WO2010013634A1 - 電子体温計 - Google Patents

電子体温計 Download PDF

Info

Publication number
WO2010013634A1
WO2010013634A1 PCT/JP2009/063181 JP2009063181W WO2010013634A1 WO 2010013634 A1 WO2010013634 A1 WO 2010013634A1 JP 2009063181 W JP2009063181 W JP 2009063181W WO 2010013634 A1 WO2010013634 A1 WO 2010013634A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic thermometer
inner case
electrodes
probe
pair
Prior art date
Application number
PCT/JP2009/063181
Other languages
English (en)
French (fr)
Inventor
中西義人
森田勝美
萩本武志
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to DE112009001694T priority Critical patent/DE112009001694T5/de
Priority to CN2009801299484A priority patent/CN102112853A/zh
Priority to RU2011107279/28A priority patent/RU2497441C2/ru
Publication of WO2010013634A1 publication Critical patent/WO2010013634A1/ja
Priority to US13/008,467 priority patent/US20110118623A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals

Definitions

  • the present invention relates to an electronic thermometer.
  • thermometer capable of correctly measuring a body temperature by detecting whether or not a human body is in contact with a temperature measuring unit in which a temperature sensor is disposed.
  • thermometer As an electronic thermometer of this type, for example, in Patent Document 1, as a method for detecting contact with a human body, an electronic device using a switch, contact resistance, capacitance, humidity, pressure (contact), temperature comparison, temperature change, etc. A thermometer is described.
  • the configuration described in Patent Document 1 is such that the contact detection unit is exposed on the surface of the temperature detection probe, and the assembly operation of the contact detection unit including the internal wiring makes the contact detection unit a part of the temperature detection probe. Since it becomes the operation
  • Patent Document 2 proposes that the contact detection portion is made of a conductive paste, it is necessary to integrate the conductive paste with the sheet, and the configuration becomes complicated.
  • the present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide an electronic thermometer capable of confirming the contact state of a human body with a simple and easy-to-assemble configuration. It is in.
  • the electronic thermometer in the present invention is: An inner hollow outer case having a probe part provided at the tip with a temperature measuring part applied to the measurement site of the user, in which a temperature sensor for detecting the temperature is disposed;
  • an electronic thermometer comprising an inner case mounted with an electronic circuit board on which a control circuit for processing data detected by the temperature sensor is formed and mounted in a hollow interior of the outer case, A pair of electrodes that are fixed to the inner case and positioned on the inner side of the probe unit by being attached to the outer case;
  • the control circuit measures the capacitance between the pair of electrodes, and determines whether or not the probe unit is appropriately in contact with the measurement site of the user based on the change in the measured capacitance.
  • a determination unit for determining is provided.
  • the capacitance between the pair of electrodes arranged inside the hollow of the probe changes. Based on this change in capacitance, it can be determined whether or not the probe unit is in proper contact with the measurement site of the user.
  • the same outer case can be used. That is, it is not necessary to change the shape of the outer case to a special shape that allows the electrodes to be arranged. Further, by mounting the inner case in the hollow inside of the outer case, the electrode can be positioned at an appropriate detection position inside the probe portion. This facilitates the electrode mounting operation.
  • the case where the probe unit is in proper contact with the measurement site of the user means, for example, a state where the tip of the probe unit on which the temperature sensor is disposed is firmly applied to the most recessed part of the armpit If the entire probe unit is firmly held under the armpit, or the entire probe unit is firmly held between the tongue and lower jaw with the tip of the probe unit held firmly under the tongue And so on.
  • the pair of electrodes are arranged at intervals in the longitudinal direction of the probe portion.
  • a gap is formed between the end faces facing each other in the longitudinal direction of the probe portion in the pair of electrodes.
  • the change in capacitance between the electrodes increases as the place where the human body comes into contact is closer to the gap. Therefore, the capacitance when the human body contacts the outer surface of the probe portion in the circumferential direction along the gap is maximized.
  • the human body comes into contact with the entire circumference of the outer surface of the probe part. Therefore, whether or not the temperature measuring unit at the tip of the probe is firmly sandwiched between the armpit and the like by setting the capacitance at this time to the capacitance when the temperature measuring unit is in proper contact with the measurement site Can be determined.
  • the pair of electrodes may be fixed to the inner case by fitting a concave portion or a convex portion provided in the pair of electrodes with a convex portion or a concave portion provided in the inner case.
  • the electrode can be easily attached and the electrode can be accurately positioned.
  • the pair of electrodes and / or the inner case may have a plurality of the recesses or protrusions.
  • the pair of electrodes and the inner case may be provided with screw fitting portions provided so as to be fitted to each other.
  • the electrode can be easily attached by fixing the electrode to the inner case by fitting the screw fitting portion. Further, the arrangement of the electrodes can be easily and finely changed by changing the fitting position. Therefore, when the appropriate detection position varies depending on the user's physique, the product specification can be easily changed by changing the electrode positioning position. That is, it is not necessary to prepare a plurality of types of inner cases having different electrode positioning positions in order to change product specifications. Thereby, it can be excellent in productivity.
  • the electrode fixing portion in the inner case may have a portion having elasticity, and the pair of electrodes may be pressed and positioned so as to be in close contact with the inner wall surface of the probe portion.
  • the change in the capacitance between the electrodes increases as the distance between the electrode and the gap between the electrodes and the place where the human body comes into contact is increased. Therefore, when the electrode is in close contact with the inner wall surface of the probe portion, a layer other than the probe portion, for example, an air layer, is not interposed between the electrode and the human body, so that the detection accuracy can be improved.
  • the contact state of the human body can be confirmed with a simple and easy-to-assemble configuration.
  • FIG. 1 It is a graph which shows the mode of the change of an electrostatic capacitance when a to-be-measured part contacts the temperature measuring part appropriately.
  • FIG. 1 It is a schematic block diagram which shows the electrical structure of an electronic thermometer. It is a figure explaining the principle which the electrostatic capacitance between conductors changes, Comprising: The mode of the electric charge between electrodes in the state which the human body is not contacting is shown. It is a figure explaining the principle which the electrostatic capacitance between conductors changes, Comprising: The mode of the electric charge between electrodes in the state which the human body contacted is shown. It is a flowchart of the body temperature measurement of an electronic thermometer. It is a schematic diagram of the electronic thermometer which concerns on the modification 1.
  • FIG. 1 It is a graph which shows the mode of the change of an electrostatic capacitance when a to-be-measured part contacts the temperature measuring part appropriately.
  • FIG. 1 It is a schematic block diagram which shows the electrical structure of an electronic thermometer
  • FIG. 10 is a schematic cross-sectional view of an electronic thermometer according to Modification 3.
  • FIG. It is a perspective view which shows the mode of the fixing
  • FIG. 1 is a perspective view of an electronic thermometer according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged perspective view showing the vicinity of the probe portion of the electronic thermometer according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged perspective view illustrating a part of the inner case according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view showing the back side of FIG.
  • FIG. 5 is a perspective view of an electrode according to Example 1 of the present invention.
  • FIG. 6 is a plan view illustrating a wiring configuration of the electronic thermometer according to the first embodiment of the present invention.
  • FIG. 1 is a perspective view of an electronic thermometer according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged perspective view showing the vicinity of the probe portion of the electronic thermometer according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged perspective view illustrating a part of the inner case according to the first embodiment of the present invention.
  • FIG. 4 is
  • FIG. 7 is a cross-sectional view illustrating a wiring configuration of the electronic thermometer according to the first embodiment of the present invention.
  • FIG. 8 is a graph showing a change in capacitance when the horizontal axis is time (s) and the vertical axis is capacitance (pF), and the probe unit appropriately contacts the measurement site.
  • FIG. 9 is a schematic block diagram showing the electrical configuration of the electronic thermometer.
  • FIG. 10 is a diagram for explaining the principle that the capacitance between the electrodes changes due to the contact of the human body.
  • FIG. 10A shows the state of charge between the electrodes when the human body is not in contact
  • FIG. 10B shows the contact of the human body. The state of charge between the electrodes in the state is shown.
  • FIG. 11 is a flowchart of temperature measurement of the electronic thermometer according to the first embodiment of the present invention.
  • an electronic thermometer 1 includes an inner hollow outer case (housing) 10 that constitutes an external appearance and has waterproofness.
  • the outer case 10 includes a display unit 21, a switch 22, a main body unit 20 including a battery cover 23 for exchanging a power source such as a battery, and a temperature measuring unit 31 applied to a measurement site such as an armpit or sublingual. It is comprised from the probe part 30 which equipped with the front-end
  • the outer case 10 is made of ABS resin or elastomer.
  • various main internal components (circuit board, power supply, display panel such as LCD, buzzer, etc.) in the electronic thermometer 1 are attached to the inner case 40. Then, the inner case 40 to which various internal components are attached is mounted in the outer case 10.
  • the temperature measuring unit 31 at the tip of the probe unit 30 includes a cap 5 made of stainless steel (SUS) and the like, and a temperature sensor 6 such as a thermistor embedded and fixed inside the cap 5 with an adhesive.
  • the temperature sensor 6 is electrically connected to the CR oscillation circuit in the inner case 40 via a lead wire 41 extending from the inner case 40 through the hollow interior of the probe unit 30.
  • the temperature sensor 6 changes the resistance value corresponding to the heat transmitted from the outer surface of the temperature measuring unit 31 (cap 5). The change in the resistance value is output to the CR oscillation circuit to measure the body temperature.
  • a pair of conductors 7 a and 7 b as contact detection sensors are disposed inside the hollow portion of the probe unit 30.
  • the pair of conductors 7a and 7b are members made of aluminum, phosphor bronze, copper, SUS, or the like, and are arranged in the longitudinal direction inside the hollow of the probe unit 30 with a predetermined interval (gap 8) therebetween. It is arranged adjacent to.
  • the outer peripheral surfaces of the conductors 7a and 7b are configured to be in contact with the inner surface of the probe unit 30 with almost no gap so that a dielectric layer of air is not formed between the conductors 7a and 7b and the human body.
  • the pair of conductors 7 a and 7 b are fixed to an electrode fixing portion 42 that extends from the inner case 40 toward the distal end (temperature measuring portion 31) side of the probe portion 30 from the inner case 40.
  • the electrode fixing portion 42 is provided with convex portions 43a and 43b.
  • the conductors 7a and 7b are provided with concave portions 70a and 70b corresponding to the convex portions 43a and 43b, respectively.
  • the conductors 7a and 7b are fixed to the electrode fixing portion 42 by fitting the concave portions 70a and 70b and the convex portions 43a and 43b.
  • the conductor 7a and the electrode fixing portion 42 are provided with a groove portion 71 and a groove portion 45 for passing the lead wire 41 that connects the temperature sensor 6 and the inner case 4, respectively.
  • the pair of conductors 7a and 7b fixed to the electrode fixing portion 42 are connected to the circuit board of the inner case 4 via lead wires 44a and 44b, respectively, while being insulated from each other.
  • a pair of electrodes (capacitors) that store charges can be obtained.
  • the electrostatic capacitance generated between the conductors (electrodes) 7a and 7b changes due to the difference in dielectric constant between air and the human body when the human body contacts the outside of the conductors 7a and 7b via the probe unit 30.
  • the pair of conductors (electrodes) 7 a and 7 b function as the contact detection sensor 7 that detects whether or not the human body is in contact with the probe unit 30.
  • Body temperature measurement is performed in a state in which the probe unit 30 is held between a part of a human body such as a armpit and the temperature measuring unit 31 is applied to a measurement site. Therefore, the contact detection sensor 7 arranged inside the probe unit 30 senses the contact state of the human body, so that it can be detected whether or not the temperature measuring unit 31 is in proper contact with the measurement site.
  • the capacitance between the conductors 7 a and 7 b is about 2 pF before the portion to be measured contacts the temperature measuring unit 31, but is about 3 pF after the contact. . That is, it can be seen that the capacitance of the contact detection sensor 7 increases by about 1 pF when the part to be measured contacts the temperature measuring unit 31.
  • M1 in a figure represents the moment when the probe part was pinched firmly under the armpit. Therefore, for example, it is possible to determine whether or not the temperature measuring unit 31 is appropriately in contact with the measurement site on the basis of the case where the amount of increase in capacitance exceeds 0.5 pF.
  • the amount of increase in the capacitance increases as the place where the human body comes into contact is closer to the gap formed between the opposing surfaces forming the shortest distance in the conductors 7a and 7b.
  • the substantially annular end faces of the conductors 7a and 7b that face each other in the axial direction are the facing surfaces that form the shortest distance. Therefore, when the human body contacts the outer surface of the probe unit 30 over the entire circumference along the gap 8 formed between the facing surfaces, the increase in the capacitance becomes the largest. Therefore, by setting the capacitance at this time to the capacitance when the temperature measuring unit 31 is in proper contact with the part to be measured, the temperature measuring unit 31 at the tip of the probe unit 30 is firmly sandwiched between the armpit and the like. It can be determined whether or not.
  • the amount of increase in capacitance increases as the contact area between the probe unit 30 and the human body increases. Therefore, for example, by setting the amount of increase in the reference for determining that the temperature measuring unit 31 is in proper contact with the measurement site as larger than the amount of increase when the probe unit 30 is pinched with a fingertip or the like, an error may occur. Judgment can be prevented.
  • the electronic thermometer 1 mainly includes a temperature sensor 6, a contact sensor 7, a power supply unit 11, an LCD 12, a buzzer 13, a CPU (central processing unit) 14, a memory 15, CR oscillation circuits 16 and 17.
  • the power supply unit 11 has a power source such as a battery and supplies power to the CPU 14.
  • LCD12 displays a measurement result etc. by control from CPU14 as a display part.
  • the buzzer 13 sounds an alarm under the control of the CPU 14 as a notification means for the user.
  • the CPU 14 is connected to a memory 15 including a storage device such as a ROM or a RAM.
  • the CR oscillation circuit 16 converts the change in the resistance value output from the temperature sensor 6 into a frequency and inputs it to the CPU 14.
  • the CR oscillation circuit 17 converts the change in capacitance output from the contact detection sensor 7 into a frequency and inputs it to the CPU 14.
  • the relative permittivity of the human body is larger than the relative permittivity of air, when the human body 9 comes into contact with the probe unit 30, more electric charge than that of air is generated in the region of the human body 9 near the electrodes. Thereby, the electrostatic capacitance between the conductors 7a and 7b increases.
  • the CPU14 measures the change of the electrostatic capacitance frequency-converted by the CR oscillation circuit 17, and determines whether the temperature measuring part 31 is in proper contact with the part to be measured. That is, in the electronic thermometer 1 according to the present embodiment, the CPU 14 serves as both the measurement unit and the determination unit in the present invention.
  • the CPU 14 when the power is turned on (S101), the CPU 14 starts detecting the temperature by the temperature sensor 6 (S102) and starts detecting the capacitance by the contact sensor 7. (S103).
  • the capacitance value C0 (pF) detected immediately after the power is turned on is stored in the memory 15.
  • the CPU 14 determines whether or not the temperature measuring unit 31 has appropriately contacted the measurement site depending on whether or not the capacitance value C (pF) detected thereafter has increased beyond a predetermined value with respect to C0. Is determined (S104). Immediately after the power is turned on, the electronic thermometer 1 is not yet held between the armpits.
  • the CPU 14 determines that the temperature measuring unit 31 is not properly in contact with the measurement site (S104, NO), and the buzzer 13 sounds an alarm (S105). .
  • the temperature and capacitance are detected until the detected capacitance value C increases beyond a predetermined value with respect to the capacitance value C0 immediately after the power is turned on within a certain time from the occurrence of the alarm, that is, The process is repeated until it is determined that the temperature measuring unit 31 is in proper contact with the part to be measured (S104, NO, S106, NO).
  • the detected value is stored in the memory 15 as needed.
  • the above-mentioned predetermined value can be set to 0.5 pF, for example.
  • the detection condition for example, the temperature and capacitance are detected every second, and the period for determining whether or not the temperature measuring unit 31 is in proper contact with the measurement site is 15 seconds. be able to.
  • these conditions are an example and are not limited to this.
  • the CPU 14 determines that the temperature measuring unit 31 has appropriately contacted the measurement site. Then, it shifts to body temperature measurement and starts predictive measurement (S108).
  • the buzzer 13 The alarm is stopped (S114), and the CPU 14 continues the temperature measurement until the prediction completion condition is satisfied, and continues to detect the capacitance of the touch sensor 7 (S115, NO, S108, S109).
  • the difference (C ⁇ C0) between the detected capacitance value and the capacitance value immediately after the power is turned on, for example, due to the position of the temperature measuring unit 31 being shifted, is the aforementioned predetermined value.
  • the CPU 14 determines that the temperature measuring unit 31 is not in proper contact with the part to be measured, and the buzzer 13 sounds an alarm (S111).
  • the alarm is issued until the difference (C ⁇ C0) between the detected capacitance value and the capacitance value immediately after power-on exceeds the predetermined value within a certain time (for example, 15 seconds), that is, The temperature measurement unit 31 is continued or repeated until it is determined that the temperature measurement unit 31 is in proper contact with the part to be measured by correcting the positional deviation of the temperature measurement unit 31 (S110, NO, S111, S112, NO). ).
  • the CPU 14 performs measurement. The process is canceled and an error display is displayed on the LCD 12 (S113).
  • the buzzer 13 stops the alarm (S114), and the CPU 14 continues to detect the body temperature and the capacitance until the prediction completion condition is satisfied (S115, NO).
  • the CPU 14 determines that an appropriate contact state is maintained. , S114 is skipped and the detection of the body temperature and the capacitance is continued until the prediction completion condition is satisfied (S115, NO).
  • the CPU 14 ends the measurement, calculates the predicted value, and displays the measurement result on the LCD 12 (S116).
  • the same outer case can be used. That is, there is no need to change the shape of the outer case to a special shape that allows the electrodes to be arranged. Further, by mounting the inner case in the hollow inside of the outer case, the electrode can be positioned at an appropriate detection position inside the probe portion. This facilitates the electrode mounting operation.
  • the contact state of the human body can be confirmed with a simple and easy-to-assemble configuration.
  • FIG. 12 is a schematic diagram of an electronic thermometer according to the first modification.
  • 13A and 13B are schematic views of an electronic thermometer according to Modification 2.
  • FIG. 13A is a cross-sectional view of the probe portion
  • FIG. 13B is a cross-sectional view of the conductor
  • FIG. FIG. 14 is a schematic cross-sectional view of an electronic thermometer according to the third modification.
  • the method for fixing the pair of conductors and the inner case is not limited to the method using concave and convex fitting as in the above-described embodiment, and various methods can be appropriately employed.
  • the electrode fixing portion 42a is provided with an inclined or tapered surface 43c instead of the convex portions 43a and 43b.
  • the pair of conductors 7a and 7b are provided with inclined or tapered surfaces 70a 'and 70b' corresponding to the surface 43c. When the surface 43c and the surfaces 70a 'and 70b come into contact with each other, the pair of conductors 7a and 7b are positioned and fixed to the electrode fixing portion 42a.
  • the conductors 7a and 7b fixed to the inner case 4 are arranged along the direction in which the probes 30 are inserted into the probe unit 30.
  • a groove 32 is provided on the inner wall surface.
  • a convex portion (rib) 72 fitted into the groove 32 is provided on the outer peripheral surface of the conductor 7a.
  • the contact surface between the probe unit 30 and the conductors 7a and 7b is configured as an uneven surface, thereby increasing the contact area between the probe unit 30 and the conductors 7a and 7b and increasing the amount of change in capacitance.
  • the detection accuracy can be improved.
  • the conductors 7a and 7b can be smoothly inserted (attached).
  • channel in the outer peripheral surface of the conductors 7a and 7b, and provides a convex part in the inner wall face of the probe part 30 may be sufficient.
  • the electrode fixing portion 42b has a portion having elasticity, and the conductor is held by the electrode fixing portion 42b when the inner case is attached to the outer case.
  • 7 a and 7 b are configured to be in close contact with the inner wall surface 33 of the probe unit 30.
  • an air layer is not interposed between the conductors 7a and 7b and the human body. The detection accuracy can be improved.
  • the elastic portion of the electrode fixing portion 42b is a portion other than between the conductors 7a and 7b. More preferably, the electrode fixing portion 42b is configured such that an elastic member such as an elastomer is integrally formed in a portion between the portion where the conductor 7b on the side close to the substrate is fixed and the substrate fixing portion in the inner case. The other parts may be made of the same material as the inner case. According to such a configuration, the portion to which the conductors 7a and 7b are fixed and the state between the conductors 7a and 7b can be stably fitted and fixed.
  • FIG. 15 is a perspective view which shows the mode of the fixing
  • FIG. 16 is a perspective view of an electrode according to Example 2 of the present invention.
  • FIG. 17 is a perspective view of a part (electrode fixing portion) of the inner case according to the second embodiment of the present invention.
  • the distance (gap) of the gap formed between the pair of conductors can be selected.
  • the conductor 7a ' is provided with two concave portions 70a and 70c
  • the electrode fixing portion 42c is provided with two convex portions 43a and 43c.
  • FIG. 15 in a state where the convex portion 43c is fitted in the concave portion 70a, a mounting state in which the gap between the conductor 7a 'and the conductor 7b' is large is obtained.
  • the gap between the conductor 7a 'and the conductor 7b' is narrowed. It becomes.
  • the gap between the conductors can be adjusted by changing the combination of the concave and convex fittings. Accordingly, by manufacturing the electronic thermometer by fixing the conductor with a gap suitable for the user's physique, it is possible to cope with different product specifications with one type of inner case (electrode fixing portion) and conductor. That is, it is not necessary to prepare a plurality of types of inner cases (electrode fixing portions), conductors and the like having different mounting positions, and the productivity can be improved.
  • FIG. 18 is a perspective view showing a state of a fixing portion between the electrode and the inner case (electrode fixing portion) in the electronic thermometer 1b according to the third embodiment of the present invention.
  • FIG. 19 is a perspective view of an electrode according to Example 3 of the present invention.
  • FIG. 20 is a perspective view of a part (electrode fixing part) of the inner case according to the third embodiment of the present invention.
  • the conductors 7a ′′ and 7b ′′ are provided with convex portions 73a and 73b, respectively.
  • a plurality of holes 46 into which the convex portions 73a and 73b can be fitted are equally arranged in the electrode fixing portion 42d along the extending direction of the electrode fixing portion 42d (longitudinal direction of the probe portion).
  • the fixing positions of the conductors 7a ′′ and 7b ′′ can be changed by changing the holes 46 into which the convex portions 73a and 73b are fitted. That is, the size of the gap between the conductors 7a "and 7b" can be changed, and the position of the gap in the probe portion can be changed.
  • an electronic thermometer by selecting a gap suitable for the user's physique, it is possible to cope with different product specifications with one type of inner case (electrode fixing part) and conductor. That is, it is not necessary to prepare a plurality of types of inner cases (electrode fixing portions), conductors and the like having different mounting positions, and the productivity can be improved.
  • FIG. 21 is a schematic diagram illustrating a configuration of an electronic thermometer 1c according to the fourth embodiment of the present invention
  • FIG. 21A is a perspective view of an electrode and a part of the inner case (electrode fixing portion) according to the fourth embodiment of the present invention
  • FIG. 21B is a cross-sectional view of the electrode and a part of the inner case (electrode fixing portion) according to the fourth embodiment of the present invention.
  • the size of the gap between the conductors and the position where the gap is formed can be selected finely.
  • a fixed portion (electrode fixing portion) of the pair of conductors in the inner case is a screw portion 42f having a male screw formed on the outer peripheral surface.
  • the conductor 7a '' ' has a non-penetrating screw hole 74a with an internal thread formed on the inner peripheral surface
  • the conductor 7b' '' has a threaded hole 74b with an internal thread formed on the inner peripheral surface.
  • the fixing positions of the conductors 7a “" and 7b “” can be changed by changing the fitting positions of the screw portion 42f and the screw holes 74a and 74b. That is, the size of the gap between the conductors 7a “" and 7b “” can be changed, and the position of the gap in the probe portion can be changed. In particular, since the position can be changed by adjusting the fitting position of the threaded portion, finer position adjustment is possible than in the third embodiment.
  • an electronic thermometer by selecting a gap suitable for the user's physique, it is possible to cope with different product specifications with one type of inner case (electrode fixing part) and conductor. That is, it is not necessary to prepare a plurality of types of inner cases (electrode fixing portions), conductors and the like having different mounting positions, and the productivity can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

 簡易かつ組立の容易な構成により人体の接触状態を確認することができる電子体温計を提供する。使用者の被測定部位に当てられる測温部を先端に備えるプローブ部30を有し、該測温部に温度を検出するための温度センサ6が配置される内部中空の外ケースと、温度センサ6によって検出されるデータを処理する制御回路が形成された電子回路基板が取り付けられて、外ケースの中空内部に装着される内ケース40と、内ケース40に固定され、内ケース40が外ケースに装着されることによりプローブ部30の内側に位置決めされる一対の電極7a、7bと、を備え、制御回路には、一対の電極間の静電容量を計測し、計測された静電容量の変化に基づいてプローブ部30が使用者の被測定部位に適切に接触しているか否かを判定する判定部が設けられていることを特徴とする。

Description

電子体温計
 本発明は、電子体温計に関するものである。
 従来、温度センサが配置された測温部に人体が接触しているか否かを検知することにより体温を正しく測ることが可能な電子体温計が知られている。
 この種の電子体温計として、例えば、特許文献1には、人体の接触を検知する方法として、スイッチ、接触抵抗、静電容量、湿度、圧力(接点)、温度比較、温度変化などを利用した電子体温計が記載されている。
 しかしながら、人体の接触状態を正しく検知するためには、検知部を適正な位置に配置して組み立てる必要があり、また、検知部を備えていない通常の電子体温計と比べると部品構成が複雑となるため、組立性に課題がある。特に、特許文献1に記載された構成は、接触検知部が検温プローブの表面に露出して設けられており、内部配線を含む接触検知部の組み付け作業が接触検知部を検温プローブの一部に設けられた穴に嵌め込む作業となるため、作業性の悪い構成となっている。したがって、検温プローブを分割して接触検知部を覆うように組み立てる構成とすることが考えられる。しかし、検温プローブの分割部を固定することが必要となるため、作業工程が増えることになる。
 また、使用者の体格の違い等により適切な接触検知位置が異なるような場合には、検知部の設置位置がそれぞれ異なる複数の検温プローブを用いることが考えられる。しかし、この場合、それぞれに適した検温プローブと接触検知部を用意することが必要となるため、生産性の点で課題がある。
 また、特許文献2には、接触検知部を導電性ペーストで構成したものが提案されているが、導電性ペーストをシートと一体化する必要があり構成が複雑となってしまう。
特表昭61-500038号公報 特開2007-195618号公報
 本発明は上記の従来技術の課題を解決するためになされたもので、その目的とするところは、簡易かつ組立の容易な構成により人体の接触状態を確認することができる電子体温計を提供することにある。
 上記目的を達成するために、本発明における電子体温計は、
 使用者の被測定部位に当てられる測温部を先端に備えるプローブ部を有し、該測温部に温度を検出するための温度センサが配置される内部中空の外ケースと、
 前記温度センサによって検出されるデータを処理する制御回路が形成された電子回路基板が取り付けられて、前記外ケースの中空内部に装着される内ケースと、を備える電子体温計において、
 前記内ケースに固定され、前記内ケースが前記外ケースに装着されることにより前記プローブ部の内側に位置決めされる一対の電極を備えるとともに、
 前記制御回路には、前記一対の電極間の静電容量を計測し、計測された静電容量の変化に基づいて前記プローブ部が使用者の被測定部位に適切に接触しているか否かを判定する判定部が設けられていることを特徴とする。
 プローブが使用者の腋下等に挟まれるなどしてプローブ部が被測定部位に接触すると、プローブの中空内部に配置された一対の電極間の静電容量が変化する。この静電容量の変化に基づいて、プローブ部が使用者の被測定部位に適切に接触しているか否かを判定することができる。
 この構成によれば、人体の接触状態を検出するための電極が、外ケースの中空内部に配置されるので、外ケースは従来と同じものを用いることができる。すなわち、外ケースの形状を電極の配置が可能な特別な形状に変更する等の必要がない。また、内ケースを外ケースの中空内部に装着することによって電極をプローブ部内側の適正な検出位置に位置決めすることが可能となる。これにより、電極の取り付け作業が容易となる。
 ここで、プローブ部が使用者の被測定部位に適切に接触している場合とは、例えば、温度センサが配置されたプローブ部先端が腋下の一番くぼんだ部分にしっかりと当てられた状態でプローブ部全体が腋下にしっかりと密着して挟み込まれている場合や、プローブ部先端が舌下にしっかりと当てられた状態でプローブ部全体が舌と下顎との間でしっかりと保持されている場合などが挙げられる。
 前記一対の電極が、前記プローブ部の長手方向に互いに間隔を空けて並べられるとよい。
 これにより、一対の電極においてプローブ部の長手方向に互いに対向する端面の間にギャップが形成される。電極間の静電容量の変化は、人体が接触する場所がギャップに近いほど大きくなる。そのため、人体がギャップに沿ってプローブ部の外表面を周方向に囲むように接触したときの静電容量が最も大きくなる。また、通常、プローブ部が腋下に挟まれる場合はプローブ部外表面の全周に渡って人体が接触することになる。したがって、このときの静電容量を測温部が被測定部位に適切に接触した状態における静電容量とすることにより、プローブ先端の測温部が腋下等にしっかりと挟まれているか否かを判定することができる。
 前記一対の電極が、前記一対の電極に設けられた凹部又は凸部と前記内ケースに設けられた凸部又は凹部とが嵌合することによって、前記内ケースに固定されるとよい。
 このように、凹部と凸部とによる凹凸嵌合によって電極を内ケースに固定する構成とすることにより、電極の取り付け作業が容易となると共に、電極を正確に位置決めすることも可能となる。
 前記一対の電極および/または前記内ケースが、前記凹部又は凸部を複数有しているとよい。
 これにより、嵌合する凹部と凸部とを変更することによって、電極の配置を容易に変更することができる。したがって、使用者の体格の違いによって適正な検出位置が異なるような場合には、電極の位置決め位置を変更することによって容易に製品仕様を変更することが可能となる。すなわち、製品仕様を変更するために電極の位置決め位置がそれぞれ異なる複数の種類の内ケースを用意する必要がなくなり、生産性に優れたものとすることができる。
 あるいは、前記一対の電極及び前記内ケースに、互いに嵌合可能に設けられたねじ嵌合部が設けられているとよい。
 このように、ねじ嵌合部が嵌合することによって電極を内ケースに固定する構成とすることにより、電極の取り付け作業が容易となる。また、嵌合位置を変更することによって電極の配置を容易に、かつ、より細かく変更することができる。したがって、使用者の体格の違いによって適正な検出位置が異なるような場合には、電極の位置決め位置を変更することによって容易に製品仕様を変更することが可能となる。すなわち、製品仕様を変更するために電極の位置決め位置がそれぞれ異なる複数の種類の内ケースを用意する必要がなくなる。これにより、生産性に優れたものとすることができる。
 前記内ケースにおける電極固定部が弾力性を有する部分を有しており、前記一対の電極が前記プローブ部の内壁面に密着するように押し付けられて位置決めされるとよい。
 電極間の静電容量の変化は人体が接触する場所と電極間のギャップの距離が近いほど大きくなる。したがって、電極がプローブ部の内壁面に密着することによって、電極と人体との間にプローブ部以外のもの、例えば、空気の層が介在しなくなるため、検出精度の向上を図ることができる。
 なお、上記各構成は、可能な限り組み合わせて採用し得る。
 以上説明したように、本発明により、簡易かつ組立の容易な構成により人体の接触状態を確認することができる。
本発明の実施例1に係る電子体温計の斜視図である。 本発明の実施例1に係る電子体温計のプローブ部周辺を拡大して示す斜視図である。 本発明の実施例1に係る内ケースの一部を拡大して示す斜視図である。 図3の裏側を示す斜視図である。 本発明の実施例1に係る電極の斜視図である。 本発明の実施例1に係る電子体温計の配線構成を説明する平面図である。 本発明の実施例1に係る電子体温計の配線構成を説明する断面図である。 測温部に被測定部位が適切に接触した場合の静電容量の変化の様子を示すグラフである。 電子体温計の電気的構成を示す概略ブロック図である。 導体間の静電容量が変化する原理について説明する図であって、人体が接触していない状態における電極間の電荷の様子を示している。 導体間の静電容量が変化する原理について説明する図であって、人体が接触した状態における電極間の電荷の様子を示している。 電子体温計の体温測定のフローチャートである。 変形例1に係る電子体温計の模式図である。 変形例2に係る電子体温計の模式図であって、プローブ部の断面である。 変形例2に係る電子体温計の模式図であって、導体の断面である。 変形例2に係る電子体温計の模式図であって、プローブ部の一部を切り欠いて示す斜視図である。 変形例3に係る電子体温計の模式的断面図である。 本発明の実施例2に係る電極と内ケースとの固定部分の様子を示す斜視図である。 本発明の実施例2に係る電極の斜視図である。 本発明の実施例2に係る内ケースの一部(電極固定部)の斜視図である。 本発明の実施例3に係る電極と内ケースとの固定部分の様子を示す斜視図である。 本発明の実施例3に係る電極の斜視図である。 本発明の実施例3に係る内ケースの一部(電極固定部)の斜視図である。 本発明の実施例4に係る電子体温計1cの構成を説明する模式図であって、電極及び内ケースの一部(電極固定部)の斜視図である。 本発明の実施例4に係る電子体温計1cの構成を説明する模式図であって、電極及び内ケースの一部(電極固定部)の断面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
 (実施例1)
 図1~図11を参照して、本発明の実施例1に係る電子体温計について説明する。図1は、本発明の実施例1に係る電子体温計の斜視図である。図2は、本発明の実施例1に係る電子体温計のプローブ部周辺を拡大して示す斜視図である。図3は、本発明の実施例1に係る内ケースの一部を拡大して示す斜視図である。図4は、図3の裏側を示す斜視図である。図5は、本発明の実施例1に係る電極の斜視図である。図6は、本発明の実施例1に係る電子体温計の配線構成を説明する平面図である。図7は、本発明の実施例1に係る電子体温計の配線構成を説明する断面図である。図8は、横軸を時間(s)、縦軸を静電容量(pF)とし、プローブ部が被測定部位に適切に接触した場合の静電容量の変化の様子を示すグラフである。図9は、電子体温計の電気的構成を示す概略ブロック図である。図10は、人体の接触によって電極間の静電容量が変化する原理について説明する図であり、図10Aは人体が接触していない状態における電極間の電荷の様子、図10Bは人体が接触した状態における電極間の電荷の様子をそれぞれ示している。図11は、本発明の実施例1に係る電子体温計の体温測定のフローチャートである。
 <電子体温計全体の概略>
 主に、図1~図3を参照して、本発明の実施例1に係る電子体温計全体の概略について説明する。
 図1に示すように、本発明の実施例1に係る電子体温計1は、外観を構成するとともに防水性を備えた内部中空の外ケース(筐体)10を備えている。外ケース10は、表示部21やスイッチ22、電池等の電源を交換するためのバッテリカバー23などを備えた本体部20と、腋下や舌下などの被測定部位に当てられる測温部31を先端に備えたプローブ部30とから構成されている。外ケース10は、ABS樹脂やエラストマーなどからなる。
 図2に示すように、電子体温計1における各種主要な内部部品(回路基板、電源、LCD等の表示パネル、ブザーなど)は、内ケース40に取り付けられる。そして、各種内部部品が取り付けられた内ケース40が外ケース10の中に装着される。
 プローブ部30先端の測温部31は、ステンレス材(SUS)等からなるキャップ5と、キャップ5の内部に接着剤により埋設固定されるサーミスタ等の温度センサ6と、から構成される。温度センサ6は、内ケース40からプローブ部30の中空内部を通って延びるリード線41を介して、内ケース40内のCR発振回路に電気的に接続されている。温度センサ6は測温部31(キャップ5)の外表面から伝達される熱に対応して抵抗値を変化させる。この抵抗値の変化がCR発振回路に出力されることにより体温測定が行われる。
 図2に示すように、本実施例に係る電子体温計1は、プローブ部30の中空内部に、接触感知センサとしての一対の導体7a、7bが配置されている。
 <接触感知センサ>
 主に、図2~図7を参照して、本実施例に係る電子体温計1における接触感知センサの構成について説明する。
 図2に示すように、一対の導体7a、7bは、アルミニウム、りん青銅、銅、SUS等からなる部材であり、互いに所定の間隔(ギャップ8)を空けてプローブ部30の中空内部に長手方向に隣接して配置されている。導体7a、7bの外周面は、導体7a、7bと人体との間に空気の誘電層が形成されないように、プローブ部30の内表面とほとんど隙間なく接触するように構成されている。
 図3~図5に示すように、一対の導体7a、7bは、内ケース40からプローブ部30内部をプローブ部30の先端(測温部31)側に向かって延びる電極固定部42に固定される。電極固定部42には凸部43a、43bが設けられている。導体7a、7bには凸部43a、43bにそれぞれ対応する凹部70a、70bが設けられている。導体7a、7bは、凹部70a、70bと凸部43a、43bの嵌合により電極固定部42に固定される。また、導体7a及び電極固定部42には、それぞれ、温度センサ6と内ケース4とをつなぐリード線41を通すための溝部71及び溝部45が設けられている。
 図6及び図7に示すように、電極固定部42に固定された一対の導体7a、7bは、互いに絶縁された状態でそれぞれリード線44a、44bを介して内ケース4の回路基板に接続されており、電圧が加わることで電荷が蓄えられる一対の電極(コンデンサ)となる。この導体(電極)7a、7b間に生じる静電容量は、人体がプローブ部30を介して導体7a、7bの外側に接触すると、空気と人体の誘電率の違いにより変化する。これにより、この一対の導体(電極)7a、7bが、人体がプローブ部30に接触しているか否かを感知する接触感知センサ7として機能する。
 体温測定は、プローブ部30が腋下等の人体の一部に挟持されるとともに、測温部31が被測定部位に当てられた状態で行われる。したがって、プローブ部30の内側に配置された接触感知センサ7が人体の接触状態を感知することで、測温部31が被測定部位に適切に接触しているか否かを検出することができる。
 図8に示すように、導体7a、7b間の静電容量は、被測定部位が測温部31に接触する前が約2pFであったのに対し、接触した後は約3pFとなっている。すなわち、被測定部位が測温部31に接触することにより接触感知センサ7の静電容量は約1pF程度増加することがわかる。なお、図中のM1は、プローブ部が腋下にしっかり挟み込まれた瞬間を表している。したがって、例えば、静電容量の増加量が0.5pFを超える場合を基準として、測温部31が被測定部位に適切に接触しているか否かを判定することができる。
 ここで、静電容量の増加量は、人体が接触する場所が、導体7a、7bにおいて最短距離を形成する対向面の間に形成されるギャップに近いほど大きくなる。本実施例においては、導体7a、7bの軸方向に対向する略環状の端面が最短距離を形成する対向面となる。そのため、この対向面間に形成されるギャップ8に沿って、人体がプローブ部30の外表面を全周に渡って接触したときに静電容量の増加が最も大きくなる。したがって、このときの静電容量を測温部31が被測定部位に適切に接触した状態における静電容量とすることにより、プローブ部30先端の測温部31が腋下等にしっかりと挟まれているか否かを判定することができる。
 また、静電容量の増加量は、プローブ部30と人体との接触領域が広くなるほど大きくなる。したがって、例えば、測温部31が被測定部位に適切に接触していると判定する基準の増加量を、プローブ部30を指先などでつまんだ状態での増加量よりも大きく設定することで誤判定を防止することができる。
 <電子体温計の電気的構成>
 図9に示すように、電子体温計1は、主として、温度センサ6と、接触感知センサ7と、電源部11と、LCD12と、ブザー13と、CPU(中央処理装置)14と、メモリ15と、CR発振回路16、17と、を備えている。
 電源部11は、電池等の電源を有し、CPU14に電力を供給する。LCD12は、表示部として、CPU14からの制御により測定結果等を表示する。ブザー13は、使用者に対する報知手段として、CPU14からの制御により警報を鳴らす。また、CPU14には、ROMやRAM等の記憶装置からなるメモリ15が接続されている。
 CR発振回路16は、温度センサ6が出力する抵抗値の変化を周波数に変換してCPU14に入力する。CR発振回路17は、接触感知センサ7が出力する静電容量の変化を周波数に変換してCPU14に入力する。
 ここで、図10A、図10Bを参照して、導体(電極)7a、7b間の静電容量が変化する原理について説明する。なお、図では概念的に人体9と導体7とが直接接触しているように示しているが、実際には両者の間にプローブ部30が介在している。
 人体の比誘電率は空気の比誘電率よりも大きいため、人体9がプローブ部30に接触すると人体9のうち電極近傍の領域において空気よりも多くの電荷が誘電される。これにより、導体7a、7b間の静電容量が増加することになる。
 CPU14は、CR発振回路17で周波数変換された静電容量の変化を計測して、測温部31が被測定部位に適切に接触しているか否かを判定する。すなわち、本実施例に係る電子体温計1では、CPU14が、本発明における計測部と判定部とを兼ねている。
 <体温測定フロー>
 図11を参照して、本実施例に係る電子体温計1における体温測定のフローについて説明する。なお、ここでは本実施例の電子体温計1が予測式の場合を例にとって説明する。
 本実施例に係る電子体温計1は、電源がオンになると(S101)、CPU14は、温度センサ6による温度の検出を開始するとともに(S102)、接触感知センサ7による静電容量の検出を開始する(S103)。電源投入直後に検出された静電容量の値C0(pF)はメモリ15に記憶される。CPU14は、その後に検出される静電容量の値C(pF)がC0に対して所定値を超えて増加したか否かにより、測温部31が被測定部位に適切に接触したか否かを判定する(S104)。電源投入直後においては、電子体温計1がまだ腋下に挟まれていない状態である。したがって、検出される静電容量Cに変化は生じないため、CPU14は、測温部31が被測定部位に適切に接触していないとして(S104、NO)、ブザー13が警報を鳴らす(S105)。温度及び静電容量の検出は、検出された静電容量の値Cが、警報発生から一定時間内に電源投入直後の静電容量の値C0に対して所定値を超えて増大するまで、すなわち、測温部31が被測定部位に適切に接触したと判定されるまで、繰り返される(S104、NO、S106、NO)。検出された値は随時メモリ15に記憶される。
 ここで、上述の所定値としては、例えば、0.5pFとすることができる。また、検出条件の一例としては、例えば、温度及び静電容量の検出は1秒間毎に行い、測温部31が被測定部位に適切に接触したか否かを判定する期間を15秒間とすることができる。なお、これらの条件は一例であり、これに限定するものではない。
 一定時間経過しても静電容量の増加量(C-C0)が所定値に満たない場合には(S106、YES)、CPU14は、測温部31が被測定部位に適切に接触した状態にないと判定して測定を中止し、エラー表示をLCD12に表示する(S107)。一方、一定時間内に静電容量の増加量(C-C0)が所定値を超えた場合には(S104、YES)、CPU14は、測温部31が被測定部位に適切に接触したと判定して体温測定に移行し、予測測定を開始する(S108)。
 予測測定開始直後に最初に検出される静電容量の値と電源投入直後の静電容量の値との差(C-C0)が所定値を下回っていなければ(S110、YES)、ブザー13は警報を中止し(S114)、CPU14は、予測完了条件が満たされるまで温度測定を継続するとともに、引き続き接触感知センサ7の静電容量の検出を継続する(S115、NO、S108、S109)。体温測定中に、例えば、測温部31の位置がずれるなどにより、検出された静電容量の値と電源投入直後の静電容量の値との差(C-C0)が、前述の所定値を下回った場合には(S110、NO)、CPU14は、測温部31が被測定部位に対して適切に接触していないと判定し、ブザー13が警報を鳴らす(S111)。警報は、検出された静電容量の値と電源投入直後の静電容量の値との差(C-C0)が、一定時間(例えば、15秒)内に前述の所定値を超えるまで、すなわち、測温部31の位置のずれを修正するなどして測温部31が被測定部位に適切に接触していると判定されるまで、継続あるいは繰り返される(S110、NO、S111、S112、NO)。
 測温部31の位置が修正されずに、警報発生から一定時間内に静電容量の差(C-C0)が所定値を超えなかった場合には(S112、YES)、CPU14は、測定を中止してエラー表示をLCD12に表示する(S113)。一方、測温部31の位置が修正されて、警報発生から一定時間内に静電容量の差(C-C0)が所定値を超えた場合には(S112、NO、S110、YES)、ブザー13は警報を中止して(S114)、CPU14は予測完了条件が満たされるまで体温及び静電容量の検出を継続する(S115、NO)。
 警報が鳴らされずに静電容量の差(C-C0)が所定値よりも大きな値で維持されている間は(S110、YES)、CPU14は、適切な接触状態が維持されていると判定し、S114をスキップして予測完了条件が満たされるまで体温及び静電容量の検出を継続する(S115、NO)。
 予測完了条件が満たされると(S115、YES)、CPU14は測定を終了し、予測値を算出して測定結果をLCD12に表示する(S116)。
 <本実施例の優れた点>
 本実施例によれば、人体の接触状態を検出するための電極が、外ケースの中空内部に配置されるので、外ケースは従来と同じものを用いることができる。すなわち、外ケースの形状を電極の配置が可能な特別な形状に変更する等の必要がない。また、内ケースを外ケースの中空内部に装着することによって電極をプローブ部内側の適正な検出位置に位置決めすることが可能となる。これにより、電極の取り付け作業が容易となる。
 したがって、本実施例によれば、簡易かつ組立の容易な構成により人体の接触状態を確認することができる。
 <変形例>
 図12~図14を参照して本実施例の変形例に係る電子体温計について説明する。図12は、変形例1に係る電子体温計の模式図である。図13は、変形例2に係る電子体温計の模式図であり、図13Aはプローブ部の断面、図13Bは導体の断面、図13Cはプローブ部の一部を切り欠いて示す斜視図である。図14は、変形例3に係る電子体温計の模式的断面図である。
 一対の導体と内ケースとの固定方法としては、上記の実施例のような凹凸嵌合によるものに限定されず、種々の方法を適宜採用しうるものである。図12に示す変形例1に係る電子体温計においては、電極固定部42aに、凸部43a、43bに代えて、傾斜あるいはテーパ状の面43cが設けられている。また、一対の導体7a、7bに、面43cに対応する傾斜あるいはテーパ状の面70a′、70b′が設けられている。これら面43cと面70a′、70bとが当接することにより、一対の導体7a、7bが電極固定部42aに位置決め固定される。
 また、図13A、図13B、図13Cに示す変形例2に係る電子体温計においては、内ケース4に固定された導体7a、7bがプローブ部30に挿入される方向に沿って、プローブ部30の内壁面に溝32が設けられている。また、この溝32に嵌め込まれる凸部(リブ)72が導体7aの外周面に設けられている。このようにプローブ部30と導体7a、7bとの接触面が凹凸面で構成されることにより、プローブ部30と導体7a、7bとの接触面積を増加して静電容量の変化量を大きくして検出精度の向上を図ることができる。また、凸部72が溝32に嵌められた状態で導体7a、7bを押し込むことにより、導体7a、7bの挿入(取付)をスムーズに行うことができる。なお、導体7a、7bの外周面に溝を設けてプローブ部30の内壁面に凸部を設ける構成であってもよい。
 また、図14に示す変形例3に係る電子体温計においては、電極固定部42bが弾力性を有する部分を有しており、内ケースが外ケースに装着された状態において、電極固定部42bによって導体7a、7bがプローブ部30の内壁面33に押し付けられて密着した状態となるように構成されている。このように、導体7a、7bがプローブ部30の内壁面33に密着することによって、導体7a、7bと人体との間にプローブ部30以外のもの、例えば、空気の層が介在しなくなるため、検出精度の向上を図ることができる。なお、仮に電極固定部42b全体が弾力性を有していると、電極固定部42bの押し付け具合によっては組付け時に導体7a、7b間のギャップが小さくなってしまうことが考えられる。したがって、電極固定部42bにおいて弾力性を有する部分は、導体7a、7b間以外の部分とするのが好適である。より好適には、電極固定部42bは、基板に近い側の導体7bが固定される部分と内ケースにおける基板固定部分との間の部分にエラストマー等の弾性部材が一体成形された構成とし、それ以外の部分が内ケースと同じ材質の部材で構成されるとよい。このような構成によれば、導体7a、7bが固定される部分や導体7a、7b間が安定して嵌合固定される状態とすることができる。
 (実施例2)
 次に、図15~図17を参照して、本発明の実施例2に係る電子体温計1aについて説明する。図15は、本発明の実施例2に係る電子体温計1aにおける電極と内ケース(電極固定部)との固定部分の様子を示す斜視図である。図16は、本発明の実施例2に係る電極の斜視図である。図17は、本発明の実施例2に係る内ケースの一部(電極固定部)の斜視図である。ここでは、上記実施例と異なる点についてのみ説明し、共通する部材や構成については同様の符号を付して説明を省略する。また、共通する部材や構成によって生じる作用や効果等についても同様である。
 本実施例では、導体を内ケースに固定する際に、一対の導体間に形成される隙間の距離(ギャップ)を選択できるように構成されている。
 図に示すように、導体7a′には、2つの凹部70a、70cが設けられており、電極固定部42cには、2つの凸部43a、43cが設けられている。図15に示すように、凸部43cが凹部70aに嵌合した状態においては、導体7a′と導体7b′との間のギャップが大きい装着状態となる。一方、図示を省略するが、凹部70aに凸部43aが嵌合し、凹部70cに凸部43cが嵌合した状態においては、導体7a′と導体7b′との間のギャップが狭くなる装着状態となる。
 このように、凹部と凸部の嵌合の組み合わせを変えることにより、導体間のギャップを調整することができる。したがって、使用者の体格に適したギャップで導体を固定して電子体温計を製造することにより、異なる製品仕様に対して1種類の内ケース(電極固定部)及び導体によって対応することができる。すなわち、取付位置の異なる複数種類の内ケース(電極固定部)や導体等を用意する必要がなくなり、生産性に優れたものとすることができる。
 (実施例3)
 次に、図18~図20を参照して、本発明の実施例3に係る電子体温計1cについて説明する。図18は、本発明の実施例3に係る電子体温計1bにおける電極と内ケース(電極固定部)との固定部分の様子を示す斜視図である。図19は、本発明の実施例3に係る電極の斜視図である。図20は、本発明の実施例3に係る内ケースの一部(電極固定部)の斜視図である。ここでは、上記実施例と異なる点についてのみ説明し、共通する部材や構成については同様の符号を付して説明を省略する。また、共通する部材や構成によって生じる作用や効果等についても同様である。
 本実施例では、導体を内ケースに固定する際に、導体間のギャップだけでなく、ギャップが形成される位置も選択できるように構成されている。
 図に示すように、導体7a′′、7b′′には、それぞれ凸部73a、73bが設けられている。また、電極固定部42dには、凸部73a、73bが嵌合可能な複数の穴46が電極固定部42dの延出方向(プローブ部の長手方向)に沿って等配されている。これら凸部73a、73bと穴46とが嵌合することにより、導体7a′′、7b′′が電極固定部42dに固定されることになる。
 また、凸部73a、73bを嵌める穴46を変えることによって、導体7a′′、7b′′のそれぞれの固定位置を変更することができる。すなわち、導体7a′′、7b′′間のギャップの大きさを変えることもできるし、プローブ部におけるギャップの位置を変えることもできる。
 したがって、使用者の体格に適したギャップを選択して電子体温計を製造することにより、異なる製品仕様に対して1種類の内ケース(電極固定部)及び導体によって対応することができる。すなわち、取付位置の異なる複数種類の内ケース(電極固定部)や導体等を用意する必要がなくなり、生産性に優れたものとすることができる。
 (実施例4)
 次に、図21を参照して、本発明の実施例4に係る電子体温計1cについて説明する。図21は、本発明の実施例4に係る電子体温計1cの構成を説明する模式図であり、図21Aは本発明の実施例4に係る電極及び内ケースの一部(電極固定部)の斜視図であり、図21Bは本発明の実施例4に係る電極及び内ケースの一部(電極固定部)の断面図である。
 本実施例では、導体を内ケースに固定する際に、導体間のギャップの大きさ及びギャップが形成される位置を細かく選択できるように構成されている。
 図21A、図21Bに示すように、内ケースにおける一対の導体の固定部分(電極固定部)が、外周面に雄ねじが形成されたねじ部42fとなっている。また、導体7a′′′は、内周面に雌ねじが形成された貫通しないねじ穴74a、導体7b′′′は、内周面に雌ねじが形成された貫通するねじ孔74b、をそれぞれ有している。これらねじ部42fとねじ穴74a、ねじ孔74bとが嵌合されることによって、導体7a′′′、7b′′′が内ケース(ねじ部42f)に固定される(ねじ嵌合部)。なお、導体7a′′′のねじ穴74aは貫通するねじ孔にしてもよい。
 また、ねじ部42fとねじ穴74a、ねじ孔74bとの嵌合位置を変えることによって、導体7a′′′、7b′′′のそれぞれの固定位置を変更することができる。すなわち、導体7a′′′、7b′′′間のギャップの大きさを変えることもできるし、プローブ部におけるギャップの位置を変えることもできる。特に、ねじ部の嵌合位置の調整によって位置を変えることができるので、上記実施例3よりも、より細かい位置調整が可能となる。
 したがって、使用者の体格に適したギャップを選択して電子体温計を製造することにより、異なる製品仕様に対して1種類の内ケース(電極固定部)及び導体によって対応することができる。すなわち、取付位置の異なる複数種類の内ケース(電極固定部)や導体等を用意する必要がなくなり、生産性に優れたものとすることができる。
 以上述べた実施例の構成は、本発明の一具体例にすぎない。本発明は上記具体例に限定されることはなく、その技術的思想の範囲でさまざまな変形が可能である。また、上記実施例で述べた構成は、互いに組み合わせてもよい。
 1   電子体温計
 10 外ケース
 20 本体部
 30 プローブ部
 31 測温部
 40 内ケース
 5   キャップ
 6   温度センサ
 7   接触感知センサ
 7a、7b  導体(電極)
 8   ギャップ
 9   人体
 11 電源部
 12 LCD
 13 ブザー
 14 CPU
 15 メモリ
 16、17  CR発振回路

Claims (6)

  1.  使用者の被測定部位に当てられる測温部を先端に備えるプローブ部を有し、該測温部に温度を検出するための温度センサが配置される内部中空の外ケースと、
     前記温度センサによって検出されるデータを処理する制御回路が形成された電子回路基板が取り付けられて、前記外ケースの中空内部に装着される内ケースと、を備える電子体温計において、
     前記内ケースに固定され、前記内ケースが前記外ケースに装着されることにより前記プローブ部の内側に位置決めされる一対の電極を備えるとともに、
     前記制御回路には、前記一対の電極間の静電容量を計測し、計測された静電容量の変化に基づいて前記プローブ部が使用者の被測定部位に適切に接触しているか否かを判定する判定部が設けられていることを特徴とする電子体温計。
  2.  前記一対の電極が、前記プローブ部の長手方向に互いに間隔を空けて並べられることを特徴とする請求項1に記載の電子体温計。
  3.  前記一対の電極が、前記一対の電極に設けられた凹部又は凸部と前記内ケースに設けられた凸部又は凹部とが嵌合することによって、前記内ケースに固定されることを特徴とする請求項1または2に記載の電子体温計。
  4.  前記一対の電極および/または前記内ケースが、前記凹部又は凸部を複数有していることを特徴とする請求項3に記載の電子体温計。
  5.  前記一対の電極及び前記内ケースに、互いに嵌合可能に設けられたねじ嵌合部が設けられていることを特徴とする請求項1または2に記載の電子体温計。
  6.  前記内ケースにおける電極固定部が弾力性を有する部分を有しており、前記一対の電極が前記プローブ部の内壁面に密着するように押し付けられて位置決めされることを特徴とする請求項1または2に記載の電子体温計。
PCT/JP2009/063181 2008-07-28 2009-07-23 電子体温計 WO2010013634A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112009001694T DE112009001694T5 (de) 2008-07-28 2009-07-23 Elektronisches Thermometer
CN2009801299484A CN102112853A (zh) 2008-07-28 2009-07-23 电子体温计
RU2011107279/28A RU2497441C2 (ru) 2008-07-28 2009-07-23 Электронный термометр
US13/008,467 US20110118623A1 (en) 2008-07-28 2011-01-18 Electronic thermometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-193952 2008-07-28
JP2008193952A JP2010032324A (ja) 2008-07-28 2008-07-28 電子体温計

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/008,467 Continuation US20110118623A1 (en) 2008-07-28 2011-01-18 Electronic thermometer

Publications (1)

Publication Number Publication Date
WO2010013634A1 true WO2010013634A1 (ja) 2010-02-04

Family

ID=41610333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063181 WO2010013634A1 (ja) 2008-07-28 2009-07-23 電子体温計

Country Status (6)

Country Link
US (1) US20110118623A1 (ja)
JP (1) JP2010032324A (ja)
CN (1) CN102112853A (ja)
DE (1) DE112009001694T5 (ja)
RU (1) RU2497441C2 (ja)
WO (1) WO2010013634A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8657492B2 (en) 2010-09-17 2014-02-25 Omron Healthcare Co., Ltd. Electronic thermometer and method for manufacturing the same
EP2606327A4 (en) * 2010-08-19 2015-09-30 Welch Allyn Inc THERMOMETER FOR DETERMINING THE TEMPERATURE OF THE DRUM FURNACE OF ANIMAL AND USE METHOD THEREFOR
US9316544B2 (en) 2010-09-17 2016-04-19 Omron Healthcare Co., Ltd. Electronic thermometer and method for manufacturing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8794829B2 (en) * 2009-12-31 2014-08-05 Welch Allyn, Inc. Temperature-measurement probe
US20120165636A1 (en) * 2010-07-22 2012-06-28 Feldman Benjamin J Systems and Methods for Improved In Vivo Analyte Sensor Function
JP5574117B2 (ja) * 2011-03-30 2014-08-20 三菱マテリアル株式会社 温度センサ
US9138149B2 (en) * 2012-03-19 2015-09-22 Welch Allyn, Inc. Systems and methods for determining patient temperature
US9265427B2 (en) 2012-03-19 2016-02-23 Welch Allyn, Inc. Systems and methods for determining patient temperature
CN105209871B (zh) 2013-03-15 2017-09-19 特洛伊之海伦有限公司 温度计用户界面
CN103505187A (zh) * 2013-07-12 2014-01-15 深圳市福田区青少年科技教育协会 一种婴儿电子体温计
CN105982650B (zh) * 2015-03-04 2019-02-15 百略医学科技股份有限公司 红外线温度计
CN108744303A (zh) * 2018-07-05 2018-11-06 深圳市三时光科技有限公司 一种激光祛皱美容仪
CN114145727B (zh) * 2021-11-18 2024-07-19 广东高驰运动科技股份有限公司 一种生理信号测量方法、系统、穿戴设备和介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520109A (ja) * 1998-07-16 2002-07-09 サリックス メディカル、インコーポレイテッド 温度測定装置および方法
JP3110351U (ja) * 2004-12-28 2005-06-23 鋭鴻科技股▲ふん▼有限公司 温度検知装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3759104A (en) * 1972-03-09 1973-09-18 M Robinson Capacitance thermometer
US4443117A (en) * 1980-09-26 1984-04-17 Terumo Corporation Measuring apparatus, method of manufacture thereof, and method of writing data into same
JPS57163833A (en) * 1981-04-01 1982-10-08 Terumo Corp Electronic clinical thermometer
CH653131A5 (fr) 1983-02-21 1985-12-13 Bioself Int Inc Appareil de mesure de la temperature en valeur numerique d'un corps vivant.
JPH0355072Y2 (ja) * 1985-06-25 1991-12-06
JPS6488128A (en) * 1987-09-29 1989-04-03 Murata Manufacturing Co Temperature sensor
DE3744239C1 (de) * 1987-12-24 1989-06-01 Heraeus Gmbh W C Elektronisches Thermometer
US5013161A (en) * 1989-07-28 1991-05-07 Becton, Dickinson And Company Electronic clinical thermometer
US5133606A (en) * 1989-07-28 1992-07-28 Becton, Dickinson And Company Electronic clinical thermometer
GB2258922A (en) * 1991-10-17 1993-02-24 Philips Nv Power supply circuit for personal-care apparatus.
ATE207726T1 (de) * 1995-05-01 2001-11-15 Boston Scient Ltd System zum erfühlen von unter-der-haut temperaturen in körpergewebe während ablation
JP3604243B2 (ja) * 1996-11-27 2004-12-22 長野計器株式会社 静電容量型トランスデューサ
US6001066A (en) * 1997-06-03 1999-12-14 Trutek, Inc. Tympanic thermometer with modular sensing probe
US6511478B1 (en) * 2000-06-30 2003-01-28 Scimed Life Systems, Inc. Medical probe with reduced number of temperature sensor wires
EP1182437A1 (en) * 2000-08-23 2002-02-27 Microlife Intellectual Property GmbH Medical thermometer and method for producing a medical thermometer
US6809529B2 (en) * 2001-08-10 2004-10-26 Wacoh Corporation Force detector
US6981796B2 (en) * 2002-12-04 2006-01-03 Actherm Inc. Electronic thermometer
JP2007195618A (ja) 2006-01-24 2007-08-09 Seiko Epson Corp 生体情報機器
KR20080097409A (ko) * 2006-02-28 2008-11-05 파나소닉 주식회사 일렉트릿 커패시터형 복합 센서

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520109A (ja) * 1998-07-16 2002-07-09 サリックス メディカル、インコーポレイテッド 温度測定装置および方法
JP3110351U (ja) * 2004-12-28 2005-06-23 鋭鴻科技股▲ふん▼有限公司 温度検知装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2606327A4 (en) * 2010-08-19 2015-09-30 Welch Allyn Inc THERMOMETER FOR DETERMINING THE TEMPERATURE OF THE DRUM FURNACE OF ANIMAL AND USE METHOD THEREFOR
US8657492B2 (en) 2010-09-17 2014-02-25 Omron Healthcare Co., Ltd. Electronic thermometer and method for manufacturing the same
US9316544B2 (en) 2010-09-17 2016-04-19 Omron Healthcare Co., Ltd. Electronic thermometer and method for manufacturing the same

Also Published As

Publication number Publication date
CN102112853A (zh) 2011-06-29
JP2010032324A (ja) 2010-02-12
US20110118623A1 (en) 2011-05-19
RU2011107279A (ru) 2012-09-10
RU2497441C2 (ru) 2013-11-10
DE112009001694T5 (de) 2011-06-09

Similar Documents

Publication Publication Date Title
WO2010013634A1 (ja) 電子体温計
JP5540499B2 (ja) 電子体温計
JP3646652B2 (ja) 赤外線温度計
KR100898216B1 (ko) 센서 위치를 갖는 전자 온도계
US8400316B2 (en) Electronic thermometer
US10830649B2 (en) Deep body thermometer
JP5756015B2 (ja) 温度センサ、その製造方法及び取り付け方法
HUE026046T2 (en) Capacitive pressure gauge cell to measure the pressure of the medium adjacent to the cell
JP4494895B2 (ja) バッテリ状態検知ユニット
JP7377559B2 (ja) 計測装置及びプローブユニット
JP2009300310A (ja) 電子体温計
KR20190005607A (ko) 마이크로 가스센서의 캘리브레이션 방법
WO2019098015A1 (ja) 静電容量式圧力センサ
JP5369551B2 (ja) 生体情報測定装置
JP2009229130A (ja) 電子体温計
JP2009229117A (ja) 電子体温計
JP2009198379A (ja) 電子体温計
JP5163947B2 (ja) 油膜厚さ計測装置および方法
JP2014173890A (ja) ガスセンサ及び断線検知方法
US11630012B2 (en) Pressure sensor with improved detection accuracy and compact design
JP2009222677A (ja) 電子体温計
JP2012251771A (ja) 電子体温計
JP2002277437A (ja) オイル劣化センサ
JP2004069408A (ja) 表面温度センサ
JP2012070921A (ja) 耳式体温計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129948.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802877

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011107279

Country of ref document: RU

RET De translation (de og part 6b)

Ref document number: 112009001694

Country of ref document: DE

Date of ref document: 20110609

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09802877

Country of ref document: EP

Kind code of ref document: A1