WO2010013407A1 - 光半導体封止用樹脂組成物とこれを使用した光半導体装置 - Google Patents

光半導体封止用樹脂組成物とこれを使用した光半導体装置 Download PDF

Info

Publication number
WO2010013407A1
WO2010013407A1 PCT/JP2009/003426 JP2009003426W WO2010013407A1 WO 2010013407 A1 WO2010013407 A1 WO 2010013407A1 JP 2009003426 W JP2009003426 W JP 2009003426W WO 2010013407 A1 WO2010013407 A1 WO 2010013407A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
resin composition
epoxy resin
rubber
rubber particles
Prior art date
Application number
PCT/JP2009/003426
Other languages
English (en)
French (fr)
Inventor
佐藤篤志
平川裕之
Original Assignee
ダイセル化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社 filed Critical ダイセル化学工業株式会社
Priority to JP2010522600A priority Critical patent/JP5466643B2/ja
Priority to CN2009801204304A priority patent/CN102046690B/zh
Priority to EP09802656.0A priority patent/EP2308909A4/en
Priority to US13/002,951 priority patent/US8779059B2/en
Publication of WO2010013407A1 publication Critical patent/WO2010013407A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4261Macromolecular compounds obtained by reactions involving only unsaturated carbon-to-carbon bindings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/46Amides together with other curing agents
    • C08G59/48Amides together with other curing agents with polycarboxylic acids, or with anhydrides, halides or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/687Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to an optical semiconductor sealing resin composition and an optical semiconductor device in which an optical semiconductor element is sealed using the resin composition.
  • cured material obtained by hardening the resin composition for optical semiconductor sealing concerning this invention is excellent in heat resistance, transparency, and crack resistance.
  • Light emitting devices such as optical semiconductors that are put to practical use in various indoor and outdoor display boards, image reading light sources, traffic signals, large display units, etc., mainly protect the periphery of the light emitter by epoxy resin sealing. ing.
  • an epoxy resin used as a sealing agent an aromatic epoxy resin having bisphenol A as a skeleton has been widely used.
  • Epoxy resins having good transparency and heat resistance include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate
  • a liquid alicyclic epoxy resin having an alicyclic skeleton such as an adduct of ⁇ -caprolactone and 1,2,8,9-diepoxylimonene is known.
  • the cured products of these alicyclic epoxy resins are vulnerable to various stresses and have low thermal shock resistance (crack resistance), such as being prone to cracking due to cold cycles (repeating heating and cooling).
  • Patent Document 1 As a method for improving crack resistance, a method using an epoxy resin composition containing nuclear hydrogenated bisphenol A diglycidyl ether for sealing an optical semiconductor is known (Patent Document 1).
  • Patent Document 2 describes a method of dispersing a core-shell polymer in an epoxy resin as a means for imparting toughness to the epoxy resin.
  • Patent Document 3 a method is known in which polyether polyol is blended in an epoxy resin and particles having a core structure of butadiene rubber and a shell structure of methyl methacrylate resin are dispersed in the epoxy resin (Patent Document 3). ).
  • the core structure uses particles made of butadiene rubber, the transparency of the cured product was not satisfactory. That is, the present situation is that a resin composition for encapsulating an optical semiconductor capable of obtaining a cured product capable of exhibiting excellent crack resistance while maintaining high heat resistance and transparency has not been found. .
  • the objective of this invention is providing the resin composition for optical semiconductor sealing which can obtain the hardened
  • Another object of the present invention is to provide an optical semiconductor device in which an optical semiconductor element is sealed using the resin composition for sealing an optical semiconductor.
  • the present inventors have (meth) acrylic acid ester as an essential monomer component, and a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with an alicyclic epoxy resin on the surface.
  • Rubber particles having a specific particle size and refractive index, and having a specific functional group on the surface thereof, do not impair the transparency even when dispersed in an alicyclic epoxy resin.
  • the rubber particles that have the core part greatly reduce the glass transition temperature of the cured product obtained by curing the alicyclic epoxy resin because the rubber component constituting the core portion does not dissolve into the alicyclic epoxy resin.
  • the present invention is a resin composition for encapsulating an optical semiconductor comprising a rubber particle-dispersed epoxy resin (A) in which rubber particles are dispersed in an alicyclic epoxy resin, wherein the rubber particles are (meth) acrylic acid Consists of a polymer having an ester as an essential monomer component, having hydroxyl groups and / or carboxyl groups as functional groups capable of reacting with an alicyclic epoxy resin on the surface, an average particle size of 10 nm to 500 nm, and a maximum particle size of 50 nm
  • a resin composition for encapsulating an optical semiconductor having a refractive index of ⁇ 1000 nm and a difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition for encapsulating an optical semiconductor within ⁇ 0.02.
  • the optical semiconductor sealing resin composition contains a curing agent (B) and a curing accelerator (C) in addition to the rubber particle-dispersed epoxy resin (A), and a rubber particle-dispersed epoxy resin (A).
  • the curing catalyst (D) may be included.
  • the curing agent (B) is preferably an acid anhydride that is liquid at 25 ° C.
  • the curing catalyst (D) is preferably one that generates cationic species by performing ultraviolet irradiation or heat treatment to initiate polymerization of the rubber particle-dispersed epoxy resin (A).
  • the resin composition for encapsulating an optical semiconductor further contains a glycidyl ether-based epoxy compound having no aromatic ring and / or a polyol compound that exhibits a liquid state at 25 ° C. (excluding the polyether polyol).
  • the present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with the resin composition for sealing an optical semiconductor.
  • the resin composition for optical semiconductor encapsulation of the present invention includes a rubber particle-dispersed epoxy resin (A) in which rubber particles are dispersed in an alicyclic epoxy resin, and (meth) acrylic acid ester is an essential monomer as the rubber particles. It is composed of a polymer as a component, and has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with an alicyclic epoxy resin on the surface, an average particle size of 10 nm to 500 nm, and a maximum particle size of 50 nm to 1000 nm.
  • Rubber particles in which the difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition for encapsulating an optical semiconductor is within ⁇ 0.02,
  • the rubber component does not elute, and the glass transition temperature of the cured product obtained by curing the resin composition for optical semiconductor encapsulation is not greatly reduced.
  • the transparency of the cured product is not impaired by dispersing the rubber particles.
  • the resin composition for encapsulating an optical semiconductor according to the present invention can be suitably used in various fields including uses such as an encapsulating material for electrical / electronic related to an optical semiconductor.
  • the resulting optical semiconductor device is long and can maintain high performance, and high reliability can be obtained as a long-life optical semiconductor device.
  • the resin composition for encapsulating an optical semiconductor according to the present invention includes a rubber particle-dispersed epoxy resin (A) in which rubber particles are dispersed in an alicyclic epoxy resin, and the rubber particles essentially contain a (meth) acrylic ester. It is composed of a polymer as a monomer component, and has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with an alicyclic epoxy resin on the surface, an average particle size of 10 nm to 500 nm, and a maximum particle size of 50 nm to 1000 nm. And the difference between the refractive index of the rubber particles and the refractive index of the cured product of the resin composition for encapsulating an optical semiconductor is within ⁇ 0.02.
  • the rubber particle-dispersed epoxy resin (A) in the present invention is composed of a polymer having (meth) acrylic acid ester as an essential monomer component, and has hydroxyl groups and / or functional groups that can react with the alicyclic epoxy resin on the surface. Or rubber particles having a carboxyl group, an average particle diameter of 10 nm to 500 nm, and a maximum particle diameter of 50 nm to 1000 nm, wherein the refractive index of the rubber particles and the cured product of the resin composition for optical semiconductor encapsulation Rubber particles having a difference from the refractive index within ⁇ 0.02 are dispersed in an alicyclic epoxy resin.
  • the rubber particles in the present invention have a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion. Moreover, it is comprised with the polymer which uses (meth) acrylic acid ester as an essential monomer component, and has a hydroxyl group and / or a carboxyl group as a functional group which can react with an alicyclic epoxy resin on the surface. When a hydroxyl group and / or a carboxyl group do not exist on the surface of the rubber particle, the cured product becomes clouded by a thermal shock such as a cooling / heating cycle and the transparency is lowered, which is not preferable.
  • (meth) acrylate such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate is essential.
  • monomer components that may be contained in addition to (meth) acrylic acid esters include silicones such as dimethylsiloxane and phenylmethylsiloxane, aromatic vinyls such as styrene and ⁇ -methylstyrene, and nitriles such as acrylonitrile and methacrylonitrile.
  • Conjugated dienes such as butadiene and isoprene, urethane, ethylene, propylene, and isobutene.
  • a monomer component constituting the core portion having rubber elasticity together with (meth) acrylic acid ester, one or more selected from silicone, aromatic vinyl, nitrile and conjugated diene are included.
  • silicone, aromatic vinyl, nitrile and conjugated diene are included.
  • binary copolymers such as (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene; (meth) acrylic acid ester / aromatic vinyl / conjugated diene, etc. And terpolymers of the above.
  • the core portion having rubber elasticity includes divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc.
  • One corresponding monomer may contain a reactive crosslinking monomer having two or more reactive functional groups.
  • the monomer component constituting the core portion having rubber elasticity in the present invention is, among others, a (meth) acrylate / aromatic vinyl binary copolymer (particularly, butyl acrylate / styrene), This is preferable because the refractive index of the rubber particles can be easily adjusted.
  • the core portion having rubber elasticity can be produced by a commonly used method, and examples thereof include a method of polymerizing the above monomer by an emulsion polymerization method.
  • the emulsion polymerization method the whole amount of the monomer may be charged and polymerized in a lump, or after polymerizing a part of the monomer, the rest may be added continuously or intermittently to polymerize, Alternatively, a polymerization method using seed particles may be used.
  • the shell layer is preferably composed of a polymer different from the polymer constituting the core portion.
  • the shell layer has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with the alicyclic epoxy resin.
  • adhesiveness can be improved at the interface with the alicyclic epoxy resin, and excellent crack resistance can be obtained by curing the resin composition for optical semiconductor encapsulation containing the rubber particles having the shell layer.
  • a transparent cured product having white turbidity can be obtained. Moreover, it can prevent that the glass transition temperature of hardened
  • (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and (butyl) (meth) acrylate
  • a core part is comprised
  • the shell layer is made of (meth) acrylate other than butyl butyl acrylate (for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl methacrylate, etc.) Is preferably used.
  • Examples of the monomer component that may be contained in addition to the (meth) acrylic acid ester include nitriles such as aromatic vinyl such as styrene and ⁇ -methylstyrene, acrylonitrile, and methacrylonitrile.
  • nitriles such as aromatic vinyl such as styrene and ⁇ -methylstyrene, acrylonitrile, and methacrylonitrile.
  • the above monomers alone or in combination of two or more, together with (meth) acrylic acid ester, and particularly at least aromatic vinyl.
  • the refractive index of the rubber particles can be easily adjusted.
  • hydroxyalkyl (meth) acrylate such as 2-hydroxyethyl (meth) acrylate
  • (meth) acrylic acid It is preferable to contain a monomer corresponding to an ⁇ , ⁇ -unsaturated acid such as ⁇ , ⁇ -unsaturated acid anhydride such as maleic anhydride.
  • the monomer component constituting the shell layer preferably contains one or more selected from the above monomers together with (meth) acrylic acid ester, for example, (meth) acrylic And terpolymers of acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl content / ⁇ , ⁇ -unsaturated acid, and the like.
  • the shell layer is composed of divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, as well as the core portion.
  • a reactive crosslinking monomer having two or more reactive functional groups may be contained in one monomer corresponding to the above.
  • a method of coating the core portion with the shell layer for example, a method of coating the surface of the core portion having rubber elasticity obtained by the above method by applying a copolymer constituting the shell layer, by the above method
  • examples thereof include a method of graft polymerization using the obtained core portion having rubber elasticity as a trunk component and each component constituting the shell layer as a branch component.
  • the average particle diameter of the rubber particles in the present invention is about 10 to 500 nm, preferably about 20 to 400 nm.
  • the maximum particle size of the rubber particles is about 50 to 1000 nm, preferably about 100 to 800 nm.
  • the average particle diameter exceeds 500 nm, or when the maximum particle diameter of the rubber particles exceeds 1000 nm, the transparency of the cured product tends to decrease and the light intensity of the optical semiconductor tends to decrease.
  • the average particle size is less than 10 nm or the maximum particle size of the rubber particles is less than 50 nm, the crack resistance tends to be reduced.
  • the refractive index of the rubber particles in the present invention is, for example, about 1.40 to 1.60, preferably about 1.42 to 1.58. Further, the difference between the refractive index of the rubber particles and the refractive index of the cured product obtained by curing the resin composition for encapsulating an optical semiconductor containing the rubber particles is within ⁇ 0.02, among which ⁇ 0 Preferably it is within .018. If the difference in refractive index exceeds ⁇ 0.02, the transparency of the cured product decreases, sometimes it becomes cloudy, and the light intensity of the optical semiconductor tends to decrease, and the function of the optical semiconductor may be lost. .
  • the refractive index of the rubber particles is, for example, by casting 1 g of rubber particles into a mold and compression molding at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test piece having a length of 20 mm ⁇ width of 6 mm And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the refractive index of the cured product of the resin composition for encapsulating an optical semiconductor is, for example, a test piece of 20 mm long ⁇ 6 mm wide ⁇ 1 mm thick from a cured product obtained by the heat curing method described in the following section of the optical semiconductor device. And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the alicyclic epoxy resin in the present invention is an alicyclic compound having an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, and can be arbitrarily selected from well-known and conventional ones. Can be used.
  • the alicyclic epoxy resin in the present invention those exhibiting a liquid state at normal temperature (25 ° C.) are preferable from the viewpoint of workability during preparation and casting.
  • an alicyclic epoxy resin represented by the following formula (1) is particularly preferable in terms of transparency and heat resistance.
  • Y represents a linking group, and examples thereof include a single bond, a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, an amide bond, and a group in which a plurality of these are linked.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic hydrocarbon group.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups.
  • Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, And divalent cycloalkylene groups (including cycloalkylidene groups) such as 1,4-cyclohexylene and cyclohexylidene groups.
  • Typical examples of the alicyclic epoxy resin represented by the formula (1) include compounds represented by the following formulas (1a) to (1j).
  • n1 to n8 represent an integer of 1 to 30.
  • —O—R—O— represents a residue of a diol.
  • R is a divalent hydrocarbon group; a divalent group in which a plurality of divalent hydrocarbon groups are bonded via one or more of linking groups such as an ether bond, an ester bond, an amide bond, and a carbonyl group.
  • Examples of the divalent hydrocarbon group include the same groups as the divalent hydrocarbon group in Y above.
  • alicyclic epoxy resins can be used alone or in combination of two or more.
  • commercial products such as trade names “Celoxide 2021P” and “Celoxide 2081” (manufactured by Daicel Chemical Industries, Ltd.). Can also be used.
  • the rubber particle-dispersed epoxy resin (A) in the present invention is obtained by dispersing the rubber particles in the alicyclic epoxy resin.
  • the blending amount of the rubber particles can be appropriately adjusted as necessary. For example, it is about 0.5 to 30% by weight, preferably 1 to 20% by weight based on the total amount of the rubber particle-dispersed epoxy resin (A). %. If the amount of rubber particles used is less than 0.5% by weight, the crack resistance tends to be reduced. On the other hand, if the amount of rubber particles used exceeds 30% by weight, the heat resistance and transparency tend to be reduced. is there.
  • the viscosity of the rubber particle-dispersed epoxy resin (A) is preferably 400 mPa ⁇ s to 50000 mPa ⁇ s at 25 ° C., and more preferably 500 mPa ⁇ s to 10000 mPa ⁇ s.
  • the viscosity (25 ° C.) of the rubber particle-dispersed epoxy resin (A) is less than 400 mPa ⁇ s, the transparency tends to decrease.
  • the viscosity (25 ° C.) of the rubber particle-dispersed epoxy resin (A) is 50,000 mPa ⁇ s. If it exceeds 1, both the production of the rubber particle-dispersed epoxy resin (A) and the production of the resin composition for sealing an optical semiconductor tend to decrease the productivity.
  • the viscosity of the rubber particle-dispersed epoxy resin (A) can be adjusted by using a reactive diluent.
  • a reactive diluent an aliphatic polyglycidyl ether having a viscosity at room temperature (25 ° C.) of 200 mPa ⁇ s or less can be suitably used.
  • Examples of the aliphatic polyglycidyl ether include cyclohexanedimethanol diglycidyl ether, cyclohexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, and polypropylene glycol.
  • a diglycidyl ether etc. can be mentioned.
  • the amount of the reactive diluent used can be adjusted as appropriate. For example, it is 30 parts by weight or less, preferably 25 parts by weight or less (for example, 5 to 5 parts per 100 parts by weight of the rubber particle-dispersed epoxy resin (A)). 25 parts by weight). If the amount of the reactive diluent used exceeds 30 parts by weight, it tends to be difficult to obtain desired performance such as crack resistance.
  • the production method of the rubber particle-dispersed epoxy resin (A) in the present invention is not particularly limited, and a well-known and conventional method can be used.
  • a well-known and conventional method can be used.
  • examples thereof include a method of mixing and dispersing in a cyclic epoxy resin and a method of directly mixing and dehydrating a rubber particle emulsion and an alicyclic epoxy resin.
  • the amount of the rubber particle-dispersed epoxy resin (A) used is preferably about 30 to 100% by weight of the total epoxy group-containing resin contained in the resin composition for optical semiconductor encapsulation, It is preferably about 100% by weight.
  • the used amount of the rubber particle-dispersed epoxy resin (A) is less than 30% by weight of the total epoxy group-containing resin, the crack resistance of the resulting cured product tends to be lowered.
  • the resin composition for encapsulating an optical semiconductor according to the present invention contains at least the rubber particle-dispersed epoxy resin (A), and preferred embodiments include a rubber particle-dispersed epoxy resin (A), a curing agent (B), and a curing accelerator.
  • A rubber particle-dispersed epoxy resin
  • B curing agent
  • D curing catalyst
  • the curing agent (B) has a function of curing the compound having an epoxy group.
  • a conventionally known curing agent can be used as a curing agent for epoxy resin.
  • the curing agent (B) in the present invention is preferably an acid anhydride that is liquid at 25 ° C., and examples thereof include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, and methyl endo. And methylenetetrahydrophthalic anhydride.
  • acid anhydrides that are solid at room temperature (25 ° C.) such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride, are liquid acid anhydrides at room temperature (25 ° C.) It can be used as the curing agent (B) in the present invention by dissolving in a product to form a liquid mixture.
  • the curing agent (B) commercially available products such as “Rikacid MH-700” (manufactured by Shin Nippon Rika Co., Ltd.), “HN-5500” (manufactured by Hitachi Chemical Co., Ltd.), etc. Can also be used.
  • the amount of the curing agent (B) used is, for example, 50 to 150 parts by weight, preferably 52 to 145 parts by weight with respect to 100 parts by weight of the compound having all epoxy groups contained in the resin composition for optical semiconductor encapsulation. Part, particularly preferably about 55 to 140 parts by weight. More specifically, it is preferably used at a ratio of 0.5 to 1.5 equivalents per 1 equivalent of epoxy groups in the compound having all epoxy groups contained in the resin composition for sealing an optical semiconductor. .
  • the amount of the curing agent (B) used is less than 50 parts by weight, the effect becomes insufficient and the toughness of the cured product tends to be reduced, while the amount of the curing agent (B) used exceeds 150 parts by weight. When the cured product is colored, the hue may deteriorate.
  • the curing accelerator (C) is a compound having a function of accelerating the curing rate when the compound having an epoxy group is cured by the curing agent (B).
  • a well-known and commonly used curing accelerator can be used as the curing accelerator (C) in the present invention.
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • salts thereof for example, phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate salt); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), and salts thereof (for example, Phosphonium salts, sulfonium salts, quaternary ammonium salts, iodonium salts); tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl- Imidazoles such as 4-methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole; Phosphines such as Li triphenylphosphine; tetraphenylphosphonium
  • the amount of the curing accelerator (C) used is, for example, 0.05 to 5 parts by weight, preferably 0 with respect to 100 parts by weight of the compound having all epoxy groups contained in the optical semiconductor sealing resin composition. .About.1 to 3 parts by weight, particularly preferably about 0.2 to 3 parts by weight, and most preferably about 0.25 to 2.5 parts by weight.
  • the amount of the curing accelerator (C) used is less than 0.05 parts by weight, the curing acceleration effect may be insufficient.
  • the amount of the curing accelerator (C) used exceeds 5 parts by weight, The cured product may be colored to deteriorate the hue.
  • the curing catalyst (D) in the present invention has a function of initiating polymerization of the epoxy compound in the rubber particle-dispersed epoxy resin (A).
  • the curing catalyst (D) in the present invention is preferably a cationic polymerization initiator that generates cationic species by performing ultraviolet irradiation or heat treatment to initiate polymerization of the rubber particle-dispersed epoxy resin (A).
  • Examples of the cationic polymerization initiator that generates a cationic species by ultraviolet irradiation include hexafluoroantimonate salt, pentafluorohydroxyantimonate salt, hexafluorophosphate salt, hexafluoroarsenate salt, etc.
  • "UVACURE 1590” manufactured by Daicel Cytec Co., Ltd.
  • trade names "CD-1010”, “CD-1011”, “CD-1012” made by Sartomer, USA
  • trade name "Irgacure 264" Ciba Japan Co., Ltd.)
  • a commercial name such as “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) can be suitably used.
  • Examples of the cationic polymerization initiator that generates cationic species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, and allene-ion complexes.
  • a chelate compound of a metal such as aluminum or titanium and a acetoacetate or diketone compound and a silanol such as triphenylsilanol or a chelate compound of a metal such as aluminum or titanium and acetoacetate or diketone and bisphenol S
  • a chelate compound of a metal such as aluminum or titanium and acetoacetate or diketone and bisphenol S
  • the compound with phenols, such as these may be sufficient.
  • a hexafluorophosphate salt is preferable because it is low in toxicity and easy to handle and excellent in versatility.
  • the amount of the curing catalyst (D) used is, for example, from 0.01 to 15 parts by weight, preferably from 0.1 to 15 parts by weight, based on 100 parts by weight of the compound having all epoxy groups contained in the resin composition for optical semiconductor encapsulation.
  • the amount is from 01 to 12 parts by weight, particularly preferably from 0.05 to 10 parts by weight, and most preferably from about 0.1 to 10 parts by weight.
  • the resin composition for encapsulating an optical semiconductor according to the present invention contains an alicyclic epoxy resin that does not contain rubber particles, in addition to the curing agent (B), the curing accelerator (C), and the curing catalyst (D). May be.
  • the alicyclic epoxy resin include alicyclic epoxy resins represented by the above formula (1).
  • the amount of the alicyclic epoxy resin that does not contain rubber particles is preferably less than 70% by weight of the total epoxy group-containing resin contained in the resin composition for sealing an optical semiconductor, and in particular, 50% by weight. Preferably, it is less than%. When the amount of the alicyclic epoxy resin not containing rubber particles exceeds 70% by weight of the total epoxy group-containing resin, the crack resistance of the resulting cured product tends to be lowered.
  • the resin composition for encapsulating an optical semiconductor according to the present invention comprises a glycidyl ether type epoxy compound having an aromatic ring such as bisphenol A type or bisphenol F type; an aromatic ring such as hydrogenated bisphenol A type or aliphatic glycidyl type. It may contain a glycidyl ether-based epoxy compound; a glycidyl ester-based epoxy compound; a glycidyl amine-based epoxy compound; a polyol compound, an oxetane compound, a vinyl ether compound, and the like.
  • epoxy compound which shows solid at normal temperature (25 degreeC)
  • blends and may show liquid state you may contain.
  • the epoxy compound that exhibits a solid at room temperature (25 ° C.) include solid bisphenol-type epoxy compounds, novolac-type epoxy compounds, glycidyl esters, triglycidyl isocyanurate, and 2,2-bis (hydroxymethyl) -1-butanol.
  • 1,2-epoxy-4- (2-oxiranyl) cyclosoxane adduct (trade name “EHPE3150”, manufactured by Daicel Chemical Industries, Ltd.). These epoxy compounds can be used individually or in combination of 2 or more types.
  • a glycidyl ether epoxy compound having no aromatic ring and / or a polyol exhibiting a liquid state at 25 ° C in addition to the curing agent (B), curing accelerator (C), and curing catalyst (D), a glycidyl ether epoxy compound having no aromatic ring and / or a polyol exhibiting a liquid state at 25 ° C. It is preferable that a compound (excluding a polyether polyol) is included in that it can improve crack resistance without impairing high heat resistance, and particularly includes a glycidyl ether epoxy compound having no aromatic ring. However, it is preferable in that the crack resistance can be improved without impairing the high heat resistance and light resistance.
  • the glycidyl ether epoxy compound having no aromatic ring in the present invention includes an aliphatic glycidyl ether epoxy compound and a compound obtained by hydrogenating an aromatic glycidyl ether epoxy compound.
  • product names “EPICLON 703”, “EPICLON 707”, “EPICLON 720”, “EPICLON 725” (manufactured by DIC Corporation), product names “YH-300”, “YH-315”, “YH-324”, “PG-” 202 ”,“ PG-207 ”,“ Santoto ST-3000 ”(manufactured by Toto Kasei Co., Ltd.), trade names“ Rikaresin DME-100 ”,“ Rikaresin HBE-100 ”(Shin Nippon Rika Co., Ltd.), merchandise Commercially available products such as names “Denacol EX-212”, “Denacol EX-321” (manufactured by Nagase ChemteX Corp.), product names “YX8000”, “YX8034” (manufactured by Japan Epoxy Resins Co., Ltd.) are preferably used. can do.
  • the amount of the glycidyl ether epoxy compound having no aromatic ring is, for example, about 10 to 60 parts by weight, preferably about 20 to 50 parts by weight with respect to 100 parts by weight of the alicyclic epoxy resin.
  • the polyol compound exhibiting a liquid state at 25 ° C. in the present invention includes polyol compounds other than polyether polyol, for example, polyester polyol and polycarbonate polyol.
  • polyester polyol examples include trade names “Placcel 205”, “Placcel 205H”, “Placcel 205U”, “Placcel 205BA”, “Placcel 208”, “Placcel 210”, “Placcel 210CP”, “Placcel 210BA”, “ Plaxel 212, Plaxel 212CP, Plaxel 220, Plaxel 220CPB, Plaxel 220NP1, Plaxel 220BA, Plaxel 220ED, Plaxel 220EB, Plaxel 220EC, Plaxel 230, Plaxel 230CP, Plaxel 240, Plaxel 240CP, Plaxel 210N, Plaxel 220N, Plaxel L205AL, Plaxel L208AL , “Placcel L212AL”, “Placcel L220AL”, “Placcel L230AL”, “Placcel 305”, “Plaxel 308”, “Plaxel 312”, “Plaxel L312AL”, “Plaxel 320”,
  • polycarbonate polyol examples include trade names “Placcel CD205PL”, “Placcel CD205HL”, “Placcel CD210PL”, “Placcel CD210HL”, “Placcel CD220PL”, “Placcel CD220HL” (manufactured by Daicel Chemical Industries, Ltd.), trade names “UH-CARB50”, “UH-CARB100”, “UH-CARB300”, “UH-CARB90 (1/3)”, “UH-CARB90 (1/1)”, “UC-CARB100” (Ube Industries, Ltd.) )), Trade names such as “PCDL T4671”, “PCDL T4672”, “PCDL T5650J”, “PCDL T5651”, “PCDL T5652” (manufactured by Asahi Kasei Chemicals Corporation) can be used.
  • the amount of the polyol compound that exhibits a liquid state at 25 ° C. is, for example, about 5 to 50 parts by weight, preferably about 10 to 40 parts by weight with respect to 100 parts by weight of the rubber particle-dispersed epoxy resin (A).
  • the resin composition for encapsulating an optical semiconductor according to the present invention can use various additives within a range that does not impair the effects of the present invention.
  • a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin
  • the reaction can be allowed to proceed slowly.
  • silicone and fluorine antifoaming agents, leveling agents, silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane, surfactants, fillers, etc. as long as the viscosity and transparency are not impaired.
  • Conventional additives such as a flame retardant, a colorant, an antioxidant, an ultraviolet absorber, an ion adsorbent, a pigment, and a release agent can be used.
  • the amount of these additives to be used is about 5% by weight or less based on the total amount of the resin composition for optical semiconductor encapsulation.
  • the production method of the resin composition for encapsulating an optical semiconductor according to the present invention is not particularly limited, and a well-known and conventional method can be used.
  • a predetermined amount of rubber particle-dispersed epoxy resin (A), curing Mixing agent (B), curing accelerator (C), or a predetermined amount of rubber particle-dispersed epoxy resin (A), curing catalyst (D), and optional additives various mixers such as dissolver and homogenizer, kneader And a method of stirring and mixing with a roll, a bead mill, a self-revolving stirrer and the like. Further, after stirring and mixing, defoaming may be performed under vacuum.
  • the resin composition for encapsulating an optical semiconductor according to the present invention preferably exhibits a liquid state at normal temperature (25 ° C.) and has a viscosity (25 ° C.) of 20000 mPa in terms of processability when encapsulating an optical semiconductor element. It is preferably s or less (eg, 200 to 20000 mPa ⁇ s), and more preferably 15000 mPa ⁇ s or less (eg, 200 to 15000 mPa ⁇ s).
  • the glass transition temperature is preferably 120 to 200 ° C, and more preferably 130 to 180 ° C.
  • the cured product obtained by curing the resin composition for encapsulating an optical semiconductor according to the present invention is preferably excellent in transparency, and the light transmittance at a wavelength of 400 nm in a cured product having a thickness of 3 mm is 72% or more.
  • the light transmittance at a wavelength of 450 nm is preferably 78% or more.
  • the resin composition for encapsulating an optical semiconductor according to the present invention cures to form a cured product that can exhibit excellent crack resistance while maintaining high heat resistance and transparency. Therefore, it can be suitably used for sealing an optical semiconductor element.
  • the optical semiconductor device according to the present invention has an optical semiconductor element sealed with a resin composition for optical semiconductor sealing.
  • the method for sealing the optical semiconductor element is not particularly limited, and a well-known and commonly used method can be used. Examples thereof include a potting method, a casting method, and a printing method.
  • an optical semiconductor device in which an optical semiconductor element is sealed is obtained by injecting the resin composition for encapsulating an optical semiconductor according to the present invention into a predetermined mold and curing by heating.
  • the heating temperature is about 80 to 200 ° C. (preferably 80 to 190 ° C., more preferably 80 to 180 ° C.)
  • the heating time is about 30 to 600 minutes (preferably 45 to 540). Minute, more preferably 60 to 480 minutes).
  • the heating temperature is increased, the heating time is shortened, and when the heating temperature is low, the heating time is lengthened. preferable.
  • the heating temperature and the heating time are below the above ranges, curing tends to be insufficient.
  • the resin component may be decomposed.
  • the heat curing treatment may be performed in one step, or may be performed in stages by performing heat treatment in multiple stages.
  • the heating temperature is 80 to 150 ° C. (preferably 100 to 140 ° C.)
  • the heating time is 30 to 300 minutes (preferably 45 to 270 minutes)
  • the second stage it is preferable to heat cure at a heating temperature of 100 to 200 ° C. (preferably 110 to 180 ° C.) under a heating time of 30 to 600 minutes (preferably 45 to 540 minutes).
  • the heating temperature is 30 to 150 ° C.
  • the heating time is 30 to 300 minutes (preferably 45 to 270 minutes), and the second stage is heating.
  • Heat curing is preferably performed at a temperature of 60 to 200 ° C. (preferably 80 to 180 ° C.) and a heating time of 30 to 600 minutes (preferably 45 to 540 minutes).
  • the optical semiconductor element is encapsulated by the resin composition for encapsulating an optical semiconductor according to the present invention, excellent light intensity can be maintained for a long period of time. Therefore, long and high performance can be maintained, and high reliability can be obtained as a long-life optical semiconductor device.
  • the average particle size and the maximum particle size of the rubber particles are determined based on a nanotrac TM particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) Is used to measure the following sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is The maximum particle size at the time when it exceeded 0.00% was defined as the maximum particle size.
  • sample A sample obtained by dispersing 1 part by weight of rubber particle-dispersed epoxy resin (A) in 20 parts by weight of tetrahydrofuran was used as a sample.
  • the rubber particles have a refractive index of 1 g of rubber particles cast into a mold and compression molded at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test piece of 20 mm length ⁇ 6 mm width is cut out. The test was conducted using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece were in close contact using monobromonaphthalene as an intermediate solution. The refractive index at 20 ° C. and sodium D line on the piece was measured.
  • DR-M2 multi-wavelength Abbe refractometer
  • the viscosity of the rubber particle-dispersed epoxy resin (A) obtained in Production Example (5 parts by weight of rubber particles dispersed in 100 parts by weight of Celoxide 2021P (manufactured by Daicel Chemical Industries)) is a digital viscosity type (product)
  • the viscosity at 25 ° C. was measured using a name “DVU-EII type” (manufactured by Tokimec Co., Ltd.).
  • Production Example 1 A 1 L polymerization vessel equipped with a reflux condenser was charged with 500 g of ion exchange water and 0.68 g of sodium dioctyl succinate, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream.
  • a monomer mixture consisting of 9.5 g of butyl acrylate, 2.57 g of styrene, and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion is collectively collected.
  • the mixture was cooled to room temperature (25 ° C.) and filtered through a plastic mesh having an opening of 120 ⁇ m to obtain a latex containing particles having a core-shell structure.
  • the obtained latex was frozen at ⁇ 30 ° C., dehydrated and washed with a suction filter, and then blown and dried at 60 ° C. overnight to obtain rubber particles (1).
  • the obtained rubber particles (1) had an average particle size of 254 nm, a maximum particle size of 486 nm, and a refractive index of 1.500.
  • Rubber particles (2) were obtained in the same manner as in Production Example 1, except that 2.7 g of 2-hydroxyethyl methacrylate was used instead of 1.5 g of acrylic acid.
  • the obtained rubber particles (2) had an average particle size of 261 nm, a maximum particle size of 578 nm, and a refractive index of 1.500.
  • a rubber particle-dispersed epoxy resin (A-2) (viscosity at 25 ° C .: 512 mPa ⁇ s) was obtained in the same manner as in Production Example 1.
  • Production Example 3 A 1 L polymerization vessel equipped with a reflux condenser was charged with 500 g of ion-exchanged water and 1.3 g of sodium dioctyl succinate and heated to 80 ° C. while stirring under a nitrogen stream.
  • a monomer mixture consisting of 9.5 g of butyl acrylate, 2.57 g of styrene, and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion is collectively collected.
  • rubber particles (3) were obtained in the same manner as in Production Example 1 except that the amount of acrylic acid used was changed from 1.5 g to 2.0 g.
  • the rubber particles (3) obtained had an average particle size of 108 nm, a maximum particle size of 289 nm, and a refractive index of 1.500.
  • a rubber particle-dispersed epoxy resin (A-3) (viscosity at 25 ° C .: 1036 mPa ⁇ s) was obtained in the same manner as in Production Example 1.
  • Rubber particles (4) were obtained in the same manner as in Production Example 1 except that 1.0 g of styrene was used instead of 1.5 g of acrylic acid.
  • the rubber particles (4) obtained had an average particle size of 257 nm, a maximum particle size of 578 nm, and a refractive index of 1.500.
  • a rubber particle-dispersed epoxy resin (A-4) (viscosity at 25 ° C .: 507 mPa ⁇ s) was obtained in the same manner as in Production Example 1.
  • Production Example 5 A 1 L polymerization vessel equipped with a reflux condenser was charged with 500 g of ion-exchanged water and 0.35 g of sodium dioctyl succinate, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream.
  • a monomer mixture consisting of 9.5 g of butyl acrylate and 0.29 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion was added all at once and stirred for 20 minutes.
  • 9.5 mg of potassium peroxodisulfate was added and stirred for 1 hour to perform initial seed polymerization, followed by addition of 180.5 mg of potassium peroxodisulfate and stirring for 5 minutes.
  • a simple solution prepared by dissolving 1.5 g of sodium dioctyl succinate in 180.5 g of butyl acrylate and 5.51 g of divinylbenzene in the remaining amount (about 95% by weight) required for forming the core portion.
  • the monomer mixture was continuously added over 2 hours to perform a second seed polymerization, and then aged for 1 hour to obtain a core part.
  • each component is uniformly distributed using a self-revolving stirrer (trade name “Awatori Nerita AR-250”, manufactured by Shinky Corporation). They were mixed (2000 rpm, 5 minutes) and defoamed to obtain an optical semiconductor resin composition.
  • the obtained optical semiconductor resin composition was poured into a mold and heated to obtain a cured product.
  • the photosemiconductor resin compositions obtained in Examples 1 to 4 and Comparative Examples 1 to 6 were heated at 100 ° C. for 2 hours and subsequently at 140 ° C. for 3 hours.
  • the optical semiconductor resin compositions obtained in Examples 5 and 6 and Comparative Examples 7 and 8 were heated at 80 ° C. for 3 hours, subsequently at 100 ° C. for 3 hours, and subsequently at 140 ° C. for 3 hours.
  • Epoxy resin Celoxide 2021P 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, manufactured by Daicel Chemical Industries, Ltd.
  • YX8000 Epoxy resin mainly composed of diglycidyl ether of hydrogenated bisphenol A , Trade name "Epicoat YX8000", manufactured by Japan Epoxy Resin Co., Ltd.
  • YH300 low viscosity epoxy resin based on aliphatic polyglycidyl ether, manufactured by Toto Kasei Co., Ltd.
  • YD8125 bisphenol A type epoxy resin, Toto Kasei Co., Ltd.
  • the obtained cured product was evaluated by the following method.
  • Refractive index difference test A test piece having a length of 20 mm, a width of 6 mm, and a thickness of 1 mm was cut out from the obtained cured product, and the prism and the test piece were brought into close contact with each other using monobromonaphthalene as an intermediate solution.
  • a multiwavelength Abbe refractometer (trade name “ DR-M2 ”(manufactured by Atago Co., Ltd.) was used to measure the refractive index of the cured product by measuring the refractive index at 20 ° C. and sodium D line, and the refractive index difference was calculated according to the following formula. . In Comparative Examples 4, 6, and 8, the refractive index could not be measured because the cured product became cloudy.
  • the refractive index of the cured product in Comparative Example 1 (1.504) is used as the refractive index of the cured product in Comparative Examples 4 and 6, and the refractive index of the cured product in Comparative Example 8 is the comparative example.
  • the value of the refractive index of the cured product (1.516) in 7 was used.
  • Refractive index difference [refractive index of rubber particles] ⁇ [refractive index of cured product]
  • thermomechanical analysis was performed from room temperature (25 ° C.) to 300 ° C. at a heating rate of 5 ° C./min. (TMA) was performed and the glass transition temperature (Tg, ° C) was measured.
  • TMA heating rate of 5 ° C./min.
  • EXSTAR6000 manufactured by Seiko Instruments Inc.
  • the crack length was evaluated according to the following criteria. Evaluation criteria for the number of cracks Of the five optical semiconductor devices, the number of cracks generated was 2 or less: Of the five optical semiconductor devices, the number of cracks is 3 or more: ⁇ Evaluation criteria of crack length All generated crack lengths are 140 ⁇ m or less: ⁇ All generated crack lengths exceed 140 ⁇ m: ⁇ Furthermore, about the optical semiconductor device after 100 cycles, whether to light or not was visually observed and evaluated according to the following criteria. Evaluation criteria All of the five optical semiconductor devices are lit: ⁇ Even if one of the five optical semiconductor devices is unlit: ⁇
  • Light transmittance at 450 nm is 78% or higher Light transmittance at 400 nm is 72% or higher Crack length after 100 cycles of heat shock test and lighting / non-lighting evaluation are both ⁇ In the case where all the conditions are satisfied, the comprehensive judgment is “good”, and in the case where none is satisfied, the overall judgment is “poor”.
  • the resin composition for encapsulating an optical semiconductor of the present invention can be suitably used in various fields including uses such as an encapsulating material for electrical / electronic related to an optical semiconductor.
  • an encapsulating material for electrical / electronic related to an optical semiconductor when used as a sealant for an optical semiconductor, the obtained optical semiconductor device is long and can maintain high performance, and high reliability can be obtained as a long-life optical semiconductor device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明の光半導体封止用樹脂組成物は、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ樹脂(A)を含む光半導体封止用樹脂組成物であって、該ゴム粒子が、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該光半導体封止用樹脂組成物の硬化物の屈折率との差が±0.02以内である。このような光半導体封止用樹脂組成物によれば、高い耐熱性、透明性を維持しつつ、優れた耐クラック性を発揮する硬化物を得ることができる。

Description

光半導体封止用樹脂組成物とこれを使用した光半導体装置
 本発明は、光半導体封止用樹脂組成物とこれを使用して光半導体素子を封止した光半導体装置に関する。本発明にかかる光半導体封止用樹脂組成物を硬化させて得られた硬化物は、耐熱性、透明性及び耐クラック性に優れる。
 各種の屋内、屋外表示板、画像読み取り用光源、交通信号、大型ディスプレイ用ユニットなどに実用化されている光半導体などの発光装置は、主に、エポキシ樹脂封止によって発光体の周辺が保護されている。封止剤として使用するエポキシ樹脂としては、ビスフェノールAを骨格に有する芳香族エポキシ樹脂などが広く使用されていた。
 しかし、近年、LED素子の高出力化及び青色化、白色化が急激に展開され、比較的短波長で、且つ、高出力な発光が行われるようになってきており、前記芳香族エポキシ樹脂で封止すると、芳香環が短波長の光を吸収することで樹脂の劣化が起こり、黄変により輝度低下の問題や、変色が発生するという問題が起こっていた。
 透明性及び耐熱性が良好なエポキシ樹脂としては、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレートとε-カプロラクトンの付加物、1,2,8,9-ジエポキシリモネンなどの脂環骨格を有する液状の脂環式エポキシ樹脂が知られている。しかし、これらの脂環式エポキシ樹脂の硬化物は各種応力に弱く、冷熱サイクル(加熱と冷却を繰り返すこと)などによってクラック(ひび割れ)を生じやすいなど、耐熱衝撃性(耐クラック性)が低いことが問題であり、電子部品等の信頼性を担保することが困難であった。
 耐クラック性を改善する方法として、核水添ビスフェノールAジグリシジルエーテルを含むエポキシ樹脂組成物を光半導体封止用として使用する方法が知られている(特許文献1)。しかし、該エポキシ樹脂組成物の硬化物は着色や耐候性、耐熱性などの問題があった。また、特許文献2には、エポキシ樹脂に強靱性を付与する手段として、エポキシ樹脂中にコアシェルポリマーを分散させる方法が記載されている。しかし、硬化物の透明性については何ら触れられていない。さらに、エポキシ樹脂中にポリエーテルポリオールを配合し、ブタジエン系ゴムのコア構造とメチルメタアクリレート系樹脂のシェル構造とを有する粒子を該エポキシ樹脂中に分散させる方法が知られている(特許文献3)。しかし、コア構造がブタジエン系ゴムからなる粒子を使用するため、硬化物の透明性の点が満足できるものではなかった。すなわち、高い耐熱性、透明性を維持しつつ、優れた耐クラック性を発揮することができる硬化物を得ることができる光半導体封止用樹脂組成物が見出されていないのが現状である。
特開平9-255764号公報 特開2005-255822号公報 特開平11-240939号公報
 従って、本発明の目的は、高い耐熱性、透明性を維持しつつ、優れた耐クラック性を発揮する硬化物を得ることができる光半導体封止用樹脂組成物を提供することにある。
 本発明の他の目的は、該光半導体封止用樹脂組成物を使用して光半導体素子を封止した光半導体装置を提供することにある。
 本発明者等は、上記課題を解決するため鋭意検討した結果、(メタ)アクリル酸エステルを必須モノマー成分とし、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、特定の粒子径及び屈折率を有し、特定の官能基を表面に有するゴム粒子は、脂環式エポキシ樹脂中に分散させても、透明性を損なうことがないこと、コアシェル構造を有するゴム粒子は、コア部分を構成するゴム成分が脂環式エポキシ樹脂中に溶け出すことがないため、脂環式エポキシ樹脂を硬化して得られる硬化物のガラス転移温度を大きく低下させることがないこと、そして、それにより、高い透明性、及び耐熱性を維持することができることを見いだした。さらに、該ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ樹脂を含む光半導体封止用樹脂組成物を硬化させて得られる硬化物は、優れた耐クラック性を発揮することができることを見出した。本発明はこれらの知見に基づき、さらに研究を重ねて完成したものである。
 すなわち、本発明は、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ樹脂(A)を含む光半導体封止用樹脂組成物であって、該ゴム粒子が、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該光半導体封止用樹脂組成物の硬化物の屈折率との差が±0.02以内である光半導体封止用樹脂組成物を提供する。
 前記光半導体封止用樹脂組成物には、ゴム粒子分散エポキシ樹脂(A)に加えて、硬化剤(B)及び硬化促進剤(C)を含む場合、及び、ゴム粒子分散エポキシ樹脂(A)に加えて、硬化触媒(D)を含む場合がある。
 硬化剤(B)としては、25℃で液状の酸無水物であることが好ましい。
 硬化触媒(D)としては、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、ゴム粒子分散エポキシ樹脂(A)の重合を開始させるものであることが好ましい。
 前記光半導体封止用樹脂組成物には、さらに、芳香環を有しないグリシジルエーテル系エポキシ化合物及び/又は25℃で液状を呈するポリオール化合物(但し、ポリエーテルポリオールを除く)を含むことが好ましい。
 本発明は、また、前記光半導体封止用樹脂組成物によって光半導体素子が封止されてなる光半導体装置を提供する。
 本発明の光半導体封止用樹脂組成物は、ゴム粒子を脂環式エポキシ樹脂中に分散させたゴム粒子分散エポキシ樹脂(A)を含み、ゴム粒子として、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成されており、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであるゴム粒子であって、該ゴム粒子の屈折率と当該光半導体封止用樹脂組成物の硬化物の屈折率との差が±0.02以内であるゴム粒子を使用するため、ゴム粒子からゴム成分が溶出することがなく、光半導体封止用樹脂組成物を硬化して得られる硬化物のガラス転移温度を大きく低下させることがない。また、ゴム粒子を分散させることによって硬化物の透明性を損なうこともない。
 そして、該ゴム粒子分散エポキシ樹脂(A)を含む光半導体封止用樹脂組成物を硬化することにより得られる硬化物は、優れた耐熱性及び透明性を維持しつつ、優れた耐クラック性を発揮することができる。本発明にかかる光半導体封止用樹脂組成物は、光半導体関連の電気・電子用封止材料などの用途を含む様々な方面で好適に使用することができる。そして、特に、光半導体の封止剤として使用した場合、得られる光半導体装置は、長く、高い性能を維持し続けることができ、長寿命の光半導体装置として高い信頼を得ることができる。
 [光半導体封止用樹脂組成物]
 本発明にかかる光半導体封止用樹脂組成物は、ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ樹脂(A)を含み、該ゴム粒子は、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該光半導体封止用樹脂組成物の硬化物の屈折率との差が±0.02以内である。
 [ゴム粒子分散エポキシ樹脂(A)]
 本発明におけるゴム粒子分散エポキシ樹脂(A)は、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成されており、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであるゴム粒子であって、該ゴム粒子の屈折率と当該光半導体封止用樹脂組成物の硬化物の屈折率との差が±0.02以内であるゴム粒子を脂環式エポキシ樹脂に分散させてなる。
 (ゴム粒子)
 本発明におけるゴム粒子は、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とから成る多層構造(コアシェル構造)を有する。また、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成されており、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有する。ヒドロキシル基及び/又はカルボキシル基がゴム粒子表面に存在しない場合、冷熱サイクル等の熱衝撃により硬化物が白濁して透明性が低下するため好ましくない。
 ゴム弾性を有するコア部分のポリマーを構成するモノマー成分としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須とする。(メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、ジメチルシロキサン、フェニルメチルシロキサンなどのシリコーン、スチレン、α-メチルスチレンなどの芳香族ビニル、アクリロニトリル、メタクリロニトリルなどのニトリル、ブタジエン、イソプレンなどの共役ジエン、ウレタン、エチレン、プロピレン、イソブテンなどを挙げることができる。
 本発明においては、ゴム弾性を有するコア部分を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、シリコーン、芳香族ビニル、ニトリル、共役ジエンから選択された1種又は2種以上を組み合わせて含んでいることが好ましく、例えば、(メタ)アクリル酸エステル/芳香族ビニル、(メタ)アクリル酸エステル/共役ジエン等の二元共重合体;(メタ)アクリル酸エステル/芳香族ビニル/共役ジエン等の三元共重合体などを挙げることができる。
 ゴム弾性を有するコア部分には、上記モノマー成分の他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどに対応する1モノマー中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。
 本発明におけるゴム弾性を有するコア部分を構成するモノマー成分としては、なかでも、(メタ)アクリル酸エステル/芳香族ビニルの二元共重合体(特に、アクリル酸ブチル/スチレン)であることが、容易にゴム粒子の屈折率を調整することができる点で好ましい。
 ゴム弾性を有するコア部分は、通常用いられる方法で製造することができ、例えば、上記モノマーを乳化重合法により重合する方法などを挙げることができる。乳化重合法としては、上記モノマーの全量を一括して仕込み重合してもよく、上記モノマーの一部を重合した後、残りを連続的に又は断続的に添加して重合してもよく、さらに、シード粒子を使用する重合方法を使用してもよい。
 シェル層は、上記コア部分を構成する重合体とは異種の重合体から成ることが好ましい。また、シェル層には、脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有する。それにより、脂環式エポキシ樹脂との界面で接着性を向上させることができ、該シェル層を有するゴム粒子を含む光半導体封止用樹脂組成物を硬化させることにより、優れた耐クラック性を有し、白濁のない透明な硬化物を得ることができる。また、硬化物のガラス転移温度が低下することを防止することができる。
 シェル層を構成するモノマー成分としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須とし、例えば、コア部分を構成する(メタ)アクリル酸エステルがアクリル酸ブチルである場合、シェル層は、アクリル酸ブチルブチル以外の(メタ)アクリル酸エステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、メタクリル酸ブチルなど)を使用することが好ましい。(メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル、アクリロニトリル、メタクリロニトリルどのニトリルなどを挙げることができる。本発明においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーを単独で又は2種以上を組み合わせて含んでいることが好ましく、特に、少なくとも芳香族ビニルを含むことが、容易にゴム粒子の屈折率を調整することができる点で好ましい。
 さらに、脂環式エポキシ樹脂と反応し得る官能基としてのヒドロキシル基及び/又はカルボキシル基を有するモノマー成分として、2-ヒドロキシエチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸などのα,β-不飽和酸、マレイン酸無水物などのα,β-不飽和酸無水物などに対応するモノマーを含有することが好ましい。
 本発明においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーから選択された1種又は2種以上を組み合わせて含んでいることが好ましく、例えば、(メタ)アクリル酸エステル/芳香族ビニル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/芳香族ビニル分/α,β-不飽和酸等の三元共重合体などを挙げることができる。
 また、シェル層は、コア部分と同様に、上記モノマーの他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどに対応する1モノマー中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。
 コア部分をシェル層で被覆する方法としては、例えば、上記方法により得られたゴム弾性を有するコア部分の表面に、シェル層を構成する共重合体を塗布することにより被覆する方法、上記方法により得られたゴム弾性を有するコア部分を幹成分とし、シェル層を構成する各成分を枝成分としてグラフト重合する方法などを挙げることができる。
 本発明におけるゴム粒子の平均粒子径は、10~500nm程度、好ましくは、20~400nm程度である。また、ゴム粒子の最大粒子径は、50~1000nm程度、好ましくは、100~800nm程度である。平均粒子径が500nmを上回ると、又は、ゴム粒子の最大粒子径が1000nmを上回ると、硬化物の透明性が低下し、光半導体の光度が低下する傾向がある。一方、平均粒子径が10nmを下回ると、又は、ゴム粒子の最大粒子径が50nmを下回ると、耐クラック性が低下する傾向がある。
 本発明におけるゴム粒子の屈折率としては、例えば、1.40~1.60、好ましくは、1.42~1.58程度である。また、ゴム粒子の屈折率と、該ゴム粒子を含む光半導体封止用樹脂組成物を硬化して得られる硬化物の屈折率との差は±0.02以内であり、なかでも、±0.018以内であることが好ましい。屈折率の差が±0.02を上回ると、硬化物の透明性が低下し、時には白濁して、光半導体の光度が低下する傾向があり、光半導体の機能を消失させてしまう場合がある。
 ゴム粒子の屈折率は、例えば、ゴム粒子1gを型に注型して210℃、4MPaで圧縮成形し、厚さ1mmの平板を得、得られた平板から、縦20mm×横6mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。
 光半導体封止用樹脂組成物の硬化物の屈折率は、例えば、下記光半導体装置の項に記載の加熱硬化方法により得られた硬化物から、縦20mm×横6mm×厚さ1mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。
 (脂環式エポキシ樹脂)
 本発明における脂環式エポキシ樹脂は、脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する脂環式化合物であり、周知慣用のものの中から任意に選択して使用することができる。本発明における脂環式エポキシ樹脂としては、調合時、及び注型時の作業性の点から、常温(25℃)で液状を呈するものが好ましい。
 本発明における脂環式エポキシ樹脂としては、特に、透明性、及び耐熱性の点で下記式(1)で表される脂環式エポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式中、Yは連結基を示し、例えば、単結合、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、アミド結合、及びこれらが複数個連結した基等が挙げられる。
 2価の炭化水素基としては、炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン、メチルメチレン、ジメチルメチレン、エチレン、プロピレン、トリメチレン基等が挙げられる。2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン、1,3-シクロペンチレン、シクロペンチリデン、1,2-シクロへキシレン、1,3-シクロへキシレン、1,4-シクロへキシレン、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)などが挙げられる。
 式(1)で表される脂環式エポキシ樹脂の代表的な例としては、下記式(1a)~(1j)で表される化合物が挙げられる。なお、下記式中、n1~n8は、1~30の整数を示す。式(1e)中、-O-R-O-はジオールの残基を示す。Rとしては、2価の炭化水素基;複数の2価の炭化水素基がエーテル結合、エステル結合、アミド結合、カルボニル基等の連結基の1又は2以上を介して結合した2価の基が挙げられる。2価の炭化水素基としては、上記Yにおける2価の炭化水素基と同様の基が例示される。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 これらの脂環式エポキシ樹脂は、単独で又は2種以上を組み合わせて使用することができ、例えば、商品名「セロキサイド2021P」、「セロキサイド2081」(ダイセル化学工業(株)製)等の市販品を使用することもできる。
 本発明におけるゴム粒子分散エポキシ樹脂(A)は、上記ゴム粒子を、上記脂環式エポキシ樹脂に分散させてなる。ゴム粒子の配合量としては、必要に応じて適宜調整することができ、例えば、ゴム粒子分散エポキシ樹脂(A)全量に対して、0.5~30重量%程度、好ましくは、1~20重量%程度である。ゴム粒子の使用量が0.5重量%を下回ると、耐クラック性が低下する傾向があり、一方、ゴム粒子の使用量が30重量%を上回ると、耐熱性及び透明性が低下する傾向がある。
 ゴム粒子分散エポキシ樹脂(A)の粘度としては、25℃における粘度が400mPa・s~50000mPa・sが好ましく、なかでも、500mPa・s~10000mPa・sが好ましい。ゴム粒子分散エポキシ樹脂(A)の粘度(25℃)が400mPa・sを下回ると透明性が低下する傾向があり、一方、ゴム粒子分散エポキシ樹脂(A)の粘度(25℃)が50000mPa・sを上回るとゴム粒子分散エポキシ樹脂(A)の製造、光半導体封止用樹脂組成物の製造共に生産性が低下する傾向がある。
 ゴム粒子分散エポキシ樹脂(A)は、反応性希釈剤を使用することにより粘度を調整することができる。反応性希釈剤としては、常温(25℃)における粘度が200mPa・s以下の脂肪族ポリグリシジルエーテルを好適に使用することができる。前記脂肪族ポリグリシジルエーテルとしては、例えば、シクロヘキサンジメタノールジグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルなどを挙げることができる。
 反応性希釈剤の使用量としては、適宜調整することができ、例えば、ゴム粒子分散エポキシ樹脂(A)100重量部に対して30重量部以下、好ましくは、25重量部以下(例えば、5~25重量部)程度である。反応性希釈剤の使用量が30重量部を上回ると、耐クラック性等の所望の性能を得ることが困難となる傾向がある。
 本発明におけるゴム粒子分散エポキシ樹脂(A)の製造方法としては、特に限定されることなく周知慣用の方法を使用することができ、例えば、ゴム粒子を脱水乾燥して粉体とした後に、脂環式エポキシ樹脂に混合、分散する方法や、ゴム粒子エマルジョンと脂環式エポキシ樹脂とを直接混合、脱水する方法などを挙げることができる。
 ゴム粒子分散エポキシ樹脂(A)の使用量としては、光半導体封止用樹脂組成物中に含有される全エポキシ基含有樹脂の30~100重量%程度であることが好ましく、なかでも、50~100重量%程度であることが好ましい。ゴム粒子分散エポキシ樹脂(A)の使用量が全エポキシ基含有樹脂の30重量%を下回ると、得られる硬化物の耐クラック性が低下する傾向がある。
 本発明にかかる光半導体封止用樹脂組成物は、少なくとも上記ゴム粒子分散エポキシ樹脂(A)を含み、好ましい態様としては、ゴム粒子分散エポキシ樹脂(A)、硬化剤(B)、硬化促進剤(C)の3成分を必須成分とする態様、及び、ゴム粒子分散エポキシ樹脂(A)、硬化触媒(D)の2成分を必須成分とする態様が挙げられる。
 [硬化剤(B)]
 硬化剤(B)は、エポキシ基を有する化合物を硬化させる働きを有する。本発明における硬化剤(B)としては、エポキシ樹脂用硬化剤として周知慣用の硬化剤を使用することができる。本発明における硬化剤(B)としては、なかでも、25℃で液状の酸無水物であることが好ましく、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸などを挙げることができる。また、例えば、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物などの常温(25℃)で固体状の酸無水物は、常温(25℃)で液状の酸無水物に溶解させて液状の混合物とすることで、本発明における硬化剤(B)として使用することができる。
 また、本発明においては、硬化剤(B)として、商品名「リカシッド MH-700」(新日本理化(株)製)、商品名「HN-5500」(日立化成(株)製)等の市販品を使用することもできる。
 硬化剤(B)の使用量としては、例えば、光半導体封止用樹脂組成物中に含有する全エポキシ基を有する化合物100重量部に対して、50~150重量部、好ましくは52~145重量部、特に好ましくは、55~140重量部程度である。より具体的には、上記光半導体封止用樹脂組成物中に含有する全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5~1.5当量となる割合で使用することが好ましい。硬化剤(B)の使用量が50重量部を下回ると、効果が不十分となり、硬化物の強靱性が低下する傾向があり、一方、硬化剤(B)の使用量が150重量部を上回ると、硬化物が着色して色相が悪化する場合がある。
 [硬化促進剤(C)]
 硬化促進剤(C)は、エポキシ基を有する化合物が硬化剤(B)により硬化する際に、硬化速度を促進する機能を有する化合物である。本発明における硬化促進剤(C)としては、周知慣用の硬化促進剤を使用することができ、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、及びその塩(例えば、ホスホニウム塩、スルホニウム塩、4級アンモニウム塩、ヨードニウム塩);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール;リン酸エステル、トリフェニルホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物;オクチル酸スズ、オクチル酸亜鉛などの有機金属塩;金属キレートなどが挙げられる。これらは、単独で又は2種以上を混合して使用することができる。
 また、本発明においては、硬化促進剤(C)として、商品名「U-CAT SA 506」、「U-CAT SA 102」、「U-CAT 5003」、「U-CAT 18X」、「12XD(開発品)」(いずれもサンアプロ(株)製)、商品名「TPP-K」、「TPP-MK」(いずれも北興化学工業(株)製)、商品名「PX-4ET」(日本化学工業(株)製)等の市販品を使用することもできる。
 硬化促進剤(C)の使用量としては、例えば、光半導体封止用樹脂組成物中に含有する全エポキシ基を有する化合物100重量部に対して、0.05~5重量部、好ましくは0.1~3重量部、特に好ましくは0.2~3重量部、最も好ましくは0.25~2.5重量部程度である。硬化促進剤(C)の使用量が0.05重量部を下回ると、硬化促進効果が不十分となる場合があり、一方、硬化促進剤(C)の使用量が5重量部を上回ると、硬化物が着色して色相が悪化する場合がある。
 [硬化触媒(D)]
 本発明における硬化触媒(D)は、上記ゴム粒子分散エポキシ樹脂(A)中のエポキシ化合物の重合を開始させる働きを有する。本発明における硬化触媒(D)としては、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、ゴム粒子分散エポキシ樹脂(A)の重合を開始させるカチオン重合開始剤が好ましい。
 紫外線照射によりカチオン種を発生するカチオン重合開始剤としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルゼネート塩などを挙げることができ、商品名「UVACURE1590」(ダイセル・サイテック(株)製)、商品名「CD-1010」、「CD-1011」、「CD-1012」(米国サートマー社製)、商品名「イルガキュア264」(チバ・ジャパン(株)製)、商品名「CIT-1682」(日本曹達(株)製)等の市販品を好適に使用することができる。
 加熱処理を施すことによりカチオン種を発生するカチオン重合開始剤としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体などを挙げることができ、商品名「PP-33」、「CP-66」、「CP-77」(ADEKA(株)製)、商品名「FC-509」(スリーエム(株)製)、商品名「UVE1014」(G.E.(株)製)、商品名「サンエイド SI-60L」、「サンエイド SI-80L」、「サンエイド SI-100L」、「サンエイド SI-110L」(三新化学工業(株)製)、商品名「CG-24-61」(チバ・ジャパン(株)製)等の市販品を好適に使用することができる。さらに、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物であってもよい。
 本発明における硬化触媒(D)としては、なかでも、毒性が低く取り扱いやすい点や、汎用性に優れる点で、ヘキサフルオロホスフェート塩が好ましい。
 硬化触媒(D)の使用量としては、例えば、光半導体封止用樹脂組成物中に含有する全エポキシ基を有する化合物100重量部に対して、0.01~15重量部、好ましくは0.01~12重量部、特に好ましくは、0.05~10重量部、最も好ましくは、0.1~10重量部程度である。この範囲内で使用することにより、耐熱性、透明性、耐候性に優れた硬化物を得ることができる。
 本発明にかかる光半導体封止用樹脂組成物は、上記硬化剤(B)、硬化促進剤(C)、硬化触媒(D)以外に、ゴム粒子を含まない脂環式エポキシ樹脂を含有していてもよい。脂環式エポキシ樹脂としては、上記式(1)で表される脂環式エポキシ樹脂を挙げることができる。ゴム粒子を含まない脂環式エポキシ樹脂の使用量としては、光半導体封止用樹脂組成物中に含有される全エポキシ基含有樹脂の70重量%未満であることが好ましく、なかでも、50重量%未満であることが好ましい。ゴム粒子を含まない脂環式エポキシ樹脂の使用量が全エポキシ基含有樹脂の70重量%を上回ると、得られる硬化物の耐クラック性が低下する傾向がある。
 さらに、本発明にかかる光半導体封止用樹脂組成物は、ビスフェノールA型、ビスフェノールF型などの芳香環を有するグリシジルエーテル系エポキシ化合物;水添ビスフェノールA型、脂肪族グリシジル型などの芳香環を有しないグリシジルエーテル系エポキシ化合物;グリシジルエステル系エポキシ化合物;グリシジルアミン系エポキシ化合物;ポリオール化合物、オキセタン化合物、ビニルエーテル化合物等を含有していてもよい。
 また、常温(25℃)で固体を呈するエポキシ化合物であっても、配合した後に液状を呈するものであれば、含有していてもよい。常温(25℃)で固体を呈するエポキシ化合物としては、例えば、固形のビスフェノール型エポキシ化合物、ノボラック型エポキシ化合物、グリシジルエステル、トリグリシジルイソシアヌレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロセキサン付加物(商品名「EHPE3150」、ダイセル化学工業(株)製)などを挙げることができる。これらのエポキシ化合物は、単独で又は2種以上を組み合わせて使用することができる。
 本発明においては、なかでも、上記硬化剤(B)、硬化促進剤(C)、硬化触媒(D)以外に、芳香環を有しないグリシジルエーテル系エポキシ化合物及び/又は25℃で液状を呈するポリオール化合物(但し、ポリエーテルポリオールを除く)を含むことが、高い耐熱性を損なうことなく耐クラック性を向上させることができる点で好ましく、特に、芳香環を有しないグリシジルエーテル系エポキシ化合物を含むことが、高い耐熱性及び耐光性を損なうことなく耐クラック性を向上させることができる点で好ましい。
 [芳香環を有しないグリシジルエーテル系エポキシ化合物]
 本発明における芳香環を有しないグリシジルエーテル系エポキシ化合物には、脂肪族グリシジルエーテル系エポキシ化合物、及び、芳香族グリシジルエーテル系エポキシ化合物を核水添した化合物を含む。例えば、商品名「EPICLON703」、「EPICLON707」、「EPICLON720」、「EPICLON725」(DIC(株)製)、商品名「YH-300」、「YH-315」、「YH-324」、「PG-202」、「PG-207」、「サントートST-3000」(東都化成(株)製)、商品名「リカレジンDME-100」、「リカレジンHBE-100」(新日本理化(株)製)、商品名「デナコールEX-212」、「デナコールEX-321」(ナガセケムテックス(株)製)、商品名「YX8000」、「YX8034」(ジャパンエポキシレジン(株)製)等の市販品を好適に使用することができる。
 芳香環を有しないグリシジルエーテル系エポキシ化合物の使用量としては、例えば、脂環式エポキシ樹脂100重量部に対して10~60重量部程度、好ましくは、20~50重量部程度である。
 [25℃で液状を呈するポリオール化合物]
 本発明における25℃で液状を呈するポリオール化合物には、ポリエーテルポリオール以外のポリオール化合物が含まれ、例えば、ポリエステルポリオール、ポリカーボネートポリオールが含まれる。
 ポリエステルポリオールとしては、例えば、商品名「プラクセル205」、「プラクセル205H」、「プラクセル205U」、「プラクセル205BA」、「プラクセル208」、「プラクセル210」、「プラクセル210CP」、「プラクセル210BA」、「プラクセル212」、「プラクセル212CP」、「プラクセル220」、「プラクセル220CPB」、「プラクセル220NP1」、「プラクセル220BA」、「プラクセル220ED」、「プラクセル220EB」、「プラクセル220EC」、「プラクセル230」、「プラクセル230CP」、「プラクセル240」、「プラクセル240CP」、「プラクセル210N」、「プラクセル220N」、「プラクセルL205AL」、「プラクセルL208AL」、「プラクセルL212AL」、「プラクセルL220AL」、「プラクセルL230AL」、「プラクセル305」、「プラクセル308」、「プラクセル312」、「プラクセルL312AL」、「プラクセル320」、「プラクセルL320AL」、「プラクセルL330AL」、「プラクセル410」、「プラクセル410D」、「プラクセル610」、「プラクセルP3403」、「プラクセルCDE9P」(ダイセル化学工業(株)製)等の市販品を使用することができる。
 ポリカーボネートポリオールとしては、例えば、商品名「プラクセルCD205PL」、「プラクセルCD205HL」、「プラクセルCD210PL」、「プラクセルCD210HL」、「プラクセルCD220PL」、「プラクセルCD220HL」(ダイセル化学工業(株)製)、商品名「UH-CARB50」、「UH-CARB100」、「UH-CARB300」、「UH-CARB90(1/3)」、「UH-CARB90(1/1)」、「UC-CARB100」(宇部興産(株)製)、商品名「PCDL T4671」、「PCDL T4672」、「PCDL T5650J」、「PCDL T5651」、「PCDL T5652」(旭化成ケミカルズ(株)製)等の市販品を使用することができる。
 25℃で液状を呈するポリオール化合物の使用量としては、例えば、ゴム粒子分散エポキシ樹脂(A)100重量部に対して5~50重量部程度、好ましくは、10~40重量部程度である。
 本発明にかかる光半導体封止用樹脂組成物は、上記以外にも、本発明の効果を損なわない範囲内で各種添加剤を使用することができる。
 添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリンなどの水酸基を有する化合物を使用すると、反応を緩やかに進行させることができる。その他にも、粘度や透明性を損なわない範囲内で、シリコーン系やフッ素系消泡剤、レベリング剤、γ-グリシドキシプロピルトリメトキシシランなどのシランカップリング剤、界面活性剤、充填剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、離型剤などの慣用の添加剤を使用することができる。これらの添加剤の使用量としては、光半導体封止用樹脂組成物全量に対して5重量%以下程度である。
 本発明にかかる光半導体封止用樹脂組成物の製造方法としては、特に限定されることなく周知慣用の方法を使用することができ、例えば、所定量のゴム粒子分散エポキシ樹脂(A)、硬化剤(B)、硬化促進剤(C)または、所定量のゴム粒子分散エポキシ樹脂(A)、硬化触媒(D)、及び任意の添加剤を配合して、ディゾルバー、ホモジナイザーなどの各種ミキサー、ニーダー、ロール、ビーズミル、自公転式撹拌装置などで撹拌・混合する方法等が挙げられる。また、撹拌・混合後、真空下にて脱泡してもよい。
 本発明にかかる光半導体封止用樹脂組成物は、光半導体素子を封止する際の加工性の点で、常温(25℃)で液状を呈することが好ましく、粘度(25℃)が、20000mPa・s以下(例えば、200~20000mPa・s)であることが好ましく、なかでも、15000mPa・s以下(例えば、200~15000mPa・s)であることがより好ましい。また、ガラス転移温度としては、120~200℃が好ましく、なかでも、130~180℃がより好ましい。
 さらに、本発明にかかる光半導体封止用樹脂組成物を硬化することにより得られる硬化物は、透明性に優れることが好ましく、厚さ3mmの硬化物における波長400nmの光透過率が72%以上、波長450nmの光透過率が78%以上であることが好ましい。光線透過率が上記範囲を下回ると、光半導体素子の封止剤として使用する際に、光半導体装置の光度が低下する傾向がある。
 本発明にかかる光半導体封止用樹脂組成物は、硬化することにより、高い耐熱性、透明性を維持しつつ、優れた耐クラック性を発揮することができる硬化物を形成する。そのため、光半導体素子の封止用として好適に使用することができる。
 [光半導体装置]
 本発明にかかる光半導体装置は、光半導体封止用樹脂組成物によって光半導体素子が封止されてなる。光半導体素子の封止方法としては、特に限定されることなく周知慣用の方法を使用することができ、例えば、ポッティング法、キャスティング法、印刷法などの方法が挙げられる。
 例えば、ポッティング法を使用する場合、本発明にかかる光半導体封止用樹脂組成物を所定の成形型内に注入し、加熱硬化することにより光半導体素子が封止された光半導体装置を得ることができる。加熱硬化条件としては、例えば、加熱温度が80~200℃程度(好ましくは、80~190℃、さらに好ましくは、80~180℃)、加熱時間が30~600分程度(好ましくは、45~540分、さらに好ましくは、60~480分)の範囲内で適宜調整することができ、例えば、加熱温度を高くする場合は加熱時間を短くし、加熱温度が低い場合は加熱時間を長くすることが好ましい。加熱温度及び加熱時間が上記範囲を下回ると、硬化が不十分となる傾向がある。一方、加熱温度及び加熱時間が上記範囲を上回ると、樹脂成分が分解される場合がある。また、加熱硬化処理は1段階で行ってもよく、多段階に分けて加熱処理を施して、段階的に硬化させてもよい。
 本発明においては、なかでも、急激な硬化反応による発泡を防ぎ、硬化による応力ひずみを緩和して耐クラック性を向上させることができる点で、多段階に分けて加熱処理を施して、段階的に硬化させることが好ましい。また、硬化剤(B)を使用する場合は、第一段階として、加熱温度80~150℃(好ましくは、100~140℃)で、加熱時間30~300分(好ましくは45~270分)、第二段階として、加熱温度100~200℃(好ましくは、110~180℃)で、加熱時間30~600分(好ましくは45~540分)の条件で加熱硬化させることが好ましく、硬化触媒(D)を使用する場合は、第一段階として、加熱温度30~150℃(好ましくは、40~140℃)で、加熱時間30~300分(好ましくは45~270分)、第二段階として、加熱温度60~200℃(好ましくは、80~180℃)で、加熱時間30~600分(好ましくは45~540分)の条件で加熱硬化させることが好ましい。
 本発明にかかる光半導体装置は、本発明にかかる光半導体封止用樹脂組成物によって光半導体素子が封止されてなるため、優れた光度を長期間に亘り維持することができる。そのため、長く、高い性能を維持し続けることができ、長寿命の光半導体装置として高い信頼を得ることができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、ゴム粒子の平均粒子径、最大粒子径は、動的光散乱法を測定原理とした「NanotracTM」形式のナノトラック粒度分布測定装置(商品名「UPA-EX150」、日機装(株)製)を使用して下記試料を測定し、得られた粒度分布曲線において、累積カーブが50%となる時点の粒子径である累積平均径を平均粒子径、粒度分布測定結果の頻度(%)が0.00%を超えた時点の最大の粒子径を最大粒子径とした。
 試料:
 ゴム粒子分散エポキシ樹脂(A)1重量部をテトラヒドロフラン20重量部に分散させたものを試料とした。
 ゴム粒子の屈折率は、ゴム粒子1gを型に注型して210℃、4MPaで圧縮成形し、厚さ1mmの平板を得、得られた平板から、縦20mm×横6mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、該試験片における20℃、ナトリウムD線での屈折率を測定した。
 製造例で得られたゴム粒子分散エポキシ樹脂(A)(ゴム粒子5重量部をセロキサイド2021P(ダイセル化学工業(株)製)100重量部に分散させたもの)の粘度は、デジタル粘度形(商品名「DVU-EII型」、(株)トキメック製)を使用して、25℃における粘度を測定した。
 製造例1
 還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルコハク酸ナトリウム0.68gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、コア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、スチレン2.57g、及びジビニルベンゼン0.39gからなる単量体混合物を、一括添加し、20分間撹拌して乳化させた後、ペルオキソ2硫酸カリウム9.5mgを添加し、1時間撹拌して最初のシード重合を行い、続いて、ペルオキソ2硫酸カリウム180.5mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、スチレン48.89g、ジビニルベンゼン7.33gにジオクチルコハク酸ナトリウム0.95gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
 次いで、ペルオキソ2硫酸カリウム60mgを添加して5分間撹拌し、これに、メタクリル酸メチル60g、アクリル酸1.5g、及びアリルメタクリレート0.3gにジオクチルコハク酸ナトリウム0.3gを溶解させてなる単量体混合物を30分かけて連続的に添加し、シード重合を行い、その後、1時間熟成し、コア部分を被覆するシェル層を形成した。
 次いで、室温(25℃)まで冷却し、目開き120μmのプラスチック製網で濾過することにより、コアシェル構造を有する粒子を含むラテックスを得た。得られたラテックスをマイナス30℃で凍結し、吸引濾過器で脱水洗浄した後、60℃で一昼夜送風乾燥してゴム粒子(1)を得た。得られたゴム粒子(1)の平均粒子径は254nm、最大粒子径は486nm、屈折率は1.500であった。
 窒素気流下、60℃に加温した状態でディゾルバー(1000rpm、60分間)を使用して、得られたゴム粒子(1)5重量部を、セロキサイド2021P(ダイセル化学工業(株)製)100重量部に分散させ、真空脱泡して、ゴム粒子分散エポキシ樹脂(A-1)(25℃での粘度:559mPa・s)を得た。
 製造例2
 アクリル酸1.5gの代わりに2-ヒドロキシエチルメタクリレート2.7gを使用した以外は製造例1と同様にして、ゴム粒子(2)を得た。得られたゴム粒子(2)の平均粒子径は261nm、最大粒子径は578nm、屈折率は1.500であった。
 さらに、製造例1と同様にしてゴム粒子分散エポキシ樹脂(A-2)(25℃での粘度:512mPa・s)を得た。
 製造例3
 還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルコハク酸ナトリウム1.3gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、コア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、スチレン2.57g、及びジビニルベンゼン0.39gからなる単量体混合物を、一括添加し、20分間撹拌して乳化させた後、ペルオキソ2硫酸カリウム12mgを添加し、1時間撹拌して最初のシード重合を行い、続いて、ペルオキソ2硫酸カリウム228mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、スチレン48.89g、ジビニルベンゼン7.33gにジオクチルコハク酸ナトリウム1.2gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
 次いで、アクリル酸の使用量を1.5gから2.0gに変更した以外は製造例1と同様にして、ゴム粒子(3)を得た。得られたゴム粒子(3)の平均粒子径は108nm、最大粒子径は289nm、屈折率は1.500であった。
 さらに、製造例1と同様にしてゴム粒子分散エポキシ樹脂(A-3)(25℃での粘度:1036mPa・s)を得た。
 製造例4
 アクリル酸1.5gの代わりにスチレン1.0gを使用した以外は製造例1と同様にして、ゴム粒子(4)を得た。得られたゴム粒子(4)の平均粒子径は257nm、最大粒子径は578nm、屈折率は1.500であった。
 さらに、製造例1と同様にしてゴム粒子分散エポキシ樹脂(A-4)(25℃での粘度:507mPa・s)を得た。
 製造例5
 還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルコハク酸ナトリウム0.35gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、コア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、及びジビニルベンゼン0.29gからなる単量体混合物を一括添加し、20分間撹拌して乳化させた後、ペルオキソ2硫酸カリウム9.5mgを添加し、1時間撹拌して最初のシード重合を行い、続いて、ペルオキソ2硫酸カリウム180.5mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、ジビニルベンゼン5.51gにジオクチルコハク酸ナトリウム1.5gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
 次いで、ペルオキソ2硫酸カリウム75mgを添加して5分間撹拌し、これに、メタクリル酸メチル60g、アクリル酸1.0g、及びアリルメタクリレート0.3gにジオクチルコハク酸ナトリウム0.2gを溶解させてなる単量体混合物を30分かけて連続的に添加し、シード重合を行い、その後、1時間熟成し、コア部分を被覆するシェル層を形成した。
 次いで、製造例1と同様に室温(25℃)まで冷却し、目開き120μmのプラスチック製網で濾過することにより、コアシェル構造を有する粒子を含むラテックスを得た。得られたラテックスをマイナス30℃で凍結し、吸引濾過器で脱水洗浄した後、60℃で一昼夜送風乾燥してゴム粒子(5)を得た。得られたゴム粒子(5)の平均粒子径は227nm、最大粒子径は2312nm、屈折率は1.470であった。
 さらに、製造例1と同様にして、ゴム粒子分散エポキシ樹脂(A-5)(25℃での粘度:513mPa・s)を得た。
 製造例6
 室温(25℃)で、商品名「T.K.ミニミクサー」(特殊機化工業(株)製、6000rpm、40分)を使用して、低弾性架橋シリコーンからなるコア部分と、メタクリル酸メチルからなる重合体からなるシェル層とを有する粒子(商品名「GENIOPERL P52」、旭化成ワッカーシリコーン(株)製、20℃、ナトリウムD線での屈折率は1.44、平均粒子径は282nm、最大粒子径は972nm)5重量部を、セロキサイド2021P(ダイセル化学工業(株)製)100重量部に分散させて、ゴム粒子分散エポキシ樹脂(A-6)(25℃での粘度:333mPa・s)を得た。
 実施例1~6、比較例1~8
 表1、2に示す配合処方(単位:重量部)に従って、各成分を、自公転式撹拌装置(商品名「あわとり練太郎AR-250」、シンキー(株)製)を使用して均一に混合し(2000rpm、5分間)、脱泡して光半導体樹脂組成物を得た。得られた光半導体樹脂組成物を型に注型し、加熱して硬化物を得た。なお、実施例1~4、比較例1~6で得られた光半導体樹脂組成物は、100℃で2時間、続いて、140℃で3時間加熱した。実施例5、6、比較例7、8で得られた光半導体樹脂組成物は、80℃で3時間、続いて、100℃で3時間、続いて、140℃で3時間加熱した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表中、「-」は、測定、評価を行わなかったことを示す。
 *エポキシ樹脂
  セロキサイド2021P:3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、ダイセル化学工業(株)製
  YX8000:水素化ビスフェノールAのジグリシジルエーテルを主成分としたエポキシ樹脂、商品名「エピコートYX8000」、ジャパンエポキシレジン(株)製
  YH300:脂肪族ポリグリシジルエーテルを主成分とした低粘度エポキシ樹脂、東都化成(株)製
  YD8125:ビスフェノールA型エポキシ樹脂、東都化成(株)製
  硬化剤(B)
  リカシッド MH-700:4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30、新日本理化(株)製
  硬化促進剤(C)
  U-CAT SA-506:DBU-p-トルエンスルホン酸塩、サンアプロ(株)製
  硬化触媒(D)
  サンエイド SI-100L:アリールスルホニウム塩、三新化学工業(株)製
  添加剤
  エチレングリコール:和光純薬工業(株)製
 得られた硬化物を下記方法により評価方法した。
 [硬化物の外観]
 (硬化直後)
 厚み3mmの硬化物について、硬化物の色相低下、白濁の発生、ゴム粒子のブリードアウトの有無を目視で観察し、下記基準に従って評価した。
 (ヒートショック試験を100サイクル後)
 下記方法によりヒートショック試験を100サイクル行った後の硬化物について、ヒートショック試験を施す前の硬化物と比較して、硬化物の色相低下、白濁の発生、ゴム粒子のブリードアウトの有無を目視で観察し、下記基準に従って評価した。
 評価基準
  硬化物の色相低下、白濁、ゴム粒子のブリードアウトが全く無い:○
  硬化物の色相低下、白濁、ゴム粒子のブリードアウトのうち少なくとも1つが発生した:×
 [屈折率差試験]
 得られた硬化物から縦20mm×横6mm×厚さ1mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させ、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより、硬化物の屈折率を測定し、下記式に従って、屈折率差を算出した。なお、比較例4、6、8では、硬化物が白濁したため屈折率を測定することができなかった。そこで、比較例4、6における硬化物の屈折率としては、比較例1における硬化物の屈折率の値(1.504)を使用し、比較例8における硬化物の屈折率としては、比較例7における硬化物の屈折率の値(1.516)を使用した。
   屈折率差=[ゴム粒子の屈折率]-[硬化物の屈折率]
 [ガラス転移温度]
 耐熱性の指標として、得られた硬化物から縦5mm×横5mm×厚さ3.5mmの試験片を切り出し、室温(25℃)から300℃まで、昇温速度5℃/分で熱機械分析(TMA)を行い、ガラス転移温度(Tg、℃)を測定した。なお、熱機械分析装置として、商品名「EXSTAR6000」(セイコーインスツル(株)製)を使用した。
 [光線透過率]
 得られた硬化物を厚さ3mmにスライスしたものを試験片とし、波長400nm及び450nmにおける光線透過率(%)を、分光光度計(商品名「UV-2450」、(株)島津製作所製)を使用して測定した。
 [ヒートショック試験]
 光半導体素子付きリードフレームに、得られた光半導体樹脂組成物を注型して加熱硬化させて光半導体装置を得(各光半導体樹脂組成物につき5個作製)、得られた光半導体装置全てについてクラックがないことを確認し、冷熱衝撃装置(商品名「TSE-11-A」、エスペック(株)製)を使用して105℃に30分暴露し、続いて、マイナス45℃に30分暴露するのを1サイクルとし、これを100サイクル繰り返した。100サイクル後の光半導体装置について、クラック発生数及びクラックの長さをデジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を使用して観察し、下記基準に従ってクラック数を評価し、さらに、クラックが発生した場合については、下記基準に従ってクラック長さを評価した。
 クラック数の評価基準
  光半導体装置5個のうち、クラック発生数が2個以下:○
  光半導体装置5個のうち、クラック発生数が3個以上:×
 クラック長さの評価基準
  発生したクラック長さが全て140μm以下:○
  発生したクラック長さが全て140μmを上回る:×
 さらに、100サイクル後の光半導体装置について、点灯するか否かを目視で観察し、下記基準に従って評価した。
 評価基準
  光半導体装置5個のうち、すべてが点灯:○
  光半導体装置5個のうち、1つでも不灯:×
 [総合判定]
 硬化剤(B)を使用した場合(実施例1~4、比較例1~6)は、
 硬化直後及びヒートショック試験100サイクル後の硬化物の外観評価が何れも○
 ガラス転移温度(Tg)が120℃以上
 450nmでの光線透過率が78%以上
 400nmでの光線透過率が72%以上
 ヒートショック試験100サイクル後のクラック数及び点灯/不灯評価が何れも○
 硬化触媒(D)を使用した場合(実施例5、6、比較例7、8)は、
 硬化直後及びヒートショック試験100サイクル後の硬化物の外観評価が何れも○
 ガラス転移温度(Tg)が120℃以上
 450nmでの光線透過率が78%以上
 400nmでの光線透過率が72%以上
 ヒートショック試験100サイクル後のクラック長さ、及び点灯/不灯評価が何れも○
を全て満たす場合、総合判定を○、1つでも満たさない場合は総合判定を×とした。
 本発明の光半導体封止用樹脂組成物は、光半導体関連の電気・電子用封止材料などの用途を含む様々な方面で好適に使用することができる。特に、光半導体の封止剤として使用した場合、得られる光半導体装置は、長く、高い性能を維持し続けることができ、長寿命の光半導体装置として高い信頼を得ることができる。

Claims (7)

  1.  ゴム粒子を脂環式エポキシ樹脂に分散させたゴム粒子分散エポキシ樹脂(A)を含む光半導体封止用樹脂組成物であって、該ゴム粒子が、(メタ)アクリル酸エステルを必須モノマー成分とするポリマーで構成され、表面に脂環式エポキシ樹脂と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有し、平均粒子径が10nm~500nm、最大粒子径が50nm~1000nmであり、該ゴム粒子の屈折率と当該光半導体封止用樹脂組成物の硬化物の屈折率との差が±0.02以内である光半導体封止用樹脂組成物。
  2.  ゴム粒子分散エポキシ樹脂(A)に加えて、硬化剤(B)及び硬化促進剤(C)を含む請求項1に記載の光半導体封止用樹脂組成物。
  3.  ゴム粒子分散エポキシ樹脂(A)に加えて、硬化触媒(D)を含む請求項1に記載の光半導体封止用樹脂組成物。
  4.  硬化剤(B)が25℃で液状の酸無水物である請求項2に記載の光半導体封止用樹脂組成物。
  5.  硬化触媒(D)が、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、ゴム粒子分散エポキシ樹脂(A)の重合を開始させることを特徴とする請求項3に記載の光半導体封止用樹脂組成物。
  6.  さらに、芳香環を有しないグリシジルエーテル系エポキシ化合物及び/又は25℃で液状を呈するポリオール化合物(但し、ポリエーテルポリオールを除く)を含む請求項1~5の何れかの項に記載の光半導体封止用樹脂組成物。
  7.  請求項1~6の何れかの項に記載の光半導体封止用樹脂組成物によって光半導体素子が封止されてなる光半導体装置。
PCT/JP2009/003426 2008-07-31 2009-07-22 光半導体封止用樹脂組成物とこれを使用した光半導体装置 WO2010013407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010522600A JP5466643B2 (ja) 2008-07-31 2009-07-22 光半導体封止用樹脂組成物とこれを使用した光半導体装置
CN2009801204304A CN102046690B (zh) 2008-07-31 2009-07-22 光半导体密封用树脂组合物和使用了该树脂组合物的光半导体装置
EP09802656.0A EP2308909A4 (en) 2008-07-31 2009-07-22 RESIN COMPOSITION FOR SEALING AN OPTICAL SEMICONDUCTOR AND OPTICAL SEMICONDUCTOR COMPONENT THEREWITH
US13/002,951 US8779059B2 (en) 2008-07-31 2009-07-22 Optical semiconductor sealing resin composition and optical semiconductor device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-197469 2008-07-31
JP2008197469 2008-07-31

Publications (1)

Publication Number Publication Date
WO2010013407A1 true WO2010013407A1 (ja) 2010-02-04

Family

ID=41610122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003426 WO2010013407A1 (ja) 2008-07-31 2009-07-22 光半導体封止用樹脂組成物とこれを使用した光半導体装置

Country Status (8)

Country Link
US (1) US8779059B2 (ja)
EP (1) EP2308909A4 (ja)
JP (1) JP5466643B2 (ja)
KR (1) KR101562420B1 (ja)
CN (1) CN102046690B (ja)
MY (1) MY149707A (ja)
TW (1) TWI455989B (ja)
WO (1) WO2010013407A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053199A (ja) * 2008-08-27 2010-03-11 Daicel Chem Ind Ltd 光半導体封止用樹脂組成物
WO2012086463A1 (ja) 2010-12-20 2012-06-28 株式会社ダイセル 硬化性エポキシ樹脂組成物及びこれを使用した光半導体装置
US20130131216A1 (en) * 2010-09-03 2013-05-23 Daicel Corporation Thermosetting epoxy resin composition and uses thereof
JP2013100410A (ja) * 2011-11-09 2013-05-23 Daicel Corp 硬化性エポキシ樹脂組成物
WO2013099693A1 (ja) * 2011-12-27 2013-07-04 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP2013133465A (ja) * 2011-12-27 2013-07-08 Daicel Corp 硬化性エポキシ樹脂組成物
JP2013209525A (ja) * 2012-03-30 2013-10-10 Daicel Corp 硬化性エポキシ樹脂組成物
US20140008686A1 (en) * 2011-06-27 2014-01-09 Daicel Corporation Curable resin composition for reflection of light, and optical semiconductor device
JP2014055220A (ja) * 2012-09-12 2014-03-27 Daicel Corp 硬化性エポキシ樹脂組成物
JP2014084332A (ja) * 2012-10-19 2014-05-12 Daicel Corp 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置
JP2015071792A (ja) * 2011-12-27 2015-04-16 日立化成株式会社 電子部品用液状樹脂組成物及びその製造方法、並びに電子部品装置
JP2017125212A (ja) * 2017-04-10 2017-07-20 株式会社ダイセル 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置
EP2664651A4 (en) * 2011-01-11 2017-12-06 Mitsubishi Chemical Corporation Crosslinked polymer particles for epoxy resins, epoxy resin composition, and cured epoxy article

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120131712A (ko) * 2011-05-26 2012-12-05 엘지이노텍 주식회사 발광소자 패키지
KR101923244B1 (ko) * 2011-07-13 2018-11-28 주식회사 다이셀 경화성 에폭시 수지 조성물
DE102011056295B4 (de) * 2011-12-12 2022-02-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Epoxidharzsystem, Verwendung des Epoxidharzsystems, alterungsbeständiger Epoxidharzformstoff und Bauelement mit dem Epoxidharzformstoff
CN102746487A (zh) * 2012-05-21 2012-10-24 绵阳惠利电子材料有限公司 一种led封装环氧树脂复合物
JP2015532354A (ja) * 2012-10-19 2015-11-09 ダウ グローバル テクノロジーズ エルエルシー ポリオールを用いたポリマー粒子分散液
CN103641998B (zh) * 2013-12-24 2016-05-04 江苏华海诚科新材料股份有限公司 Led反射杯用的白色环氧树脂组合物
CN106084660B (zh) * 2016-06-21 2018-09-11 固德电材系统(苏州)股份有限公司 一种增韧型环氧树脂及其制备方法和应用
CN113214604A (zh) * 2016-10-19 2021-08-06 积水化学工业株式会社 有机el显示元件用密封剂以及有机el显示元件用密封剂的制造方法
TWI707913B (zh) * 2017-10-27 2020-10-21 財團法人工業技術研究院 環氧樹脂組合物
CN109721947A (zh) 2017-10-27 2019-05-07 财团法人工业技术研究院 环氧树脂组合物
US10858541B2 (en) * 2017-12-19 2020-12-08 Rohm And Haas Electronic Materials Llc Curable composition
FR3097550B1 (fr) * 2019-06-18 2021-11-05 Axon Cable Sa Utilisation d’une résine époxyde pour l’encapsulation/enrobage des contacts pour connecteurs électriques
CN113831541A (zh) * 2021-09-23 2021-12-24 无锡拜纳高分子材料科技有限公司 一种纳米核壳粒子增韧改性环氧树脂的制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741544A (ja) * 1993-08-02 1995-02-10 Tokuyama Corp エポキシ樹脂組成物及び光半導体装置
WO2005028546A1 (ja) * 2003-09-18 2005-03-31 Kaneka Corporation ゴム状重合体粒子の製造方法およびこれを含有する樹脂組成物の製造方法
WO2006019041A1 (ja) * 2004-08-18 2006-02-23 Kaneka Corporation 半導体封止剤用エポキシ樹脂組成物およびエポキシ樹脂成形材料
JP2007320974A (ja) * 2006-05-30 2007-12-13 Daicel Chem Ind Ltd 光半導体封止用樹脂組成物
JP2008189709A (ja) * 2007-02-01 2008-08-21 Daicel Chem Ind Ltd 硬化性樹脂組成物及びその硬化物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948698A (en) * 1967-09-06 1976-04-06 Hercules Incorporated Solid propellant compositions having epoxy cured, carboxy-terminated rubber binder
US5789482A (en) * 1990-03-30 1998-08-04 Ciba Specialty Chemicals Corporation Epoxy resin with anhydride, toughener and active hydrogen-containing compound
DE59609259D1 (de) * 1995-11-29 2002-07-04 Vantico Ag Core/Shell-Partikel und diese enthaltende härtbare Epoxidharzzusammensetzungen
JPH09255764A (ja) 1996-03-26 1997-09-30 Nitto Denko Corp 光半導体封止用エポキシ樹脂組成物硬化体およびそれを用いた光半導体装置
JPH09316169A (ja) * 1996-05-28 1997-12-09 Nissan Motor Co Ltd 車体補強用エポキシ樹脂系組成物およびその組成物を用いた車体の補強方法
JP4017236B2 (ja) 1998-02-24 2007-12-05 Jsr株式会社 光硬化性液状樹脂組成物
CA2789741C (en) 2003-06-09 2014-11-04 Kaneka Corporation Process for producing modified epoxy resin
CN1245427C (zh) * 2003-09-03 2006-03-15 中国石油化工股份有限公司 丙烯酸酯核壳聚合物
JP2005089607A (ja) * 2003-09-17 2005-04-07 Sumitomo Bakelite Co Ltd 光半導体封止用エポキシ樹脂組成物及び光半導体装置
JP2005255822A (ja) 2004-03-11 2005-09-22 Kaneka Corp ゴム強化エポキシ樹脂製品
JP2006013378A (ja) * 2004-06-29 2006-01-12 Tdk Corp サーミスタ素体形成用樹脂組成物及びサーミスタ
WO2006064736A1 (ja) * 2004-12-16 2006-06-22 Daicel Chemical Industries, Ltd. 熱硬化性エポキシ樹脂組成物及びその用途
JP4947905B2 (ja) * 2005-02-04 2012-06-06 株式会社日本触媒 光半導体封止用樹脂組成物
ATE534703T1 (de) * 2005-08-24 2011-12-15 Henkel Kgaa Epoxidzusammensetzungen mit verbesserter schlagzähigkeit
JP2007238744A (ja) * 2006-03-08 2007-09-20 Kyocera Chemical Corp 耐熱性エポキシ樹脂組成物及び発光ダイオード部品
KR20090080956A (ko) * 2006-10-06 2009-07-27 헨켈 아게 운트 코. 카게아아 발수성의 펌핑가능한 에폭시 페이스트 접착제

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741544A (ja) * 1993-08-02 1995-02-10 Tokuyama Corp エポキシ樹脂組成物及び光半導体装置
WO2005028546A1 (ja) * 2003-09-18 2005-03-31 Kaneka Corporation ゴム状重合体粒子の製造方法およびこれを含有する樹脂組成物の製造方法
WO2006019041A1 (ja) * 2004-08-18 2006-02-23 Kaneka Corporation 半導体封止剤用エポキシ樹脂組成物およびエポキシ樹脂成形材料
JP2007320974A (ja) * 2006-05-30 2007-12-13 Daicel Chem Ind Ltd 光半導体封止用樹脂組成物
JP2008189709A (ja) * 2007-02-01 2008-08-21 Daicel Chem Ind Ltd 硬化性樹脂組成物及びその硬化物

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053199A (ja) * 2008-08-27 2010-03-11 Daicel Chem Ind Ltd 光半導体封止用樹脂組成物
US9169418B2 (en) * 2010-09-03 2015-10-27 Daicel Corporation Thermosetting epoxy resin composition and uses thereof
US20130131216A1 (en) * 2010-09-03 2013-05-23 Daicel Corporation Thermosetting epoxy resin composition and uses thereof
WO2012086463A1 (ja) 2010-12-20 2012-06-28 株式会社ダイセル 硬化性エポキシ樹脂組成物及びこれを使用した光半導体装置
JP5918699B2 (ja) * 2010-12-20 2016-05-18 株式会社ダイセル 硬化性エポキシ樹脂組成物及びこれを使用した光半導体装置
EP2664651A4 (en) * 2011-01-11 2017-12-06 Mitsubishi Chemical Corporation Crosslinked polymer particles for epoxy resins, epoxy resin composition, and cured epoxy article
US20140008686A1 (en) * 2011-06-27 2014-01-09 Daicel Corporation Curable resin composition for reflection of light, and optical semiconductor device
US9184355B2 (en) * 2011-06-27 2015-11-10 Daicel Corporation Curable resin composition for reflection of light, and optical semiconductor device
JP2013100410A (ja) * 2011-11-09 2013-05-23 Daicel Corp 硬化性エポキシ樹脂組成物
WO2013099693A1 (ja) * 2011-12-27 2013-07-04 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP2015071792A (ja) * 2011-12-27 2015-04-16 日立化成株式会社 電子部品用液状樹脂組成物及びその製造方法、並びに電子部品装置
JPWO2013099693A1 (ja) * 2011-12-27 2015-05-07 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP2013133465A (ja) * 2011-12-27 2013-07-08 Daicel Corp 硬化性エポキシ樹脂組成物
JP2013209525A (ja) * 2012-03-30 2013-10-10 Daicel Corp 硬化性エポキシ樹脂組成物
JP2014055220A (ja) * 2012-09-12 2014-03-27 Daicel Corp 硬化性エポキシ樹脂組成物
JP2014084332A (ja) * 2012-10-19 2014-05-12 Daicel Corp 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置
JP2017125212A (ja) * 2017-04-10 2017-07-20 株式会社ダイセル 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置

Also Published As

Publication number Publication date
JP5466643B2 (ja) 2014-04-09
EP2308909A4 (en) 2016-08-03
CN102046690B (zh) 2013-01-16
KR101562420B1 (ko) 2015-10-21
EP2308909A1 (en) 2011-04-13
TW201016781A (en) 2010-05-01
JPWO2010013407A1 (ja) 2012-01-05
KR20110041497A (ko) 2011-04-21
MY149707A (en) 2013-09-30
CN102046690A (zh) 2011-05-04
US20110114972A1 (en) 2011-05-19
TWI455989B (zh) 2014-10-11
US8779059B2 (en) 2014-07-15

Similar Documents

Publication Publication Date Title
JP5466643B2 (ja) 光半導体封止用樹脂組成物とこれを使用した光半導体装置
JP5945537B2 (ja) 光反射用硬化性樹脂組成物及び光半導体装置
JP5918699B2 (ja) 硬化性エポキシ樹脂組成物及びこれを使用した光半導体装置
JP5154340B2 (ja) 光半導体封止用樹脂組成物
JP5829893B2 (ja) 硬化性エポキシ樹脂組成物
US20150041846A1 (en) Curable epoxy resin composition
JP5852014B2 (ja) 硬化性エポキシ樹脂組成物
JP2013213147A (ja) 硬化性エポキシ樹脂組成物
JP5919200B2 (ja) 硬化性エポキシ樹脂組成物
JP5899025B2 (ja) 硬化性エポキシ樹脂組成物
JP6118313B2 (ja) 硬化性エポキシ樹脂組成物
JP6472754B2 (ja) 硬化性エポキシ樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120430.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010522600

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13002951

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009802656

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 456/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117002421

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE