WO2009157585A1 - 動物細胞の凍結保存用担体、それを用いた凍結保存用バイオデバイス及び凍結保存方法 - Google Patents

動物細胞の凍結保存用担体、それを用いた凍結保存用バイオデバイス及び凍結保存方法 Download PDF

Info

Publication number
WO2009157585A1
WO2009157585A1 PCT/JP2009/061811 JP2009061811W WO2009157585A1 WO 2009157585 A1 WO2009157585 A1 WO 2009157585A1 JP 2009061811 W JP2009061811 W JP 2009061811W WO 2009157585 A1 WO2009157585 A1 WO 2009157585A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cryopreservation
animal
carrier
animal cells
Prior art date
Application number
PCT/JP2009/061811
Other languages
English (en)
French (fr)
Inventor
小西聡史
Original Assignee
独立行政法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人海洋研究開発機構 filed Critical 独立行政法人海洋研究開発機構
Priority to JP2010518092A priority Critical patent/JP5140155B2/ja
Publication of WO2009157585A1 publication Critical patent/WO2009157585A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0263Non-refrigerated containers specially adapted for transporting or storing living parts whilst preserving, e.g. cool boxes, blood bags or "straws" for cryopreservation
    • A01N1/0268Carriers for immersion in cryogenic fluid, both for slow-freezing and vitrification, e.g. open or closed "straws" for embryos, oocytes or semen
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material

Definitions

  • the present invention relates to a carrier for cryopreservation of animal cells, a biodevice for cryopreservation using the same, and a cryopreservation method, and more particularly, by reducing the damage received by animal cells during cryopreservation operations.
  • the present invention relates to a carrier for cryopreservation of animal cells that can contribute to improving the survival rate of animal cells after freezing and thawing, improving the density and viability of living cells, and a biodevice for cryopreservation and a cryopreservation method using the same. .
  • useful substances include site-inducing substances such as interferons and animal protein derived from animal cells. Erythropoietin, various antibodies are known.
  • Cells that produce these useful substances are “adherent cells” that have anchorage dependency that cannot survive or proliferate unless they adhere to an adhesive substrate such as glass or plastic during cell culture.
  • the cells are adhered to the flat bottom surface of a plastic culture container such as a TC flask.
  • the cultured cells are usually stored frozen because the possibility of changes due to mutation increases as the passage history increases.
  • proteolysis occurs from the adherent substrate during culture.
  • a method is used in which cells detached with an enzyme are suspended in a preservation solution and stored frozen.
  • the cells When cells adhere to the adhesion substrate, the cells expand, and if frozen as they are, a large stress is applied to the cell membrane and the cells are killed. This is because the vesicles can be maintained in a nearly spherical shape, so that the cells can be stored frozen in the liquid phase.
  • the cryopreservation method described above is called the suspension method and is usually performed according to the following procedure.
  • the proteolytic enzyme trypsin degrades the cell membrane protein, so that the cells are damaged, and in the subsequent step 3), the cells are removed by pipetting or centrifugation.
  • the survival rate of animal cells after thawing is low, and the initial growth rate during re-culture is slow.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-2 0 9 7 6 7 [Summary of Invention]
  • the nonwoven fabric used as a carrier in the method of Patent Document 1 generally has a small opening, and the fibers are entangled randomly, so that the cultured cells that are carried are embedded in the eye or cover the surface. It is thought that it extends in this way. These stretched cells are overstressed during the freezing process and cannot survive.
  • this method cannot be expected to significantly improve the survival rate of cells after freezing and thawing. Also, if the submerged cells are peeled off from the non-woven fabric for re-cultivation, they can cause excessive physical damage to the cells. Furthermore, since the area that one cell occupies in the non-woven carrier increases due to cell extension, it is not suitable for high-density culture and storage and is not efficient.
  • the present invention has been made in view of such problems of the prior art, and the object of the present invention is to reduce the damage that the cells receive during the cryopreservation operation of the cells, thereby freezing and thawing.
  • a carrier for cryopreservation of animal cells a biodevice for cryopreservation, and a cryopreservation method capable of improving the survival rate and cell density of animal cells and fixing cells at high density It is in.
  • the present inventor made a plurality of openings having curved portions on the inner wall in a predetermined condition in the sheet, and using the sheet as a carrier, It was found that the survival rate and viable cell density of cells thawed after cryopreservation were improved, and that the above object could be achieved, and the present invention was completed.
  • the animal cell cryopreservation carrier of the present invention is an animal cell cryopreservation carrier comprising a sheet in which a plurality of openings having substantially the same shape are perforated with a fixed pitch, Having a curved surface portion on at least a part of the inner wall forming the opening,
  • the survival rate of animal cells when cryopreserved with animal cells and thawed is greater than the survival rate of animal cells when cryopreserved and thawed by the suspension method
  • At least one of the viable cell density of the animal cell when it is cryopreserved by carrying the animal cell and thawed is equal to or higher than the viable cell density of the animal cell when cryopreserved and thawed by the suspension method. It is characterized by satisfying.
  • the maximum length of the opening is 10 ⁇ ! ⁇ 1 20; um.
  • the curvature radius of the curved surface portion is 0.5! It is characterized by being ⁇ 40 ⁇ .
  • animal cell cryopreservation carrier of the present invention is characterized in that the sheet is a mesh.
  • another preferred embodiment of the animal cell cryopreservation carrier of the present invention is characterized in that the mesh body is composed of a fiber, and the fiber has a curved portion in a cross section substantially perpendicular to the longitudinal direction.
  • another preferred embodiment of the animal cell cryopreservation carrier of the present invention is characterized in that the fiber diameter is 1 im to 80 xm.
  • a biodevice for cryopreservation of animal cells comprises the carrier for cryopreservation of animal cells as described above, and a substantially spherical animal cell adhered to the curved surface portion.
  • a preferred embodiment of the biodevice for cryopreservation of animal cells of the present invention is a substantially spherical shape.
  • the particle size of animal cells is 5 ⁇ ⁇ ! It is characterized by ⁇ 50 jrn.
  • the maximum length of the opening is (spherical particle size immediately after division) to (post-growth particle size X 10) of the substantially spherical spherical animal cell. ).
  • the animal cell cryopreservation method of the present invention comprises a step of cryopreserving a biodevice for animal cell cryopreservation as described above.
  • a preferred embodiment of the animal cell cryopreservation method of the present invention is a biodevice for cryopreservation of animal cells by culturing a liquid medium in which animal cells are suspended and a carrier for cryopreservation of animal cells as described above. Including a step of manufacturing.
  • the present invention by using a sheet in which a plurality of openings having curved portions on the inner wall are formed under predetermined conditions as a carrier, the damage received by the cells during the cryopreservation operation of animal cells is reduced. It is possible to provide an animal cell cryopreservation carrier, a cryopreservation biodevice, and a cryopreservation method capable of improving the survival rate and viability density of animal cells after freezing and thawing.
  • cryopreservation carrier of the present invention can support animal cells in a substantially spherical shape, it is possible to cryopreserve animal cells at a high density.
  • cryopreservation method of the present invention it is not necessary to suspend cells detached from the culture vessel in a preservation solution and then freeze, thereby eliminating the troublesome work. Further, as described above, freezing at a high density can reduce the amount of the storage solution, which is advantageous in terms of cost.
  • FIG. 1 is a photomicrograph showing an embodiment of a cryopreservation biodevice of the present invention.
  • FIG. 2 is a schematic diagram showing one embodiment of the cryopreservation method of the present invention.
  • FIG. 3 is a schematic diagram showing a cell fixing procedure in Example 1.
  • FIG. 4 A photograph of a glass bottom dish containing a biodevice for cryopreservation of animal cells.
  • FIG. 5 is a micrograph of a biodevice for cryopreservation using Chinese hamster ovary cells in Example 2.
  • FIG. 6 is a photograph showing one embodiment of a procedure for freezing a cryopreservation biodevice of the present invention.
  • FIG. 7 is a photomicrograph of DG 4 4 cells adhered to a collagen-coated carrier.
  • FIG. 8 is an enlarged photograph of DG 44 cells adhered to a collagen coating carrier.
  • FIG. 9 is a photomicrograph of DG4 4 cells adhered to a carrier not coated with collagen.
  • % represents mass percentage unless otherwise specified.
  • substantially means a range including measurement errors, and the operational effects of the present invention are exhibited within the range.
  • the animal cell cryopreservation carrier of the present invention is an animal cell cryopreservation carrier comprising a sheet in which a plurality of openings having substantially the same shape are formed at a constant pitch. At least a part of the inner wall forming the opening has a curved surface, and the animal cell is supported by freezing and storing it by freezing and thawing, and either or both of the survival rate of the animal cell and the viable cell density are It is at least equivalent to animal cells when frozen and thawed by the suspension method.
  • the shape of the carrier of the present invention is not particularly limited.
  • it may be a planar shape using a single sheet as it is, such as a planar sheet shape or a mesh shape having unevenness of stitches, It may be a three-dimensional shape composed of one or a plurality of sheets.
  • the sheet surfaces are not in close contact with each other, and some gaps are provided.
  • a conical shape or a columnar hollow body, or a laminated shape can be used.
  • a sheet having an opening described below is sufficient, and not only a so-called perforated film formed integrally, but also a knitted fabric, a woven fabric and It may be a net or the like.
  • a mesh body is preferable because the size and the like of the opening can be easily controlled.
  • the thickness of the sheet is preferably 10 ⁇ ⁇ ! ⁇ 1 60 ⁇ m, more preferably 20 ⁇ ! ⁇ 1 100 ⁇ m.
  • the plurality of openings provided in the sheet have substantially the same shape and are formed at a constant pitch. These openings are also parts that carry animal cells, and the carried animal cells are arranged regularly (periodically). In addition, unlike the nonwoven fabric in which fibers are bound at random, the sheet is less disturbed in three dimensions, so that the supported animal cells enter the gap or cover the surface and extend. This can be suppressed. That is, such a structure contributes to the carrier for cryopreservation of animal cells of the present invention that supports animal cells at a high density without causing waste in space, and that the cells maintain a spherical shape. It is.
  • the shape of the opening is not particularly limited, and the cross-sectional shape may be a circle, an ellipse, a triangle, a polygon more than a quadrangle, or a star.
  • the sheet is a net made of fibers, it is often a square.
  • the size of the opening can be appropriately selected according to the size of the animal cell to be held. Since animal cells change in size in the process of repeated division and growth, the particle size after growth usually increases to about 5 times the particle size immediately after division, but the maximum length of the opening is spherical. The particle size immediately after division of the animal cell formed is preferably about 10 times the particle size after growth.
  • the “maximum length of the opening” means the length of the longest line segment that can be drawn within the outline of the opening.
  • the maximum length of the opening is less than the particle size immediately after the division of the animal cell, it is difficult for the animal cell to be fixed in the opening, and when it exceeds 10 times the particle size after growth, the inner wall forming the opening Because of the excessive separation, it becomes difficult for the cells to adhere so as to block the opening, and the center of the opening becomes a cavity, resulting in low density.
  • the maximum length of the opening is 10 ⁇ ! ⁇ 1 20 ⁇ m.
  • the inner wall that forms this opening must have at least a curved surface It is.
  • the curved surface portion is preferably a convex curved surface, and is usually formed so as to protrude in the center direction of the opening.
  • the curvature radius of the curved surface portion is 0.5 ⁇ ! ⁇ 4 0 w rn, preferably. If the radius of curvature is less than 0.5 m, the cells may not adhere, and if it exceeds 40 / zm, the cells may greatly extend and adhere.
  • animal cells attached to a planar region often cannot expand a spherical shape and extend.
  • the animal cells having the spherical shape thus form a clump.
  • This agglomerate contains cells at a very high density.
  • this agglomerate forms a structure similar to that of living tissue, reducing the stress that the cells receive during cryopreservation.
  • the carrier on which the agglomerates are formed can be subjected to cryopreservation as it is, so that the use of a proteolytic enzyme such as trypsin can be avoided, and damage to cells can be reduced.
  • the carrier of the present invention when used, the cell viability after thawing can be maintained high. For the same reason, the initial growth rate after thawing is faster than before when re-culturing after cryopreservation.
  • the animal cell cryopreservation carrier of the present invention is loaded with animal cells, cryopreserved and thawed, and either or both of the survival rate and viable cell density of the animal cells are determined by conventional methods. It is equivalent to or better than animal cells when frozen and thawed by a certain suspension method.
  • the animal cell may be any cell as long as it is derived from an animal, and examples thereof include fibroblasts, osteoblasts, and hepatocytes. [0 0 4 0]
  • the viability is the ratio of the number of viable cells to the total number of cells when the cells are stored frozen and thawed.
  • the survival rate in the case of using the animal cell cryopreservation carrier of the present invention is determined by culturing after the animal cell is supported on the cryopreservation carrier and cultured under conditions optimal for the animal cell.
  • the survival rate in the suspension method is that animal cells are cultured in TC flasks under optimal conditions, then detached with trypsin, suspended in a stock solution, and frozen at 80 ° C.
  • the viable cell density is the number of viable cells per sample volume when cells are stored frozen and thawed.
  • the sample volume is generally 1 m 1 in the suspension method, and in the cryopreservation method according to the present invention, it is about 21 when a 5 mm ⁇ 5 mm nylon net is used as the carrier.
  • the survival rate and the viable cell density when supported on the animal cell cryopreservation carrier of the present invention and frozen and thawed may be the same as those obtained by the suspension method.
  • the effect of the present invention, “improving the survival rate and cell density of animal cells after freezing and thawing” is the survival rate of animal cells after freezing and thawing by the conventional suspension method, It can also be equivalent to viable cell density. This is because even if the survival rate and viable cell density are the same, the improvement in operability and the like has a substantial effect.
  • the material of the above-mentioned sheet is organic such as resin, ceramics, metal and glass, for example. It may be a material or an inorganic material, or the above material may be applied to the skeleton material by a surface treatment such as coating.
  • the material of the fiber is not particularly limited, and various organic fibers and inorganic fibers can be used.
  • organic fibers include various natural and synthetic fibers, such as natural fibers such as silk and cotton, and synthetic fibers such as nylon (registered trademark), acrylic and polyester, while inorganic fibers include Examples include various metal fibers, glass fibers, and ceramic fibers.
  • the fiber is a monofilament or a multifilament, and it may be a twisted yarn as well as a narrowly defined fiber.
  • a synthetic fiber having a smooth fiber surface and a surface-modified fiber can be preferably used. Depending on the use, it is also effective to use a biodegradable fiber.
  • the fiber preferably has a curved portion in a cross section substantially perpendicular to the longitudinal direction.
  • the fiber has a circular or elliptical cross section. In this case, it is sufficient that at least a part of the fiber cross-sectional shape has a curved portion. Therefore, the fiber may have a cross-sectional shape in which a corner of a triangle or a polygon is rounded or chamfered.
  • the curved surface portion can be formed on the inner wall of the opening by other methods, for example, by weaving or knitting fibers.
  • the fiber diameter of the above fiber depends on the type and size (particle size) of animal cells to be cultured. However, typically, for general animal cells having a particle size of 5 to 50, it is preferable to use fibers having a fiber diameter of 80 / m or less. Animal cells adhering to the sea bream formed with fibers having a fiber diameter of 80 m or less are more likely to maintain a spherical shape without stretching, while animals adhering to sheets formed with fibers having a fiber diameter exceeding 80 ⁇ . This is because cells tend to spread after attachment.
  • FIG. 1 is a photomicrograph showing an embodiment of a biodevice for cryopreservation of animal cells of the present invention.
  • the biodevice for cryopreservation of the present invention comprises the animal cell cryopreservation carrier 10 of the present invention and a substantially spherical animal cell 20 adhered to the curved surface portion of the opening.
  • Animal cell 20 particle size is 5 ⁇ ⁇ ! ⁇ 50 ⁇ , preferably 10 ⁇ 30 ⁇ ⁇ , and the maximum length of the opening of the animal cell cryopreservation carrier 10 is the (cell diameter immediately after division) ⁇ (post-growth grain) Diameter XI 0).
  • the animal cells 20 are preferably grown at a high density as a result of being supported on the animal cell cryopreservation carrier 10 of the present invention and cultured, and are grown while maintaining the initial spherical shape. .
  • animal cells include, but are not particularly limited to, adherent animal cells such as animal fibroblasts and nerve cells.
  • a solution in which animal cells are suspended in a medium at a concentration of about 10 5 to 10 6 cells ZmL is combined with a carrier for cryopreservation of animal cells 10. Animal cells are grown in contact and shake culture.
  • the biodevice for cryopreservation of the present invention can be easily obtained.
  • the medium used at this time may be a standard medium used when cells are cultured in culture bottles. [0 0 5 1]
  • the fiber is composed of fibers having a fiber diameter of 80 ⁇ m or less, and the planar shape of the opening is 10 ⁇ on one side!
  • a reticular body carrier for cryopreservation of animal cells
  • the cells proliferate so as to close the opening, and a biodevice for cryopreservation is formed.
  • animal cells that are essentially spherical in nature may have a cubic shape or a rectangular parallelepiped shape in the sheet region where the cells adhere and are fixed.
  • the biodevice for cryopreservation of the present invention when a spherical animal cell is immobilized so as to close its opening, convection that penetrates the immobilized cell does not occur. Accordingly, since the immobilized cells or the biodevice for cryopreservation itself can function as a partition wall, two types of two liquids are provided on the front side (one side) and the back side (the other side) of the sheet-like device. Even if it is supplied, it is possible to suppress or avoid the mixing of both, and it is possible to simultaneously supply two types of culture media and storage solutions to the immobilized cells.
  • FIG. 2 is a schematic diagram showing one embodiment of the cryopreservation method of the present invention.
  • a step of producing a biodevice for cryopreservation of animal cells (A :), a step of freezing and preserving the biodevice for cryopreservation of animal cells in a preservation solution ( B-1) and the step (B-2) of cryopreserving a biodevice for cryopreservation of animal cells without using a preservation solution are shown. That is, the animal cell cryopreservation biodevice produced in step (A) can be used in, for example, step (B-1) and step (B-2). Can be stored frozen.
  • the animal cell cryopreservation biodevice 30 is preferably prepared by dropping a liquid medium 40 in which animal cells are suspended onto an animal cell cryopreservation carrier 10 at 37 ° C, 5% It is produced by shaking culture under C 0 2 conditions.
  • the obtained biodevice 30 for cryopreservation of animal cells is easy to handle so that it can be moved with tweezers, and is kept in the container or the step (B— 2) Moved into an empty container.
  • step (B-1) it is sufficient that the storage solution in an amount sufficient to soak the animal cell cryopreservation biodevice 30 is in the container, so that the storage solution to be used can be reduced.
  • the conventional method requires 1 m 1 of storage solution for one existing container, in this embodiment, a storage solution amount of 0.1 m 1 is sufficient. This amount can be halved by designing a new dedicated container.
  • the culture solution used at the time of culturing can be cryopreserved without using a preservation solution again by keeping it frozen around the cells.
  • step (B-1) and step (B-2) are cost-effective, especially in a system using a preservative solution containing expensive serum, etc. Is big.
  • cryopreserved animal cells are thawed before being subjected to re-cultivation, as described above, the amount of storage solution used for freezing is very small or unused, so the time required for thawing In one embodiment, the thawing speed was 6 times or more that of the conventional method.
  • the shorter the thawing time the less stress is applied to the cells. Since the survival rate tends to increase, shortening the thawing time also contributes to an increase in the growth rate if the survival rate of animal cells after thawing is improved.
  • the preservation solution For re-culture, after thawing the preservation solution, hold the animal cell cryopreservation biodevice with tweezers and apply light vibrations while immersing it in the medium to separate the animal cells from the carrier and collect them. As described above, this can be realized by relatively weakly adhering animal cells to the curved surface portion of the carrier.
  • the animal cell cryopreservation biodevice thawed together with the preservation solution can be directly subjected to re-culture.
  • the stock solution in which the cells are suspended is recovered with a pipette after thawing, mixed with the medium, and the cells are separated and concentrated by centrifugation. Since a series of operations for re-suspension in the medium is necessary, it is very complicated and there is a high risk of damaging cells by pipetting.
  • a mesh made by Naiguchi was used as a carrier for cryopreservation of animal cells of the present invention.
  • Mouse fibroblast 3 T 3 L 1 was used as an animal cell.
  • the medium used was serum-containing medium [Dulbecco's ModifiedeGea'sMedium (DMEM), pup sera (FBS) 10%, antibiotics 1%].
  • the medium in which the above cells are suspended (10 5 cells / ml) It was added dropwise to an animal cell cryopreservation carrier 1 on 0 a of m, 3 7 ° C, 5 % C_ ⁇ 2 and the incubator beta within 3 days, and cultured with shaking. After culturing, the number of fixed cells was measured and used as the cell density.
  • the animal cell cryopreservation biodevice 30 a in which the cultured cells were fixed to the animal cell cryopreservation carrier was transferred to a glass bottom dish 60 with tweezers.
  • the bottom of this glass bottom dish has a dent with a diameter of 1 Omm and a depth of about 0.5 mm.
  • the glass bottom dish was then sealed and stored frozen in an 80 ° C. freezer.
  • the bottom of the glass bottom dish was immersed in 37 ° C hot water and thawed, and the time required for thawing was measured. Thereafter, the viability of the thawed cells was measured.
  • the survival rate is determined by adding a life-and-death discrimination reagent (Molecular Probes, Inc .: LI VE / DE AD V iabi 1 1 ity / Cytotoxicity Kit for An i Cal 1 1 s) to the thawed cells. The number of living cells and the number of dead cells were counted and calculated with a microscope.
  • 3T3 L 1 cells were fixed on a cryopreservation carrier and cultured, and then cryopreserved by the suspension method.
  • the specific work is as follows.
  • Mouse fibroblast 3T 3 L 1 was fixed to a mesh-shaped carrier and cultured for several days. When the cells spread over the entire carrier and adhered at a density of 4 ⁇ 10 6 Zcm 2 , the cells were detached from the carrier using an enzyme, suspended in a preservation solution, and stored frozen. Thawed after 3 days. The survival rate was measured in the same manner as in Example 1.
  • Table 1 shows the measurement results.
  • the viable cell density was calculated by multiplying the frozen cell density by the survival rate.
  • Example 1 cells could be stored frozen at a density about 300 times that of Comparative Example 1-11, and the thawing time was 1/6 that of Comparative Example 1.
  • the survival rate was 88% compared to 81% in the comparative example (conventional method), and the effect of reducing stress on cells was observed.
  • the viable cell density was 320 times that of the comparative example.
  • CHO cells were cultured in a TC flask, and then detached with an enzyme (Tryp LE Exp rs s manufactured by GIBCO). The enzyme was removed by centrifugation and resuspended in the medium. As a medium, a serum-containing medium (DMEM, FBS 10%, antibiotic 1%, histidine and thycin solution 2%) was used. Similarly to Example 1, CHO cells were fixed to a nylon mesh by the method shown in FIG.
  • Fig. 5 shows a photomicrograph of the produced cryopreservation biodevice. Similar to the 3T 3 L 1 cells of Example 1, CHO cells did not stretch but adhered to the carrier at high density while remaining spherical.
  • a cryopreservation biodevice 30b was placed on a glass bottom dish 60 (see (a) of the figure), and 100 ⁇ L of a preservation solution was dropped (see (b) of the same figure).
  • a serum-free storage solution (Selbanker serum-free type, BLC-2 manufactured by Toji Field Co., Ltd.) was used as the storage solution.
  • the temperature was controlled to 1 ° CZmin and frozen to 50 ° C (see (c) in the figure). Then _80 ° C deep freezer And stored for 3 days.
  • the dish was removed from the deep freezer and thawed by warming the bottom of the dish with fingers. Defrosting was completed in about 5 seconds.
  • the cells fixed on the carrier were detached with an enzyme (TrypLEEExprss manufactured by GIBC) and the viability was measured.
  • the cells fixed on the carrier were detached with an enzyme (GI ryp LEE xpress, manufactured by GI Corporation 8), suspended in a medium, and seeded in a 25 cm 2 TC flask.
  • the number of cells adhering to the bottom surface of the flask after a predetermined time was visually counted. From the following equation (1), the doubling time (DT, the time required for the cell number to double) was determined.
  • DT the time required for the cell number to double
  • ti, t 2 are cultured time, the number of cells when the time ti, N 2 represents the number of cells at time t 2.
  • the minimum value of DT from sowing to confluence was taken as the doubling time for that generation.
  • CHO cells cultured in TC flasks were cryopreserved by a suspension method that has been conventionally used for cryopreserving animal cells.
  • the specific work is as follows. C HO cells were cultured in TC flasks, and then detached with an enzyme (GIp ryp LEE xpress, manufactured by 800 Inc.). The enzyme was removed by centrifugation and suspended in a serum-free storage solution (Selvan force-one serum-free type, BLC-2 manufactured by Toji Field). Using a program freezer, the temperature was controlled at l ° CZmin and frozen to 50 ° C. After that, it was transferred to a deep freezer at 80 ° C and stored for 3 days. Similar to Example 2, survival rate and Growth rate was measured.
  • CHO cells cultured in a TC flask were frozen and stored while adhering to and extending from the bottom of the TC flask.
  • the specific work is as follows. CHO cells were cultured in TC flasks. The cells attached to the bottom of the TC flask and spread. The medium in the TC flask was aspirated, and the stock solution was added and stored frozen. Thawed after 3 days. The survival rate was measured in the same manner as in Example 2.
  • Table 2 shows the measurement results.
  • the viable cell density was calculated by multiplying the frozen cell density by the survival rate.
  • Example 2 The survival rate of Example 2 was 90% as in Comparative Example 2-1.
  • the growth rate after freezing and thawing operations was the same as in Comparative Example 2, and the doubling time after sowing was 30 hours.
  • the doubling time when subcultured CH0 cells is usually 18 hours, but it is known that the growth rate is low because it is damaged immediately after thawing.
  • Example 2 cells can be stored frozen at a density about 300 times that of Comparative Example 2-1.
  • the survival rate of the expanded cells of Comparative Example 2-2 is 0.4%, which is significantly lower than the survival rate of the cells of Example 2. From this experiment, it was found that the damage caused by freezing of CHO cells is comparable to that of the conventional method, and that the present invention is effective when cryopreserving CHO cells.
  • Collagen solution (Nitta Gelatin Co., C e 1 1 ma tri X Ty pe I one C, pepsin-solubilized from pig skin T ype - I collagen) a carrier was diluted liquid in a 10- 3 M- HC 1 After soaking, it was immediately removed and air-dried for 12 hours, and then washed twice with medium.
  • DG44 cells are improved CHO cells so that they can float and can be cultured without serum.
  • DG44 cells manufactured by GI BCO
  • a serum-free medium CD DG44 medium, manufactured by GI BCO
  • the culture medium in which DG44 cells were suspended was concentrated by centrifugation, and fixed to a nylon mesh coated with collagen by the method shown in FIG.
  • Example 2 Cryopreserved and thawed in the same manner as in Example 2.
  • a serum-free stock solution (CD DG44 medium, 7.5% DMSO) was used as the stock solution.
  • the medium was added to the thawed biodevice, and after gently stirring, the cells were detached by centrifugation and the viability and viable cell density were measured.
  • DG 44 cells Conventional suspension methods commonly used for cryopreserving animal cells are DG 44 cells.
  • the vesicles were stored frozen. The specific work is as follows. After suspension culture of DG44 cells in a spinner flask, the medium was removed by centrifugation and suspended in a serum-free stock solution (CD DG44 medium, 7.5% DMSO). Using a program freezer, the temperature was controlled to 1 ° CZ min and frozen to 1-50 ° C. After that, it was transferred to a deep freezer at 80 ° C and stored for 3 days. Viability and viable cell density were measured in the same manner as in Example 3.
  • FIGS. 7 and 8 show micrographs and enlarged photographs of the cryopreservation biodevice produced in Example 3.
  • FIG. FIG. 9 shows a micrograph of a biodevice for cryopreservation of DG 44 cells produced by the same method as in Example 3 using a nylon mesh that has not been collagen coated.
  • Table 3 shows the measurement results.
  • the viable cell density was calculated by multiplying the frozen cell density by the survival rate.
  • Example 3 The survival rate of Example 3 was 80% as in Comparative Example 3. It has been found that the present invention can be applied to various cells by applying an appropriate surface modification such as coating to the carrier.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 動物細胞の凍結保存操作中に動物細胞が受けるダメージを軽減して、凍結・解凍後の動物細胞の生存 率や生存細胞密度を向上させ、また高密度に細胞を固定できる動物細胞の凍結保存用担体、凍結保存用 バイオデバイス及び凍結保存方法を提供する。  凍結保存用担体は、ほぼ同一形状の開口部が一定のピッチで複数個穿設されたシートを備え、上記開口部を形成する内壁の少なくとも一部に曲面部を有し、担持して凍結・解凍した動物細胞の生存率及び/又は生存細胞密度が、懸濁法により凍結・解凍した動物細胞と同等以上である。該開口部の最大長は10μm~120μm、該曲面部の曲率半径は0.5μm~40μmである。該シートは網状体である。凍結保存用バイオデバイスは、上記凍結保存用担体とその曲面部に担持された動物細胞とを備える。凍結保存方法は、上記凍結保存用バイオデバイスを凍結保存する工程を含む。

Description

明細書
[発明の名称] 動物細胞の凍結保存用担体、 それを用いた凍結保存用バイオデバイ ス及び凍結保存方法
[技術分野]
[ 0 0 0 1 ]
本発明は、 動物細胞の凍結保存用担体、 それを用いた凍結保存用バイオデバイス 及び凍結保存方法に係り、 更に詳細には、 凍結保存操作中に動物細胞が受けるダメ ージを軽減することによって、 凍結 ·解凍後の動物細胞の生存率向上、 生存細胞密 度向上及び増殖速度向上に寄与し得る動物細胞の凍結保存用担体、 それを用いた凍 結保存用バイォデバイス及び凍結保存方法に関する。
[背景技術]
[ 0 0 0 2 ]
1 9 8 0年代以降、 動物細胞を利用した有用物質の生産技術に関する研究が行わ れており、 該有用物質としては、 例えば動物細胞由来タンパク質医薬品であるイン ターフェロンやインターロイキン等のサイ ト力イン類、 エリスロポエチン、 各種抗 体などが知られている。
これらの有用物質を産生する細胞は、 主に細胞培養の際にガラスやプラスチック などの接着基質に接着しないと、 生存、 増殖ができない足場依存性を有する 「接着 細胞」 であるため、 その培養は、 例えば T Cフラスコなどのプラスチック培養容器 の平らな底面に細胞を接着させた状態で行われる。
[ 0 0 0 3 ]
培養した該細胞は、 継代歴が増えると突然変異などによる変化が起こる可能性が 高くなるため凍結して保存されることが常であり、 一般的には、 培養時の接着基質 からタンパク分解酵素を用いて剥離した細胞を保存液に懸濁したものを凍結保存す る方法が用いられている。
細胞を接着基質に接着させると細胞が伸展してしまい、 そのまま凍結すると細胞 膜に大きなス トレスがかかり細胞が死滅するが、 当該方法を用いれば、 剥離した細 胞を球形に近い形状で維持することができるので、 液相内で細胞を生存させたまま 凍結保存することができるからである。
[ 0 0 0 4 ]
上述の凍結保存方法は懸濁法とよばれ、 通常以下の操作手順により行われる。
1 )細胞を接着して増殖させた培養容器内の培地をピぺットで吸い上げて除去する。
2 ) 上記培養容器内にトリプシンを加え、 細胞を剥離する。
3 ) 剥離した細胞をピペットで吸い上げて遠沈管に回収して遠心分離を行い、 トリ プシンを含む上澄み液を除去する。
4 ) 得られた細胞を血清に懸濁し、 該懸濁液を保存液に滴下して混合する。
5 ) 細胞が懸濁した上記保存液をクライオチューブに分注して凍結する。
[ 0 0 0 5 ]
しかし上記 2 ) の細胞を剥離する工程では、 タンパク分解酵素であるトリプシン が細胞膜のタンパクを分解するために細胞がダメージを受け、 その後の工程 3 ) に おいてもピペッティングや遠心分離によって、 細胞に負荷がかかるため、 懸濁法で は解凍後の動物細胞の生存率が低いこと、 再培養の際の初期増殖速度が遅いことな どが問題となっている。
更に凍結保存に係る一連の操作は、 上述のように培養容器から剥がした細胞を保 存液に懸濁させてから凍結する必要があるために煩雑であり、 また血清を高濃度に 含む培地を用いるためにコスト高である。
[ 0 0 0 6 ]
上述のトリプシン処理による細胞へのダメージを避けるために、 不織布担体に細 胞を担持させたまま培養と凍結保存とを続けて行うことによってトリプシ処理のェ 程を回避する凍結保存方法が提案されている (特許文献 1参照。 )。
[先行技術文献]
[特許文献]
[ 0 0 0 7 ]
[特許文献 1 ] 特開平 6— 2 0 9 7 6 7号公報 [発明の概要]
[発明が解決しようとする課題]
[ 0 0 0 8 ]
しかしながら、 特許文献 1の方法で担体として用いられる不織布は、 一般的に目 開きが小さく、 繊維がランダムに絡み合つているために、 担持した培養細胞は目の 中に潜り込むように又は表面を覆うようにして伸展すると考えられる。 この伸展し た細胞は凍結過程で過剰なストレスがかかり、 生存できなつてしまう。
[ 0 0 0 9 ]
従って、 この方法では、 凍結解凍後の細胞の大幅な生存率向上は期待できない。 また潜り込んだ細胞を再培養のために不織布から剥がす場合、 細胞に過度の物理的 ダメージを与え得る。 更に、 細胞の伸展により 1つの細胞が不織布担体に占める面 積が大きくなるために高密度の培養や保存には適さず効率的ではない。
[ 0 0 1 0 ]
本発明は、 このような従来技術の有する課題に鑑みてなされたものであり、 その 目的とするところは、 細胞の凍結保存操作中に細胞が受けるダメージを軽減するこ とによって、 凍結 ·解凍後の動物細胞の生存率や生存細胞密度を向上させることが でき、 また高密度に細胞を固定することのできる動物細胞の凍結保存用担体、 凍結 保存用バイォデバイス及び凍結保存方法を提供することにある。
[課題を解決するための手段]
[ 0 0 1 1 ]
本発明者は、 上記目的を達成すべく鋭意検討を重ねた結果、 内壁に曲面部を有す る複数の開口部を所定の条件でシートに穿設し、 そのシートを担体とすることで、 凍結保存後に解凍した細胞の生存率や生存細胞密度が向上し、 上記目的が達成でき ることを見出し、 本発明を完成するに至った。
[ 0 0 1 2 ]
即ち、 本発明の動物細胞凍結保存用担体は、 ほぼ同一形状の開口部が一定のピッ チで複数個穿設されたシートを備えた動物細胞凍結保存用担体であって、 上記開口部を形成する内壁の少なくとも一部に曲面部を有し、
次の条件 (1) 及び (2) :
(1) 動物細胞を担持して凍結保存し、 解凍したときの該動物細胞の生存率が、 懸 濁法により凍結保存し、 解凍したときの動物細胞の生存率以上である
(2) 動物細胞を担持して凍結保存し、 解凍したときの該動物細胞の生存細胞密度 が、 懸濁法により凍結保存し、 解凍したときの動物細胞の生存細胞密度以上である の少なくとも一方を満足することを特徴とする。
[00 1 3]
また、 本発明の動物細胞凍結保存用担体の好適形態は、 上記開口部の最大長が、 1 0 μπ!〜 1 20; umであることを特徴とする。
[00 1 4]
更に、 本発明の動物細胞凍結保存用担体の他の好適形態は、 上記曲面部の曲率半 径が、 0. 5 !〜 40 μπιであることを特徴とする。
[00 1 5]
更に、 本発明の動物細胞凍結保存用担体の他の好適形態は、 上記シートが、 網状 体であることを特徴とする。
[00 1 6]
更に、 本発明の動物細胞凍結保存用担体の他の好適形態は、 上記網状体が繊維か ら成り、 該繊維が長手方向とほぼ垂直な断面に曲線部を有することを特徴とする。
[00 1 7]
更に、 本発明の動物細胞凍結保存用担体の他の好適形態は、 上記繊維の繊維径が 1 im〜80 xmであることを特徴とする。
[00 1 8]
本発明の動物細胞凍結保存用バイオデバイスは、 上述の如き動物細胞凍結保存用 担体と、 上記曲面部に接着したほぼ球形の動物細胞とを備えることを特徴とする。
[00 1 9]
また、 本発明の動物細胞凍結保存用バイオデバイスの好適形態は、 上記ほぼ球形 の動物細胞の粒径が 5 μ η!〜 5 0 j rnであることを特徴とする。
[ 0 0 2 0 ]
更に、 本発明の動物細胞凍結保存用バイオデバイスの他あ好適形態は、 上記開口 部の最大長が、 上記ほぼ球形の球形動物細胞の (分裂直後粒径) 〜 (成長後粒径 X 1 0 ) であることを特徴とする。
[ 0 0 2 1 ]
本発明の動物細胞凍結保存方法は、 上述の如き動物細胞凍結保存用バイォデバイ スを凍結保存する工程を含むことを特徴とする。
[ 0 0 2 2 ]
更に、 本発明の動物細胞凍結保存方法の好適形態は、 動物細胞を懸濁した液体培 地と、 上述の如き動物細胞凍結保存用担体とを培養することで上記動物細胞凍結保 存用バイオデバイスを作製する工程を含むことを特徴とする。
[発明の効果]
[ 0 0 2 3 ]
本発明によれば、 内壁に曲面部を有する複数の開口部が所定の条件で穿設された シートを担体として用いることで、 動物細胞の凍結保存操作中に細胞が受けるダメ ージを軽減し、 凍結 ·解凍後の動物細胞の生存率や生存細胞密度を向上させること のできる動物細胞の凍結保存用担体、 凍結保存用バイォデバイス及び凍結保存方法 を提供することができる。
[ 0 0 2 4 ]
また、 本発明の凍結保存用担体は、 動物細胞をほぼ球形のまま担持することがで きるので、 高密度での動物細胞の凍結保存が可能である。
[ 0 0 2 5 ]
更に、 本発明の凍結保存方法では、 培養容器から剥がした細胞を保存液に懸濁さ せてから凍結する必要がないため、 作業の煩雑さが解消された。 また上述のように 高密度で凍結保存することで保存液量が低減できるため、 コスト的にも有利である。
[図面の簡単な説明] [ 0 0 2 6 ]
[図 1 ] 本発明の凍結保存用バイォデバイスの一実施形態を示す顕微鏡写真で ある。
[図 2 ] 本発明の凍結保存方法の一実施形態を示す模式図である。
[図 3 ] 実施例 1における細胞固定手順を示す模式図である。
[図 4 ] 動物細胞凍結保存用バイオデバイスを入れたガラスボトムディッシュ の写真である。
[図 5 ] 実施例 2におけるチャイニーズハムスター卵巣細胞を用いた凍結保存 用バイオデバイスの顕微鏡写真である。
[図 6 ] 本発明の凍結保存用バイォデバイスを凍結する手順の一実施形態を示 す写真である。
[図 7 ] コラーゲンコーティング担体に接着した D G 4 4細胞の顕微鏡写真で ある。
[図 8 ] コラーゲンコーティング担体に接着した D G 4 4細胞の拡大写真であ る。
[図 9 ] コラーゲンコーティングを施していない担体に接着した D G 4 4細胞 の顕微鏡写真である。
[発明を実施するための形態]
[ 0 0 2 7 ]
以下、 本発明の動物細胞の凍結保存用担体、 凍結保存用バイオデバイス、 凍結保 存方法につき詳細に説明する。 なお、 本明細書において、 「%」 は特記しない限り質 量百分率を表すものとする。 また、 「ほぼ」 とは、 測定誤差などを含めた範囲を意味 しており、 当該範囲内では本発明の作用効果が奏される。
[ 0 0 2 8 ]
( 1 ) 凍結保存用担体
上述の如く、 本発明の動物細胞凍結保存用担体は、 ほぼ同一形状の開口部が一定 のピッチで複数個穿設されたシートを備えた動物細胞凍結保存用担体であって、 上 記開口部を形成する内壁の少なくとも一部に曲面部を有し、 動物細胞を担持して凍 結保存し、 解凍したときの該動物細胞の生存率、 生存細胞密度のいずれか一方又は 双方が、 懸濁法により凍結保存し、 解凍したときの動物細胞と同等以上である。
[ 0 0 2 9 ]
本発明の担体の形状は、 特に限定はされないが、 例えば、 平面シート状や、 編目 の凹凸を有するメッシュ状のように一枚のシートをそのまま用いた平面的な形状で あってもよいし、一枚又は複数枚のシートで構成された立体的形状であつてもよい。 立体的形状の場合は、 シート面同士は密着せずに、 いくらかの間隙が設けられてい ることが好ましく、 例えば錐形状や柱形状の中空体、 更には積層形状等とすること ができる。
[ 0 0 3 0 ]
また使用されるシ一トの形状としては、 以下に説明する開口部を有するシート状 のものであれば十分であり、 一体成形されたいわゆる孔開きフィルムのみならず、 繊維から成る編物、 織物及び網状体などであってもよい。 なかでも開口部について 大きさ等のコントロールが容易であることから網状体が好ましい。 当該シートの厚 みは、 好ましくは 1 0 μ η!〜 1 6 0 μ mであり、 より好ましくは 2 0 μ π!〜 1 0 0 μ mでめる。
[ 0 0 3 1 ]
上記シートに設けられた複数個の開口部は、 上述のように、 ほぼ同一の形状であ り、 一定のピッチで穿設されている。 これらの開口部は、 動物細胞を担持する部分 でもあり、 担持された動物細胞は規則的 (周期的) に配列される。 また当該シート は、 不織布のようにランダムに繊維が結合したものとは異なり、 三次元的にも乱れ が少ないので、 担持された動物細胞が隙間に入り込んだり、 表面を覆ったりして伸 展することを抑制できる。 即ち、 このような構造は、 本発明の動物細胞凍結保存用 担体において、 空間に無駄を生じさせることなく高密度に動物細胞を担持し、 且つ その細胞が球形の形状を保つことに寄与するものである。
[ 0 0 3 2 ] 上記開口部の形状は、 特に限定されるものではなく、 その断面形状は円形、 楕円 形、 三角形、 四角形以上の多角形の他、 星形などであってもよい。 例えば、 シート が繊維から成る網状体の場合は、 正方形となる場合が多い。
[ 0 0 3 3 ]
また開口部の大きさは、 保持する動物細胞の大きさに応じて適宜選択することが できる。 動物細胞は分裂と成長を繰り返す過程で大きさが変動するので、 成長後の 粒径は分裂直後の粒径に比べ、 通常 5倍程度にまで増大するが、 開口部の最大 長は、 球形をなす動物細胞の分裂直後の粒径〜成長後の粒径の 1 0倍程度の大きさ であることが好ましレ、。
ここで 「開口部の最大長」 とは、 当該開口部の輪郭内に引ける線分のうち最長の ものの長さを意味するものとする。
[ 0 0 3 4 ]
開口部の最大長が、 動物細胞の分裂直後の粒径未満の場合には、 開口部内に動物 細胞が固定されにくく、 成長後粒径の 1 0倍を超えると、 開口部を形成する内壁同 士が離れすぎるため、 細胞が開口部を閉塞するように接着することが困難となり、 開口中心部が空洞となり、 結果として低密度になってしまうことがある。
[ 0 0 3 5 ]
本発明の動物細胞凍結保存用担体の好適形態においては、 上記開口部の最大長が 1 0 μ π!〜 1 2 0 μ mでめる。
開口部の最大長が 1 0 / m未満では、動物細胞が開口部に進入することができず、 表面を覆うように伸展して接着することがあり得る。
一方、 開口部の最大長が 1 2 0 μ πιを超えると、 動物細胞を付着させても、 開口 部を形成する内壁同士が離れすぎているため、 該細胞が開口部を閉塞するように固 定化されない場合があり、 その結果、 孔が残存する確率が上がって高密度とならな い可能性がある。
[ 0 0 3 6 ]
この開口部を形成する内壁は、 少なくとも一部に曲面部を有していることが必要 である。 かかる曲面部は好ましくは凸曲面であり、 通常、 開口部の中央方向に突出 して形成されている。 また該曲面部の曲率半径は、 0 . 5 μ π!〜 4 0 w rnであるこ とが好ましレ、。 曲率半径が 0 . 5 m未満であると細胞が接着できない場合があり、 4 0 /z mを超えると細胞が大きく伸展して接着する場合がある。
[ 0 0 3 7 ]
本発明者の観察によれば、 ほとんどの動物細胞はこの曲面部に付着して球形を保 持する。 曲面部に付着した細胞は、 担体との接着力が比較的弱いために、 強固に担 体に接着した細胞とは異なり伸展することがないため球状の形態を維持できるから である。
一方、 一般的に、 平面状の部位に付着した動物細胞は球形を保持することができ ずに伸展してしまうことが多い。
[ 0 0 3 8 ]
本発明の動物細胞凍結保存用担体では、 このようにして球形を保持した動物細胞 が集塊を形成する。 この集塊は非常に高い密度で細胞を含む。 またこの集塊は生体 組織と同様の構造を形成しているので細胞が凍結保存の際に受けるストレスが軽減 される。 更に、 集塊が形成された該担体は、 このまま凍結保存に供することができ るのでトリプシン等のタンパク分解酵素の使用を回避でき、 細胞の受けるダメージ を小さくすることができる。
従って、 本発明の担体を用いると解凍後の細胞生存率を高く維持することができ る。 また同じ理由により、 凍結保存後の再培養の際、 解凍後の初期増殖速度が従来 に比べて早くなる。
[ 0 0 3 9 ]
上述のように、 本発明の動物細胞凍結保存用担体に動物細胞を担持して凍結保存 し、解凍したときの該動物細胞の生存率、 生存細胞密度のいずれか一方又は双方は、 従来法である懸濁法により凍結保存し、解凍したときの動物細胞と同等以上である。 ここで動物細胞とは、 動物由来の細胞であれは、 どのような細胞であってもよく、 例えば繊維芽細胞、 骨芽細胞、 肝細胞等を挙げることができる。 [ 0 0 4 0 ]
また生存率とは、 細胞を凍結保存し、 解凍したときの全細胞数に対する生存細胞 数の割合である。
具体的には、 本発明の動物細胞凍結保存用担体を用いた場合の生存率は、 動物細 胞を該凍結保存用担体に担持し、 該動物細胞にとって最適の条件下で培養した後、 培養後の動物細胞を担持した凍結保存用担体を保存液に浸漬して一 8 0 °Cで凍結保 存し、 所定日数経過後に培養温度で解凍したときの全細胞数に対する生存細胞数の 割合をいう。
一方、 懸濁法における生存率は、 動物細胞を T Cフラスコで最適の条件下にて培 養した後にトリプシンで剥離し、 該動物細胞を保存液に懸濁して一 8 0 °Cで凍結保 存し、 所定日数経過後に培養温度で解凍したときの全細胞数に対する生存細胞数の 割合をいう。 ·
[ 0 0 4 1 ]
また生存細胞密度とは、 細胞を凍結保存し、 解凍したときのサンプル体積あたり の生存細胞数である。 サンプル体積は、 懸濁法では 1 m 1が一般的であり、 本発明 に係る凍結保存法においては、 5 mm X 5 mmのナイロンネットを担体として用い た場合は 2 1程度となる。
[ 0 0 4 2 ]
なお本発明の動物細胞凍結保存用担体に担持し、 凍結 ·解凍したときの生存率、 生存細胞密度は、 懸濁法による場合と同等であってもよい。 この意味において本発 明の効果である 「凍結 ·解凍後の動物細胞の生存率や生存細胞密度の向上」 とは、 従来法である懸濁法による凍結 ·解凍後の動物細胞の生存率、 生存細胞密度と同等 であることも含み得る。 生存率や生存細胞密度が同等であったとしても、 操作性の 向上等を加味すると実質的に効果を有するからである。
[ 0 0 4 3 ]
次に、 本発明の動物細胞凍結保存用担体に用いられる材料等について説明する。 上述のシートの材料は、 例えば、 樹脂、 セラミックス、 金属及びガラス等の有機 材料であっても、 無機材料であってもよく、 骨格となる材料に上記材料をコーティ ングなどの表面処理加工により施したものであってもよレ、。
[ 0 0 4 4 ]
シートの形態が網状体である場合など、 繊維が該シートを形成する場合において も、 その繊維の材質は特に限定されるものではなく、 種々の有機繊維及び無機繊維 を用いることができる。
例えば有機繊維としては、 各種の天然及び合成繊維、 例えば、 絹や綿などの天然 繊維、 ナイロン (登録商標)、 アクリル及びポリエステルなどの合成繊維を挙げるこ とができ、 一方、 無機繊維としては、 各種の金属繊維やガラス繊維、 セラミックス 繊維を挙げることができる。
なお、 該繊維はモノフィラメントであるかマルチフィラメントであるかは不問で あり、 更には、 狭義の繊維のみならず、 撚糸などでもよい。
[ 0 0 4 5 ]
その他、 有機繊維としては、 繊維表面が平滑な合成繊維及び該繊維に表面修飾を 施したものを好ましく用いることができ、 用途によっては、 生分解性の繊維を用い ることも有効である。
[ 0 0 4 6 ]
上記繊維は、 長手方向とほぼ垂直な断面に曲線部を有することが好ましく、 典型 的には、 繊維断面が円形や楕円形のものを挙げることができる。 この場合、 繊維断 面形状の少なくとも一部に曲線部があれば十分であるので、 三角形や多角形の角に R加工や面取りを施したような断面形状の繊維であってもよい。
断面に曲線部を有する繊維を用いてシートを形成すると、 この曲線部によって作 られた曲面部をシートの開口部の内壁に構成することが容易となる。 但し、 それ以 外の方法、 例えば繊維の織り方、 編み方などによっても開口部の内壁に曲面部を構 成することは可能である。
[ 0 0 4 7 ]
また、 上記繊維の繊維径は、 培養すべき動物細胞の種類や大きさ (粒径) に応じ て適宜変更することができるが、 代表的には、 粒径 5〜50 の一般的な動物細 胞に対しては、 繊維径が 80 / m以下の繊維を用いることが好ましい。 繊維径 80 m以下の繊維で形成したシー卜に付着した動物細胞は、 伸展せずに球形を維持す る確率が高く、 一方、 繊維径が 80 μπιを超える繊維で形成したシートに付着した 動物細胞は、 付着後に伸展する傾向にあるからである。
[0048]
(2) 凍結保存用バイオデバイス
図 1は、 本発明の動物細胞凍結保存用バイオデバイスの一実施形態を示す顕微鏡 写真である。
同図において、 本発明の凍結保存用バイオデバイスは、 本発明の動物細胞凍結保 存用担体 1 0と、 その開口部の曲面部に接着したほぼ球形の動物細胞 20とを備え る。 動物細胞 20の粒径は、 5 Ζ Π!〜 50 μπι、 好ましくは 1 0〜30 ΑΙ ΠΙとする ことができ、 また動物細胞凍結保存用担体 1 0の開口部の最大長は、 動物細胞 20 の (分裂直後粒径) 〜 (成長後粒径 X I 0) とすることができる。
[0049]
また動物細胞 20は、 本発明の動物細胞凍結保存用担体 1 0に担持して培養され た結果、 高密度に増殖していることが好ましく、 初期状態の球形を保持したまま成 長している。
かかる動物細胞としては、 特に限定されるものではないが、 特に接着性の動物細 胞、 例えば動物の繊維芽細胞や神経細胞等を挙げることができる。
[0050]
本発明の凍結保存用バイオデバイスの製造方法の一実施形態では、 動物細胞を 1 05〜106セル ZmL程度の濃度で培地に懸濁させた液を、 動物細胞凍結保存用担 体 10と接触させ、振盪培養しながら動物細胞を増殖させる。 当該製造方法により、 本発明の凍結保存用バイォデバイスが容易に得られる。
このときに用いる培地としては、 細胞をカルチャーボトルで培養するときに用い る標準的な培地でよい。 [ 0 0 5 1 ]
本発明の好適形態によれば、 繊維径 8 0 μ m以下の繊維から成り、 且つ開口部の 平面形状が一辺 1 0 μ π!〜 8 0 μ mの正方形状である網状体 (動物細胞凍結保存用 担体) に動物細胞を付着させると、 該細胞が開口部を塞ぐように増殖し、 凍結保存 用バイオデバイスが形成される。
また、 この凍結保存用バイオデバイスの厚み方向に積層される細胞数は、 たかだ か 1 0個程度なので、 これらの接着した細胞に対しては、 酸素及び栄養源を迅速に 供給することが容易であり、 培養効率を向上することができる。
なお、 かかる開口部の閉塞に応じて、 本来ほぼ球状をなす動物細胞は、 細胞同士 が接着して固定化されているシート領域では、 立方体状や直方体状をなしているこ とがある。
[ 0 0 5 2 ]
更に、 本発明の凍結保存用バイオデバイスにおいて、 球形をなす動物細胞がその 開口部を閉塞するように固定化された場合には、 この固定化細胞を貫通するような 対流は起きなくなる。 従って、 この固定化細胞ないしは当該凍結保存用バイオデバ イス自体が隔壁として機能し得るので、 このシート状デバイスの表面側 (一方の面 側) と裏面側 (他方の面側) とに別種の 2液を供給しても、 両者が混合されるのを 抑制ないし回避することができ、 固定化細胞に 2種の培地や保存液などを同時に供 給することが可能となる。
[ 0 0 5 3 ]
( 3 ) 凍結保存用バイオデバイス
図 2は、 本発明の凍結保存方法の一実施形態を示す模式図である。
同図においては、 本実施形態の工程のうち、 動物細胞凍結保存用バイオデバイス を作製する工程 (A:)、 動物細胞凍結保存用バイオデバイスを、 保存液に浸漬して凍 結保存する工程 (B— 1 ) 及び動物細胞凍結保存用バイオデバイスを、 保存液を使 用しないで凍結保存する工程 (B—2 ) を示す。 即ち、 工程 (A) にて作製された 動物細胞凍結保存用バイオデバイスは、 例えば工程 (B— 1 ) や工程 (B— 2 ) に て凍結保存することができる。
[ 0 0 5 4 ]
同図において、 動物細胞凍結保存用バイオデバイス 3 0は、 好ましくは、 動物細 胞を懸濁した液体培地 4 0を動物細胞凍結保存用担体 1 0上に滴下し、 3 7 °C、 5 % C 02の条件下で振盪培養することで作製される。
[ 0 0 5 5 ]
得られた動物細胞凍結保存用バイオデバイス 3 0は、 ピンセットで移動させるこ とができるほど取扱いが容易であり、 そのまま工程 (B— 1 ) の保存液を入れた容 器内又は工程 (B— 2 ) の空の容器内に移される。
[ 0 0 5 6 ]
上記工程 (B— 1 ) においては、 動物細胞凍結保存用バイオデバイス 3 0が浸る 量の保存液が容器内にあれば十分であるため使用する保存液を削減することができ る。 具体的には、 従来法が既存の容器 1本に対して 1 m 1の保存液が必要なのに対 し、 本実施形態においては、 0 . 1 m 1の保存液量で十分である。 この量は、 新た に専用の容器を設計することで、 さらに半分の量とすることができる。
また上記工程 (B— 2 ) においては、 培養時に使用した培養液を細胞の周囲に残 存させたまま凍結保存することによって、 改めて保存液を用いることなく凍結保存 することができる。
したがって、 工程 (B— 1 ) 及び工程 (B— 2 ) の何れの方法ともコスト的に有 利であり、 特に高価な血清を含む保存液等を用いる系において、 その必要量を低減 できることによる効果は大きい。
[ 0 0 5 7 ]
凍結保存された動物細胞は、 再培養に供される前に解凍されるが、 上述のように 凍結の際に用いられる保存液はごく少量であるか、 使用されないので、 解凍に要す る時間が短く、 ひとつの実施形態においては、 従来法と比較して 6倍以上の解凍速 度であった。
一般的に、 解凍時間が短い方が、 細胞にかかるストレスが少なく、 解凍後の細胞 生存率が高くなる傾向にあるため、 解凍時間の短縮もまた、 解凍後の動物細胞の生 存率向上ゃ增殖速度の増大に寄与する。
[0058]
再培養に際しては、 保存液を解凍後、 動物細胞凍結保存用バイオデバイスをピン セットで持ち、 培地に浸しながら軽く振動を与えて動物細胞を担体から剥離させて 回収する。 これは、 上述のように、 担体の曲面部に動物細胞が比較的弱く接着して いることにより実現できるものである。
また他の実施形態においては、 保存液と共に解凍した動物細胞凍結保存用バイォ デバイスをそのまま再培養に供することもできる。
[0059]
一方、 解凍後の細胞を回収するための従来の方法は、 細胞が懸濁している保存液 を解凍後ピぺットで回収し、 培地と混合し、 遠心分離によって細胞を分離、 濃縮し、 再度培地に懸濁する一連の操作が必要であるため、 非常に煩雑であるばかりか、 ピ ペッティングにより細胞にダメージを与える危険性が高い。
[実施例]
[0060]
以下、 本発明を若干の実施例により更に詳細に説明するが、 本発明はこれら実施 例に限定されるものではない。
[0061]
(実施例 1 )
1. 動物細胞凍結保存用バイォデバイスの作製
本発明の動物細胞凍結保存用担体として、 ナイ口ン製メッシュ (繊維径 35 m、 開口部 60 μιη) を用いた。 動物細胞としてマウス繊維芽細胞 3 T 3 L 1を用いた。 培地は、 血清入り培地 [Du l b e c c o ' s Mo d i f i e d E a g l e ' s Me d i um (DMEM)、 仔ゥシ血清 (FB S) 10%、 抗生物質 1 %] を用 いた。
図 3に示すように、 上記細胞を懸濁した培地 (105セル/ m l ) を 5mmX 5m mの動物細胞凍結保存用担体 1 0 a上に滴下し、 3 7°C、 5%C〇2としたインキュ ベータ内で 3日間、 振盪培養した。 培養後、 固定された細胞数を測定し、 細胞密度 とした。
[006 2]
2. 凍結保存
図 4に示すように、 培養細胞が動物細胞凍結保存用担体に固定された動物細胞凍 結保存用バイォデバイス 3 0 aをガラスボトムディッシュ 6 0にピンセットで移し た。 このガラスボトムディッシュの底面には直径 1 Omm、 深さ 0. 5 mm程度の くぼみがあり、 動物細胞凍結保存用バイォデバイス 3 0 aを入れて 0. 1 m lの保 存液 [ゥシ血清 7 5%、 ジメチルスルホキシド (DMSO) 1 0%、 DMEM1 0 %、 グルコース 3 0 gZL] を滴下した。 次いで、 このガラスボトムディッシュを 密封し、 一 80 °Cのフリ一ザで凍結保存した。
[00 6 3]
3. 解凍
上記凍結保存から 3日後、 ガラスボトムディッシュの底面を 3 7°Cのお湯に浸し て解凍し、 解凍に要する時間を測定した。 その後、 解凍した細胞の生存率を測定し た。 生存率は、 解凍した細胞に生死判別試薬 (Mo l e c u l a r P r o b e s , i n c. : L I VE/DE AD V i a b i 1 1 i t y/C y t o t o x i c i t y K i t f o r An i ma l C e 1 1 s ) を添加し、 顕微鏡で生細胞数と死 細胞数を計測して算出した。
[0064]
(比較例 1一 1 )
TCフラスコで培養した 3 T 3 L 1細胞を、 従来、 動物細胞を凍結保存するとき に一般に用いられている懸濁法で凍結保存した。具体的な作業は以下の通りである。 マウス繊維芽細胞 3 T 3 L 1を TCフラスコで培養後、 TCフラスコの底面に接着 している細胞をトリプシンで剥離させた。 剥離させた液から遠心分離によってトリ プシンを除去し、 細胞を 1 m 1の保存液中に懸濁した。 次いで、 該懸濁液を一 8 0 °Cのディープフリーザーで凍結保存し、 3日後に解凍した。 その後、 実施例 1と同 様に細胞密度、 解凍時間、 生存率を測定した。
[0065]
(比較例 1一 2 )
TCフラスコで培養した 3 T 3 L 1細胞を、 TCフラスコの底面に接着、 伸展し たまま凍結保存した。 具体的な作業は以下の通りである。 マウス繊維芽細胞 3 T 3 L 1を TCフラスコで培養した。 細胞は TCフラスコの底面に接着して伸展した。 TCフラスコ内の培地を吸い取り、 保存液を添加して凍結保存した。 3日後に解凍 した。 実施例 1と同様に生存率を測定した。
[0066]
(比較例 1一 3)
3T3 L 1細胞を凍結保存用担体に固定して培養した後、懸濁法で凍結保存した。 具体的な作業は以下の通りである。 マウス繊維芽細胞 3T 3 L 1をメッシュ形状担 体に固定し、 数日間培養した。 細胞が担体の全体に拡がって 4 X 1 06個 Zcm2の 密度で接着したところで、 酵素を用いて担体から細胞を剥がし、 保存液に懸濁させ て、 凍結保存した。 3日後に解凍した。 実施例 1と同様に生存率を測定した。
[0067]
測定結果を表 1に示す。 なお生存細胞密度は、 凍結細胞密度に生存率を乗じて算 出した。
[0068]
[表 1]
Figure imgf000019_0001
[0069] このように実施例 1では、 比較例 1一 1の約 300倍の密度で細胞を凍結保存す ることができ、 また解凍時間は比較例 1の 6分の 1となった。 生存率については、 比較例 (従来法) の 8 1 %に対し 88 %となり、 細胞へのストレス低減効果が見ら れた。 更に、 生存細胞密度は、 比較例の 320倍になった。
また、 比較例 1一 2の伸展した細胞の生存率は 0. 2%となり、 実施例 1の細胞 の生存率と比較して著しく低レ、。
更に、 比較例 1一 3の伸展していない細胞の生存率は 88%となったが、 生存細 胞密度は実施例 1の 300分の 1である。
[0070]
(実施例 2)
1. チャイニーズハムスター卵巣細胞 (CHO細胞) を用いた凍結保存用バイオデ バイスの作製
CHO細胞を TCフラスコで培養後、 酵素 (G I B CO社製 T r y p L E Ex p r e s s) で剥離した。 遠心分離によって酵素を除去し、 再び培地に懸濁した。 培地は血清入り培地 (DMEM、 FB S 10%、 抗生物質 1%、 ヒスチジン 'チ口 シン液 2%) を用いた。 実施例 1と同様に図 3に示す方法でナイロンメッシュに C HO細胞を固定した。
作製した凍結保存用バイオデバイスの顕微鏡写真を図 5に示す。 実施例 1の 3 T 3 L 1細胞と同様に CHO細胞は伸展することなく、 球形のまま担体に高密度に接 着した。
[0071]
2. 凍結保存
図 6に示すとおり、 凍結保存用バイオデバイス 30 bをガラスボトムディッシュ 60に載せ(同図 (a) 参照。)、 100 ^ Lの保存液を滴下した (同図 (b) 参照。)。 保存液には無血清保存液 (セルバンカー無血清タイプ、 十慈フィールド社製 BLC -2) を用いた。 プログラムフリーザーを用いて l°CZm i nの速度に制御して一 50°Cまで凍結した (同図 (c) 参照。)。 その後、 _ 80°Cのディープフリーザー に移し、 3日間保存した。
[0 0 7 2]
3. 解凍
ディッシュをディープフリーザーから取り出し、 ディッシュの底面を指で暖める ことによつて解凍した。 5秒程度で解凍が完了した。
[0 0 7 3]
4. 生存率測定
担体に固定された細胞を酵素 (G I B C O社製 T r y p L E E x p r e s s ) で剥離し、 生存率を測定した。
[0 0 74]
5. 増殖速度 '
担体に固定された細胞を酵素 (G I 8じ0社製丁 r y p L E E x p r e s s ) で剥離し、 培地に懸濁して 2 5 c m2TCフラスコに播種した。 所定時間経過後のフ ラスコ底面に接着した細胞数を目視で計数した。 以下の式 (1 ) から倍加時間 (D T、 細胞数が 2倍に増殖するまでにかかる時間) を求めた。 ここで、 t i、 t 2は培 養時間、 は時間 t iの時の細胞数、 N2は時間 t 2の時の細胞数を示す。 播種から コンフルェントまでの DTの最小値を、 その代の倍加時間とした。
DT= ( t t 1 o g 2/ ( 1 o g N2- 1 o g N i) ·■· ( 1 )
[0 0 7 5]
(比較例 2— 1 )
TCフラスコで培養した CHO細胞を、 従来、 動物細胞を凍結保存するときに一 般に用いられている懸濁法で凍結保存した。 具体的な作業は以下の通りである。 C HO細胞を TCフラスコで培養後、 酵素 (G I 8〇〇社製丁 r y p L E E x p r e s s ) で剥離した。 遠心分離によって酵素を除去し、 無血清保存液 (セルバン力 一無血清タイプ、 十慈フィールド社製 B L C— 2) に懸濁した。 プログラムフリー ザ一を用いて l °CZm i nの速度に制御して一 5 0°Cまで凍結した。 その後、 一8 0°Cのディープフリーザーに移し、 3日間保存した。 実施例 2と同様に生存率及び 増殖速度を測定した。
[0076]
(比較例 2— 2)
TCフラスコで培養した CHO細胞を、 TCフラスコの底面に接着、 伸展したま ま凍結保存した。 具体的な作業は以下の通りである。 CHO細胞を TCフラスコで 培養した。 細胞は TCフラスコの底面に接着して伸展した。 TCフラスコ内の培地 を吸い取り、 保存液を添加して凍結保存した。 3日後に解凍した。 実施例 2と同様 に生存率を測定した。
[0077]
測定結果を表 2に示す。 なお生存細胞密度は、 凍結細胞密度に生存率を乗じて算 udレた。
[0078]
[表 2]
Figure imgf000022_0001
[0079]
実施例 2の生存率は比較例 2— 1と同様に 90 %であった。 凍結、 解凍操作後の 増殖速度も比較例 2と同様であり、 播種後の倍加時間は 30時間であった。 CH〇 細胞を継代培養したときの倍加時間は、 通常 1 8時間であるが、 解凍操作直後はダ メージを受けているので増殖速度が低くなることが知られている。
また、 実施例 2では、 比較例 2— 1の約 300倍の密度で細胞を凍結保存するこ とができる。
更に、 比較例 2— 2の伸展した細胞の生存率は 0. 4%となり、 実施例 2の細胞 の生存率と比較して著しく低い。 本実験から、 C H O細胞が凍結によって受けるダメージは従来法と遜色ないレべ ルであり、 C H O細胞を凍結保存する際にも本発明が有効であることがわかった。
[0080]
(実施例 3 )
1. 担体のコラーゲンコーティング
コラーゲン溶液 (新田ゼラチン社製、 C e 1 1 ma t r i X Ty p e I一 C、 ブタ皮由来のペプシン可溶化 T y p e - Iコラーゲン) を 10— 3M— HC 1で希釈 した液に担体を浸漬し、 すぐに取り出して 1 2時間風乾し.た後、 培地で 2回洗浄し た。
[0081]
2. 浮遊性細胞 (DG44細胞) を用いた凍結保存用バイオデバイスの作製
DG 44細胞は CHO細胞を浮遊性に改良し、 さらに無血清培養できるように改 良した細胞である。 DG44細胞 (G I BCO社製) をスピナ一フラスコで浮遊培 養した。 培地は無血清培地 (CD DG44培地、 G I BCO社製) を用いた。 D G 44細胞が浮遊している培地を遠心分離によって濃縮し、 コラーゲンコーティン グを施したナイ口ンメッシュに実施例 1と同様に図 3に示す方法で固定した。
[0082]
3. 凍結保存及び解凍
実施例 2と同じ方法で凍結保存及び解凍した。 保存液には無血清保存液 (CD DG44培地、 7. 5%DMSO) を用いた。
[0083]
4. 生存率測定
解凍したバイオデバイスに培地を添加し、 軽く撹拌した後、 遠心分離で細胞を剥 離して生存率と生存細胞密度を測定した。
[0084]
(比較例 3)
従来、 動物細胞を凍結保存するときに一般に用いられている懸濁法で DG 44細 胞を凍結保存した。 具体的な作業は以下の通りである。 DG44細胞をスピナーフ ラスコで浮遊培養後、 遠心分離によって培地を除去し、 無血清保存液 (CD DG 44培地、 7. 5% DM SO) に懸濁した。 プログラムフリーザーを用いて 1 °CZ m i nの速度に制御して一 50°Cまで凍結した。 その後、 一 80°Cのディープフリ 一ザ一に移し、 3日間保存した。 実施例 3と同様に生存率と生存細胞密度を測定し た。
[0085]
実施例 3で作製した凍結保存用バイォデバイスの顕微鏡写真及びその拡大写真を 図 7及び図 8に示す。 コラーゲンコ一ティングしていないナイロンメッシュを用い て、 実施例 3と同様な方法で作製した DG 44細胞の凍結保存用バイオデバイスの 顕微鏡写真を図 9に示す。
実施例 3のバイォデバイスでは実施例 1及び実施例 2の各細胞と同様 D G 44細 胞は伸展することなく、 球形のまま担体に接着し、 メッシュの孔を埋めていること 力 s 力る c
なお、 コラーゲンコーティングしていないナイロンメッシュを用いて、 実施例 3 と同様な方法で作製した D G 44細胞の凍結保存用バイォデバイスでは D G 44細 胞はほとんど接着しなかった。
[0086]
測定結果を表 3に示す。 なお生存細胞密度は、 凍結細胞密度に生存率を乗じて算 出した。
[0087]
3] 項目 実^例 3 比較例 3
凍結細胞密度(個 Zml) 5X 107 1 X 106
生存率(o/o) 80 80
生存細胞密度(個ノ ml) 4x 107 8x 105 [0088]
実施例 3の生存率は比較例 3と同様に 8 0 %であった。 コーティングなどの適切 な表面修飾を担体に施すことによって、 本発明は様々な細胞に適用できることがわ かつた。
[符号の説明]
[00 8 9]
1 0、 1 0 a 動物細胞凍結保存用担体
20 動物細胞
30 30 a、 30 b 動物細胞凍結保存用バイォデバイス
40 液体培地
50 保存液
6 0 ガラスボトムディッシュ

Claims

請求の範囲 [請求項 1 ] ほぼ同一形状の開口部が一定のピッチで複数個穿設されたシートを備えた動物細 胞凍結保存用担体であって、 上記開口部を形成する内壁の少なくとも一部に曲面部を有し、 次の条件 (1) 及び (2) :
(1) 動物細胞を担持して凍結保存し、 解凍したときの該動物細胞の生存率が、 懸 濁法により凍結保存し、 解凍したときの動物細胞の生存率以上である
(2) 動物細胞を担持して凍結保存し、 解凍したときの該動物細胞の生存細胞密度 が、 懸濁法により凍結保存し、 解凍したときの動物細胞の生存細胞密度以上である の少なくとも一方を満足する
ことを特徴とする動物細胞凍結保存用担体。
[請求項 2]
上記開口部の最大長が、 1 0 m〜l 20 i mであることを特徴とする請求項 1 に記載の動物細胞凍結保存用担体。
[請求項 3]
上記曲面部の曲率半径が、 0. 5 !〜 4 0 μπιであることを特徴とする請求項 1又は 2に記載の動物細胞凍結保存用担体。
[請求項 4]
上記シートが、 網状体であることを特徴とする請求項 1〜3のいずれか 1つの項 に記載の動物細胞凍結保存用担体。
[請求項 5]
上記網状体が繊維から成り、 該繊維が長手方向とほぼ垂直な断面に曲線部を有す ることを特徴とする請求項 4に記載の動物細胞凍結保存用担体。
[請求項 6]
上記繊維の繊維径が 1 μπ!〜 8 0 μπιであることを特徴とする請求項 5に記載の 動物細胞凍結保存用担体。
[請求項 7 ]
請求項 1〜 6のいずれか 1つの項に記載の動物細胞凍結保存用担体と、 上記曲面 部に接着したほぼ球形の動物細胞とを備えることを特徴とする動物細胞凍結保存用 バイオデバイス。
[請求項 8 ]
上記ほぼ球形の動物細胞の粒径が 5 ;z m〜5 0 μ πιであることを特徴とする請求 項 7に記載の動物細胞凍結保存用バイォデバイス。
[請求項 9 ]
上記開口部の最大長が、 上記ほぼ球形の球形動物細胞の (分裂直後粒径) 〜 (成 長後粒径 X 1 0 ) であることを特徴とする請求項 7又は 8に記載の動物細胞凍結保 存用バイオデバイス。
[請求項 1 0 ]
請求項 7〜 9のいずれか 1つの項に記載の動物細胞凍結保存用バイォデバイスを 凍結保存する工程を含むことを特徴とする動物細胞の凍結保存方法。
[請求項 1 1 ]
更に、 動物細胞を懸濁した液体培地と、 請求項 1〜6のいずれか 1つの項に記載 の動物細胞凍結保存用担体とを培養することで上記動物細胞凍結保存用バイォデバ イスを作製する工程を含むことを特徴とする請求項 1 0に記載の動物細胞の凍結保 存方法。
PCT/JP2009/061811 2008-06-24 2009-06-23 動物細胞の凍結保存用担体、それを用いた凍結保存用バイオデバイス及び凍結保存方法 WO2009157585A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518092A JP5140155B2 (ja) 2008-06-24 2009-06-23 動物細胞の凍結保存用担体、それを用いた凍結保存用バイオデバイス及び凍結保存方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-164186 2008-06-24
JP2008164186 2008-06-24

Publications (1)

Publication Number Publication Date
WO2009157585A1 true WO2009157585A1 (ja) 2009-12-30

Family

ID=41444643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061811 WO2009157585A1 (ja) 2008-06-24 2009-06-23 動物細胞の凍結保存用担体、それを用いた凍結保存用バイオデバイス及び凍結保存方法

Country Status (2)

Country Link
JP (1) JP5140155B2 (ja)
WO (1) WO2009157585A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005349A1 (ja) * 2013-07-09 2015-01-15 国立大学法人東京大学 細胞培養支持体、細胞培養装置、細胞培養キット、及び細胞シート
CN108990965A (zh) * 2018-08-20 2018-12-14 四川妙和生物科技有限公司 一种细胞冻存盒
WO2020067434A1 (ja) * 2018-09-27 2020-04-02 テルモ株式会社 細胞の凍結保存方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294729B2 (ja) * 2014-03-28 2018-03-14 三菱製紙株式会社 細胞又は組織のガラス化凍結保存用治具
EP3406707A1 (en) 2015-01-26 2018-11-28 Ube Industries, Ltd. Long-term cell-cultivation using polyimide porous membrane and cell-cryopreservation method using polyimide porous membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209767A (ja) * 1993-01-16 1994-08-02 Japan Vilene Co Ltd 動物細胞の凍結保存方法及び凍結保存担体
JP2000189158A (ja) * 1988-09-08 2000-07-11 Marrow Tech Inc 細胞および組織の三次元培養系
JP2004105043A (ja) * 2002-09-17 2004-04-08 Sumitomo Bakelite Co Ltd 細胞培養基板及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189158A (ja) * 1988-09-08 2000-07-11 Marrow Tech Inc 細胞および組織の三次元培養系
JPH06209767A (ja) * 1993-01-16 1994-08-02 Japan Vilene Co Ltd 動物細胞の凍結保存方法及び凍結保存担体
JP2004105043A (ja) * 2002-09-17 2004-04-08 Sumitomo Bakelite Co Ltd 細胞培養基板及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Abstracts of Annual Meeting of the Society of Chemical Engineers, Japan, 2007", vol. 72, article TOMOYUKI NAGAHARA ET AL.: "Nylon Monofilament-jo ni Secchaku Saseta Mouse Sen'iga Saibo 3T3L1 no Keijo", pages: 378 - I123 *
"Abstracts of Autumn Meeting of the Society of Chemical Engineers, Japan", vol. 37, 2005, article SATOSHI KONISHI ET AL.: "Dobutsu Saibo o Mochiita Shijimakugata Biodevice no Sakusei" *
"Abstracts of the Annual Meeting of the Society for Biotechnology, Japan, 2004", vol. 2004, article SATOSHI KONISHI ET AL.: "Net Filter ni Kotei shita Mouse Sen'iga Saibo 3T3L1 no Keijo ni Taisuru Meshes Size no Eikyo", pages: 223 - 2I13-3 *
BRUCE ALBERTS ET AL.: "Saibo no Bunshi Seibutsugaku", NYUTON PURESU, 10 July 1998 (1998-07-10), pages 139 - 140 *
TOMOYUKI NAGAHARA ET AL.: "Titsumen Kankyo eno Mouse Sen'iga Saibo 3T3L1 no Secchaku", JOURNAL OF JAPANESE SOCIETY FOR EXTREMOPHILES, vol. 5, no. 2, 2006, pages 147 - 148 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005349A1 (ja) * 2013-07-09 2015-01-15 国立大学法人東京大学 細胞培養支持体、細胞培養装置、細胞培養キット、及び細胞シート
JPWO2015005349A1 (ja) * 2013-07-09 2017-03-02 国立大学法人 東京大学 細胞培養支持体、細胞培養装置、細胞培養キット、及び細胞シート
JP2020036621A (ja) * 2013-07-09 2020-03-12 国立大学法人 東京大学 細胞培養支持体、細胞培養装置、細胞培養キット、及び細胞シート
CN108990965A (zh) * 2018-08-20 2018-12-14 四川妙和生物科技有限公司 一种细胞冻存盒
WO2020067434A1 (ja) * 2018-09-27 2020-04-02 テルモ株式会社 細胞の凍結保存方法

Also Published As

Publication number Publication date
JP5140155B2 (ja) 2013-02-06
JPWO2009157585A1 (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
RU2615179C2 (ru) Устройства и способы культивирования клеток
JP4112616B2 (ja) 細胞培養、特に肝細胞の培養に使用するための固相支持体、前記固相支持体を含む生物的リアクター、およびバイオ人工肝臓システムにおけるその使用
US5736399A (en) Medium-penetrating cell culture carrier, a culturing method and a device using this carrier
WO2009157585A1 (ja) 動物細胞の凍結保存用担体、それを用いた凍結保存用バイオデバイス及び凍結保存方法
EP2617811A1 (en) Method for manufacturing multilayered cell sheet, multilayered cell sheet having vascular network obtained thereby, method of use thereof
JPH0829077B2 (ja) 細胞培養に使用するマトリツクス
WO2006095480A1 (ja) 細胞培養チャンバー
JPWO2006019043A1 (ja) 細胞培養用多孔性シート状物とそれを用いたバイオリアクター及び培養方法
WO2014039938A1 (en) Spherical multicellular aggregates with endogenous extracellular matrix
JP2009247334A (ja) 細胞培養担体
US10669525B2 (en) Method for producing three-dimensional cell aggregates
JP7322024B2 (ja) 工学的操作された血管組織の作製において気泡を除去するための信頼性が高く再現可能な工業化プロセス
JP5912734B2 (ja) 細胞培養装置
US20050196828A1 (en) Bioreactor with expandable surface area for culturing cells
EP3730604A1 (en) Method for producing sheet-like cell culture
US20050064590A1 (en) Cryoconservation on woven textiles
JP2003339368A (ja) 中空糸付き器具及びその使用方法
US8110385B2 (en) Linear and membrane-like biodevices and bioreactors
JP2004329045A (ja) 細胞培養用の担体保持具及び高密度細胞培養方法
TWI774156B (zh) 用於細胞生質生產的載體及包含其之細胞培養裝置
JP7279372B2 (ja) 細胞培養不織布モジュール
JP4523311B2 (ja) 細胞の搬送方法および培養方法
JP2002209573A (ja) 細胞及び又は生体組織の担持体と移植体、及び担持方法
WO2013043072A1 (en) Container for dynamic 3d cell culture
JP2009112285A (ja) 弾性線維組織を有する培養血管の製造方法及び弾性線維組織を有する培養血管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518092

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09770295

Country of ref document: EP

Kind code of ref document: A1