WO2013031018A1 - ハニカム成形体の切断方法及びハニカム構造体の製造方法 - Google Patents
ハニカム成形体の切断方法及びハニカム構造体の製造方法 Download PDFInfo
- Publication number
- WO2013031018A1 WO2013031018A1 PCT/JP2011/070031 JP2011070031W WO2013031018A1 WO 2013031018 A1 WO2013031018 A1 WO 2013031018A1 JP 2011070031 W JP2011070031 W JP 2011070031W WO 2013031018 A1 WO2013031018 A1 WO 2013031018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cutting
- honeycomb
- formed body
- honeycomb formed
- groove
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/12—Apparatus or processes for treating or working the shaped or preshaped articles for removing parts of the articles by cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/14—Apparatus or processes for treating or working the shaped or preshaped articles for dividing shaped articles by cutting
- B28B11/16—Apparatus or processes for treating or working the shaped or preshaped articles for dividing shaped articles by cutting for extrusion or for materials supplied in long webs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
- Y10T83/0524—Plural cutting steps
- Y10T83/0572—Plural cutting steps effect progressive cut
Definitions
- the present invention relates to a method for cutting a honeycomb formed body and a method for manufacturing a honeycomb structure.
- Particulates such as soot (hereinafter also referred to as PM) and other harmful components contained in exhaust gas discharged from internal combustion engines such as passenger cars, buses, trucks, etc., or construction machinery, etc. may cause harm to the environment and the human body.
- PM soot
- internal combustion engines such as passenger cars, buses, trucks, etc., or construction machinery, etc.
- honeycomb structures made of porous ceramics have been proposed as honeycomb filters for collecting PM in exhaust gas and purifying the exhaust gas.
- a wet mixture is prepared by mixing a mixture containing ceramic raw material powder and a binder, and a honeycomb formed body formed by extruding the wet mixture is prepared. Cut into a predetermined length using a molded body cutting device.
- a honeycomb fired body is manufactured by alternately filling one end of the cut honeycomb formed body with a sealing material paste and then drying, degreasing and firing the sealed honeycomb formed body. To do.
- an adhesive paste is applied to the side surfaces of the obtained plurality of honeycomb fired bodies to bind the plurality of honeycomb fired bodies, and finally, a coating material paste is applied to the outer periphery of the obtained aggregate.
- the surface where the cells are exposed among the surfaces forming the respective outer shapes is referred to as an end surface, and other than the end surfaces.
- a surface is called a side.
- the wall which exists between cells is called a cell wall, and the outer peripheral part formed so that many cells may be surrounded is called an outer peripheral wall.
- honeycomb filter honeycomb filter
- a honeycomb structure having a smaller volume has been required in order to secure an installation place at the bottom of the vehicle.
- the pressure loss of the honeycomb structure increases as the volume of the honeycomb structure decreases, the cell wall of the honeycomb structure is made thinner (thinned) to suppress the increase in the pressure loss of the honeycomb structure.
- the honeycomb molded body cannot be formed well. Arise. Specifically, when the honeycomb formed body formed by extrusion molding is to be cut with a wire or the like, if the thickness of the portion that becomes the cell wall is thin, the honeycomb formed body is seated on the outer peripheral wall and the cell wall. There is a problem that distortion such as bending occurs, and the honeycomb formed body cannot be cut while maintaining a predetermined shape.
- Patent Document 1 discloses that a cutting guide groove that penetrates the outer periphery of the honeycomb molded body at a substantially right angle with respect to the direction of the through hole is provided with a knife, a rotary blade, a laser, a water jet, or the like. Next, a method is disclosed in which the honeycomb formed body is cut only by applying a thin line to the formed cutting guide groove and pressing the honeycomb formed body.
- the present invention has been made to solve the above-described problem, and is a honeycomb capable of improving cutting accuracy without causing distortion such as buckling in a honeycomb formed body made of a material containing silicon carbide. It aims at providing the cutting method of a molded object, and the manufacturing method of a honeycomb structure.
- a method for cutting a honeycomb formed body according to claim 1 A columnar honeycomb formed body made of a material containing silicon carbide, which is made by extrusion molding, has a number of cells arranged in parallel in the longitudinal direction across the cell wall, and an outer peripheral wall is formed on the side surface.
- a method for cutting a honeycomb formed body to be cut into The method for cutting the honeycomb formed body includes a groove forming step of providing a cutting auxiliary groove with a laser having a wavelength region of 0.7 to 2.5 ⁇ m on the outer periphery of the honeycomb formed body, and through the cutting auxiliary groove. It includes a wire cutting step of cutting with a wire.
- the method for cutting a honeycomb formed body according to claim 1 includes a groove forming step of providing a cutting auxiliary groove with a laser having a wavelength region of 0.7 to 2.5 ⁇ m on the outer periphery of the honeycomb formed body. Therefore, the cutting auxiliary groove can be provided in a non-contact manner without applying a physical force to the outer peripheral wall of the honeycomb formed body. As a result, it is possible to form the cutting assist groove with almost no distortion such as buckling in the outer peripheral wall of the honeycomb formed body and the cell wall inside the honeycomb formed body.
- the auxiliary cutting groove is formed on the outer peripheral wall of the honeycomb molded body, there is no thick part in the portion to be cut, so that the wire does not cause distortion such as buckling in the honeycomb molded body.
- the honeycomb formed body can be cut.
- the absorption of silicon carbide is small, but the reflectance is also small, so that the amount of laser light energy that can be used relatively increases, and honeycomb formation
- the formation accuracy of the body auxiliary cutting groove can be improved.
- the spot diameter of a laser having a wavelength region of 0.7 to 2.5 ⁇ m is smaller than the spot diameter of a CO 2 laser, the number of times of laser irradiation required for forming a cutting assist groove having a predetermined width and depth is Increase.
- the spot diameter is reduced, the laser beam is focused more deeply, and the influence of heat during laser irradiation can be reduced, so that the time for forming the auxiliary cutting groove can be shortened.
- the laser is a fiber laser. Since the spot diameter of the fiber laser is smaller than the spot diameter of the CO 2 laser, the number of times of laser irradiation required to form the cutting assist groove having a predetermined width and depth is increased. However, since the spot diameter is reduced, the laser beam is focused more deeply, and the influence of heat during laser irradiation can be reduced, so that the time for forming the auxiliary cutting groove can be shortened. .
- the groove forming step provides a cutting auxiliary groove only on the outer peripheral wall.
- “Only the outer peripheral wall” means that a cutting auxiliary groove having the same thickness as the outer peripheral wall is provided. If the auxiliary cutting groove is provided only on the outer peripheral wall, that is, if the depth of the auxiliary cutting groove is the same as the thickness of the outer peripheral wall, the thickness of the cell wall at the portion to be cut in the subsequent wire cutting step Since there is no thicker portion than this, the honeycomb molded body can be cut in a short time without causing distortion such as buckling in the cell wall of the honeycomb molded body by the wire.
- the groove forming step provides a cutting auxiliary groove for the outer peripheral wall and at least one cell wall.
- the groove forming step if a cutting auxiliary groove is provided for the outer peripheral wall and at least one cell wall, the outer peripheral wall is completely cut in the subsequent wire cutting step.
- the honeycomb formed body can be cut in a short time without causing distortion such as buckling in the cell wall.
- the groove forming step when the outer peripheral wall and at least one cell wall are laser-cut, when cutting, all of the thickness of the outer peripheral wall is cut, and further, at least the cell wall on the lower side is cut. Since one is cut, it is not necessary to finely adjust the cutting position of laser cutting.
- the thickness of the outer peripheral wall is 0.2 to 0.5 mm.
- the outer peripheral wall has a thickness in the above range, the outer peripheral wall is thick even if the cell wall is thin (for example, 0.1 mm or more and less than 0.2 mm). It is possible to prevent damage or the like against receiving external pressure after manufacturing. Even if the thickness of the outer peripheral wall is large, the honeycomb molded body can be cut without causing distortion such as buckling in the honeycomb molded body by using the cutting method according to claim 1.
- the outer peripheral wall functions as an outer frame for keeping the honeycomb formed body in a predetermined shape. However, if the outer peripheral wall is less than 0.2 mm, the outer peripheral wall is too thin.
- the thickness of the cell wall is not less than 0.1 mm and less than 0.2 mm.
- the honeycomb structure honeycomb filter
- the honeycomb fired body manufactured by firing the honeycomb formed body has low pressure loss.
- the thickness of the cell wall is less than 0.1 mm, the cell wall of the honeycomb formed body is likely to be distorted such as buckling even if a small force is applied because the cell wall is too thin.
- the thickness of the cell wall is 0.2 mm or more, it takes too much time to cut the honeycomb formed body.
- the width in the longitudinal direction of the auxiliary cutting groove is 0.5 to 1.0 mm.
- the honeycomb formed body can be reliably cut in the auxiliary cutting groove with the wire, and the auxiliary cutting groove should be as narrow as possible. Can do.
- the diameter of the wire with respect to the width in the longitudinal direction of the auxiliary cutting groove is 5 to 20%. If the diameter of the wire with respect to the width in the longitudinal direction of the auxiliary cutting groove is less than 5%, the wire itself is easy to cut at the time of cutting because the wire is too thin. If the diameter of the wire with respect to the longitudinal width of the auxiliary cutting groove exceeds 20%, the physical force applied to the outer peripheral wall and the cell wall in the wire cutting step increases, and the honeycomb formed body is seated. Strain such as bending tends to occur, and cutting takes too much time.
- the diameter of the wire is 0.05 to 0.10 mm. If the diameter of the wire is less than 0.05 mm, the wire itself is too thin, so that the wire itself is easily cut during cutting. Further, when the diameter of the wire exceeds 0.10 mm, in the wire cutting step, the physical force applied to the outer peripheral wall and the cell wall is increased, and distortion such as buckling is likely to occur in the honeycomb formed body, Cutting takes too much time.
- the shape of the cross section perpendicular to the longitudinal direction of the honeycomb formed body is a shape having at least one linear portion.
- the cutting auxiliary groove can be provided on the entire outer peripheral wall when the cutting auxiliary groove is formed from the side surface including the linear portion by a laser. Therefore, when it cuts with a wire after that, a force will be equally applied to the whole outer peripheral wall, and power will be distributed. Therefore, the honeycomb formed body can be cut without causing distortion such as buckling in the honeycomb formed body.
- the honeycomb molded body does not have a straight portion, a thick portion or a thin portion is present in the uncut portion of the outer peripheral wall, and thus the method of applying force differs between the thick portion and the thin portion. That is, distortion such as buckling is likely to occur.
- the shape of a cross section perpendicular to the longitudinal direction of the honeycomb formed body is a quadrangle.
- the honeycomb fired bodies obtained by firing the honeycomb formed bodies can be easily combined to produce a honeycomb structure.
- an adhesive layer in which a plurality of honeycomb fired bodies obtained by firing a honeycomb formed body in which a large number of cells are arranged in the longitudinal direction is formed on a side surface.
- the cutting assist groove With almost no distortion such as buckling in the outer peripheral wall of the honeycomb formed body and the cell wall inside the honeycomb formed body.
- the auxiliary cutting groove is formed on the outer peripheral wall of the honeycomb molded body, there is no thick part in the portion to be cut, so that the wire does not cause distortion such as buckling in the honeycomb molded body.
- the honeycomb formed body can be cut.
- a coat layer is formed on the outer peripheral portion of the honeycomb structured body.
- FIG. 1 (a) is a perspective view schematically showing an example of a honeycomb molded body to be cut in the method for cutting a honeycomb molded body according to the first embodiment of the present invention.
- FIG. 1B is a cross-sectional view taken along the line AA of the honeycomb formed body shown in FIG. Fig.2 (a) and FIG.2 (b) are the perspective views which showed typically the cutting method of the honeycomb molded body which concerns on 1st embodiment of this invention
- Fig.2 (a) is a groove
- Fig.3 (a) is the perspective view which showed the detailed aspect of the cutting method of the honeycomb molded body which concerns on 1st embodiment of this invention.
- FIG. 1B is a cross-sectional view taken along the line AA of the honeycomb formed body shown in FIG. Fig.2 (a) and FIG.2 (b) are the perspective views which showed typically the cutting method of the honeycomb molded body which concerns
- FIG. 3B is a cross-sectional view of the honeycomb formed body shown in FIG. 3A taken along line BB.
- FIG. 4A is a perspective view schematically showing an example of a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the first embodiment of the present invention.
- FIG. 4 (b) is a cross-sectional view taken along the line EE of the honeycomb fired body shown in FIG. 4 (a).
- Fig. 5 (a) is a perspective view schematically showing an example of a honeycomb structure including a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the first embodiment of the present invention.
- FIG. 5B is a cross-sectional view of the honeycomb structure shown in FIG. 5A taken along line FF.
- FIG. 6 (a) is an example of a honeycomb fired body positioned at the outermost periphery of a honeycomb structure formed of the honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the first embodiment of the present invention.
- FIG. FIG. 6 (b) shows another example of the honeycomb fired body positioned at the outermost periphery of the honeycomb structure formed from the honeycomb fired body manufactured using the method for cutting a honeycomb formed body according to the first embodiment of the present invention. It is a front view which shows an example.
- FIG. 7 is a perspective view schematically showing an example of an outer honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the second embodiment of the present invention.
- FIG. 8 (a) is a perspective view schematically showing an example of a honeycomb structure including a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the second embodiment of the present invention.
- FIG. 8B is a cross-sectional view taken along the line GG of the honeycomb structure shown in FIG.
- FIG. 9A is a perspective view schematically showing a honeycomb fired body produced by using the method for cutting a honeycomb formed body according to the third embodiment of the present invention.
- Fig. 9 (b) is a perspective view schematically showing a honeycomb structure formed of the honeycomb fired body shown in Fig. 9 (a).
- FIG. 10 (a) is a perspective view schematically showing an example of a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the fourth embodiment of the present invention.
- FIG. 10B is a cross-sectional view taken along the line HH of the honeycomb fired body shown in FIG.
- FIG. 11 (a) is an example of a honeycomb fired body located at the outermost periphery of a honeycomb structure formed of a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the fourth embodiment of the present invention.
- FIG. 11 (b) shows another honeycomb fired body positioned on the outermost periphery of the honeycomb structure formed of the honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the fourth embodiment of the present invention. It is a front view which shows an example.
- the present inventors considered the reason why the formation accuracy of the auxiliary cutting groove of the honeycomb formed body is lowered.
- a honeycomb formed body formed of a material containing silicon carbide it is conceivable to provide a cutting auxiliary groove using a CO 2 laser that is generally used widely. Since a silicon carbide absorption band exists in the vicinity of the 10.2 ⁇ m wavelength region of the CO 2 laser, it is possible to cut the honeycomb formed body, but it is formed from a material containing silicon carbide using a CO 2 laser. In the case of cutting a honeycomb formed body, a problem has been found that the formation accuracy of the auxiliary cutting groove is lowered.
- the reason for this is that although silicon carbide has a high absorption in the wavelength region of the CO 2 laser, the reflectance also increases, so that the crystal surface of silicon carbide reflects CO 2 laser light and can be used relatively. It is considered that the energy amount of the laser beam is reduced. If the amount of energy of the laser beam is reduced, it is necessary to irradiate the same portion with the laser many times in order to form a cutting assist groove having a predetermined depth. However, as the number of times of laser irradiation increases, deviation occurs in the irradiated part. Accordingly, the present inventors have found out the fact that when a CO 2 laser is used, the accuracy of forming the cutting assist groove of the honeycomb formed body formed from the material containing silicon carbide is lowered.
- the formation accuracy of the auxiliary cutting groove of the honeycomb formed body indicates a variation in the center value of the auxiliary cutting groove after the formation of the auxiliary cutting groove with respect to the design value of the central value of the auxiliary cutting groove.
- the auxiliary cutting groove cannot be accurately formed at a predetermined position. Therefore, in order to always position the wire inside the cutting auxiliary groove, it is necessary to make the size of the cutting auxiliary groove extremely larger than the diameter of the wire for cutting the honeycomb formed body. By increasing the size of the auxiliary cutting groove, it takes time to form the auxiliary cutting groove. Moreover, the part which cannot be used as a honeycomb molded object increases. For this reason, there is a problem that the material cost is increased and the cost due to an increase in processing time is also increased.
- the spot diameter of the fiber laser is smaller than the spot diameter of the CO 2 laser, the number of times of laser irradiation required to form the cutting assist groove having a predetermined width and depth is increased.
- the spot diameter is reduced, the laser beam is focused more deeply, and the influence of heat during laser irradiation can be reduced, so that the time for forming the auxiliary cutting groove can be shortened.
- the present inventors dared to use a fiber laser, which is considered disadvantageous from the viewpoint of cost and cutting accuracy, according to common sense, for cutting a honeycomb molded body made of a material containing silicon carbide.
- the present invention has been completed by discovering an unexpected effect that the cutting accuracy can be improved.
- a material containing silicon carbide produced by extrusion molding in which a large number of cells are arranged in parallel in the longitudinal direction across the cell wall, and an outer peripheral wall is formed on the side surface thereof.
- a columnar honeycomb formed body is cut into a predetermined length.
- the method for cutting the honeycomb formed body includes a groove forming step of providing a cutting auxiliary groove with a laser having a wavelength region of 0.7 to 2.5 ⁇ m on the outer periphery of the honeycomb formed body, and through the cutting auxiliary groove.
- a wire cutting step of cutting with a wire is included.
- a honeycomb formed body is manufactured by extruding a wet mixture containing a ceramic powder containing silicon carbide and a binder.
- a ceramic powder for example, two types of silicon carbide powders having different average particle diameters, an organic binder, a liquid plasticizer, a lubricant, and water are mixed to form a honeycomb formed body.
- a wet mixture is prepared for production.
- the wet mixture is put into an extruder and extruded to form a honeycomb having a shape in which a large number of cells are arranged in the longitudinal direction across the cell wall and an outer peripheral wall is formed on the side surface.
- the body is extruded from the mold and formed continuously in the longitudinal direction.
- the honeycomb formed body thus continuously formed is cut to have a predetermined length by using the method for cutting a honeycomb formed body according to the present embodiment.
- the honeycomb formed body to be cut and its cutting method will be described in detail later.
- the obtained honeycomb formed body is dried using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, etc.
- a sealing step of filling the cells with a sealing material paste as a sealing material and sealing the cells is performed.
- the wet mixture can be used as the sealing material paste.
- the honeycomb formed body in which the predetermined cells are sealed is heated in a degreasing furnace, and after performing a degreasing process for removing organic substances in the honeycomb formed body, the degreased honeycomb formed body is placed in a firing furnace.
- a honeycomb fired body is manufactured by carrying and carrying out a firing process.
- the sealing material paste with which the edge part of the cell was filled is baked by heating and becomes a sealing material.
- the conditions currently used when manufacturing a honeycomb fired body can be applied to the conditions of a cutting process, a drying process, a sealing process, a degreasing process, and a firing process.
- FIG. 1 (a) is a perspective view schematically showing an example of a honeycomb molded body to be cut in the method for cutting a honeycomb molded body according to the first embodiment of the present invention.
- FIG. 1B is a cross-sectional view taken along the line AA of the honeycomb formed body shown in FIG.
- a large number of cells 101 are arranged in parallel in the longitudinal direction (in the direction of arrow a in FIG. 1 (a)) with a cell wall 103 therebetween.
- an outer peripheral wall 104 is formed on the outer periphery thereof.
- the large-capacity cell 101a whose cross-sectional area perpendicular to the longitudinal direction is relatively larger than the small-capacity cell 101b and the cross-sectional area perpendicular to the longitudinal direction is smaller than the large-capacity cell 101a.
- the capacity cells 101b are alternately arranged.
- the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell 101a is an octagon, and the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell 101b is a quadrangle (square).
- the honeycomb formed body 100 is a wet mixture prepared by mixing two types of silicon carbide powders having different average particle sizes as ceramic powder, an organic binder, a liquid plasticizer, a lubricant, and water.
- the silicon carbide powder is contained as a main component and contains moisture.
- the particle size of the silicon carbide powder is not particularly limited, but it is preferable that the silicon carbide powder has less shrinkage in the subsequent firing step, for example, 100 parts by weight of silicon carbide powder having an average particle size of 1.0 to 50 ⁇ m, and 0.1 to 1 A combination of 5 to 65 parts by weight of silicon carbide powder having an average particle size of 0.0 ⁇ m is preferable.
- the pore diameter can be adjusted by adjusting the particle size of the ceramic powder.
- the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and polyethylene glycol. Of these, methylcellulose is desirable.
- the blending amount of the organic binder is desirably 1 to 10 parts by weight with respect to 100 parts by weight of the ceramic powder.
- the plasticizer For example, glycerol etc. are mentioned.
- the lubricant is not particularly limited, and examples thereof include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether. Specific examples of the lubricant include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether. In some cases, the plasticizer and the lubricant may not be contained in the wet mixture.
- the dispersion medium liquid is not limited to water, and examples thereof include organic solvents such as benzene and alcohols such as methanol. An appropriate amount of the dispersion medium liquid is blended so that the viscosity of the mixed composition falls within a certain range.
- a pore-forming agent such as balloons, spherical acrylic particles, and graphite, which are fine hollow spheres containing an oxide ceramic as a component, may be added to the wet mixture as necessary.
- the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
- the main component of the constituent material of the honeycomb formed body is not limited to silicon carbide, and may be silicon carbide and metal silicon.
- a honeycomb fired body made of silicon-bonded silicon carbide is obtained by firing the honeycomb formed body.
- the shape of the cross section perpendicular to the longitudinal direction of the honeycomb formed body 100 is preferably a shape having at least one straight part, and more preferably a quadrangular shape like the honeycomb formed body 100 according to the present embodiment. That is, the formed honeycomb formed body 100 desirably has at least a planar portion, and more preferably is a quadrangular prism.
- the thickness of the cell wall 103 is preferably 0.1 mm or more and less than 0.2 mm, and more preferably 0.150 to 0.195 mm.
- the thickness of the outer peripheral wall 104 is preferably 0.2 to 0.5 mm, and more preferably 0.25 to 0.40 mm.
- the thickness of the outer peripheral wall 104 is the shortest length from the inner surface of the outermost large-capacity cell 101a to the side surface of the honeycomb molded body 100 in the cross section perpendicular to the longitudinal direction of the honeycomb molded body 100.
- FIGS. 2A and 2B are perspective views schematically showing a method for cutting a honeycomb formed body according to the first embodiment of the present invention.
- FIG. 2A shows a groove forming step
- FIG. 2B shows a wire cutting step.
- Fig.3 (a) is the perspective view which showed the detailed aspect of the cutting method of the honeycomb molded body which concerns on 1st embodiment of this invention.
- FIG. 3B is a cross-sectional view of the honeycomb formed body shown in FIG. 3A taken along line BB.
- the laser irradiation part is moved from one end to the other end of the side surface 100a of the honeycomb molded body 100 so as to be perpendicular to the longitudinal direction of the honeycomb molded body 100.
- the laser is irradiated while the cutting auxiliary grooves 14 are provided.
- a cutting process is performed so that the extruded honeycomb formed body 100 has a predetermined length by wire cutting described later in the formed cutting auxiliary groove.
- the laser preferably has a wavelength region of 0.7 to 2.5 ⁇ m, and more preferably a fiber laser (wavelength 1.06 ⁇ m).
- the cutting auxiliary groove 14 having a predetermined width is irradiated, for example, 15 to 25 times while shifting the position at an interval of 20 to 30 ⁇ m, for example. Is provided.
- the shape of the cross section perpendicular to the longitudinal direction of the honeycomb formed body 100 is a shape having at least one straight portion 105.
- the cutting auxiliary groove is formed from the side surface including the straight portion 105.
- the outer peripheral wall portion above the cell has a rectangular shape (lmno). Since the honeycomb molded body 100 is composed of octagonal cells and quadrangular cells in the cross section perpendicular to the longitudinal direction, the cutting auxiliary grooves are formed to the depth of the CC line where all the outer peripheral walls are cut.
- the cross section perpendicular to the longitudinal direction refers to a cross section perpendicular to the cell, with the direction parallel to the cell being the longitudinal direction. Therefore, when the cutting auxiliary groove is formed from the direction of the side surface including the linear portion by the laser, the cutting auxiliary groove can be provided on the entire outer peripheral wall having a rectangular cross section. For this reason, it is possible to cut the honeycomb molded body without generating distortion such as buckling in the honeycomb molded body. If the honeycomb molded body does not have a straight part, there will be thick and thin parts in the uncut part of the outer peripheral wall, so the force applied will be different in thick and thin parts. Therefore, distortion such as buckling is likely to occur. In the case where the cutting auxiliary groove is formed by cutting the entire outer peripheral wall, the cutting auxiliary groove is formed only in the outer peripheral wall.
- the honeycomb formed body 100 is pushed and moved in the direction of the arrow at a constant speed. Therefore, in consideration of the moving speed of the honeycomb formed body 100, the laser is irradiated so as to be parallel to the straight portion 105 that is actually one side of the end face portion of the cut honeycomb formed body, and the auxiliary cutting groove 14 It is necessary to provide. That is, the laser beam irradiation spot moves in the longitudinal direction while following the movement of the honeycomb molded body 100 in the longitudinal direction, and also moves in a direction parallel to the straight portion 105, thereby assisting in cutting the honeycomb molded body 100.
- a groove 14 is provided.
- the laser irradiation speed (cutting speed) is preferably 400 to 1000 mm / s.
- the laser irradiation speed (cutting speed) is 400 to 1000 mm / s, a cutting auxiliary groove having a sufficient depth is formed on the outer peripheral wall. Therefore, in the subsequent wire cutting process, the thickness of the portion to be cut is reduced. Since there is almost no thick part, the wire can be cut in a short time without causing distortion such as buckling in the cell wall of the honeycomb formed body. If the laser irradiation speed (cutting speed) is less than 400 mm / s, it takes too much time to form the auxiliary cutting groove, resulting in poor cutting efficiency.
- the fiber laser is a kind of solid-state laser and is a general term for lasers using an optical fiber as a medium.
- a general fiber laser has rare earth ions added, and the optical fiber itself constitutes a laser resonator. Examples of the rare earth include Yb, Er, Yb: Er, Tm, Nd and the like, and it is particularly desirable that Yb is added.
- the laser output is preferably 27-30 W.
- a cutting auxiliary groove having a sufficient depth is formed on the outer peripheral wall, so that in the subsequent wire cutting process, there is almost no thick portion to be cut.
- the wire can be cut in a short time without causing distortion such as buckling in the cell wall of the honeycomb formed body.
- the auxiliary cutting groove is provided only for the outer peripheral wall or for the outer peripheral wall and at least one cell wall.
- the fact that the cutting auxiliary groove is provided only on the outer peripheral wall means that the depth of the cutting auxiliary groove is the same as the thickness of the outer peripheral wall 104. That is, it means a state in which the auxiliary cutting groove is provided up to the depth of the CC line shown in FIG.
- the fact that the auxiliary cutting groove is provided for the outer peripheral wall and at least one cell wall means that all of the thickness of the outer peripheral wall 104 and at least one of the cell walls 103 therebelow are laser-cut. That is, it means a state in which the cutting auxiliary groove is provided to the depth of the line DD shown in FIG.
- the laser beam is moved a predetermined number of times (N shown in FIG. 3A) while shifting the position little by little at regular intervals (e shown in FIG. 3A).
- N the longitudinal width of the auxiliary cutting groove
- the longitudinal width of the auxiliary cutting groove is 0.5 to 1.0 mm. Is desirable, and 0.6 to 0.9 mm is more desirable.
- the width in the longitudinal direction of the auxiliary cutting groove is 0.5 to 1.0 mm, the honeycomb formed body can be reliably cut in the auxiliary cutting groove by the wire.
- the auxiliary groove can be made as narrow as possible.
- the wire 15 is applied to the cutting assisting groove 14, and the wire 15 is pressed against the honeycomb formed body 100, so that the length of the honeycomb formed body 100 is increased.
- the honeycomb formed body 100 is cut by lowering the wire 15 in a direction perpendicular to the direction.
- a cutting auxiliary groove is formed in the entire outer peripheral wall or a part of the outer peripheral wall and the cell wall by laser irradiation.
- the portion to be cut has a thickness exceeding the cell wall. There is no thick part. Accordingly, even when the cell wall is thin (for example, 0.1 mm or more and less than 0.2 mm), the honeycomb molded body can be cut without causing distortion such as buckling in the honeycomb molded body. it can.
- the diameter of the wire is preferably from the viewpoint that the physical force applied to the outer peripheral wall and the cell wall is preferably as small as possible. It is desirable to be from 05 to 0.10 mm.
- the diameter of the wire with respect to the width of the auxiliary cutting groove is preferably 5 to 20%. When the diameter of the wire is 5 to 20% of the width of the auxiliary cutting groove, the physical force applied to the outer peripheral wall and the cell wall is reduced when the wire is cut, and distortion such as buckling occurs in the honeycomb molded body. It becomes difficult. Further, it is desirable that the wire lowering speed is 38 to 82 mm / s.
- the wire lowering speed is 38 to 82 mm / s
- the wire can be cut in a short time without causing distortion such as buckling in the cell wall of the honeycomb formed body.
- the cutting efficiency is deteriorated, and when it exceeds 82 mm / s, the physical force applied to the honeycomb formed body is increased, resulting in distortion such as buckling in the honeycomb formed body. It becomes easy.
- the wire Since the honeycomb formed body 100 moves in the longitudinal direction, the wire is moved in the longitudinal direction so as to follow the movement of the honeycomb formed body 100 even in the case of cutting with a wire, and in the longitudinal direction of the honeycomb formed body 100. It is necessary to lower the wire 15 in the vertical direction.
- the wire which consists of a metal As said wire, the wire which consists of a metal, the wire which consists of resin, the wire by which resin was coat
- a wire made of metal is preferable in consideration of durability and the like, and a resin is preferable in consideration of non-adhesion. Therefore, from these points, the above-described wire is preferably a wire made of a metal such as SUS and coated with a resin. It does not specifically limit as resin coat
- FIG. 4A is a perspective view schematically showing an example of a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the first embodiment of the present invention.
- FIG. 4 (b) is a cross-sectional view taken along the line EE of the honeycomb fired body shown in FIG. 4 (a).
- a large number of cells 111 are arranged in parallel in the longitudinal direction (in the direction of arrow b in FIG. 4 (a)) with the cell walls 113 therebetween.
- an outer peripheral wall 114 is formed on the outer periphery thereof.
- the area of the cross section perpendicular to the longitudinal direction is larger than that of the small capacity cell 111b, and the area of the cross section perpendicular to the longitudinal direction is smaller than that of the large capacity cell 111a.
- the capacity cells 111b are alternately arranged.
- the shape of the cross section perpendicular to the longitudinal direction of the large capacity cell 111a is an octagon, and the shape of the cross section perpendicular to the longitudinal direction of the small capacity cell 111b is a quadrangle (square).
- the ratio of the area of the cross section perpendicular to the longitudinal direction of the large capacity cell to the area of the cross section perpendicular to the longitudinal direction of the small capacity cell (the area of the cross section perpendicular to the longitudinal direction of the large capacity cell / the length of the small capacity cell)
- the area of the cross section perpendicular to the direction is preferably 1.4 to 2.8, more preferably 1.5 to 2.4.
- the large-capacity cell 111a has an opening on the first end face 117a side of the honeycomb fired body 110, and the second end face 117b side. The end is sealed with a sealing material 112a.
- the small-capacity cell 111b the end portion on the second end face 117b side of the honeycomb fired body 110 is opened, and the end portion on the first end face 117a side is sealed with the sealing material 112b. Therefore, as shown in FIG. 4B, the exhaust gas G flowing into the large-capacity cell 111a (in FIG.
- the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by an arrow) is always the large-capacity cell.
- the small capacity cell 111b After passing through the cell wall 113 that separates the small capacity cell 111b from the small capacity cell 111b, the small capacity cell 111b flows out.
- the exhaust gas G passes through the cell wall 113, PM and the like in the exhaust gas are collected, so that the cell wall 113 separating the large capacity cell 111a and the small capacity cell 111b functions as a filter.
- gas such as exhaust gas can be circulated through the large-capacity cells 111a and the small-capacity cells 111b of the honeycomb fired body 110.
- a gas such as exhaust gas is circulated in the direction shown in FIG.
- the end portion on the first end face 117a side of the honeycomb fired body 110 (the end portion on the side where the small capacity cells 111b are sealed) is gas.
- the end on the inflow side is referred to as the end on the second end face 117b side of the honeycomb fired body 110 (the end on the side where the large-capacity cells 111a are sealed) is referred to as the end on the gas outflow side.
- the large-capacity cell 111a having an open end on the gas inflow side is a cell 111a on the gas inflow side
- the small-capacity cell 111b having an open end on the gas outflow side is a cell on the gas outflow side. 111b.
- the shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably a shape having at least one straight portion, and more preferably a quadrangle (square) as in the honeycomb fired body according to the present embodiment. .
- the thickness of the cell wall 113 is preferably 0.1 mm or more and less than 0.2 mm, and the thickness of the outer peripheral wall 114 is Is preferably 0.2 to 0.5 mm.
- a method for manufacturing a honeycomb structure including the honeycomb fired body obtained by the above method will be described.
- An adhesive paste is applied to each predetermined side surface of the honeycomb fired body in which predetermined ends of each cell are sealed to form an adhesive paste layer, and the adhesive paste layer is heated and solidified.
- the adhesive layer By using the adhesive layer, a bundling process for producing a honeycomb block in which a plurality of honeycomb fired bodies are bound through the adhesive layer is performed.
- the adhesive paste for example, a paste containing an inorganic binder and inorganic particles is used.
- the adhesive paste may further contain an organic binder.
- the adhesive paste may further contain inorganic fibers and / or whiskers.
- an outer periphery processing step of cutting the honeycomb block is performed. Specifically, a honeycomb block whose outer periphery is processed into a cylindrical shape is manufactured by cutting the outer periphery of the honeycomb block using a diamond cutter.
- an outer peripheral coat layer forming step is performed in which the outer peripheral coat material paste is applied to the outer peripheral surface of the columnar honeycomb block and dried and solidified to form the outer peripheral coat layer.
- the said adhesive paste can be used as an outer periphery coating material paste.
- a paste having a composition different from that of the adhesive paste may be used as the outer periphery coating material paste.
- the outer peripheral coat layer is not necessarily provided, and may be provided as necessary.
- FIG. 5 (a) is a perspective view schematically showing an example of a honeycomb structure including a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the first embodiment of the present invention.
- FIG. 5B is a cross-sectional view of the honeycomb structure shown in FIG. 5A taken along line FF.
- FIG. 6 (a) shows a honeycomb fired body positioned on the outermost periphery of a honeycomb structure formed from the honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the first embodiment of the present invention. It is a front view which shows an example.
- FIG. 6 (b) shows another example of the honeycomb fired body positioned at the outermost periphery of the honeycomb structure formed from the honeycomb fired body manufactured using the method for cutting a honeycomb formed body according to the first embodiment of the present invention.
- It is a front view which shows an example. 6A and 6B the outer peripheral coat layer is omitted, but the outer peripheral coat material paste solidified (125 and 135) filled in the cell is shown.
- honeycomb structure 10 shown in FIGS. 5 (a) and 5 (b)
- a plurality of honeycomb fired bodies 110, 120, and 130 are bundled together through the adhesive layer 11 to form a honeycomb block 13
- An outer peripheral coat layer 12 is formed on the outer periphery of the honeycomb block 13.
- the outer periphery coating layer should just be formed as needed.
- honeycomb fired bodies 110 shown in FIGS. 4 (a) and 4 (b) have a rectangular prism shape with the adhesive layer 11 interposed therebetween.
- a honeycomb block is manufactured, and the outer periphery thereof is processed with a diamond cutter or the like to form an outer peripheral coat layer on the outer periphery.
- the cross section of the body 110 and the honeycomb block 13 is circular.
- the cross-sectional shape of the inner honeycomb fired body 110 is a quadrangle (square).
- the cross section of the outer honeycomb fired body 120 has a shape surrounded by three line segments and one arc.
- the cross section of the outer honeycomb fired body 130 has a shape surrounded by two line segments and one arc.
- the honeycomb fired bodies 110, 120, and 130 constituting the honeycomb structure 10 function as a filter.
- this honeycomb structure 10 can be suitably used as an exhaust gas purification filter that removes particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine.
- a honeycomb fired body having a square cross section as the inner honeycomb fired body and a predetermined shape as the outer honeycomb fired body in the example of FIGS. 5A and 5B, three line segments and one arc
- a honeycomb fired body having an outer peripheral wall with a cross-sectional shape surrounded by 2 and a cross-sectional shape surrounded by two line segments and one arc) may be formed into a predetermined shape (for example, a circular cross-section) through an adhesive layer. In that case, the peripheral processing can be omitted.
- the method for cutting a honeycomb formed body according to the present embodiment includes a groove forming step of providing a cutting auxiliary groove with a laser having a wavelength region of 0.7 to 2.5 ⁇ m on the outer periphery of the honeycomb formed body. Therefore, it is possible to provide the auxiliary cutting groove without applying a physical force to the outer peripheral wall of the honeycomb formed body. As a result, it is possible to form the auxiliary cutting groove without causing distortion such as buckling in the outer peripheral wall of the honeycomb formed body and the cell wall inside the honeycomb formed body.
- the honeycomb molded body is buckled by the wire.
- the honeycomb formed body can be cut without causing the distortion.
- the cutting auxiliary groove is provided only on the outer peripheral wall, or is provided on the outer peripheral wall and at least one cell wall. Therefore, in the subsequent wire cutting step, the portion to be cut does not have a portion thicker than the cell wall thickness, or the outer peripheral wall is completely cut, so the wire forms the cell wall of the honeycomb formed body.
- the honeycomb formed body can be cut in a short time without causing distortion such as buckling.
- the auxiliary cutting groove is provided for the outer peripheral wall and at least one cell wall, it is not necessary to finely adjust the cutting position for laser cutting.
- the width in the longitudinal direction (direction perpendicular to the cell direction) of the auxiliary cutting groove is 0.5 to 1.0 mm.
- Example 1 Production of honeycomb fired body First, 54.6% by weight of a coarse powder of silicon carbide having an average particle diameter of 22 ⁇ m and 23.4% by weight of a fine powder of silicon carbide having an average particle diameter of 0.5 ⁇ m are mixed, To the obtained mixture, 4.3% by weight of organic binder (methyl cellulose), 2.6% by weight of lubricant (Unilube manufactured by NOF Corporation), 1.2% by weight of glycerin, and 13.9% by weight of water In addition, the mixture was kneaded to obtain a wet mixture.
- organic binder methyl cellulose
- lubricant Unilube manufactured by NOF Corporation
- the obtained wet mixture was put into an extruder, extruded from the extruder at an extrusion speed of 3.3 m / min, and the obtained continuous ceramic molded body was cut using a laser and a wire.
- a fiber laser having a wavelength region of 0.7 to 2.5 ⁇ m (spot diameter: 50 ⁇ m) was used, and the width in the longitudinal direction (in FIG. 2A)
- a cutting auxiliary groove having a width (indicated by d) of 0.65 mm and a depth of 0.32 mm was formed to be perpendicular to the length direction of the continuous ceramic molded body.
- the raw honeycomb formed body was dried using a microwave dryer. Then, the sealing material paste was filled into the predetermined cells of the dried honeycomb formed body, and the cells were sealed. The wet mixture was used as a sealing material paste. After sealing the cells, the honeycomb formed body filled with the plug material paste was dried again using a dryer.
- the obtained honeycomb fired body is made of a porous silicon carbide sintered body, and as shown in FIGS. 4 (a) and 4 (b), a large-capacity cell having an octagonal cross section and a quadrangular cross section.
- the cell wall thickness was 0.18 mm
- the outer peripheral wall thickness was 0.32 mm.
- Example 2 In Example 2, the depth of the auxiliary cutting groove was set to the same thickness (0.32 mm) as that of the outer peripheral wall, and a depth obtained by adding one cell wall (1.61 mm). A honeycomb fired body was produced in the same manner. In addition, when the auxiliary cutting groove is formed, the cell walls on the upper side of the octagonal and quadrangular cells are all cut, and there are no remaining portions.
- Example 1 A CO 2 laser (spot diameter: 150 ⁇ m) was used as a laser for forming the auxiliary cutting groove, and the depth of the auxiliary cutting groove was set to the same depth (0.32 mm) as the outer peripheral wall in the same manner as in Example 1. Produced the honeycomb fired body in the same manner as in Example 1.
- Example 2 A honeycomb fired body was manufactured in the same manner as in Example 1 except that a fiber laser (spot diameter: 50 ⁇ m) was used as a laser for forming the auxiliary cutting groove and the depth of the auxiliary cutting groove was 0.16 mm.
- a fiber laser spot diameter: 50 ⁇ m
- Example 1 As shown in Table 1, with regard to the cutting processing time, the cutting process takes time as the depth of the cutting auxiliary groove becomes deeper, 2.9 seconds in Example 1 and 4.5 seconds in Example 2. .
- the comparative example 1 it cut
- the carbon dioxide laser can perform the cutting treatment more quickly.
- the design width was 0.65 mm, in Examples 1 and 2, the variation was 0.14 mm, and in Comparative Example 1, the variation was 0.51 mm.
- honeycomb structure was produced using the honeycomb fired body obtained in Example 1. An adhesive paste is applied to a predetermined side surface of the honeycomb fired body, and 36 (6 vertical ⁇ 6 horizontal) honeycomb fired bodies are bonded through the adhesive paste, thereby forming an aggregate of the honeycomb fired bodies. Produced. Furthermore, the aggregate of the honeycomb fired bodies was dried and solidified at 180 ° C. for 20 minutes to produce a prismatic ceramic block having an adhesive layer thickness of 1 mm.
- the adhesive paste 30.0% by weight of silicon carbide having an average particle diameter of 0.6 ⁇ m, 21.4% by weight of silica sol (solid content 30% by weight), 8.0% by weight of carboxymethyl cellulose, and water 40 An adhesive paste consisting of 6% by weight was used.
- the cylindrical ceramic block of diameter 198mm was produced by grinding the outer periphery of a prismatic ceramic block using a diamond cutter.
- the outer periphery coating material paste is applied to the outer periphery of the cylindrical ceramic block, and the outer periphery coating material paste is heated and solidified at 120 ° C., thereby forming an outer periphery coating layer having a thickness of 1.0 mm on the outer periphery of the ceramic block. Formed.
- the said adhesive material paste was used as an outer periphery coating material paste.
- honeycomb structure was used as a filter of an exhaust gas purifying apparatus, and the PM collection state was examined. It was confirmed that the honeycomb structure had sufficient PM collection ability.
- the honeycomb molded body is cut using the same method for cutting a honeycomb molded body as in the first embodiment of the present invention, but some of the honeycomb molded bodies to be cut are cut.
- the outer shape is different from that of the honeycomb formed body according to the first embodiment of the present invention.
- the method for cutting a honeycomb formed body according to the second embodiment of the present invention including the method for cutting the honeycomb formed body having an outer shape different from that of the honeycomb formed body according to the first embodiment of the present invention, the cutting of the honeycomb formed body described above.
- a honeycomb formed body obtained by the method, a honeycomb fired body obtained by firing the honeycomb formed body, and a honeycomb structure formed from the honeycomb fired body will be described.
- the inner honeycomb fired body according to the second embodiment of the present invention has the same outer shape as the honeycomb fired body according to the first embodiment of the present invention.
- the outer shape of the outer honeycomb fired body is a shape in which a cross-sectional shape perpendicular to the longitudinal direction is surrounded by three line segments and one arc. Different from the first embodiment. Since the inner honeycomb fired body according to the second embodiment of the present invention has the same outer shape as the honeycomb fired body according to the first embodiment of the present invention shown in FIGS. 4 (a) and 4 (b), Detailed description is omitted.
- FIG. 7 is a perspective view schematically showing an example of an outer honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the second embodiment of the present invention.
- Fig. 8 (a) is a perspective view schematically showing an example of a honeycomb structure including a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the second embodiment of the present invention.
- FIG. 8B is a cross-sectional view taken along the line GG of the honeycomb structure shown in FIG.
- the outer shape of the cross section of the outer honeycomb fired body 220 shown in FIGS. 7 and 8B is a shape surrounded by three line segments 220a, 220b, 220c and one arc 220d. Two angles formed by two of the three line segments (an angle formed by the line segment 220b and the line segment 220c, and an angle formed by the line segment 220a and the line segment 220b) are 90 ° and 135 °, respectively. °.
- the outer honeycomb fired body 220 having the above shape is a honeycomb molded body having the same shape as the honeycomb fired body 220 shown in FIGS. 7 and 8B cut by the method for cutting a honeycomb molded body according to the second embodiment. It is obtained by degreasing and firing.
- the manufacturing method of the outer honeycomb fired body according to the second embodiment of the present invention will be described.
- a honeycomb formed body that is extruded using a die having a shape different from that of the die according to the first embodiment of the present invention is used.
- an adhesive paste layer is formed by applying an adhesive paste to the side surfaces of the inner honeycomb fired body 210 and the outer honeycomb fired body 220 in the bundling step.
- a honeycomb block 203 in which a plurality of honeycomb fired bodies are bundled through an agent paste layer is produced. Since other processes are the same as those of the method for manufacturing a honeycomb structured body including the honeycomb fired body according to the first embodiment of the present invention, detailed description thereof is omitted.
- honeycomb structure including the honeycomb fired body according to the second embodiment of the present invention will be described with reference to the drawings.
- a honeycomb structure shown in FIGS. 8A and 8B a plurality of inner honeycomb fired bodies 210 and outer honeycomb fired bodies 220 are bundled together through an adhesive layer 201 to form a honeycomb block 203.
- an outer peripheral coat layer 202 is formed on the outer periphery of the honeycomb block 203.
- the outer periphery coating layer should just be formed as needed.
- honeycomb structure 200 As shown in FIGS. 8 (a) and 8 (b), eight outer honeycomb fired bodies 220 are located at the positions constituting the outer periphery of the honeycomb block, and four inner honeycomb fired bodies are fired.
- the body 210 is positioned inside the outer honeycomb fired body 220, and a total of twelve honeycomb fired bodies are bound through the adhesive layer 201 so that the cross section of the honeycomb structure 200 (honeycomb block 203) is circular. Has been.
- the shape of the cross section perpendicular to the longitudinal direction of the honeycomb formed body is a shape having at least one linear portion.
- any honeycomb fired body has an outer peripheral wall on the entire side surface, and therefore, an outer peripheral coat layer is not particularly formed.
- the honeycomb structure can be manufactured, and the honeycomb structure can be obtained by a simpler process.
- the outer shape of the cross section perpendicular to the longitudinal direction of the honeycomb fired body is a quadrangle (square), whereas in the present embodiment, the outer shape of the cross section is a fan shape with a central angle of 90 °. In this respect, this embodiment is different from the first embodiment of the present invention.
- FIG. 9A is a perspective view schematically showing a honeycomb fired body produced by using the method for cutting a honeycomb formed body according to the third embodiment of the present invention.
- Fig. 9 (b) is a perspective view schematically showing a honeycomb structure formed of the honeycomb fired body shown in Fig. 9 (a).
- the outer shape of the cross section of the honeycomb fired body 320 shown in FIG. 9A is a sector shape having a central angle of 90 ° surrounded by two line segments 321a and 321b and one arc 321c.
- honeycomb structure 300 shown in FIG. 9B four honeycomb fired bodies 320 are bundled through an adhesive layer 301 to form a honeycomb block 303, and a coating layer 302 is formed on the outer periphery of the honeycomb block 303. Is formed.
- a method for manufacturing a honeycomb fired body according to the third embodiment of the present invention will be described.
- a honeycomb formed body that is extruded using a die having a shape different from that of the die according to the first embodiment of the present invention is used.
- Laser is irradiated from the direction of the side surface including the straight portion (321a or 321b shown in FIG. 9 (a)) in the shape of the cross section perpendicular to the longitudinal direction of the molded body to provide a cutting assist groove, and then cut with a wire. .
- the other steps are the same as those of the method for manufacturing a honeycomb fired body and the method for manufacturing a honeycomb structure according to the second embodiment of the present invention, detailed description thereof is omitted.
- a fourth embodiment which is an embodiment of the present invention will be described.
- a large number of cells of the honeycomb fired body are composed of large capacity cells and small capacity cells, and are perpendicular to the longitudinal direction of the large capacity cells.
- the area of such a cross section is larger than the area of the cross section perpendicular to the longitudinal direction of the small capacity cell.
- all the cells of the honeycomb fired body have the same shape and the same cross-sectional area.
- FIG. 10 (a) is a perspective view schematically showing an example of a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the fourth embodiment of the present invention.
- FIG. 10B is a cross-sectional view taken along the line HH of the honeycomb fired body shown in FIG.
- a large number of cells 411 are arranged in parallel in the longitudinal direction (in the direction of arrow c in FIG. 10 (a)) across the cell wall 413.
- an outer peripheral wall 414 is formed on the outer periphery thereof.
- the exhaust gas G in FIG. 10B, the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by an arrow in FIG. 10B) always passes through the cell wall 413 separating the cells 411. Then, it flows out from the other cell 411b which the other end surface opened.
- the exhaust gas G passes through the cell wall 413, PM and the like in the exhaust gas are collected, so that the cell wall 413 functions as a filter.
- the honeycomb structure according to this embodiment includes the honeycomb fired body 410. , 420 and 430 are bonded together via an adhesive layer to form a honeycomb block, and an outer peripheral coat layer is formed on the outer periphery of the honeycomb block.
- the outer periphery coating layer should just be formed as needed.
- FIG. 11 (a) is an example of a honeycomb fired body located at the outermost periphery of a honeycomb structure formed of a honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the fourth embodiment of the present invention.
- FIG. FIG. 11 (b) shows another honeycomb fired body positioned on the outermost periphery of the honeycomb structure formed of the honeycomb fired body manufactured by using the method for cutting a honeycomb formed body according to the fourth embodiment of the present invention. It is a front view which shows an example. In FIGS. 11A and 11B, the outer peripheral coat layer is omitted, but the outer peripheral coat material paste solidified (425 and 435) filled in the cell is shown. As shown in FIG.
- the cross section of the outer honeycomb fired body 420 has a shape surrounded by three line segments and one arc.
- the cross section of the outer honeycomb fired body 430 has a shape surrounded by two line segments and one arc.
- the porosity of the honeycomb fired body constituting the honeycomb structure of the present invention is not particularly limited, but is desirably 35 to 60%.
- the honeycomb fired body has a porosity of less than 35%, clogging tends to occur immediately when the honeycomb structure of the present invention is used as a filter, while when the honeycomb fired body has a porosity of more than 60%. This is because the strength of the honeycomb fired body is lowered and easily broken.
- the average pore size of the honeycomb fired body is desirably 5 to 30 ⁇ m.
- the average pore diameter of the honeycomb fired body is less than 5 ⁇ m, clogging is easily caused when the honeycomb structure of the present invention is used as a filter.
- the average pore diameter of the honeycomb fired body exceeds 30 ⁇ m, This is because the particulates in the exhaust gas pass through the pores, the particulates cannot be collected, and the honeycomb structure cannot function as a filter.
- the porosity and average pore diameter of the honeycomb fired body can be measured by a conventionally known mercury intrusion method.
- the cell density in the cross section perpendicular to the longitudinal direction of the honeycomb fired body is not particularly limited, but a desirable lower limit is 31.0 / cm 2 (200 / in 2 ), and a desirable upper limit is 93.0 / cm 2. 2 (600 / in 2 ), the more desirable lower limit is 38.8 / cm 2 (250 / in 2 ), and the more desirable upper limit is 77.5 / cm 2 (500 / in 2 ). .
- honeycomb structure used as an exhaust gas purification filter in which a cell at one end is sealed with a sealing material
- the honeycomb structure according to the invention is not limited to this.
- the honeycomb structure may be a honeycomb structure in which none of the end portions of the cells are sealed with a sealing material.
- Such a honeycomb structure can be used as a catalyst carrier for supporting a catalyst on a cell wall.
- Honeycomb molded body 100a Side surfaces 101a, 101b, 111a, 111b, 121a, 121b, 131a, 131b, 221, 222, 322, 411a, 411b, 421, 431 cells 112a, 112b, 412 sealing material 103, 113, 223, 323, 413, 423 Cell walls 104, 114, 124, 134, 224, 324, 414, 424, 434 Outer peripheral wall 105 Straight line 14 which is one side of the end face portion of the honeycomb formed body 15 Cutting auxiliary groove 15 Wire 110, 120, 130, 210, 220, 320, 410, 420, 430 Honeycomb fired body 10, 200, 300 Honeycomb structure 11, 201, 301 Adhesive layer 12, 202, 302 Outer peripheral coat layer 13, 203, 303 Honeycomb block
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Abstract
本発明のハニカム成形体の切断方法は、押出成形により作製された、多数のセルがセル壁を隔てて長手方向に並設され、その側面に外周壁が形成された炭化ケイ素を含む材料からなる柱状のハニカム成形体を、所定の長さに切断するハニカム成形体の切断方法であって、上記ハニカム成形体の切断方法は、上記ハニカム成形体の外周に対して、波長領域が0.7~2.5μmのレーザーにより切断補助溝を設ける溝形成工程、及び、上記切断補助溝を介してワイヤーにより切断するワイヤー切断工程を含むことを特徴とする。
Description
本発明は、ハニカム成形体の切断方法及びハニカム構造体の製造方法に関する。
乗用車、バス、トラック等の車両又は建設機械等の内燃機関から排出される排ガス中に含有されるスス等のパティキュレート(以下、PMともいう)及びその他の有害成分が環境及び人体に害を及ぼすことが最近問題となっている。そこで、排ガス中のPMを捕集して排ガスを浄化するハニカムフィルタとして、多孔質セラミックからなるハニカム構造体が種々提案されている。
このようなハニカム構造体を製造する際には、まず、セラミック原料粉末及びバインダーを含む混合物を混合することにより湿潤混合物を調製し、上記湿潤混合物を押出成形することにより形成されたハニカム成形体を成形体切断装置を用いて所定の長さに切断する。
次に、切断されたハニカム成形体のそれぞれ一方の端部に交互に封止材用ペーストを充填した後、封止されたハニカム成形体を乾燥、脱脂、焼成することにより、ハニカム焼成体を製造する。
その後、得られた複数のハニカム焼成体の側面に接着剤ペーストを塗布して複数個のハニカム焼成体を結束し、最後に、得られた集合体の外周にコート材ペーストを塗布してコート層を形成することにより、ハニカム構造体を製造する。
次に、切断されたハニカム成形体のそれぞれ一方の端部に交互に封止材用ペーストを充填した後、封止されたハニカム成形体を乾燥、脱脂、焼成することにより、ハニカム焼成体を製造する。
その後、得られた複数のハニカム焼成体の側面に接着剤ペーストを塗布して複数個のハニカム焼成体を結束し、最後に、得られた集合体の外周にコート材ペーストを塗布してコート層を形成することにより、ハニカム構造体を製造する。
なお、本明細書において、ハニカム成形体、ハニカム焼成体及びハニカム構造体のいずれの形態においても、それぞれの外形状をなす面のうち、セルが露出している面を端面といい、端面以外の面を側面という。また、セルの間に存在する壁をセル壁といい、多数のセルを囲むように形成された外周部分を外周壁という。
近年、バス、トラック等の大型車両に用いられる大型のハニカム構造体(ハニカムフィルタ)において、車両の底部に設置場所を確保するために、より容積の小さいハニカム構造体が求められている。
しかしながら、ハニカム構造体の容積が小さくなるとハニカム構造体の圧力損失が増加するため、ハニカム構造体のセル壁を薄く(薄壁化)することでハニカム構造体の圧力損失の増加を抑制し、ハニカム構造体の排気ガス浄化性能を高めることが求められている。
しかしながら、ハニカム構造体の容積が小さくなるとハニカム構造体の圧力損失が増加するため、ハニカム構造体のセル壁を薄く(薄壁化)することでハニカム構造体の圧力損失の増加を抑制し、ハニカム構造体の排気ガス浄化性能を高めることが求められている。
ハニカム構造体を構成するハニカム焼成体のセル壁の厚さを薄くした場合(例えば、セル壁の厚さを0.2mm未満と薄くした場合)には、ハニカム成形体がうまく形成されないという問題を生じる。具体的には、押出成形することにより形成されたハニカム成形体をワイヤー等により切断しようとする際、セル壁となる部分の厚さが薄いと、上記ハニカム成形体の外周壁及びセル壁に座屈等の歪みが生じてしまい、所定の形状を保ったままハニカム成形体を切断することができないという問題がある。
上記問題を解決するため、特許文献1には、ハニカム成形体の外周に、貫通孔の向きに対してほぼ直角に、上記外周を貫通する切断誘導溝をナイフ、回転刃、レーザー又はウォータージェット等の手段を用いて設け、次に、形成された切断誘導溝に細線をあてがい、ハニカム成形体を押しつけることのみによりハニカム成形体を切断する方法が開示されている。
特許文献1で開示されている従来のハニカム成形体を切断する方法において、物理的な力を加えて切断誘導溝を形成するとハニカム成形体に座屈等の歪みが生じてしまう可能性がある。そのため、非接触でハニカム成形体の外周を切断できる量産に適したハニカム成形体の切断方法が求められている。
本発明は、上記の問題を解決するためになされたものであり、炭化ケイ素を含む材料からなるハニカム成形体に座屈等の歪みを生じさせることなく、切断精度を向上させることが可能なハニカム成形体の切断方法及びハニカム構造体の製造方法を提供することを目的とする。
上記目的を達成するために、請求項1に記載のハニカム成形体の切断方法は、
押出成形により作製された、多数のセルがセル壁を隔てて長手方向に並設され、その側面に外周壁が形成された炭化ケイ素を含む材料からなる柱状のハニカム成形体を、所定の長さに切断するハニカム成形体の切断方法であって、
上記ハニカム成形体の切断方法は、上記ハニカム成形体の外周に対して、波長領域が0.7~2.5μmのレーザーにより切断補助溝を設ける溝形成工程、及び、上記切断補助溝を介してワイヤーにより切断するワイヤー切断工程を含むことを特徴とする。
押出成形により作製された、多数のセルがセル壁を隔てて長手方向に並設され、その側面に外周壁が形成された炭化ケイ素を含む材料からなる柱状のハニカム成形体を、所定の長さに切断するハニカム成形体の切断方法であって、
上記ハニカム成形体の切断方法は、上記ハニカム成形体の外周に対して、波長領域が0.7~2.5μmのレーザーにより切断補助溝を設ける溝形成工程、及び、上記切断補助溝を介してワイヤーにより切断するワイヤー切断工程を含むことを特徴とする。
請求項1に記載のハニカム成形体の切断方法は、上記ハニカム成形体の外周に対して、波長領域が0.7~2.5μmのレーザーにより切断補助溝を設ける溝形成工程を含む。そのため、ハニカム成形体の外周壁に物理的な力を加えることなく非接触で切断補助溝を設けることができる。その結果、ハニカム成形体の外周壁及びハニカム成形体内部のセル壁に殆ど座屈等の歪みを生じさせることなく、切断補助溝を形成することが可能である。
一旦、ハニカム成形体の外周壁に切断補助溝が形成されてしまうと、切断すべき部分に厚さの厚い部分は存在しないので、ワイヤーによりハニカム成形体に座屈等の歪みを生じさせることなく、ハニカム成形体を切断することができる。
一旦、ハニカム成形体の外周壁に切断補助溝が形成されてしまうと、切断すべき部分に厚さの厚い部分は存在しないので、ワイヤーによりハニカム成形体に座屈等の歪みを生じさせることなく、ハニカム成形体を切断することができる。
また、波長領域が0.7~2.5μmのレーザーを用いると、炭化ケイ素の吸収度は小さいが、反射率も小さくなるため、相対的に利用できるレーザー光のエネルギー量が大きくなり、ハニカム成形体の切断補助溝の形成精度を向上させることができる。
さらに、波長領域が0.7~2.5μmのレーザーのスポット径はCO2レーザーのスポット径に比べて小さくなることから、所定の幅及び深さの切断補助溝の形成に要するレーザー照射回数は増大する。しかし、スポット径が小さくなることにより、レーザー光の集光深度が大きくなり、レーザー照射中の熱などによる影響を小さくすることができるため、切断補助溝の形成時間を短縮することが可能となる。
請求項2に記載のハニカム成形体の切断方法では、上記レーザーは、ファイバーレーザーである。
ファイバーレーザーのスポット径はCO2レーザーのスポット径に比べて小さくなることから、所定の幅及び深さの切断補助溝の形成に要するレーザー照射回数は増大する。しかし、スポット径が小さくなることにより、レーザー光の集光深度が大きくなり、レーザー照射中の熱などによる影響を小さくすることができるため、切断補助溝の形成時間を短縮することが可能となる。
ファイバーレーザーのスポット径はCO2レーザーのスポット径に比べて小さくなることから、所定の幅及び深さの切断補助溝の形成に要するレーザー照射回数は増大する。しかし、スポット径が小さくなることにより、レーザー光の集光深度が大きくなり、レーザー照射中の熱などによる影響を小さくすることができるため、切断補助溝の形成時間を短縮することが可能となる。
請求項3に記載のハニカム成形体の切断方法では、上記溝形成工程は、上記外周壁のみに対して切断補助溝を設ける。外周壁のみとは、外周壁と同じ厚さの切断補助溝を設けることをいう。
上記外周壁のみに対して切断補助溝を設ける、すなわち、上記切断補助溝の深さが上記外周壁の厚さと同じであると、その後のワイヤー切断工程において、切断すべき部分にセル壁の厚さよりも厚い部分が存在しないので、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間でハニカム成形体を切断することができる。
上記外周壁のみに対して切断補助溝を設ける、すなわち、上記切断補助溝の深さが上記外周壁の厚さと同じであると、その後のワイヤー切断工程において、切断すべき部分にセル壁の厚さよりも厚い部分が存在しないので、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間でハニカム成形体を切断することができる。
請求項4に記載のハニカム成形体の切断方法では、上記溝形成工程は、上記外周壁と少なくとも1つのセル壁に対して切断補助溝を設ける。
上記溝形成工程において、上記外周壁と少なくとも1つのセル壁に対して切断補助溝を設けると、その後のワイヤー切断工程において、上記外周壁は完全に切断されているので、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間でハニカム成形体を切断することができる。
さらに、上記溝形成工程において、上記外周壁と少なくとも1つのセル壁をレーザー切断すると、切断する際に、上記外周壁の厚さの全てを切断し、さらに、その下側にあるセル壁の少なくとも1つを切断するようになるため、レーザー切断の切断位置の微調整を行う必要が生じない。
上記溝形成工程において、上記外周壁と少なくとも1つのセル壁に対して切断補助溝を設けると、その後のワイヤー切断工程において、上記外周壁は完全に切断されているので、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間でハニカム成形体を切断することができる。
さらに、上記溝形成工程において、上記外周壁と少なくとも1つのセル壁をレーザー切断すると、切断する際に、上記外周壁の厚さの全てを切断し、さらに、その下側にあるセル壁の少なくとも1つを切断するようになるため、レーザー切断の切断位置の微調整を行う必要が生じない。
請求項5に記載のハニカム成形体の切断方法では、上記外周壁の厚さは、0.2~0.5mmである。
上記範囲の厚さの外周壁を有すると、セル壁の厚さを薄く(例えば、0.1mm以上0.2mm未満)しても外周壁が厚くなっているため、ハニカム構造体の製造途中又は製造後の外部からの圧力を受けることに対して、破損等することを防止することができる。外周壁の厚さが厚くても、請求項1に記載の切断方法を用いることにより、ハニカム成形体に座屈等の歪みを生じさせることなく、ハニカム成形体を切断することができる。
外周壁は、ハニカム成形体を所定の形状に保つための外枠としての機能を有するが、上記外周壁の厚さが0.2mm未満であると、外周壁の厚さが薄すぎるため、外枠としての機能を発揮しにくくなり、レーザーにより切断補助溝を設けても、ワイヤーによりハニカム成形体を切断する際に、セル壁に座屈等の歪みが発生しやすくなる。また、ハニカム成形体、ハニカム焼成体又はハニカム構造体が外圧により破損しやすくなる。
一方、上記外周壁の厚さが0.5mmを超えると、外周壁が厚くなりすぎるため、フィルタとして機能する充分な容積を確保することが難しくなる。また、レーザーにより切断補助溝を形成する際に時間がかかりすぎる。
上記範囲の厚さの外周壁を有すると、セル壁の厚さを薄く(例えば、0.1mm以上0.2mm未満)しても外周壁が厚くなっているため、ハニカム構造体の製造途中又は製造後の外部からの圧力を受けることに対して、破損等することを防止することができる。外周壁の厚さが厚くても、請求項1に記載の切断方法を用いることにより、ハニカム成形体に座屈等の歪みを生じさせることなく、ハニカム成形体を切断することができる。
外周壁は、ハニカム成形体を所定の形状に保つための外枠としての機能を有するが、上記外周壁の厚さが0.2mm未満であると、外周壁の厚さが薄すぎるため、外枠としての機能を発揮しにくくなり、レーザーにより切断補助溝を設けても、ワイヤーによりハニカム成形体を切断する際に、セル壁に座屈等の歪みが発生しやすくなる。また、ハニカム成形体、ハニカム焼成体又はハニカム構造体が外圧により破損しやすくなる。
一方、上記外周壁の厚さが0.5mmを超えると、外周壁が厚くなりすぎるため、フィルタとして機能する充分な容積を確保することが難しくなる。また、レーザーにより切断補助溝を形成する際に時間がかかりすぎる。
請求項6に記載のハニカム成形体の切断方法では、上記セル壁の厚さは、0.1mm以上0.2mm未満である。
上記セル壁の厚さが0.1mm以上0.2mm未満であると、このハニカム成形体を焼成して作製したハニカム焼成体を用いたハニカム構造体(ハニカムフィルタ)は、圧力損失が低くなる。
上記セル壁の厚さが0.1mm未満であると、セル壁が薄すぎて少しの力が加わっただけでもハニカム成形体のセル壁に座屈等の歪みが発生しやすくなる。また、上記セル壁の厚さが0.2mm以上であると、ハニカム成形体の切断に時間がかかりすぎる。
上記セル壁の厚さが0.1mm以上0.2mm未満であると、このハニカム成形体を焼成して作製したハニカム焼成体を用いたハニカム構造体(ハニカムフィルタ)は、圧力損失が低くなる。
上記セル壁の厚さが0.1mm未満であると、セル壁が薄すぎて少しの力が加わっただけでもハニカム成形体のセル壁に座屈等の歪みが発生しやすくなる。また、上記セル壁の厚さが0.2mm以上であると、ハニカム成形体の切断に時間がかかりすぎる。
請求項7に記載のハニカム成形体の切断方法では、上記切断補助溝の上記長手方向の幅は、0.5~1.0mmである。
上記切断補助溝の上記長手方向の幅が0.5~1.0mmであると、ワイヤーによるハニカム成形体の切断を切断補助溝内で確実に行うことができ、切断補助溝をできるだけ狭くすることができる。
上記切断補助溝の上記長手方向の幅が0.5~1.0mmであると、ワイヤーによるハニカム成形体の切断を切断補助溝内で確実に行うことができ、切断補助溝をできるだけ狭くすることができる。
請求項8に記載のハニカム成形体の切断方法では、上記切断補助溝の上記長手方向の幅に対する上記ワイヤーの直径は、5~20%である。
上記切断補助溝の上記長手方向の幅に対する上記ワイヤーの直径が5%未満であると、ワイヤーが細すぎるため、ワイヤー自体が切断時に切れ易くなる。また、上記切断補助溝の上記長手方向の幅に対する上記ワイヤーの直径が20%を超えると、上記ワイヤー切断工程において、外周壁やセル壁に与える物理的な力が大きくなり、ハニカム成形体に座屈等の歪みが生じやすくなるとともに、切断に時間がかかりすぎる。
上記切断補助溝の上記長手方向の幅に対する上記ワイヤーの直径が5%未満であると、ワイヤーが細すぎるため、ワイヤー自体が切断時に切れ易くなる。また、上記切断補助溝の上記長手方向の幅に対する上記ワイヤーの直径が20%を超えると、上記ワイヤー切断工程において、外周壁やセル壁に与える物理的な力が大きくなり、ハニカム成形体に座屈等の歪みが生じやすくなるとともに、切断に時間がかかりすぎる。
請求項9に記載のハニカム成形体の切断方法では、上記ワイヤーの直径は、0.05~0.10mmである。
上記ワイヤーの直径が0.05mm未満であると、ワイヤーが細すぎるため、ワイヤー自体が切断時に切れ易くなる。また、上記ワイヤーの直径が0.10mmを超えると、上記ワイヤー切断工程において、外周壁やセル壁に与える物理的な力が大きくなり、ハニカム成形体に座屈等の歪みが生じやすくなるとともに、切断に時間がかかりすぎる。
上記ワイヤーの直径が0.05mm未満であると、ワイヤーが細すぎるため、ワイヤー自体が切断時に切れ易くなる。また、上記ワイヤーの直径が0.10mmを超えると、上記ワイヤー切断工程において、外周壁やセル壁に与える物理的な力が大きくなり、ハニカム成形体に座屈等の歪みが生じやすくなるとともに、切断に時間がかかりすぎる。
請求項10に記載のハニカム成形体の切断方法では、上記ハニカム成形体の長手方向に垂直な断面の形状は、少なくとも1つの直線部を持つ形状である。
上記ハニカム成形体を、上記直線部を含む方向から切断すると、レーザーにより上記直線部を含む側面の方向から切断補助溝を形成する際、外周壁の全部に切断補助溝を設けることができる。従って、その後にワイヤーで切断する際、外周壁の全体に均等に力がかかることになり、力が分散される。そのため、ハニカム成形体に座屈等の歪みを発生させることなく、ハニカム成形体を切断することができる。
上記ハニカム成形体が直線部を持たない場合、外周壁の未切断部に厚さの厚い部分や薄い部分が存在することになるため、厚さの厚い部分や薄い部分で力のかかり方が異なることとなり、座屈等の歪みが生じ易い。
上記ハニカム成形体を、上記直線部を含む方向から切断すると、レーザーにより上記直線部を含む側面の方向から切断補助溝を形成する際、外周壁の全部に切断補助溝を設けることができる。従って、その後にワイヤーで切断する際、外周壁の全体に均等に力がかかることになり、力が分散される。そのため、ハニカム成形体に座屈等の歪みを発生させることなく、ハニカム成形体を切断することができる。
上記ハニカム成形体が直線部を持たない場合、外周壁の未切断部に厚さの厚い部分や薄い部分が存在することになるため、厚さの厚い部分や薄い部分で力のかかり方が異なることとなり、座屈等の歪みが生じ易い。
請求項11に記載のハニカム成形体の切断方法では、上記ハニカム成形体の長手方向に垂直な断面の形状は、四角形である。
上記ハニカム成形体の長手方向に垂直な断面の形状が四角形であると、上記ハニカム成形体を焼成することにより得られたハニカム焼成体を容易に組み合わせて、ハニカム構造体を製造することができる。
上記ハニカム成形体の長手方向に垂直な断面の形状が四角形であると、上記ハニカム成形体を焼成することにより得られたハニカム焼成体を容易に組み合わせて、ハニカム構造体を製造することができる。
請求項12に記載のハニカム構造体の製造方法では、長手方向に多数のセルが並設されたハニカム成形体を焼成して、得られた複数のハニカム焼成体が側面に形成された接着材層を介して結束されたハニカム構造体の製造方法であって、上記ハニカム成形体を所定の長さに切断する際に、請求項1~11のいずれかに記載のハニカム成形体の切断方法を用いる。
そのため、ハニカム成形体の外周壁に物理的な力を加えることなく切断補助溝を設けることができる。その結果、ハニカム成形体の外周壁及びハニカム成形体内部のセル壁に殆ど座屈等の歪みを生じさせることなく、切断補助溝を形成することが可能である。
一旦、ハニカム成形体の外周壁に切断補助溝が形成されてしまうと、切断すべき部分に厚さの厚い部分は存在しないので、ワイヤーによりハニカム成形体に座屈等の歪みを生じさせることなく、ハニカム成形体を切断することができる。
そのため、ハニカム成形体の外周壁に物理的な力を加えることなく切断補助溝を設けることができる。その結果、ハニカム成形体の外周壁及びハニカム成形体内部のセル壁に殆ど座屈等の歪みを生じさせることなく、切断補助溝を形成することが可能である。
一旦、ハニカム成形体の外周壁に切断補助溝が形成されてしまうと、切断すべき部分に厚さの厚い部分は存在しないので、ワイヤーによりハニカム成形体に座屈等の歪みを生じさせることなく、ハニカム成形体を切断することができる。
請求項13に記載のハニカム構造体の製造方法では、上記ハニカム構造体の外周部分にコート層が形成されている。
特許文献1で開示されている従来のハニカム成形体を切断する方法では、切断誘導溝を設けるために用いたレーザーの種類については、特に記載されていない。そこで、最も一般的に広く使用されているCO2レーザーを用いて、特許文献1の記載に基づき、炭化ケイ素を含むハニカム成形体を切断してみたところ、切断誘導溝(切断補助溝ともいう)の形成精度が低くなるという問題があった。
本発明者らは、ハニカム成形体の切断補助溝の形成精度が低くなる理由について考えた。
炭化ケイ素を含む材料により形成されたハニカム成形体を切断する場合、一般的に広く使用されているCO2レーザーを用いて切断補助溝を設けることが考えられる。CO2レーザーの波長領域である10.6μm付近に炭化ケイ素の吸収帯域が存在するため、ハニカム成形体を切断することが可能であるが、CO2レーザーを用いて炭化ケイ素を含む材料より形成されるハニカム成形体を切断する場合、切断補助溝の形成精度が低くなるという課題を見出した。
その理由は、炭化ケイ素はCO2レーザーの持つ波長領域の吸収度が高いにも関わらず、反射率も高くなるため、炭化ケイ素の結晶表面はCO2レーザー光を反射し、相対的に利用できるレーザー光のエネルギー量が小さくなると考えられる。レーザー光のエネルギー量が小さくなれば、所定の深さの切断補助溝を形成するために、同じ部位に何度もレーザー照射する必要がある。しかしながら、レーザー照射する回数が増えるにつれ、照射部位にズレが生じる。従って、CO2レーザーを用いた場合、炭化ケイ素を含む材料より形成されるハニカム成形体の切断補助溝の形成精度が低下しているという事実を突き止めた。
炭化ケイ素を含む材料により形成されたハニカム成形体を切断する場合、一般的に広く使用されているCO2レーザーを用いて切断補助溝を設けることが考えられる。CO2レーザーの波長領域である10.6μm付近に炭化ケイ素の吸収帯域が存在するため、ハニカム成形体を切断することが可能であるが、CO2レーザーを用いて炭化ケイ素を含む材料より形成されるハニカム成形体を切断する場合、切断補助溝の形成精度が低くなるという課題を見出した。
その理由は、炭化ケイ素はCO2レーザーの持つ波長領域の吸収度が高いにも関わらず、反射率も高くなるため、炭化ケイ素の結晶表面はCO2レーザー光を反射し、相対的に利用できるレーザー光のエネルギー量が小さくなると考えられる。レーザー光のエネルギー量が小さくなれば、所定の深さの切断補助溝を形成するために、同じ部位に何度もレーザー照射する必要がある。しかしながら、レーザー照射する回数が増えるにつれ、照射部位にズレが生じる。従って、CO2レーザーを用いた場合、炭化ケイ素を含む材料より形成されるハニカム成形体の切断補助溝の形成精度が低下しているという事実を突き止めた。
一方で、波長領域が0.7~2.5μmのレーザー(特に、ファイバーレーザー(波長領域:1.06μm))を用いた場合、炭化ケイ素の吸収度が小さいが、反射率も小さくなるため、相対的に利用できるレーザー光のエネルギー量が大きくなると考えられる。従って、炭化ケイ素の吸収度が低いレーザーを用いた場合の方が、ハニカム成形体の切断補助溝の形成精度が高くなるということを見出した。
ここで、本発明において、ハニカム成形体の切断補助溝の形成精度とは、切断補助溝の中心値の設計値に対する、切断補助溝形成後の切断補助溝の中心値のバラツキを示す。
ここで、本発明において、ハニカム成形体の切断補助溝の形成精度とは、切断補助溝の中心値の設計値に対する、切断補助溝形成後の切断補助溝の中心値のバラツキを示す。
切断補助溝の形成精度が低いと、所定の位置に精度よく切断補助溝を形成することができない。そのため、切断補助溝の内部に必ずワイヤーを位置させるためには、ハニカム成形体を切断するワイヤー径に比べて切断補助溝の大きさを極端に大きくする必要がある。切断補助溝の大きさを大きくすることにより、切断補助溝の形成に時間がかかる。また、ハニカム成形体として使用できない部分が増加する。そのため、材料コストが高くなり、さらに、加工時間の増加によるコストも高くなるという問題がある。
また、ファイバーレーザーのスポット径はCO2レーザーのスポット径に比べて小さくなることから、所定の幅及び深さの切断補助溝の形成に要するレーザー照射回数は増大する。しかし、スポット径が小さくなることにより、レーザー光の集光深度が大きくなり、レーザー照射中の熱などによる影響を小さくすることができるため、切断補助溝の形成時間を短縮することが可能となる。
以上のことから、本発明者らは、常識に従えば、コスト的にも切断精度の観点からも不利であると考えられるファイバーレーザーを敢えて炭化ケイ素を含む材料からなるハニカム成形体の切断に使用することで、その切断精度を向上させることができるという、意外な効果を発見することにより、本発明を完成させた。
すなわち、本発明のハニカム成形体の切断方法は、押出成形により作製された、多数のセルがセル壁を隔てて長手方向に並設され、その側面に外周壁が形成された炭化ケイ素を含む材料からなる柱状のハニカム成形体を、所定の長さに切断する。上記ハニカム成形体の切断方法は、上記ハニカム成形体の外周に対して、波長領域が0.7~2.5μmのレーザーにより切断補助溝を設ける溝形成工程、及び、上記切断補助溝を介してワイヤーにより切断するワイヤー切断工程を含む。
以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
(第一実施形態)
以下、本発明のハニカム成形体の切断方法の一実施形態である第一実施形態について説明する。
以下、本発明のハニカム成形体の切断方法の一実施形態である第一実施形態について説明する。
まず、本発明の第一実施形態に係るハニカム成形体の切断方法及び上記ハニカム成形体の切断方法を用いたハニカム構造体の製造方法について説明する。
(1)まず、炭化ケイ素を含むセラミック粉末とバインダとを含む湿潤混合物を押出成形することによってハニカム成形体を作製する。
具体的には、まず、セラミック粉末として、例えば平均粒子径の異なる2種類の炭化ケイ素粉末と、有機バインダと、液状の可塑剤と、潤滑剤と、水とを混合することにより、ハニカム成形体製造用の湿潤混合物を調製する。
続いて、上記湿潤混合物を押出成形機に投入し、押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設され、その側面に外周壁が形成された形状を有するハニカム成形体が金型より押し出され、長手方向に連続して形成される。このように連続的に形成されたハニカム成形体を、本実施形態に係るハニカム成形体の切断方法を用いて所定の長さになるように切断する。
切断対象となるハニカム成形体とその切断方法については、後で詳しく説明する。
具体的には、まず、セラミック粉末として、例えば平均粒子径の異なる2種類の炭化ケイ素粉末と、有機バインダと、液状の可塑剤と、潤滑剤と、水とを混合することにより、ハニカム成形体製造用の湿潤混合物を調製する。
続いて、上記湿潤混合物を押出成形機に投入し、押出成形することにより、多数のセルがセル壁を隔てて長手方向に並設され、その側面に外周壁が形成された形状を有するハニカム成形体が金型より押し出され、長手方向に連続して形成される。このように連続的に形成されたハニカム成形体を、本実施形態に係るハニカム成形体の切断方法を用いて所定の長さになるように切断する。
切断対象となるハニカム成形体とその切断方法については、後で詳しく説明する。
(2)次に、得られたハニカム成形体をマイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて乾燥させた後、所定のセルに封止材となる封止材ペーストを充填して上記セルを目封じする封止工程を行う。
ここで、封止材ペーストとしては、上記湿潤混合物を用いることができる。
ここで、封止材ペーストとしては、上記湿潤混合物を用いることができる。
(3)その後、所定のセルが目封じされたハニカム成形体を脱脂炉中で加熱し、ハニカム成形体中の有機物を除去する脱脂工程を行った後、脱脂されたハニカム成形体を焼成炉に搬送し、焼成工程を行うことにより、ハニカム焼成体を作製する。
なお、セルの端部に充填された封止材ペーストは、加熱により焼成され、封止材となる。
また、切断工程、乾燥工程、封止工程、脱脂工程及び焼成工程の条件は、従来からハニカム焼成体を作製する際に用いられている条件を適用することができる。
なお、セルの端部に充填された封止材ペーストは、加熱により焼成され、封止材となる。
また、切断工程、乾燥工程、封止工程、脱脂工程及び焼成工程の条件は、従来からハニカム焼成体を作製する際に用いられている条件を適用することができる。
以下、本発明の第一実施形態に係るハニカム成形体の切断方法において、切断対象となるハニカム成形体について詳しく説明する。
図1(a)は、本発明の第一実施形態に係るハニカム成形体の切断方法において、切断対象となるハニカム成形体の一例を模式的に示す斜視図である。図1(b)は、図1(a)に示すハニカム成形体のA-A線断面図である。
図1(a)は、本発明の第一実施形態に係るハニカム成形体の切断方法において、切断対象となるハニカム成形体の一例を模式的に示す斜視図である。図1(b)は、図1(a)に示すハニカム成形体のA-A線断面図である。
図1(a)及び図1(b)に示すハニカム成形体100には、多数のセル101がセル壁103を隔てて長手方向(図1(a)中、矢印aの方向)に並設されるとともに、その外周に外周壁104が形成されている。
ハニカム成形体100においては、長手方向に垂直な断面の面積が小容量セル101bより相対的に大きい大容量セル101aと、長手方向に垂直な断面の面積が大容量セル101aより相対的に小さい小容量セル101bとが、交互に配設されている。
大容量セル101aの長手方向に垂直な断面の形状は八角形であり、小容量セル101bの長手方向に垂直な断面の形状は四角形(正方形)である。
大容量セル101aの長手方向に垂直な断面の形状は八角形であり、小容量セル101bの長手方向に垂直な断面の形状は四角形(正方形)である。
ハニカム成形体100は、セラミック粉末として平均粒子径の異なる2種類の炭化ケイ素粉末と、有機バインダと、液状の可塑剤と、潤滑剤と、水とを混合して調製した湿潤混合物を上述のように押出成形したものであり、主成分として炭化ケイ素粉末を含むとともに、水分を含有している。
炭化ケイ素粉末の粒径は特に限定されないが、後の焼成工程で収縮の少ないものが好ましく、例えば、1.0~50μmの平均粒径を有する炭化ケイ素粉末100重量部と、0.1~1.0μmの平均粒径を有する炭化ケイ素粉末5~65重量部とを組み合わせたものが好ましい。セラミック粉末の粒径を調節することにより、気孔径を調節することができる。
上記有機バインダとしては特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。
これらの中では、メチルセルロースが望ましい。上記有機バインダの配合量は、上記セラミック粉末100重量部に対して、1~10重量部が望ましい。
これらの中では、メチルセルロースが望ましい。上記有機バインダの配合量は、上記セラミック粉末100重量部に対して、1~10重量部が望ましい。
上記可塑剤としては特に限定されず、例えば、グリセリン等が挙げられる。
また、上記潤滑剤としては特に限定されず、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、上記湿潤混合物に含まれていなくてもよい。
また、上記潤滑剤としては特に限定されず、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキシプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、上記湿潤混合物に含まれていなくてもよい。
上記湿潤混合物を調製する際、水を分散媒液として使用している。分散媒液としては水に限られず、例えば、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられる。上記分散媒液は、上記混合組成物の粘度が一定範囲内となるように、適量配合される。
さらに、上記湿潤混合物には、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーン、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらの中では、アルミナバルーンが望ましい。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらの中では、アルミナバルーンが望ましい。
ハニカム成形体の構成材料の主成分は、炭化ケイ素に限定されるわけではなく、炭化ケイ素及び金属ケイ素であってもよい。ハニカム成形体を焼成することで、ケイ素結合炭化ケイ素からなるハニカム焼成体となる。
ハニカム成形体100の長手方向に垂直な断面の形状は、少なくとも1つの直線部を持つ形状であることが望ましく、本実施形態に係るハニカム成形体100のように、四角形であることがより望ましい。すなわち、形成されたハニカム成形体100は、少なくとも平面部分を有することが望ましく、四角柱であることがより望ましい。
セル壁103の厚さは、0.1mm以上0.2mm未満であることが望ましく、0.150~0.195mmであることがより望ましい。
また、外周壁104の厚さは、0.2~0.5mmであることが望ましく、0.25~0.40mmであることがより望ましい。ここで、外周壁104の厚さとは、ハニカム成形体100の長手方向に垂直な断面において、最も外側にある大容量セル101aの内側の面からハニカム成形体100の側面までの最短の長さをいう。
また、外周壁104の厚さは、0.2~0.5mmであることが望ましく、0.25~0.40mmであることがより望ましい。ここで、外周壁104の厚さとは、ハニカム成形体100の長手方向に垂直な断面において、最も外側にある大容量セル101aの内側の面からハニカム成形体100の側面までの最短の長さをいう。
次に、ハニカム成形体の切断方法について詳しく説明する。
図2(a)及び図2(b)は、本発明の第一実施形態に係るハニカム成形体の切断方法を模式的に示した斜視図である。図2(a)は溝形成工程、図2(b)はワイヤー切断工程を示す。
また、図3(a)は、本発明の第一実施形態に係るハニカム成形体の切断方法の詳しい態様を示した斜視図である。図3(b)は、図3(a)に示すハニカム成形体のB-B線断面図である。
図2(a)及び図2(b)は、本発明の第一実施形態に係るハニカム成形体の切断方法を模式的に示した斜視図である。図2(a)は溝形成工程、図2(b)はワイヤー切断工程を示す。
また、図3(a)は、本発明の第一実施形態に係るハニカム成形体の切断方法の詳しい態様を示した斜視図である。図3(b)は、図3(a)に示すハニカム成形体のB-B線断面図である。
(1)まず、図2(a)に示すように、ハニカム成形体100の長手方向に対して垂直になるように、ハニカム成形体100の側面100aの一端から他端にレーザーの照射部位を移動させながらレーザーを照射し、切断補助溝14を設ける。この後に、押出成形されたハニカム成形体100が、形成された切断補助溝において後述のワイヤー切断により所定の長さになるように切断工程を行う。この切断工程を繰り返すことで、所定の長さのハニカム成形体が多数作製される。
ここで、レーザーは、波長領域が0.7~2.5μmであることが望ましく、ファイバーレーザー(波長1.06μm)であることがより望ましい。
ここで、レーザーは、波長領域が0.7~2.5μmであることが望ましく、ファイバーレーザー(波長1.06μm)であることがより望ましい。
さらに、レーザーを照射する際には、1回の切断工程において、図3(a)に示すように、
一定間隔(図3(a)中に示すe)で位置を少しづつずらしながら、所定の回数(図3(a)中に示すN)照射する。例えば、ファイバーレーザーを用いた場合、例えば20~30μmの間隔で位置をずらしながら、例えば15~25回レーザーを照射し、所定の幅(ハニカム成形体100の長手方向の幅)の切断補助溝14を設ける。
一定間隔(図3(a)中に示すe)で位置を少しづつずらしながら、所定の回数(図3(a)中に示すN)照射する。例えば、ファイバーレーザーを用いた場合、例えば20~30μmの間隔で位置をずらしながら、例えば15~25回レーザーを照射し、所定の幅(ハニカム成形体100の長手方向の幅)の切断補助溝14を設ける。
上述したように、ハニカム成形体100の長手方向に垂直な断面の形状は、少なくとも1つの直線部105を持つ形状である。本発明の切断方法において、切断補助溝は、上記直線部105を含む側面の方向から形成されることが望ましい。
図3(b)に示すように、上記ハニカム成形体が直線部を持つと、セルより上の外周壁の部分は、その断面形状が矩形状(l-m-n-o)になる。ハニカム成形体100は長手方向に垂直な断面が八角形のセルと四角形のセルとからなっているため、切断補助溝は全ての外周壁が切断されるC-C線の深さまで形成される。なお、本明細書において、長手方向に垂直な断面とは、セルに平行な方向を長手方向として、セルに垂直な断面のことをいう。よって、レーザーにより上記直線部を含む側面の方向から切断補助溝を形成する際、断面が矩形状の外周壁の全部に切断補助溝を設けることができる。このため、ハニカム成形体に座屈等の歪みを発生させることなく、ハニカム成形体を切断することができる。
ハニカム成形体が直線部を持たない場合、外周壁の未切断部に厚さの厚い部分や薄い部分が存在することになるため、厚さの厚い部分や薄い部分で力のかかり方が異なることとなり、座屈等の歪みが生じ易い。なお、外周壁の全てを切断して切断補助溝を形成する場合は、外周壁のみに切断補助溝を形成したことになる。
図3(b)に示すように、上記ハニカム成形体が直線部を持つと、セルより上の外周壁の部分は、その断面形状が矩形状(l-m-n-o)になる。ハニカム成形体100は長手方向に垂直な断面が八角形のセルと四角形のセルとからなっているため、切断補助溝は全ての外周壁が切断されるC-C線の深さまで形成される。なお、本明細書において、長手方向に垂直な断面とは、セルに平行な方向を長手方向として、セルに垂直な断面のことをいう。よって、レーザーにより上記直線部を含む側面の方向から切断補助溝を形成する際、断面が矩形状の外周壁の全部に切断補助溝を設けることができる。このため、ハニカム成形体に座屈等の歪みを発生させることなく、ハニカム成形体を切断することができる。
ハニカム成形体が直線部を持たない場合、外周壁の未切断部に厚さの厚い部分や薄い部分が存在することになるため、厚さの厚い部分や薄い部分で力のかかり方が異なることとなり、座屈等の歪みが生じ易い。なお、外周壁の全てを切断して切断補助溝を形成する場合は、外周壁のみに切断補助溝を形成したことになる。
なお、ハニカム成形体100は、矢印の方向に一定の速度で押し出され、移動している。従って、ハニカム成形体100の移動速度を勘案し、実際には、切断されたハニカム成形体の端面部分の1辺である直線部105に平行になるように、レーザーを照射し、切断補助溝14を設ける必要がある。すなわち、レーザー光の照射スポットは、ハニカム成形体100の長手方向の移動に追従するように、長手方向に移動しながら、直線部105に平行な方向にも移動し、ハニカム成形体100に切断補助溝14を設ける。
レーザーの照射速度(切断速度)は、400~1000mm/sであることが望ましい。
レーザーの照射速度(切断速度)が400~1000mm/sであると、外周壁に充分な深さの切断補助溝が形成されるため、その後のワイヤー切断工程において、切断すべき部分に厚さの厚い部分はほとんど存在しないので、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間で切断することができる。
レーザーの照射速度(切断速度)が400mm/s未満であると、切断補助溝の形成に時間がかかりすぎ、切断効率が悪くなる。一方、レーザーの照射速度(切断速度)が1000mm/sを超えると、外周壁に充分な深さの切断補助溝が形成されず、その後のワイヤー切断工程において、残った外周壁の一部に物理的な力がかかることになり、これに起因してハニカム成形体に座屈等の歪みが生じやすくなる。
レーザーの照射速度(切断速度)が400~1000mm/sであると、外周壁に充分な深さの切断補助溝が形成されるため、その後のワイヤー切断工程において、切断すべき部分に厚さの厚い部分はほとんど存在しないので、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間で切断することができる。
レーザーの照射速度(切断速度)が400mm/s未満であると、切断補助溝の形成に時間がかかりすぎ、切断効率が悪くなる。一方、レーザーの照射速度(切断速度)が1000mm/sを超えると、外周壁に充分な深さの切断補助溝が形成されず、その後のワイヤー切断工程において、残った外周壁の一部に物理的な力がかかることになり、これに起因してハニカム成形体に座屈等の歪みが生じやすくなる。
なお、ファイバーレーザーとは、固体レーザーの一種で、光ファイバーを媒質に用いたレーザーの総称である。一般的なファイバーレーザーは、希土類イオンを添加したものであって、光ファイバー自体がレーザーの共振器を構成している。希土類としては、Yb、Er、Yb:Er、Tm、Nd等が挙げられるが、特に、Ybが添加されていることが望ましい。
レーザーの出力は、27~30Wであることが望ましい。レーザーの出力が27~30Wであると、外周壁に充分な深さの切断補助溝が形成されるため、その後のワイヤー切断工程において、切断すべき部分に厚さの厚い部分はほとんど存在しないので、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間で切断することができる。
本発明の切断方法において、切断補助溝は、外周壁のみに対して設けるか、又は、外周壁と少なくとも1つのセル壁とに対して設けることが望ましい。
ここで、切断補助溝が外周壁のみに対して設けられているとは、切断補助溝の深さが外周壁104の厚さと同じであることをいう。すなわち、図3(b)中に示すC-C線の深さまで切断補助溝が設けられている状態をいう。また、切断補助溝が外周壁と少なくとも1つのセル壁に対して設けられているとは、外周壁104の厚さの全てと、さらに、その下側にあるセル壁103の少なくとも1つがレーザー切断されていることをいい、すなわち、図3(b)中に示すD-D線の深さまで切断補助溝が設けられている状態をいう。
ここで、切断補助溝が外周壁のみに対して設けられているとは、切断補助溝の深さが外周壁104の厚さと同じであることをいう。すなわち、図3(b)中に示すC-C線の深さまで切断補助溝が設けられている状態をいう。また、切断補助溝が外周壁と少なくとも1つのセル壁に対して設けられているとは、外周壁104の厚さの全てと、さらに、その下側にあるセル壁103の少なくとも1つがレーザー切断されていることをいい、すなわち、図3(b)中に示すD-D線の深さまで切断補助溝が設けられている状態をいう。
上述したように、レーザーを照射する際には、一定間隔(図3(a)中に示すe)で位置を少しづつずらしながら、所定の回数(図3(a)中に示すN)、レーザーを照射することにより、切断補助溝の長手方向の幅(図2(a)中に示すd)を調節するが、切断補助溝の長手方向の幅は、0.5~1.0mmであることが望ましく、0.6~0.9mmであることがより望ましい。
切断補助溝の長手方向(セルの方向に垂直な方向)の幅が0.5~1.0mmであると、ワイヤーによるハニカム成形体の切断を切断補助溝内で確実に行うことができ、切断補助溝をできるだけ狭くすることができる。
切断補助溝の長手方向(セルの方向に垂直な方向)の幅が0.5~1.0mmであると、ワイヤーによるハニカム成形体の切断を切断補助溝内で確実に行うことができ、切断補助溝をできるだけ狭くすることができる。
(2)上記レーザーにより切断補助溝を形成した後、図2(b)に示すように、切断補助溝14にワイヤー15をあてがい、ワイヤー15をハニカム成形体100に押しつけ、ハニカム成形体100の長手方向に垂直な方向にワイヤー15を降下させることにより、ハニカム成形体100を切断する。
このとき、レーザーの照射により、外周壁の全部、又は、外周壁及びセル壁の一部に切断補助溝が形成されており、ワイヤーによる切断時には、切断すべき部分にセル壁を超える厚さの厚い部分は存在しない。従って、セル壁の厚さが薄い(例えば、0.1mm以上0.2mm未満)場合であっても、ハニカム成形体に座屈等の歪みを生じさせることなく、ハニカム成形体を切断することができる。
本発明の第一実施形態に係るハニカム成形体の切断方法において、ワイヤーによる切断時には、外周壁やセル壁に与える物理的な力はなるべく小さい方が好ましいという観点から、ワイヤーの直径は、0.05~0.10mmであることが望ましい。
また、切断補助溝の幅に対するワイヤーの直径は、5~20%であることが望ましい。切断補助溝の幅に対するワイヤーの直径が5~20%であると、ワイヤーによる切断時において、外周壁やセル壁に与える物理的な力が小さくなり、ハニカム成形体に座屈等の歪みが生じにくくなる。
さらに、ワイヤーの切断降下速度は、38~82mm/sであることが望ましい。ワイヤーの切断降下速度が38~82mm/sであると、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間で切断することができる。
38mm/s未満であると、切断効率が悪くなり、82mm/sを超えると、ハニカム成形体にかかる物理的な力が大きくなり、これに起因してハニカム成形体に座屈等の歪みが生じやすくなる。
また、切断補助溝の幅に対するワイヤーの直径は、5~20%であることが望ましい。切断補助溝の幅に対するワイヤーの直径が5~20%であると、ワイヤーによる切断時において、外周壁やセル壁に与える物理的な力が小さくなり、ハニカム成形体に座屈等の歪みが生じにくくなる。
さらに、ワイヤーの切断降下速度は、38~82mm/sであることが望ましい。ワイヤーの切断降下速度が38~82mm/sであると、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間で切断することができる。
38mm/s未満であると、切断効率が悪くなり、82mm/sを超えると、ハニカム成形体にかかる物理的な力が大きくなり、これに起因してハニカム成形体に座屈等の歪みが生じやすくなる。
ハニカム成形体100が長手方向に移動しているため、ワイヤーにより切断する場合にも、ワイヤーをハニカム成形体100の移動に追従するように長手方向に移動させるとともに、ハニカム成形体100の長手方向に垂直な方向にワイヤー15を降下させる必要がある。
上記ワイヤーとしては、金属からなるワイヤー、樹脂からなるワイヤー、金属線の周囲に樹脂が被覆されたワイヤー等が挙げられる。これらの中では、耐久性等を考慮すると金属からなるワイヤーが好ましく、非付着性を考慮すると樹脂が好ましい。従って、これらの点から、上記ワイヤーとしては、SUSのような金属からなるワイヤーの周囲に樹脂が被覆されたものが好ましい。金属からなるワイヤーの周囲に被覆される樹脂としては、特に限定されず、ナイロン、ポリエステル、ポリビニルアルコール、ポリアクリル等の樹脂が挙げられる。
以下、本発明の第一実施形態に係るハニカム成形体の切断方法を用いて作製したハニカム焼成体について、図面を参照しながら説明する。
図4(a)は、本発明の第一実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体の一例を模式的に示す斜視図である。図4(b)は、図4(a)に示すハニカム焼成体のE-E線断面図である。
図4(a)及び図4(b)に示すハニカム焼成体110には、多数のセル111がセル壁113を隔てて長手方向(図4(a)中、矢印bの方向)に並設されるとともに、その外周に外周壁114が形成されている。
ハニカム焼成体110においては、長手方向に垂直な断面の面積が小容量セル111bより相対的に大きい大容量セル111aと、長手方向に垂直な断面の面積が大容量セル111aより相対的に小さい小容量セル111bとが、交互に配設されている。
大容量セル111aの長手方向に垂直な断面の形状は八角形であり、小容量セル111bの長手方向に垂直な断面の形状は四角形(正方形)である。
大容量セル111aの長手方向に垂直な断面の形状は八角形であり、小容量セル111bの長手方向に垂直な断面の形状は四角形(正方形)である。
ここで、小容量セルの長手方向に垂直な断面の面積に対する大容量セルの長手方向に垂直な断面の面積の面積比(大容量セルの長手方向に垂直な断面の面積/小容量セルの長手方向に垂直な断面の面積)は、1.4~2.8であることが好ましく、1.5~2.4であることがより好ましい。
気体流入側のセルを大容量セルとし、気体流出側のセルを小容量セルとすることにより、気体流入側のセル(大容量セル)に多くのPMを堆積させることができるが、上記面積比が1.4未満であると、大容量セルの断面積と小容量セルの断面積との差が小さいため、大容量セル及び小容量セルを設け、より多くのPMを堆積させることができるという効果が得られにくくなる。一方、上記面積比が2.8を超えると、小容量セルの長手方向に垂直な断面の面積が小さくなりすぎるため、排ガスが気体流出側のセル(小容量セル)を通過する際の摩擦に起因する圧力損失が大きくなる。
気体流入側のセルを大容量セルとし、気体流出側のセルを小容量セルとすることにより、気体流入側のセル(大容量セル)に多くのPMを堆積させることができるが、上記面積比が1.4未満であると、大容量セルの断面積と小容量セルの断面積との差が小さいため、大容量セル及び小容量セルを設け、より多くのPMを堆積させることができるという効果が得られにくくなる。一方、上記面積比が2.8を超えると、小容量セルの長手方向に垂直な断面の面積が小さくなりすぎるため、排ガスが気体流出側のセル(小容量セル)を通過する際の摩擦に起因する圧力損失が大きくなる。
図4(a)及び図4(b)に示すハニカム焼成体110において、大容量セル111aは、ハニカム焼成体110の第1の端面117a側の端部が開口され、第2の端面117b側の端部が封止材112aにより封止されている。一方、小容量セル111bは、ハニカム焼成体110の第2の端面117b側の端部が開口され、第1の端面117a側の端部で封止材112bにより封止されている。
従って、図4(b)に示すように、大容量セル111aに流入した排ガスG(図4(b)中、排ガスをGで示し、排ガスの流れを矢印で示す)は、必ず、大容量セル111aと小容量セル111bとを隔てるセル壁113を通過した後、小容量セル111bから流出するようになっている。排ガスGがセル壁113を通過する際に、排ガス中のPM等が捕集されるため、大容量セル111a及び小容量セル111bを隔てるセル壁113は、フィルタとして機能する。
このように、ハニカム焼成体110の大容量セル111a及び小容量セル111bには、排ガス等の気体を流通させることができる。図4(b)に示す方向に排ガス等の気体を流通させる場合、ハニカム焼成体110の第1の端面117a側の端部(小容量セル111bが封止されている側の端部)を気体流入側の端部といい、ハニカム焼成体110の第2の端面117b側の端部(大容量セル111aが封止されている側の端部)を気体流出側の端部という。
従って、図4(b)に示すように、大容量セル111aに流入した排ガスG(図4(b)中、排ガスをGで示し、排ガスの流れを矢印で示す)は、必ず、大容量セル111aと小容量セル111bとを隔てるセル壁113を通過した後、小容量セル111bから流出するようになっている。排ガスGがセル壁113を通過する際に、排ガス中のPM等が捕集されるため、大容量セル111a及び小容量セル111bを隔てるセル壁113は、フィルタとして機能する。
このように、ハニカム焼成体110の大容量セル111a及び小容量セル111bには、排ガス等の気体を流通させることができる。図4(b)に示す方向に排ガス等の気体を流通させる場合、ハニカム焼成体110の第1の端面117a側の端部(小容量セル111bが封止されている側の端部)を気体流入側の端部といい、ハニカム焼成体110の第2の端面117b側の端部(大容量セル111aが封止されている側の端部)を気体流出側の端部という。
すなわち、気体流入側の端部が開口している大容量セル111aは、気体流入側のセル111aであり、気体流出側の端部が開口している小容量セル111bは、気体流出側のセル111bといえる。
ハニカム焼成体の長手方向に垂直な断面の形状は、少なくとも1つの直線部を持つ形状であることが望ましく、本実施形態に係るハニカム焼成体のように、四角形(正方形)であることがより望ましい。
図1(a)及び図1(b)に示すハニカム成形体と同様に、セル壁113の厚さは、0.1mm以上0.2mm未満であることが望ましく、また、外周壁114の厚さは、0.2~0.5mmであることが望ましい。
次に、上記方法により得られたハニカム焼成体から構成されたハニカム構造体の製造方法について説明する。
(1)各セルの所定の端部が封止されたハニカム焼成体のそれぞれの所定の側面に、接着材ペーストを塗布して接着材ペースト層を形成し、接着材ペースト層を加熱固化して接着材層とすることにより、複数のハニカム焼成体が接着材層を介して結束されてなるハニカムブロックを作製する結束工程を行う。
ここで、接着材ペーストとしては、例えば、無機バインダと無機粒子とを含むものを使用する。上記接着材ペーストは、さらに有機バインダを含んでいてもよい。また、上記接着材ペーストは、さらに無機繊維及び/又はウィスカを含んでいてもよい。
(1)各セルの所定の端部が封止されたハニカム焼成体のそれぞれの所定の側面に、接着材ペーストを塗布して接着材ペースト層を形成し、接着材ペースト層を加熱固化して接着材層とすることにより、複数のハニカム焼成体が接着材層を介して結束されてなるハニカムブロックを作製する結束工程を行う。
ここで、接着材ペーストとしては、例えば、無機バインダと無機粒子とを含むものを使用する。上記接着材ペーストは、さらに有機バインダを含んでいてもよい。また、上記接着材ペーストは、さらに無機繊維及び/又はウィスカを含んでいてもよい。
(2)その後、ハニカムブロックに切削加工を施す外周加工工程を行う。
具体的には、ダイヤモンドカッターを用いてハニカムブロックの外周を切削することにより、外周が円柱状に加工されたハニカムブロックを作製する。
具体的には、ダイヤモンドカッターを用いてハニカムブロックの外周を切削することにより、外周が円柱状に加工されたハニカムブロックを作製する。
(3)さらに、円柱状のハニカムブロックの外周面に、外周コート材ペーストを塗布し、乾燥固化して外周コート層を形成する外周コート層形成工程を行う。
ここで、外周コート材ペーストとしては、上記接着材ペーストを使用することができる。なお、外周コート材ペーストして、上記接着材ペーストと異なる組成のペーストを使用してもよい。
なお、外周コート層は必ずしも設ける必要はなく、必要に応じて設ければよい。
以上の工程によって、本発明の第一実施形態に係るハニカム構造体を製造することができる。
ここで、外周コート材ペーストとしては、上記接着材ペーストを使用することができる。なお、外周コート材ペーストして、上記接着材ペーストと異なる組成のペーストを使用してもよい。
なお、外周コート層は必ずしも設ける必要はなく、必要に応じて設ければよい。
以上の工程によって、本発明の第一実施形態に係るハニカム構造体を製造することができる。
以下、本発明の第一実施形態に係るハニカム構造体について、図面を参照しながら説明する。上記ハニカム構造体は、本発明の第一実施形態に係るハニカム成形体の切断方法により得られたハニカム焼成体を用いて作製したものである。
図5(a)は、本発明の第一実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の一例を模式的に示す斜視図である。図5(b)は、図5(a)に示すハニカム構造体のF-F線断面図である。
また、図6(a)は、本発明の第一実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の最外周に位置するハニカム焼成体の一例を示す正面図である。図6(b)は、本発明の第一実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の最外周に位置するハニカム焼成体の別の一例を示す正面図である。
なお、図6(a)及び図6(b)において、外周コート層は省略しているが、セルに充填された外周コート材ペーストの固化物(125及び135)は図示している。
図5(a)は、本発明の第一実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の一例を模式的に示す斜視図である。図5(b)は、図5(a)に示すハニカム構造体のF-F線断面図である。
また、図6(a)は、本発明の第一実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の最外周に位置するハニカム焼成体の一例を示す正面図である。図6(b)は、本発明の第一実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の最外周に位置するハニカム焼成体の別の一例を示す正面図である。
なお、図6(a)及び図6(b)において、外周コート層は省略しているが、セルに充填された外周コート材ペーストの固化物(125及び135)は図示している。
図5(a)及び図5(b)に示すハニカム構造体10では、ハニカム焼成体110、120及び130が複数個ずつ接着材層11を介して結束されてハニカムブロック13を構成し、さらに、このハニカムブロック13の外周に外周コート層12が形成されている。なお、外周コート層は、必要に応じて形成されていればよい。
図5(a)及び図5(b)に示すハニカム構造体10では、図4(a)及び図4(b)に示すハニカム焼成体110が36個、接着材層11を介して四角柱のハニカムブロックを作製し、その外周をダイヤモンドカッター等で加工して、その外周に外周コート層を形成する。ハニカムブロック13の外周を構成する位置にある8個の外方ハニカム焼成体120及び8個の外方ハニカム焼成体130と、ハニカム焼成体120及び130より内側に位置する16個の内方ハニカム焼成体110とが、ハニカムブロック13(ハニカム構造体10)の断面形状が円形となっている。
図5(b)に示すように、内方ハニカム焼成体110の断面の形状は、四角形(正方形)である。
また、図5(b)及び図6(a)に示すように、外方ハニカム焼成体120の断面は、3つの線分と1つの円弧とで囲まれた形状をなしている。
さらに、図5(b)及び図6(b)に示すように、外方ハニカム焼成体130の断面は、2つの線分と1つの円弧とで囲まれた形状をなしている。
また、図5(b)及び図6(a)に示すように、外方ハニカム焼成体120の断面は、3つの線分と1つの円弧とで囲まれた形状をなしている。
さらに、図5(b)及び図6(b)に示すように、外方ハニカム焼成体130の断面は、2つの線分と1つの円弧とで囲まれた形状をなしている。
このように構成されたハニカム構造体10は、ハニカム構造体10を構成するハニカム焼成体110、120及び130が、フィルタとして機能する。このため、このハニカム構造体10を、ディーゼルエンジン等の内燃機関から排出される排気ガス中のパティキュレート等を除去する排ガス浄化用フィルタとして好適に用いることができる。
また、内方ハニカム焼成体としての断面四角形のハニカム焼成体と外方ハニカム焼成体としての所定形状(図5(a)及び図5(b)の例では、3つの線分と1つの円弧とで囲まれた断面形状と2つの線分と1つの円弧とで囲まれた断面形状)で外周壁を有するハニカム焼成体を接着材層を介して所定形状(例えば断面円形)としてもよい。その場合は、外周加工を省略することができる。
以下、本発明の第一実施形態に係るハニカム成形体の切断方法の作用効果について列挙する。
(1)本実施形態に係るハニカム成形体の切断方法は、ハニカム成形体の外周に対して、波長領域が0.7~2.5μmのレーザーにより切断補助溝を設ける溝形成工程を含む。そのため、ハニカム成形体の外周壁に物理的な力を加えることなく切断補助溝を設けることができる。その結果、ハニカム成形体の外周壁及びハニカム成形体内部のセル壁に座屈等の歪みを生じさせることなく、切断補助溝を形成することが可能である。
一旦、ハニカム成形体の外周壁に切断補助溝が形成されてしまうと、切断すべき部分にセル壁の厚さを超える厚さの厚い部分は存在しないので、ワイヤーによりハニカム成形体に座屈等の歪みを生じさせることなく、ハニカム成形体を切断することができる。
(1)本実施形態に係るハニカム成形体の切断方法は、ハニカム成形体の外周に対して、波長領域が0.7~2.5μmのレーザーにより切断補助溝を設ける溝形成工程を含む。そのため、ハニカム成形体の外周壁に物理的な力を加えることなく切断補助溝を設けることができる。その結果、ハニカム成形体の外周壁及びハニカム成形体内部のセル壁に座屈等の歪みを生じさせることなく、切断補助溝を形成することが可能である。
一旦、ハニカム成形体の外周壁に切断補助溝が形成されてしまうと、切断すべき部分にセル壁の厚さを超える厚さの厚い部分は存在しないので、ワイヤーによりハニカム成形体に座屈等の歪みを生じさせることなく、ハニカム成形体を切断することができる。
(2)波長領域が0.7~2.5μmのレーザーを用いると、炭化ケイ素の吸収度は小さいが、反射率も小さくなるため、相対的に利用できるレーザー光のエネルギー量が大きくなり、ハニカム成形体の切断補助溝の形成精度を向上させることができる。また、波長領域が0.7~2.5μmのレーザーのスポット径はCO2レーザーのスポット径に比べて小さくなることから、所定の幅及び深さの切断補助溝の形成に要するレーザー照射回数は増大する。しかし、スポット径が小さくなることにより、レーザー光の集光深度が大きくなり、レーザー照射中の熱などによる影響を小さくすることができるため、切断補助溝の形成時間を短縮することが可能となる。
(3)本実施形態に係るハニカム成形体の切断方法において、切断補助溝は、外周壁のみに対して設けるか、又は、外周壁と少なくとも1つのセル壁とに対して設ける。そのため、その後のワイヤー切断工程において、切断すべき部分にセル壁の厚さよりも厚い部分が存在しないか、又は、上記外周壁は完全に切断されているので、ワイヤーによりハニカム成形体のセル壁に座屈等の歪みを生じさせることなく、また、短時間でハニカム成形体を切断することができる。さらに、切断補助溝を外周壁と少なくとも1つのセル壁とに対して設けると、レーザー切断の切断位置の微調整を行う必要が生じない。
(4)本実施形態に係るハニカム成形体の切断方法では、切断補助溝の長手方向(セルの方向に垂直な方向)の幅は、0.5~1.0mmである。そのため、ワイヤーによるハニカム成形体の切断を切断補助溝内で確実に行うことができ、切断補助溝をできるだけ狭くすることができる。
(実施例)
以下、本発明の第一実施形態をより具体的に開示した実施例を示すが、本発明はこれらの実施例のみに限定されるものではない。
以下、本発明の第一実施形態をより具体的に開示した実施例を示すが、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
(i)ハニカム焼成体の製造
まず、平均粒子径22μmを有する炭化ケイ素の粗粉末54.6重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末23.4重量%とを混合し、得られた混合物に対して、有機バインダ(メチルセルロース)4.3重量%、潤滑剤(日油社製 ユニルーブ)2.6重量%、グリセリン1.2重量%、及び、水13.9重量%を加えて混練して湿潤混合物を得た。
(i)ハニカム焼成体の製造
まず、平均粒子径22μmを有する炭化ケイ素の粗粉末54.6重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末23.4重量%とを混合し、得られた混合物に対して、有機バインダ(メチルセルロース)4.3重量%、潤滑剤(日油社製 ユニルーブ)2.6重量%、グリセリン1.2重量%、及び、水13.9重量%を加えて混練して湿潤混合物を得た。
次に、得られた湿潤混合物を押出成形機に投入し、押出成形機から3.3m/minの押出速度で押出成形し、得られた連続セラミック成形体をレーザー及びワイヤーを用いて切断した。
切断補助溝形成用のレーザーとして、波長領域が0.7~2.5μmのファイバーレーザー(スポット径:50μm)を用い、連続セラミック成形体に、その長手方向の幅(図2(a)中、dで表示される幅)が0.65mm、その深さが0.32mmの切断補助溝を、連続セラミック成形体の長さ方向に垂直になるように形成した。切断補助溝の形成開始から終了までの時間(切断処理時間)を測定したところ、切断処理時間は、2.9秒であった。
次に、直径0.03mmのSUS313製の素線を7本S撚りにし、その周囲にナイロン樹脂を被覆した直径0.06mmのワイヤーを用い、切断補助溝の中にワイヤーが入り込むようにワイヤーを移動させた後、ワイヤーによる切断を行った。
上記工程により、図4(a)に示したハニカム焼成体とほぼ同様の形状であって、セルの目封じをしていない生のハニカム成形体を作製した。得られたハニカム成形体のセル壁の厚さは0.18mm、外周壁の厚さは0.32mmであった。
上記工程により、図4(a)に示したハニカム焼成体とほぼ同様の形状であって、セルの目封じをしていない生のハニカム成形体を作製した。得られたハニカム成形体のセル壁の厚さは0.18mm、外周壁の厚さは0.32mmであった。
次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させた。その後、乾燥させたハニカム成形体の所定のセルに封止材ペーストを充填してセルの封止を行った。なお、上記湿潤混合物を封止材ペーストとして使用した。セルの封止を行った後、封止材ペーストを充填したハニカム成形体を再び乾燥機を用いて乾燥させた。
続いて、セル封止を行い、乾燥させたハニカム成形体を400℃で脱脂する脱脂処理を行い、さらに、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成処理を行った。
これにより、ハニカム焼成体を作製した。
これにより、ハニカム焼成体を作製した。
得られたハニカム焼成体は、多孔質炭化ケイ素焼結体からなり、図4(a)及び図4(b)に示したように、断面形状が八角形の大容量セルと断面形状が四角形の小容量セルとを有し、気孔率が42%、平均気孔径が9μm、大きさが34.3mm×34.3mm×200mm、1個のハニカム焼成体に縦23個、横23個、合計529個のセルが形成されている。また、上記ハニカム成形体と同様に、セル壁の厚さは0.18mm、外周壁の厚さは0.32mmであった。
(実施例2)
切断補助溝の深さを実施例2では、外周壁と同じ厚さ(0.32mm)に、さらにセル壁1つ分を加えた深さ(1.61mm)としたほかは、実施例1と同様にしてハニカム焼成体を作製した。なお、切断補助溝を形成した際に、断面形状が八角形と四角形のセルの上側のセル壁は全て切断されていて、部分的に残る箇所はない。
切断補助溝の深さを実施例2では、外周壁と同じ厚さ(0.32mm)に、さらにセル壁1つ分を加えた深さ(1.61mm)としたほかは、実施例1と同様にしてハニカム焼成体を作製した。なお、切断補助溝を形成した際に、断面形状が八角形と四角形のセルの上側のセル壁は全て切断されていて、部分的に残る箇所はない。
(比較例1)
切断補助溝形成用のレーザーとして、CO2レーザー(スポット径:150μm)を用い、切断補助溝の深さを実施例1と同様に外周壁の厚さと同じ深さ(0.32mm)にしたほかは、実施例1と同様にしてハニカム焼成体を作製した。
切断補助溝形成用のレーザーとして、CO2レーザー(スポット径:150μm)を用い、切断補助溝の深さを実施例1と同様に外周壁の厚さと同じ深さ(0.32mm)にしたほかは、実施例1と同様にしてハニカム焼成体を作製した。
(比較例2)
切断補助溝形成用のレーザーとしてファイバーレーザー(スポット径:50μm)を用い、切断補助溝の深さを0.16mmにしたほかは、実施例1と同様にしてハニカム焼成体を作製した。
切断補助溝形成用のレーザーとしてファイバーレーザー(スポット径:50μm)を用い、切断補助溝の深さを0.16mmにしたほかは、実施例1と同様にしてハニカム焼成体を作製した。
(評価)
実施例1~2及び比較例1~2において、以下のような評価を行った。
(1)切断処理時間
実施例1~2及び比較例1~2のハニカム成形体に、所定の長手方向の幅の切断補助溝を形成するのに要した時間を計測した。その結果を表1に示す。
実施例1~2及び比較例1~2において、以下のような評価を行った。
(1)切断処理時間
実施例1~2及び比較例1~2のハニカム成形体に、所定の長手方向の幅の切断補助溝を形成するのに要した時間を計測した。その結果を表1に示す。
(2)切断補助溝の長手方向の幅のバラツキ
実施例1~2及び比較例1~2で押出成形された連続セラミック成形体に切断補助溝を形成した後、切断補助溝の長手方向の幅を測定し、設計幅に対するバラツキを評価した。バラツキは、以下に示すように、切断補助溝形成後の切断補助溝の幅(dn)と切断誘導溝の設計幅(d0)との差の絶対値で示した。
幅のバラツキ(mm)=|dn-d0|
ここで、本発明における切断誘導溝の設計幅(d0)は0.65mmである。
例えば、実施例1の場合、切断補助溝形成後の切断補助溝の幅(dn)が0.79mmであるから、幅のバラツキは
|dn-d0|=0.79-0.65=0.14(mm)
となる。同様にして計算した実施例2及び比較例1~2の幅のバラツキを表1に示す。
実施例1~2及び比較例1~2で押出成形された連続セラミック成形体に切断補助溝を形成した後、切断補助溝の長手方向の幅を測定し、設計幅に対するバラツキを評価した。バラツキは、以下に示すように、切断補助溝形成後の切断補助溝の幅(dn)と切断誘導溝の設計幅(d0)との差の絶対値で示した。
幅のバラツキ(mm)=|dn-d0|
ここで、本発明における切断誘導溝の設計幅(d0)は0.65mmである。
例えば、実施例1の場合、切断補助溝形成後の切断補助溝の幅(dn)が0.79mmであるから、幅のバラツキは
|dn-d0|=0.79-0.65=0.14(mm)
となる。同様にして計算した実施例2及び比較例1~2の幅のバラツキを表1に示す。
(3)ハニカム成形体の座屈の有無の評価
連続セラミック成形体に切断処理を行った後、得られた実施例1~2及び比較例1~2のハニカム成形体について、端面及び側面におけるセルの形状を目視で観察し、セルに変形(座屈)が生じているものを、座屈ありと判断した。結果を表1に示す。
連続セラミック成形体に切断処理を行った後、得られた実施例1~2及び比較例1~2のハニカム成形体について、端面及び側面におけるセルの形状を目視で観察し、セルに変形(座屈)が生じているものを、座屈ありと判断した。結果を表1に示す。
表1に示すように、切断処理時間に関しては、実施例1では2.9秒、実施例2では4.5秒と切断補助溝の深さが深くなるにつれ、切断処理に時間がかかっている。一方、比較例1では、実施例1と同じ条件で切断しており、切断処理時間は2.1秒であった。実施例1と比較例1との比較より分かるように、切断処理時間に関しては、炭酸ガスレーザーの方が切断処理を迅速に行うことができることがわかった。
切断補助溝の長手方向の幅に対するバラツキに関しては、設計幅が0.65mm、実施例1~2では、バラツキがいずれも0.14mm、比較例1では、バラツキが0.51mmであった。設計幅に対するバラツキの幅は、実施例1~2では、0.14/0.65=21.5%であるのに対し、比較例1では、0.51/0.65=78.5%と大きく上昇しており、炭酸ガスレーザーを用いることにより、形成する切断補助溝の幅のバラツキが大きく上昇することが判明した。
また、座屈の有無に関しては、比較例2では、座屈が生じているのに対し、実施例1~2及び比較例1では、座屈が生じていない。すなわち、切断補助溝を形成する際、切断補助溝の深さが外周壁の50%と、外周壁に切断補助溝が形成されていない部分(未切断部)が存在する場合、レーザー照射時の熱により、未切断部表面が硬化するため、ワイヤーによる切断の際、外周溝に応力がかかるので、セルに座屈が生じ易いことが判明した。
(ii)ハニカム構造体の作製
実施例1により得られたハニカム焼成体を用いて、ハニカム構造体を作製した。
ハニカム焼成体の所定の側面に接着材ペーストを塗布し、この接着材ペーストを介して36個(縦6個×横6個)のハニカム焼成体を接着させることにより、ハニカム焼成体の集合体を作製した。
さらに、ハニカム焼成体の集合体を180℃、20分で接着材ペーストを乾燥固化させることにより、接着材層の厚さが1mmの角柱状のセラミックブロックを作製した。
ここで、接着材ペーストとしては、平均粒径0.6μmの炭化ケイ素30.0重量%、シリカゾル(固形分30重量%)21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる接着材ペーストを使用した。
実施例1により得られたハニカム焼成体を用いて、ハニカム構造体を作製した。
ハニカム焼成体の所定の側面に接着材ペーストを塗布し、この接着材ペーストを介して36個(縦6個×横6個)のハニカム焼成体を接着させることにより、ハニカム焼成体の集合体を作製した。
さらに、ハニカム焼成体の集合体を180℃、20分で接着材ペーストを乾燥固化させることにより、接着材層の厚さが1mmの角柱状のセラミックブロックを作製した。
ここで、接着材ペーストとしては、平均粒径0.6μmの炭化ケイ素30.0重量%、シリカゾル(固形分30重量%)21.4重量%、カルボキシメチルセルロース8.0重量%、及び、水40.6重量%からなる接着材ペーストを使用した。
その後、ダイヤモンドカッターを用いて、角柱状のセラミックブロックの外周を研削することにより、直径198mmの円柱状のセラミックブロックを作製した。
次に、円柱状のセラミックブロックの外周部に外周コート材ペーストを塗布し、外周コート材ペーストを120℃で加熱固化することにより、セラミックブロックの外周部に厚さ1.0mmの外周コート層を形成した。なお、上記接着材ペーストを外周コート材ペーストとして使用した。
以上の工程によって、直径200mm×長さ200mmの円柱状のハニカム構造体を作製した。
以上の工程によって、直径200mm×長さ200mmの円柱状のハニカム構造体を作製した。
得られたハニカム構造体を排ガス浄化装置のフィルタとして使用して、PMの捕集状態を調べたが、充分なPM捕集能力を有することを確認することができた。
(第二実施形態)
以下、本発明の一実施形態である第二実施形態について説明する。
本発明の第二実施形態では、本発明の第一実施形態と同様のハニカム成形体の切断方法を用いてハニカム成形体を切断するが、切断の対象となるハニカム成形体のうちの一部の外形形状が本発明の第一実施形態に係るハニカム成形体と異なる。従って、本発明の第一実施形態に係るハニカム成形体と異なる外形形状のハニカム成形体の切断方法を含めて本発明の第二実施形態に係るハニカム成形体の切断方法、上記ハニカム成形体の切断方法により得られたハニカム成形体、上記ハニカム成形体を焼成することにより得られたハニカム焼成体、上記ハニカム焼成体から構成されたハニカム構造体について説明する。
以下、本発明の一実施形態である第二実施形態について説明する。
本発明の第二実施形態では、本発明の第一実施形態と同様のハニカム成形体の切断方法を用いてハニカム成形体を切断するが、切断の対象となるハニカム成形体のうちの一部の外形形状が本発明の第一実施形態に係るハニカム成形体と異なる。従って、本発明の第一実施形態に係るハニカム成形体と異なる外形形状のハニカム成形体の切断方法を含めて本発明の第二実施形態に係るハニカム成形体の切断方法、上記ハニカム成形体の切断方法により得られたハニカム成形体、上記ハニカム成形体を焼成することにより得られたハニカム焼成体、上記ハニカム焼成体から構成されたハニカム構造体について説明する。
本発明の第二実施形態に係る内方ハニカム焼成体は、本発明の第一実施形態に係るハニカム焼成体と同様の外形形状を有する。
本発明の第二実施形態では、外方ハニカム焼成体の外形形状が、長手方向に垂直な断面の形状が3つの線分と1つの円弧とで囲まれた形状である点で、本発明の第一実施形態とは異なる。
本発明の第二実施形態に係る内方ハニカム焼成体は、図4(a)及び図4(b)に示す本発明の第一実施形態に係るハニカム焼成体と外形形状が同じであるため、詳細な説明は省略する。
本発明の第二実施形態では、外方ハニカム焼成体の外形形状が、長手方向に垂直な断面の形状が3つの線分と1つの円弧とで囲まれた形状である点で、本発明の第一実施形態とは異なる。
本発明の第二実施形態に係る内方ハニカム焼成体は、図4(a)及び図4(b)に示す本発明の第一実施形態に係るハニカム焼成体と外形形状が同じであるため、詳細な説明は省略する。
図7は、本発明の第二実施形態に係るハニカム成形体の切断方法を用いて作製された外方ハニカム焼成体の一例を模式的に示す斜視図である。
図8(a)は、本発明の第二実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の一例を模式的に示す斜視図である。図8(b)は、図8(a)に示すハニカム構造体のG-G線断面図である。
図8(a)は、本発明の第二実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の一例を模式的に示す斜視図である。図8(b)は、図8(a)に示すハニカム構造体のG-G線断面図である。
以下、本発明の第二実施形態に係る外方ハニカム焼成体について、図面を参照しながら説明する。
図7及び図8(b)に示す外方ハニカム焼成体220の断面の外形形状は、3つの線分220a、220b、220cと1つの円弧220dとで囲まれた形状である。この3つの線分のうちの2つの線分よりなる2つの角(線分220bと線分220cとが成す角、及び、線分220aと線分220bとが成す角)はそれぞれ90°と135°である。
上記形状の外方ハニカム焼成体220は、第二実施形態に係るハニカム成形体の切断方法を用いて切断した図7及び図8(b)に示すハニカム焼成体220と同一形状のハニカム成形体を脱脂、焼成することにより得られたものである。
図7及び図8(b)に示す外方ハニカム焼成体220の断面の外形形状は、3つの線分220a、220b、220cと1つの円弧220dとで囲まれた形状である。この3つの線分のうちの2つの線分よりなる2つの角(線分220bと線分220cとが成す角、及び、線分220aと線分220bとが成す角)はそれぞれ90°と135°である。
上記形状の外方ハニカム焼成体220は、第二実施形態に係るハニカム成形体の切断方法を用いて切断した図7及び図8(b)に示すハニカム焼成体220と同一形状のハニカム成形体を脱脂、焼成することにより得られたものである。
次に、本発明の第二実施形態に係る外方ハニカム焼成体の製造方法について説明する。
本実施形態に係る外方ハニカム焼成体の製造方法において、ハニカム成形体の切断方法では、本発明の第一実施形態に係るダイスとは異なる形状のダイスを用いて押出成形されたハニカム成形体を、ハニカム成形体の長手方向に垂直な断面の形状のうち直線部(図8(b)に示す220a、220b又は220c)を含む側面の方向からレーザーを照射し、切断補助溝を設けた後、ワイヤーにより切断する。
その他の工程は本発明の第一実施形態に係るハニカム焼成体の製造方法と同様であるため、詳細な説明は省略する。
本実施形態に係る外方ハニカム焼成体の製造方法において、ハニカム成形体の切断方法では、本発明の第一実施形態に係るダイスとは異なる形状のダイスを用いて押出成形されたハニカム成形体を、ハニカム成形体の長手方向に垂直な断面の形状のうち直線部(図8(b)に示す220a、220b又は220c)を含む側面の方向からレーザーを照射し、切断補助溝を設けた後、ワイヤーにより切断する。
その他の工程は本発明の第一実施形態に係るハニカム焼成体の製造方法と同様であるため、詳細な説明は省略する。
以下、本発明の第二実施形態に係るハニカム焼成体から構成されたハニカム構造体の製造方法について説明する。
本実施形態に係るハニカム焼成体の製造方法では、結束工程において、内方ハニカム焼成体210と外方ハニカム焼成体220の側面に、接着剤ペーストを塗布して接着剤ペースト層を形成し、接着剤ペースト層を介して複数のハニカム焼成体が結束されたハニカムブロック203を作製する。
その他の工程は本発明の第一実施形態に係るハニカム焼成体から構成されたハニカム構造体の製造方法と同様であるため、詳細な説明は省略する。
本実施形態に係るハニカム焼成体の製造方法では、結束工程において、内方ハニカム焼成体210と外方ハニカム焼成体220の側面に、接着剤ペーストを塗布して接着剤ペースト層を形成し、接着剤ペースト層を介して複数のハニカム焼成体が結束されたハニカムブロック203を作製する。
その他の工程は本発明の第一実施形態に係るハニカム焼成体から構成されたハニカム構造体の製造方法と同様であるため、詳細な説明は省略する。
次に、本発明の第二実施形態に係るハニカム焼成体から構成されたハニカム構造体について、図面を参照しながら説明する。
図8(a)及び図8(b)に示すハニカム構造体では、内方ハニカム焼成体210と、外方ハニカム焼成体220とが複数個ずつ接着材層201を介して結束されてハニカムブロック203を構成し、さらに、このハニカムブロック203の外周に外周コート層202が形成されている。なお、外周コート層は、必要に応じて形成されていればよい。
図8(a)及び図8(b)に示すハニカム構造体では、内方ハニカム焼成体210と、外方ハニカム焼成体220とが複数個ずつ接着材層201を介して結束されてハニカムブロック203を構成し、さらに、このハニカムブロック203の外周に外周コート層202が形成されている。なお、外周コート層は、必要に応じて形成されていればよい。
ハニカム構造体200では、図8(a)及び図8(b)に示すように、8個の外方ハニカム焼成体220がハニカムブロックの外周を構成する位置にあり、4個の内方ハニカム焼成体210が外方ハニカム焼成体220の内側に位置し、合計12個のハニカム焼成体が、ハニカム構造体200(ハニカムブロック203)の断面が円形となるように、接着剤層201を介して結束されている。
本実施形態においても、本発明の第一実施形態において説明した作用効果(1)~(4)に加え、以下の作用効果を発揮することができる。
(5)本実施形態に係るハニカム成形体の切断方法では、ハニカム成形体の長手方向に垂直な断面の形状は、少なくとも1つの直線部を持つ形状である。ハニカム成形体を、直線部を含む側面の方向から切断すると、ハニカム成形体の変形を防止することができる。
(6)本実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム構造体では、いずれのハニカム焼成体も、その側面全体に外周壁を有するため、特に外周コート層を形成しなくてもハニカム構造体を製造することができ、より簡単な工程によりハニカム構造体を得ることができる。
(第三実施形態)
以下、本発明の一実施形態である第三実施形態について説明する。本発明の第一実施形態では、ハニカム焼成体の長手方向に垂直な断面の外形形状が四角形(正方形)であるのに対し、本実施形態では断面の外形形状が中心角90°の扇形である点で、本実施形態は本発明の第一実施形態とは異なる。
以下、本発明の一実施形態である第三実施形態について説明する。本発明の第一実施形態では、ハニカム焼成体の長手方向に垂直な断面の外形形状が四角形(正方形)であるのに対し、本実施形態では断面の外形形状が中心角90°の扇形である点で、本実施形態は本発明の第一実施形態とは異なる。
以下、本発明の第三実施形態に係るハニカム焼成体、及び、このハニカム焼成体から構成されるハニカム構造体について、図面を参照しながら説明する。
図9(a)は、本発明の第三実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体を模式的に示した斜視図である。図9(b)は、図9(a)に示すハニカム焼成体から構成されるハニカム構造体を模式的に示す斜視図である。
図9(a)は、本発明の第三実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体を模式的に示した斜視図である。図9(b)は、図9(a)に示すハニカム焼成体から構成されるハニカム構造体を模式的に示す斜視図である。
図9(a)に示すハニカム焼成体320の断面の外形形状は、2つの線分321a、321bと1つの円弧321cとで囲まれた、中心角90°の扇形である。
図9(b)に示すハニカム構造体300では、4個のハニカム焼成体320が接着剤層301を介して結束されてハニカムブロック303を構成し、さらに、このハニカムブロック303の外周にコート層302が形成されている。
次に、本発明の第三実施形態に係るハニカム焼成体の製造方法について説明する。
本実施形態に係るハニカム焼成体の製造方法において、ハニカム成形体の切断方法では、本発明の第一実施形態に係るダイスとは異なる形状のダイスを用いて押出成形されたハニカム成形体を、ハニカム成形体の長手方向に垂直な断面の形状のうち直線部(図9(a)に示す321a又は321b)を含む側面の方向からレーザーを照射し、切断補助溝を設けた後、ワイヤーにより切断する。直線部を含む側面の方向から切断すると、ハニカム成形体の変形を防止することができる。
その他の工程は本発明の第二実施形態に係るハニカム焼成体の製造方法及びハニカム構造体の製造方法と同様であるため、詳細な説明は省略する。
本実施形態に係るハニカム焼成体の製造方法において、ハニカム成形体の切断方法では、本発明の第一実施形態に係るダイスとは異なる形状のダイスを用いて押出成形されたハニカム成形体を、ハニカム成形体の長手方向に垂直な断面の形状のうち直線部(図9(a)に示す321a又は321b)を含む側面の方向からレーザーを照射し、切断補助溝を設けた後、ワイヤーにより切断する。直線部を含む側面の方向から切断すると、ハニカム成形体の変形を防止することができる。
その他の工程は本発明の第二実施形態に係るハニカム焼成体の製造方法及びハニカム構造体の製造方法と同様であるため、詳細な説明は省略する。
本実施形態においても、本発明の第二実施形態において説明した作用効果(1)~(6)を発揮することができる。
(第四実施形態)
以下、本発明の一実施形態である第四実施形態について説明する。本発明の第一実施形態では、ハニカム焼成体の長手方向に垂直な断面において、ハニカム焼成体が有する多数のセルが、大容量セルと小容量セルとからなり、大容量セルの長手方向に垂直な断面の面積は、小容量セルの長手方向に垂直な断面の面積よりも大きい。一方、本発明の第四実施形態では、ハニカム焼成体が有する多数のセルの形状がすべて等しい形状であり、断面積も互いに等しい。
以下、本発明の一実施形態である第四実施形態について説明する。本発明の第一実施形態では、ハニカム焼成体の長手方向に垂直な断面において、ハニカム焼成体が有する多数のセルが、大容量セルと小容量セルとからなり、大容量セルの長手方向に垂直な断面の面積は、小容量セルの長手方向に垂直な断面の面積よりも大きい。一方、本発明の第四実施形態では、ハニカム焼成体が有する多数のセルの形状がすべて等しい形状であり、断面積も互いに等しい。
以下、本発明の第四実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体について、図面を参照しながら説明する。
図10(a)は、本発明の第四実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体の一例を模式的に示す斜視図である。図10(b)は、図10(a)に示すハニカム焼成体のH-H線断面図である。
図10(a)は、本発明の第四実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体の一例を模式的に示す斜視図である。図10(b)は、図10(a)に示すハニカム焼成体のH-H線断面図である。
図10(a)及び図10(b)に示すハニカム焼成体410においては、多数のセル411がセル壁413を隔てて長手方向(図10(a)中、矢印cの方向)に並設されるとともに、その外周に外周壁414が形成されている。
ハニカム焼成体410は、セル411のいずれかの端部が封止材412で封止されている。
従って、一方の端面が開口したセル411aに流入した排ガスG(図10(b)中、排ガスをGで示し、排ガスの流れを矢印で示す)は、必ずセル411を隔てるセル壁413を通過した後、他方の端面が開口した他のセル411bから流出するようになっている。排ガスGがセル壁413を通過する際に、排ガス中のPM等が捕集されるため、セル壁413は、フィルタとして機能する。
従って、一方の端面が開口したセル411aに流入した排ガスG(図10(b)中、排ガスをGで示し、排ガスの流れを矢印で示す)は、必ずセル411を隔てるセル壁413を通過した後、他方の端面が開口した他のセル411bから流出するようになっている。排ガスGがセル壁413を通過する際に、排ガス中のPM等が捕集されるため、セル壁413は、フィルタとして機能する。
本発明の第四実施形態に係るハニカム焼成体の製造方法及びハニカム構造体の製造方法は、本発明の第一実施形態と同様であるため、詳細な説明は省略する。
以下、本発明の第四実施形態に係るハニカム焼成体から構成されたハニカム構造体について説明する。
図5(a)及び図5(b)に示す本発明の第一実施形態に係るハニカム焼成体から構成されたハニカム構造体と同様に、本実施形態に係るハニカム構造体は、ハニカム焼成体410、420及び430が複数個ずつ接着材層を介して結束されてハニカムブロックを構成し、さらに、このハニカムブロックの外周に外周コート層が形成されている。なお、外周コート層は、必要に応じて形成されていればよい。
図5(a)及び図5(b)に示す本発明の第一実施形態に係るハニカム焼成体から構成されたハニカム構造体と同様に、本実施形態に係るハニカム構造体は、ハニカム焼成体410、420及び430が複数個ずつ接着材層を介して結束されてハニカムブロックを構成し、さらに、このハニカムブロックの外周に外周コート層が形成されている。なお、外周コート層は、必要に応じて形成されていればよい。
図11(a)は、本発明の第四実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の最外周に位置するハニカム焼成体の一例を示す正面図である。図11(b)は、本発明の第四実施形態に係るハニカム成形体の切断方法を用いて作製されたハニカム焼成体から構成されたハニカム構造体の最外周に位置するハニカム焼成体の別の一例を示す正面図である。
なお、図11(a)及び図11(b)において、外周コート層は省略しているが、セルに充填された外周コート材ペーストの固化物(425及び435)は図示している。
図11(a)に示すように、外方ハニカム焼成体420の断面は、3つの線分と1つの円弧とで囲まれた形状をなしている。
また、図11(b)に示すように、外方ハニカム焼成体430の断面は、2つの線分と1つの円弧とで囲まれた形状をなしている。
なお、図11(a)及び図11(b)において、外周コート層は省略しているが、セルに充填された外周コート材ペーストの固化物(425及び435)は図示している。
図11(a)に示すように、外方ハニカム焼成体420の断面は、3つの線分と1つの円弧とで囲まれた形状をなしている。
また、図11(b)に示すように、外方ハニカム焼成体430の断面は、2つの線分と1つの円弧とで囲まれた形状をなしている。
本実施形態においても、本発明の第一実施形態において説明した作用効果(1)~(4)を発揮することができる。
(その他の実施形態)
本発明のハニカム構造体を構成するハニカム焼成体の気孔率は特に限定されないが、35~60%であることが望ましい。
ハニカム焼成体の気孔率が35%未満であると、本発明のハニカム構造体をフィルタとして使用した際にすぐに目詰まりを起こしやすくなり、一方、ハニカム焼成体の気孔率が60%を超えると、ハニカム焼成体の強度が低下して容易に破壊されやすくなるからである。
本発明のハニカム構造体を構成するハニカム焼成体の気孔率は特に限定されないが、35~60%であることが望ましい。
ハニカム焼成体の気孔率が35%未満であると、本発明のハニカム構造体をフィルタとして使用した際にすぐに目詰まりを起こしやすくなり、一方、ハニカム焼成体の気孔率が60%を超えると、ハニカム焼成体の強度が低下して容易に破壊されやすくなるからである。
上記ハニカム焼成体の平均気孔径は5~30μmであることが望ましい。
ハニカム焼成体の平均気孔径が5μm未満であると、本発明のハニカム構造体をフィルタとして使用した際にすぐに目詰まりを起こしやすくなり、一方、ハニカム焼成体の平均気孔径が30μmを超えると、排ガス中のパティキュレートが気孔を通り抜けてしまい、該パティキュレートを捕集することができず、ハニカム構造体がフィルタとして機能することができないからである。
ハニカム焼成体の平均気孔径が5μm未満であると、本発明のハニカム構造体をフィルタとして使用した際にすぐに目詰まりを起こしやすくなり、一方、ハニカム焼成体の平均気孔径が30μmを超えると、排ガス中のパティキュレートが気孔を通り抜けてしまい、該パティキュレートを捕集することができず、ハニカム構造体がフィルタとして機能することができないからである。
なお、上記ハニカム焼成体の気孔率及び平均気孔径は、従来公知の水銀圧入法により測定することができる。
また、ハニカム焼成体の長手方向に垂直な断面におけるセル密度は特に限定されないが、望ましい下限は、31.0個/cm2(200個/in2)、望ましい上限は、93.0個/cm2(600個/in2)、より望ましい下限は、38.8個/cm2(250個/in2)、より望ましい上限は、77.5個/cm2(500個/in2)である。
また、上記本発明の第一~第四実施形態の各実施形態では、いずれか一端のセルがシール材で封止された排ガス浄化用のフィルタとして使用するハニカム構造体のについて説明したが、本発明に係るハニカム構造体はこれに限定されるものではない。ハニカム構造体は、セルの端部がいずれも封止材で封止されていないハニカム構造体であってもよい。このようなハニカム構造体は、セル壁に触媒を担持させる触媒担体として用いることができる。
100 ハニカム成形体
100a ハニカム成形体の側面
101a、101b、111a、111b、121a、121b、131a、131b、221、222、322、411a、411b、421、431 セル
112a、112b、412 封止材
103、113、223、323、413、423 セル壁
104、114、124、134、224、324、414、424、434 外周壁
105 ハニカム成形体の端面部分の1辺である直線部
14 切断補助溝
15 ワイヤー
110、120、130、210、220、320、410、420、430 ハニカム焼成体
10、200、300 ハニカム構造体
11、201、301 接着材層
12、202、302 外周コート層
13、203、303 ハニカムブロック
100a ハニカム成形体の側面
101a、101b、111a、111b、121a、121b、131a、131b、221、222、322、411a、411b、421、431 セル
112a、112b、412 封止材
103、113、223、323、413、423 セル壁
104、114、124、134、224、324、414、424、434 外周壁
105 ハニカム成形体の端面部分の1辺である直線部
14 切断補助溝
15 ワイヤー
110、120、130、210、220、320、410、420、430 ハニカム焼成体
10、200、300 ハニカム構造体
11、201、301 接着材層
12、202、302 外周コート層
13、203、303 ハニカムブロック
Claims (13)
- 押出成形により作製された、多数のセルがセル壁を隔てて長手方向に並設され、その側面に外周壁が形成された炭化ケイ素を含む材料からなる柱状のハニカム成形体を、所定の長さに切断するハニカム成形体の切断方法であって、
前記ハニカム成形体の切断方法は、前記ハニカム成形体の外周に対して、波長領域が0.7~2.5μmのレーザーにより切断補助溝を設ける溝形成工程、及び、前記切断補助溝を介してワイヤーにより切断するワイヤー切断工程を含むことを特徴とするハニカム成形体の切断方法。 - 前記レーザーは、ファイバーレーザーである請求項1に記載のハニカム成形体の切断方法。
- 前記溝形成工程は、前記外周壁のみに対して切断補助溝を設ける請求項1又は2に記載のハニカム成形体の切断方法。
- 前記溝形成工程は、前記外周壁と少なくとも1つのセル壁に対して切断補助溝を設ける請求項1又は2に記載のハニカム成形体の切断方法。
- 前記外周壁の厚さは、0.2~0.5mmである請求項1~4のいずれかに記載のハニカム成形体の切断方法。
- 前記セル壁の厚さは、0.1mm以上0.2mm未満である請求項1~5のいずれかに記載のハニカム成形体の切断方法。
- 前記切断補助溝の前記長手方向の幅は、0.5~1.0mmである請求項1~6のいずれかに記載のハニカム成形体の切断方法。
- 前記切断補助溝の前記長手方向の幅に対する前記ワイヤーの直径は、5~20%である請求項1~7のいずれかに記載のハニカム成形体の切断方法。
- 前記ワイヤーの直径は、0.05~0.10mmである請求項1~8のいずれかに記載のハニカム成形体の切断方法。
- 前記ハニカム成形体の長手方向に垂直な断面の形状は、少なくとも1つの直線部を持つ形状である請求項1~9のいずれかに記載のハニカム成形体の切断方法。
- 前記ハニカム成形体の長手方向に垂直な断面の形状は、四角形である請求項10に記載のハニカム成形体の切断方法。
- 長手方向に多数のセルが並設されたハニカム成形体を焼成して、得られた複数のハニカム焼成体が側面に形成された接着材層を介して結束されたハニカム構造体の製造方法であって、
前記ハニカム成形体を所定の長さに切断する際に、請求項1~11のいずれかに記載のハニカム成形体の切断方法を用いることを特徴とするハニカム構造体の製造方法。 - 前記ハニカム構造体の外周部分にコート層が形成されている請求項12に記載のハニカム構造体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/070031 WO2013031018A1 (ja) | 2011-09-02 | 2011-09-02 | ハニカム成形体の切断方法及びハニカム構造体の製造方法 |
EP20120150012 EP2565002B1 (en) | 2011-09-02 | 2012-01-02 | A method for cutting honeycomb molded body and a method for manufacturing honeycomb structured body |
US13/600,764 US20130056134A1 (en) | 2011-09-02 | 2012-08-31 | Method for cutting honeycomb molded body and method for manufacturing honeycomb structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/070031 WO2013031018A1 (ja) | 2011-09-02 | 2011-09-02 | ハニカム成形体の切断方法及びハニカム構造体の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013031018A1 true WO2013031018A1 (ja) | 2013-03-07 |
Family
ID=45655126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070031 WO2013031018A1 (ja) | 2011-09-02 | 2011-09-02 | ハニカム成形体の切断方法及びハニカム構造体の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130056134A1 (ja) |
EP (1) | EP2565002B1 (ja) |
WO (1) | WO2013031018A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016501740A (ja) * | 2012-10-19 | 2016-01-21 | ダウ グローバル テクノロジーズ エルエルシー | 形成可能および/または崩壊し得る材料を切断するための器具、および方法 |
CN111889766A (zh) * | 2020-06-17 | 2020-11-06 | 成都飞机工业(集团)有限责任公司 | 一种蜂窝材料孔类特征的加工方法 |
US11345059B2 (en) | 2016-06-08 | 2022-05-31 | Corning Incorporated | Methods of laser machining wet cellular ceramic extrudate for honeycomb body manufacture |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3037264T3 (pl) * | 2014-12-22 | 2018-07-31 | Magna Steyr Fahrzeugtechnik Ag & Co Kg | Półfabrykat z rdzeniem o strukturze plastra miodu i element warstwowy |
CN112620973B (zh) * | 2020-12-18 | 2023-04-07 | 西安晟光硅研半导体科技有限公司 | 一种碳化硅晶片单向三层双向六级台阶切割工艺 |
CN113296178B (zh) * | 2021-06-09 | 2022-07-19 | 中国工程物理研究院激光聚变研究中心 | 一种co2激光在熔石英表面直接制备正弦相位光栅的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004001238A (ja) * | 2002-04-19 | 2004-01-08 | Ngk Insulators Ltd | ハニカム構造体製造装置、及びハニカム構造体の製造方法 |
JP2008137166A (ja) * | 2006-11-30 | 2008-06-19 | Denso Corp | ハニカム成形体の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4049973B2 (ja) * | 1999-07-26 | 2008-02-20 | 日本碍子株式会社 | セラミックハニカム成形体の切断方法 |
JP2001053443A (ja) * | 1999-08-06 | 2001-02-23 | Hitachi Ltd | 電子回路基板の製造方法,電子回路基板の製造装置及び電子回路基板 |
JP3926087B2 (ja) * | 2000-07-18 | 2007-06-06 | レーザーフロントテクノロジーズ株式会社 | グリーンシートの穴あけ加工装置 |
US6703137B2 (en) * | 2001-08-02 | 2004-03-09 | Siemens Westinghouse Power Corporation | Segmented thermal barrier coating and method of manufacturing the same |
WO2007116529A1 (ja) * | 2006-04-11 | 2007-10-18 | Ibiden Co., Ltd. | 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法 |
CN102132635A (zh) * | 2008-06-20 | 2011-07-20 | 日立金属株式会社 | 陶瓷集合基板及其制造方法,陶瓷基板和陶瓷电路基板 |
-
2011
- 2011-09-02 WO PCT/JP2011/070031 patent/WO2013031018A1/ja active Application Filing
-
2012
- 2012-01-02 EP EP20120150012 patent/EP2565002B1/en not_active Not-in-force
- 2012-08-31 US US13/600,764 patent/US20130056134A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004001238A (ja) * | 2002-04-19 | 2004-01-08 | Ngk Insulators Ltd | ハニカム構造体製造装置、及びハニカム構造体の製造方法 |
JP2008137166A (ja) * | 2006-11-30 | 2008-06-19 | Denso Corp | ハニカム成形体の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016501740A (ja) * | 2012-10-19 | 2016-01-21 | ダウ グローバル テクノロジーズ エルエルシー | 形成可能および/または崩壊し得る材料を切断するための器具、および方法 |
US11345059B2 (en) | 2016-06-08 | 2022-05-31 | Corning Incorporated | Methods of laser machining wet cellular ceramic extrudate for honeycomb body manufacture |
CN111889766A (zh) * | 2020-06-17 | 2020-11-06 | 成都飞机工业(集团)有限责任公司 | 一种蜂窝材料孔类特征的加工方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130056134A1 (en) | 2013-03-07 |
EP2565002B1 (en) | 2014-04-16 |
EP2565002A1 (en) | 2013-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5042176B2 (ja) | 排気ガス浄化用ハニカムフィルタ | |
WO2013031018A1 (ja) | ハニカム成形体の切断方法及びハニカム構造体の製造方法 | |
WO2009101682A1 (ja) | ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法 | |
EP1992394B1 (en) | Honeycomb filter | |
WO2009101683A1 (ja) | ハニカム構造体の製造方法 | |
WO2009118814A1 (ja) | ハニカムフィルタ | |
JP5757880B2 (ja) | ハニカム構造体 | |
WO2012132004A1 (ja) | ハニカム構造体及び排ガス浄化装置 | |
JP2009255037A (ja) | ハニカム構造体 | |
DE102021000996A1 (de) | Verfahren zur Herstellung einer Siliciumcarbid enthaltenden Wabenstruktur | |
EP2907638A1 (en) | Cutting method for honeycomb dried body, production method for honeycomb structure, honeycomb dried body, and honeycomb structure | |
JP5990432B2 (ja) | ハニカム成形体の切断方法及びハニカム構造体の製造方法 | |
WO2009101691A1 (ja) | ハニカム構造体 | |
JP5234970B2 (ja) | ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法 | |
WO2009122536A1 (ja) | ハニカム構造体の製造方法 | |
WO2011067823A1 (ja) | ハニカムフィルタ及び排ガス浄化装置 | |
JP2011224538A (ja) | ハニカムフィルタ及び排ガス浄化装置 | |
JP6196234B2 (ja) | セラミック体セグメントを作製するための改良された方法および装置 | |
JP6463973B2 (ja) | ハニカム構造体の製造方法 | |
JP6499469B2 (ja) | ハニカム構造体の製造方法 | |
WO2009118811A1 (ja) | ハニカム構造体 | |
JP2015501744A5 (ja) | ||
WO2013145151A1 (ja) | ハニカム構造体の製造方法、及び、押出成形用金型 | |
WO2016039331A1 (ja) | ハニカム構造体の製造方法 | |
WO2009118812A1 (ja) | ハニカム構造体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11871573 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11871573 Country of ref document: EP Kind code of ref document: A1 |