WO2009154295A1 - セラミックス集合基板とその製造方法及びセラミックス基板並びにセラミックス回路基板 - Google Patents

セラミックス集合基板とその製造方法及びセラミックス基板並びにセラミックス回路基板 Download PDF

Info

Publication number
WO2009154295A1
WO2009154295A1 PCT/JP2009/061342 JP2009061342W WO2009154295A1 WO 2009154295 A1 WO2009154295 A1 WO 2009154295A1 JP 2009061342 W JP2009061342 W JP 2009061342W WO 2009154295 A1 WO2009154295 A1 WO 2009154295A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
substrate
ceramic
laser
continuous
Prior art date
Application number
PCT/JP2009/061342
Other languages
English (en)
French (fr)
Inventor
手島 博幸
渡辺 純一
伸一 和井
佐々木 淳
晶仁 水野
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US13/000,248 priority Critical patent/US20110177292A1/en
Priority to EP09766743.0A priority patent/EP2315508B1/en
Priority to JP2010518008A priority patent/JPWO2009154295A1/ja
Priority to CN2009801322669A priority patent/CN102132635A/zh
Publication of WO2009154295A1 publication Critical patent/WO2009154295A1/ja
Priority to US14/096,821 priority patent/US20140106129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/55Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/481Insulating layers on insulating parts, with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/0909Preformed cutting or breaking line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0029Etching of the substrate by chemical or physical means by laser ablation of inorganic insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the present invention relates to a ceramic aggregate substrate suitable for taking a large number of circuit boards from a ceramic sintered substrate, a manufacturing method thereof, a ceramic substrate divided from the ceramic aggregate substrate, and a ceramic circuit board using the ceramic substrate About.
  • Circuit boards used for semiconductor modules, power modules, etc. use ceramic substrates in terms of thermal conductivity, insulation, strength, etc., and metal circuit boards such as Cu and Al and metal heat sinks are used on the ceramic boards. Bonded to form a circuit board.
  • Alumina and aluminum nitride materials have been widely used as ceramic substrates, but recently, silicon nitride with high strength and improved thermal conductivity has been used so that it can be used in harsh environments. It was.
  • a metal plate such as a Cu plate is bonded to one or both surfaces of a ceramic aggregate substrate large enough to cut out a large number of the ceramic substrates by an active metal brazing method or a direct bonding method.
  • a method is known in which a metal circuit board is formed by etching or the like, a metal heat sink is formed, and then divided into predetermined ceramic circuit board sizes to obtain individual circuit boards. The division into the individual ceramic circuit boards is performed by forming a scribe (notch) on the surface of the ceramic aggregate substrate by laser processing or the like and applying a bending force to the scribe.
  • Patent Document 1 discloses a silicon nitride substrate obtained by forming a scribe on a silicon nitride sintered substrate and breaking it, and a method for manufacturing the same.
  • This silicon nitride substrate is obtained by forming a plurality of scribe holes on at least one side surface with, for example, a laser, and breaking along a line connecting the hole portions.
  • the maximum height of the concavo-convex part is 0.1 mm or less.
  • Patent Document 2 discloses a technique in which a laser beam is irradiated on the surface of a ceramic base material to form a groove-shaped scribe line, and a ceramic plate is formed by dividing along the scribe line. It is characterized in that a harmonic YAG laser having a wavelength of 250 nm or more and 600 nm or less is used as light, and that the surface layer portion irradiated with the laser light of the ceramic plate has a glassy thickness of 10 ⁇ m or less. This makes it possible to reduce the thickness of the heat-affected layer on the surface layer of the laser-processed portion and reduce the minute cracks that occur, and suppress the occurrence of cracks in the ceramic substrate when using the thermal cycle. You can do that.
  • Patent Document 3 discloses a technique for forming a separation line by a large number of overlapping concave portions when a groove-like separation line is formed by irradiating the surface of a ceramic substrate with laser light. ing.
  • the separation line is formed by recesses arranged at a processing pitch approximately equal to the processing diameter, and the depth of the recesses may be about 1/10 to 1/6 of the substrate thickness.
  • the ceramic substrate can be easily separated by the dividing line, and the processing time for laser scribing is reduced.
  • JP 2007-81024 (paragraphs 0005 to 0007) JP 2008-41945 (paragraph 0005) JP 2000-44344 (paragraphs 0008 to 0026)
  • a ceramic circuit board is subjected to a scribing process on a ceramic sintered substrate, and then a metal plate is bonded to form a metal plate in a desired circuit pattern, and then plated. Then, it is divided and formed, but it may be broken carelessly in the metal plate joining step before the division, which has been a problem in terms of yield. For this reason, there has been a demand for a scribing technique that can be divided well when divided, but exhibits such a dividing property that it is not divided when not intended. In addition, it has been desired that the substrate obtained by the desired division property has high dimensional accuracy and strength.
  • Patent Documents 1 and 2 exemplify techniques for preventing cracks and cracks in a ceramic substrate having side surfaces divided by scribing, but techniques for realizing the above-described splitting characteristics are disclosed. Absent. Patent Documents 1 and 2 describe that the YAG laser performs scribing, but the YAG laser has a shorter wavelength than that of the CO 2 laser and is suitable for precision processing. There is a problem that the processing efficiency is poor and the processing efficiency is inferior. In particular, in Patent Document 2, it is supposed that a wavelength shorter than the normally used 1064 nm wavelength is used, and it takes a considerable time to form a groove-shaped scribe line with this laser. It is not described at all what kind of characteristic groove is to be machined.
  • Patent Document 3 the processing time is shortened by forming a scribe line with a large number of overlapping concave portions. Specifically, what kind of groove is processed with what laser. It is not described at all. In the end, these prior art documents cannot be asserted, but it seems difficult to perform efficient and high-speed grooving applicable to industrial production. For this reason, in a ceramic sintered substrate with high hardness, it is common to form a scribe line with intermittent holes spaced at regular intervals.
  • a metal circuit board such as Cu or Al is provided on one surface of the ceramic aggregate substrate, and a metal heat sink such as Cu or Al is provided on the other surface to constitute a multi-piece ceramic circuit board.
  • the metal circuit board and the metal heat radiating plate are joined to almost the entire surface of one substrate area defined by the scribe lines by brazing or the like.
  • the heat affected zone is wide, and when the substrate is silicon nitride, the surface is oxidized or generated by the thermal energy of the laser.
  • melted and decomposed scattered materials such as oxide components including Si and free silicic acid (such as SiO 2 ) and sintering aid components scatter to the periphery of the holes.
  • oxide components including Si and free silicic acid (such as SiO 2 ) and sintering aid components scatter to the periphery of the holes.
  • Such an oxidized substrate surface may cause micro cracks, and it is difficult for the brazing material to adhere to the adhered portion. This may cause a decrease in bonding reliability and voids, resulting in poor bonding.
  • the brazing material may enter the intermittent holes, and in this case, it has been difficult to sufficiently remove the brazing material from the deep and rough holes.
  • a photoresist pattern having a predetermined pattern is formed on the metal circuit board, and a circuit pattern from which the predetermined metal board and the brazing material are removed is formed by etching, and Ni-P plating or the like is applied on the circuit pattern. It is generally done.
  • the substrate in order to activate the surface to be plated, the substrate is immersed in a palladium catalyst solution, and then the palladium is removed.
  • the palladium adhering to the brazing material is inhibited from precipitation in an acidic solution. It tends to remain.
  • brazing material and palladium become residues and remain on the fractured surface, which causes dielectric breakdown.
  • the present invention provides a ceramic assembly in which a scribe line is formed so that a good quality ceramic circuit board can be obtained while being able to be divided satisfactorily when divided, but difficult to be divided carelessly when not divided. It is an object of the present invention to provide a substrate, a manufacturing method thereof, a ceramic substrate divided from the substrate and having excellent dimensional accuracy and bending strength, and a ceramic circuit substrate having excellent withstand voltage.
  • the present invention is a ceramic aggregate substrate in which a continuous groove for division for taking a large number of circuit boards is provided by laser processing on one side or both sides of a ceramic sintered substrate, and at least one continuous groove is
  • the groove depth difference ⁇ d between the maximum depth portion and the minimum depth portion in the groove length direction is characterized by 10 ⁇ m ⁇ ⁇ d ⁇ 50 ⁇ m.
  • the present invention also provides a ceramic aggregate substrate in which a continuous groove for dividing a plurality of circuit boards is provided on one side or both sides of a sintered ceramic substrate by laser processing, and at least one of the continuous grooves Is characterized in that the groove depth at the end is minimized.
  • the said edge part can be made into the non-product area
  • the above-mentioned groove depth is obtained by taking numerical values of the maximum depth and the minimum depth at an arbitrary position when the depth is measured continuously in the length direction for at least one arbitrary groove. If it is good.
  • the continuous groove of the present invention has a groove depth of dm and a substrate thickness of B in the cross section at the maximum depth portion of the groove, and the maximum groove depth dm is B / 2 or less, Further, the groove width c is 0.2 mm or less, and the width c1 of the heat-affected layer formed on both sides of the groove is 1.5 times or less of the groove width c.
  • the width c1 of the heat-affected layer is set such that, for example, the ceramic substrate is silicon nitride, and the amount of the auxiliary agent as a constituent component is 3 wt% MgO-2 wt% Y 2 O 3 , as shown in Examples described later.
  • the surface oxygen amount can be in the range of 5 wt% or more. Therefore, the oxygen amount is 3.1 times or more of the auxiliary agent addition amount. Moreover, in the alumina substrate of oxide ceramics, the oxygen content is about 47 wt%, and the initial oxygen content is high. Therefore, the fluctuation amount of the oxygen amount in the heat-affected zone after laser processing is not large, and is 1.2. It can be made into the range of 56.3 wt% or more of about twice. Moreover, in the arbitrary cross section of the said continuous groove
  • ⁇ / B ⁇ 0.3 in the range of 0.1 ⁇ dm / B ⁇ 0.5, where ⁇ is the curvature radius of the bottom.
  • the ceramic may be silicon nitride, and the continuous groove may be formed by irradiation with a fiber laser.
  • channel in this invention may be formed not only in the single side
  • a method for manufacturing the ceramic aggregate substrate according to any one of the above, wherein a continuous laser for dividing is formed by scanning a fiber laser on a surface of the ceramic sintered substrate with a galvanometer mirror or a polygon mirror. Forming the continuous groove by combining the mirror scanning and the movement of the table for fixing the substrate, or forming the continuous groove only by moving the table.
  • This is a method for manufacturing a ceramic aggregate substrate.
  • the present invention is a ceramic substrate divided from a ceramic aggregate substrate in which a continuous groove for dividing a plurality of circuit boards is provided on one side or both sides of a sintered ceramic substrate by laser processing,
  • One side surface is a surface formed by being divided along the continuous groove, and in the arithmetic average roughness Ra of the side surface, the arithmetic average roughness Ra2 of the surface of the continuous groove processed portion is the surface of the fracture portion surface.
  • Roughness Arithmetic mean roughness Ra1 is smaller.
  • the difference between Ra1 and Ra2 is preferably 10 ⁇ m or less. More preferably, it is 5 ⁇ m or less.
  • the difference between the maximum and the minimum of the unevenness of the broken line connecting the bottom of the continuous groove is 20 ⁇ m or less. More preferably, it is 15 ⁇ m or less.
  • the ceramic may be silicon nitride, and the continuous groove may be formed by irradiation with a fiber laser.
  • the ceramic circuit board of the present invention is a ceramic circuit board comprising any one of the ceramic substrates described above, a metal circuit board provided on one surface of the ceramic substrate, and a metal heat sink provided on the other surface.
  • the metal circuit board is provided on the groove portion side of the continuous groove trace, and the metal heat radiating plate is provided on the fracture portion side.
  • the continuous grooves for division are provided by laser processing, so when stress is applied from the outside, cracks may develop from the groove portions and may easily break. It is preferable to have a high fracture toughness value K 1c .
  • the fracture toughness value of the ceramic used and the stability of the wiring formation process are closely related.
  • a high pressure is applied to the aggregate substrate. That is, an etching resist is applied to the surface of the Cu plate for the joined body in which the Cu plate is brazed to the front and back of the aggregate substrate. The process of making it adhere corresponds to this.
  • the etching resist a film resist or a liquid resist is used, and in the former case, the film resist is brought into close contact with the surface of the Cu plate of the joined body by passing the film resist and the joined body through a gap between the thermocompression rollers using a pressure laminator.
  • the latter uses a screen plate on which a predetermined wiring pattern is formed in advance, and a liquid resist is put on this printing surface, and a joined body is arranged on the back side thereof, and a printing squeegee is loaded with a certain printing pressure to screen. By moving the plate surface, the liquid resist is transferred to the Cu plate surface of the joined body.
  • the fracture toughness value of the aggregate substrate of the present invention is 3.5 MPa.
  • the fracture toughness value of the ceramic used for the aggregate substrate of the present invention is 3.5 MPa. m 1/2 or more, and 5.0 Pa. from the viewpoint of ensuring mass productivity and quality stability. m 1/2 or more is desirable.
  • the ceramic used for the ceramic aggregate substrate of the present invention is preferably composed mainly of silicon nitride.
  • the evaluation method of the fracture toughness value K 1c of the ceramic substrate is # 300, # 600, # 1000 and # 2000 and SiC polishing paper in order, followed by mirror polishing with 0.5 ⁇ m diamond polishing paste and buffing cloth.
  • the substrate material was measured by IF method (Indentation Fracture method) according to JIS-R1607. The measurement conditions were a diamond indenter, a load of 2 kgf, and an indentation time of 30 seconds.
  • the present invention it is possible to provide a high-speed, high-accuracy manufacturing method for a ceramic aggregate substrate having a good splitting property that can be satisfactorily divided when divided, but difficult to be divided carelessly when not divided.
  • a ceramic substrate with high dimensional accuracy and bending strength and a ceramic circuit substrate with high withstand voltage performance can be provided.
  • summary of the ceramic circuit board of this invention. 1 is a cross-sectional view of a scribe groove according to the present invention.
  • the figure which shows the groove depth form example of the scribe groove
  • FIG. The figure which shows the width
  • FIG. 1 is a schematic view showing an example of a ceramic aggregate substrate (hereinafter simply abbreviated as an aggregate substrate) 10 of the present invention.
  • the collective substrate 10 has a grid-like scribe line 20 formed on a silicon nitride sintered plate (hereinafter sometimes simply referred to as a sintered plate) 11 having a size of 130 mm ⁇ 100 mm ⁇ 0.32 mm. Therefore, four ceramic substrates 1 each having a size of 50 mm ⁇ 40 mm can be divided.
  • the scribe line 20 is formed by three continuous grooves (scribe grooves) 21 (21x, 21y) in the X and Y directions, and four locations in the center part surrounded by the scribe grooves 21 are the ceramic substrate 1 of the present invention. It is said.
  • the other outer peripheral portion is a non-product part 2 used when handling the collective substrate 10 or the like, and is separated and eliminated at the same time when the ceramic substrate 1 is divided and taken out.
  • the aggregate substrate 10 is formed with a scribe groove 21 having characteristics such as groove depth and groove surface properties.
  • the method for manufacturing the aggregate substrate 10 of the present invention is a method for forming the scribe groove 21. It has the characteristics. Note that aluminum nitride, alumina, or the like can also be used as the material of the collective substrate 10. Further, the size of the collective substrate 10 is not limited to the above example.
  • the aggregate substrate 10 may be a sintered plate size, but depending on the limitation of the processing dimensional accuracy in the manufacturing process, the aggregate substrate 10 (130 mm ⁇ 100 mm) from the sintered plate 11 (size larger than 130 mm ⁇ 100 mm). ) May be cut out with high precision by laser processing, and the four sides of the sintered body may be removed in advance.
  • the scribe grooves in a lattice shape to obtain a rectangular substrate, the invention is not limited to this. For example, a triangular or polygonal substrate or a curved scribe groove may be used, and a substrate having an arbitrary shape may be used.
  • the ceramic circuit board 12 of the present invention has a metal circuit board 3 provided on one surface of the ceramic substrate 1 divided from the collective substrate 10 and a metal heat sink 4 provided on the other surface. It comprises.
  • the metal plates 3 and 4 included in the ceramic circuit board 12 are bonded to each other by forming a scribe groove 21 on the sintered plate 11 and then performing a liquid honing process on the substrate surface by brazing or the like. Therefore, a predetermined process such as etching is performed, but the scribe groove 21 may be formed after the metal plates 3 and 4 are joined or processed.
  • the structure of the ceramic circuit board 12 of the present invention is such that the metal circuit board 3 is joined to the surface (groove part side) on the side where the scribe groove 21 is formed, and the metal heat sink 4 is joined to the opposite surface (breaking part side). Yes.
  • a semiconductor element is mounted on a metal circuit board 3 on which a circuit pattern shown in FIG.
  • the thickness of the metal circuit board 3 is equal to the thickness of the heat radiating metal board 4 or A thicker circuit board 12 is often used.
  • the ceramic substrate 1 or the collective substrate 10 may be deformed into a convex shape on the heat radiating metal plate 4 side after bonding, but in the case of such a warp form, the scribe line 20 is formed on the heat radiating metal plate 4 side.
  • the warp sometimes breaks the scribe line 20 at an unexpected stage.
  • the ceramic circuit board 12 according to the present invention is effective in preventing such cleavage defects in manufacturing.
  • the scribe line 20 in the collective substrate 10 of the present invention is composed of scribe grooves 21.
  • CO 2 lasers having good absorption characteristics have been mainly used for efficient laser scribing of sintered substrates made of alumina or aluminum nitride.
  • the area of the irradiated surface is large due to the fact that a small condensing diameter cannot be obtained and the focal depth cannot be increased, and the range of the heat-affected layer that has deteriorated due to laser irradiation and has become weaker becomes larger.
  • problems such as an increase in the number of microcracks that occur, and the scribe line has a configuration of intermittent holes in which a large number of holes are connected.
  • the sintered silicon nitride plate which is mainly targeted in the present invention, is higher in strength and toughness than the sintered plate of alumina or aluminum nitride, it is not continuous in the form of interrupted holes to ensure division. It was desired to adopt a groove configuration.
  • a fiber laser is scanned with a galvano mirror or a polygon mirror on the surface of the ceramic sintered substrate to form a continuous groove for division, or the mirror scan and the substrate are fixed.
  • the fiber laser is a laser having a waveguide as a laser oscillator, although either the step of forming the continuous groove by the combined use of table movement or the step of forming the continuous groove only by moving the table is preferable. It is. It has a structure in which the laser medium (YAG crystal) of YAG laser, which is most popular as an industrial laser, is made into a fiber by making it thin and long.
  • the ability to cool a solid-state laser can be expressed by S / V obtained by dividing the surface area (S) of the laser medium by the volume (V), and the ability to cool the solid-state laser can be represented by r (radius) or L ( It can be increased by reducing (length / thickness).
  • S surface area
  • V volume
  • r radius
  • L length
  • the fiber laser that can take up the heat radiation area in the longitudinal direction requires only a slight cooling system even at high power, and the thermal lens effect that has been a problem with conventional high power lasers (the problem of beam quality degradation due to the temperature gradient generated inside the crystal) There is no. In fact, the core of the fiber through which light propagates is very thin, a few microns.
  • a high-order mode does not stand up and propagates in a single mode necessary for stable laser oscillation. .
  • This high-level optical amplification in a very thin waveguide of several microns makes it possible to extract energy stored in the laser medium with high efficiency and high efficiency with high output and high quality.
  • Brightness laser can be oscillated with high efficiency.
  • the fiber laser beam characteristics are such that the fiber diameter, which affects the light collection, is thin, single-mode optical transmission is performed, and has a beam intensity characteristic close to that of a carbon dioxide laser during laser processing.
  • the fiber laser transmitter uses a double clad fiber consisting of a core and an outer layer, and the core fiber is a laser medium doped with a rare earth element such as Yb or Er.
  • LD Laser Diode
  • excitation light introduced into the inner cladding layer is transmitted through this fiber to excite the core fiber, and further, the diffraction grating embedded at both ends of this fiber causes FBG (Fiber Bragg Grating) principle.
  • FBG Fiber Bragg Grating
  • the core fiber diameter is about 10 ⁇ m, and the beam is transmitted almost in single mode.
  • Er ions can be incident on 980 nm light as excitation light in an optical fiber to amplify 1550 nm light.
  • a semiconductor laser is used as the excitation light source, 1550 nm light is resonated between a pair of mirrors through a WDM (Wavelength Division Multiplexing) coupler, and an output laser is output by a polarization beam splitter (PBS). It has gained.
  • the fiber laser is an effective device that can perform simple and stable laser oscillation and can generate a high-frequency ultrashort pulse.
  • fiber lasers are summarized as follows. (1) Significant downsizing is possible With conventional bulk type lasers, a linear space is required for light to pass. On the other hand, fiber lasers are used by wrapping fibers to keep the optical path length unchanged. However, the space required for laser oscillation can be greatly reduced. (2) Output stability For laser oscillation, it is necessary that a standing wave is generated in the resonator and the position of the mirror matches the position of the node of the standing wave. For this reason, in the case of a bulk type laser, the positional deviation of the optical component due to temperature change and vibration becomes a problem. Advanced technology and knowledge are required to adjust the optical system of a bulk laser.
  • the fiber laser can solve the positional shift problem by using a connection technique such as a fiber coupler or fusion, and can stably obtain laser oscillation.
  • a connection technique such as a fiber coupler or fusion
  • the modulation pulse output can operate an arbitrary pulse waveform of 0 to 100% at a high frequency.
  • (4) Higher power output By adding a power module for controlling laser oscillation, it is possible to expand the output range to the kW class. In addition, (5) almost maintenance-free, (6) few consumables, (7) low running cost, (8) low initial equipment burden, and the like.
  • fiber lasers have the above-described characteristics compared to conventional YAG lasers and CO 2 gas lasers, fiber lasers can be expected as processing methods that increase industrial utility value.
  • FIG. 10 is a diagram showing an example of the fracture probability on the processing front and back surfaces of the ceramic substrate that is crushed by the fiber laser used in the present invention. It shows that there is little decrease in the strength of the substrate compared to the conventional CO 2 laser method.
  • the collective substrate 10 of the present invention is also intended to be produced with good cost performance, and the scribe groove 21 must be processed efficiently. Therefore, in the present invention, the scribe groove 21 is formed by processing with a fiber laser.
  • the fiber laser has the characteristics that it is extremely light-condensing and can focus on a small spot, has a long focal depth, has a high conversion efficiency, and has a high output compared to a CO 2 laser and a YAG laser. ing.
  • a substantially continuous groove having a substantially constant cross-sectional shape can be formed at high speed and with high accuracy.
  • the groove depth can be controlled, the narrow scribe groove 21 can be formed so that the surface roughness of the laser irradiation surface becomes small, and the heat-affected layer is altered by the laser irradiation around the scribe groove 21.
  • the range of c1 is narrow, and the formation of microcracks due to heat accumulation can be suppressed.
  • the use of a fiber laser is considered to be an optimal means at present, but is not limited to this as long as equivalent quality and characteristics can be obtained.
  • the collective substrate 10 of the present invention is not only divided well when divided, but also when not divided, for example, when the collective substrate 10 is being conveyed by a conveyor or when handling, metal plate joining process, warpage amount inspection
  • the ceramic substrate 1 after division has a dimensional accuracy, strength, and withstand voltage resistance. It is also characterized by having a quality-related characteristic of being good. That is, the scribe groove 21 according to the present invention is formed so that a part having a different depth can be formed from the surface of the splitting property, and the groove width and groove surface roughness are reduced from the viewpoint of quality characteristics. It is formed as follows.
  • the quality problem is related to the ceramic circuit board 12 provided with the ceramic substrate 1.
  • the scribe groove 21 observed immediately after laser processing has a reference depth dm that can be divided satisfactorily at the time of division, but a part of the groove is slightly shallower than the reference depth dm. Formed. That is, the scribe groove 21 has a reference groove depth portion that allows the scribe groove 21 to be divided without any problem when a predetermined bending load is applied at the time of division, and the scribe groove 21 is not carelessly divided at other times. It has a shallow groove portion that acts as a resistance portion. The shape, dimensions, etc.
  • the depth difference ⁇ d between the maximum depth portion and the minimum depth portion of the groove is preferably 10 ⁇ m or more and 50 ⁇ m or less from the evaluation test 1 described later.
  • the reference depth dm may be appropriately set in accordance with the thickness and material of the sintered plate 11, but if the depth is increased, the reference depth dm is easily divided but the risk of inadvertent breakage increases.
  • the groove width is inevitably widened, so that the dimensional accuracy when the ceramic substrate is formed tends to be lowered, and the processing time becomes longer. .
  • the scribe is a continuous groove with high accuracy, it is sufficient to provide the scribe only on one side.
  • the reference depth dm can be made shallower, for example, about 1/10 of the thickness of the collective substrate, but the radius of curvature ⁇ of the groove bottom portion is made small so that the division can be performed satisfactorily. It is better to concentrate the stress. Specifically, it is preferable to satisfy ⁇ / B ⁇ 0.3 in the range of 0.1 ⁇ dm / B ⁇ 0.5, as will be considered from the evaluation test 2 described later. In order to reduce the curvature radius ⁇ , it is preferable to perform a process for narrowing the scribe groove width c.
  • the groove width c is preferably 0.2 mm or less.
  • the groove shape of the substantially V-shaped and without the opening angle 2 [Theta] 1 preferably be below 120 degrees.
  • the heat-affected layer c1 is defined by the degree of surface oxidation, that is, the amount of surface oxygen. That is, as shown in FIG. 9, the amount of surface oxygen is sequentially analyzed in the direction crossing the cross section of the scribe groove 21 (left and right direction in FIG. 3), and the amount of surface oxygen is 5 wt% (auxiliary agent (oxide) is 3%).
  • auxiliary agent oxygen
  • Si 3 N 4 containing a large amount of auxiliary agent may contain 5% or more even if it is not affected by heat.
  • the range that is equal to or greater than the doubled surface oxygen amount was defined as the heat-affected layer c1.
  • the scribe groove 21 is observed as a black part according to visual observation and optical microscope observation.
  • the heat-affected zone can be observed as a discolored portion even on the outside of the groove with an optical microscope, and a raised portion 30 on both sides of the groove (the raised portion cannot be confirmed with an optical microscope) may occur.
  • the outer heat-affected layer cannot always be clearly confirmed with an optical microscope. Therefore, in order to capture a heat-affected layer that cannot be confirmed with an optical microscope, the width c1 of the heat-affected layer of the present invention is defined by the surface oxygen amount described above.
  • the substrate thickness B is preferably 0.2 mm to 1.0 mm. Furthermore, 0.25 mm to 0.65 mm is preferable.
  • the dielectric breakdown voltage insulation breakdown voltage
  • the thickness of the ceramic substrate increases due to the difference in thermal conductivity between the metal plate constituting the circuit and the ceramic substrate responsible for insulation. As a result, the heat dissipation is hindered due to the law process, and the thermal resistance of the circuit board increases.
  • the raw material cost to be used and the drying at the time of sheet forming are difficult, it is necessary to enlarge the drying zone of the doctor blade forming machine, which increases the product cost.
  • silicon nitride is used as a main raw material
  • 3 wt% MgO and 2 wt% Y 2 O 3 are used as sintering aids, fired at 1850 ° C. ⁇ 5 h, and the above-mentioned 130 mm ⁇ 100 mm ⁇ 0.32 mmt
  • a sintered plate 11 having a size is prepared. The sintered plate 11 is placed on a work table, and a fiber laser irradiation unit is installed above the sintered plate 11.
  • a fiber core doped with an amplification medium for example, Yb
  • an amplification medium for example, Yb
  • the fiber laser irradiation unit has an XY biaxial galvanometer mirror 5 or polygon mirror and a condensing lens 6 composed of an f ⁇ lens.
  • the fiber laser 7 is deflected by the galvanometer mirror 5 after being emitted from the laser oscillator, and collected. Irradiation is performed so that the surface of the sintered plate 11 is focused by the optical lens 6.
  • the f ⁇ lens is a lens that is set so that the scanning speed is constant between the lens periphery and the center. Therefore, scribed grooves to be formed in the transverse (X) direction of the sintered plate 11 as shown in FIG. 1 21x is, X-axis laser beam 7 in the direction of arrow A by a galvanometer mirror 5x is rotated theta 2 is constant speed f ⁇ Are scanned to form a continuous groove having a predetermined property.
  • a Y-axis galvanometer mirror (not shown) is rotated by a predetermined angle to move the irradiation position by a predetermined amount in the vertical (Y) direction to form a Y-direction scribe groove 21y.
  • the laser beam 7 is scanned in the direction of arrow B in parallel with the scribe groove 21x to form a new scribe groove 21x.
  • all the X-direction scribe grooves 21x and the Y-direction scribe grooves 21y are formed to form the collective substrate 10.
  • the condenser lens 6 having a specification in which the laser beam 7 is irradiated perpendicularly to the sintered plate 11 at the central portion in the length direction of the scribe groove 21 but is irradiated radially at both ends, If the scribe groove 21 is installed above the central portion of the connecting plate 11 by a focal length, the scribe groove 21 is formed with a groove having substantially the same depth within the vertical light irradiation range on the center side of the groove length. Since the focal point is deviated in the range irradiated with, the groove becomes shallower toward the end.
  • FIG. 5 shows an example of groove depth measurement data of the scribe groove 21 formed in this way.
  • FIG. 5 shows the groove depth distribution of an arbitrary one (21x) of 130 mm long scribe grooves formed by continuous machining. Points C and D shown in FIGS. 4 and 5 are both end points of the continuous groove.
  • the difference ⁇ d in the groove depth between the central portion and both end portions is 10 ⁇ m or more and 50 ⁇ m or less as described above by using the condenser lens 6 having a different focal length or changing the installation height f of the condenser lens 6. Can be controlled.
  • the actual depth difference may be set in accordance with the strength and thickness of the sintered plate 11 and the reference depth dm and length of the groove 21 to be formed.
  • the scribe grooves 21 are set to have a reference depth dm at the four sides of the ceramic substrate 1 as shown in FIG.
  • the shallow groove portion 214 may be formed in the end surplus portion that becomes the non-product portion 2.
  • the side surface of the ceramic substrate 1 that has been separately formed is divided from the uniform depth portion of the scribe groove, and the quality of the ceramic substrate 1 varies due to substantially equal surface roughness and other surface properties. Can be suppressed. Also, if the groove depth is shallow, cracks may occur on the dividing surface of the non-product portion 2, burrs may be generated, and even if the groove is separated from the scribe groove 21, it may break. The possibility of damage to the ceramic substrate 1 can be reduced. Furthermore, although the end portion is easily subjected to an external force during handling, it is possible to reduce the occurrence of inadvertent division because the strength is relatively maintained by the shallow groove portion 214.
  • the position of the shallow groove portion 214 does not necessarily have to be at both ends of the scribe groove 21, and is not particularly limited, such as having only one end portion or an arbitrary position in the middle of the groove.
  • it can be performed by changing the installation position of the condensing lens 6 in the groove direction. If the condensing lens 6 is shifted to the one end portion side of the scribe groove 21, FIG. As shown in b), the reference depth is dm from the one end to the center, and the other end is a shallow groove. This may be applied when the scribe groove length is short.
  • the groove depth can be adjusted by changing the output of the laser, etc., and can be used in combination with the scanning method of the galvanometer mirror 5 or by applying it alone, as shown in FIG. 6 (c). It is also possible to form a shallow groove portion. However, in the present invention, it is not essential to intentionally make a part of the groove shallow, and as a result, the depth difference between the maximum depth part and the minimum depth part in the length direction of the groove is 10 to 50 ⁇ m. It is sufficient if it is within the range.
  • the sintered plate 11 is fixed and the laser beam 7 is scanned and moved.
  • the sintered plate 11 is also placed on a uniaxial or biaxial table so that the sintered plate 11 is also moved.
  • the scribe groove 21 may be formed by a combined operation of the laser beam 7 and the sintered plate 11.
  • the movement of the laser beam 7 in the vertical (Y) direction by the Y-axis galvanometer mirror may be replaced by moving the sintered plate 11 in the Y-axis direction. If it does in this way, adjustment operations, such as position alignment for scribe groove formation, can be made easy.
  • the laser beam 7 can be irradiated to a fixed point without being deflected by the galvanometer mirror 5, and the sintered plate 11 can be moved to the X and Y axes to form the scribe groove 21.
  • the machining time is defined by the reciprocating speed of the mechanical table, but a deceleration operation is indispensable when switching the moving direction of the table having a large inertia, which is inferior in terms of high-speed machining.
  • the mechanism of the laser optical system can be simplified.
  • the formation of the shallow groove partway must be performed by changing the laser output at a predetermined position, which is troublesome in terms of control.
  • the lens 6 having a small focal length as the condenser lens 6 as means for forming the shallow groove portion 214 at an arbitrary position.
  • the shallow groove 214 can be formed at an arbitrary position, for example, at the intersection of 21x and 21y of the scribe groove 21 to prevent the formation of a portion where the groove depth becomes extremely deep.
  • it is possible to form a scribe groove by scanning the galvanometer mirror or the like to move the laser light and moving the table.
  • a groove can be formed at a specific position such as marking by scanning and moving the laser beam.
  • the ceramic substrate 1 divided from the aggregate substrate 10 has at least one side surface as a divided surface of the scribe groove 21, and normally this side surface is not processed again, the surface properties of the divided surface are the dimensional accuracy and bending of the ceramic substrate 1. It affects quality such as strength and dielectric strength.
  • the dividing surface is composed of a laser processing surface 211 of the scribe groove 21 and a fractured surface 212 at the time of dividing.
  • the laser scribe according to the present invention is performed by oscillating a high-power pulse at a high period, for example, oscillating at 50 kHz.
  • the shift amount (pitch) in the moving direction is 2 ⁇ m, and continuous grooves with small irregularities on the side and bottom surfaces are formed.
  • the scribe groove 21 is ruptured from the bottom, but the bottom of the scribe groove is smooth with few irregularities.
  • the line portion 213 is substantially linear with a small amount fr of vertical and horizontal blurring. As a result, the deflection of the breaking force is lost, and the deterioration of the dimensional accuracy of the ceramic substrate 1, the increase in surface roughness, and the decrease in strength are suppressed.
  • the scribing process was performed with the moving speed changed from 80 to 120 mm / sec, but the result did not change.
  • the ceramic substrate 1 has a good dimensional accuracy of the divided surface, that is, the side surface. Further, after the ceramic substrate 1 is made into the circuit substrate 12, it is exposed to thermal shock and deformation due to thermal cycle, and therefore bending stress is generated. Therefore, it is desirable that the ceramic substrate 1 itself has a high bending strength. For this purpose, it is preferable that the surface roughness of the divided surface is small and the heat-affected layer (such as microcracks) is small.
  • the split surface is composed of a laser-machined surface 211 and a fractured surface 212 fractured from the bottom thereof, and it is preferable that both surfaces have a smaller surface roughness, but the surface properties of the fractured surface are almost determined by the material ( In particular, since the silicon nitride particles have a columnar particle shape, the fracture surface is likely to be rough compared to alumina or aluminum nitride), and the smaller the surface roughness of the laser processed surface, the better the bending strength.
  • the division surface of the ceramic substrate 1 has a surface roughness of the laser processing portion smaller than the surface roughness of the fracture surface, and the break line is smooth, Less thermal damage during laser processing. Thereby, the decreasing rate of bending strength is suppressed.
  • the rate of decrease in bending strength here is calculated on the basis of the bending strength of a ceramic substrate in which all side surfaces are machined to extremely reduce irregularities and surface roughness.
  • a scribe groove was formed with a fiber laser, and the groove was cut to produce a test piece having a length of 40 mm ⁇ width of 10 mm ⁇ thickness of 0.32 mmt.
  • the strength test was a four-point bending test in which the surface side on which the scribe groove was formed was pulled.
  • the standard strength test piece is a silicon nitride bending test piece of the same sintered lot of 40 mm ⁇ 10 mm ⁇ 0.32 mmt prepared by slicer processing and tested.
  • the specimen length and width were the same for the samples of silicon nitride substrates having different thicknesses.
  • the distance between the upper fulcrums was 10 mm
  • the distance between the lower fulcrums was 30 mm
  • the crosshead speed was 0.5 mm / min.
  • region was very small, it measured by the non-contact using the laser microscope.
  • the ceramic circuit board 1 of this invention has the metal plates 3 and 4 for circuits and heat dissipation joined to both surfaces, its withstand voltage property is favorable. This is because the brazing material applied to the surface of the sintered plate may unintentionally enter the scribe groove 21 when the metal plate is joined after the scribing process as described above. This is because the surface irregularities are small and can be easily removed.
  • Ni plating is applied to the surface after the metal plates 3 and 4 are joined. As a result, the palladium residue is spotted on the brazing filler metal part due to the immersion and removal process in the palladium catalyst solution. And may adhere to the brazing material that has entered the scribe groove 21.
  • the brazing material is easily removed, so that the palladium is also removed at this time and does not remain.
  • Si in the sintered plate is scattered during scribing and Si or its oxide (SiO 2 portion, etc.) adheres to the periphery of the substrate, it is difficult to attach a brazing material to these attached portions.
  • 3 and 4 have poor bonding, but in the groove processing by a fiber laser, the range of the brazed bonding failure along the scribe groove of the metal plate is small because the melt is less scattered and the range of the heat affected zone is narrow. As a result, the breakdown voltage is prevented from deteriorating.
  • there is a method of cleaning the surface of the collective substrate 10 by blasting or honing after the laser processing but it is difficult to sufficiently remove the deposits on the scribe divided grooves 21.
  • the bending strength of the used sintered plate was 750 MPa on the average of the sintered lots, and the fracture toughness value was 6.5 MPam 1/2 .
  • the wavelength of the fiber laser 7 was 1.06 ⁇ m, and irradiation was performed at a repetition rate of 100 mm / sec while moving at 50 KHz.
  • the condensing lens 6 is arranged above the central portion of the scribe line 20, arranged above one end portion, or using the condensing lens 6 having a different focal length so that the shallow groove portion is formed. .
  • Each scribe groove 21 was processed with specifications such that the groove width c was 0.1 mm. As shown in FIG.
  • the groove depth was observed from the side surface of the break line 213 from the substrate surface, and the maximum groove depth dmax and the minimum groove depth dmin were measured. .
  • the above operation is carried out on three sintered plates, the groove depth is measured for nine scribe grooves, and then the feel when each scribe groove 21 is divided by hand and visual observation of the divided surface are performed. Divisibility was evaluated based on this.
  • the groove depth shown in Table 1 is an average value of nine grooves formed under the same conditions, and a typical situation was shown in the division property.
  • the scribe groove 21x is formed under the same conditions, the groove depth is measured in the same manner, and further divided by hand.
  • the splitting property was evaluated on the basis of the touch and the visual observation of the split surface. Separately from the above evaluation, one grooving substrate was prepared, and it was confirmed by a drop test to a concrete floor whether cracks or cracks occurred in the scribe portion. Even if a substrate with a scribe line is dropped on the floor due to a handling error, it can be used as a product as long as no crack is generated in the scribe groove, and therefore, this is performed from the viewpoint of workability and yield.
  • Examples 1 to 4 and Comparative Examples 1 and 2 are cases where the target thickness of the substrate is 0.32 mm. However, it was confirmed that Examples 1 to 4 could be divided without any problem as a result of division by hand.
  • Comparative Example 1 had ⁇ d of 50 ⁇ m or more, and Comparative Example 2 had ⁇ d of 10 ⁇ m or less.
  • the fracture surface portion at the shallow groove portion had large irregularities, and the chipping occurred.
  • channel was recognized. As described above, ⁇ d increases as the maximum groove depth increases, and ⁇ d decreases as the maximum groove depth decreases.
  • Examples 5 and 6 and Examples 7 and 8 are cases of substrate thicknesses of 0.2 mm and 0.63 mm, respectively. Although it was confirmed that the substrate can be divided with a relatively light force at a thin 0.2 mm thickness, in Comparative Example 3 in which ⁇ d is smaller than 10 ⁇ m, there is no problem in the division property, but the scribe portion was dropped by the impact of the drop test on the concrete floor. At the center, a crack occurs, which is problematic in terms of workability (ease of handling) and yield.
  • the substrate having a thickness of 0.63 mm is somewhat resistant to division, but no problem was found in the properties of the division surface.
  • ⁇ d is greater than 50 ⁇ m
  • the unevenness of the fracture surface portion in the shallow groove portion was considerably large, which adversely affects the dimensional accuracy after division.
  • the depth difference ⁇ d between the maximum depth portion and the minimum depth portion of the groove is preferably 10 ⁇ m or more and 50 ⁇ m or less regardless of the substrate thickness. That is, if it is smaller than 10 ⁇ m, the action as the resistance portion is weakened, and if it is larger than 50 ⁇ m, there are cases where it cannot be divided satisfactorily during division.
  • Evaluation test 2 The splitting ability due to the difference in properties such as the reference depth dm, the groove width c, the bottom curvature radius ⁇ of the scribe groove 21 was evaluated. Table 2 shows the data.
  • a sintered plate similar to that used in the evaluation test 1 was prepared, and a scribe groove similar to that shown in FIG. 1 was formed in both 21XY directions using the same fiber laser, and the X-direction scribe groove 21x was divided by hand. .
  • the sintered plate is placed on an XY biaxial table, the fiber laser beam 7 is irradiated to a fixed point without being scanned by the galvanometer mirror 5, the sintered plate is moved to the X-direction scribe line, and the shallow groove portion 214 is not provided.
  • the reference depth dm and the groove width c are different by changing the irradiation conditions such as the laser intensity, the spot diameter, and the processing speed for each of the three sintered plates and the point where the scribe groove 21 having the reference depth dm is formed in the XY direction.
  • the evaluation test 1 is the same as the evaluation test 1 except that the scribe groove 21 is formed.
  • Sample Nos. Shown in Table 2 represent groups formed under the same conditions, and were divided by hand with respect to three sintered plates, that is, nine X-direction scribe grooves 21x, and did not break along the scribe lines. The occurrence of cracks and burrs on the split surface and the case was visually observed and evaluated as splittability.
  • Sample No. Nos. 1 to 5 were processed with a groove width c aimed at 0.2 mm.
  • Nos. 6 to 11 aim for 0.13 mm.
  • Nos. 12 to 17 aim for 0.1 mm.
  • No. 18 to 23 are aimed at 0.07mm. 24 to 29 were processed with an aim of 0.05 mm.
  • the scribe groove shape of each sample is measured by the X-direction scribe groove 21x of one sintered plate arbitrarily selected from the three sintered plates formed with the scribe grooves, and the XY at the center of the sintered plate.
  • a two-dimensional groove cross-sectional form was measured and evaluated using a laser displacement meter at a location about 10 mm away from the intersection of the scribe grooves.
  • channel form was calculated
  • the ⁇ dm of 1 was 52 ⁇ m (0.052 mm). The other ⁇ dm was adjusted in the range of 10 to 50 ⁇ m.
  • the division failure is indicated by Sample No. 1, 6, 12, 18, 24, 30, 42, which have a larger value of ⁇ / B and a value of dm / B than other samples processed to have the same groove width.
  • the characteristic that is small is seen.
  • No. 30 is considered to be affected by the large positional deviation amount e from the groove width center of the deepest groove. From this, it is considered that the positional deviation amount e from the center is preferably c / 4 or less.
  • the e value and the c1 value are only those processed under the special irradiation conditions for seeing the influence of the e or c1 described above. It is confirmed that c1 is within 1.5c and e is within c / 4. Moreover, about the sample whose dm / B value exceeds 0.5, there existed the touch which seems to be broken carelessly at the time of handling, such as a metal plate joining process. Also from this, it is considered that the value of dm / B is preferably 0.5 or less.
  • Table 3 shows the data. Using the long sintered plate divided in the X direction after the evaluation test 2, the Y-direction scribe groove 21y is divided by hand to make a ceramic substrate, and the dimensional accuracy, bending strength, arithmetic average roughness of the divided surface Ra and the like were measured.
  • the sample No. in Table 3 corresponds to the sample No. shown in Table 2 and indicates a ceramic substrate processed under the same or the same conditions.
  • the process capability was calculated and evaluated from the result of measuring with a caliper on a total of 12 ceramic substrates (50 ⁇ 40 mm size, allowable dimensional tolerance ⁇ 0.1 mm) formed by division.
  • the bending strength was evaluated by separately preparing the test piece size described above.
  • the measurement of the roughness of the surface of the dividing surface is for one surface of the dividing surface at the location where the groove shape was measured in the evaluation test 2, and the laser processing surface is long in the vicinity of the intermediate portion of the reference groove depth dm as shown in FIG.
  • the fracture surface was measured near the middle of the fracture surface depth in the length direction (220 direction), and the fracture line was measured near the boundary between the laser processed surface and the fracture surface.
  • the process capability with a tolerance of ⁇ 0.1 mm is considered to be 1.3 or better, and the bending strength is allowed to be 5% or less.
  • the process capability (Cpk) indicates the capability of producing a product within the defined standard limits, and is calculated from the upper limit value Su of the standard, the lower limit value Sl of the standard, the average value ⁇ , and the standard deviation ⁇ according to the following formula.
  • a process capability of 1.3 (precisely 1.33, but 1.3 in this embodiment) is used as an index for quality assurance.
  • Cpk min [(Su ⁇ ) / 3 ⁇ , ( ⁇ Sl) / 3 ⁇ ]
  • min [] is a function that returns the minimum value in parentheses.
  • the number of N was evaluated as 12 for the processing conditions of each prototype No.
  • the process capability Cpk: 1.33 has a defect rate of about 60 ppm in the same lot, suggesting that the process can withstand mass production.
  • the bending strength indicates a four-point bending strength as described above, and the bending strength test of fine ceramics (JIS R1601) except that the test piece size is 40 mm long ⁇ 10 mm wide ⁇ 0.32 mm thick. ).
  • the scribe groove has a dm / B of 0.5 or less, a groove width c of 0.2 mm or less, and is processed accurately with respect to the standard dimension.
  • 31 also has a small process capability but a large e value.
  • the process capacities 33 and 35 are the allowable limit value 1.3, it is considered that the e value is preferably c / 4 or less in consideration of the e value at this time.
  • No. No. 36, 37 and 38 have low process capability.
  • No. 38 has a poor bending strength reduction rate.
  • c1 is 1.6 to 1.8 times that of c. Since 39 to 41 are 1.4 times or less, it is considered that c1 is preferably 1.5 times or less of c.
  • No. In the case of dividing a thick substrate as in 50, the thickness of the fracture portion becomes thick, the process capability is small compared to a thin substrate, and the fracture surface roughness Ra1 tends to be large.
  • the groove width c is as much as possible to ensure dimensional accuracy. It is presumed that it is good to process a small size.
  • the arithmetic surface roughness Ra2 of the laser processing surface in the split surface is compared with the arithmetic surface roughness Ra1 of the fracture surface, when the substrate thickness is 0.32 mm, the maximum of Ra2 is found even in the data of all samples. No. 7 is 1.2 ⁇ m, while Ra1 has a minimum of No. 7. 4 is 2.8 ⁇ m, and clearly Ra2 is smaller than Ra1. Furthermore, the unevenness difference fr of the break line is 20 ⁇ m or less, which is almost smooth. As described above, the difference between the surface roughness of the laser processed surface itself and the fracture surface is small, and the unevenness difference of the fracture line is also small, so that the factor that becomes the starting point of the microcrack is reduced and the splitting property is also improved.
  • the difference between Ra1 and Ra2 in the same sample is No. No. 5 of 5.8 ⁇ m is the maximum. 17 and 22 also exceed 5 ⁇ m.
  • the difference between Ra1 and Ra2 on the dividing surface is preferably within 5 ⁇ m. Can be within the allowable range.
  • the difference in the unevenness of the fracture line is preferably 15 ⁇ m or less, but 20 ⁇ m or less can be made acceptable from the results of the following comparative test.
  • D ′ / B corresponding to d / B of the scribe groove is 0.367 to 0.512, 0.342 to 0.553,. 322 to 0.580 is large as a whole, and ⁇ ′ / B corresponding to ⁇ / B is very small, around 0.05.
  • the splitting property no. No. 55 and 60 and No. 1 It was good except that there was a division failure on two of 65, but the d ′ / B values of each sample were 0.367, 0.342, 0.322, and in the case of a scribe groove, the failure occurred. Not a number. From this, it can be seen that forming the scribe line with the continuous groove 21 may be performed at a shallower depth than forming with the intermittent hole.
  • the quality characteristics of the divided ceramic substrate are No. Except that the process capability in 54 and 59 was barely good at 1.3 or more, neither the process capability nor the rate of decrease in bending strength satisfied the set allowable value described above. This is considered to be due to the surface roughness of the divided surface from the deep hole intermittent hole forming line, specifically, the surface roughness of the laser processed surface.
  • the Ra1 of the fracture surface is almost the same as that of the scribe continuous groove described above, whereas the laser machining surface Ra2 is very large, several times to several tens of times, and it can be seen that Ra1 ⁇ Ra2 is always satisfied.
  • the strength reduction it can be considered that the stress concentration is increased due to the semicircular notch effect generated in the divided portion after the intermittent hole is divided, and this also affects the strength reduction.
  • the scribe line when the scribe line is formed by the continuous scribe groove 21 according to the present invention instead of the conventional scribe line formation by the scribe hole, it can be divided satisfactorily by the shallow groove, and the divided surface, in particular, laser processing. It can be seen that the surface roughness is small and the quality is improved. And about the processing time of a scribe line, when the processing time by this invention is set to 1, it is No. In the case of 51 to 53, the maximum is 10 times or more. Even in the case of 54 to 55, it was about 5 times at the shortest. Thus, according to the manufacturing method of the scribe line of this invention, processing time can also be shortened significantly and it leads also to manufacturing cost reduction.
  • the heat-affected zone is smaller than the conventional YAG laser and CO 2 laser interrupted holes, and the surface oxidized region and the melted and scattered matter around the groove can be reduced. And the manufacturing method of the continuous scribe groove
  • the quality characteristics when a ceramic circuit board up to evaluation test 3 was used as a copper circuit board 12 were evaluated for a board having a thickness of 0.32 mm. For the time being, sample no. 9, 14, 21, 28, and sample No. With respect to the circuit board 12 using the ceramic substrate 1 laser-processed under each condition of 52, the dielectric strength performance was evaluated.
  • the ceramic circuit board 12 was produced as follows. First, when forming a scribe line at the time of laser processing, as will be described later, a print guide hole is formed so that a print pattern formed on the collective substrate 10 at the time of screen printing of the brazing material does not shift between the scribe line and the front and back of the substrate.
  • the alignment through-hole ( ⁇ 0.2 mm) was also formed by cutting using each laser.
  • a liquid honing process was performed on the front and back of the collective substrate 10 and washed, and then an active metal brazing material pattern was printed on the front and back of the ceramic collective substrate 10 based on the common hole.
  • a copper circuit board having a thickness of 0.6 mm was bonded to one surface of the collective substrate, and a copper heat sink having a thickness of 0.5 mm was bonded to the other surface.
  • the joining process joined in the vacuum furnace by the active metal brazing method.
  • a film resist is pasted on a copper plate, exposed and developed to form a pattern 3 of a metal circuit board and a pattern 4 of a metal heat sink. A pattern was formed. Thereafter, the copper metal patterns 3 and 4 were formed by wet etching using an iron chloride solution. Thereafter, a palladium catalyst was applied through a step of removing resist and removing unnecessary brazing material, an acid cleaning step, and a chemical polishing step. After the addition of palladium, it was immersed in an acidic solution to remove palladium where plating was unnecessary, and Ni—P electroless plating was applied to the surfaces of the copper metal patterns 3 and 4.
  • FIG. Although not described in detail, it is added that a dummy metal pattern may be formed on the non-product part 2 of the collective substrate 10 as a countermeasure against voids during brazing and joining to form the circuit board.
  • the dielectric strength performance was evaluated as follows. After the circuit board is dried at 80 ° C. for 1 hour, the AC voltage is gradually increased from 0 to 10 kV between the metal circuit board 3 and the metal heat sink 4 of the circuit board 12 in insulating oil (silicone oil or fluorinate, 20 ° C.). This is a test method for evaluating the insulation performance with the voltage value when the dielectric breakdown is applied. Therefore, the higher the breakdown voltage, the better the insulation performance.
  • the number of circuit boards evaluated was No. Twelve pieces were evaluated under each condition of 9, 14, 21, 28, 52.
  • the dielectric breakdown voltage of the ceramic circuit board was all AC8 kV or more, and good results were obtained. Moreover, all the dielectric breakdown forms were breakdowns penetrating the ceramic substrate 1 and no creeping breakdown was observed. On the other hand, in the comparative example, there was a circuit board showing a high insulation performance of 8 kV or more, but a dielectric breakdown voltage of only about 5 kV was recognized. The dielectric breakdown of this poorly-insulated substrate is creepage failure, which is a defect that should never occur in terms of the insulation performance required for ceramic circuit boards.
  • the cause of this failure is due to the effects of residues, including laser scattered matter and brazing material on the end face, and the removal of palladium components that have penetrated into the scribe intermittent holes in the circuit board manufacturing process described above. It is presumed that the insulating property was lowered due to the formation of the plating component on the side surface of the ceramic substrate due to the insufficiency. From this, it is considered that the smaller the surface roughness of the laser processed surface and the smaller the difference in surface roughness from the fractured surface, the more superior the insulation performance.
  • the circuit board formed by laser processing that can control the surface roughness can suppress the occurrence of voids at the brazing material bonding interface of the metal circuit board and the metal heat sink, the adhesion of the brazing material to the end face of the board, It is possible to provide a ceramic circuit board having an insulation withstand voltage performance of 8 kV or more and excellent in withstand voltage.
  • a silicon nitride sintered body was used as the ceramic in order to confirm the effect of the stronger and harder silicon nitride, but the same effect can be obtained with aluminum nitride or alumina.

Abstract

 分割時には良好に分割できるが非分割時には不用意に分割され難いという分割性を有するセラミックス集合基板と、寸法精度と曲げ強度に優れたセラミックス基板及び絶縁耐圧性に優れたセラミックス回路基板を提供する。セラミックス焼結基板の片面または両面に、回路基板を多数個取りするための分割用の連続溝がレーザ加工により設けられたセラミックス集合基板であって、少なくともその一つの連続溝は、溝の長さ方向にある最大深さ部と最小深さ部との溝深さ差Δdが10μm≦Δd≦50μmであるセラミックス集合基板。また、例えば前記セラミックス集合基板から分割されたセラミックス基板であって、少なくともその一つの側面は前記連続溝に沿って分割されて形成された面であり、該側面の算術平均粗さRaにおいて、前記連続溝加工部表面の算術平均粗さRa2の方が破断部表面の表面粗さ算術平均粗さRa1よりも小さいセラミックス基板である。

Description

セラミックス集合基板とその製造方法及びセラミックス基板並びにセラミックス回路基板
 本発明は、セラミックス焼結基板から回路基板を多数個取りするのに好適なセラミックス集合基板及びその製造方法、さらにそのセラミックス集合基板から分割形成されたセラミックス基板、そのセラミックス基板を用いたセラミックス回路基板に関する。
 半導体モジュール、パワーモジュール等に利用される回路基板には、熱伝導性および絶縁性、強度などの点でセラミックス基板が用いられ、このセラミックス基板にCuやAlなどの金属回路板や金属放熱板が接合されて回路基板とされている。セラミックス基板としては、アルミナや窒化アルミニウム材が広く使われてきたが、最近では、より厳しい環境でも使用できるように、高強度で熱伝導性も改善された窒化ケイ素が使用されるようになってきた。
 また、セラミックス回路基板を量産する技術として、前記セラミックス基板が多数切り出せる大きさのセラミックス集合基板の一面或いは両面に、活性金属ろう付け法や直接接合法などによりCu板等の金属板を接合し、エッチング加工等で金属回路板を形成したり、金属放熱板を形成し、次いで所定のセラミックス回路基板の大きさに分割し個々の回路基板を得る方法が知られている。前記個々のセラミックス回路基板への分割は、セラミックス集合基板の表面にレーザ加工等でスクライブ(刻み込み)を形成しておき、このスクライブに曲げ力を作用させることで行われる。
 特許文献1には、窒化ケイ素焼結体基板にスクライブを形成し、これを破断して得られる窒化ケイ素基板及びその製造方法が開示されている。この窒化ケイ素基板は、少なくとも一つの側面に例えばレーザで複数のスクライブ孔を形成し、この孔部を結ぶ線に沿って破断して得られるもので、レーザを照射した表面から前記側面の凹凸部をみたとき、凹凸部の最大高さを0.1mm以下とすることが特徴とされている。これにより、破断がしやすいとともに、破断時及び破断後に基板端部に割れやクラックが生じ難くなるとされている。
 また、特許文献2には、セラミックス母材の表面にレーザ光を照射して溝状のスクライブラインを形成し、スクライブラインに沿って分割してセラミックス板を形成する技術が開示されており、レーザ光として波長が250nm以上600nm以下の高調波YAGレーザを用いること、及びこれによりセラミックス板のレーザ光が照射された表層部が厚さが10μm以下のガラス質としたことが特徴とされている。これにより、レーザ加工部表層部の熱影響層の厚さを薄く抑えることができて発生する微小なクラックを低減させることが可能になり、熱サイクル使用時にセラミックス基板に割れが生じるのを抑制することができるとしている。
 また、特許文献3には、セラミックス基板の表面にレーザ光を照射して溝状の分離用ラインを形成する際、オーバーラップ配列された多数個の凹部により分離用ラインを形成する技術が開示されている。ここで、分離用ラインは加工径と同程度の加工ピッチで配列された凹部により形成され、この凹部の深さは基板厚さの1/10~1/6程度であれば良いことが特徴とされている。これにより、セラミックス基板を分割用ラインで容易に分離することが可能となり、且つレーザスクライビングの加工時間が短縮されるとしている。
特開2007-81024号(段落0005~0007) 特開2008-41945号(段落0005) 特開2000-44344号(段落0008~0026)
 通常、セラミックス回路基板は、セラミックス焼結基板にスクライブ加工を施してから金属板が接合され、金属板を所望の回路パターンに形成し、この上にメッキが施される。その後分割して形成されるが、分割する前の金属板接合工程等で不用意に破断されることがあり、歩留まり面で問題とされてきた。このため、分割する時には良好に分割できるが、分割を意図しない時には分割されないような分割性を呈するスクライブ技術が望まれてきた。また、所望の分割性によって得られた基板は、その寸法精度と強度が高いことが望まれていた。前記特許文献1、2には、スクライブで分割された側面を有するセラミックス基板の割れやクラックを防止する技術は例示されているが、前記のような分割性を実現するための技術は開示されていない。また、前記特許文献1、2には、YAGレーザでスクライブ加工を行うことが記載されているが、YAGレーザはCOレーザに比して波長が短く精密加工には適するが、セラミックスへの吸熱性が悪く加工能率面で劣るという問題がある。特に、特許文献2では、通常用いられている1064nm波長のものよりさらに短波長のものを用いるとしており、このレーザで溝状のスクライブラインを形成するのには相当な時間がかかるはずであり、具体的にどのような性状の溝を加工するのか何ら記載されていない。また、特許文献3では、オーバーラップした多数個の凹部によりスクライブラインを形成することにより加工時間が短縮されるとあるが、具体的にどのようなレーザで、どのような性状の溝を加工するのか何ら記載されていない。結局、これらの先行技術文献では断言はできないが、工業生産に適用可能な効率的かつ高速での溝加工を行うことは難しいと思われる。このようなことから、硬度の高いセラミックス焼結基板では、一定間隔をあけた断続孔によるスクライブラインを形成するのが一般的である。
 ところで、上述したようにセラミックス集合基板の一面にはCuやAl等の金属回路板を、他面には同じくCuやAl等の金属放熱板を設け、多数個取りのセラミックス回路基板を構成することが行われる。ここで、金属回路板と金属放熱板はスクライブラインで区画された一基板領域のほぼ全面にろう付け等で接合される。ところが、YAGレーザやCOレーザ照射によるスクライブ加工は、比較的深い断続孔に加工するため、熱影響部が広く、前記基板が窒化ケイ素の場合、表面が酸化されたり前記レーザの熱エネルギーにより生成したSiや遊離珪酸(SiOなど)を含む酸化物成分や焼結助剤成分等の溶融・分解飛散物が孔の周囲にまで飛び散って付着することが多い。このような酸化した基板表面ではマイクロクラックを生じさせたり、付着部にはろう材が着き難いので、これが原因で接合信頼性の低下やボイドが生じ接合不良を引き起こすことがあった。一方、ろう材が前記断続孔に入り込むこともあり、この場合深くて粗い孔からろう材を十分に除去することが困難であった。さらに、金属回路板には所定パターンのフォトレジストパターンを形成し、エッチングを行うことにより所定の金属板とろう材を除去した回路パターンを形成し、この回路パターン上にNi-Pメッキなどを施すことが一般的に行われる。このとき、被メッキ面を活性化させるために基板をパラジウム触媒液に浸漬し、その後にパラジウムを除去することが行われるが、ろう材に付着したパラジウムは、酸性溶液中での析出が阻害され残留し易い。その結果、ろう材やパラジウムが残渣となって破断面にも残ることになり、絶縁破壊の原因となる。結果、基板表裏間の沿面距離を確保できず絶縁耐圧性が低下するという問題が生じていた。
 以上のことから本発明は、分割時には良好に分割できるが非分割時には不用意に分割され難いという分割性を有するとともに良好な品質のセラミックス回路基板が得られるようなスクライブラインが形成されたセラミックス集合基板とその製造方法、及びこれから分割され寸法精度と曲げ強度に優れたセラミックス基板を、また絶縁耐圧性に優れたセラミックス回路基板を提供することを目的としている。
 本発明は、セラミックス焼結基板の片面または両面に、回路基板を多数個取りするための分割用の連続溝がレーザ加工により設けられたセラミックス集合基板であって、少なくともその一つの連続溝は、溝の長さ方向にある最大深さ部と最小深さ部との溝深さ差Δdが10μm≦Δd≦50μmであることを特徴としている。
また、本発明は、セラミックス焼結基板の片面または両面に、回路基板を多数個取りするための分割用の連続溝がレーザ加工により設けられたセラミックス集合基板であって、少なくともその一つの連続溝は、端部において溝深さが最小となるように形成されていることを特徴としている。なお、前記端部とは集合基板の隅部にある非製品領域とすることができる。
また、上述の溝深さは、少なくとも1本の任意の溝について長さ方向に連続的に深さを測定したとき、任意の位置にある最大の深さと最小の深さの数値をとりあげたものであれば良い。
 また、本発明の連続溝は、溝の最大深さ部における断面において、溝の深さをdm、基板の厚さをBとしたとき、溝の最大深さdmをB/2以下となし、さらに溝幅cを0.2mm以下となし、溝の両脇に形成される熱影響層の幅c1は、前記溝幅cの1.5倍以下であることを特徴としている。ここで、上記熱影響層の幅c1は、例えば、後述の実施例で示すように、セラミックス基板を窒化ケイ素とし、その構成成分である助剤量を3wt%MgO-2wt%Yとした場合には、その表面酸素量が5wt%以上の範囲とすることができる。したがって、助剤添加量の3.1倍以上の酸素量となる。
 また、酸化物セラミックスのアルミナ基板では、その含有酸素量が47wt%程度であり、初期の含有酸素量が高いため、レーザー加工後の熱影響部の酸素量の変動量は大きくなく、1.2倍程度の56.3wt%以上の範囲とすることができる。
 また、前記連続溝の任意断面において、溝幅cの中心線と該溝部の最深部とのズレ量eがc/4以下であることが好ましい。またさらに、前記連続溝の任意断面において、底部の曲率半径をρとしたとき、0.1≦dm/B≦0.5の範囲ではρ/B≦0.3であることが好ましい。そして、前記セラミックスは窒化ケイ素とすることができ、前記連続溝はファイバーレーザの照射で形成することができる。
 なお、本発明における連続溝は、セラミックス焼結基板の片面だけでなく両面に形成されてもよいが、この場合の前記溝深さに係わる規定は、両面の溝深さを加算したものに対して適応される。
 また、本発明は前記の何れかに記載のセラミックス集合基板を製造するための方法であって、セラミックス焼結基板の表面にファイバーレーザをガルバノミラー或いはポリゴンミラーで走査して分割用の連続溝を形成するか、あるいは前記ミラー走査と基板を固定するテーブルの移動の併用で前記連続溝を形成するか、あるいは前記テーブルの移動のみで前記連続溝を形成する何れかの工程を有することを特徴とするセラミックス集合基板の製造方法である。
 本発明は、セラミックス焼結基板の片面または両面に、回路基板を多数個取りするための分割用の連続溝がレーザ加工により設けられたセラミックス集合基板から分割されたセラミックス基板であって、少なくともその一つの側面は前記連続溝に沿って分割されて形成された面であり、該側面の算術平均粗さRaにおいて、前記連続溝加工部表面の算術平均粗さRa2の方が破断部表面の表面粗さ算術平均粗さRa1よりも小さいことを特徴としている。ここで、前記Ra1とRa2の差が10μm以下であることが好ましい。より好ましくは5μm以下である。
 また、前記連続溝に沿って分割されて形成された側面において、連続溝部の底部を連ねた破断線ラインの凹凸は、最大と最小の差が20μm以下であることが好ましい。より好ましくは15μm以下である。この前記セラミックスは窒化ケイ素とすることができ、前記連続溝はファイバーレーザの照射で形成することができる。
 また、本発明のセラミックス回路基板は、前記何れかに記載のセラミックス基板と、当該セラミックス基板の一面に設けた金属回路板と、他面に設けた金属放熱板とを具備するセラミックス回路基板であって、前記金属回路板が前記連続溝跡の溝部側に設けられ、前記金属放熱板が前記破断部側に設けられてなることを特徴としている。
 本発明のセラミックス集合基板は分割用の連続溝がレーザ加工により設けられていることから、外部から応力を受けると、この溝部分からクラックが進展して容易に破断にいたることがありセラミックス基板は高い破壊靱性値K1cを有することが好ましい。用いるセラミックスの破壊靱性値と配線形成プロセスの安定性とは密接な関係にある。セラミックス回路基板の配線形成プロセスにおいて、前記、集合基板に高い圧力が負荷される工程があり、すなわち、集合基板の表裏にCu板をろう付けした接合体に対して、Cu板表面にエッチングレジストを密着させる工程がこれに該当する。エッチングレジストには、フィルムレジストあるいは液状レジストを用い、前者では圧着ラミネーターを用いてフィルムレジストと前記接合体を熱圧着ローラーの間隙を通すことで、接合体のCu板表面にフィルムレジストを密着させる。また、後者は予め所定の配線パターンを形成したスクリーン版を用い、この印刷面に液状レジストを投入し、更にその裏面側に接合体を配置して、印刷スキージを一定の印圧を負荷しスクリーン版表面上を移動させることで、接合体のCu板表面に液状レジストを転写する。両プロセスにおいて、本発明の集合体基板の破壊靱性値が3.5MPa.m1/2未満では、上記の圧力負荷時に、レーザー加工により形成した溝部を起点にクラックが進展し、次工程のCu配線パターン形成するエッチングの途中で不規則に分割されてしまい、過度の場合には、エッチング装置の搬送ローラーの間隙から薬液タンク内に落下してしまう問題が生じることがある。また、軽度の場合においても集合体形状のままで後工程の化学研磨処理およびめっき処理などができなくなる不具合が生じ、品質安定性ならびに生産性を著しく低下させることがある。また、上記の負荷圧力を低減することで、クラック発生を抑制することは可能であるが、その反面、レジストとCu板間の密着強度が低下し、密着不良部にエッチング液が浸透して所望のパターン形成が困難となることがある。このため本発明の集合体基板に用いるセラミックスの破壊靱性値は、3.5MPa.m1/2以上であることが望ましく、更に量産性ならびに品質安定性の確保から5.0Pa.m1/2以上が望ましい。このため本発明のセラミックス集合基板に用いるセラミックスは窒化珪素を主成分とするものが好ましい。
 セラミックス基板の破壊靱性値K1cの評価方法は、#300、#600、#1000および#2000とSiC研磨紙を用いて順次進め、0.5μmのダイヤモンド研磨ペーストとバフ研磨布を用いて鏡面研磨した基板材について、JIS-R1607によるIF法(Indentation Fracture法)により測定した。測定条件はダイヤモンド圧子を用い、荷重2kgf、押し込み時間30secとした。
 本発明によれば、分割時には良好に分割できるが非分割時には不用意に分割され難いという良好な分割性を有するセラミックス集合基板を高速、高精度の製造方法により提供することができる。
また、本発明によれば、寸法精度や曲げ強度が高いセラミックス基板と、絶縁耐圧性能の高いセラミックス回路基板を提供することができる。
本発明のセラミックス集合基板の一例を示す平面図。 本発明のセラミックス回路基板の概要を示す側面図。 本発明によるスクライブ溝の横断面図。 本発明のセラミックス集合基板のスクライブ溝の製造方法を説明するための図。 本発明のセラミックス集合基板のスクライブ溝の溝深さの測定例を示す図。 本発明のセラミックス集合基板のスクライブ溝の溝深さ形態例を示す図。 本発明のセラミックス基板のスクライブ溝の分割面の形態例を示す図。 評価試験1におけるスクライブ溝の溝深さ測定箇所を示す図。 本発明のセラミックス集合基板のスクライブ溝の熱影響層の幅を示す図。 本発明に用いるファイバレーザにより加工した基板の破壊確率の一例を示す図。
 図1は、本発明のセラミックス集合基板(以降、単に集合基板と略すことがある。)10の一例を示す概略図である。この集合基板10は、130mm×100mm×0.32mmの大きさの窒化ケイ素製焼結板(以降、単に焼結板と略すことがある。)11に格子状のスクライブライン20が形成されているもので、これから50mm×40mmの大きさのセラミックス基板1が4枚分割できるようになっている。スクライブライン20は、XY方向に各3本の連続溝(スクライブ溝)21(21x、21y)で形成され、スクライブ溝21で4辺が囲まれた中央部の4箇所が本発明のセラミックス基板1とされる。それ以外の外周部分は、該集合基板10をハンドリング等行う時に用いられる非製品部2であり、セラミックス基板1を分割して取り出す時に同時に分離され排除される。本集合基板10は、後述するように溝深さ、溝面性状などに特徴を有するスクライブ溝21が形成されたものであり、本発明の集合基板10の製造方法はこのスクライブ溝21の形成方法に特徴を有するものである。なお、集合基板10の材質として窒化アルミニウム、アルミナ等を用いることもできる。また、集合基板10のサイズは上記例にとらわれるものではない。セラミックス基板(製品基板)1の大きさにもよるが、前記集合基板10のサイズ(130×100mm)の場合には、2~数十個のセラミックス基板1を取ることが可能である。また、前記集合基板10は、焼結板サイズでも良いが、製造工程での加工寸法精度の制約によっては、焼結板11(130mm×100mmよりも大きいサイズ)から前記集合基板10(130mm×100mm)をレーザ加工で精度良く切り出して、焼結体の4辺をあらかじめ除去しても良い。さらに、このスクライブ溝は、格子状に形成し矩形形状の基板を得ることが一般的ではあるが、これにとらわれるものではない。例えば三角形や多角形状の基板や曲線状のスクライブ溝となし任意形状の基板とすることもできる。
 本発明のセラミックス回路基板12は、従来同様で図2に示すように、前記集合基板10から分割されたセラミックス基板1の一面に設けた金属回路板3と、他面に設けた金属放熱板4とを具備するものである。前記セラミックス回路基板12が備えている金属板3、4は、焼結板11にスクライブ溝21が形成された後に、基板表面を液体ホーニング処理し、ろう付け等で接合され、回路パターン形成などのためエッチング等の所定の加工がなされるが、金属板3、4を接合或いは加工した後にスクライブ溝21を形成するようにしてもよい。本発明のセラミックス回路基板12の構成は、前記金属回路板3がスクライブ溝21形成側の面(溝部側)に接合され、反対面(破断部側)に金属放熱板4が接合されてなっている。一般的な回路基板では図2に示される回路パターンを形成した金属回路板3上に、半導体素子がはんだ接合等で搭載される。特にパワー半導体素子(ダイオード、MOS-FET、IGBT、サイリスタなど)からは素子動作中に多量の熱が放出されるため、金属回路板3の厚さが、放熱金属板4の厚さと同等か、それよりも厚い回路基板12が多用される。この場合セラミックス基板1あるいは集合基板10は、接合後において放熱金属板4側に凸形状に変形する場合もあるが、このような反り形態の場合、放熱金属板4側にスクライブライン20を形成すると、この反りにより予期せぬ段階でスクライブライン20が割断されることがあった。この点で本発明のセラミックス回路基板12は、このような製造上の割断不良を防止することに効果がある。
 本発明の集合基板10におけるスクライブライン20はスクライブ溝21で構成されている。従来、アルミナや窒化アルミ製の焼結基板を効率的にレーザスクライブするためには、吸収特性が良好なCOレーザが主として用いられてきた。しかし、小さな集光径が得られないことや焦点深度が長く取れないなどで照射面範囲が大きく、レーザ照射により変質して強度が弱くなった熱影響層の範囲が大きくなったり、熱歪みで生じるマイクロクラックの発生が多くなるなどの問題があり、スクライブラインは孔を多数連ねた断続孔の構成がとられていた。しかし、形状精度の良好な小径のスクライブ孔を形成することができず、分割面の寸法精度や面粗さが悪いという問題も有していた。さらに、本発明で主に対象とする窒化ケイ素の焼結板は、アルミナや窒化アルミの焼結板より高強度・高靭性であることから、分割を確実に行うために断続孔形態ではなく連続溝形態を採用することが望まれていた。
 本発明のセラミックス集合基板を製造するには、セラミックス焼結基板の表面にファイバーレーザをガルバノミラー或いはポリゴンミラーで走査して分割用の連続溝を形成するか、あるいは前記ミラー走査と基板を固定するテーブルの移動の併用で前記連続溝を形成するか、あるいは前記テーブルの移動のみで前記連続溝を形成する何れかの工程を有することが好ましいが、ファイバーレーザーは、導波路をレーザー発振器としているレーザーであり。産業用レーザーとして最も普及しているYAGレーザーのレーザー媒質(YAG結晶)を細く長くしてファイバーにした構造となっている。固体レーザーを冷却する能力は、レーザー媒質の表面積(S)を体積(V)で除したS/Vで表すことができ、固体レーザーを冷却する能力は、レーザー媒質のr(半径)やL(長さ/厚み)を小さくすることで高められる。長手方向に放熱面積を取れるファイバーレーザーは高い出力でもわずかな冷却システムで済み、これまでの高出力レーザーで問題となっていた熱レンズ効果(結晶内部に生じる温度勾配によってビーム品質が低下する問題)がない。また実際、光が伝播するファイバーのコアは数ミクロンと非常に細いので、高出力を得るため大出力で励起しても高次のモードが立たず安定したレーザー発振に必要なシングルモードで伝播する。この数ミクロンと非常に細い導波路内での高レベルの光増幅作用は、完全な飽和増幅となりレーザー媒質内に蓄積されたエネルギーを高効率に引き出すことが可能となり、高出力で高品質な高輝度レーザーを高効率に発振することができる。ファイバーレーザーのビーム特性は、集光性に影響するファイバー径が細く,シングルモードの光伝送が行なわれており,レーザー加工時には炭酸ガスレーザに近いビーム強度特性を有し,かつこれと比較して波長が1桁短いことにより加工ワークへのビーム吸収率を向上させ,さらにプラズマへのビームエネルギー吸収の低減効果で,溶接と切断加工に有効なレーザビームとすることができる。ファイバーレーザーの発信器には、コアと外層部からなるダブルクラッドファイバーが用いられ,そのコアファイバーは、YbあるいはEr等の希土類元素がドーピングされたレーザ媒質となっている。内部クラッド層に導入されたLD(Laser Diode)励起光がこのファイバー内を伝送することでコアファイバーが励起され,さらにこのファイバーの両端に埋め込まれた回折格子によりFBG(Fiber Bragg Grating)の原理で光が反射し往復することで増幅される。コアファイバー径は10μm程度でビームはほぼシングルモードで伝送される。ファイバーレーザーによるレーザー発振について、光ファイバー内に、例えば、Erイオンは励起光として980nmの光を入射することで、1550nmの光を増幅させることができる。励起光源には半導体レーザーを用い、WDM(Wavelength Division Multiplexing:波長分割多重方式)カプラを通じて、1550nmの光を一対のミラー間で共振させ、偏光ビームスプリッター(PBS:Polarization Beam Splitter)にて出力レーザーを得ている。ファイバーレーザーは簡素で安定性に富むレーザー発振を行い、さらに高周波の超短パルスを発生させることができる有効な装置である。
 ファイバーレーザーの利点を纏めると次の通りである。
(1)大幅な小型化が可能
 従来のバルク型レーザーでは光が通る直線空間が必要であるが、これに対し、ファイバーレーザーはファイバーを巻いて使用することで、光の行路長はそのままに保ちながら、レーザー発振に必要な空間を大幅に小型化できる。
(2)出力安定性
 レーザー発振のためには、共振器に定在波が生じ、かつ、ミラーの位置が定在波の節の位置と整合することが必要である。そのため、バルク型レーザーの場合、温度変化、振動による光学部品の位置ズレが問題となる。バルク型レーザーの光学系調整には高度な技術と知識が必要とされる。それに対し、ファイバーレーザーはファイバーカップラーや融着などの接続技術を用いることで位置ズレの問題が解決でき、安定してレーザー発振を得られる。
(3)即時応答性と高周波特性
出力制御のレスポンスが良く,ファイバーレーザでのアイドリング動作は不要で、起動後直ちにレーザが出力させることができる。したがって、変調パルス出力は0~100%の任意のパルス波形を高周波で動作させることが可能となる。
(4)高出力化
レーザー発振を制御するためのパワーモジュールとの増設により、kW級の出力領域まで拡張することが可能である。
 その他、(5)ほぼメンテナンスフリーである,(6)消耗品が少ない,(7)ランニングコストが低い,(8)初期設備負担が少ない,などが挙げられる。
 更に加工性については、(1)薄板から厚板まで広い範囲で精密な接合・切断加工ができる,(2)高速度な加工ができる,(3)ワークに対して低歪な加工ができ、接合面での残留応力を低減できる,(4)遠隔操作による加工ができる,などが挙げられる。ファイバーレーザーは、これまでのYAGレーザーおよびCOガスレーザーに対して、上記の特徴を有するため、工業的な利用価値が高まる加工方法として期待できる。
 図10は本発明に用いるファイバレーザによりクライビング加工したセラミックス基板の加工表裏面での破壊確率の一例を示す図である。従来のCOレーザ工法に比べて基板の強度低下が少ないことを示している。
 また、本発明の集合基板10は、コストパフォーマンスよく生産されることも目的としており、スクライブ溝21は効率的に加工されなければならない。そこで、本発明ではファイバーレーザでスクライブ溝21を加工形成している。ファイバーレーザは、COレーザやYAGレーザに比べて、きわめて集光性が高く小さなスポットに集光できるとともに、焦点深度が長くとれ、また変換効率も高く、高出力が得られるという特徴を有している。これより、数十KHz~数MHzという高い繰返速度で大きなエネルギー密度となるように照射することで、断面形状がほぼ一定した実質的な連続溝を高速で高精度に形成することができる。これにより、溝深さを制御できるとともに、狭幅のスクライブ溝21をレーザ照射面の面粗さが小さくなるように形成することができ、かつスクライブ溝21周辺のレーザ照射で変質した熱影響層c1の範囲を狭く、かつ熱蓄積によるマイクロクラックの発生も抑制して形成することができる。但し、本発明においてファイバーレーザの使用は、現状では最適な手段であると考えているが、同等の品質と特性が得られるものであればこれに限るものではない。
 本発明の集合基板10は、分割時に良好に分割できるというだけでなく、分割時でない時例えば集合基板10がコンベヤ等で搬送されている時やハンドリングする時、金属板接合工程、反り量の検査や矯正処理されている時、回路パターン形成の為のレジスト貼付け時などには破断し難いという分割性を備えるものであるが、さらに、分割後のセラミックス基板1において寸法精度や強度、絶縁耐圧性が良好であるという品質に係わる特性も備えていることが特徴である。即ち、本発明に係わるスクライブ溝21は、分割性の面からは深さの異なる部分が形成され得るようになされており、また、品質特性面からは、溝幅や溝面粗さが小さくなるように形成されている。なお、前記品質の問題はセラミックス基板1を備えたセラミックス回路基板12に係わるものであるが、現象としてはセラミックス基板1に生じるため、セラミックス基板1の特徴として説明する。以下、スクライブ溝21の性状及び製造方法を説明するが、望ましい性状については、その詳細は後述する評価試験をもとに規定したものである。
 まず、分割性について図3~図6を用いて説明する。
 レーザ加工直後に観察した本スクライブ溝21は、その全長のほとんどは分割時に良好に分割できるような基準の深さdmとされるが、溝の一部分を前記基準深さdmよりわずかに浅くなるように形成される。即ち、本スクライブ溝21は、分割時に所定の曲げ荷重が付与された時には問題なくスクライブ溝21が分割されるような基準溝深さ部と、それ以外の時には不用意にスクライブ溝21が分割しないよう抵抗部として作用する浅溝部を有している。浅溝部の形状、寸法等は焼結板11の強度や厚さ、形成する溝の基準深さや長さなどに合わせて規定するのがよいが、基準溝深さ部と浅溝部の最浅箇所との寸法差、即ち溝の最大深さ部と最小深さ部との深さ差Δdは、後述する評価試験1より、10μm以上50μm以下とすることが好ましい。なお、前記基準深さdmは焼結板11の厚さや材質に合わせて適宜適切な値を設定すればよいが、深くすると分割し易くなるが不用意に破断する危険性が高くなる。また、必然的に溝幅も広くなってセラミックス基板とした時の寸法精度が低下し易くなり、また加工時間も長くなるので焼結板11の厚さBの1/2以下とするのがよい。
 また、スクライブを精度の高い連続溝としたことで、片面側のみに設けることで足りる。さらに前記基準深さdmを浅くすることが可能で、例えば集合基板の厚さの1/10程度にすることもできるが、分割が良好に行えるよう、溝底部の曲率半径ρを小さくし、曲げ応力が集中するようにするとよい。具体的には、後述する評価試験2から考察されるように、0.1≦dm/B≦0.5の範囲でρ/B≦0.3とするのが好ましい。なお、曲率半径ρを小さくするにはスクライブ溝幅cを狭くするような加工を行うのがよい。スクライブ溝幅cを狭くすると、分割時の寸法精度が良好となり、沿面距離も長くなるので絶縁耐圧性も向上し、同時に金属回路板2の面積も大きく取れて電子部品の実装密度を上げることもできる。後述する表2のデータ(試料No.5)からも、溝幅cは0.2mm以下とすることが好ましい。例えばファイバーレーザであれば、狭幅加工を行う場合レーザ照射範囲は狭くできるので、熱影響層c1の幅も狭くでき、分割面の割れやクラック発生を抑制することができる。このとき溝形状は略V字状となし開口角度2θを120度以下にすることが好ましい。なお、熱影響層c1は本発明では表面の酸化度合い、つまり表面酸素量で規定している。即ち、図9に示すようにスクライブ溝21の断面を横断する方向(図3の紙面左右方向)に順次表面酸素量を分析し、表面酸素量が5wt%(助剤(酸化物)が3%MgO、2%Yが添加されている場合。助剤を多めに入れたSiの場合は、熱影響でなくても5%以上含有の場合もありうる。バルクの約2倍の表面酸素量)以上となっている範囲を熱影響層c1とした。スクライブ溝21は、目視および光学顕微鏡観察によれば黒色部として観察される。表面酸素量が20wt%付近を超えると、溝の外側でも熱影響部が変色部として光学顕微鏡でも観察でき、溝両側での盛り上がり部30(盛り上がり部は光学顕微鏡では確認不可)が生じる場合がある。しかし、さらに外側の熱影響層については、光学顕微鏡では必ずしも明確に確認できるわけではない。よって、光学顕微鏡では確認できない熱影響層を捕らえるために、本発明の熱影響層の幅c1は上記した表面酸素量で規定することにした。
 基板厚さBは、0.2mmから1.0mmが望ましい。さらには0.25mmから0.65mmが好ましい。基板厚さBが0.2mm未満となると、これを用いた作製した回路基板について表裏間の絶縁破壊電圧(絶縁耐圧)は、7kVを維持するものの、ばらつきが大きくなる傾向にある。また、Bが1.0mmとなると、絶縁耐圧のばらつきは小さく絶縁安定性に優れるものの、回路構成する金属板と絶縁を担うセラミックス基板の熱伝導率に差があるため、セラミックス基板の厚さが上昇すると、律則過程となって放熱が妨げれ、しいては回路基板の熱抵抗が上昇する不具合を生じる。また、用いる原料費の上昇、シート成形時の乾燥が困難なため、ドクターブレード成形機の乾燥ゾーンの大型化が必要となり製品コストが上昇する。
 次に、図4をもとに、前述した浅溝部を有するスクライブ溝21の加工を特徴とする集合基板10の製造方法を説明する。
 まず、例えば、主原料に窒化ケイ素を用い、焼結助剤として3wt%のMgO及び2wt%のYを用いて、1850℃×5hで焼成し前述した130mm×100mm×0.32mmtの大きさの焼結板11を用意する。前記焼結板11は作業テーブル上に載置されるが、焼結板11の上方にファイバーレーザ照射部が設置される。ファイバーレーザは増幅媒体(例えばYb)をドーピングしたファイバーコアをファイバー内に設け、このファイバー内にレーザダイオードによる励起光を伝送させると、両端にある反射鏡により光が反射、増幅されて出力されるレーザである。小型で安定したレーザ発振が得られ、高出力化と短パルス化が可能である。特に、上述したようにビーム径が小さく高いエネルギー密度を持ったレーザ光を出力できる点と、焦点深度が長くとれることから溝深さやパルス幅調節の自由度がある点で都合が良い。ファイバーレーザ照射部は、XY2軸のガルバノミラー5或いはポリゴンミラーと、fθレンズよりなる集光レンズ6を有しており、ファイバーレーザ7は、レーザ発振器から出た後ガルバノミラー5で偏向され、集光レンズ6で焼結板11表面に焦点が合わせされるように照射される。fθレンズとは、レンズ周辺部と中心部で走査速度が一定になるように設定されたレンズである。よって、図1に示すような焼結板11の横(X)方向に形成すべきスクライブ溝21xは、X軸ガルバノミラー5xを回転θ2することで矢印A方向にレーザ光7が一定速度fθで走査されて所定性状の連続溝が形成される。該スクライブ溝21xの形成が終了すると、Y軸ガルバノミラー(図示せず)を所定角度回転させて照射位置を縦(Y)方向に所定量移動しY方向のスクライブ溝21yを形成する。再度X軸ガルバノミラー5xを回転することで、レーザ光7を前記スクライブ溝21xと平行で矢印B方向に走査させて新たなスクライブ溝21xを形成する。このような操作を繰り返して、全てのX方向スクライブ溝21x及びY方向スクライブ溝21yを形成し、集合基板10となす。この時、集光レンズ6を、スクライブ溝21の長さ方向中央部ではレーザ光7が焼結板11に垂直に照射されるが、両端部では放射状に照射される仕様のものを用い、焼結板11の中央部上方に焦点距離だけ離して設置すると、スクライブ溝21は溝長さの中央側の垂直光照射範囲内はほぼ同一深さの溝が形成されるが、両端側の放射光が照射される範囲では焦点がずれるため端部に行くほど浅い溝となる。図5に、このようにして形成されたスクライブ溝21の溝深さ測定データの一例を示す。図5は連続加工により形成した130mm長のスクライブ溝の任意の1本(21x)における溝深さ分布を示したものである。図4、図5に示す点C、点Dは上記連続溝の両端点である。
 中央部と両端部との溝深さの差Δdは、焦点距離の異なる集光レンズ6を用いたり、集光レンズ6の設置高さfを変えることで、前述した10μm以上50μm以下となるように制御することができる。実際の深さ差は、焼結板11の強度や厚さ、形成する溝21の基準深さdmや長さなどに合わせて設定すればよい。図1で示す集合基板10では、X方向断面図で示すように、スクライブ溝21を、図6(a)に示すように、セラミックス基板1の四辺となる部分では基準深さdmとなるようにし、非製品部2になる端部余肉部分に浅溝部214が形成されるようにするとよい。これにより、分離形成されたセラミックス基板1の側面は、スクライブ溝の均一深さ部から分割されたものであり、面粗さ等面性状がほぼ同等になってセラミックス基板1の品質がばらつくのを抑制することができる。また、万一、溝深さが浅いことに起因して、非製品部分2の分割面にクラックが入ったり、バリが生じたり、さらにはスクライブ溝21から外れて割れるようなことがあっても、セラミックス基板1に損傷が及ぶ可能性を小さくすることができる。さらに、端部はハンドリング時に外力が及び易いが浅溝部214によって比較的強度が保たれるので不用意に分割されるようなことが低減できる。
 なお、浅溝部214の位置は必ずしもスクライブ溝21の両端部でなくてもよく、片端部のみとする、溝途中の任意の位置にする、など特に規制されない。例えば、片端部とする場合は、集光レンズ6の溝方向設置位置を変えること等によって行うことができ、集光レンズ6をスクライブ溝21の一端部側にずらして設置すれば、図6(b)に示すように、該一端部側から中央にかけて基準深さdmとなり他端部が浅溝部となる。これは、スクライブ溝長さが短い場合に適用するとよい。なお、溝深さの調整はレーザの出力を変えること等でも可能であり、ガルバノミラー5の走査方式と併用したり或いは単独で適用することで、図6(c)に示すように任意の位置に浅溝部を形成することも可能である。しかし、本発明では溝の一部分を意図的に浅くすることが必須の構成ではなく、結果的に溝の長さ方向にある最大深さ部と最小深さ部との深さ差が10~50μmの範囲内に収まっていれば良いものである。
 なお、上記説明では、焼結板11を固定しレーザ光7を走査・移動させるとしたが、焼結板11を一軸又は2軸テーブルに載置して焼結板11も移動させるようにして、レーザ光7と焼結板11の複合動作でスクライブ溝21を形成するようにしてもよい。例えば、Y軸ガルバノミラーによるレーザ光7の縦(Y)方向の移動を、焼結板11をY軸方向に移動させることで置き換えても良い。このようにすると、スクライブ溝形成のための位置合わせ等の調整作業を容易にすることができる。また、レーザ光7をガルバノミラー5で偏向させずに定点に照射するようにし、焼結板11の方をXY2軸に移動させてスクライブ溝21を形成するようにすることもできる。この場合は機械的なテーブルの往復速度で加工時間が規定されるが、大きな慣性を有するテーブルの移動方向の切り替え時には減速動作が不可欠であり、高速加工という点では劣る。ただしレーザ光学系の機構が簡略化できるメリットもある。また、中途での浅溝部の形成は所定位置でレーザの出力を変えるようにして行う必要があり、制御の点で面倒ではある。前記の方法以外に任意の位置に浅溝部214を形成する手段として集光レンズ6に焦点距離の小さなレンズ6を使用する方法がある。例えば焼結板11のスクライブ溝21(21xと21y)の交点では21xと21yの加工が重なるため、必然的に溝が深くなる。そこで任意の位置、例えば前記スクライブ溝21の21x、21yの交点部に浅溝部214が形成されるようにして、極端に溝深さが深くなる箇所が形成されるのを防止することもできる。また、ガルバノミラー等を走査してレーザ光を移動させるのとテーブルの移動の併用でスクライブ溝を形成することもできる。レーザ光を走査・移動してマーキングなど特定位置に溝形成等を行うことも出来る。
 次に、セラミックス基板1における品質特性について図2、図7を用いて説明する。
 本集合基板10から分割されたセラミックス基板1は、少なくとも一側面がスクライブ溝21の分割面であり、通常、この側面は改めて加工されないため、分割面の面性状はセラミックス基板1の寸法精度、曲げ強度、絶縁耐圧など品質に影響する。分割面はスクライブ溝21のレーザ加工面211と分割時の破断面212とからなるが、本発明に係わるレーザスクライブは、高出力のパルスを高周期で発振して行うもので、例えば50KHzで発振させながら移動速度100mm/secでスクライブ加工を行うと、移動方向のずれ量(ピッチ)は2μmであり、側面及び底面の凹凸が小さな連続した溝が形成される。このようなスクライブ溝21に曲げ力を作用させると、スクライブ溝21の底部から破断されていくが、スクライブ溝底面は凹凸が少なく滑らかであるため、レーザ加工部と破断面との境界となる破断線部213は上下左右のぶれ量frが小さくほぼ直線状となる。これによって破断力の偏向性がなくなり、セラミックス基板1の寸法精度の悪化や、面粗さの増加そして強度の低下が抑制される。なお、移動速度は80~120mm/secまで変えてスクライブ加工を行ったが結果は変わらなかった。
 このように、分割時に破断位置がばらついたり、ぶれることがほとんどないため、本セラミックス基板1は分割面、即ち側面の寸法精度が良好となる。また、セラミックス基板1は、回路基板12にした後、熱サイクルによる熱衝撃・変形に曝されるため曲げ応力が生じる。よって、セラミックス基板1自身の曲げ強度が高いことが望ましく、このためには分割面の面粗さが小さく、熱影響層(マイクロクラックなど)が少ないことが好ましい。なぜならば、セラミックスのような脆性材では、凹凸差の激しい部分や粗さが粗い部位が曲げ試験時の破壊の起点(初期欠陥)になり、強度を低下ならしめる可能性が極めて高いからである。さて、分割面はレーザによる加工面211と、その底部から破断された破断面212からなり、どちらの面も面粗さが小さい方が好ましいが、破断面の面性状は材質によってほぼ決まるため(特に窒化ケイ素粒子は柱状粒子形状のため、アルミナや窒化アルミと比べて破断面は粗くなり易い)、レーザ加工面の表面粗さが小さい方が曲げ強度面で有利となる。この点で本セラミックス基板1の分割面は、後述する表3に示すデータで示されるように、レーザ加工部の面粗さが破断面の面粗さよりも小さく、また破断線も滑らかであり、レーザ加工時の熱損傷が少ない。これにより曲げ強度の低下率が抑制される。なお、ここでいう曲げ強度の低下率とは、全側面を機械加工して凹凸や面粗さを極めて小さくしたセラミックス基板の曲げ強度を基準に算出したものである。ちなみに後述する実施例では、ファイバーレーザでスクライブ溝を形成し、前記溝を割断して長さ40mm×幅10mm×厚さ0.32mmtの試験片を作製した。また強度試験は4点曲げ試験で、スクライブ溝を形成した面側が引張になるように試験した。一方、前記基準となる強度試験片は、スライサー加工で40mm×10mm×0.32mmtの同一焼結ロットの窒化ケイ素曲げ試験片を別途作製して試験したものである。また、異なる厚さの窒化ケイ素基板の試料に関しても、試験片長さと幅は同一とした。4点曲げ試験は、上部支点間距離10mm、下部支点間距離30mmでクロスヘッド速度0.5mm/minの条件とした。また、レーザ加工部211および破断面部212の表面粗さの測定では、測定領域が微小であるためレーザ顕微鏡を用いて、非接触で測定した。
 また、本発明のセラミックス回路基板1は、両面に回路用及び放熱用の金属板3、4が接合されているが、絶縁耐圧性が良好である。これは、上述したようにスクライブ加工を行った後に金属板を接合する場合、焼結板表面に塗布されるろう材が意図せずスクライブ溝21にも入り込んでしまうことがあるが、レーザ加工面表面の凹凸が小さいため容易にこれを取除くことができるからである。また、金属板3、4を接合したのち表面にNiメッキを施すが、このとき行うパラジウム触媒液への浸漬と除去過程により、結果的にろう材部分にパラジウム残渣が斑点状に付いてしまうことがあり、スクライブ溝21に入り込んだろう材に付着することもある。しかしながら本発明よれば、前述したように、このろう材は容易に除去されるので、この時一緒にパラジウムも除去され残存しなくなる。また、スクライブ加工時に焼結板中のSiが飛び散って基板周囲にSiまたはその酸化物等(SiO部分等)が付着すると、これらの付着部分にはろう材が付き難いためこの部分の金属板3、4は接合不良となるが、ファイバーレーザによる溝加工では、溶融物の飛散が少なく熱影響部の範囲も狭いことから、金属板のスクライブ溝に沿った、ろう付け接合不良範囲は小さい。このようなことから絶縁耐圧の劣化が防止される。勿論前記レーザ加工後にブラストやホーニング処理で集合基板10の表面を清浄化する方法もあるが、スクライブ分割溝21の付着物まで十分に除去することは困難である。
 (評価試験1)
 浅溝部214を形成したスクライブ溝21の分割性を評価した。表1にデータを示す。図1に示したものと同サイズで厚さが0.32mmの窒化ケイ素製焼結基板(焼結板)を準備し、図1に示したスクライブライン20のうち、X方向のライン(130mm)にガルバノミラー5でファイバーレーザ7を走査して集光レンズ6で焦点合わせをし、スクライブ溝21xを3本形成し、その後ホーニング処理工程で、集合基板10の表裏面にアルミナ等の砥粒を含んだ液体を加圧噴射し、集合基板10の表裏面の清浄化と平滑化を施し乾燥させた後、集合基板10を手で分割した。用いた焼結板の曲げ強度は焼結ロット平均で750MPa、破壊靭性値は6.5MPam1/2であった。ファイバーレーザ7の波長は1.06μmで、50KHzで発振させながら移動速度100mm/secの繰返速度で照射した。集光レンズ6をスクライブライン20の中央部上方に配置したり、一端部の上方に配置したり、また焦点距離の異なる集光レンズ6を用いたりして、浅溝部が形成されるようにした。いずれのスクライブ溝21も、溝幅cは0.1mmとなるような仕様で加工した。なお、溝深さは、図8に示すようにスクライブ溝21の分割後に、側面から破断線213の基板表面からの深さを観察し、最大溝深さdmaxと最小溝深さdminを実測した。以上の作業を3枚の焼結板に対して実施しスクライブ溝計9本に対して溝深さを測定し、その後各スクライブ溝21を手で分割した時の感触及び分割面の目視観察をもとに分割性を評価した。表1に示す溝深さは、9本の同一条件で形成した溝の平均値であり、分割性では代表的な状況を示した。また、基板厚さ0.2mmと、0.63mmの窒化ケイ素製焼結基板についても準備し、同じ条件でスクライブ溝21xを形成し、同様に溝深さを実測し、さらに手で分割した時の感触及び分割面の目視観察をもとに分割性を評価した。また、上記評価とは別に、溝入れ基板を各1枚ずつ作製し、コンクリート床への落下試験で、スクライブ部に割れやクラックが生じていないかを確認した。これはハンドリングのミスにより床にスクライブライン入りの基板を落とした場合でも、スクライブ溝にクラックが生じていなければ、製品として使用できることから、作業性、歩留まりの観点から実施したものである。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4と比較例1、2は基板の目標厚さが0.32mmの場合であるが、実施例1~4は手で分割した結果、いずれも問題なく分割できることを確認した。一方、比較例1は、Δdが50μm以上、比較例2はΔdが10μm以下であったため、いずれも強く曲げないと分割できない程であった。特に比較例1では、浅溝部での破断面部で凹凸が大きい他に、えぐれが生じていた。また、比較例2では、スクライブ溝に沿って割れない箇所が認められた。以上のことから、最大溝深さが深いほどΔdを大きく、また最大溝深さが浅いほどΔdを小さくする方向になるが、Δdを10μm≦Δd≦50μmの範囲とすることで適切な分割性能とすることができる。
 実施例5、6と実施例7、8は、各々0.2mm、0.63mmの基板厚さの場合である。基板の薄い0.2mm厚さでは比較的軽い力で分割できることを確認したが、Δdが10μmより小さい比較例3では、分割性は問題ないものの、コンクリート床への落下試験の衝撃でスクライブ部分を中心に、クラックが生じ、作業性(ハンドリングのし易さ)と歩留まりの面で問題がある。一方、0.63mm厚さの基板では、多少分割するのに抵抗があるが、分割面の性状に問題は認められなかった。しかし、Δdが50μmより大きい比較例4の場合には、浅溝部での破断面部の凹凸がかなり大きく、分割後の寸法精度に悪影響を及ぼすと考えられた。
以上のことから、基板厚さに関係なく、溝の最大深さ部と最小深さ部との深さ差Δdは、10μm以上50μm以下とすることが好ましいことが分かった。即ち、10μmより小さいと抵抗部としての作用が弱くなり、50μmより大きくなると分割時に良好に分割できない場合が出てくる。
 (評価試験2)
 スクライブ溝21の基準深さdm、溝幅c、底部曲率半径ρ等の性状の違いによる分割性を評価した。表2にデータを示す。評価試験1で用いたのと同様な焼結板を準備し、同様のファイバーレーザを用いて図1に示したと同様なスクライブ溝を21XY両方向に形成し、X方向スクライブ溝21xを手で分割した。焼結板をXY2軸テーブルに載置し、ファイバーレーザ光7をガルバノミラー5で走査させずに定点に照射し、焼結板の方をX方向スクライブラインに移動させ、浅溝部214を有しない基準深さdmとなるスクライブ溝21をXY方向に形成した点、及び焼結板3枚毎にレーザ強度、スポット径、加工速度など照射条件を変えて、基準深さdmや溝幅cが異なるスクライブ溝21を形成した事以外は評価試験1と同様である。
 表2に示す試料Noは同じ条件で形成したグループを示しており、焼結板3枚分、即ち9本のX方向スクライブ溝21xに対して手で分割し、スクライブラインに沿って割れなかった場合や分割面のクラックやバリの発生状態を目視で観察して分割性として評価した。なお、試料No.1~5は溝幅cを0.2mm狙いで加工したもの、No.6~11は0.13mm狙い、No.12~17は0.1mm狙い、No.18~23は0.07mm狙い、No.24~29は0.05mm狙いで加工したものである。また、No.30~35は、レーザ光7をスクライブ溝側面方向に傾斜させて照射し、溝最深部の位置を溝幅c中心線に対してずれるようにしたものであり、No.36~41は、溝幅cと熱影響層幅c1はほとんど等しくみえるので、スポット径と出力を調整して照射し、熱影響層幅c1を大きくするようにしたものである。熱影響層の幅c1は表面酸素量が5wt%以上となっている範囲とした。No.42~46は基板厚さ0.2mmの場合を、No.47~50は基板厚さ0.63mmの場合である。各試料におけるスクライブ溝形態の測定は、スクライブ溝が形成された3枚の焼結板の中から任意に選定した1枚の焼結板のX方向スクライブ溝21xで、焼結板中央部のXYスクライブ溝の交点から約10mm離れた箇所に対してレーザ変位計を用いて2次元の溝断面形態を測定し評価した。また、前記測定断面が不明瞭な場合には、溝断面研磨品の光学顕微鏡観察またはSEM観察の結果から溝形態を表す各パラメータを求めた。表2においてNo.1のΔdmは52μm(0.052mm)とした。その他のΔdmは10~50μmの範囲に調整した。
Figure JPOXMLDOC01-appb-T000002
 表2に示されているように、分割不良は、試料No.1、6、12、18、24、30、42で生じており、これらは同じ溝幅となるように加工した他の試料に比べて、ρ/Bの値が大きく、かつdm/Bの値が小さいという特徴が見られる。特にNo.1において不良が多いことから、分割不良を減少させるためには、dm/Bを0.1以上とし、かつρ/Bを0.3以下とするのが好ましいと考えられる。
 No.30については、溝最深部の溝幅中心からの位置ずれ量eが大きいことが影響していると考えられる。このことから中心からの位置ずれ量eはc/4以下とするのが好ましいと考える。なお、表2において、e値及びc1値については前述したe又はc1の影響を見るための特別な照射条件で加工したものしか記していないが、他の試料を適宜抜き取り測定した結果では、後述する範囲、即ちc1は1.5c以内、eはc/4以内に問題なく入っていることを確認している。
 また、dm/B値が0.5を越える試料については、金属板接合工程等のハンドリング時に不用意に割れてしまいそうな感触があった。このことからもdm/Bの値は0.5以下とするのが好ましいと考える。試料No.36~41で熱影響層幅c1が1.5c以上のものについては、セラミックス基板としたときの寸法精度や曲げ強度に、また回路基板としたときの絶縁耐圧性に影響を与えていると考えられる。また、試料No.42~50に示すように基板厚さが0.2mm程度に薄い場合には、cの値を小さくし精度よく加工できるが、基板厚さが0.63mmまで厚くなった場合に分割性を確保しようとすると、本評価試験ではcは0.13mm程度が最少形成幅であり、更に小さくするには焦点距離の小さな集光レンズが必要となるようである。
 (評価試験3)
 スクライブ溝性状の違いによるセラミックス基板とされた時の品質特性を評価した。表3にデータを示す。評価試験2を行った後のX方向に分割された長尺焼結板を用い、Y方向スクライブ溝21yを手で分割してセラミックス基板とし、寸法精度、曲げ強度、分割面表面の算術平均粗さRa等を測定した。表3の試料Noは、表2に示す試料Noと対応しており、同一または同一条件で加工したセラミックス基板であることを示す。寸法精度については、分割して形成された計12枚のセラミックス基板(50×40mmサイズ、許容寸法公差±0.1mm)についてノギスで計測した結果から工程能力を算出し評価した。曲げ強度は既述した試験片サイズを別途作製し評価した。
 分割面表面の粗さ測定は、評価試験2で溝形態を測定した箇所における分割面の一面に対するものであり、図7に示すようにレーザ加工面は基準溝深さdmの中間部近傍を長さ方向(220方向)に、破断面は破断面深さの中間部近傍を長さ方向(220方向)に、破断線はレーザ加工面と破断面の境界部近傍をそれぞれ測定した。
Figure JPOXMLDOC01-appb-T000003
 寸法精度は公差±0.1mmにおける工程能力が1.3以上を良好とし、曲げ強度は低下率が5%以下は許容されるとした。ここで工程能力(Cpk)とは、定められた規格限度内で製品を生産できる能力を示すもので、規格の上限値Su、規格の下限値Sl、平均値μ、標準偏差σから下式で表され、一般的には工程能力1.3(正確には1.33であるが、本実施例では1.3とした)以上が品質保証の指標とされている。
Cpk=min[(Su-μ)/3σ,(μ-Sl)/3σ]
ただし、min[ ]は括弧内の最小値を返す関数
 寸法精度の工程能力を評価したものについては、各試作Noの加工条件について、N数を12枚として評価した。工程能力Cpk:1.33は同一ロット内での不良率が約60ppmであり、量産に耐えうるプロセスであることを示唆している。
 また、曲げ強度は既に述べたように4点曲げ強度を示しており、試験片サイズが長さ40mm×幅10mm×厚さ0.32mmtである以外は、ファインセラミックスの曲げ強さ試験(JIS R1601)に準拠して行った。
 表3よりNo.1~No.29、No.42~No.50の試料において、dm/Bが大きいものが曲げ強度低下率が大きいことがわかる。これは、溝深さdmが深いほど基板が受けるレーザの照射熱エネルギーも大きくなり、基板に与える熱損傷が大きくなるためである。No.5、10、11、17、22、23、29、46、50によれば、曲げ強度低下率が5%より大きいものはdm/Bが0.5より大きくなっている。また、No.5、10、11、50は工程能力も劣り、これらは狙いの溝幅に対して大き目の溝幅cになっている場合であることがわかる。これより、スクライブ溝のdm/Bは0.5以下、さらには溝幅cは0.2mm以下となし、かつ規格寸法に対し精度良く加工することが肝要であると考える。また、No.31も工程能力が小さいが、e値が大きいことがわかる。前述したように、No.30には分割不良が発生しておりe値が大きいと説明したが、これからもe値は小さい方が好ましく、No.33、35の工程能力が許容限界値1.3であることから、この時のe値を考慮すると、e値はc/4以下であることが好ましいと考えられる。また、No.36、37、38は工程能力が低く、No.38は曲げ強度低下率も悪い。これらの試料はc1がcの1.6~1.8倍あり、他のNo.39~41が1.4倍以下であることから、c1はcの1.5倍以下であることが好ましいと考えられる。またNo.50のように厚い基板の分割では破断部の厚さが厚くなり、薄い基板と比べて工程能力が小さく、破断面粗さRa1が大きくなる傾向にある。ここでは一部の加工条件で加工した実験結果しか示していないが、窒化ケイ素のように破壊靭性の大きく厚い材料で回路基板を作製する場合には、寸法精度を確保するために極力溝幅cを小さく加工することが良いと推測される。
 以上の条件を選定することにより、基板の寸法精度が公差±0.1mmにおいて工程能力(Cpk)が1.3以上、曲げ強度の低下率を5%以下に抑えたセラミックス基板を提供することができる。
 また、分割面におけるレーザ加工面の算術表面粗さRa2と破断面の算術表面粗さRa1を比較すると、基板厚さが0.32mmの場合、全試料のデータで見ても、Ra2の最大がNo.7の1.2μmであるのに対し、Ra1の最小がNo.4の2.8μmであり、明らかにRa2の方がRa1より小さい。さらに、破断線の凹凸差frも20μm以下でありほとんど平滑といえる。このようにレーザ加工面自体の表面粗さと破断面との差が小さいこと、および破断線の凹凸差も小さいことによってマイクロクラックの起点となる要因が少なくなり、かつ分割性も良好となる。さらに、金属板接合用のろう材が付着しても容易に除去することができるようになるのである。また、同一試料におけるRa1とRa2の差はNo.5の5.8μmが最大で、他にNo.17、22も5μmを超えているが、これらの試料は曲げ強度の低下率が大きいことから、分割面におけるRa1とRa2の差は5μm以内であることが望ましいが、下記比較試験の結果から10μm以内を許容範囲とすることができる。また、曲げ強度の低下率と工程能力の点から言うと破断線の凹凸の差は15μm以下が望ましいが、同じく下記比較試験の結果から20μm以下を許容範囲とすることができる。
 (比較試験)
 なお、比較のために、前述したと同様の焼結基板を用い、COレーザで断続孔を加工することにより形成し、前述の評価試験1、2と同様にして分割性、品質特性面の評価を行った。表4にデータを示す。スクライブ孔は、分離が容易に行えるように孔深さd´は深めにし、孔壁間の隙間がほとんどないように孔ピッチは、孔径c´よりも10~30μm程度大きくし、通常より密とした。No.51~53はレーザスクライブ溝21の場合の溝幅0.13mmに相当するような孔径c´に、またNo.54~55は溝幅0.07mmに相当するような孔径c´に加工した。同様に基板厚さ0.2mm、0.63mmに対しても孔径c´と孔の深さd´を各々変化させて評価試料を作製した。
Figure JPOXMLDOC01-appb-T000004
 スクライブ溝のd/Bに相当するd´/Bは、0.32mm、0.2mm、0.63mm各々の厚みに対して0.367~0.512、0.342~0.553、0.322~0.580と全体的に大きく、ρ/Bに相当するρ´/Bは0.05前後と非常に小さくなっている。分割性に関してはNo.55、60の各1枚とNo.65の2枚に分割不良が見られた他は良好であったが、各試料のd´/B値は0.367、0.342、0.322であり、スクライブ溝の場合なら不良は発生しない数値である。これより、スクライブラインを連続溝21で形成する方が、断続孔で形成するよりも浅い深さの加工でよいことがわかる。たとえ断続孔をオーバーラップさせたとしても、より浅い深さで良いし、ピッチが桁違いに異なるので連続溝とすることはできない。また、分割してセラミックス基板としたものの品質特性は、No.54、59における工程能力が1.3以上でかろうじて良好だった以外は、工程能力、曲げ強度の低下率とも前述した設定許容値を満足していなかった。これは、深孔の断続孔形成ラインからの分割面の表面粗さ、具体的にはレーザ加工面の面粗さの大きさによるものと考えられる。これは、分割面のレーザ加工部及び破断面の算術的平均粗さRaの測定結果において、前述したスクライブ連続溝の場合に比べ、破断面のRa1はほとんど同等であるのに対し、レーザ加工面のRa2は数倍~数十倍と非常に大きく、常にRa1<Ra2となっていることからわかる。また、強度低下に関しては、断続孔の分割後に分割部に生じる半円状のノッチ効果により応力集中が高くなり、これも強度低下に影響したと考えることができる。このように、従来行われてきたスクライブ孔によるスクライブラインの形成に換えて、本発明に係わる連続スクライブ溝21でスクライブラインを形成すると、浅い溝で良好に分割でき、かつ分割面の特にレーザ加工面の面粗さが小さく、品質が高まることがわかる。そして、スクライブラインの加工時間については、本発明による加工時間を1としたとき、No.51~53の場合は最大で10倍以上、No.54~55の場合でも最短で5倍程度であった。このように本発明のスクライブラインの製造方法によれば加工時間も大幅に短縮でき、製造コスト低減にもつながる。
以上のことより、従来のYAGレーザやCOレーザによる断続孔よりも、熱影響部が小さく表面酸化領域や溝周辺の溶融・飛散物も少なく出来る。そして加工時間が少なくとも1/2以下に短縮された連続スクライブ溝の製造方法を提供することができる。
 (評価試験4)
 評価試験3までのセラミックス基板を用いて銅回路基板12としたときの品質特性を0.32mm厚さの基板について評価した。
 とりあえず試料No.9、14、21、28と、比較例として試料No.52の各条件でレーザ加工したセラミックス基板1を用いた回路基板12について絶縁耐圧性能を評価した。尚セラミックス回路基板12は以下のようにして作製した。
 まず、レーザ加工時にスクライブラインを形成する際に、後述するが、ろう材のスクリーン印刷時の集合基板10に形成される印刷パターンがスクライブラインや基板表裏でズレないように、印刷ガイド孔となる位置あわせ用貫通孔(Φ0.2mm)も各々のレーザを用いて切断加工で形成した。加工後に液体ホーニング処理を集合基板10の表裏に施し、洗浄した後、セラミックス集合基板10の表裏に活性金属ろう材パターンを、上記共通孔を基準にして印刷した。次に集合基板の一面に厚さ0.6mmの銅回路板と、他面に厚さ0.5mmの銅放熱板を接合した。接合工程は、活性金属ろう付け法で真空炉中で接合した。接合体は超音波顕微鏡で大きなボイドが無いことを確認した後、金属回路板のパターン3と金属放熱板のパターン4を形成するために、銅板にフィルムレジストを貼り付け、露光・現像してレジストパターンを形成した。この後、塩化鉄溶液を用いて湿式エッチングで前記銅金属パターン3、4を形成した。その後レジスト除去と不要なろう材を除去する工程と、酸洗浄、化学研磨工程を通して、パラジウム触媒付与を実施した。パラジウム付与後、酸性溶液に浸漬してメッキ不要箇所のパラジウムを除去し、Ni-P無電解めっきを銅金属パターン3、4表面に施した。そして最後にスクライブ溝21に沿って分割して、個々のセラミックス回路基板12とした。また詳細は割愛するが、ろう付接合時のボイド対策として集合基板10の非製品部2にダミーの金属パターンを形成して、上記回路基板を形成してもよいことを追記する。
 また、絶縁耐圧性能は以下のようにして評価した。回路基板を80℃で1時間乾燥した後、絶縁油(シリコーン油またはフロリナート、20℃)中で回路基板12の金属回路板3と金属放熱板4間に交流電圧を0→10kVまで徐々に昇圧印加し、絶縁破壊した時の電圧値で絶縁性能を評価する試験方法である。したがってこの絶縁破壊電圧が高い方が絶縁性能に優れていることになる。評価した回路基板の数は、No.9、14、21、28、52の各条件で各々12個評価した。
Figure JPOXMLDOC01-appb-T000005
 本発明によるファイバーレーザでスクライブ分割溝21を形成した実施例では、セラミックス回路基板の絶縁破壊電圧はいずれもAC8kV以上あり良好な結果が得られた。また、絶縁破壊形態も全てセラミックス基板1を貫通する破壊であり、沿面破壊は認められなかった。一方、比較例では、8kV以上の高い絶縁性能を示す回路基板もあったが、絶縁破壊電圧が5kV程度しかないものが認められた。この絶縁不良基板の絶縁破壊形態は沿面破壊であり、セラミックス回路基板に要求される絶縁性能上、決してあってはならない不良である。
 尚、この不良の原因については、基板端面付近に付着したレーザ飛散物や端面のろう材なども含めた残渣物による影響や、既述した回路基板製造工程においてスクライブ断続孔に侵入したパラジウム成分除去が不十分なことによる、セラミックス基板側面へのめっき成分の形成により絶縁性が低下したものと推察している。このことからもレーザ加工面の面粗さが小さい方、また破断面との面粗さの差が小さい方が絶縁性能にとっても優位であると考えられる。
 以上のことより、面粗さを制御できるレーザ加工で形成した回路基板は、金属回路板及び金属放熱板のろう材接合界面のボイド発生や基板端面へのろう材付着等を抑えることができ、絶縁耐圧性能が8kV以上の絶縁耐圧性に優れたセラミックス回路基板を提供することができる。
 尚、上記評価試験では、より強度が高く硬い窒化ケイ素による効果を確認するためにセラミックスとして窒化ケイ素焼結体を用いたが、窒化アルミやアルミナ等でも同様に実施できるし、同様の効果が得られると考えている。
 電動自動車、ハブリッド自動車、鉄道車両、電力、産業用インバータおよびコンバータなど大電流、高電圧を制御するパワーデバイスの分野で利用でき、パワー半導体モジュール(例えばIGBTモジュール)用の回路基板などが用途として挙げられる。また、Siに代わるSiCやGaNなどの高温(300℃以上)動作が可能な新規半導体を用いたパワーデバイスの分野で利用できる。
 1 セラミックス基板    
 2 非製品部 
 3 金属回路版 
 4 金属放熱板 
 5 ガルバノミラー
 6 集光レンズ
 7 ファイバーレーザ光 
10 セラミックス集合基板
11 窒化ケイ素製焼結板(焼結板) 
12 セラミックス回路基板 
20 スクライブライン
21 スクライブ溝
30 溶融付着物による盛り上がり部
220 面粗さ測定方向
211 レーザ加工面(連続溝加工部表面) 
212 破断面(破断部表面)
213 破断線
214 浅溝部 

Claims (12)

  1. セラミックス焼結基板の片面または両面に、回路基板を多数個取りするための分割用の連続溝がレーザ加工により設けられたセラミックス集合基板であって、少なくともその一つの連続溝は、溝の長さ方向にある最大深さ部と最小深さ部との溝深さ差Δdが10μm≦Δd≦50μmであることを特徴とするセラミックス集合基板。
  2. セラミックス焼結基板の片面または両面に、回路基板を多数個取りするための分割用の連続溝がレーザ加工により設けられたセラミックス集合基板であって、少なくともその一つの連続溝は、端部において溝深さが最小となるように形成されていることを特徴とするセラミックス集合基板。
  3. 前記連続溝は、溝の最大深さ部における断面において、溝の深さをdm、基板の厚さをBとしたとき、溝の最大深さdmをB/2以下となし、さらに溝幅cを0.2mm以下となし、両脇に形成される熱影響層の幅c1は、前記溝幅cの1.5倍以下であることを特徴とする請求項1又は2に記載セラミックス集合基板。
  4. 前記連続溝の任意断面において、溝幅cの中心線と該溝部の最深部とのズレ量eがc/4以下であることを特徴とする請求項1乃至3の何れか1項に記載のセラミックス集合基板。
  5. 前記連続溝の任意断面において、底部の曲率半径をρとしたとき、0.1≦dm/B≦0.5の範囲ではρ/B≦0.3であることを特徴とする請求項1乃至4の何れか1項に記載のセラミックス集合基板。
  6. 前記セラミックスは窒化ケイ素であり、前記連続溝はファイバーレーザの照射で形成されていることを特徴とする請求項1乃至5の何れか1項に記載のセラミックス集合基板。
  7. 前記請求項1乃至6の何れか1項に記載のセラミックス集合基板を製造するための方法であって、セラミックス焼結基板の表面にファイバーレーザをガルバノミラー或いはポリゴンミラーで走査して分割用の連続溝を形成するか、あるいは前記ミラー走査と基板を固定するテーブルの移動の併用で前記連続溝を形成するか、あるいは前記テーブルの移動のみで前記連続溝を形成する何れかの工程を有することを特徴とするセラミックス集合基板の製造方法。
  8. セラミックス焼結基板の片面または両面に、回路基板を多数個取りするための分割用の連続溝がレーザ加工により設けられたセラミックス集合基板から分割されたセラミックス基板であって、少なくともその一つの側面は前記連続溝に沿って分割されて形成された面であり、該側面の算術平均粗さRaにおいて、前記連続溝加工部表面の算術平均粗さRa2の方が破断部表面の表面粗さ算術平均粗さRa1よりも小さいことを特徴とするセラミックス基板。
  9. 前記Ra1とRa2の差が10μm以下であることを特徴とする請求項8に記載のセラミックス基板。
  10. 前記連続溝に沿って分割されて形成された側面において、連続溝部の底部を連ねた破断線ラインの凹凸は、最大と最小の差が20μm以下であることを特徴とする請求項8または9に記載のセラミックス基板。
  11. 前記セラミックスは窒化ケイ素であり、前記連続溝はファイバーレーザの照射で形成されていることを特徴とする請求項8乃至10の何れか1項に記載のセラミックス基板。
  12. 請求項8乃至11の何れか1項に記載のセラミックス基板と、当該セラミックス基板の一面に設けた金属回路板と、他面に設けた金属放熱板とを具備するセラミックス回路基板であって、前記金属回路板が前記連続溝跡の溝部側に設けられ、前記金属放熱板が前記破断部側に設けられてなることを特徴とするセラミックス回路基板。
PCT/JP2009/061342 2008-06-20 2009-06-22 セラミックス集合基板とその製造方法及びセラミックス基板並びにセラミックス回路基板 WO2009154295A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/000,248 US20110177292A1 (en) 2008-06-20 2009-06-22 Ceramic assembled board, method of manufacturing the same, ceramic substrate and ceramic circuit substrate
EP09766743.0A EP2315508B1 (en) 2008-06-20 2009-06-22 Collective ceramic substrate, manufacturing method for the substrate, ceramic substrate, and ceramic circuit substrate
JP2010518008A JPWO2009154295A1 (ja) 2008-06-20 2009-06-22 セラミックス集合基板とその製造方法及びセラミックス基板並びにセラミックス回路基板
CN2009801322669A CN102132635A (zh) 2008-06-20 2009-06-22 陶瓷集合基板及其制造方法,陶瓷基板和陶瓷电路基板
US14/096,821 US20140106129A1 (en) 2008-06-20 2013-12-04 Ceramic assembled board, method of manufacturing the same, ceramic substrate and ceramic circuit substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008161792 2008-06-20
JP2008-161792 2008-06-20
JP2009-042071 2009-02-25
JP2009042071 2009-02-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/000,248 A-371-Of-International US20110177292A1 (en) 2008-06-20 2009-06-22 Ceramic assembled board, method of manufacturing the same, ceramic substrate and ceramic circuit substrate
US14/096,821 Division US20140106129A1 (en) 2008-06-20 2013-12-04 Ceramic assembled board, method of manufacturing the same, ceramic substrate and ceramic circuit substrate

Publications (1)

Publication Number Publication Date
WO2009154295A1 true WO2009154295A1 (ja) 2009-12-23

Family

ID=41434206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061342 WO2009154295A1 (ja) 2008-06-20 2009-06-22 セラミックス集合基板とその製造方法及びセラミックス基板並びにセラミックス回路基板

Country Status (6)

Country Link
US (2) US20110177292A1 (ja)
EP (1) EP2315508B1 (ja)
JP (2) JPWO2009154295A1 (ja)
KR (1) KR20110036812A (ja)
CN (1) CN102132635A (ja)
WO (1) WO2009154295A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256731A (ja) * 2011-06-09 2012-12-27 Ngk Spark Plug Co Ltd 多数個取り配線基板およびその製造方法
JP2013125855A (ja) * 2011-12-14 2013-06-24 Seiko Epson Corp セラミック基板、電子デバイス及び電子機器と、電子デバイスの製造方法及びセラミック基板の製造方法
CN103477723A (zh) * 2011-04-19 2013-12-25 日本特殊陶业株式会社 陶瓷布线基板、组合陶瓷布线基板及其制造方法
CN103477722A (zh) * 2011-04-20 2013-12-25 日本特殊陶业株式会社 配线基板、组合配线基板及其制造方法
JP2015211045A (ja) * 2014-04-23 2015-11-24 信越半導体株式会社 ウェーハのへき開方法及びウェーハの評価方法
JP2016195244A (ja) * 2015-03-31 2016-11-17 日立金属株式会社 窒化珪素系セラミックス集合基板及びその製造方法
JP2021048328A (ja) * 2019-09-19 2021-03-25 日立金属株式会社 窒化珪素セラミックス焼結基板及びその製造方法、窒化珪素セラミックス集合基板、並びに回路基板の製造方法
JP2021048164A (ja) * 2019-09-17 2021-03-25 日立金属株式会社 窒化珪素セラミックス焼結基板及びその製造方法、窒化珪素セラミックス集合基板、並びに回路基板の製造方法
WO2022131273A1 (ja) * 2020-12-16 2022-06-23 株式会社 東芝 セラミックススクライブ基板、セラミックス基板、セラミックススクライブ基板の製造方法、セラミックス基板の製造方法、セラミックス回路基板の製造方法、及び、半導体素子の製造方法
WO2022176716A1 (ja) * 2021-02-18 2022-08-25 デンカ株式会社 セラミック板、及びセラミック板の製造方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5753734B2 (ja) * 2011-05-19 2015-07-22 日本特殊陶業株式会社 配線基板、多数個取り配線基板、およびその製造方法
WO2013031018A1 (ja) * 2011-09-02 2013-03-07 イビデン株式会社 ハニカム成形体の切断方法及びハニカム構造体の製造方法
EP2589922A1 (de) * 2011-11-02 2013-05-08 Siemens Aktiengesellschaft Verfahren zur Bestimmung der Rauheit einer innenliegenden Schicht
JP6012990B2 (ja) * 2012-03-19 2016-10-25 日本軽金属株式会社 放熱器一体型基板の製造方法
CN103165588A (zh) * 2013-02-27 2013-06-19 西安永电电气有限责任公司 Igbt模块
JP5971171B2 (ja) * 2013-03-28 2016-08-17 トヨタ自動車株式会社 絶縁基板及びその製造方法、半導体装置
DE102013104055B4 (de) 2013-04-22 2023-08-31 Rogers Germany Gmbh Basissubstrat, Metall-Keramik-Substrat hergestellt aus einem Basissubstrat sowie Verfahren zum Herstellen eines Basissubstrates
CN103402313B (zh) * 2013-07-10 2016-03-02 中国电子科技集团公司第四十一研究所 一种微型薄膜电路划切方法
CN106465536B (zh) * 2014-05-27 2018-12-28 株式会社村田制作所 母陶瓷基板、陶瓷基板、母模块部件、模块部件以及母陶瓷基板的制造方法
US10071539B2 (en) 2014-09-30 2018-09-11 Apple Inc. Co-sintered ceramic for electronic devices
US10335979B2 (en) 2014-09-30 2019-07-02 Apple Inc. Machining features in a ceramic component for use in an electronic device
US10207387B2 (en) 2015-03-06 2019-02-19 Apple Inc. Co-finishing surfaces
KR101605172B1 (ko) * 2015-04-07 2016-03-22 삼성전자주식회사 패키지 기판 및 그 제조방법
US20180172644A1 (en) * 2015-06-18 2018-06-21 Socpra Sciences Et Génie S.E.C. Method and system for acoustically scanning a sample
US10216233B2 (en) 2015-09-02 2019-02-26 Apple Inc. Forming features in a ceramic component for an electronic device
JP6792794B2 (ja) * 2015-09-25 2020-12-02 日立金属株式会社 窒化珪素セラミックス集合基板の製造装置及び窒化珪素セラミックス集合基板の製造方法
EP4212497A1 (en) 2017-05-16 2023-07-19 Heraeus Deutschland GmbH & Co. KG Ceramic-metal substrate with low amorphous phase
EP3417982A1 (de) * 2017-06-21 2018-12-26 Heraeus Deutschland GmbH & Co. KG Laserschneiden von metall-keramik-substraten
US10542628B2 (en) 2017-08-02 2020-01-21 Apple Inc. Enclosure for an electronic device having a shell and internal chassis
CN108071676A (zh) * 2017-12-22 2018-05-25 江苏大学 一种凹凸间隔分布微织构复合导轨及其制作方法
JP7020137B2 (ja) * 2018-01-24 2022-02-16 三菱マテリアル株式会社 セラミックス-金属接合体の製造方法、製造装置及びセラミックス-金属接合体
JP7083256B2 (ja) * 2018-02-19 2022-06-10 富士電機株式会社 半導体モジュール及びその製造方法
DE102018119313B4 (de) 2018-08-08 2023-03-30 Rogers Germany Gmbh Verfahren zum Bearbeiten eines Metall-Keramik-Substrats und Anlage zum Durchführen des Verfahrens
US20210403390A1 (en) * 2018-09-28 2021-12-30 Shinwa Industrial Co., Ltd. Method of treating ceramics and ceramic member
KR102102311B1 (ko) * 2018-12-18 2020-04-21 주식회사 와이컴 프로브카드 공간변환기 제조방법 및 프로브카드 공간변환기용 세라믹 플레이트 가공장치
US20220147723A1 (en) * 2019-03-01 2022-05-12 Denka Company Limited Ceramic green sheet, ceramic substrate, method of producing ceramic green sheet, and method of producing ceramic substrate
JPWO2020189526A1 (ja) 2019-03-15 2020-09-24
KR102158199B1 (ko) * 2019-04-03 2020-09-21 경북대학교 산학협력단 레이저를 이용한 필름 표면 패터닝 방법 및 장치
DE102019125124A1 (de) * 2019-09-18 2021-03-18 Rogers Germany Gmbh Verfahren zum Bearbeiten eines Metall-Keramik-Substrats, Anlage für ein solches Verfahren und Metall-Keramik-Substrate hergestellt mit einem solchen Verfahren
US11121048B1 (en) * 2020-03-12 2021-09-14 Infineon Technologies Americas Corp. System and method for a device package
JPWO2021200878A1 (ja) * 2020-03-30 2021-10-07
WO2021200867A1 (ja) * 2020-03-30 2021-10-07 デンカ株式会社 窒化ケイ素板及びその製造方法、複合基板及びその製造方法、並びに、回路基板及びその製造方法
CN112469201B (zh) * 2020-11-24 2021-12-07 绍兴德汇半导体材料有限公司 一种覆铜衬板制作方法
DE102021105109A1 (de) * 2021-03-03 2022-09-08 Rogers Germany Gmbh Verfahren zum Bearbeiten eines Metall-Keramik-Substrats und Metall-Keramik-Substrat
WO2023120654A1 (ja) * 2021-12-22 2023-06-29 株式会社 東芝 セラミックススクライブ回路基板、セラミックス回路基板、セラミックススクライブ回路基板の製造方法、セラミックス回路基板の製造方法、及び、半導体装置の製造方法
CN115144966B (zh) * 2022-06-16 2023-09-12 上海电信工程有限公司 一种降低光纤接续损耗的“浮线比对法”

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110213A (ja) * 1991-10-14 1993-04-30 Kyocera Corp 多数個取りセラミツク基板
JPH10264130A (ja) * 1997-03-27 1998-10-06 Murata Mfg Co Ltd ブレーク溝付きセラミック基板およびこのセラミック基板から製造される電子部品
JP2000044344A (ja) 1998-07-23 2000-02-15 Toshiba Lighting & Technology Corp セラミックス基板、定着ヒータおよび定着装置
JP2000286511A (ja) * 1999-03-31 2000-10-13 Kyocera Corp 電子部品用セラミック基板
JP2004160478A (ja) * 2002-11-12 2004-06-10 National Institute Of Advanced Industrial & Technology レーザ加工方法およびレーザ加工装置
JP2007081024A (ja) 2005-09-13 2007-03-29 Hitachi Metals Ltd 窒化珪素基板、窒化珪素回路基板、及び窒化珪素基板の製造方法
JP2008041945A (ja) 2006-08-07 2008-02-21 Mitsubishi Materials Corp パワーモジュール用基板の製造方法およびパワーモジュール用基板並びにパワーモジュール
WO2008062496A1 (fr) * 2006-10-31 2008-05-29 Kyocera Corporation Élément céramique, procédé de formation d'une rainure dans un élément céramique et substrat pour une partie électronique

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199066B2 (ja) * 1993-09-21 2001-08-13 松下電器産業株式会社 電子部品の製造方法
JP2809305B2 (ja) * 1996-10-07 1998-10-08 北陸電気工業株式会社 回路基板の製造方法
US6294439B1 (en) * 1997-07-23 2001-09-25 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
EP1395406B1 (en) * 2001-05-29 2009-01-07 Koninklijke Philips Electronics N.V. Method of separating components from a substrate
JP4795573B2 (ja) * 2001-07-16 2011-10-19 株式会社東芝 セラミックス回路基板
JP2004140174A (ja) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd 電子部品とその製造方法及びそれらに用いる導電性ペースト
JP4401096B2 (ja) * 2003-03-26 2010-01-20 Dowaホールディングス株式会社 回路基板の製造方法
JP4312109B2 (ja) * 2004-06-21 2009-08-12 パナソニック株式会社 レーザによる加工方法
JP2006321702A (ja) * 2005-04-18 2006-11-30 Kyocera Corp セラミック部材とその製造方法およびこれを用いた電子部品
WO2007026547A1 (ja) * 2005-08-29 2007-03-08 Hitachi Metals, Ltd. 回路基板及びこれを用いた半導体モジュール、回路基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110213A (ja) * 1991-10-14 1993-04-30 Kyocera Corp 多数個取りセラミツク基板
JPH10264130A (ja) * 1997-03-27 1998-10-06 Murata Mfg Co Ltd ブレーク溝付きセラミック基板およびこのセラミック基板から製造される電子部品
JP2000044344A (ja) 1998-07-23 2000-02-15 Toshiba Lighting & Technology Corp セラミックス基板、定着ヒータおよび定着装置
JP2000286511A (ja) * 1999-03-31 2000-10-13 Kyocera Corp 電子部品用セラミック基板
JP2004160478A (ja) * 2002-11-12 2004-06-10 National Institute Of Advanced Industrial & Technology レーザ加工方法およびレーザ加工装置
JP2007081024A (ja) 2005-09-13 2007-03-29 Hitachi Metals Ltd 窒化珪素基板、窒化珪素回路基板、及び窒化珪素基板の製造方法
JP2008041945A (ja) 2006-08-07 2008-02-21 Mitsubishi Materials Corp パワーモジュール用基板の製造方法およびパワーモジュール用基板並びにパワーモジュール
WO2008062496A1 (fr) * 2006-10-31 2008-05-29 Kyocera Corporation Élément céramique, procédé de formation d'une rainure dans un élément céramique et substrat pour une partie électronique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2315508A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103477723A (zh) * 2011-04-19 2013-12-25 日本特殊陶业株式会社 陶瓷布线基板、组合陶瓷布线基板及其制造方法
CN103477722A (zh) * 2011-04-20 2013-12-25 日本特殊陶业株式会社 配线基板、组合配线基板及其制造方法
JP2012256731A (ja) * 2011-06-09 2012-12-27 Ngk Spark Plug Co Ltd 多数個取り配線基板およびその製造方法
JP2013125855A (ja) * 2011-12-14 2013-06-24 Seiko Epson Corp セラミック基板、電子デバイス及び電子機器と、電子デバイスの製造方法及びセラミック基板の製造方法
JP2015211045A (ja) * 2014-04-23 2015-11-24 信越半導体株式会社 ウェーハのへき開方法及びウェーハの評価方法
JP6990360B2 (ja) 2015-03-31 2022-01-12 日立金属株式会社 窒化珪素系セラミックス集合基板
JP2020038996A (ja) * 2015-03-31 2020-03-12 日立金属株式会社 窒化珪素系セラミックス集合基板
JP2020202397A (ja) * 2015-03-31 2020-12-17 日立金属株式会社 窒化珪素系セラミックス集合基板の製造方法
JP2021168424A (ja) * 2015-03-31 2021-10-21 日立金属株式会社 窒化珪素系セラミックス集合基板
JP2021185611A (ja) * 2015-03-31 2021-12-09 日立金属株式会社 窒化珪素系セラミックス集合基板
JP2016195244A (ja) * 2015-03-31 2016-11-17 日立金属株式会社 窒化珪素系セラミックス集合基板及びその製造方法
JP7088245B2 (ja) 2015-03-31 2022-06-21 日立金属株式会社 窒化珪素系セラミックス集合基板の製造方法
JP2021048164A (ja) * 2019-09-17 2021-03-25 日立金属株式会社 窒化珪素セラミックス焼結基板及びその製造方法、窒化珪素セラミックス集合基板、並びに回路基板の製造方法
JP2021048328A (ja) * 2019-09-19 2021-03-25 日立金属株式会社 窒化珪素セラミックス焼結基板及びその製造方法、窒化珪素セラミックス集合基板、並びに回路基板の製造方法
WO2022131273A1 (ja) * 2020-12-16 2022-06-23 株式会社 東芝 セラミックススクライブ基板、セラミックス基板、セラミックススクライブ基板の製造方法、セラミックス基板の製造方法、セラミックス回路基板の製造方法、及び、半導体素子の製造方法
WO2022176716A1 (ja) * 2021-02-18 2022-08-25 デンカ株式会社 セラミック板、及びセラミック板の製造方法
JP7165842B1 (ja) * 2021-02-18 2022-11-04 デンカ株式会社 セラミック板、及びセラミック板の製造方法

Also Published As

Publication number Publication date
EP2315508B1 (en) 2014-11-12
JPWO2009154295A1 (ja) 2011-12-01
US20110177292A1 (en) 2011-07-21
US20140106129A1 (en) 2014-04-17
EP2315508A1 (en) 2011-04-27
JP2014042066A (ja) 2014-03-06
CN102132635A (zh) 2011-07-20
EP2315508A4 (en) 2011-11-09
KR20110036812A (ko) 2011-04-11
JP5725130B2 (ja) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5725130B2 (ja) セラミックス集合基板
JP6505773B2 (ja) 透明材料の内部でレーザーフィラメンテーションを実行する方法および装置
CN106132627B (zh) 用于对脆性材料进行划割并随后进行化学蚀刻的方法和系统
JP6231469B2 (ja) バースト超高速レーザーパルスのフィラメンテーションによりシリコンをレーザー加工する方法および装置
JP4781661B2 (ja) レーザ加工方法
JP4917257B2 (ja) レーザ加工方法
JP2005268752A (ja) レーザ割断方法、被割断部材および半導体素子チップ
KR102440077B1 (ko) 피코 레이저를 사용하여 금속-세라믹 기판을 생성하기 위한 방법
JP7426971B2 (ja) 窒化珪素系セラミックス集合基板
JP2007317935A (ja) 半導体基板、基板割断方法、および素子チップ製造方法
JP2009040665A (ja) 脆性材料のフルボディ割断方法
JP2007260749A (ja) レーザ加工方法、レーザ加工装置及び脆性材料の加工品
JP2007055072A (ja) 脆性材料の誘電損失に基づく高周波加熱割断方法及び装置
JP2008041945A (ja) パワーモジュール用基板の製造方法およびパワーモジュール用基板並びにパワーモジュール
JP2009107301A (ja) 脆性材料のフルボディ割断方法
JP4744110B2 (ja) セラミック部材およびその製造方法、ならびにこれを用いた電子部品
JP5183717B2 (ja) 電子部品
Segall et al. Fracture control of unsupported ceramics during laser machining using a simultaneous prescore
JP2009262408A (ja) 脆性材料基板のスクライブ方法および装置
JP2008127224A (ja) 脆性材料をフルカットするレーザ割断方法
Shanu et al. Micromachining of alumina ceramic for microsystems applications: a systematic review, challenges and future opportunities
JP2006321702A (ja) セラミック部材とその製造方法およびこれを用いた電子部品
JP2007076936A (ja) 脆性材料の割断方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980132266.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518008

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009766743

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117001417

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13000248

Country of ref document: US