WO2010001623A1 - 青色蛍光体およびそれを用いた発光装置 - Google Patents

青色蛍光体およびそれを用いた発光装置 Download PDF

Info

Publication number
WO2010001623A1
WO2010001623A1 PCT/JP2009/003103 JP2009003103W WO2010001623A1 WO 2010001623 A1 WO2010001623 A1 WO 2010001623A1 JP 2009003103 W JP2009003103 W JP 2009003103W WO 2010001623 A1 WO2010001623 A1 WO 2010001623A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue phosphor
emitting device
phosphor
firing
ray
Prior art date
Application number
PCT/JP2009/003103
Other languages
English (en)
French (fr)
Inventor
奥山浩二郎
奥井やよい
白石誠吾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010518935A priority Critical patent/JP5112513B2/ja
Priority to US12/675,890 priority patent/US8361347B2/en
Publication of WO2010001623A1 publication Critical patent/WO2010001623A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7736Vanadates; Chromates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material

Definitions

  • the present invention relates to a blue phosphor used for a plasma display panel (hereinafter referred to as PDP), a mercury-free fluorescent lamp, and the like, and a light emitting device (particularly a PDP) using the blue phosphor.
  • PDP plasma display panel
  • a mercury-free fluorescent lamp and the like
  • a light emitting device particularly a PDP
  • BAM Eu, which has high brightness by vacuum ultraviolet light excitation, has been used as a blue phosphor for PDP.
  • the luminance degradation mechanism of the blue phosphor BAM: Eu has not been fully elucidated, it is not possible to remove the phosphor due to the mixing and heat treatment of moisture and impurity gas in the light emitting device manufacturing process and the vacuum ultraviolet light irradiation when the light emitting device is driven. It is considered that the luminance deteriorates.
  • Patent Document 1 a method of adding gadolinium to the phosphor (see, for example, Patent Document 1), a method of coating the phosphor with a divalent metal silicate such as an alkaline earth metal (for example, Patent Document) 2), and a method of coating the phosphor with antimony oxide (for example, see Patent Document 3).
  • Patent Documents 4 and 5 phosphors having improved luminance of blue light emitting components and high luminance by vacuum ultraviolet light excitation have been proposed (see Patent Documents 4 and 5).
  • An object of the present invention is to solve the above-described conventional problems, and to provide a blue phosphor having high luminance and less luminance deterioration when the light emitting device is driven. It is another object of the present invention to provide a long-life light emitting device using the blue phosphor, particularly a PDP.
  • the blue phosphor of the present invention has a general formula of aBaO.bSrO. (1-ab) EuO.cMgO.dAlO 3 / 2.eWO 3 (0.70 ⁇ a ⁇ 0.95). 0 ⁇ b ⁇ 0.15, 0.95 ⁇ c ⁇ 1.15, 9.00 ⁇ d ⁇ 11.00, 0.001 ⁇ e ⁇ 0.200, where a + b ⁇ 0.97) It consists of a metal aluminate and ZrO 2, and contains ZrO 2 in a proportion of 0.01 to 1.00% by weight. In the X-ray diffraction pattern measured with X-rays with a wavelength of 0.774 mm, the peak top is There are two peaks with a diffraction angle 2 ⁇ in the range of 13.0 to 13.6 degrees.
  • the present invention also provides a light emitting device comprising a phosphor layer containing the blue phosphor of the present invention.
  • the present invention it is possible to provide a blue phosphor that has high luminance and little luminance deterioration when the light emitting device is manufactured and driven.
  • a light emitting device such as a long-life PDP in which luminance does not deteriorate even when driven for a long time.
  • the blue phosphor of the present invention has a general formula aBaO.bSrO. (1-ab) EuO.cMgO.dAlO 3 / 2.eWO 3 (0.70 ⁇ a ⁇ 0.95, 0 ⁇ b ⁇ 0.15). 0.95 ⁇ c ⁇ 1.15, 9.00 ⁇ d ⁇ 11.00, 0.001 ⁇ e ⁇ 0.200, provided that a + b ⁇ 0.97) and ZrO 2 And ZrO 2 is contained at a ratio of 0.01 to 1.00% by weight.
  • the blue phosphor of the present invention preferably contains ZrO 2 in a proportion of 0.01 to 0.10% by weight.
  • the blue phosphor of the present invention has two peaks with a peak top in the range of 13.0 to 13.6 degrees at a diffraction angle 2 ⁇ in an X-ray diffraction pattern measured with an X-ray having a wavelength of 0.774 mm. Exists. In the X-ray diffraction pattern measured with an X-ray having a wavelength of 0.774 mm, the peak top of one of the two peaks is within a range of 13.0 to 13.2 degrees at a diffraction angle 2 ⁇ . Is preferable from the viewpoint of luminance and luminance deterioration resistance.
  • the inventors of the present invention have a high luminance and have a high luminance when the light-emitting device is manufactured and when it is driven, according to the blue phosphor having the above-described composition and satisfying the characteristics related to the X-ray diffraction pattern. It has been found that a phosphor with less luminance degradation can be obtained.
  • the conventional BAM Eu blue phosphor, there was one peak having a peak top within the above-mentioned diffraction angle 2 ⁇ (13.0 to 13.6 degrees).
  • the reason why the blue phosphor of the present invention satisfying the above-mentioned characteristics relating to the X-ray diffraction pattern is excellent is not clear, but according to the experiments by the present inventors, firing is performed under special conditions described later.
  • the blue phosphor of the present invention obtained by this the lattice constant of the phosphor changes, and this change is presumed to have improved the emission characteristics (luminance degradation resistance) of the phosphor.
  • a BL19B2 powder X-ray diffraction apparatus (Debye-Scherrer optical system using an imaging plate, hereinafter referred to as BL19 diffraction apparatus) of the large synchrotron radiation facility SPring8 is used.
  • a glass capillary made of Lindeman having an inner diameter of 200 ⁇ m is filled with the phosphor powder without any gaps.
  • the incident X-ray wavelength is set to about 0.774 mm by a monochromator.
  • the diffraction intensity is recorded on the imaging plate while rotating the sample with a goniometer. The measurement time is carefully determined so as not to cause saturation of the imaging plate. For example, 5 minutes.
  • the imaging plate is developed and the X-ray diffraction spectrum is read.
  • the zero point error when reading data from the developed imaging plate is about 0.03 degree at the diffraction angle 2 ⁇ .
  • Rietan For Rietveld analysis, the Rietan-2000 program (Rev. 2.3.9 and later, hereinafter referred to as Rietan) is used (by Izumi Nakai and Fujio Izumi, “Practice of X-ray powder analysis-Introduction to the Rietveld method”). (See, Japan Society for Analytical Chemistry X-ray Analysis Research Roundtable, Asakura Shoten, 2002, and http://homepage.mac.com/fujioizumi/).
  • the blue phosphor of the present invention can be obtained by firing in a weak reducing atmosphere and firing in a weak oxidizing atmosphere. Firing in this weakly oxidizing atmosphere is performed in the temperature lowering process during firing. Specifically, in the firing step, first, firing is performed in a weakly reducing mixed gas containing hydrogen, nitrogen and oxygen, and further, in the temperature lowering process, firing is performed in a weakly oxidizing mixed gas containing nitrogen and oxygen. It can be produced by providing (weakly oxidative mixed gas region). Below, an example of the method of manufacturing the blue fluorescent substance of this invention is demonstrated.
  • Barium raw materials include high-purity (purity 99% or higher) barium hydroxide, barium carbonate, barium nitrate, barium halide, barium oxalate, or other barium compounds that can be converted to barium oxide by firing or high-purity (purity 99% or higher) ) Barium oxide.
  • strontium raw material high purity (purity 99% or more) strontium hydroxide, strontium carbonate, strontium nitrate, strontium halide, strontium oxalate, or the like can be converted to strontium oxide by firing or high purity (purity 99% or more).
  • Strontium oxide As the strontium raw material, high purity (purity 99% or more) strontium hydroxide, strontium carbonate, strontium nitrate, strontium halide, strontium oxalate, or the like can be converted to strontium oxide by firing or high purity (purity 99% or more).
  • Europium raw materials include high-purity (99% or higher purity) europium hydroxide, europium carbonate, europium nitrate, europium halide, europium oxalate, etc. ) Europium oxide can be used.
  • Magnesium raw materials such as high purity (99% or more purity) magnesium hydroxide, magnesium carbonate, magnesium nitrate, magnesium halide, magnesium oxalate, basic magnesium carbonate, etc., magnesium compounds that can be converted to magnesium oxide by firing, or high purity Magnesium oxide having a purity of 99% or more can be used.
  • an aluminum compound that can be converted to alumina by firing such as high-purity (purity 99% or higher) aluminum hydroxide, aluminum nitrate, or aluminum halide, or high-purity (purity 99.9% or higher) alumina is used. Can do.
  • various raw materials that can be converted into oxides by firing can be used for the tungsten raw material and the zirconium raw material.
  • the blue phosphor of the present invention is produced by mixing and firing the above raw materials.
  • a method of mixing the raw materials wet mixing in a solution or dry mixing of a dry powder may be used, which is industrially usual.
  • a ball mill, a medium stirring mill, a planetary mill, a vibration mill, a jet mill, a V-type mixer, a stirrer, or the like can be used.
  • the coarse particles in the raw material adversely affect the light emission characteristics, it is preferable to perform classification in order to make the particle sizes uniform.
  • the mixed powder is fired in a mixed gas containing hydrogen, nitrogen and oxygen at 1200 to 1600 ° C. for 1 to 50 hours.
  • the hydrogen concentration is 0.1 to 10% by volume
  • the oxygen partial pressure is adjusted to around 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 2 Pa (1 ⁇ 10 ⁇ 12 to 1 ⁇ 10 ⁇ 7 atm).
  • More preferable conditions are 1300 to 1400 in a weak reducing atmosphere adjusted to an oxygen partial pressure in the vicinity of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 4 Pa (1 ⁇ 10 ⁇ 11 to 1 ⁇ 10 ⁇ 9 atm). Firing at 4 ° C. for 4 hours, and providing a weakly oxidative mixed gas region containing nitrogen and oxygen in the temperature lowering process.
  • the oxygen partial pressure in the weakly oxidizing atmosphere only needs to be higher than the oxygen partial pressure in the weakly reducing atmosphere.
  • furnace used for firing a furnace generally used in industry can be used.
  • a continuous or batch type electric furnace or gas furnace such as a pusher furnace can be used.
  • calcining is performed at a temperature range of 800 to 1400 ° C. before the main calcination. It is preferable. Moreover, in order to accelerate
  • the obtained phosphor powder is pulverized again using a ball mill, a jet mill or the like, and further washed or classified as necessary to adjust the particle size distribution and fluidity of the phosphor powder.
  • a light-emitting device with high luminance and luminance deterioration resistance can be configured.
  • BAM: Eu may be replaced with the blue phosphor of the present invention, and the light emitting device may be configured according to a known method.
  • the light emitting device include a PDP, a fluorescent panel, a fluorescent lamp, and the like. Among these, a PDP is preferable.
  • FIG. 1 is a perspective sectional view showing the main structure of an AC surface discharge type PDP 10. Note that the PDP shown here is illustrated with a size setting in accordance with a 42-inch 1024 ⁇ 768 pixel specification for convenience, but may be applied to other sizes and specifications.
  • this PDP 10 has a front panel 20 and a back panel 26, and is arranged so that the main surfaces thereof face each other.
  • the front panel 20 is provided with a pair of electrodes.
  • the front panel 20 includes a front panel glass 21 as a front substrate and a pair of strip-shaped display electrodes (X electrode 23 and Y electrode 22) provided on one main surface of the front panel glass 21.
  • a front-side dielectric layer 24 having a thickness of about 30 ⁇ m covering the display electrode, and a protective layer 25 having a thickness of about 1.0 ⁇ m provided on the front-side dielectric layer 24.
  • the display electrode includes strip-shaped transparent electrodes 220 and 230 having a thickness of 0.1 ⁇ m and a width of 150 ⁇ m, and bus lines 221 and 231 having a thickness of 7 ⁇ m and a width of 95 ⁇ m provided on the transparent electrodes 220 and 230, respectively.
  • a plurality of pairs of display electrodes (X electrode 23 and Y electrode 22) are arranged in the y-axis direction with the x-axis direction as the longitudinal direction.
  • Each pair of display electrodes (X electrode 23, Y electrode 22) is electrically connected to a panel drive circuit (not shown) in the vicinity of the end of the front panel glass 21 in the width direction (y-axis direction).
  • the Y electrodes 22 are collectively connected to the panel drive circuit, and the X electrodes 23 are independently connected to the panel drive circuit.
  • a surface discharge (sustain discharge) is generated in the gap (about 80 ⁇ m) between the X electrode 23 and the Y electrode 22.
  • the X electrode 23 can also be operated as a scan electrode, and thereby, a write discharge (address discharge) can be generated between the X electrode 23 and an address electrode 28 described later.
  • the back panel 26 includes a back panel glass 27 as a back substrate, a plurality of address electrodes 28, a back side dielectric layer 29, a partition wall 30, and any of red (R), green (G), and blue (B).
  • Phosphor layers 31 to 33 corresponding to the above.
  • the phosphor layers 31 to 33 are provided in contact with the side walls of two adjacent barrier ribs 30 and the back-side dielectric layer 29 therebetween, and are repeatedly arranged in the x-axis direction.
  • the blue phosphor layer (B) contains the above-described blue phosphor of the present invention.
  • the red phosphor layer and the green phosphor layer contain a general phosphor.
  • (Y, Gd) BO 3 : Eu and Y 2 O 3 : Eu are used as red phosphors
  • YBO 3 : Tb and (Y, Gd) BO 3 : are used as green phosphors. Tb is mentioned.
  • Each phosphor layer is coated with a phosphor ink in which each corresponding phosphor particle is dissolved on the partition wall 30 and the back side dielectric layer 29 by a known coating method such as a meniscus method or a line jet method. It can be formed by drying or baking (for example, at 500 ° C. for 10 minutes).
  • the phosphor ink comprises, for example, 30% by mass of blue phosphor, 4.5% by mass of ethyl cellulose having a mass average molecular weight of about 200,000, and 65.5% by mass of butyl carbitol acetate. Can be mixed.
  • the address electrode 28 is provided on one main surface of the back panel glass 27.
  • the back side dielectric layer 29 is provided so as to cover the address electrodes 28.
  • the partition wall 30 has a height of about 150 ⁇ m and a width of about 40 ⁇ m, and is provided on the back-side dielectric layer 29 in accordance with the pitch of the adjacent address electrodes 28 with the y-axis direction as the longitudinal direction. Yes.
  • the address electrodes 28 each have a thickness of 5 ⁇ m and a width of 60 ⁇ m, and a plurality of address electrodes 28 are arranged in the x-axis direction with the y-axis direction as the longitudinal direction.
  • the address electrodes 28 are arranged so that the pitch is a constant interval (about 150 ⁇ m).
  • the plurality of address electrodes 28 are independently connected to the panel drive circuit. By supplying power individually to each address electrode, it is possible to cause an address discharge between the specific address electrode 28 and the specific X electrode 23.
  • the front panel 20 and the back panel 26 are arranged so that the address electrodes 28 and the display electrodes are orthogonal to each other.
  • the outer peripheral edge portions of both panels 20 and 26 are sealed by a frit glass sealing portion (not shown) as a sealing member.
  • the sealed space between the front panel 20 and the back panel 26 sealed by the frit glass sealing portion contains a discharge gas containing xenon (Xe) (for example, containing Xe, and further containing He, Ne, etc.
  • Xe xenon
  • a discharge gas comprising a rare gas component is enclosed at a predetermined pressure (usually about 6.7 ⁇ 10 4 to 1.0 ⁇ 10 5 Pa).
  • a space between two adjacent partition walls 30 is a discharge space 34.
  • a region where a pair of display electrodes (X electrode 23, Y electrode 22) and one address electrode 28 intersect with each other across the discharge space 34 corresponds to a cell displaying an image.
  • the cell pitch in the x-axis direction is set to about 300 ⁇ m
  • the cell pitch in the y-axis direction is set to about 675 ⁇ m.
  • the panel drive circuit when driving the PDP 10, applies a pulse voltage to the specific address electrode 28 and the specific X electrode 23 to cause address discharge, and then a pair of display electrodes (X electrode 23, Y electrode 22). A pulse is applied during the period to sustain discharge.
  • the phosphors contained in the phosphor layers 31 to 33 are made to emit visible light using the short wavelength ultraviolet rays (resonance line having a center wavelength of about 147 nm and molecular beam having a center wavelength of 172 nm) generated thereby. Thus, a predetermined image can be displayed on the front panel side.
  • the blue phosphor of the present invention can also be applied to a fluorescent panel having a fluorescent layer that is excited and emitted by ultraviolet rays.
  • the fluorescent panel has a good luminance and is excellent in luminance deterioration resistance as compared with a conventional fluorescent panel.
  • the fluorescent panel can be applied as a backlight of a liquid crystal display device, for example.
  • the blue phosphor of the present invention can also be applied to a fluorescent lamp (eg, an electrodeless fluorescent lamp) according to a known method.
  • the fluorescent lamp has a good luminance and is excellent in luminance deterioration resistance as compared with a conventional fluorescent lamp.
  • phosphors for 4 hours to obtain phosphors (sample numbers 4 to 14).
  • the firing is performed in a mixed gas atmosphere containing hydrogen, nitrogen, and oxygen (hydrogen concentration: 3% by volume, oxygen partial pressure at peak temperature is around 1 ⁇ 10 ⁇ 5 Pa (1 ⁇ 10 ⁇ 10 atm)).
  • hydrogen concentration 3% by volume, oxygen partial pressure at peak temperature is around 1 ⁇ 10 ⁇ 5 Pa (1 ⁇ 10 ⁇ 10 atm)
  • a special firing method was used in which hydrogen introduction was stopped at 850 ° C. and oxygen introduction was stopped at 750 ° C.
  • a phosphor having a composition ratio within the composition range of the present invention and having two peaks within the range of 13.0 to 13.6 degrees at the diffraction angle 2 ⁇ is obtained by vacuum ultraviolet light excitation.
  • the brightness was high.
  • the phosphor (sample numbers 9 to 14) having one peak in the range of 13.0 to 13.2 degrees has particularly high luminance.
  • any one of the coefficients a, b, c, d, e and the number of peaks in the range of 13.0 to 13.6 degrees at the diffraction angle 2 ⁇ in the powder X-ray diffraction measurement is the present invention.
  • the comparative sample that was out of range had a low initial luminance, and the luminance degradation during PDP driving was significant.
  • the blue phosphor of the present invention can be used for a light emitting device, particularly a PDP.
  • the present invention can also be applied to fluorescent lamps such as electrodeless fluorescent lamps and fluorescent panels mainly used for backlights of liquid crystal display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

 本発明の青色蛍光体は、一般式aBaO・bSrO・(1-a-b)EuO・cMgO・dAlO3/2・eWO3(0.70≦a≦0.95、0≦b≦0.15、0.95≦c≦1.15、9.00≦d≦11.00、0.001≦e≦0.200、ただしa+b≦0.97)で表される金属アルミン酸塩とZrO2とからなり、ZrO2を0.01~1.00重量%の割合で含む。さらに、本発明の青色蛍光体には、波長0.774ÅのX線で測定したX線回折パターンにおいて、ピークトップが回折角2θで13.0~13.6度の範囲内にある、2つのピークが存在する。

Description

青色蛍光体およびそれを用いた発光装置
 本発明は、プラズマディスプレイパネル(以下、PDPと記載する。)や無水銀蛍光ランプ等に使用される青色蛍光体と、当該青色蛍光体を用いた発光装置(特にPDP)に関するものである。
 省エネルギーの蛍光ランプ用蛍光体として、様々なアルミン酸塩蛍光体が実用化されている。例えば、青色蛍光体として(Ba,Sr)MgAl1017:Eu(以下、BAM:Euと記載する。)、緑色蛍光体としてCeMgAl1119:TbまたはBaMgAl1017:Eu,Mn等が挙げられる。
 近年では、PDP用青色蛍光体に、真空紫外光励起による輝度が高いBAM:Euが使用されている。
 しかしながら、青色蛍光体BAM:Euを用いた発光装置を長時間駆動すると、輝度が著しく劣化する。そのため、発光装置用途、特にPDP用途においては、長時間駆動しても輝度劣化が少ない蛍光体が強く求められている。
 青色蛍光体BAM:Euの輝度劣化メカニズムについて充分には解明されていないが、発光装置作製工程での水分や不純物ガスの混入と熱処理、および発光装置駆動時の真空紫外光照射により、蛍光体の輝度が劣化するものと考えられる。
 この輝度の劣化を防止すべく、蛍光体にガドリニウムを添加する方法(例えば、特許文献1参照)、蛍光体をアルカリ土類金属等の2価金属ケイ酸塩で被覆する方法(例えば、特許文献2参照)、さらに、蛍光体をアンチモン酸化物で被覆する方法(例えば、特許文献3参照)が提案されている。これらの他にも、青色発光成分の輝度が改善された、真空紫外光励起による輝度が高い蛍光体が提案されている(特許文献4および5参照)。
特公平6-29418号公報 特開2000-34478公報 特開平10-330746号公報 特開2000-26855号公報 特開2003-147352号公報
 しかしながら、前記従来の方法による蛍光体を使用した発光装置においては、ほとんどの場合、高い輝度を保ちながら駆動時の蛍光体の輝度劣化を抑制することができていなかった。
 本発明は、前記従来の課題を解決するものであり、輝度が高く、発光装置駆動時の輝度劣化が少ない青色蛍光体を提供することを目的とする。また、当該青色蛍光体を用いた長寿命の発光装置、特にPDPを提供することを目的とする。
 上記課題を解決するために、本発明の青色蛍光体は、一般式aBaO・bSrO・(1-a-b)EuO・cMgO・dAlO3/2・eWO3(0.70≦a≦0.95、0≦b≦0.15、0.95≦c≦1.15、9.00≦d≦11.00、0.001≦e≦0.200、ただしa+b≦0.97)で表される金属アルミン酸塩とZrO2とからなり、ZrO2が0.01~1.00重量%の割合で含まれており、波長0.774ÅのX線で測定したX線回折パターンにおいて、ピークトップが回折角2θで13.0~13.6度の範囲内にある、2つのピークが存在する。
 また、本発明は、上記本発明の青色蛍光体を含む蛍光体層を備えた発光装置を提供する。
 本発明によれば、輝度が高く、かつ発光装置作製時および駆動時での輝度劣化が少ない青色蛍光体を提供することができる。また、本発明によれば、長時間駆動しても輝度が劣化しない長寿命のPDP等の発光装置を提供することができる。
本発明の発光装置の一例であるPDPの構成を示す概略断面図である。 実施例で測定した試料番号13の粉末X線回折パターン(13.0~13.6度)である。
 以下、本発明の実施の形態について詳細に説明する。
 <青色蛍光体の組成>
 本発明の青色蛍光体は、一般式aBaO・bSrO・(1-a-b)EuO・cMgO・dAlO3/2・eWO3(0.70≦a≦0.95、0≦b≦0.15、0.95≦c≦1.15、9.00≦d≦11.00、0.001≦e≦0.200、ただしa+b≦0.97)で表される金属アルミン酸塩とZrO2とからなり、ZrO2が0.01~1.00重量%の割合で含まれている。a、b、c、dおよびeについて、好ましい範囲はそれぞれ、0.80≦a≦0.95、0≦b≦0.05、1.00≦c≦1.15、9.50≦d≦10.00、0.005≦e≦0.040である。また、本発明の青色蛍光体は、ZrO2を0.01~0.10重量%の割合で含むことが好ましい。
 <青色蛍光体のX線回折に関する特性>
 本発明の青色蛍光体には、波長0.774ÅのX線で測定したX線回折パターンにおいて、ピークトップが回折角2θで13.0~13.6度の範囲内にある、2つのピークが存在する。また、波長0.774ÅのX線で測定したX線回折パターンにおいて、前記2つのピークのうちの1つのピークのピークトップが、回折角2θで13.0~13.2度の範囲内にあることが、輝度および輝度劣化耐性の観点から好ましい。
 本発明者等は、実験結果に基づく詳細な検証により、上記の組成を有し、上記のX線回折パターンに関する特徴を満たす青色蛍光体によれば、輝度が高く、発光装置作製時および駆動時の輝度劣化が少ない蛍光体が得られることを見出した。なお、従来のBAM:Eu青色蛍光体では、上記の回折角2θの範囲内(13.0~13.6度)にピークトップがあるピークは1つであった。上記のX線回折パターンに関する特徴を満たす本発明の青色蛍光体の発光特性が優れたものとなる理由は定かではないが、本発明者等の実験によれば、後述する特殊な条件で焼成することによって得られる本発明の青色蛍光体では、蛍光体の格子定数が変化し、この変化が蛍光体の発光特性(輝度劣化耐性)を向上させたものと推測される。
 本発明においては、前記X線回折パターンにおいて、ピークをノイズ等によるシグナル強度の変化と区別するために、シグナル強度の変化のうち、回折角2θで13.4度付近にあるピークの強度の1/10以上の強度を有するものを、ピークと認めるものとする。そして本発明において「2つのピークが存在する」とは、スペクトルを構成している各角度点についての微分値を、所定の範囲においてみた場合に、ノイズを除いて考えて微分値の符号が3回逆転する場合をいう。従って、ここでは、2つのピークが重複して、1つの2峰性のピークとなっている場合でも、「2つのピークが存在する」ものとする。
 <粉末X線回折測定>
 次に、本発明の青色蛍光体のX線回折パターンを得るための粉末X線回折測定に関して記述する。
 粉末X線回折測定には、例えば、大型放射光施設SPring8のBL19B2粉末X線回折装置(イメージングプレートを使用したデバイシェラー光学系、以降BL19回折装置と呼ぶ。)を使用する。内径200μmのリンデマン製のガラスキャピラリーに蛍光体粉体を隙間なく充填する。入射X線波長をモノクロメータにより約0.774Åに設定する。試料をゴニオメータで回転させながら回折強度をイメージングプレート上に記録する。測定時間はイメージングプレートの飽和が生じないように注意して決定する。例えば5分間とする。イメージングプレートを現像し、X線回折スペクトルを読み取る。
 なお、現像したイメージングプレートからデータを読み出す際のゼロ点の誤差は、回折角2θで0.03度程度である。
 入射X線の正確な波長は、格子定数が5.4111ÅであるNIST(National Institute of Standards and Technology)のCeO2粉末(SRM No.674a)を用いて確認する。CeO2粉末の測定データを格子定数(a軸長)のみ動かしてリートベルト解析を行い、設定したX線波長λ'に対して得られた値a’と真値(a=5.4111Å)との差を元に、真のX線波長λを下記式に基づき算出する。
 λ=aλ'/a'
 リートベルト解析には、RIETAN-2000プログラム(Rev.2.3.9以降、以下、RIETANと呼ぶ。)を用いる(中井 泉、泉 富士夫 著、「粉末X線解析の実際―リートベルト法入門」、日本分析化学会X線分析研究懇談会 編、朝倉書店、2002年、およびhttp://homepage.mac.com/fujioizumi/を参照)。
 なお、X線回折は、結晶格子とX線の入射、回折の幾何的配置がブラッグの条件
2dsinθ=nλ
を満たした際に観測される現象であり、一般的なX線回折計においてもスペクトルの観測は可能である。しかしながら、入射するX線波長により得られる観測強度が異なるため、観測される回折プロファイルには差が生じる。
 <青色蛍光体の製造方法>
 以下、本発明の青色蛍光体の製造方法について説明する。
 本発明の青色蛍光体は、弱還元性雰囲気下での焼成と、弱酸化性雰囲気下での焼成とによって得ることができる。この弱酸化性雰囲気下での焼成は、焼成時の降温過程において行われる。具体的には、焼成工程において、まず、水素、窒素および酸素を含む弱還元性混合ガス中で焼成し、さらに降温過程において、窒素および酸素を含む弱酸化性混合ガス中で焼成を行う焼成期間(弱酸化性混合ガス領域)を設けることによって作製できる。以下に、本発明の青色蛍光体を製造する方法の一例について説明する。
 バリウム原料としては、高純度(純度99%以上)の水酸化バリウム、炭酸バリウム、硝酸バリウム、ハロゲン化バリウムまたはシュウ酸バリウム等、焼成により酸化バリウムになり得るバリウム化合物または高純度(純度99%以上)の酸化バリウムを用いることができる。
 ストロンチウム原料としては、高純度(純度99%以上)の水酸化ストロンチウム、炭酸ストロンチウム、硝酸ストロンチウム、ハロゲン化ストロンチウムまたはシュウ酸ストロンチウム等、焼成により酸化ストロンチウムになり得るストロンチウム化合物または高純度(純度99%以上)の酸化ストロンチウムを用いることができる。
 ユーロピウム原料としては、高純度(純度99%以上)の水酸化ユーロピウム、炭酸ユーロピウム、硝酸ユーロピウム、ハロゲン化ユーロピウムまたはシュウ酸ユーロピウム等、焼成により酸化ユーロピウムになり得るユーロピウム化合物または高純度(純度99%以上)の酸化ユーロピウムを用いることができる。
 マグネシウム原料としては、高純度(純度99%以上)の水酸化マグネシウム、炭酸マグネシウム、硝酸マグネシウム、ハロゲン化マグネシウム、シュウ酸マグネシウムまたは塩基性炭酸マグネシウム等、焼成により酸化マグネシウムになり得るマグネシウム化合物または高純度(純度99%以上)の酸化マグネシウムを用いることができる。
 アルミニウム原料としては、高純度(純度99%以上)の水酸化アルミニウム、硝酸アルミニウムまたはハロゲン化アルミニウム等、焼成によりアルミナになり得るアルミニウム化合物または高純度(純度99.9%以上)のアルミナを用いることができる。
 タングステン原料およびジルコニウム原料についても同様に、焼成により酸化物になり得る様々な原料を用いることができる。
 本発明の青色蛍光体の製造は、上記の原料を混合し、焼成して行うが、原料の混合方法としては、溶液中での湿式混合でも乾燥粉体の乾式混合でもよく、工業的に通常用いられるボールミル、媒体攪拌ミル、遊星ミル、振動ミル、ジェットミル、V型混合機、攪拌機等を用いることができる。なお、原料中の粗大粒子は、発光特性に悪影響を及ぼすので、粒度を揃えるため分級を実施しておくことが好ましい。
 本発明の青色蛍光体の製造において、混合粉体の焼成は、水素、窒素および酸素を含む混合ガス中で、1200~1600℃で1~50時間行う。混合ガスにおいて、水素濃度は0.1~10体積%とし、酸素分圧は1×10-7~1×10-2Pa(1×10-12~1×10-7atm)付近に調整する。より好ましい条件としては、1×10-6~1×10-4Pa(1×10-11~1×10-9atm)付近の酸素分圧に調整した弱還元性雰囲気下において、1300~1400℃で4時間焼成し、さらに降温過程において窒素および酸素を含む弱酸化性混合ガス領域を設ける。ここで、弱酸化性雰囲気における酸素分圧は、弱還元性雰囲気における酸素分圧よりも高ければよい。
 焼成に用いる炉には、工業的に通常用いられる炉を用いることができる。プッシャー炉等の連続式またはバッチ式の電気炉やガス炉を用いることができる。
 原料として水酸化物、炭酸塩、硝酸塩、ハロゲン化物、シュウ酸塩等、焼成により酸化物になり得るものを使用した場合、本焼成の前に、800~1400℃の温度範囲にて仮焼することが好ましい。また、反応を促進するために、原料フッ化物等のフラックスを添加することが好ましい。
 得られた蛍光体粉末を、ボールミルやジェットミル等を用いて再度解砕し、さらに必要に応じて洗浄あるいは分級することにより、蛍光体粉末の粒度分布や流動性を調整することができる。
 <青色蛍光体の用途>
 本発明の青色蛍光体を、蛍光体層を有する発光装置に適用すれば、輝度および輝度劣化耐性が高い発光装置を構成することができる。具体的には、BAM:Euが使用される蛍光体層を有する発光装置において、BAM:Euを本発明の青色蛍光体に置き換え、公知方法に準じて発光装置を構成すればよい。発光装置の例としては、PDP、蛍光パネル、蛍光ランプ等が挙げられ、これらのうちPDPが好適である。
 以下に、交流面放電型PDPを例として、本発明の青色蛍光体をPDPに適用した実施態様(本発明の発光装置をPDPとした例)について説明する。図1は、交流面放電型PDP10の主要構造を示す斜視断面図である。なお、ここで示すPDPは、便宜的に、42型の1024×768画素仕様に合わせたサイズ設定にて図示しているが、他のサイズや仕様に適用してもよいのは勿論である。
 図1に示すように、このPDP10は、フロントパネル20とバックパネル26とを有しており、それぞれの主面が対向するようにして配置されている。
 このフロントパネル20には、一対の電極が設けられている。具体的には、フロントパネル20は、前面基板としてのフロントパネルガラス21と、このフロントパネルガラス21の一方の主面上に設けられた帯状の一対の表示電極(X電極23、Y電極22)と、この表示電極を覆う厚さ約30μmの前面側誘電体層24と、この前面側誘電体層24の上に設けられた厚さ約1.0μmの保護層25とを含んでいる。
 上記表示電極は、厚さ0.1μm、幅150μmの帯状の透明電極220,230と、この透明電極220,230上にそれぞれ重ね設けられた厚さ7μm、幅95μmのバスライン221,231とを含んでいる。また、各対の表示電極(X電極23、Y電極22)が、x軸方向を長手方向としてy軸方向に複数配置されている。
 また、各対の表示電極(X電極23、Y電極22)は、それぞれフロントパネルガラス21の幅方向(y軸方向)の端部付近で、パネル駆動回路(図示せず)と電気的に接続されている。なお、Y電極22は一括してパネル駆動回路に接続され、X電極23はそれぞれ独立してパネル駆動回路に接続されている。パネル駆動回路を用いて、Y電極22と特定のX電極23とに給電すると、X電極23とY電極22との間隙(約80μm)に面放電(維持放電)が発生する。X電極23はスキャン電極として作動させることもでき、これにより、後述するアドレス電極28との間で書き込み放電(アドレス放電)を発生させることができる。
 バックパネル26は、背面基板としてのバックパネルガラス27と、複数のアドレス電極28と、背面側誘電体層29と、隔壁30と、赤色(R)、緑色(G)、青色(B)の何れかに対応する蛍光体層31~33とを含んでいる。蛍光体層31~33は、隣り合う2つの隔壁30の側壁とその間の背面側誘電体層29とに接して設けられており、また、x軸方向に繰り返して配列されている。
 青色蛍光体層(B)は、上述した本発明の青色蛍光体を含んでいる。他方、赤色蛍光体層および緑色蛍光体層は、一般的な蛍光体を含んでいる。例えば、赤色蛍光体としては(Y,Gd)BO3:EuやY23:Euが、緑色蛍光体としてはZn2SiO4:Mn,YBO3:Tbおよび(Y,Gd)BO3:Tbが挙げられる。
 各蛍光体層は、対応する各蛍光体粒子を溶解させた蛍光体インクを、例えばメニスカス法やラインジェット法等の公知の塗布方法により隔壁30および背面側誘電体層29に塗布し、これを乾燥や焼成(例えば500℃で10分)することにより形成できる。例えば青色蛍光体層を作製する場合、上記蛍光体インクは、例えば青色蛍光体30質量%と、質量平均分子量約20万のエチルセルロース4.5質量%と、ブチルカルビトールアセテート65.5質量%とを混合して作製することができる。
 アドレス電極28はバックパネルガラス27の一方の主面上に設けられている。また、背面側誘電体層29はアドレス電極28を覆うようにして設けられている。また、隔壁30は、高さが約150μm、幅が約40μmであり、y軸方向を長手方向とし、隣接するアドレス電極28のピッチに合わせて、背面側誘電体層29の上に設けられている。
 上記アドレス電極28は、それぞれが厚さ5μm、幅60μmであり、y軸方向を長手方向としてx軸方向に複数配置されている。また、このアドレス電極28は、ピッチが一定間隔(約150μm)となるように配置されている。なお、複数のアドレス電極28は、それぞれ独立して上記パネル駆動回路に接続されている。それぞれのアドレス電極に個別に給電することによって、特定のアドレス電極28と特定のX電極23との間でアドレス放電させることができる。
 フロントパネル20とバックパネル26とは、アドレス電極28と表示電極とが直交するようして配置している。封着部材としてのフリットガラス封着部(図示せず)により両パネル20、26の外周縁部が封着されている。
 フリットガラス封着部によって密封された、フロントパネル20とバックパネル26との間の密閉空間には、キセノン(Xe)を含有する放電ガス(例えば、Xeを含み、さらにHe、Ne等を含む、希ガス成分からなる放電ガス)が所定の圧力(通常6.7×104~1.0×105Pa程度)で封入されている。
 なお、隣接する2つの隔壁30の間に対応する空間が、放電空間34となる。また、一対の表示電極(X電極23、Y電極22)と1本のアドレス電極28とが放電空間34を挟んで交叉する領域が、画像を表示するセルに対応している。なお、本例では、x軸方向のセルピッチは約300μm、y軸方向のセルピッチは約675μmに設定されている。
 また、PDP10の駆動時には、パネル駆動回路によって、特定のアドレス電極28と特定のX電極23とにパルス電圧を印加してアドレス放電させた後、一対の表示電極(X電極23、Y電極22)の間にパルスを印加し、維持放電させる。これにより発生させた短波長の紫外線(波長約147nmを中心波長とする共鳴線および172nmを中心波長とする分子線)を用いて、蛍光体層31~33に含まれる蛍光体を可視光発光させることで、所定の画像をフロントパネル側に表示することができる。
 本発明の青色蛍光体は、紫外線により励起、発光する蛍光層を有する蛍光パネルに適用することもできる。当該蛍光パネルは、輝度が良好であり、従来の蛍光パネルに比して輝度劣化耐性に優れたものとなる。当該蛍光パネルは、例えば液晶表示装置のバックライトとして適用することができる。
 本発明の青色蛍光体は、公知方法に準じて、蛍光ランプ(例、無電極蛍光ランプ)に適用することもできる。当該蛍光ランプは、輝度が良好であり、従来の蛍光ランプに比して輝度劣化耐性に優れたものとなる。
 以下、実施例により本発明の一形態を詳細に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
 <実施例の蛍光体試料の作製>
 出発原料として、BaCO3、SrCO3、MgCO3、Al23、AlF3、Eu23、WO3およびZrO2を用い、これらを表1の組成になるよう秤量し、遊星ミル(直径3mmのジルコニア製ビーズ)により純水中で湿式混合した。この混合物を乾燥させた後、大気中で1300℃で4時間仮焼した。得られた仮焼粉体を、遊星ミル(直径3mmのジルコニア製ビーズ)により純水中で湿式解砕して粒度を調整した。この仮焼粉体を乾燥させた後、1400℃で4時間本焼成して蛍光体(試料番号4~14)を得た。なお、本焼成は、水素、窒素および酸素を含む混合ガス雰囲気下(水素濃度3体積%、ピーク温度での酸素分圧は1×10-5Pa(1×10-10atm)付近)で行い、降温過程では850℃で水素導入を停止し、さらに750℃で酸素導入を停止するという特殊な焼成方法を用いた。
 <比較例の蛍光体試料の作製>
 試料番号1~3および15~20の蛍光体試料については、本焼成を、水素を3体積%含む窒素を用いた一般的な還元性雰囲気での焼成(ピーク温度での酸素分圧は1×10-10Pa(1×10-15atm)付近)を行ったこと以外、実施例の蛍光体試料(試料番号4~14)と同様の方法で作製した。
 <粉末X線回折測定>
 実施例および比較例の蛍光体試料について、大型放射光施設SPring8のBL19回折装置を用いて、上述の方法によりX線回折パターンを測定した。得られたX線回折パターンにおける、ピークトップが回折角2θで13.0~13.6度の範囲内にあるピークの位置を、試料の組成と併せて表1に示す。なお、表1において*印を付した試料は比較例である。また、得られたX線回折パターンの例(試料番号13)を図2に示す。
 <輝度測定>
 輝度の測定は、真空中で波長146nmの真空紫外線を照射し、可視領域の発光を測定することで実施した。測定した輝度は、国際照明委員会XYZ表色系における輝度Yであり、標準試料BAM:Euに対する相対値として評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、組成比が本発明の組成範囲内にあり、回折角2θで13.0~13.6度の範囲内に2つのピークが存在する蛍光体は、真空紫外光励起による輝度が高かった。中でも、13.0~13.2度の範囲内にピークが1つ存在する蛍光体(試料番号9~14)では、特に輝度が高かった。
 図1の構成のPDP(42インチ)において、試料番号1~20と同様の青色蛍光体を使用し、パネル作製後の初期輝度(標準試料BAM:Euを用いた場合に対する相対値)と加速駆動(実駆動1000時間相当)した後の輝度劣化を表2に示す。なお、試料のパネルは、実施態様として説明した上記PDPと同様となるように作製した。ただし、パネルは青色1色固定表示とした。なお、表2において、*印を付した試料は比較例である。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、組成比が本発明の組成範囲内にあり、回折角2θで13.0~13.6度の範囲内に2つのピークが存在する蛍光体を使用した場合の初期輝度は高く、輝度劣化が著しく抑制されていることが確認された。中でも、13.0~13.2度の範囲内にピークが存在する蛍光体を使用した場合(試料番号29~34)には、特に輝度が高かった。
 これに対して、係数a、b、c、d、e、粉末X線回折測定における回折角2θで13.0~13.6度の範囲内のピーク数、のうちのいずれかが本発明の範囲外である比較例の試料では、初期輝度が低く、PDP駆動時の輝度劣化が著しかった。
 本発明の青色蛍光体は、発光装置、その中でも特にPDPに使用することができる。また、無電極蛍光ランプ等の蛍光ランプ、液晶表示装置のバックライトに主に用いられる蛍光パネル等の用途にも応用できる。

Claims (8)

  1.  一般式aBaO・bSrO・(1-a-b)EuO・cMgO・dAlO3/2・eWO3(0.70≦a≦0.95、0≦b≦0.15、0.95≦c≦1.15、9.00≦d≦11.00、0.001≦e≦0.200、ただしa+b≦0.97)で表される金属アルミン酸塩とZrO2とからなり、ZrO2が0.01~1.00重量%の割合で含まれており、
     波長0.774ÅのX線で測定したX線回折パターンにおいて、ピークトップが回折角2θで13.0~13.6度の範囲内にある、2つのピークが存在する、青色蛍光体。
  2.  0.80≦a≦0.95、0≦b≦0.05、1.00≦c≦1.15、9.50≦d≦10.00、0.005≦e≦0.040である、請求項1に記載の青色蛍光体。
  3.  前記波長0.774ÅのX線で測定したX線回折パターンにおいて、前記2つのピークのうちの1つのピークのピークトップが、回折角2θで13.0~13.2度の範囲内にある、請求項1に記載の青色蛍光体。
  4.  弱還元性雰囲気下での焼成と、弱酸化性雰囲気下での焼成とによって得られ、
     焼成温度が1200~1600℃の範囲であり、前記弱酸化性雰囲気下での焼成が降温過程において行われる、請求項1に記載の青色蛍光体。
  5.  前記弱還元性雰囲気における酸素分圧は、1×10-6~1×10-4Paの範囲である、請求項4に記載の青色蛍光体。
  6.  請求項1に記載の青色蛍光体を含む蛍光体層を備えた発光装置。
  7.  プラズマディスプレイパネルである、請求項6に記載の発光装置。
  8.  前記プラズマディスプレイパネルが、
     前面板と、
     前記前面板と対向配置された背面板と、
     前記前面板と前記背面板との間隔を規定する隔壁と、
     前記背面板または前記前面板に設けられた一対の電極と、
     前記一対の電極に接続された外部回路と、
     少なくとも前記一対の電極間に存在し、前記一対の電極間に前記外部回路により電圧を印加することによって真空紫外線を発生するキセノンを含有する放電ガスと、
     前記真空紫外線により可視光を発する蛍光体層と、を備え、
     前記蛍光体層が青色蛍光体層を含み、前記青色蛍光体層が前記青色蛍光体を含有する、請求項7に記載の発光装置。
PCT/JP2009/003103 2008-07-03 2009-07-03 青色蛍光体およびそれを用いた発光装置 WO2010001623A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010518935A JP5112513B2 (ja) 2008-07-03 2009-07-03 青色蛍光体およびそれを用いた発光装置
US12/675,890 US8361347B2 (en) 2008-07-03 2009-07-03 Blue phosphor, and light-emitting device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008174337 2008-07-03
JP2008-174337 2008-07-03

Publications (1)

Publication Number Publication Date
WO2010001623A1 true WO2010001623A1 (ja) 2010-01-07

Family

ID=41465729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003103 WO2010001623A1 (ja) 2008-07-03 2009-07-03 青色蛍光体およびそれを用いた発光装置

Country Status (3)

Country Link
US (1) US8361347B2 (ja)
JP (1) JP5112513B2 (ja)
WO (1) WO2010001623A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3110879A1 (de) * 1981-03-20 1982-09-30 Philips Patentverwaltung Gmbh, 2000 Hamburg Elektrochemolumineszenzzelle
CN101657519B (zh) * 2007-04-18 2014-12-31 松下电器产业株式会社 蓝色荧光体、发光装置以及等离子显示面板
KR101110967B1 (ko) 2007-04-18 2012-05-30 파나소닉 주식회사 청색 형광체, 발광장치 및 플라스마 디스플레이 패널
JP5112514B2 (ja) * 2008-07-03 2013-01-09 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169841A (ja) * 1998-12-03 2000-06-20 Nichia Chem Ind Ltd 蛍光体及びそれを用いた気体放電デバイス
JP2003082344A (ja) * 2001-09-12 2003-03-19 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置
WO2004087833A1 (ja) * 2003-03-14 2004-10-14 Sakai Chemical Industry Co. Ltd. 蛍光体及びその製造方法
JP2005340155A (ja) * 2003-08-29 2005-12-08 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置
JP2006290974A (ja) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
WO2008136170A1 (ja) * 2007-04-18 2008-11-13 Panasonic Corporation 青色蛍光体、発光装置およびプラズマディスプレイパネル

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629418B2 (ja) 1985-05-08 1994-04-20 松下電子工業株式会社 螢光体
JPH03177491A (ja) 1989-12-06 1991-08-01 Toshiba Corp 蛍光体及び蛍光ランプ
WO1998010459A1 (en) * 1996-09-03 1998-03-12 Advanced Vision Technologies, Inc. Oxide based phosphors and processes therefor
JP3832024B2 (ja) 1997-05-29 2006-10-11 日亜化学工業株式会社 真空紫外線励起発光蛍光体およびその製造方法
JP3856356B2 (ja) 1998-07-07 2006-12-13 化成オプトニクス株式会社 蛍光体ペースト組成物及び真空紫外線励起発光素子
JP4399518B2 (ja) 1998-07-16 2010-01-20 三菱化学株式会社 真空紫外線用蛍光体、その製造方法、蛍光体ペースト組成物及び真空紫外線発光素子
JP2002080843A (ja) 2000-06-30 2002-03-22 Nichia Chem Ind Ltd 真空紫外線励起発光蛍光体
JP3941471B2 (ja) 2001-11-16 2007-07-04 住友化学株式会社 アルミン酸塩蛍光体の製造方法
US7285913B2 (en) * 2003-08-29 2007-10-23 Matsushita Electric Industrial Co., Ltd. Plasma display device having blue phosphor layers with alkaline earth metal aluminate containing molybdenum or tungsten
US7014792B2 (en) * 2003-09-20 2006-03-21 Osram Sylvania Inc. Europium-activated barium magnesium aluminate phosphor
JP4513397B2 (ja) 2004-04-27 2010-07-28 パナソニック株式会社 プラズマディスプレイ装置
JP4507862B2 (ja) * 2004-12-01 2010-07-21 株式会社日立プラズマパテントライセンシング 蛍光体及びそれを用いた装置
KR20070118249A (ko) * 2005-04-06 2007-12-14 마쯔시다덴기산교 가부시키가이샤 발광 디바이스
CN101657519B (zh) * 2007-04-18 2014-12-31 松下电器产业株式会社 蓝色荧光体、发光装置以及等离子显示面板
JP5112514B2 (ja) * 2008-07-03 2013-01-09 パナソニック株式会社 青色蛍光体およびそれを用いた発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169841A (ja) * 1998-12-03 2000-06-20 Nichia Chem Ind Ltd 蛍光体及びそれを用いた気体放電デバイス
JP2003082344A (ja) * 2001-09-12 2003-03-19 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置
WO2004087833A1 (ja) * 2003-03-14 2004-10-14 Sakai Chemical Industry Co. Ltd. 蛍光体及びその製造方法
JP2005340155A (ja) * 2003-08-29 2005-12-08 Matsushita Electric Ind Co Ltd プラズマディスプレイ装置
JP2006290974A (ja) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
WO2008136170A1 (ja) * 2007-04-18 2008-11-13 Panasonic Corporation 青色蛍光体、発光装置およびプラズマディスプレイパネル

Also Published As

Publication number Publication date
US20100237764A1 (en) 2010-09-23
US8361347B2 (en) 2013-01-29
JPWO2010001623A1 (ja) 2011-12-15
JP5112513B2 (ja) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5112514B2 (ja) 青色蛍光体およびそれを用いた発光装置
JP5008723B2 (ja) 青色蛍光体、発光装置およびプラズマディスプレイパネル
JP5150622B2 (ja) 青色蛍光体、発光装置およびプラズマディスプレイパネル
JP4156020B2 (ja) 蛍光体、発光装置およびプラズマディスプレイパネル
JP5112513B2 (ja) 青色蛍光体およびそれを用いた発光装置
JP5156841B2 (ja) 蛍光体、発光装置およびプラズマディスプレイパネル
JP5150623B2 (ja) 青色蛍光体、発光装置およびプラズマディスプレイパネル
JP5064220B2 (ja) 蛍光体および発光装置
JP2007217542A (ja) 青色蛍光体,発光装置およびプラズマディスプレイパネル
JP4846884B1 (ja) プラズマディスプレイパネルおよび緑色蛍光体層
JP2005002149A (ja) アルミン酸塩蛍光体とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010518935

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12675890

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773201

Country of ref document: EP

Kind code of ref document: A1