WO2010001698A1 - サイクロイド減速機、インホイールモータ駆動装置、および車両用モータ駆動装置 - Google Patents

サイクロイド減速機、インホイールモータ駆動装置、および車両用モータ駆動装置 Download PDF

Info

Publication number
WO2010001698A1
WO2010001698A1 PCT/JP2009/060582 JP2009060582W WO2010001698A1 WO 2010001698 A1 WO2010001698 A1 WO 2010001698A1 JP 2009060582 W JP2009060582 W JP 2009060582W WO 2010001698 A1 WO2010001698 A1 WO 2010001698A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive device
lubricating oil
cycloid
bearing
motor drive
Prior art date
Application number
PCT/JP2009/060582
Other languages
English (en)
French (fr)
Inventor
牧野 智昭
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US12/996,686 priority Critical patent/US8506438B2/en
Priority to EP09773276.2A priority patent/EP2292946B1/en
Priority to CN200980125533.XA priority patent/CN102076993B/zh
Publication of WO2010001698A1 publication Critical patent/WO2010001698A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel

Definitions

  • the present invention relates to a support structure for a revolving member of a cycloid reduction gear.
  • Patent Document 1 A conventional in-wheel motor drive device is described in, for example, Japanese Patent Application Laid-Open No. 2006-258289 (Patent Document 1).
  • An in-wheel motor drive device described in Patent Document 1 includes a drive motor, a speed reducer that receives a driving force from the drive motor, decelerates the number of rotations, and outputs it to the wheel side, and an output shaft of the speed reducer
  • the hub members of the wheels to be coupled are arranged coaxially.
  • This speed reducer is a cycloid speed reduction mechanism, and a high speed reduction ratio can be obtained as compared with a planetary gear speed reduction mechanism that is general as a conventional speed reducer.
  • the required torque of the drive motor can be reduced, which is advantageous in that the size and weight of the in-wheel motor drive device can be reduced.
  • the outer pin is rotatably supported on the casing by a needle roller bearing. Therefore, the contact resistance between the curved plate and the outer pin can be greatly reduced, and the torque loss of the speed reducer can be prevented.
  • the disc-shaped eccentric portion 25a is connected to the input shaft of the reduction gear coupled with the rotation shaft of the drive motor from the axis O of the input shaft. It is attached to be eccentric. Specifically, the axis O2 of the eccentric portion 25a is eccentric from the axis O of the input shaft by the amount of eccentricity e.
  • a curved plate 26a is attached to the outer periphery of the eccentric portion 25a via a rolling bearing 41, and the eccentric portion 25a rotatably supports the curved plate 26a.
  • the axis O2 is also the axis of the curved plate 26a.
  • the outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated recesses 33 that are recessed in the radial direction at equal intervals in the circumferential direction.
  • a plurality of outer pins 27 that engage with the recesses 33 are disposed in the circumferential direction about the axis O.
  • a plurality of through holes 30a are arranged in the circumferential direction around the axis O2.
  • An inner pin 31 that is coupled to the output shaft of the transmission disposed coaxially with the axis O is inserted through each through-hole 30a. Since the inner diameter of the through hole 30a is sufficiently larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolution movement of the curved plate 26a.
  • the inner pin 31 takes out the rotation of the curved plate 26a and rotates the output shaft. At this time, the output shaft has a higher torque and a lower rotational speed than the input shaft, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. The resultant force of the plurality of loads Fi and Fj becomes the bearing load Fs.
  • the cycloid reduction mechanism has a large rotational difference between the input shaft and the output shaft, and transmits the driving force of the vehicle. Therefore, the bearing load Fs is large, and the rolling bearing 41 includes a rolling bearing 41 to prevent seizure and perform stable operation. Appropriate lubrication is required.
  • a lubricating oil hole for supplying lubricating oil is provided in a rolling bearing 41 including a rolling element, an outer ring member on the outer diameter side of the rolling element, and an inner ring member on the inner diameter side of the rolling element.
  • the arrangement of the lubricating oil holes may be the outer raceway surface of the inner ring member 42 with which the rolling elements are in rolling contact, or the inner raceway surface of the outer ring member.
  • An object of the present invention is to provide a cycloid reduction gear capable of supplying lubricating oil to a rolling bearing without increasing the contact surface pressure of the rolling bearing.
  • a cycloid reducer includes a casing, an input shaft having one end disposed inside the casing, a disc-shaped eccentric member that is eccentric from the axis of the input shaft and is coupled to one end of the input shaft, A revolving member that is supported by the member and performs a revolving motion around the axis as the input shaft rotates, a rolling bearing disposed between the inner periphery of the revolving member and the outer periphery of the eccentric member, and a casing And an outer peripheral engagement member that engages with the outer peripheral portion of the revolution member to cause the rotation of the revolution member, and an output shaft that engages with the revolution member to extract the rotation.
  • the rolling bearing is configured so that the rolling bearing, the inner ring member attached to the outer periphery of the eccentric member, and the outer raceway surface from the inner diameter surface of the inner ring member to supply lubricating oil to the outer raceway surface of the inner ring member that is in rolling contact with the rolling element.
  • the lubricating oil hole is arranged in a no-load range where the revolution member does not share the bearing load applied from the output shaft and the outer peripheral engagement member in the outer peripheral raceway surface of the rolling bearing.
  • the contact surface pressure does not increase because the lubricating oil hole is connected to a portion of the outer raceway surface that does not share the bearing load. Therefore, there is no possibility that cracks are generated and propagated from the radially outer end of the lubricating oil hole, and the rolling fatigue life of the rolling bearing can be extended.
  • the present invention is not limited to an embodiment, and the lubricating oil holes are arranged in a range of 90 degrees or more and 270 degrees or less in the circumferential direction from a portion of the outer peripheral raceway where the bearing load to be shared is largest. As a result, cracks are not generated or propagated from the radially outer end of the lubricating oil hole, and the rolling fatigue life of the rolling bearing can be extended.
  • the lubricating oil hole is at least a part of the outer peripheral raceway surface at a predetermined angle of 180 degrees in the circumferential direction from a part having the largest bearing load to be shared, and one part in the circumferential direction and one in the circumferential direction from the 180 degree part.
  • the predetermined angle is 90 degrees or less.
  • the lubricating oil hole includes a portion of the outer peripheral raceway surface that is closest to the axis centered at 45 ° in one circumferential direction and 45 ° in the other circumferential direction. It is arranged in the range to the part.
  • the lubricating oil holes are arranged at least at a portion of the outer peripheral raceway surface that is closest to the axis, and at a predetermined angle of one of the circumferential direction and the other of the circumferential direction from the portion closest to the axis, and the predetermined angle is 45 degrees. It is as follows. Thereby, lubricating oil can be easily supplied to the whole circumferential direction.
  • the rolling bearing is a cylindrical roller bearing provided with flanges protruding radially outward from both axial ends of the outer raceway surface.
  • contact surface pressure can be made small and lubricating oil can be hold
  • the in-wheel motor drive device of the present invention includes the cycloid reducer of the present invention, a motor unit that rotationally drives the input shaft of the cycloid reducer, and a wheel hub fixedly connected to the output shaft of the cycloid reducer. .
  • a rolling fatigue life becomes long and can extend the lifetime of an in-wheel motor drive device.
  • the vehicle motor drive device of the present invention includes the cycloid reducer of the present invention and a motor unit that rotationally drives the input shaft of the cycloid reducer, and is mounted on a vehicle body. As a result, the rolling fatigue life becomes longer, and the life of the vehicle-mounted vehicle motor drive device can be extended.
  • the vehicle motor drive device of the present invention is not limited to one embodiment, but further includes a differential gear device that includes one motor unit and one cycloid reducer and is connected to the output shaft of the cycloid reducer. You may have. According to this embodiment, it is possible to extend the life of the vehicle motor drive device that distributes the motor torque to the left and right wheels or the front and rear wheels.
  • the lubricating oil hole of the cycloid reduction gear according to the present invention is arranged in a no-load range in which the revolution member does not share the bearing load applied from the output shaft and the outer peripheral engagement member in the outer peripheral raceway surface of the rolling bearing. .
  • positioned does not increase. Therefore, there is no possibility that cracks are generated or propagated on the outer raceway surface from the radially outer end of the lubricating oil hole, and the rolling fatigue life of the rolling bearing can be extended.
  • FIG. 2 is a transverse sectional view taken along the line II-II in FIG. It is explanatory drawing which shows the load which acts on the curve board of FIG. 2 with the arrow. It is explanatory drawing which shows typically load distribution of the bearing load which the rolling bearing of FIG. 3 shares. It is explanatory drawing which shows typically load distribution of the bearing load which the rolling bearing of FIG. 3 shares. It is a cross-sectional view which takes out and shows the inner ring member of the rolling bearing of the Example. It is a longitudinal cross-sectional view which takes out and shows the inner ring member of the rolling bearing of the Example.
  • FIG. 1 is a longitudinal sectional view showing an in-wheel motor drive device equipped with a cycloid reduction gear according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the in-wheel motor drive device 21 as an example of a vehicle speed reduction unit is not shown in the figure. And a wheel hub bearing portion C for transmitting to the drive wheels.
  • the motor part A and the speed reduction part B are accommodated in the casing 22 and are mounted, for example, in a wheel housing of an electric vehicle. Or it is attached to the bogie of a railway vehicle.
  • the motor part A includes a stator 23 fixed to the casing 22, a rotor 24 disposed at a position facing the inside of the stator 23 via a gap opened in the radial direction, and a rotor 24 fixedly connected to the inside of the rotor 24.
  • 24 is a radial gap motor including a motor-side rotating member 25 that rotates integrally with the motor 24.
  • the motor side rotating member 25 is arranged from the motor part A to the speed reducing part B in order to transmit the driving force of the motor part A to the speed reducing part B, and corresponds to the input shaft of the speed reducing part B. And the one end arrange
  • the end portion of the motor-side rotating member 25 on the side where the eccentric members 25 a and 25 b are coupled is rotatably supported by the rolling bearing 35.
  • the motor side rotation member 25 is fitted to the rotor 24 and supported by the rolling bearings 36a and 36b at both ends of the motor part A. Further, the two disc-shaped eccentric members 25a and 25b are provided with a 180 ° phase shift so as to cancel out vibrations generated by the centrifugal force due to the eccentric motion.
  • the deceleration portion B includes curved plates 26a and 26b as revolving members that are rotatably held by the eccentric members 25a and 25b, and a plurality of outer pins as outer peripheral engaging members that engage with the outer peripheral portions of the curved plates 26a and 26b. 27, a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a, 26b to the wheel-side rotating member 28, and a curved plate attached to a gap between the curved plates 26a, 26b and in contact with the end surfaces of the curved plates 26a, 26b.
  • a support member (also referred to as a center collar) 29 that prevents the inclination of the motor and an oil reservoir 51 that receives the lubricating oil inside the speed reduction portion B are provided.
  • the curved plate 26a is supported by the rolling bearing 41 so as to be rotatable with respect to the eccentric member 25a.
  • the curved plate 26b is also supported by another rolling bearing 41 so as to be rotatable with respect to the eccentric member 25
  • the motion conversion mechanism of the deceleration part B is composed of a plurality of inner pins 31 held by the wheel-side rotating member 28 and through holes 30a provided in the curved plates 26a and 26b.
  • the inner pins 31 are provided at equal intervals on a circumferential track centered on the rotation axis O of the wheel side rotation member 28, and one end in the axial direction thereof is fixed to the wheel side rotation member 28.
  • the inner pin 31 is provided with a needle roller bearing at a position where it comes into contact with the wall surface of the through hole 30a of the curved plates 26a, 26b in order to reduce the frictional resistance with the curved plates 26a, 26b.
  • the through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter of the through hole 30a indicates the outer diameter of the inner pin 31 ("maximum outer diameter including needle roller bearing"). The same shall apply hereinafter).
  • the wheel hub bearing portion C includes a wheel hub 32 fixedly connected to the wheel side rotating member 28 and a wheel hub bearing 34 that holds the wheel hub 32 rotatably with respect to the casing 22.
  • the wheel hub bearing 34 is a double-row angular ball bearing, and the inner ring thereof is fitted and fixed to the outer diameter surface of the wheel hub 32.
  • the wheel hub 32 has a cylindrical hollow portion 32a and a flange portion 32b.
  • a driving wheel (not shown) is fixedly connected to the flange portion 32b by a bolt 32c.
  • the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23, and the rotor 24 composed of a permanent magnet or a magnetic material rotates.
  • the curved plates 26a and 26b revolve around the rotation axis O of the motor-side rotating member 25.
  • the outer pin 27 is engaged so as to be in rolling contact with the curved waveform of the curved plates 26 a and 26 b to cause the curved plates 26 a and 26 b to rotate in the direction opposite to the rotation of the motor-side rotating member 25.
  • the inner pin 31 inserted through the through hole 30a is sufficiently thinner than the inner diameter of the through hole 30a, and comes into contact with the wall surface of the through hole 30a as the curved plates 26a and 26b rotate.
  • the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, but only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel hub bearing portion C via the wheel-side rotating member 28.
  • the wheel-side rotating member 28 arranged coaxially with the axis O takes out the rotation of the curved plates 26a and 26b as the output shaft of the speed reduction unit B through the motion conversion mechanism.
  • the rotation of the motor-side rotation member 25 is decelerated by the deceleration unit B and transmitted to the wheel-side rotation member 28. Therefore, even when the low torque, high rotation type motor unit A is employed, it is possible to transmit the necessary torque to the drive wheels.
  • the reduction ratio of the reduction part B having the above-described configuration is calculated as (ZA ⁇ ZB) / ZB, where ZA is the number of outer pins 27 and ZB is the number of waveforms of the curved plates 26a and 26b.
  • the in-wheel motor drive device 21 having a compact and high reduction ratio can be obtained.
  • the wheel-side rotation member 28 corresponds to the output shaft of the speed reduction part B, and has a flange part 28a and a shaft part 28b. Holes for fixing the inner pins 31 at equal intervals on the circumference centering on the rotation axis O of the wheel side rotation member 28 are formed in the end face of the flange portion 28a.
  • a wheel hub 32 is fixed to the outer diameter surface of the shaft portion 28b. The wheel hub 32 is rotatably supported by the casing 22 via a wheel hub bearing 34.
  • a reinforcing member 31 a is provided at the axial end of the inner pin 31.
  • the reinforcing member 31a includes an annular ring portion 31b and a cylindrical portion 31c extending in the axial direction from the inner diameter surface of the annular portion 31b. Since the load applied to some of the inner pins 31 from the curved plates 26a, 26b is supported by all the inner pins 31 via the reinforcing members 31a, the stress acting on the inner pins 31 is reduced and the durability is improved. be able to.
  • the casing 22 located between the motor part A and the speed reduction part B is provided with an oil pump 53.
  • the oil pump 53 is driven by the reinforcing member 31a.
  • the suction oil passage 52 provided in the casing 22 connects the suction port of the oil pump 53 and the oil reservoir 51 provided in the lower part of the speed reduction part B.
  • a discharge oil passage 54 provided in the casing 22 is connected to a discharge port of the oil pump 53 at one end, and is connected to a cooling oil passage 55 intersecting with a cooling device provided in the casing 22 at the other end.
  • the cooling oil passage 55 is connected to a communication oil passage 56 provided in the casing 22 and cools the lubricating oil flowing through the cooling oil passage 55.
  • the communication oil passage 56 is connected to an axial oil passage 57 provided along the axis O in the motor side rotation member 25.
  • the axial oil passage 57 is the speed reducing portion B, and a lubricating oil passage 58a extending from the axis O in the eccentric member 25a outward in the radial direction and a lubricating oil passage extending from the axis O in the eccentric member 25b outward in the radial direction.
  • Branch to 58b The radially outer ends of the lubricating oil passages 58 a and 58 b are connected to the annular groove 60.
  • the annular groove 60 communicates with an outer peripheral raceway surface, which will be described later, of the rolling bearing 41.
  • the oil pump 53 driven by the wheel-side rotating member 28 via the reinforcing member 31 a sucks the lubricating oil stored in the oil reservoir 51 and discharges the lubricating oil to the discharge oil passage 54.
  • the lubricating oil sequentially passes through the discharge oil passage 54 and the cooling oil passage 55 and is cooled.
  • the lubricating oil sequentially passes through the communication oil passage 56 and the axial oil passage 57, and then branches and flows into the lubricating oil passages 58a and 58b, respectively, and the rolling bearing 41 provided on the eccentric member 25a and the eccentric member 25b.
  • Each of the rolling bearings 41 provided in is lubricated.
  • the lubricating oil lubricates the member provided in the speed reduction part B and collects in the oil reservoir 51 provided in the lower part of the speed reduction part B.
  • the curved plate 26 b has a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer periphery, and a plurality of through holes 30 a and 30 b penetrating from one end face to the other end face.
  • a plurality of through holes 30a are provided at equal intervals on the circumference centering on the rotation axis O2 of the curved plate 26b, and receive an inner pin 31 described later.
  • the through hole 30b is provided at the center of the curved plate 26b and becomes the inner periphery of the curved plate 26b.
  • the curved plate 26b is attached to the outer periphery of the eccentric member 25b so as to be relatively rotatable.
  • the curved plate 26 b is rotatably supported by the rolling bearing 41 with respect to the eccentric member 25 b.
  • the rolling bearing 41 has an inner diameter surface attached to the outer diameter surface of the eccentric member 25b, an inner ring member 42 having an outer raceway surface 42a on the outer diameter surface, and a hole wall (inner wall of the outer raceway surface 42a and the through hole 30b.
  • It is a cylindrical roller bearing provided with a plurality of rollers 44 arranged between the circumferential raceway surfaces) and a cage (not shown) that holds the interval between the rollers 44 adjacent in the circumferential direction.
  • it may be a deep groove ball bearing. The same applies to the curved plate 26a.
  • the outer pins 27 are provided at equal intervals on a circumferential track around the rotation axis O of the motor-side rotating member 25. Then, when the curved plates 26a, 26b revolve, the outer curved shape and the outer pin 27 engage with each other, causing the curved plates 26a, 26b to rotate.
  • the lubricating oil hole is disposed on the outer circumferential raceway surface 42a.
  • the radially outer end of the lubricating oil passage 58a is connected to the three lubricating oil holes 59 via the annular groove 60 extending in the circumferential direction between the eccentric member 25b (25a) and the inner ring member 42. To do.
  • the lubricating oil holes 59 are disposed at different locations in the circumferential direction of the outer circumferential raceway surface 42a.
  • FIG. 3 is an explanatory diagram showing the load acting on the curved plate 26a of FIG. 2 by arrows.
  • the curved plate 26a of this embodiment which revolves clockwise while revolving counterclockwise on the paper surface, also receives loads Fi from a plurality of outer pins 27 and a plurality of same as indicated by arrows, as in the conventional example described above.
  • the load Fj is received from the inner pin 31, and the resultant force of the plurality of loads Fi and Fj becomes the bearing load Fs.
  • the direction of the bearing load Fs varies depending on the corrugated shape of the curved plate 26a, the geometric conditions such as the number of the concave portions 33, and the influence of centrifugal force.
  • the angle ⁇ between the reference line X perpendicular to the straight line connecting the rotation axis O2 and the axis O and passing through the axis O and the bearing load Fs is approximately 30 to 60 degrees.
  • a median value of 45 degrees is appropriate for the representative value of the angle ⁇ .
  • FIG. 4 and 5 are explanatory views schematically showing the load distribution of the rolling bearing 41 that shares the bearing load Fs shown in FIG.
  • the load range ⁇ acting on the rolling bearing 41 is 180 degrees as shown in FIG.
  • the load range ⁇ is smaller than 180 degrees as shown in FIG.
  • the bearing internal clearance (radial clearance) is a negative clearance slightly smaller than 0
  • the life of the rolling bearing 41 is the longest.
  • the negative clearance exceeds the optimum negative clearance, the life of the rolling bearing 41 is rapidly reduced.
  • the bearing internal clearance during operation that is subjected to the operating conditions such as the material, temperature, and rotational speed of the eccentric member 25a, the rolling bearing 41, and the curved plate 26a has a positive clearance slightly larger than zero.
  • the rolling bearing 41 is set.
  • the part ⁇ located at the center of the load range ⁇ has the largest bearing load. And the bearing load shared becomes small as it leaves
  • the part ⁇ and the direction of the bearing load Fs (angle ⁇ ) are in a relationship of 180 degrees.
  • the no-load range (360 ° - ⁇ ) in which the bearing load Fs is not shared is 180 degrees or more.
  • FIG. 6 is a transverse sectional view showing the inner ring member 42 of the rolling bearing 41
  • FIG. 7 is a longitudinal sectional view of the inner ring member 42.
  • the inner periphery of the inner ring member 42 is attached to the outer periphery of the eccentric member 25a.
  • the inner ring member 42 is fixed to the eccentric member 25a by press fitting or the like.
  • the outer raceway surface 42 a is formed on the outer circumference of the inner ring member 42.
  • the inner ring member 42 includes flange portions 42b that protrude radially outward from both ends of the outer peripheral raceway surface 42a in the axis O2 direction.
  • the lubricating oil hole 59 of the present embodiment is disposed in the no-load range that does not share the bearing load Fs in the outer raceway surface 42a. That is, the lubricating oil hole 59 is arranged in a no-load range of 90 degrees or more and 270 degrees or less in the circumferential direction from a portion ⁇ where the bearing load to be shared is the largest in the outer raceway surface 42a. Specifically, the lubricating oil holes 59 are arranged at three locations. One part is arranged at a part 180 degrees in the circumferential direction from the part ⁇ where the bearing load Fs to be shared is the largest, and this part is located at an angle ⁇ from the reference line X.
  • the other two places are respectively arranged at a predetermined angle of one of the circumferential direction and the other of the circumferential direction from the 180-degree portion described above, and the predetermined angle is 90 degrees or less.
  • the predetermined angle is 90 degrees or less.
  • the load range ⁇ is 180 degrees or less
  • the lubricating oil hole 59 is arranged in the range of 90 degrees or more and 270 degrees or less in the circumferential direction from the portion ⁇ where the bearing load to be shared is the largest in the inner ring raceway surface 42a. .
  • the in-wheel motor drive device can be driven as a regenerative brake in addition to a power running operation as a drive device, and can also run backward.
  • the rolling bearing 41 may be applied with the bearing load Fs described above or the bearing load Fr in a different direction.
  • the direction of the bearing load Fs and the direction of the bearing load Fr are symmetric with respect to the reference line Y.
  • the reference line Y passes through the axis O and the axis O2 whose eccentricity from the axis O is e, and is perpendicular to the reference line X.
  • FIG. 9 is an explanatory view schematically showing the load distribution of the rolling bearing 41 that shares the bearing load Fs and the bearing load Fr shown in FIG.
  • the load range acting on the rolling bearing 41 is symmetric with respect to the reference line Y, and the remaining range is the no-load range.
  • This no-load range is a range including the part ⁇ that intersects the reference line Y and is closest to the axis O as the center. Further, when the angles ⁇ of the bearing load Fs and the bearing load Fr are 45 degrees and the load ranges ⁇ are 180 degrees, the no-load range is 45 degrees from the part ⁇ to one side in the circumferential direction and 45 to the other side in the circumferential direction. It becomes the range with the part of the degree.
  • the lubricating oil hole 59 is arranged in a range from a part of ⁇ closest to the axis O to a part of 45 degrees in the circumferential direction to a part of 45 degrees in the other circumferential direction.
  • the lubricating oil hole 59 has at least a portion ⁇ closest to the axis O in the outer circumferential raceway surface 42a and a predetermined angle in one of the circumferential direction and the other in the circumferential direction from the portion ⁇ closest to the axis O.
  • the predetermined angle ⁇ is 45 degrees or less.
  • FIG. 10 is a plan view showing an arrangement layout of the in-wheel motor drive device 21.
  • the vehicle body 11 includes four wheels on the front, rear, left and right. Of these, the left wheel 12L and the right wheel 12R are drive wheels.
  • the left wheel 12L is coupled to the wheel hub 32 of the in-wheel motor drive device 21L disposed on the left side of the vehicle.
  • the in-wheel motor drive device 21L is a suspension device (not shown) and is attached under the floor of the vehicle body 11.
  • the right wheel 12R is coupled to the wheel hub 32 of the in-wheel motor drive device 21R disposed on the right side of the vehicle.
  • the in-wheel motor drive device 21R is also attached below the floor of the vehicle body 11 by a suspension device (not shown).
  • the in-wheel motor drive devices 21L and 21R are both the in-wheel motor drive device 21 described above, and are arranged symmetrically with respect to the center line of the vehicle body 11 extending in the vehicle front-rear direction.
  • the speed reduction unit B can be applied to the in-wheel motor drive device 21 that is directly attached to the wheel, and the vehicle motor drive device that is mounted on the vehicle body and is drivingly coupled to the wheel via the drive shaft. It is also applicable to.
  • FIG. 11 is a plan view showing an arrangement layout of the vehicle motor drive device 61 provided with the above-described deceleration portion B.
  • FIG. FIG. 12 is a longitudinal sectional view showing the vehicle motor drive device 61 of the same embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and different configurations will be described below.
  • the vehicle motor drive device 61 includes a reduction part B that becomes a cycloid reduction gear, and a motor part A that rotationally drives the motor-side rotation member 25 of the reduction part B, and is mounted on the vehicle body 11.
  • the motor unit A of the vehicle motor drive device 61 may have the same configuration as the motor unit A of the in-wheel motor drive device 21 or may be a rotating electrical machine having a different configuration.
  • the deceleration unit B of the vehicle motor drive device 61 has a basic configuration common to the deceleration unit B of the in-wheel motor drive device 21.
  • the configuration of the casing 22 is not limited thereto.
  • the vehicle motor drive device 61 includes two motor parts A and two deceleration parts B on the left and right.
  • the two motor parts A are disposed so as to be adjacent to each other coaxially with the axis O and back to back. Further, one of the speed reduction parts B is disposed on one side in the axis O direction of the motor part A, and the other side of the speed reduction part B is disposed on the other side in the axial direction of the motor part A.
  • the shaft portion 28b of the wheel side rotation member 28 located on the left side in the vehicle width direction extends toward the end portion, and the tip thereof is coupled to one end of the drive shaft 13L.
  • the other end of the drive shaft 13L is coupled to the left wheel 12L.
  • the shaft portion 28b of the wheel side rotation member 28 located on the right side in the vehicle width direction is also coupled to the right wheel 12R via the drive shaft 13R.
  • the left wheel 12L and the right wheel 12R can be driven independently, and the rolling fatigue life of the speed reduction unit B is increased, so that the vehicle-mounted vehicle motor drive device is mounted. It is possible to extend the service life.
  • the left wheel 12L and the right wheel 12R may be either front wheels or rear wheels.
  • FIG. 13 is a developed cross-sectional view showing a vehicle motor drive device 71 of another embodiment.
  • the same components as those in the above-described embodiments will be denoted by the same reference numerals, the description thereof will be omitted, and different configurations will be described below.
  • one motor part A and one speed reducing part B serving as a cycloid speed reducer are provided, and a differential gear device 72 that meshes with the wheel-side rotating member 28 of the speed reducing part B is further provided.
  • the differential gear device 72 includes a ring gear 75, a differential gear case 76, a pinion mate shaft 77, a pair of pinion mate gears 78 and 79, and two side gears 82 and 83.
  • the rotation is distributed to the left and right wheels 12L, 12R.
  • the shaft portion 28 b of the wheel-side rotating member 28 extending along the axis O is rotatably supported on the casing 22 by the bearing 34 on the flange portion 28 a side, and is rotatably supported on the casing 22 by the bearing 73. Both the bearing 34 and the bearing 73 are rolling bearings. The outer periphery of the shaft portion 28 b is coupled with the center of the gear 74 between the bearing 34 and the bearing 73, and the gear 74 rotates integrally with the wheel-side rotating member 28.
  • the gear 74 meshes with the ring gear 75 of the differential gear device 72.
  • the ring gear 75 is fixed to the outside of a differential gear case 76 that is rotatably supported by the casing 22 via bearings 80 and 81.
  • a pinion mate shaft 77 is installed so as to be orthogonal to the rotation axis P, and a pair of pinion mate gears 78 and 79 are rotatably supported on the shaft 77 so that the inside of the differential gear case 76.
  • a pair of side gears 82 and 83 which are between the pinion mate gears 78 and 79 and mesh with these are arranged rotatably.
  • the left side gear 82 is coupled to the left drive shaft 13L and rotates integrally.
  • the right side gear 83 is coupled to the right drive shaft 13R and rotates integrally.
  • the left wheel 12L and the right wheel 12R can be driven using one motor part A and one speed reduction part B, and the rolling fatigue life of the speed reduction part B can be increased. As a result, it is possible to extend the life of the vehicle-mounted vehicle motor drive device.
  • the left wheel 12L and the right wheel 12R may be either front wheels or rear wheels.
  • the present invention can be applied to a cycloid reducer used in an in-wheel motor drive device or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Retarders (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 インホイールモータ駆動装置21の減速部Bは、ケーシング22と、一端がケーシング22の内部に配置された入力軸25と、入力軸25の軸線Oから偏心して入力軸の一端に結合した円盤形状の偏心部材25a,25bと、中心部が偏心部材25a,25bの外周に転がり軸受41を介して支持されて、入力軸25の回転に伴って入力軸25の軸線Oを中心とする公転運動を行う公転部材26a,26bと、ケーシング22に支持され、公転部材26a,26bの外周部に係合して公転部材26a,26bの自転運動を生じさせる外周係合部材27と、公転部材26a,26bに係合して自転運動を取り出す出力軸28とを備え、転がり軸受41は、転動体44と転がり接触する軌道面42aに潤滑油を供給する潤滑油孔59を有し、潤滑油孔59は、転がり軸受41の軌道面42aのうち、公転部材26a,26bが出力軸28および外周係合部材27から付与される軸受荷重を分担しない無荷重範囲360°-φに配置される。

Description

サイクロイド減速機、インホイールモータ駆動装置、および車両用モータ駆動装置
 本発明は、サイクロイド減速機の公転部材の支持構造に関する。
 従来のインホイールモータ駆動装置は、例えば、特開2006-258289号公報(特許文献1)に記載されている。特許文献1に記載されているインホイールモータ駆動装置は、駆動モータと、この駆動モータから駆動力を入力されて回転数を減速して車輪側に出力する減速機と、減速機の出力軸と結合する車輪のハブ部材とが同軸に配列されている。この減速機はサイクロイド減速機構であり、従来の減速機として一般的な遊星歯車式減速機構と比較して高減速比が得られる。したがって、駆動モータの要求トルクを小さくすることができ、インホイールモータ駆動装置のサイズおよび重量を低減することができるという点で頗る有利である。また、このサイクロイド減速機構は、外ピンがケーシングに針状ころ軸受によって回転自在に支持されている。したがって、曲線板と外ピンとの接触抵抗を大いに低減することができ、減速機のトルク損失を防止することができる点で頗る有利である。
 ところで、特許文献1のサイクロイド減速機構にあっては、図3に示すように、円盤形状の偏心部25aが、駆動モータの回転軸と結合する減速機の入力軸に、入力軸の軸線Oから偏心するよう取り付けられている。具体的には、偏心部25aの軸心O2が入力軸の軸線Oから偏心量eだけ偏心している。偏心部25aの外周は、転がり軸受41を介して曲線板26aが取り付けられ、偏心部25aは曲線板26aを回転自在に支持する。軸心O2は曲線板26aの軸心でもある。曲線板26aの外周は波型曲線で形成され、径方向に窪んだ波型の凹部33を周方向等間隔に有する。曲線板26aの周囲には、凹部33と係合する外ピン27が、軸線Oを中心として周方向に複数配設されている。
 図3において入力軸とともに偏心部25aが紙面上で反時計回りに回転すると、偏心部25aは軸線Oを中心とする公転運動を行うので、曲線板の凹部33が、これら外ピン27と周方向に順次当接する。この結果矢印で示すように、曲線板26aは、複数の外ピン27から荷重Fiを受けて、時計回りに自転する。
 また曲線板26aには貫通孔30aが軸心O2を中心として周方向に複数配設されている。各貫通孔30aには、軸線Oと同軸に配置された変速機の出力軸と結合する内ピン31が挿通する。貫通孔30aの内径は、内ピン31の外径よりも十分大きいため、内ピン31は曲線板26aの公転運動の障害とはならない。そして内ピン31は曲線板26aの自転運動を取り出して出力軸を回転させる。このとき、出力軸は入力軸よりも高トルクかつ低回転数になり、図3に矢印で示すように曲線板26aは複数の内ピン31から荷重Fjを受ける。これら複数の荷重Fi,Fjの合力が軸受荷重Fsとなる。
 サイクロイド減速機構は、入力軸と出力軸との回転差が大きく、車両の駆動力を伝達することから軸受荷重Fsが大きく、焼き付きを防止して安定した運転を行うためにも転がり軸受41には適切な潤滑が必要である。具体的には、転動体と、転動体よりも外径側の外輪部材と、転動体よりも内径側の内輪部材とを備えた転がり軸受41に、潤滑油を供給する潤滑油孔を設ける。潤滑油孔の配置は、転動体が転がり接触する内輪部材42の外周軌道面、あるいは外輪部材の内周軌道面が考えられる。
 転がり軸受41の径方向外側から内周軌道面に潤滑油を供給する場合、回転数が大きければ潤滑油が跳ね飛ばされたり、遠心力で径方向外側に流出したりする虞があり、転がり軸受全体に潤滑油を行き亘らせることが困難である。そこで、径方向内側から転がり軸受41の外周軌道面に潤滑油を供給することが考えられる。具体的には、径方向に延びる潤滑油孔を偏心部25aの内部に配設し、潤滑油孔の径方向外側端を内輪部材42の外周軌道面に配置する。そして入力軸の内部から偏心部25aの潤滑油孔を経由して転がり軸受41に潤滑油を供給することが考えられる。
特開2006-258289号公報
 しかし、上述のように径方向内側から転がり軸受41に潤滑油を供給する方式にあっては、外周軌道面に潤滑油孔を設けるため、転動体と外周軌道面との接触面積が減少し、接触面圧が増加する。この結果、転動疲労寿命が短くなってしまう虞がある。また潤滑油孔の径方向外側端付近に大きな応力が発生するため、油孔端より亀裂が発生・進展する虞がある。
 本発明の目的は、転がり軸受の接触面圧が増加することなく転がり軸受に潤滑油を供給することができるサイクロイド減速機を提供することである。
 この目的のため本発明によるサイクロイド減速機は、ケーシングと、一端がケーシングの内部に配置された入力軸と、入力軸の軸線から偏心して入力軸の一端に結合した円盤形状の偏心部材と、偏心部材に支持されて入力軸の回転に伴って軸線を中心とする公転運動を行う公転部材と、公転部材の内周と偏心部材の外周との間に配置された転がり軸受と、ケーシングに支持され、公転部材の外周部に係合して公転部材の自転運動を生じさせる外周係合部材と、公転部材に係合して自転運動を取り出す出力軸とを備える。そして、転がり軸受は、転動体と、偏心部材の外周に取り付けられた内輪部材と、転動体と転がり接触する内輪部材の外周軌道面に潤滑油を供給するため内輪部材の内径面から外周軌道面まで貫通する潤滑油孔を有し、潤滑油孔は転がり軸受の外周軌道面のうち公転部材が出力軸および外周係合部材から付与される軸受荷重を分担しない無荷重範囲に配置される。
 かかる本発明によれば、潤滑油孔が外周軌道面のうち軸受荷重を分担しない部位と接続するため、接触面圧が増加しない。したがって、潤滑油孔の径方向外側端より亀裂が発生・進展する虞がなくなり、転がり軸受の転動疲労寿命を長くすることができる。
 本発明は一実施形態に限定されるものではなく、潤滑油孔は、外周軌道面のうち、分担する軸受荷重が最も大きい部位から周方向に90度以上270度以下の範囲で配置される。これにより、潤滑油孔の径方向外側端より亀裂が発生・進展することがなくなり、転がり軸受の転動疲労寿命を長くすることができる。
 好ましくは、潤滑油孔は少なくとも、外周軌道面のうち、分担する軸受荷重が最も大きい部位から周方向に180度の部位と、180度の部位から周方向一方および周方向他方の所定角度の部位にそれぞれ配置され、所定角度は90度以下である。これにより、潤滑油を周方向全体に容易に供給することができる。
 本発明は一実施形態に限定されるものではなく、潤滑油孔は、外周軌道面のうち、軸線に最も近い部位を中心として含み周方向一方に45度の部位から周方向他方に45度の部位までの範囲に配置される。
 好ましくは、潤滑油孔は少なくとも、外周軌道面のうち、軸線に最も近い部位と、軸線に最も近い部位から周方向一方および周方向他方の所定角度の部位にそれぞれ配置され、所定角度は45度以下である。これにより、潤滑油を周方向全体に容易に供給することができる。
 好ましくは、転がり軸受は、外周軌道面の軸方向両端から径方向外側に突出した鍔部を備えた円筒ころ軸受である。これにより、接触面圧を小さくして、潤滑油を両端の鍔部同士間に保持することができる。
 また、本発明のインホイールモータ駆動装置は、本発明のサイクロイド減速機と、サイクロイド減速機の入力軸を回転駆動するモータ部と、サイクロイド減速機の出力軸に固定連結された車輪ハブとを備える。これにより、転動疲労寿命が長くなり、インホイールモータ駆動装置の長寿命化を図ることができる。
 また、本発明の車両用モータ駆動装置は、本発明のサイクロイド減速機と、サイクロイド減速機の入力軸を回転駆動するモータ部とを備え、車両の車体に搭載される。これにより、転動疲労寿命が長くなり、車体搭載型の車両用モータ駆動装置の長寿命化を図ることができる。
 本発明の車両用モータ駆動装置は1実施形態に限定されるものではないが、モータ部とサイクロイド減速機とをそれぞれ1個ずつ備え、サイクロイド減速機の出力軸と連結されたディファレンシャルギヤ装置をさらに備えていてもよい。かかる実施形態によれば、左右輪あるいは前後輪にモータトルクを分配する車両用モータ駆動装置の長寿命化を図ることができる。
 このように本発明のサイクロイド減速機の潤滑油孔は、転がり軸受の外周軌道面のうち、公転部材が出力軸および外周係合部材から付与される軸受荷重を分担しない無荷重範囲に配置される。これにより、潤滑油孔が配置された部位周辺の外周軌道面における接触面圧が増加しない。したがって、潤滑油孔の径方向外側端より外周軌道面に亀裂が発生・進展する虞がなくなり、転がり軸受の転動疲労寿命を長くすることができる。
本実施例のサイクロイド減速機を備えたインホイールモータ駆動装置を示す縦断面図である。 図1のII-IIにおける横断面図である。 図2の曲線板に作用する荷重を矢印で示す説明図である。 図3の転がり軸受が分担する軸受荷重の荷重分布を模式的に示す説明図である。 図3の転がり軸受が分担する軸受荷重の荷重分布を模式的に示す説明図である。 同実施例の転がり軸受の内輪部材を取り出して示す横断面図である。 同実施例の転がり軸受の内輪部材を取り出して示す縦断面図である。 図2の曲線板に、互いに異なる2方向の軸受荷重が作用する様子を矢印で示す説明図である。 図8の転がり軸受が分担する軸受荷重の荷重分布を模式的に示す説明図である。 本実施例のサイクロイド減速機を備えたインホイールモータ駆動装置の配置レイアウトを示す平面図である。 本実施例のサイクロイド減速機を備えた車両用モータ駆動装置の配置レイアウトを示す平面図である。 同実施例の車両用モータ駆動装置を示す縦断面図である。 他の実施例の車両用モータ駆動装置を示す展開断面図である。
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。図1は、本発明の1実施例のサイクロイド減速機を備えたインホイールモータ駆動装置を示す縦断面図である。図2は、図1のII-IIにおける横断面図である。
 車両減速部の一例としてのインホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を図示しない駆動輪に伝える車輪ハブ軸受部Cとを備える。モータ部Aと減速部Bとはケーシング22に収納されて、例えば電気自動車のホイールハウジング内に取り付けられる。あるいは鉄道車両の台車に取り付けられる。
 モータ部Aは、ケーシング22に固定されるステータ23と、ステータ23の内側に径方向に開いた隙間を介して対面する位置に配置されるロータ24と、ロータ24の内側に固定連結されてロータ24と一体回転するモータ側回転部材25とを備えるラジアルギャップモータである。
 モータ側回転部材25は、モータ部Aの駆動力を減速部Bに伝達するためにモータ部Aから減速部Bにかけて配置され、減速部Bの入力軸に相当する。そして、減速部B内部に配置される一端が偏心部材25a,25bと結合する。偏心部材25a,25bが結合した側のモータ側回転部材25の端部は、転がり軸受35によって回転自在に支持される。さらにモータ側回転部材25は、ロータ24と嵌合すると共に、モータ部Aの両端で転がり軸受36a,36bによって支持される。さらに、2つの円盤形状の偏心部材25a,25bは、偏心運動による遠心力で発生する振動を互いに打ち消し合うために、180°位相を変えて設けられている。
 減速部Bは、偏心部材25a,25bに回転自在に保持される公転部材としての曲線板26a,26bと、曲線板26a,26bの外周部に係合する外周係合部材としての複数の外ピン27と、曲線板26a,26bの自転運動を車輪側回転部材28に伝達する運動変換機構と、曲線板26a,26bの隙間に取り付けられてこれら曲線板26a,26bの端面に当接して曲線板の傾きを防止する支持部材(センターカラーともいう)29と、減速部B内部の潤滑油を受け止めるオイル溜まり51を備える。曲線板26aは、転がり軸受41によって偏心部材25aに対して回転自在に支持されている。また曲線板26bも、別の転がり軸受41によって偏心部材25bに対して回転自在に支持されている。
 減速部Bの運動変換機構は、車輪側回転部材28に保持された複数の内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成される。内ピン31は、車輪側回転部材28の回転軸線Oを中心とする円周軌道上に等間隔に設けられており、その軸方向一方側端部が車輪側回転部材28に固定されている。また内ピン31は、曲線板26a,26bとの摩擦抵抗を低減するために、曲線板26a,26bの貫通孔30aの孔壁面に当接する位置に針状ころ軸受が設けられている。一方、貫通孔30aは、複数の内ピン31それぞれに対応する位置に設けられ、貫通孔30aの内径寸法は、内ピン31の外径寸法(「針状ころ軸受を含む最大外径」を指す。以下同じ。)より所定分大きく設定されている。
 車輪ハブ軸受部Cは、車輪側回転部材28に固定連結された車輪ハブ32と、車輪ハブ32をケーシング22に対して回転自在に保持する車輪ハブ軸受34とを備える。車輪ハブ軸受34は複列アンギュラ玉軸受であって、その内輪が車輪ハブ32の外径面に嵌合固定される。車輪ハブ32は、円筒形状の中空部32aとフランジ部32bとを有する。フランジ部32bにはボルト32cによって図示しない駆動輪が固定連結される。
 上記構成のインホイールモータ駆動装置21の作動原理を詳しく説明する。
 モータ部Aは、例えば、ステータ23のコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石または磁性体によって構成されるロータ24が回転する。
 これにより、ロータ24に接続されたモータ側回転部材25が回転すると、曲線板26a,26bはモータ側回転部材25の回転軸線Oを中心として公転運動する。このとき、外ピン27が、曲線板26a,26bの曲線形状の波形と転がり接触するよう係合して、曲線板26a,26bをモータ側回転部材25の回転とは逆向きに自転運動させる。
 貫通孔30aに挿通する内ピン31は、貫通孔30aの内径よりも十分に細く、曲線板26a,26bの自転運動に伴って貫通孔30aの孔壁面と当接する。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが車輪側回転部材28を介して車輪ハブ軸受部Cに伝達される。
 このとき、軸線Oと同軸に配置された車輪側回転部材28は、運動変換機構を介して減速部Bの出力軸として曲線板26a,26bの自転を取り出す。この結果、モータ側回転部材25の回転が減速部Bによって減速されて車輪側回転部材28に伝達される。したがって、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪に必要なトルクを伝達することが可能となる。
 なお、上記構成の減速部Bの減速比は、外ピン27の数をZA、曲線板26a,26bの波形の数をZBとすると、(ZA-ZB)/ZBで算出される。図2に示す実施形態では、ZA=12、ZB=11であるので、減速比は1/11と、非常に大きな減速比を得ることができる。
 このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。
 車輪側回転部材28は、減速部Bの出力軸に相当し、フランジ部28aと軸部28bとを有する。フランジ部28aの端面には、車輪側回転部材28の回転軸線Oを中心とする円周上の等間隔に内ピン31を固定する穴が形成されている。軸部28bの外径面には、車輪ハブ32が固定されている。車輪ハブ32は車輪ハブ軸受34を介してケーシング22に回転自在に支持される。
 内ピン31の軸方向端部には、補強部材31aが設けられている。補強部材31aは、円環形状の円環部31bと、円環部31bの内径面から軸方向に延びる円筒部31cとを含む。曲線板26a、26bから一部の内ピン31に負荷される荷重は補強部材31aを介して全ての内ピン31によって支持されるため、内ピン31に作用する応力を低減させ耐久性を向上させることができる。
 モータ部Aと減速部Bとの間に位置するケーシング22には、オイルポンプ53が設けられている。オイルポンプ53は補強部材31aによって駆動される。ケーシング22に設けられた吸入油路52は、オイルポンプ53の吸入口と減速部Bの下部に設けられたオイル溜まり51とを接続する。ケーシング22に設けられた吐出油路54は、一端でオイルポンプ53の吐出口と接続し、他端でケーシング22に設けられた冷却装置と交差する冷却油路55と接続する。冷却油路55は、ケーシング22に設けられた連絡油路56と接続し、冷却油路55を流れる潤滑油を冷却する。連絡油路56は、モータ側回転部材25に軸線Oに沿って設けられた軸線油路57と接続する。軸線油路57は、減速部Bで、軸線Oから偏心部材25a内を径方向外側に向かって延びる潤滑油路58aと、軸線Oから偏心部材25b内を径方向外側に向かって延びる潤滑油路58bとに分岐する。潤滑油路58a,58bの径方向外側端は、環状溝60と接続する。環状溝60は、転がり軸受41の後述する外周軌道面と連通する。
 補強部材31aを介して車輪側回転部材28によって駆動されるオイルポンプ53は、オイル溜まり51に貯留した潤滑油を吸入し、吐出油路54に潤滑油を吐出する。潤滑油は、吐出油路54と冷却油路55とを順次通過して冷却される。次に潤滑油は、連絡油路56と、軸線油路57を順次通過し、潤滑油路58a、58bとにそれぞれ分岐して流れ、偏心部材25aに設けられた転がり軸受41と、偏心部材25bに設けられた転がり軸受41とをそれぞれ潤滑する。こうして潤滑油は、減速部Bに設けられた部材を潤滑して、減速部Bの下部に設けられたオイル溜まり51に集まる。
 図2を参照して、曲線板26bは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する複数の貫通孔30a,30bを有する。貫通孔30aは、曲線板26bの自転軸心O2を中心とする円周上に等間隔に複数個設けられており、後述する内ピン31を受入れる。また、貫通孔30bは、曲線板26bの中心に設けられており、曲線板26bの内周になる。曲線板26bは、偏心部材25bの外周に相対回転可能に取り付けられる。
 曲線板26bは、転がり軸受41によって偏心部材25bに対して回転自在に支持されている。この転がり軸受41は、その内径面が偏心部材25bの外径面に取り付けられ、その外径面に外周軌道面42aを有する内輪部材42と、外周軌道面42aおよび貫通孔30bの孔壁(内周軌道面)の間に配置される複数のころ44と、周方向で隣り合うころ44の間隔を保持する保持器(図示省略)とを備える円筒ころ軸受である。あるいは、深溝玉軸受であってもよい。曲線板26aについても同様である。
 外ピン27は、モータ側回転部材25の回転軸線Oを中心とする円周軌道上に等間隔に設けられる。そして、曲線板26a,26bが公転運動すると、外周の曲線形状の波形と外ピン27とが係合して、曲線板26a,26bに自転運動を生じさせる。潤滑油孔は、外周軌道面42aに配置される。本実施例では、潤滑油路58aの径方向外側端が、偏心部材25b(25a)および内輪部材42間を周方向に延在する環状溝60を介して、3個の潤滑油孔59と接続する。そして潤滑油孔59は、外周軌道面42aの周方向に異なる部位にそれぞれ配置される。
 図3は、図2の曲線板26aに作用する荷重を矢印で示す説明図である。紙面上を反時計回りに公転しながら時計回りに自転する本実施例の曲線板26aも、前述した従来例と同様、矢印で示すように、複数の外ピン27から荷重Fiを受けるとともに複数の内ピン31から荷重Fjを受け、これら複数の荷重Fi,Fjの合力が軸受荷重Fsとなる。
 軸受荷重Fsの方向は、曲線板26aの波型形状、凹部33の数などの幾何学的条件や遠心力の影響により変化する。具体的には、自転軸心O2と軸線Oとを結ぶ直線と直角であって軸線Oを通過する基準線Xと、軸受荷重Fsとの角度αは概ね、30度~60度である。角度αの代表値は中央値45度が適切である。
 図4および図5は、図3に示す軸受荷重Fsを分担する転がり軸受41の荷重分布を模式的に示す説明図である。転がり軸受41の軸受内部すきま(半径すきま)が0の場合、転がり軸受41に作用する荷重範囲φは図4に示すように180度となる。軸受内部すきま(半径すきま)が0よりも大きい場合、荷重範囲φは図5に示すように180度よりも小さくなる。また図には示さなかったが、軸受内部すきま(半径すきま)が0よりも若干小さい負すきまの場合、転がり軸受41の寿命は最も長くなる。さらに、この最適な負すきまを超える負すきまの場合、転がり軸受41の寿命は急激に低下する。このため本実施例では、偏心部材25aや転がり軸受41や曲線板26aの材質や温度や回転速度などの運転条件の受ける運転時の軸受内部すきまが0よりも若干大きい正値のすきまを有するよう、転がり軸受41をセットする。
 荷重範囲φの中心に位置する部位βは、分担する軸受荷重が最も大きい。そして部位βから周方向に離れるにつれて、分担する軸受荷重は小さくなる。部位βと軸受荷重Fsの方向(角度α)とは180度の関係にある。
 以上の説明および図4および図5から明らかなように、軸受荷重Fsを分担しない無荷重範囲(360°-φ)は180度以上である。
 図6は、転がり軸受41の内輪部材42を取り出して示す横断面図であり、図7は、内輪部材42の縦断面図である。内輪部材42の内周は、偏心部材25aの外周に取り付けられる。具体的には、内輪部材42は偏心部材25aに圧入等で固定される。外周軌道面42aは、内輪部材42の外周に形成される。内輪部材42は、外周軌道面42aの軸心O2方向両端から径方向外側に突出した鍔部42bを備える。
 本実施例の潤滑油孔59は、外周軌道面42aのうち、軸受荷重Fsを分担しない無荷重範囲に配置される。即ち、潤滑油孔59は、外周軌道面42aのうち、分担する前記軸受荷重が最も大きい部位βから周方向に90度以上270度以下の無荷重範囲で配置される。具体的には、潤滑油孔59は3箇所に配置される。1箇所は、分担する軸受荷重Fsが最も大きい部位βから周方向に180度の部位に配置され、この部位は基準線Xから角度αの位置になる。他の2箇所は、上述した180度の部位から周方向一方および周方向他方の所定角度の部位にそれぞれ配置され、この所定角度は90度以下である。所定角度を90度以下にすることで、潤滑油孔59を無荷重範囲(360°-φ)に配置することができる。
 自動車駆動装置として本実施例にかかるインホイールモータ駆動装置を使用する場合、使用頻度のほとんどは前進状態での使用であり、減速機の回転方向は図3に沿って説明したように一方のみと見なすことができる。したがって、荷重範囲φは180度以下となり、潤滑油孔59は、内輪軌道面42aのうち、分担する前記軸受荷重が最も大きい部位βから周方向に90度以上270度以下の範囲で配置される。
 しかしながらインホイールモータ駆動装置は、駆動装置として力行運転するほか、回生ブレーキとして回生運転する場合もあり、後進走行もありえる。このような使用状態で転がり軸受41には、図8に示すように、前述した軸受荷重Fsが付与される場合と、異なる方向の軸受荷重Frが付与される場合がある。軸受荷重Fsの方向と軸受荷重Frの方向は、基準線Yに関して対称となる。なお基準線Yは、軸線Oと、軸線Oからの偏心量がeである軸心O2とを通り、基準線Xと直角である。
 図9は、図8に示す軸受荷重Fsおよび軸受荷重Frを分担する転がり軸受41の荷重分布を模式的に示す説明図である。転がり軸受41に作用する荷重範囲は基準線Yに関して対称となり、残りの範囲が無荷重範囲となる。この無荷重範囲は、基準線Yが交差し、軸線Oに最も近い部位γを中心として含む範囲である。また軸受荷重Fsおよび軸受荷重Frの角度αがそれぞれ45度であって、荷重範囲φがそれぞれ180度の場合、無荷重範囲は部位γから周方向一方に45度の部位と周方向他方に45度の部位との範囲になる。
 そこで本発明の変形例として潤滑油孔59は、軸線Oに最も近い部位γを中心として含み周方向一方に45度の部位から周方向他方に45度の部位までの範囲に配置される。
 好ましくは図9に示すように、潤滑油孔59は少なくとも、外周軌道面42aのうち、軸線Oに最も近い部位γと、軸線Oに最も近い部位γから周方向一方および周方向他方の所定角度δの部位にそれぞれ配置され、所定角度δは45度以下である。
 図10はインホイールモータ駆動装置21の配置レイアウトを示す平面図である。車両の車体11は、前後左右に4個の車輪を具備する。このうち左輪12Lおよび右輪12Rは駆動輪である。左輪12Lは車両左側に配置されたインホイールモータ駆動装置21Lの車輪ハブ32と結合する。インホイールモータ駆動装置21Lは図示しないサスペンション装置で車体11の床下に取り付けられている。同様に右輪12Rも車両右側に配置されたインホイールモータ駆動装置21Rの車輪ハブ32と結合する。インホイールモータ駆動装置21Rも図示しないサスペンション装置で車体11の床下に取り付けられている。インホイールモータ駆動装置21L,21Rはいずれも上述したインホイールモータ駆動装置21であり、車両前後方向に延びる車体11の中心線に関して対称に配置される。
 これまでに説明したように、減速部Bは車輪に直接取り付けられるインホイールモータ駆動装置21に適用可能である他、車体に搭載されて車輪とドライブシャフトを介して駆動結合される車両モータ駆動装置にも適用可能である。
 図11は上述した減速部Bを備えた車両用モータ駆動装置61の配置レイアウトを示す平面図である。また図12は同実施例の車両用モータ駆動装置61を示す縦断面図である。この実施例につき、上述した実施例と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。
 車両用モータ駆動装置61は、サイクロイド減速機になる減速部Bと、減速部Bのモータ側回転部材25を回転駆動するモータ部Aとを備え、車体11に搭載される。車両用モータ駆動装置61のモータ部Aは、インホイールモータ駆動装置21のモータ部Aと同一構成であってもよいし、別な構成の回転電機であってもよい。
 車両用モータ駆動装置61の減速部Bは、インホイールモータ駆動装置21の減速部Bと共通する基本構成である。ただし、ケーシング22の構成についてはその限りではない。
 車両用モータ駆動装置61は左右にモータ部Aと減速部Bとをそれぞれ2個ずつ備える。2個のモータ部Aは軸線Oと同軸に背中合わせで隣接するよう配設される。また、減速部Bの一方はモータ部Aの軸線O方向一方側に配設され、減速部Bの他方はモータ部Aの軸線方向他方側に配設される。
 車幅方向左側に位置する車輪側回転部材28の軸部28bは、端部へ向かって延び、その先端がドライブシャフト13Lの一端と結合する。ドライブシャフト13Lの他端は左輪12Lと結合する。同様に車幅方向右側に位置する車輪側回転部材28の軸部28bも、ドライブシャフト13Rを介して右輪12Rと結合する。
 この車両用モータ駆動装置61によれば、左輪12Lおよび右輪12Rをそれぞれ独立して駆動することができるとともに、減速部Bの転動疲労寿命が長くなり、車体搭載型の車両用モータ駆動装置の長寿命化を図ることができる。なお左輪12Lおよび右輪12Rは、前輪または後輪のいずれであってもよい。
 次に車両用モータ駆動装置の他の実施例につき説明する。図13は他の実施例の車両用モータ駆動装置71を示す展開断面図である。他の実施例につき、上述した実施例と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。他の実施例ではモータ部Aとサイクロイド減速機になる減速部Bとをそれぞれ1個ずつ備え、減速部Bの車輪側回転部材28と噛合するディファレンシャルギヤ装置72をさらに備える。
 ディファレンシャルギヤ装置72は、リングギヤ75と、ディファレンシャルギヤケース76と、ピニオンメートシャフト77と、1対のピニオンメートギヤ78,79と、2個のサイドギヤ82,83とを有し、車輪側回転部材28の回転を左右輪12L,12Rに分配する。
 軸線Oに沿って延びる車輪側回転部材28の軸部28bは、フランジ部28a側を軸受34でケーシング22に回転自在に支持され、先端側を軸受73でケーシング22に回転自在に支持される。これら軸受34および軸受73はいずれも転がり軸受である。軸部28bの外周は軸受34および軸受73間で歯車74の中心と結合し、歯車74は車輪側回転部材28と一体回転する。
 歯車74はディファレンシャルギヤ装置72のリングギヤ75と噛合する。リングギヤ75は、軸受80,81を介してケーシング22に回転自在に支持されたディファレンシャルギヤケース76の外側に固定されている。ディファレンシャルギヤケース76内には、その回転軸Pに対し直交するようピニオンメートシャフト77を貫通設置し、このシャフト77上に1対のピニオンメートギヤ78,79を回転自在に支持してディファレンシャルギヤケース76内に設ける。
 ディファレンシャルギヤケース76内には更に、ピニオンメートギヤ78,79間にあってこれらに噛合する1対のサイドギヤ82,83を回転自在に配置する。左側のサイドギヤ82は、左側ドライブシャフト13Lと結合して一体回転する。また右側のサイドギヤ83は、右側ドライブシャフト13Rと結合して一体回転する。
 この車両用モータ駆動装置71によれば、1個のモータ部Aおよび1個の減速部Bを用いて左輪12Lおよび右輪12Rを駆動することができるとともに、減速部Bの転動疲労寿命が長くなり、車体搭載型の車両用モータ駆動装置の長寿命化を図ることができる。なお左輪12Lおよび右輪12Rは、前輪または後輪のいずれであってもよい。
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
 本発明は、インホイールモータ駆動装置などに用いられるサイクロイド減速機に採用することができる。
 21,21L,21R インホイールモータ駆動装置、22 ケーシング、23 ステータ、24 ロータ、25 モータ側回転部材(入力軸)、25a,25b 偏心部材、26a,26b 曲線板(公転部材)、27 外ピン(外周係合部材)、28 車輪側回転部材(出力軸)、29 支持部材(センターカラー)、30a,30b 貫通孔、31 内ピン、31a 補強部材、32 車輪ハブ、33 凹部、34,35,36a,36b,41 転がり軸受、42 内輪部材、42a 軌道面、42b 鍔部、44 ころ(転動体)、51 オイル溜まり、53 オイルポンプ、55 冷却油路、58a,58b 潤滑油路、59 潤滑油孔、61,71 車両用モータ駆動装置。

Claims (10)

  1.  ケーシングと、
     一端が前記ケーシングの内部に配置された入力軸と、
     前記入力軸の軸線から偏心して入力軸の一端に結合した円盤形状の偏心部材と、
     前記偏心部材に支持されて、前記入力軸の回転に伴って前記軸線を中心とする公転運動を行う公転部材と、
     前記公転部材の内周と前記偏心部材の外周との間に配置された転がり軸受と、
     前記ケーシングに支持され、前記公転部材の外周部に係合して公転部材の自転運動を生じさせる外周係合部材と、
     前記公転部材に係合して自転運動を取り出す出力軸とを備え、
     前記転がり軸受は、転動体と、前記偏心部材の外周に取り付けられた内輪部材と、前記転動体と転がり接触する内輪部材の外周軌道面に潤滑油を供給するため内輪部材の内径面から外周軌道面まで貫通する潤滑油孔を有し、
     前記潤滑油孔は、前記転がり軸受の外周軌道面のうち、前記公転部材が前記出力軸および前記外周係合部材から付与される軸受荷重を分担しない無荷重範囲に配置される、サイクロイド減速機。
  2.  前記潤滑油孔は、前記外周軌道面のうち、分担する前記軸受荷重が最も大きい部位から周方向に90度以上270度以下の範囲で配置される、請求項1に記載のサイクロイド減速機。
  3.  前記潤滑油孔は少なくとも、前記外周軌道面のうち、分担する前記軸受荷重が最も大きい部位から周方向に180度の部位と、前記180度の部位から周方向一方および周方向他方の所定角度の部位にそれぞれ配置され、前記所定角度は90度以下である、請求項2に記載のサイクロイド減速機。
  4.  前記潤滑油孔は、前記外周軌道面のうち、前記軸線に最も近い部位を中心として含み周方向一方に45度の部位から周方向他方に45度の部位までの範囲に配置される、請求項1に記載のサイクロイド減速機。
  5.  前記潤滑油孔は少なくとも、前記外周軌道面のうち、前記軸線に最も近い部位と、前記軸線に最も近い部位から周方向一方および周方向他方の所定角度の部位にそれぞれ配置され、前記所定角度は45度以下である、請求項4に記載のサイクロイド減速機。
  6.  前記転がり軸受は、前記外周軌道面の軸方向両端から径方向外側に突出した鍔部を備えた円筒ころ軸受である、請求項1に記載のサイクロイド減速機。
  7.  請求項1に記載のサイクロイド減速機と、前記サイクロイド減速機の入力軸を回転駆動するモータ部と、前記サイクロイド減速機の出力軸に固定連結された車輪ハブとを備える、インホイールモータ駆動装置。
  8.  請求項1に記載のサイクロイド減速機と、前記サイクロイド減速機の入力軸を回転駆動するモータ部とを備え、車両の車体に搭載される、車両用モータ駆動装置。
  9.  前記モータ部と前記サイクロイド減速機とをそれぞれ1個ずつ備え、前記サイクロイド減速機の出力軸と連結されたディファレンシャルギヤ装置をさらに備える、請求項8に記載の車両用モータ駆動装置。
  10.  前記モータ部と前記サイクロイド減速機とをそれぞれ2個ずつ備え、
     前記2個のモータ部は同軸背中合わせで隣接するよう配設され、
     前記サイクロイド減速機の一方は前記モータ部の軸線方向一方側に配設され、前記サイクロイド減速機の他方は前記モータ部の軸線方向他方側に配設される、請求項8に記載の車両用モータ駆動装置。
PCT/JP2009/060582 2008-07-02 2009-06-10 サイクロイド減速機、インホイールモータ駆動装置、および車両用モータ駆動装置 WO2010001698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/996,686 US8506438B2 (en) 2008-07-02 2009-06-10 Cycloidal speed reducer, in-wheel motor drive device, and vehicle motor drive device
EP09773276.2A EP2292946B1 (en) 2008-07-02 2009-06-10 Cycloidal speed reducer, in-wheel motor device, and vehicle motor drive device
CN200980125533.XA CN102076993B (zh) 2008-07-02 2009-06-10 摆线减速器、轮毂电机驱动装置及车辆用电动机驱动装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-173902 2008-07-02
JP2008173902 2008-07-02
JP2009-098344 2009-04-14
JP2009098344A JP5374215B2 (ja) 2008-07-02 2009-04-14 サイクロイド減速機、インホイールモータ駆動装置、および車両用モータ駆動装置

Publications (1)

Publication Number Publication Date
WO2010001698A1 true WO2010001698A1 (ja) 2010-01-07

Family

ID=41465801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060582 WO2010001698A1 (ja) 2008-07-02 2009-06-10 サイクロイド減速機、インホイールモータ駆動装置、および車両用モータ駆動装置

Country Status (5)

Country Link
US (1) US8506438B2 (ja)
EP (1) EP2292946B1 (ja)
JP (1) JP5374215B2 (ja)
CN (1) CN102076993B (ja)
WO (1) WO2010001698A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145502A1 (ja) * 2010-05-17 2011-11-24 Ntn株式会社 インホイールモータ駆動装置
CN103206495A (zh) * 2013-03-25 2013-07-17 洛阳沃德福工程技术有限公司 一种双曲柄摆线针轮减速器
CN108916246A (zh) * 2018-09-20 2018-11-30 镇江大力液压马达股份有限公司 一种摆线液压马达的输出支撑装置

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188541A (ja) * 2010-03-04 2011-09-22 Ntn Corp 電気自動車の駆動用モータ
CN103210243B (zh) * 2010-11-16 2016-08-17 博格华纳扭矩输出系统公司 电动轴
JP2012171428A (ja) * 2011-02-18 2012-09-10 Ntn Corp インホイールモータ駆動装置
JP5562277B2 (ja) * 2011-03-07 2014-07-30 Ntn株式会社 電気自動車
DE102011076527A1 (de) * 2011-05-26 2012-11-29 Zf Friedrichshafen Ag Elektrischer Fahrantrieb für ein Fahrzeug
JP5817247B2 (ja) * 2011-06-24 2015-11-18 株式会社ジェイテクト モータ回転力伝達装置
JP2013007443A (ja) * 2011-06-24 2013-01-10 Jtekt Corp 減速機構及びこれを備えたモータ回転力伝達装置
CN102889342B (zh) * 2011-07-17 2016-03-16 吴小杰 新型针轮输出摆线减速器
DE102011080036A1 (de) * 2011-07-28 2013-01-31 Zf Friedrichshafen Ag Radnahe Antriebseinheit für ein Kraftfahrzeug
JP5811335B2 (ja) * 2011-09-08 2015-11-11 株式会社ジェイテクト 軸受装置、これを備えた減速機構、及びモータ回転力伝達装置
JP5832868B2 (ja) 2011-11-22 2015-12-16 Ntn株式会社 電気自動車
CN103206494B (zh) 2012-01-11 2016-12-28 株式会社捷太格特 减速机构以及具备该减速机构的马达旋转力传递装置
JP6003557B2 (ja) * 2012-03-06 2016-10-05 株式会社ジェイテクト 減速機構及びこれを備えたモータ回転力伝達装置
CN103358897B (zh) * 2012-03-28 2016-09-07 株式会社捷太格特 减速机构以及具备该减速机构的电机旋转力传递装置
KR20140014847A (ko) 2012-07-26 2014-02-06 삼성테크윈 주식회사 모터 수리가 간편한 인휠 구동장치
ES2746988T3 (es) * 2013-08-13 2020-03-09 Weasler Eng Inc Accionamiento de rueda cicloidal
JP6147623B2 (ja) 2013-09-17 2017-06-14 株式会社スギノマシン タレット装置
JP2015080996A (ja) * 2013-10-22 2015-04-27 Ntn株式会社 インホイールモータ駆動装置
JP6100671B2 (ja) * 2013-10-24 2017-03-22 本田技研工業株式会社 無段変速機
US9217492B2 (en) * 2013-11-22 2015-12-22 Techtronic Power Tools Technology Limited Multi-speed cycloidal transmission
EP3079934B1 (en) * 2013-12-13 2019-04-03 B.M. Innovaties B.V. Compact integrated motor-gear drive unit with cycloidal reduction and device incorporating this unit
EP3093175B1 (en) * 2014-01-08 2021-09-15 NTN Corporation In-wheel motor drive device
WO2015161430A1 (zh) * 2014-04-22 2015-10-29 上海锘威传动控制有限责任公司 一种磁流变伺服调速减速器及其组装控制方法
US9297442B1 (en) 2014-06-02 2016-03-29 Google Inc. Cycloid transmission with chain link ring
JP6196588B2 (ja) 2014-07-24 2017-09-13 株式会社スギノマシン 送り台装置、および対象物駆動装置
JP6227496B2 (ja) 2014-07-24 2017-11-08 株式会社スギノマシン 洗浄装置
CN104196966A (zh) * 2014-08-11 2014-12-10 武汉市精华减速机制造有限公司 高精度回转关节减速机
JP2016061403A (ja) * 2014-09-19 2016-04-25 Ntn株式会社 インホイールモータ駆動装置
DE102014222253A1 (de) * 2014-10-31 2016-05-04 Robert Bosch Gmbh Handwerkzeugmaschinenvorrichtung
DE102014223642A1 (de) * 2014-11-19 2016-05-19 Zf Friedrichshafen Ag Antriebseinrichtung
TWI548823B (zh) * 2015-04-14 2016-09-11 台達電子工業股份有限公司 減速機
CN107850116B (zh) * 2015-06-26 2019-12-10 Sri国际公司 传动装置
WO2017074478A1 (en) * 2015-10-30 2017-05-04 Martin Jacob P Circular wave drive
US10359098B1 (en) 2018-01-08 2019-07-23 Schaeffler Technologies AG & Co. KG Hypo-cycloidal differential
US10563729B2 (en) * 2018-01-08 2020-02-18 Schaeffler Technologies AG & Co. KG Hyper-cycloidal differential
US10359099B1 (en) 2018-01-08 2019-07-23 Schaeffler Technologies AG & Co. KG Cycloidal differential
US10378613B1 (en) * 2018-02-07 2019-08-13 Schaeffler Technologies AG & Co. KG Electric powertrain with cycloidal mechanism
CN108916353A (zh) * 2018-09-18 2018-11-30 唐山百川智能机器股份有限公司 一种电磁摆动扭矩发生器
US11674564B2 (en) 2019-08-26 2023-06-13 Sri International Pure rolling cycloid transmissions with variable effective diameter rollers and roller constraints
CN113124131B (zh) * 2021-05-11 2022-04-26 温岭市绿能机电有限公司 一种减速机构
CN114087331A (zh) * 2021-11-18 2022-02-25 宁波维伦智能科技有限公司 差速电机、具有该差速电机的后桥、助力三轮车及助力四轮车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162542A (ja) * 1991-12-13 1993-06-29 Hitachi Ltd 電気自動車の駆動装置
JP2004108452A (ja) * 2002-09-17 2004-04-08 Koyo Seiko Co Ltd 動力伝達装置
JP2006226499A (ja) * 2005-02-21 2006-08-31 Sumitomo Heavy Ind Ltd 減速装置及び減速装置の潤滑方法
JP2006258289A (ja) 2005-02-16 2006-09-28 Ntn Corp インホイールモータ駆動装置
JP2006336702A (ja) * 2005-05-31 2006-12-14 Sumitomo Heavy Ind Ltd 動力伝達装置
JP2007218407A (ja) * 2006-02-20 2007-08-30 Ntn Corp 自動車駆動ユニット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286237A (en) * 1991-08-13 1994-02-15 Sumitomo Heavy Industries, Ltd. Inscribed meshing planetary gear construction
JP3604460B2 (ja) * 1995-06-14 2004-12-22 光洋精工株式会社 電動パワーステアリング装置
JP4414843B2 (ja) 2004-08-30 2010-02-10 住友重機械工業株式会社 内接噛合遊星歯車構造
JP2007224979A (ja) 2006-02-22 2007-09-06 Ntn Corp 電気自動車駆動ユニット
JP4783666B2 (ja) 2006-04-26 2011-09-28 住友重機械工業株式会社 内接噛合型の遊星歯車装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162542A (ja) * 1991-12-13 1993-06-29 Hitachi Ltd 電気自動車の駆動装置
JP2004108452A (ja) * 2002-09-17 2004-04-08 Koyo Seiko Co Ltd 動力伝達装置
JP2006258289A (ja) 2005-02-16 2006-09-28 Ntn Corp インホイールモータ駆動装置
JP2006226499A (ja) * 2005-02-21 2006-08-31 Sumitomo Heavy Ind Ltd 減速装置及び減速装置の潤滑方法
JP2006336702A (ja) * 2005-05-31 2006-12-14 Sumitomo Heavy Ind Ltd 動力伝達装置
JP2007218407A (ja) * 2006-02-20 2007-08-30 Ntn Corp 自動車駆動ユニット

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145502A1 (ja) * 2010-05-17 2011-11-24 Ntn株式会社 インホイールモータ駆動装置
JP2011240772A (ja) * 2010-05-17 2011-12-01 Ntn Corp インホイールモータ駆動装置
US9500273B2 (en) 2010-05-17 2016-11-22 Ntn Corporation In-wheel motor drive device having lubrication systems with cooling fins
CN103206495A (zh) * 2013-03-25 2013-07-17 洛阳沃德福工程技术有限公司 一种双曲柄摆线针轮减速器
CN108916246A (zh) * 2018-09-20 2018-11-30 镇江大力液压马达股份有限公司 一种摆线液压马达的输出支撑装置

Also Published As

Publication number Publication date
CN102076993A (zh) 2011-05-25
EP2292946A1 (en) 2011-03-09
JP5374215B2 (ja) 2013-12-25
CN102076993B (zh) 2014-02-26
EP2292946A4 (en) 2011-11-30
US8506438B2 (en) 2013-08-13
EP2292946B1 (en) 2016-01-27
JP2010032038A (ja) 2010-02-12
US20110082000A1 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5374215B2 (ja) サイクロイド減速機、インホイールモータ駆動装置、および車両用モータ駆動装置
US9914349B2 (en) In-wheel motor drive device
US20160167505A1 (en) In-wheel motor drive device
JP2016114184A (ja) サイクロイド減速機およびこれを備えたインホイールモータ駆動装置
WO2015141387A1 (ja) インホイールモータ駆動装置
JP5687839B2 (ja) インホイールモータ駆動装置
WO2016047442A1 (ja) インホイールモータ駆動装置
JP2015092099A (ja) インホイールモータ駆動装置
JP2015175383A (ja) インホイールモータ駆動装置
WO2016017351A1 (ja) サイクロイド減速機およびこれを備えたインホイールモータ駆動装置
JP2016179799A (ja) 車両用モータ駆動装置
WO2015060135A1 (ja) インホイールモータ駆動装置
JP6324761B2 (ja) インホイールモータ駆動装置
JP2016160980A (ja) 車両用モータ駆動装置
JP2016038086A (ja) 車輪駆動装置
JP6333579B2 (ja) インホイールモータ駆動装置
JP2015128948A (ja) インホイールモータ駆動装置
WO2015137088A1 (ja) インホイールモータ駆動装置
JP2008207585A (ja) インホイールモータ駆動装置
WO2015141389A1 (ja) インホイールモータ駆動装置
WO2015098489A1 (ja) インホイールモータ駆動装置
WO2015098490A1 (ja) インホイールモータ駆動装置
WO2016132792A1 (ja) 車両用モータ駆動装置
WO2015098487A1 (ja) インホイールモータ駆動装置
JP2016137790A (ja) インホイールモータ駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125533.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12996686

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009773276

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE