
  • Comparative Examples A and B show that neither Pd/C with quinoline nor Pd/BaS ⁇ 4 were satisfactory catalysts for the selective reduction of hexafluoro-2-butene to cis-l,l,l,4,4,4-hexafluoro-2-butene, even though these catalyst systems have been successfully employed for the selective reduction of non-fluorinated alkynes. Both were unacceptable due to over-reduction, even where less than one equivalent of hydrogen had been consumed Surprisingly, however, Pd/CaCOs/Pb worked exceeding well (Examples 1 and 2), even without an aromatic amine modifier such as quinoline.
  • the temperature used for the reduction can be varied over a wide range from about 0 0 C to about 150 0 C, but the higher temperatures reported earlier in order to achieve a high percentage of cis-olefin are not necessary according to the process of this disclosure. Reactions near room temperature are the most convenient, but slightly higher temperatures may be desirable in order to achieve improved productivity. Especially preferred temperatures are in the range between about 25 to 75 0 C.
  • the reaction solvent can be any non-reactive solvent. These include alkanes, aryls, alcohols, acids and esters. Specific examples of these include heptane, toluene, methanol, acetic acid and ethyl acetate. Lower molecular weight alcohols are preferred and ethanol is most preferred.
  • the ratio of perfluorinated alkyne to catalyst can vary from about 1000 or more on a mole basis to about 1 , but is typically 2-100.
  • a higher ratio e.g. low catalyst loading
  • lower ratios higher catalyst loading
  • the pressure can vary considerably within the range of equipment capability. High pressures tend to speed up the reaction but may lead to overreduction. Hence the preferred pressures are 10 to 350 psig (72 to 2532 kPa) and more preferably 20-100 psig (145 to 723 kPa). In order to maximize the utilization of hydrogen, less than one equivalent may be added initially and more added as needed to complete the reaction or to maintain a desired hydrogen pressure.
  • a 1 -liter autoclave was charged with 2.0 g of catalyst (5 % palladium on calcium carbonate poisoned with 3.5 % lead) and 160 mL ethanol. The autoclave contents were then cooled to -78 C. Air was removed by pressurizing to 60 psi (434 kPa) with nitrogen followed by evacuating. The sequence was repeated twice more. Hexafluoro-2-butyne (32 g) was then added and the contents warmed to 25°C.
  • Hydrogen gas was added to a pressure 90 psig (651 kPa) and was maintained at this pressure for approximately 20 hours at a reaction temperature of 25-28 0 C.
  • the autoclave contents were again cooled with the aid of a -78°C bath prior to venting hydrogen gas.
  • the material in the autoclave was distilled to give 31.6 g of 97 % pure cis-hexafluoro-2-butene (97.5 % yield). Three such preparations were made and the combined materials redistilled to give the desired butene, bp 30-32 0 C, in greater than 99.9 % purity (H NMR: 6.56 ppm; F NMR: -60.17 ppm).
  • Example 2 was run in a manner similar to that of Example 1 except that the ratio of hexafluoro-2-butyne to catalyst was doubled, and the hydrogen pressure reduced to a maximum of 60 psig (434 kPa). Similar results were obtained.
  • COMPARATIVE EXAMPLE A A pressure reactor was charged with 0.20 grams of 5 % palladium on carbon, 0.042 grams of reagent grade quinoline as catalyst poison and 25 mL of ethanol. After removing air as described in Example 1, 2.0 grams of hexafluoro-2- butyne was added. Hydrogenation was conducted at 20 psig (145 kPa) hydrogen pressure at room temperature. Workup and distillation as before gave 1.5 grams of CF 3 CH 2 CH 2 CF 3 ( 1 H NMR: 2.5 ppm; 19 F NMR: -66.8 ppm). Thus, even though the operating pressure was lower, over-reduction readily occurred to give the undesired butane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

La présente invention concerne un procédé pour la préparation de cis-alcène perfluoré comprenant: la réduction d’un alcyne perfluoré avec de l’hydrogène sur un catalyseur à base de palladium en présence d’un modificateur de catalyseur à base d’amine non aromatique pour former un produit comportant un cis-alcène perfluoré, l’alcyne perfluoré ayant une structure générale: RfC≡CRf dans laquelle Rf est un groupe alkyle perfluoré ayant un nombre d’atomes de carbone compris entre 1 et 6.
PCT/US2009/051847 2008-07-31 2009-07-27 Procédé pour la préparation de cis-alcène perfluoré WO2010014548A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801300180A CN102112420A (zh) 2008-07-31 2009-07-27 制备全氟化的顺式烯烃的方法
MX2011000995A MX2011000995A (es) 2008-07-31 2009-07-27 Proceso para la preparacion de cis-alqueno perfluorado.
EP09803441A EP2310347A4 (fr) 2008-07-31 2009-07-27 Procédé pour la préparation de cis-alcène perfluoré
JP2011521221A JP2011529893A (ja) 2008-07-31 2009-07-27 ペルフッ素化シス−アルケンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8507708P 2008-07-31 2008-07-31
US61/085,077 2008-07-31

Publications (2)

Publication Number Publication Date
WO2010014548A2 true WO2010014548A2 (fr) 2010-02-04
WO2010014548A3 WO2010014548A3 (fr) 2010-04-01

Family

ID=41610923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/051847 WO2010014548A2 (fr) 2008-07-31 2009-07-27 Procédé pour la préparation de cis-alcène perfluoré

Country Status (6)

Country Link
EP (1) EP2310347A4 (fr)
JP (1) JP2011529893A (fr)
KR (1) KR20110049820A (fr)
CN (1) CN102112420A (fr)
MX (1) MX2011000995A (fr)
WO (1) WO2010014548A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158790A1 (fr) * 2010-06-14 2011-12-22 独立行政法人産業技術総合研究所 Procédé pour la production d'un composé de fluor
WO2012079011A1 (fr) * 2010-12-10 2012-06-14 E. I. Du Pont De Nemours And Company Purification du cis-1,1,1,4,4,4-hexafluoro-2-butène par distillation extractrice
CN102892738A (zh) * 2010-05-21 2013-01-23 霍尼韦尔国际公司 生产氟代烯烃的方法
JP2013529216A (ja) * 2010-05-21 2013-07-18 ハネウェル・インターナショナル・インコーポレーテッド 1,1,1,4,4,4−ヘキサフルオロ−2−ブテンのための方法
JP2013529215A (ja) * 2010-05-21 2013-07-18 ハネウェル・インターナショナル・インコーポレーテッド ヘキサフルオロ−2−ブチンの製造方法
JP2016034970A (ja) * 2010-03-26 2016-03-17 ハネウェル・インターナショナル・インコーポレーテッド ヘキサフルオロ−2−ブテンの製造方法
CN106008147A (zh) * 2016-05-23 2016-10-12 北京宇极科技发展有限公司 Z-1,1,1,4,4,4-六氟-2-丁烯的制备方法
EP3102556A1 (fr) * 2014-02-07 2016-12-14 The Chemours Company FC, LLC Procédé intégré de production de z-1,1,1,4,4,4-hexafluoro-2-butène
CN116060010A (zh) * 2023-03-31 2023-05-05 北京宇极科技发展有限公司 引发剂、氟化催化剂以及e-1,1,1,4,4,4-六氟-2-丁烯的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0822248A2 (pt) * 2008-05-23 2019-09-24 Du Pont "processos para a síntese de alcenos fluorados e processo para hidrogenação"

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014003B2 (ja) * 1978-11-08 1985-04-11 信越化学工業株式会社 シス−オレフィン化合物の選択的製造方法
JPS56133230A (en) * 1980-03-21 1981-10-19 Otsuka Pharmaceut Co Ltd Preparation of cis-olefin
US5587348A (en) * 1995-04-19 1996-12-24 Phillips Petroleum Company Alkyne hydrogenation catalyst and process
DE19526473A1 (de) * 1995-07-20 1997-01-23 Basf Ag Verfahren zur Herstellung von Alkenen durch partielle Hydrierung von Alkinen an Festbett-Palladium-Katalysatoren
DE19962907A1 (de) * 1999-12-23 2001-07-05 Basf Ag Verfahren zur Herstellung von C¶10¶-C¶30¶-Alkenen durch partielle Hydrierung von Alkinen an Festbett-Palladium-Trägerkatalysatoren

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BURGER ET AL., JOURNAL OF MOLECULAR STRUCTURE, vol. 84, 1982, pages 49 - 68
LINDLAR H, HELVETICA CHIMICA ACTA, vol. 35, no. 2, 1952, pages 446 - 450
M. HUDLICKY: "Reductions in Organic Chemistry", vol. 188, 1996, ACS MONOGRAPH, pages: 8
M. PRAKESCH; D. GREE; R. GREE, J. ORG. CHEM., vol. 66, 2001, pages 3146
S. TAKEI; M. ONO, NIPPON NOGEI KAGAKU KAISI, vol. 18, 1942, pages 119
See also references of EP2310347A4
SPEE ET AL., J. ORG. CHEM, vol. 66, 2001, pages 1647 - 56

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034970A (ja) * 2010-03-26 2016-03-17 ハネウェル・インターナショナル・インコーポレーテッド ヘキサフルオロ−2−ブテンの製造方法
JP2017125023A (ja) * 2010-03-26 2017-07-20 ハネウェル・インターナショナル・インコーポレーテッド ヘキサフルオロ−2−ブテンの製造方法
EP2571836B1 (fr) 2010-05-21 2016-10-26 Honeywell International Inc. Procédé de fabrication d'hexafluoro-2-butyne
US8901360B2 (en) 2010-05-21 2014-12-02 Honeywell International Inc. Process for cis 1,1,1,4,4,4-hexafluoro-2-butene
JP2013529216A (ja) * 2010-05-21 2013-07-18 ハネウェル・インターナショナル・インコーポレーテッド 1,1,1,4,4,4−ヘキサフルオロ−2−ブテンのための方法
JP2013529215A (ja) * 2010-05-21 2013-07-18 ハネウェル・インターナショナル・インコーポレーテッド ヘキサフルオロ−2−ブチンの製造方法
JP2013530143A (ja) * 2010-05-21 2013-07-25 ハネウェル・インターナショナル・インコーポレーテッド フッ素化アルケンの製造方法
US8524955B2 (en) 2010-05-21 2013-09-03 Honeywell International Inc. Process for the preparation of hexafluoro-2-butyne
CN102892738A (zh) * 2010-05-21 2013-01-23 霍尼韦尔国际公司 生产氟代烯烃的方法
EP2571836B2 (fr) 2010-05-21 2019-10-23 Honeywell International Inc. Procédé de fabrication d'hexafluoro-2-butyne
WO2011158790A1 (fr) * 2010-06-14 2011-12-22 独立行政法人産業技術総合研究所 Procédé pour la production d'un composé de fluor
JP2012001448A (ja) * 2010-06-14 2012-01-05 National Institute Of Advanced Industrial Science & Technology フッ素化合物の製造方法
WO2012079011A1 (fr) * 2010-12-10 2012-06-14 E. I. Du Pont De Nemours And Company Purification du cis-1,1,1,4,4,4-hexafluoro-2-butène par distillation extractrice
US8871987B2 (en) 2010-12-10 2014-10-28 E I Du Pont De Nemours And Company Purification of cis-1,1,1,4,4,4-hexafluoro-2-butene via extractive distillation
EP3102556A1 (fr) * 2014-02-07 2016-12-14 The Chemours Company FC, LLC Procédé intégré de production de z-1,1,1,4,4,4-hexafluoro-2-butène
EP3102556B1 (fr) * 2014-02-07 2023-03-29 The Chemours Company FC, LLC Procédé intégré de production de z-1,1,1,4,4,4-hexafluoro-2-butène
CN106008147A (zh) * 2016-05-23 2016-10-12 北京宇极科技发展有限公司 Z-1,1,1,4,4,4-六氟-2-丁烯的制备方法
CN106008147B (zh) * 2016-05-23 2018-11-02 北京宇极科技发展有限公司 Z-1,1,1,4,4,4-六氟-2-丁烯的制备方法
CN116060010A (zh) * 2023-03-31 2023-05-05 北京宇极科技发展有限公司 引发剂、氟化催化剂以及e-1,1,1,4,4,4-六氟-2-丁烯的制备方法

Also Published As

Publication number Publication date
CN102112420A (zh) 2011-06-29
EP2310347A4 (fr) 2012-10-31
WO2010014548A3 (fr) 2010-04-01
KR20110049820A (ko) 2011-05-12
MX2011000995A (es) 2011-03-04
JP2011529893A (ja) 2011-12-15
EP2310347A2 (fr) 2011-04-20

Similar Documents

Publication Publication Date Title
EP2310347A2 (fr) Procédé pour la préparation de cis-alcène perfluoré
EP2576488B1 (fr) Procédé de fabrication du cis-1,1,1,4,4,4,-hexafluoro-2-butène
US8530709B2 (en) Process for the production of fluorinated alkenes
US8383867B2 (en) Method for producing fluorinated organic compounds
JP4958790B2 (ja) ハイドロフルオロアルカノールのハイドロフルオロアルケンへの接触転化
EP2348007B1 (fr) Procédé pour la préparation du cf3cf2ch2cl
US8329964B2 (en) Method for preparing 2,3,3,3-tetrafluoro-1-propene
EP2091900B1 (fr) Procédé de fabrication d'oléfines fluorées
JP5828761B2 (ja) ジヒドロフルオロアルケンを製造するための高選択性方法
EP2675773A2 (fr) Procédé de préparation de cis-1-chloro-3,3,3-trifluoropropène
JP2011506611A (ja) 3−クロロパーフルオロ−2−ペンテン、オクタフルオロ−2−ペンチン、および1,1,1,4,4,5,5,5−オクタフルオロ−2−ペンテンの合成方法
US8143462B2 (en) Processes for the synthesis of 2-chloro-1,1,1,3,3,4,4,4-heptafluoro-2-butene and hexafluoro-2-butyne
US8940948B2 (en) Process for the manufacture of fluorinated olefins
CN113527046B (zh) HFO-1234ze的制备方法
US20160340277A1 (en) Process for the manufacture of fluorinated olefins
CA2133971C (fr) Procede de preparation d'hexafluorobutane
CN115925509A (zh) 一种3,3,3-三氟丙烯的制备方法
CN113527035A (zh) 一种顺式-HFO-1234ze的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130018.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09803441

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009803441

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/000995

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2011521221

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 695/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117004186

Country of ref document: KR

Kind code of ref document: A