WO2009154199A1 - ワイヤ放電加工装置およびワイヤ放電加工方法、半導体ウエハ製造装置および半導体ウエハ製造方法、太陽電池ウエハ製造装置および太陽電池ウエハ製造方法 - Google Patents

ワイヤ放電加工装置およびワイヤ放電加工方法、半導体ウエハ製造装置および半導体ウエハ製造方法、太陽電池ウエハ製造装置および太陽電池ウエハ製造方法 Download PDF

Info

Publication number
WO2009154199A1
WO2009154199A1 PCT/JP2009/060946 JP2009060946W WO2009154199A1 WO 2009154199 A1 WO2009154199 A1 WO 2009154199A1 JP 2009060946 W JP2009060946 W JP 2009060946W WO 2009154199 A1 WO2009154199 A1 WO 2009154199A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting wire
workpiece
wire
power supply
cutting
Prior art date
Application number
PCT/JP2009/060946
Other languages
English (en)
French (fr)
Inventor
三宅 英孝
佐藤 達志
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112009001483.6T priority Critical patent/DE112009001483B4/de
Priority to US12/999,106 priority patent/US9050672B2/en
Priority to CN2009801224967A priority patent/CN102066031B/zh
Priority to JP2010517922A priority patent/JP5079091B2/ja
Publication of WO2009154199A1 publication Critical patent/WO2009154199A1/ja
Priority to US14/702,409 priority patent/US9643270B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/028Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for multiple gap machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H11/00Auxiliary apparatus or details, not otherwise provided for
    • B23H11/006Electrical contacts or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • B23H7/107Current pickups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades

Definitions

  • the present invention relates to a wire electric discharge machining apparatus, and more particularly, by causing one wire electrode to be wound between a plurality of guide rollers and arranged in parallel to generate electric discharge between the parallel wire electrode and a workpiece.
  • a wire electric discharge machining method for cutting a plurality of plate-like members from a workpiece at a time machining with high shape accuracy while preventing the wire electrodes from being bent by a magnetic field generated by current flowing through the parallel wire electrodes
  • the present invention relates to a method for manufacturing a member that requires high processing accuracy such as a semiconductor wafer or a wafer for a solar cell.
  • Patent Document 2 improves the short-circuit avoidance operation when processing with one wire electrode, and does not provide a method for preventing the wire electrode from being bent by electromagnetic force. .
  • JP 2000-94221 A JP-A 61-95827 JP-A-9-248719
  • the tension that can be applied is about 15 N
  • the deflection of the wire electrode having a length of 1 m due to the above-described uniform load is about 113 ⁇ m.
  • the tension that can be applied is about 5 N
  • the deflection of the wire electrode having a length of 1 m due to the above-described uniform load is about 340 ⁇ m.
  • this is a case where the current flowing through the wire electrode is an average of 2A, and in actual electric discharge machining, the current is supplied in a pulse shape, so that a current larger than 2A flows through the wire electrode.
  • the force F received by the wire electrode is effective as the square of the current I, and thus becomes larger than the above-mentioned calculated value. That is, the deflection amount of the wire electrode becomes larger than the above-mentioned calculated value, and the occurrence of deflection more than the pitch of the parallel wire electrode is expected. Further, the electromagnetic force varies due to the pulsed current, and the deflection amount of the wire electrode also varies. That is, since the parallel wire electrodes process the workpiece while vibrating, there is a problem that the processing groove width becomes large and the workpiece cannot be cut out thinly.
  • the above-described deflection of the wire electrode does not occur only at the machining start stage, but a machining current flowing through the wire electrode by electric discharge machining generates a magnetic field, which causes an electromagnetic force to act on other parallel wire electrodes.
  • a machining current flowing through the wire electrode by electric discharge machining generates a magnetic field, which causes an electromagnetic force to act on other parallel wire electrodes.
  • the present invention has been made to solve such a problem, and prevents the occurrence of deflection due to electromagnetic force acting on the parallel wire electrodes, and realizes high-accuracy machining by wire electrical discharge machining apparatus and wire electrical discharge machining.
  • the purpose is to obtain a device.
  • Another object of the present invention is to obtain a method of processing a material into a wafer shape while preventing the deflection of wires in the manufacture of semiconductor wafers and solar cell wafers.
  • the wire electric discharge machining apparatus and method of the present invention, the semiconductor wafer manufacturing apparatus and method, and the solar cell wafer manufacturing apparatus and manufacturing method are separated from each other in parallel. This cutting is performed for each of a plurality of wire electrodes provided with a predetermined region portion being a cutting wire portion facing a workpiece, a processing power source for generating a pulsed processing voltage, and a plurality of cutting wire portions.
  • a plurality of power supply units that are electrically connected to the wire electrodes of the wire portion and apply a machining voltage between the cutting wire portion and the workpiece, respectively, and at least a part of the plurality of cutting wire portions arranged in parallel
  • the electric power supply unit is arranged so that the direction of the current flowing through the other cutting wire portion is different from the direction of the current flowing through the other cutting wire portion. And wherein the door.
  • the electronic supply unit is arranged such that directions of currents to be energized are opposite to each other in adjacent cutting wire portions, and are electrically connected to the wire electrodes of the cutting wire portions. .
  • a plurality of adjacent cutting wire portions are grouped together, the directions of currents flowing through the same set of cutting wire portions are the same direction, and currents flowing through adjacent pairs of cutting wire portions Are arranged so that their directions are opposite to each other, and are electrically connected to the wire electrode of the cutting wire portion.
  • the power supply unit is configured such that the direction of the current applied to the cutting wire portions disposed at both ends in the parallel direction of the plurality of cutting wire portions arranged in parallel is the current flowing to the cutting wire portions disposed other than the both ends. It is arranged so as to be opposite to the direction, and is electrically connected to the wire electrode of the cutting wire portion.
  • the power supply unit is provided on both sides of the cutting wire portion, and either one is selected, and a processing voltage from the processing power source is applied between the cutting wire portion and the workpiece.
  • the power supply units provided on both sides of the cutting wire portion including the unselected power supply units function as a support member for the wire electrode.
  • the power supply units provided on both sides of the cutting wire portion are arranged in a direction orthogonal to the cutting wire portion.
  • wire electric discharge machining apparatus and the method thereof, or the semiconductor wafer manufacturing apparatus and the method thereof, and the solar cell wafer manufacturing apparatus and the manufacturing method thereof according to the present invention are provided in parallel and spaced apart from each other, and a predetermined region portion is processed.
  • a wire electric discharge machining apparatus including a plurality of power supply units for applying a voltage for use, or an apparatus and method for preventing wire deflection in a semiconductor wafer manufacturing apparatus and a solar cell wafer manufacturing apparatus, from parallel wire electrodes
  • the direction of the current flowing through at least some of the cutting wire portions is passed through the other cutting wire portions. Characterized by disposing the feeder units so that a direction different directions of current.
  • the above-described wire electric discharge machining apparatus and method thereof, or semiconductor wafer manufacturing apparatus and method of manufacturing thereof, and solar cell wafer manufacturing apparatus and method of manufacturing thereof are arranged so as to change the direction of current flowing in adjacent cutting wire portions in parallel wire electrodes.
  • the machining current is supplied so that the current flowing through the parallel wire electrodes does not become the same in all the wire electrodes.
  • the predetermined region portion faces the workpiece, and is a cutting wire portion, for example, current supplied to adjacent cutting wire portions Since the power supply units are arranged so that the directions of the currents are opposite to each other, the magnetic field generated by the machining current flowing in the cutting wire part by electric discharge machining is the magnetic field generated by the reverse current flowing in the adjacent cutting wire part. Therefore, the electromagnetic force acting on the cutting wire portion is reduced and the deflection of the wire electrode is suppressed.
  • FIG. 1 is a perspective view showing a configuration of a wire electric discharge machining apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing a power feeding structure for parallel wire electrodes according to Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory diagram showing a power feeding structure for parallel wire electrodes according to the second embodiment of the present invention.
  • FIG. 4 is a perspective view showing a configuration of a wire electric discharge machining apparatus according to Embodiment 3 of the present invention.
  • FIG. 5 is an explanatory diagram showing a power feeding structure for parallel wire electrodes according to the third embodiment of the present invention.
  • FIG. 1 is a perspective view showing a wire electric discharge machining apparatus according to Embodiment 1 of the present invention.
  • one wire electrode 2 fed out from the wire bobbin 1 is sequentially spaced a plurality of times from each other between the plurality of guide rollers 3a to 3d.
  • a plurality of cutting wire portions are formed by winding.
  • the interval between the cutting wire portions formed by winding the wire electrode 2 is the processing width (wafer thickness) of the workpiece 8.
  • the workpiece 8 is applied while applying a voltage between each of the cutting wire portions and the workpiece 8 in a state where the workpiece is disposed so as to be opposed to each cutting wire portion by a predetermined interval. Is cut and fed to each cutting wire portion, and the workpiece 8 is discharged and cut at each cutting wire portion. Thereby, the workpiece 8 is processed into a plurality of wafers.
  • the workpiece 8 is obtained by slicing a material into a plurality of thin plates.
  • a metal such as tungsten or molybdenum serving as a sputtering target, ceramics such as polycrystalline silicon carbide used as various structural members, semiconductors, etc.
  • semiconductor materials such as single crystal silicon and single crystal silicon carbide to be device wafers
  • solar cell materials such as single crystal and polycrystalline silicon to be solar cell wafers.
  • the semiconductor material and the solar cell material have a specific resistance of approximately 0.0001 ⁇ cm or more, but the electrical resistivity is approximately 100 ⁇ cm or less, preferably 10 ⁇ cm or less. Therefore, in the present invention, materials having a specific resistance of 0.0001 ⁇ cm or more and 10 ⁇ cm or less are suitable as the semiconductor material and the solar cell material.
  • FIG. 1 shows an example in which one wire electrode 2 is wound around a plurality of guide rollers, the present invention is not limited to this case, and a plurality of cutting wires are formed by folding back one wire electrode 2.
  • a part may be formed, and its specific configuration is not particularly limited.
  • the plurality of guide rollers 3a to 3d are spaced apart from each other in parallel in the axial direction.
  • the guide roller 3a and the guide roller 3b are provided at the highest position, the guide roller 3c is provided at the lowest position below the guide roller 3b, and the guide roller 3c is aligned with the guide roller 3c below the guide roller 3a. 3d is provided.
  • the wire electrode 2 is discharged from the wire discharge roller 5 after a predetermined number of windings.
  • a portion between the guide roller 3 a and the guide roller 3 b is a cutting wire portion 2 a that can be opposed to the workpiece 8 and that processes the workpiece 8, as shown in FIG. 1.
  • the workpiece 8 is arranged facing the cutting wire portion 2a with a minute gap therebetween, and an electric discharge machining process is performed.
  • a portion of the wire electrode 2 between the guide roller 3b and the guide roller 3c serves as a power supply wire portion 2b to which a voltage for electric discharge machining (processing voltage) is supplied.
  • the power supply wire portion 2b of the wire electrode 2 is fed with a voltage (machining voltage) for electrical discharge machining from the machining power supply 6 via the power supply 7A and 7B.
  • a voltage is applied between the workpiece 8 and the workpiece 8.
  • the machining power supply 6 includes a plurality of machining power supply units 61 that can apply voltages independently of each other.
  • the power supply units 7A and 7B are also composed of a plurality of power supply units 71 and 72 that are insulated from each other, and are configured to be able to apply a voltage independently to each cutting wire portion 2a.
  • the plurality of machining power supply units 61 capable of independently applying a voltage to the parallel wire electrodes are connected to a control device (not shown) of the wire electric discharge machining apparatus.
  • the voltage application polarity can be appropriately reversed as necessary, as in the conventional wire electric discharge machining.
  • the position of the workpiece 8 is controlled by a position control device (not shown) so as to separate a minute gap from the wire electrode 2 wound between the guide rollers 3a to 3d, an appropriate discharge gap length is maintained.
  • the machining fluid is supplied between the workpiece 8 and the wire electrode 2 by spraying or dipping, as in normal wire electric discharge machining.
  • FIG. 2 shows only the periphery of the power supply unit for the parallel wire electrode in order to clarify the state of power supply to the parallel wire electrode and the workpiece in the first embodiment.
  • the power supply lines of all the machining power supply units 61 are connected to the workpiece 8.
  • the other power supply line of the machining power supply unit 61 is connected to each of the electronic supply units (the electronic supply unit 71 or the electronic supply unit 72) corresponding to the cutting wire portion 2a. Connected to the power supply unit. As shown in FIG.
  • the two power supply units 71 and 72 provided in each cutting wire portion 2a are arranged at positions facing each other with the workpiece 8 interposed therebetween. It is supported so as to be bridged between the electronic units 71 and 72.
  • the other power supply line of the machining power supply unit 61 is alternately connected to the two power supply units 71 and 72 as shown in FIG. That is, when a power supply line is connected to the power supply unit 71 corresponding to a certain cutting wire portion 2a, the cutting wire portion 2a adjacent to the cutting wire portion is connected to the power supply unit 72 instead of the power supply unit 71.
  • the electric power feeding unit to which a feeder line is not connected is a wire guide (support And a plurality of cutting wire portions 2a are arranged in parallel in cooperation with the power supply unit to which the power supply line is connected.
  • one wire electrode 2 is wound between a plurality of guide rollers 3a to 3d to form a plurality of cutting wire portions 2a, and each cutting is performed.
  • Each of the wire portions 2a is provided with a processing power source 6 and power supplies 7A and 7B for supplying power so that the direction of the current flowing in each of the cutting wire portions 2a is reversed in the adjacent cutting wire portions 2a. did. Thereby, the deflection of the wire electrodes at both ends of the parallel cutting wire portion 2a can be reduced, and the wire electrodes at both ends of the parallel cutting wire portion 2a are not bent even during processing.
  • the processing portion of the workpiece 8 does not become an arc but is a straight line, so that the processing accuracy is improved and the thickness of the wafer cut out from the workpiece 8 at a time by the parallel cutting wire portion 2a is made uniform. be able to.
  • Embodiment 2 FIG.
  • one wire electrode 2 is wound between a plurality of guide rollers 3a to 3d to form a plurality of cutting wire portions 2a, and each cutting wire portion 2a is individually provided.
  • the machining power supply 6 and the power supply 7A and 7B are provided to feed power so that the direction of the current flowing through each cutting wire portion 2a is opposite to that of the adjacent cutting wire portion 2a.
  • a method for preventing deflection was described.
  • the system according to the first embodiment feeds power so that the direction of the current flowing through the parallel cutting wire portions 2a is opposite in the adjacent cutting wire portions 2a, and cancels the magnetic field generated by each cutting wire portion 2a.
  • FIG. 3 shows a power feeding portion to the parallel wire electrode according to the second embodiment of the present invention.
  • the basic apparatus configuration is the same as that of the first embodiment shown in FIG. 1 and FIG. 2, and as shown in FIG. 3, a machining power supply unit for a power supply installed so as to face the workpiece 8.
  • the connection method of the feeder line from 61 is different. Therefore, in the following description, a configuration different from the first embodiment shown in FIGS. 1 and 2 will be mainly described, and the description of the same configuration will be omitted.
  • the polarity-side feed line that is not connected to the workpiece 8 is connected to the power supply units 71 and 72.
  • every other cutting wire portion 2a is connected to face the cutting wire portion 2a.
  • the power supply units 71 and 72 on the power supply line connection side are not switched every other one of the cutting wire portions 2a.
  • two adjacent cutting wire portions 2a are considered as one set, and this one set, that is, the two cutting wire portions 2a have the same polarity as the power supply units 71 and 72 installed on the same side. Connect the power feed line.
  • the cutting wire portion 2a adjacent to the one set of cutting wire portions 2a and the cutting wire portion 2a further adjacent to the cutting wire portion 2a are set as one set.
  • the power supply line of the machining power supply unit 61 is connected to the power supply units 71 and 72 installed on the side opposite to the set of the cutting wire portions 2a.
  • the idea of one set of adjacent parallel wires is not set to two, but one set of a plurality of cutting wire portions 2a such as three, four, five, etc. It is good.
  • a plurality of adjacent cutting wire portions 2a are each set, and the directions of currents flowing through the same set of cutting wire portions 2a are the same direction
  • the cutting wire portion 2a is electrically connected to the wire electrode 2 of the cutting wire portion 2a so that the directions of currents passed through the cutting wire portion 2a are opposite to each other.
  • the power supply unit to which the power supply line is not connected functions as a wire guide (supporting member), and cooperates with the power supply unit to which the power supply line is connected to parallelize the plurality of cutting wire portions 2a on the same plane.
  • the electromagnetic force that acts on the cutting wire portion 2a to bend the cutting wire portion 2a can be reduced.
  • the same effect as in the first embodiment described above can be obtained, and a plurality of cutting wire portions 2a among the parallel cutting wire portions 2a are handled as one set. Since power is supplied so that the current flows in the opposite direction for each group, the power supply line can be easily routed in the power supply structure to the parallel cutting wire portions 2a.
  • Embodiment 3 FIG.
  • a single wire electrode 2 is wound between a plurality of guide rollers 3a to 3d to form a plurality of cutting wire portions 2a, and each cutting wire portion 2a is individually provided.
  • the machining power supply 6 and the power supply 7A and 7B are provided to feed power so that the direction of the current flowing through each cutting wire portion 2a is opposite to that of the adjacent cutting wire portion 2a.
  • a method for preventing deflection was described.
  • the system according to the first embodiment feeds power so that the direction of the current flowing through the parallel cutting wire portions 2a is opposite in the adjacent cutting wire portions 2a, and cancels the magnetic field generated by each cutting wire portion 2a.
  • the bending of the cutting wire portion 2a due to electromagnetic force can be prevented, and the machining shape accuracy is improved.
  • a plurality of the parallel cutting wire portions 2a are treated as a set, and the cutting wire portions 2a constituting these sets are in the same direction.
  • the number of the cutting wire portions 2a for supplying a current in the reverse direction instead of alternately or every other current flowing in the reverse direction, is used.
  • An embodiment will be described in which the magnetic field strength is reduced and the deflection of the cutting wire portion 2a due to electromagnetic force is suppressed by reducing the magnetic field strength as much as possible.
  • FIG. 4 is a perspective view showing a wire electric discharge machining apparatus according to Embodiment 3 of the present invention.
  • the basic configuration is the same as that of the first embodiment shown in FIG. Therefore, in the following description, a configuration different from the first embodiment of FIG. 1 will be mainly described, and the description of the same configuration will be omitted here.
  • the wire electrode 2 fed out from the wire bobbin 1 is spaced a plurality of times from each other between the plurality of guide rollers 3a to 3d.
  • a plurality of wire travel systems are formed by winding, and finally the wire electrode 2 is discharged from the wire discharge roller 5 after being wound a predetermined number of times.
  • the wire electrode 2 has a cutting wire portion 2a for processing the workpiece 8 in a portion between the guide roller 3a and the guide roller 3b.
  • the workpiece 8 is arranged facing the cutting wire portion 2a with a minute gap therebetween, and an electric discharge machining process is performed.
  • a portion of the wire electrode 2 between the guide roller 3b and the guide roller 3c serves as a power supply wire portion 2b to which a voltage for electric discharge machining (processing voltage) is supplied.
  • the power supply wire portion 2b of the wire electrode 2 is supplied with a voltage (machining voltage) for performing electrical discharge machining from the machining power source 6 via the power supply 7A and 7B, and the voltage between the workpiece 8 and the workpiece 8 is supplied.
  • the machining power supply 6 includes a plurality of machining power supply units 61 that can apply voltages independently of each other, and the power supply units 7A and 7B also include a plurality of power supply units 71 and 72 that are insulated from each other. The voltage can be applied independently to the portion 2a.
  • the plurality of machining power supply units 61 capable of independently applying a voltage to the parallel cutting wire portions 2a are connected to a control device (not shown) of the wire electric discharge machining apparatus.
  • FIG. 5 shows that in the first embodiment, when a machining power source composed of the machining power supply unit 61 is fed to the workpiece 8, the feed lines connected to the same polarity side of all the machining power supply units 61 are supplied to the workpiece 8. Connected. Further, each of the power supply lines from the other same polarity of the machining power supply unit 61 is connected to each of the power supply units shown in FIG. 5, but the polarity side not connected to the workpiece 8 of the machining power supply unit 61.
  • a power supply line from the polarity side that is not connected to the workpiece 8 of the processing power supply unit 61 is connected to an electric power supply unit that is installed so as to support two portions 2a.
  • the power supply unit to which the power supply line is not connected functions as a wire guide (supporting member), and cooperates with the power supply unit to which the power supply line is connected to parallelize the plurality of cutting wire portions 2a on the same plane.
  • FIG. 5 shows the periphery of the power feeding section constituted by the parallel cutting wire section 2 a, the workpiece 8, the guide rollers 3 a and 3 b, the power supply units 7 A and 7 B and the processing power supply unit 61.
  • the current from the machining power supply unit 61 passes through the feeders 71 and 72 through the feeder units 71 and 72. It flows to the cutting wire part 2a. At this time, current flows in the same direction in the other parallel cutting wire portions 2a excluding the cutting wire portions A1 and A2 at both ends of the cutting wire portions 2a arranged in parallel.
  • the magnetic field generated by the current flowing through the cutting wire portions A1 and A2 is the magnetic field acting on the cutting wire portions B1 and B2 at both ends of the parallel cutting wire portions 2a through which the current flows in the same direction. Effectively reduce strength. Thereby, the electromagnetic force which acts on cutting wire part B1 and B2 is suppressed, and the bending of cutting wire part 2a is prevented. At the same time, the magnetic field strength acting on the cutting wire portions A1 and A2 is also weakened, the electromagnetic force acting on the cutting wire portions A1 and A2 is suppressed, and the bending of the cutting wire portion 2a is prevented.
  • the direction of the current flowing through each of the cutting wire portions 2a located at both ends of the parallel cutting wire portions 2a and the two cutting wire portions 2a Since the direction of the current flowing through the remaining parallel cutting wire portions 2a excluding the direction is reversed, the electromagnetic force acting on the cutting wire portion 2a can be reduced, and the bending of the cutting wire portion 2a can be prevented.
  • a wire electric discharge machining apparatus having a plurality of wire travel systems that are provided spaced apart from each other by winding the wire electrode 2 around a plurality of guide rollers will be described as an example.
  • the present invention is not limited to this, and the above-described first embodiment is also applicable to an unwinding type as long as it is a wire electric discharge machining apparatus including three or more wire electrodes that generate electric discharge with a workpiece. ⁇ 3 can be applied.
  • FIGS. 1 and 4 The installation positional relationship between the guide roller, the power supply unit, and the work piece or a stage (not shown) on which the work piece is placed in the first to third embodiments will be described.
  • a guide is provided between a workpiece supply unit or a power supply unit installed on both sides of a stage on which the workpiece is placed, and a stage on which the workpiece or the workpiece is placed. You may install so that a roller may intervene.
  • the power supply unit is installed on both sides of the work piece or the stage on which the work piece is placed, and the guide roller is placed on the work supply or the work piece with respect to the power supply unit. You may install in the side in which the stage which mounts a workpiece is not installed.
  • wire electric discharge machining method semiconductor materials such as single crystal silicon and single crystal silicon carbide, solar cell materials such as single crystal or polycrystalline silicon, ceramics such as polycrystalline silicon carbide, tungsten and molybdenum, etc.
  • semiconductor materials such as single crystal silicon and single crystal silicon carbide, solar cell materials such as single crystal or polycrystalline silicon, ceramics such as polycrystalline silicon carbide, tungsten and molybdenum, etc.
  • the electromagnetic force acting between the wires during electric discharge machining is offset or reduced, and the wire electrode is prevented from being bent, so that a plurality of wafers can be cut out with high dimensional accuracy at a time. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

 ワイヤ加工方法は、互いに離間して並列して設けられ所定領域部分が被加工物(8)に対向する切断ワイヤ部(2a)とされた並列するワイヤ電極(2)と、パルス状の加工用電圧を発生させる加工電源(6)と、複数の切断ワイヤ部(2a)のそれぞれに対してこの切断ワイヤ部(2a)のワイヤ電極(2)に電気的接続され、切断ワイヤ部(2a)と被加工物(8)との間にそれぞれ加工用電圧を印加する複数の給電子ユニット(71,72)とを備え、並列する複数の切断ワイヤ部(2a)において、少なくとも一部の切断ワイヤ部(2a)に通電する電流の方向が他の切断ワイヤ部(2a)に通電する電流の方向と異なる方向となるように給電子ユニット(71,72)が配設されている。

Description

ワイヤ放電加工装置およびワイヤ放電加工方法、半導体ウエハ製造装置および半導体ウエハ製造方法、太陽電池ウエハ製造装置および太陽電池ウエハ製造方法
 本発明は、ワイヤ放電加工装置に関し、特に、1本のワイヤ電極を複数のガイドローラ間で巻回させて並列させて、並列するワイヤ電極と被加工物との間で放電を発生させることにより、被加工物から一度に複数枚の板状部材を切り出すワイヤ放電加工方法において、並列するワイヤ電極に電流が流れることにより発生する磁界によってワイヤ電極がたわむことを防止しながら、形状精度の高い加工を実現するワイヤ放電加工方法に関するものであって、また、半導体ウエハや太陽電池用のウエハのように高度な加工精度が要求される部材の製造方法に関するものである。
 ワイヤ放電加工装置により、柱状の被加工物からウエハをスライス加工する場合、1本のワイヤ電極を複数のガイドローラ間に巻回させて並列させることで多数の切断ワイヤ部分を形成し、それぞれの切断ワイヤ部分に個別に給電し、各切断ワイヤ部分と被加工物との間で同時に放電を生ぜしめて、被加工物に対する上記スライス加工の生産性を向上させる試みが提案されている(例えば、特許文献1及び3参照)。
 上述のような構成の半導体ウエハ製造装置においては、並列させた複数のワイヤ電極に加工電流が流れるとそのワイヤ電極の周囲に磁界が発生し、近隣のワイヤ電極に電磁力が作用してワイヤ電極がたわむことがある。これに対して、例えば、特許文献1のような従来の半導体ウエハ製造装置においては、被加工物の両側から並列する各ワイヤに給電しているために、ワイヤ電極の電磁力によるワイヤ電極のたわみに関する対策はなされていない。
 一方、このワイヤ電極に作用する電磁力については、例えば、特許文献2のような構成のワイヤ放電加工装置に見られるように、ワイヤ電極が被加工物と短絡した場合に、短絡を回避する方向へワイヤ電極を引き戻す動作に利用する方法が記載されている。すなわち、被加工物に補助電流を流すことにより、その周囲に磁界を発生させ、この磁界とワイヤ電極に流れる加工電流による電磁力を利用してワイヤ電極を復元するものである。また、補助電流の強度や流す方向を加工状況に応じて制御することにより、磁界の強度を変更し、ワイヤ電極に作用する電磁力を制御するとしている。
 しかしながら、上述特許文献2のような構成のワイヤ放電加工装置は、本発明のように、1本のワイヤ電極を複数のガイドローラを巻回して並列させたワイヤ電極に加工電流が流れることで、各ワイヤ電極の相互間に作用する磁界を想定したものではない。したがって、被加工物への補助電流の制御では、前述の磁界によりワイヤ電極に作用する電磁力を低減することはできない。また、加工中に被加工物に供給する補助電流の大きさや流れる方向を状況に応じて制御することは、放電加工のエネルギーを変動させることになり、加工精度や加工速度を低下させる要因にもなる。
 つまり、特許文献2で提案されている技術は、1本のワイヤ電極で加工する場合において、短絡状態の回避動作を改善するものであり、電磁力によるワイヤ電極のたわみを防止する方法とはならない。
特開2000-94221号公報 特開昭61-95827号公報 特開平9-248719号公報
 上述のような1本のワイヤ電極が複数ガイドローラを巻回されて並列するワイヤ放電加工装置において、並列するワイヤ電極に一斉に電流が同一方向に流れる場合を考える。たとえば、500本のワイヤ電極が間隔rで並列した状態において、すべてのワイヤ電極に電流Iが流れるとする。最も大きい力を受けるのは両端のワイヤ電極であり、これらのワイヤ電極が受ける力Fは、
Figure JPOXMLDOC01-appb-M000001
で求められる。ここで、400μmピッチで並列したワイヤ電極に平均電流2Aが流れる場合、
Figure JPOXMLDOC01-appb-M000002
 となる。すなわち、ワイヤ電極には長さ1mあたり0.0136Nの均等荷重が作用していることになり、この均等荷重がワイヤ電極をたわませる。このたわみは、通常、ワイヤ電極に所定の張力を与えて修正するが、与える張力が大きすぎるとワイヤ電極は断線する。付与可能な張力の限度はワイヤ電極の材質と直径に応じて異なる。そのため、均等荷重が同じでも使用するワイヤ電極によってたわみ量が変化する。
 たとえば、直径0.2mmの黄銅ワイヤの場合、付与可能な張力は約15Nであり、前述の均等荷重による長さ1mのワイヤ電極のたわみは約113μmとなる。また、直径0.1mmのピアノ線ワイヤの場合、付与可能な張力は約5Nであり、前述の均等荷重による長さ1mのワイヤ電極のたわみは約340μmになる。ただし、これはワイヤ電極に流れる電流を平均2Aとした場合であり、実際の放電加工では電流はパルス状に供給されるため、2Aより大きな電流がワイヤ電極に流れる。さらに、(1)式において、ワイヤ電極が受ける力Fは電流Iの2乗で効くため前述の計算値より大きくなる。つまり、ワイヤ電極のたわみ量は前述の計算値より大きくなり、並列ワイヤ電極のピッチ以上のたわみの発生が予想される。また、パルス状の電流によって電磁力は変動し、ワイヤ電極のたわみ量も変動する。すなわち、並列ワイヤ電極は振動しながら被加工物を加工するため、加工溝幅が大きくなり、被加工物を薄く切り出すことができないという問題があった。
 また、上述のワイヤ電極のたわみは、加工開始段階においてのみに生じるものではなく、放電加工によってワイヤ電極に流れる加工電流が磁界を発生し、これが他の並列するワイヤ電極に電磁力を作用させる。加工が進行して並列するワイヤ電極が被加工物の内部に入り込んだ状況において、並列するワイヤ電極間に被加工物が介在していても、被加工物が磁性体でない場合、他の並列するワイヤ電極から発せられる磁界は遮蔽されず、他の並列するワイヤ電極に電磁力が作用し、ワイヤ電極がたわむという問題があった。
 本発明は、かかる問題点を解決するためになされたものであり、並列するワイヤ電極に作用する電磁力によるたわみの発生を防止して、高精度加工を実現するワイヤ放電加工装置およびワイヤ放電加工装置を得ることを目的としている。また、半導体ウエハおよび太陽電池ウエハの製造において、ワイヤのたわみを防止しながら素材をウエハ形状に加工する方法を得ることを目的としている。
 上述した課題を解決し、目的を達成するために、本発明のワイヤ放電加工装置および方法、もしくは、半導体ウエハ製造装置および方法および太陽電池ウエハ製造装置および製造方法は、互いに離間して並列して設けられ所定領域部分が被加工物に対向する切断ワイヤ部とされた複数のワイヤ電極と、パルス状の加工用電圧を発生させる加工用電源と、複数の切断ワイヤ部のそれぞれに対してこの切断ワイヤ部のワイヤ電極に電気的接続され、切断ワイヤ部と被加工物との間にそれぞれ加工用電圧を印加する複数の給電子ユニットとを備え、並列する複数の切断ワイヤ部において、少なくとも一部の切断ワイヤ部に通電する電流の方向が他の切断ワイヤ部に通電する電流の方向と異なる方向となるように給電子ユニットが、配設されていることを特徴とする。
 また、給電子ユニットは、通電する電流の方向が、隣り合う切断ワイヤ部で互いに逆向きとなるように配設され、切断ワイヤ部のワイヤ電極に電気的に接続されていることを特徴とする。
 さらに、給電子ユニットは、隣り合う複数本の切断ワイヤ部が各々組にされ、同一の組の切断ワイヤ部に通電する電流の方向が同じ向きとなり、隣り合う組の切断ワイヤ部に通電する電流の方向が互いに逆向きとなるように配設され、切断ワイヤ部のワイヤ電極に電気的に接続されていることを特徴とする。
 さらにまた、給電子ユニットは、並列する複数の切断ワイヤ部の並列方向両端部に配置された切断ワイヤ部に通電する電流の方向が、両端部以外に配置された切断ワイヤ部に通電する電流の方向と逆向きとなるように配設され、切断ワイヤ部のワイヤ電極に電気的に接続されていることを特徴とする。
 また、給電子ユニットは、切断ワイヤ部の両側に設けられ、いずれか一方が選択されて、加工用電源からの加工用電圧を、切断ワイヤ部と被加工物との間に印加することを特徴とする。
 さらに、選択されなかった給電子ユニットを含み、切断ワイヤ部の両側に設けられた給電子ユニットは、ワイヤ電極の支持部材として機能することを特徴とする。
 さらにまた、切断ワイヤ部の両側に設けられた給電子ユニットは、切断ワイヤ部に直交する方向に並べられていることを特徴とする。
 また、本発明に係るワイヤ放電加工装置およびその方法、もしくは、半導体ウエハ製造装置およびその方法および太陽電池ウエハ製造装置およびその製造方法は、互いに離間して並列して設けられ所定領域部分が被加工物に対向する切断ワイヤ部とされたワイヤ電極、パルス状の加工用電圧を発生させる加工用電源、並列するワイヤ電極に電気的に接続され、切断ワイヤ部と被加工物との間にそれぞれ加工用電圧を印加する複数の給電子ユニットとを備えたワイヤ放電加工装置、もしくは、半導体ウエハ製造装置および太陽電池ウエハ製造装置におけるワイヤのたわみを防止する装置およびその方法であり、並列するワイヤ電極からなる切断ワイヤ部において、少なくとも一部の切断ワイヤ部に通電する電流の方向が他の切断ワイヤ部に通電する電流の方向と異なる方向となるように給電子ユニットを配設することを特徴とする。
 上記、ワイヤ放電加工装置およびその方法、もしくは、半導体ウエハ製造装置およびその製造方法、および太陽電池ウエハ製造装置およびその製造方法は、並列するワイヤ電極において、隣り合う切断ワイヤ部に流れる電流の方向を互いに逆方向とすることでそれぞれのワイヤ電極が発生する磁界の強度を打ち消すことを利用して、並列するワイヤ電極に流れる電流がすべてのワイヤ電極で同一方向にならないように加工電流を給電する。
 この発明によれば、互いに離間して並列して設けられ所定領域部分が被加工物に対向し、切断ワイヤ部とされる並列するワイヤ電極において、例えば、隣り合う切断ワイヤ部に供給される電流の方向が互いに逆方向となるように給電子ユニットを配設するので、放電加工により切断ワイヤ部に流れる加工電流が発生する磁界が、隣り合う切断ワイヤ部に流れる逆方向の電流が発生する磁界によって打ち消されるか、或いは弱められるため、切断ワイヤ部に作用する電磁力が削減され、ワイヤ電極のたわみが抑制されるという効果を奏する。
図1は、本発明の実施の形態1によるワイヤ放電加工装置の構成を示す斜視図である。 図2は、本発明の実施の形態1による並列するワイヤ電極に対する給電構造を示す説明図である。 図3は、本発明の実施の形態2による並列するワイヤ電極に対する給電構造を示す説明図である。 図4は、本発明の実施の形態3によるワイヤ放電加工装置の構成を示す斜視図である。 図5は、本発明の実施の形態3による並列するワイヤ電極に対する給電構造を示す説明図である。
実施の形態1.
 以下に、本発明の実施の形態の構成および動作について説明する。図1は、本発明の実施の形態1に係るワイヤ放電加工装置を示した斜視図である。本実施の形態1に係るワイヤ放電加工装置においては、ワイヤボビン1から繰り出された一本のワイヤ電極2が、順次、複数のガイドローラ3a~3d間を、複数回、互いに微小な間隔を隔てて巻回されて、複数の切断ワイヤ部が形成されている。このワイヤ電極2が巻回されて形成された切断ワイヤ部の間隔が被加工物8の加工幅(ウエハの厚さ)となる。すなわち、各切断ワイヤ部に対して所定間隔だけ離間させて被加工物を対向させて配置した状態で、各切断ワイヤ部と被加工物8との間に電圧を印加しながら、被加工物8を各切断ワイヤ部に対して切断送りすることにより、被加工物8を各切断ワイヤ部で放電切断する。これにより、被加工物8が複数枚のウエハに加工される。なお、被加工物8は、素材を複数の薄板にスライスするものであって、例えば、スパッタリングターゲットとなるタングステンやモリブデンなどの金属、各種構造部材として使われる多結晶シリコンカーバイトなどのセラミックス、半導体デバイスウエハとなる単結晶シリコンや単結晶シリコンカーバイトなどの半導体素材、太陽電池ウエハとなる単結晶および多結晶シリコンなどの太陽電池素材などがある。上記半導体素材および太陽電池素材は、比抵抗が概ね0.0001Ωcm以上であるが、放電加工が可能であるのは、比抵抗が概ね100Ωcm以下、望ましくは10Ωcm以下である。したがって、本発明においては上記半導体素材および太陽電池素材として、比抵抗が0.0001Ωcm以上10Ωcm以下の素材が好適である。また、図1の例では、1本のワイヤ電極2を複数のガイドローラに巻回した例について示しているが、この場合に限らず、1本のワイヤ電極2を折り返すことにより複数の切断ワイヤ部が形成されるものでもよく、その具体的な構成については特に限定しないものとする。
 本実施の形態1においては、複数のガイドローラ3a~3dは、互いに軸線方向に平行に離間して配置されている。最も高い位置にガイドローラ3aとガイドローラ3bとが設けられ、ガイドローラ3bの下方の最も低い位置にガイドローラ3cが設けられ、ガイドローラ3aの下方には、ガイドローラ3cと並んで、ガイドローラ3dが設けられている。
 ワイヤ電極2は所定回数の巻回の後に、ワイヤ排出ローラ5より排出される。ワイヤ電極2は、ガイドローラ3aとガイドローラ3bとの間の部分が、被加工物8に対向可能とされ被加工物8を加工する切断ワイヤ部2aとなっており、図1に示すように、当該切断ワイヤ部2aに対して微小間隔を隔てて被加工物8を対向させて配置し、放電加工処理を行う。また、ワイヤ電極2のガイドローラ3bとガイドローラ3cとの間の部分が、放電加工を行うための電圧(加工用電圧)が供給される給電ワイヤ部2bとなっている。
 ワイヤ電極2の給電ワイヤ部2bには、加工電源6から給電子7A,7Bを介して、放電加工を行うための電圧(加工用電圧)が給電される。これにより、被加工物8との間に電圧が印加される。加工電源6は互いに独立して電圧を印加できる複数の加工電源ユニット61からなる。給電子7A,7Bもそれぞれが互いに絶縁された複数の給電子ユニット71,72から構成されていて、各切断ワイヤ部2aに独立して電圧を印加できる構成となっている。このように、並列ワイヤ電極に対して独立に電圧を印加できる複数の加工電源ユニット61は、ワイヤ放電加工装置の制御装置(図示しない)に接続される。
 なお、当然ながら、電圧印加極性は従来のワイヤ放電加工と同様に、必要に応じて適宜反転可能となっている。被加工物8は、図示しない位置制御装置により、ガイドローラ3a~3d間に巻回されたワイヤ電極2と微小間隙を隔てるように位置が制御されているので、適正な放電ギャップ長が維持されている。なお、加工液は図示しないが、通常のワイヤ放電加工と同様に、吹きかけもしくは浸漬により被加工物8とワイヤ電極2との間に供給されている。
 次に、本発明の実施の形態1に係るワイヤ放電加工装置における並列ワイヤ電極への給電について説明する。図2は、実施の形態1において並列ワイヤ電極と被加工物への給電の状態を明確にするために、並列ワイヤ電極に対する給電部周辺のみを表記している。複数の加工電源ユニット61からの加工電流を被加工物8へ給電する場合において、すべての加工電源ユニット61の給電線が被加工物8へ接続される。また、加工電源ユニット61のもう一方の給電線がそれぞれ切断ワイヤ部2aに対応する各給電子ユニット(給電子ユニット71又は給電子ユニット72)に接続されるのであるが、以下に述べる構成で各給電子ユニットへ接続される。各切断ワイヤ部2aに設けられた2つの給電子ユニット71,72は図2に示すように被加工物8を挟んで対峙する位置に配設されており、切断ワイヤ部2aはこの2つの給電子ユニット71,72間に架け渡されるように支持されている。そして、上記加工電源ユニット61のもう一方の給電線は、図2に示すように、この2つの給電子ユニット71,72に対して交互に接続される。すなわち、ある切断ワイヤ部分2aに対応する給電子ユニット71に給電線を接続した場合には、その切断ワイヤ部分に隣接する切断ワイヤ部分2aにおいては、給電子ユニット71ではなく給電子ユニット72に接続するよう構成する。このように構成すれば、これらの並列する切断ワイヤ部2aに流れる電流の方向が隣接する切断ワイヤ部2a間で互いに逆方向となるこのとき、給電線が接続されない給電子ユニットはワイヤガイド(支持部材)として機能し、給電線が接続された給電子ユニットと協動して複数の切断ワイヤ部2aを並列させる。
 このような構成によれば、並列な切断ワイヤ部2aと被加工物8との間に放電加工が生じ、加工電流が切断ワイヤ部2aに一斉に流れる状況において、加工電流の流れる方向が互いに逆方向となるために、それぞれの切断ワイヤ部2aが発生する磁界は隣り合う切断ワイヤ部2aが発生する磁界によって打ち消し合うので、切断ワイヤ部2aに作用して切断ワイヤ部2aをたわませる力となる電磁力を抑制することができる。
 以上のように、本実施の形態1の構成によれば、1本のワイヤ電極2を複数のガイドローラ3a~3d間に巻回させて、複数の切断ワイヤ部2aを形成し、それぞれの切断ワイヤ部2aに個別に、かつ、それぞれの切断ワイヤ部2aに流れる電流の方向を隣り合う切断ワイヤ部2aで逆方向になるように給電する加工電源6と給電子7A,7Bとを備えるようにした。これにより、並列な切断ワイヤ部2aの両端のワイヤ電極のたわみを低減することができ、加工中にも並列な切断ワイヤ部2aの両端のワイヤ電極がたわむことがなくなる。その結果、被加工物8の加工部が弧状にならず、直線となるので加工精度が向上し、並列な切断ワイヤ部2aによって被加工物8から一度に切り出されるウエハの厚さを均一にすることができる。
実施の形態2.
 上述の実施の形態1においては、1本のワイヤ電極2を複数のガイドローラ3a~3d間に巻回させて、複数の切断ワイヤ部2aを形成し、それぞれの切断ワイヤ部2aに個別に、かつ、それぞれの切断ワイヤ部2aに流れる電流の方向を隣り合う切断ワイヤ部2aで逆方向になるように給電する加工電源6と給電子7A,7Bを設けて、電磁力による切断ワイヤ部2aのたわみを防止する方式について説明した。すなわち、実施の形態1による方式は、並列な切断ワイヤ部2aに流れる電流の方向を隣り合う切断ワイヤ部2aにおいて逆方向となるように給電し、各切断ワイヤ部2aが発生する磁界を打ち消す方式であり、電磁力による切断ワイヤ部2aのたわみを防止でき、加工形状精度が向上するという効果がある。本実施の形態2では、並列な切断ワイヤ部2aへの給電方式において、電磁力による切断ワイヤ部2aのたわみを抑制するための実施の形態1の変形例について説明する。
 図3は、本発明の実施の形態2に係る並列ワイヤ電極への給電部分を示す。基本的な装置構成は図1および図2に示した実施の形態1と同じであり、図3に示すように、被加工物8に対して対峙するように設置された給電子に対する加工電源ユニット61からの給電線の接続方式が異なる。したがって、以下の説明においては、図1および図2の実施の形態1と異なる構成について主に説明し、同一の構成については、説明を省略する。
 図3に示すように、本実施の形態2においては、加工電源ユニット61の2つの極性のうち、被加工物8に接続されない極性側の給電線を給電子ユニット71,72に接続する。このとき、実施の形態1では、被加工物8に対して同じ側に整列している給電子ユニット71,72において、切断ワイヤ部2aの1本おきに接続して、切断ワイヤ部2aの対峙側の給電子ユニット71,72へ交互に給電を行う方式であったが、本実施の形態2では、給電線接続側の給電子ユニット71,72切り換えを切断ワイヤ部2aの1本おきとせずに、たとえば、隣り合う切断ワイヤ部2aの2本を1組みとして、この1組、すなわち、この2本の切断ワイヤ部2aには同じ側に設置されている給電子ユニット71,72に同じ極性側の給電線を接続する。この1組の切断ワイヤ部2aの隣接する切断ワイヤ部2a、および、さらにその切断ワイヤ部2aにさらに隣接する切断ワイヤ部2aを1組とし、これら2本の切断ワイヤ部2aには、前述の切断ワイヤ部2aの組とは反対側に設置されている給電子ユニット71,72に加工電源ユニット61の給電線を接続する。
 なお、前述のように隣り合う並列ワイヤの1組の考え方を2本とはせずに、3本、あるいは、4本、5本・・・というように複数本の切断ワイヤ部2aを1組としてもよい。このように、給電子ユニット71,72は、隣り合う複数本の切断ワイヤ部2aが各々組にされ、同一の組の切断ワイヤ部2aに通電する電流の方向が同じ向きとなり、隣り合う組の切断ワイヤ部2aに通電する電流の方向が互いに逆向きとなるように、切断ワイヤ部2aのワイヤ電極2に電気的に接続されている。このとき、給電線が接続されない給電子ユニットはワイヤガイド(支持部材)として機能し、給電線が接続された給電子ユニットと協動して複数の切断ワイヤ部2aを同一平面上に並列させる。
 このような構成によれば、これらの並列な切断ワイヤ部2aと被加工物8との間に放電加工が生じ、加工電流が並列な切断ワイヤ部2aに流れる状況において、加工電流によって発生する磁界が周辺の切断ワイヤ部2aに発生する磁界によって弱め合うために、切断ワイヤ部2aに作用して切断ワイヤ部2aをたわませる力となる電磁力を低減することができる。
 以上のように、本実施の形態2によれば、上述の実施の形態1と同様の効果が得られるとともに、並列な切断ワイヤ部2aのうち複数本の切断ワイヤ部2aを一組として扱い、各組ごとに電流の流れる方向が逆方向になるように給電するようにしたので、並列な切断ワイヤ部2aへの給電構造において、給電線の引き回しが簡便になる。
実施の形態3.
 前述の実施の形態1においては、1本のワイヤ電極2を複数のガイドローラ3a~3d間に巻回させて、複数の切断ワイヤ部2aを形成し、それぞれの切断ワイヤ部2aに個別に、かつ、それぞれの切断ワイヤ部2aに流れる電流の方向を隣り合う切断ワイヤ部2aで逆方向になるように給電する加工電源6と給電子7A,7Bを設けて、電磁力による切断ワイヤ部2aのたわみを防止する方式について説明した。すなわち、実施の形態1による方式は、並列な切断ワイヤ部2aに流れる電流の方向を隣り合う切断ワイヤ部2aにおいて逆方向となるように給電し、各切断ワイヤ部2aが発生する磁界を打ち消す方式であり、電磁力による切断ワイヤ部2aのたわみを防止でき、加工形状精度が向上するという効果がある。
 また、実施の形態2においては、並列な切断ワイヤ部2aへの給電方式において、並列する切断ワイヤ部2aの複数本をそれぞれ組として扱い、これら組を構成する切断ワイヤ部2aについては同一方向の電流が流れるように給電し、隣り合う組の切断ワイヤ部2aに通電する電流の方向が互いに逆向きとなるように給電する方式を示しており、この方式でも切断ワイヤ部2aに流れる電流により発生する磁界強度を弱め、電磁力による切断ワイヤ部2aのたわみを抑制でき、加工形状精度を向上させる効果がある。
 実施の形態3においては、切断ワイヤ部2aへの給電方式として、交互、もしくは、数本ごとに逆方向の電流が流れるようにするのではなく、逆方向の電流を流す切断ワイヤ部2aの本数をなるべく少なくして、磁界強度を低下させ、電磁力による切断ワイヤ部2aのたわみを抑制する実施の形態について説明する。
 図4は、本発明の実施の形態3に係るワイヤ放電加工装置を示す斜視図である。図4に示すように、基本的な構成は、図1に示した実施の形態1と同じである。従って、以下の説明においては、図1の実施の形態1と異なる構成について主に説明し、同一の構成については、ここでは説明を省略する。
 本実施の形態3においても、上述の実施の形態1および2と同様に、ワイヤボビン1から繰り出されたワイヤ電極2が、複数のガイドローラ3a~3d間を複数回、互いに微小な間隔を隔てて巻回されて複数のワイヤ走行系が形成され、最終的にワイヤ電極2は所定回数の巻回し後に、ワイヤ排出ローラ5より排出される。このとき、本実施の形態3においては、ワイヤ電極2は、ガイドローラ3aとガイドローラ3bとの間の部分が、被加工物8を加工するための切断ワイヤ部2aとなっており、図4に示すように、当該切断ワイヤ部2aに対して微小間隔を隔てて被加工物8を対向させて配置し、放電加工処理を行う。また、ワイヤ電極2のガイドローラ3bとガイドローラ3cとの間の部分が、放電加工を行うための電圧(加工用電圧)が供給される給電ワイヤ部2bとなっている。ワイヤ電極2の給電ワイヤ部2bには、加工電源6から給電子7A,7Bを介して、放電加工を行うための電圧(加工用電圧)が給電され、被加工物8との間に電圧が印加される。加工電源6は互いに独立して電圧を印加できる複数の加工電源ユニット61からなり、給電子7A,7Bもそれぞれが互いに絶縁された複数の給電子ユニット71,72から構成されていて、各切断ワイヤ部2aに独立して電圧を印加できる構成となっている。このように、並列な切断ワイヤ部2aに対して独立して電圧を印加できる複数の加工電源ユニット61は、ワイヤ放電加工装置の制御装置(図示しない)に接続される。
 本発明の実施の形態3に係るワイヤ放電加工装置における並列ワイヤ電極への給電について説明する。図5は、実施の形態1において、加工電源ユニット61からなる加工電源を被加工物8への給電において、すべての加工電源ユニット61の同一極性側に接続された給電線が被加工物8へ接続される。また、加工電源ユニット61のもう一方の同一極性からの給電線のそれぞれが図5に示される各給電子ユニットに接続されるが、加工電源ユニット61の被加工物8に接続されていない極性側からの給電線は、並列な切断ワイヤ部2aのうちの両端のワイヤ電極を除いて、被加工物8に対して同じ側に設置されている給電子ユニットに接続する。一方、並列な切断ワイヤ部2aのうちの両端の切断ワイヤ部2aに給電するには、図5に示すように被加工物8を挟んで対峙する位置に、被加工物8を加工する切断ワイヤ部2aを2点支持するように設置された給電子ユニットに前述の加工電源ユニット61の被加工物8に接続されていない極性側からの給電線を接続する。このとき、給電線が接続されない給電子ユニットはワイヤガイド(支持部材)として機能し、給電線が接続された給電子ユニットと協動して複数の切断ワイヤ部2aを同一平面上に並列させる。
 次に、実施の形態3の動作について説明する。図5は、並列な切断ワイヤ部2aと被加工物8、ガイドローラ3a,3b、給電子7A,7Bおよび加工電源ユニット61によって構成される給電部周辺を表す。いま、図5に示す構成において、切断ワイヤ部2aと被加工物8との間で放電が発生すると、加工電源ユニット61からの電流が給電線を通って給電子ユニット71,72を介して各切断ワイヤ部2aに流れる。このとき、並列に並ぶ切断ワイヤ部2aのうち両端の切断ワイヤ部A1、A2を除いた他の並列な切断ワイヤ部2aには同一方向に電流が流れる。この電流によって切断ワイヤ部2aの周辺には磁界が発生し、電流が流れている切断ワイヤ部2aに電磁力が作用する。特に、同一方向に電流が流れる並列な切断ワイヤ部2aでは、両端に位置する切断ワイヤ部B1、B2にもっとも大きな電磁力が作用し、これら切断ワイヤ部2aをたわませる。しかしながら、本実施の形態3の給電方式では、並列ワイヤの両端の切断ワイヤ部A1、A2には、他の並列な切断ワイヤ部2a、たとえば、B1、B2と比較して逆方向の電流が流れるように給電されているため、この切断ワイヤ部A1、A2に流れる電流が作り出す磁界が、前述の電流が同一方向に流れる並列な切断ワイヤ部2aの両端の切断ワイヤ部B1、B2に作用する磁界強度を効果的に弱める。これにより、切断ワイヤ部B1、B2に作用する電磁力を抑制し、切断ワイヤ部2aのたわみを防止する。また、同時に、切断ワイヤ部A1、A2に作用する磁界強度も弱められ、切断ワイヤ部A1、A2に作用する電磁力が抑制され、切断ワイヤ部2aのたわみが防止される。
 以上のように、本実施の形態3によれば、並列な切断ワイヤ部2aの両端に位置する各1本ずつの切断ワイヤ部2aに流れる電流の向きと、これらの2本の切断ワイヤ部2aを除いた残りの並列な切断ワイヤ部2aに流れる電流の向きを逆方向にするようにしたので、切断ワイヤ部2aに作用する電磁力を低減でき、切断ワイヤ部2aのたわみを防止できる。
 なお、上記の実施の形態1~3においては、複数のガイドローラにワイヤ電極2を巻回して、互いに離間して設けられた複数のワイヤ走行系を有するワイヤ放電加工装置を例に挙げて説明したが、これに限らず、被加工物との間で放電を発生させる3本以上のワイヤ電極を備えたワイヤ放電加工装置であれば、巻回していないタイプのものでも上記の実施の形態1~3適用することができる。
 上記の実施の形態1~3におけるガイドローラと、給電子ユニットと、被加工物もしくは被加工物を載置するステージ(図示せず)との設置位置関係について説明しておく。たとえば、図1、4のように、被加工物もしくは被加工物を載置するステージの両側に設置された給電子ユニットと、被加工物もしくは被加工物を載置するステージとの間にガイドローラが介在するように設置してもよい。
 あるいは、図2、3、5のように、給電子ユニットが被加工物もしくは被加工物を載置するステージの両側に設置され、ガイドローラがそれらの給電子ユニットに対して被加工物もしくは被加工物を載置するステージが設置されない側に設置されてもよい。
 また、上記のワイヤ放電加工方法によって、単結晶シリコンや単結晶シリコンカーバイトなどの半導体素材、単結晶または多結晶シリコンなどの太陽電池素材、多結晶シリコンカーバイトなどのセラミックス、タングステンやモリブデンなどのスパッタリングターゲット素材を加工すると、放電加工中にワイヤ間に作用する電磁力が相殺、あるいは、軽減され、ワイヤ電極のたわみが防止されるので、一度に複数枚のウエハを高い寸法精度で切り出すことができる。
 1 ワイヤボビン
 2 ワイヤ電極
 2a 切断ワイヤ部
 2b 給電ワイヤ部
 3a、3b、3c、3d ガイドローラ
 5 ワイヤ排出ローラ
 6 加工電源
 7A,7B 給電子
 8 被加工物
 61 加工電源ユニット
 71,72 給電子ユニット

Claims (23)

  1.  互いに離間して並列して設けられ、さらに被加工物に対向するように設けられた切断ワイヤ部とされたワイヤ電極と、
     パルス状の加工用電圧を発生させる加工用電源と、
     前記複数の切断ワイヤ部のそれぞれに対して該切断ワイヤ電極に電気的接続され、前記切断ワイヤ部と前記被加工物との間にそれぞれ前記加工用電圧を印加する複数の給電子ユニットとを備え、
     前記並列する複数の切断ワイヤ部において、少なくとも一部の切断ワイヤ部に通電する電流の方向が他の切断ワイヤ部に通電する電流の方向と異なる方向となるように前記給電子ユニットが、配設されている
     ことを特徴とするワイヤ放電加工装置。
  2.  前記給電子ユニットは、切断ワイヤを通電する電流の方向が、隣り合う前記切断ワイヤ部で互いに逆向きとなるように、前記切断ワイヤ部に接続する給電子を、被加工物に対して切断ワイヤが接近してくる側と遠ざかっていく側とに交互に設置されて前記ワイヤ電極に電気的に接続されている
     ことを特徴とする請求項1に記載のワイヤ放電加工装置。
  3.  前記給電子ユニットは、隣り合う複数本の切断ワイヤ部が各々組にされ、同一の組の切断ワイヤ部に通電する電流の方向が同じ向きとなり、隣り合う組の切断ワイヤ部に通電する電流の方向が互いに逆向きとなるように、前記切断ワイヤ部に接続する給電子を、加工物に対して切断ワイヤが接近してくる側と遠ざかっていく側とに交互に設置されて前記ワイヤ電極に電気的に接続されている
     ことを特徴とする請求項1に記載のワイヤ放電加工装置。
  4.  前記給電子ユニットは、並列する複数の切断ワイヤ部の並列方向両端部に配置された切断ワイヤ部に通電する電流の方向が、両端部に以外に配置された切断ワイヤ部に通電する電流の方向と逆向きとなるように、前記切断ワイヤ部に接続する給電子を、被加工物に対して切断ワイヤが接近してくる側と遠ざかっていく側とに交互に設置されて前記ワイヤ電極に電気的に接続されている
     ことを特徴とする請求項1に記載のワイヤ放電加工装置。
  5.  前記給電子ユニットは、切断ワイヤ部の両側に設けられ、いずれか一方が選択されて、前記加工用電源からの前記加工用電圧を、前記切断ワイヤ部と被加工物との間に印加する ことを特徴とする請求項1に記載のワイヤ放電加工装置。
  6.  選択されなかった前記給電子ユニットを含み、切断ワイヤ部の両側に設けられた前記給電子ユニットは、前記ワイヤ電極の支持部材として機能する
     ことを特徴とする請求項5に記載のワイヤ放電加工装置。
  7.  前記切断ワイヤ部の両側に設けられた前記給電子ユニットは、切断ワイヤ部に直交する方向に一列に並べて連結されている
     ことを特徴とする請求項5に記載のワイヤ放電加工装置。
  8.  前記給電子ユニットと、被加工物もしくは被加工物を載置するステージと、切断ワイヤを巻回すガイドローラとの位置関係が、被加工物もしくは被加工物を載置するステージの両側に給電子ユニットが設置され、被加工物もしくは被加工物を載置するステージの両側に設置されるガイドローラの少なくとも1つが、前記給電子ユニットと被加工物もしくは被加工物を載置するステージとの間に設置されている
     ことを特徴とする請求項1に記載のワイヤ放電加工装置。
  9.  前記給電子ユニットと、被加工物もしくは被加工物を載置するステージと、切断ワイヤを巻回すガイドローラとの位置関係が、給電子ユニットが被加工物もしくは被加工物を載置するステージの両側に設置され、ガイドローラがそれらの給電子ユニットに対して被加工物もしくは被加工物を載置するステージが設置されない側に設置されている
     ことを特徴とする請求項1に記載のワイヤ放電加工装置。
  10.  互いに離間して並列して設けられ、所定領域部分が被加工物に対向する切断ワイヤ部とされたワイヤ電極と、
     パルス状の加工用電圧を発生させる加工用電源と、
     前記複数の切断ワイヤ部のそれぞれに対して該切断ワイヤ電極に電気的接続され、前記切断ワイヤ部と、
    前記被加工物との間に、それぞれ前記加工用電圧を印加する複数の給電子ユニットとを備え、
     前記被加工物は半導体ウエハ用素材であり、並列する複数の切断ワイヤ部において、少なくとも一部の切断ワイヤ部に通電する電流の方向が他の切断ワイヤ部に通電する電流の方向と異なる方向とした
     ことを特徴とする半導体ウエハ製造方法。
  11.  半導体ウエハ用素材は、シリコンまたはシリコンカーバイド、あるいは、シリコンまたはシリコンカーバイドを主成分とする材料である
     ことを特徴とする請求項10に記載の半導体ウエハ製造方法。
  12.  互いに離間して並列して設けられ所定領域部分が被加工物に対向する切断ワイヤ部とされたワイヤ電極、パルス状の加工用電圧を発生させる加工用電源、前記複数の切断ワイヤ部のそれぞれに対して該切断ワイヤ電極に電気的接続され、前記切断ワイヤ部と前記被加工物との間にそれぞれ前記加工用電圧を印加する複数の給電子ユニットとを備えたワイヤ放電加工装置のワイヤのたわみを防止する方法であり、
     前記並列する複数の切断ワイヤ部において、少なくとも一部の切断ワイヤ部に通電する電流の方向が他の切断ワイヤ部に通電する電流の方向と異なる方向となるように前記給電子ユニットを配設する
     ことを特徴とするワイヤ放電加工方法。
  13.  通電する電流の方向が、隣り合う前記切断ワイヤ部で互いに逆向きとなるように、前記切断ワイヤ部に接続する給電子を、被加工物に対して切断ワイヤが接近してくる側と遠ざかっていく側とに交互に設置されて前記ワイヤ電極に電気的に接続する
     ことを特徴とする請求項12に記載のワイヤ放電加工方法。
  14.  隣り合う複数本の切断ワイヤ部を各々組にして、同一の組の切断ワイヤ部に通電する電流の方向が同じ向きとなるように、隣り合う組の切断ワイヤ部に通電する電流の方向が互いに逆向きとなるように、前記切断ワイヤ部に接続する給電子を、被加工物に対して切断ワイヤが接近してくる側と遠ざかっていく側とに交互に設置されて前記ワイヤ電極に電気的に接続する
     ことを特徴とする請求項12に記載のワイヤ放電加工方法。
  15.  並列する複数の切断ワイヤ部の並列方向両端部に配置された切断ワイヤ部に通電する電流の方向が、両端部に以外に配置された切断ワイヤ部に通電する電流の方向と逆向きとなるように、前記切断ワイヤ部に接続する給電子を、被加工物に対して切断ワイヤが接近してくる側と遠ざかっていく側とに交互に設置されて前記ワイヤ電極に電気的に接続する
     ことを特徴とする請求項12に記載のワイヤ放電加工方法。
  16.  前記給電子ユニットを、切断ワイヤ部の両側に設けておき、いずれか一方の給電子ユニットを選択して、前記加工用電圧を前記切断ワイヤ部と前記被加工物との間に印加する
     ことを特徴とする請求項12に記載のワイヤ放電加工方法。
  17.  選択されなかった前記給電子ユニットを含み、切断ワイヤ部の両側に設けられた前記給電子ユニットは、前記ワイヤ電極の支持部材として用いる
     ことを特徴とする請求項12に記載のワイヤ放電加工方法。
  18.  互いに離間して並列して設けられ、所定領域部分が被加工物に対向する切断ワイヤ部とされたワイヤ電極と、
     パルス状の加工用電圧を発生させる加工用電源と、
     前記複数の切断ワイヤ部のそれぞれに対して該切断ワイヤ電極に電気的接続され、前記切断ワイヤ部と、
     前記被加工物との間にそれぞれ前記加工用電圧を印加する複数の給電子ユニットとを備え、
     前記被加工物は太陽電池用ウエハ用素材であり、並列する複数の切断ワイヤ部において、少なくとも一部の切断ワイヤ部に通電する電流の方向が他の切断ワイヤ部に通電する電流の方向と異なる方向となる
     ことを特徴とする太陽電池ウエハ製造方法。
  19.  太陽電池ウエハ用素材は、多結晶または単結晶シリコンを主成分とする材料である
     ことを特徴とする請求項18に記載の太陽電池ウエハ製造方法。
  20.  互いに離間して並列して設けられ、さらに被加工物に対向するように設けられた切断ワイヤ部とされたワイヤ電極と、
     パルス状の加工用電圧を発生させる加工用電源と、
     前記複数の切断ワイヤ部のそれぞれに対して該切断ワイヤ電極に電気的接続され、前記切断ワイヤ部と、
     半導体ウエハ用素材である被加工物との間にそれぞれ前記加工用電圧を印加する複数の給電子ユニットとを備え、
     前記並列する複数の切断ワイヤ部において、少なくとも一部の切断ワイヤ部に通電する電流の方向が他の切断ワイヤ部に通電する電流の方向と異なる方向となるように前記給電子ユニットが、配設されている
     ことを特徴とする半導体ウエハ製造装置。
  21.  半導体ウエハ用素材は、シリコンまたはシリコンカーバイド、あるいは、シリコンまたはシリコンカーバイドを主成分とする材料である
     ことを特徴とする請求項20に記載の半導体ウエハ製造装置。
  22.  互いに離間して並列して設けられ、さらに被加工物に対向するように設けられた切断ワイヤ部とされたワイヤ電極と、
     パルス状の加工用電圧を発生させる加工用電源と、
     前記複数の切断ワイヤ部のそれぞれに対して該切断ワイヤ電極に電気的接続され、前記切断ワイヤ部と、
     太陽電池ウエハ用素材である被加工物との間にそれぞれ前記加工用電圧を印加する複数の給電子ユニットとを備え、
     前記並列する複数の切断ワイヤ部において、少なくとも一部の切断ワイヤ部に通電する電流の方向が他の切断ワイヤ部に通電する電流の方向と異なる方向となるように前記給電子ユニットが、配設されている
     ことを特徴とする太陽電池ウエハ製造装置。
  23.  太陽電池ウエハ用素材は、多結晶または単結晶シリコンを主成分とする材料である
     ことを特徴とする請求項22に記載の太陽電池ウエハ製造装置。
PCT/JP2009/060946 2008-06-16 2009-06-16 ワイヤ放電加工装置およびワイヤ放電加工方法、半導体ウエハ製造装置および半導体ウエハ製造方法、太陽電池ウエハ製造装置および太陽電池ウエハ製造方法 WO2009154199A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112009001483.6T DE112009001483B4 (de) 2008-06-16 2009-06-16 Drahtelektroerosionsbearbeitungsvorrichtung, drahtelektroerosionsbearbeitungsverfahren, dünnplattenherstellungsverfahren und halbleiterwaferherstellungsverfahren
US12/999,106 US9050672B2 (en) 2008-06-16 2009-06-16 Wire discharge-machining apparatus with parallel cutting wires
CN2009801224967A CN102066031B (zh) 2008-06-16 2009-06-16 线放电加工装置及方法、半导体晶片制造装置及方法、太阳能电池晶片制造装置及方法
JP2010517922A JP5079091B2 (ja) 2008-06-16 2009-06-16 ワイヤ放電加工装置、ワイヤ放電加工方法、薄板製造方法および半導体ウエハ製造方法
US14/702,409 US9643270B2 (en) 2008-06-16 2015-05-01 Wire discharge-machining apparatus with parallel cutting wires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-157236 2008-06-16
JP2008157236 2008-06-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/999,106 A-371-Of-International US9050672B2 (en) 2008-06-16 2009-06-16 Wire discharge-machining apparatus with parallel cutting wires
US14/702,409 Continuation US9643270B2 (en) 2008-06-16 2015-05-01 Wire discharge-machining apparatus with parallel cutting wires

Publications (1)

Publication Number Publication Date
WO2009154199A1 true WO2009154199A1 (ja) 2009-12-23

Family

ID=41434116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060946 WO2009154199A1 (ja) 2008-06-16 2009-06-16 ワイヤ放電加工装置およびワイヤ放電加工方法、半導体ウエハ製造装置および半導体ウエハ製造方法、太陽電池ウエハ製造装置および太陽電池ウエハ製造方法

Country Status (5)

Country Link
US (2) US9050672B2 (ja)
JP (1) JP5079091B2 (ja)
CN (1) CN102066031B (ja)
DE (1) DE112009001483B4 (ja)
WO (1) WO2009154199A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125656A1 (ja) * 2010-04-09 2011-10-13 三菱電機株式会社 放電加工装置および放電加工方法
WO2012042980A1 (ja) * 2010-10-01 2012-04-05 三菱電機株式会社 ワイヤ放電加工装置、ワイヤ放電加工方法、薄板製造方法および半導体ウェハ製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548699B (zh) 2009-09-24 2014-04-30 三菱电机株式会社 线放电加工装置、线放电加工方法、薄板制造方法及半导体晶片制造方法
TWI377102B (en) * 2009-11-18 2012-11-21 Ind Tech Res Inst Wire cut electrical discharge machine
DE112011101672B4 (de) 2010-05-18 2019-06-13 Mitsubishi Electric Corp. Drahtelektroerodiervorrichtung und Dünnscheibenherstellungsverfahren
WO2012029813A1 (ja) * 2010-08-30 2012-03-08 京セラ株式会社 太陽電池モジュールの製造装置および太陽電池モジュールの製造方法
US9707638B2 (en) * 2012-01-18 2017-07-18 Mitsubishi Electric Corporation Wire electric-discharge machining device, wire electric-discharge machining method, thin-plate manufacturing method, and semiconductor wafer manufacturing method
JP5578223B2 (ja) * 2012-03-01 2014-08-27 キヤノンマーケティングジャパン株式会社 マルチワイヤ放電加工システム、マルチワイヤ放電加工装置、電源装置、半導体基板または太陽電池基板の製造方法、放電加工方法
CN102744475B (zh) * 2012-07-19 2014-05-07 南京航空航天大学 实现群线电极电解切割方法的装置
DE102013201932A1 (de) * 2013-02-06 2014-08-07 Robert Bosch Gmbh Vorrichtung und Verfahren zum Bearbeiten eines Werkstücks
JP5825382B2 (ja) * 2013-06-28 2015-12-02 キヤノンマーケティングジャパン株式会社 ワイヤ放電加工装置、ワイヤ放電加工システム、電源装置、ワイヤ放電加工方法、半導体基板の製造方法。
CN105215492B (zh) * 2015-11-03 2017-09-01 南京航空航天大学 并行放电多电极运丝机构与均衡放电控制方法
CN111098419B (zh) * 2019-12-30 2021-07-13 郑州合晶硅材料有限公司 一种硅片生产用切片装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420485A (en) * 1977-07-18 1979-02-15 Inoue Japax Res Inc Wire cutting device
JPS6195827A (ja) * 1984-10-16 1986-05-14 シヤルミーユ テクノロジー ソシエテ アノニム ワイヤ放電加工装置の放電加工状態の制御方法及びその装置
JP2006075952A (ja) * 2004-09-10 2006-03-23 Mitsubishi Electric Corp ワイヤ放電加工装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445063A (en) * 1974-02-22 1976-08-04 Foerster F Magnetic gradient detector
CH591919A5 (ja) * 1974-11-25 1977-10-14 Agie Ag Ind Elektronik
GB2000069B (en) * 1977-06-14 1982-01-27 Inoue Japax Res Improvements relating to electrical machining
US4661674A (en) * 1983-09-14 1987-04-28 Inoue-Japax Research Incorporated Minimum-impedance conductor assembly for EDM
CH662075A5 (fr) * 1984-10-17 1987-09-15 Charmilles Technologies Procede de decoupage electroerosif et dispositif pour sa mise en oeuvre.
GB2192751B (en) * 1986-07-14 1991-02-13 Denki Kagaku Kogyo Kk Method of making a thermionic cathode structure.
US5019685A (en) * 1989-04-13 1991-05-28 Sodick Co., Ltd. Discharge working machine
JPH09248719A (ja) 1996-03-12 1997-09-22 Shin Etsu Handotai Co Ltd エピタキシャル・ウエハ用半導体インゴットの切断方法およびその装置
JP2000094221A (ja) 1998-09-24 2000-04-04 Toyo Advanced Technologies Co Ltd 放電式ワイヤソー
US6998562B2 (en) * 2004-06-02 2006-02-14 Fanuc Ltd Controller for a wire electrical discharge machine
DE102004060290A1 (de) * 2004-12-15 2006-06-22 Robert Bosch Gmbh Verfahren zum Bearbeiten eines Werkstücks
JP4921482B2 (ja) * 2006-10-24 2012-04-25 三菱電機株式会社 ワイヤ放電加工装置
CN102548699B (zh) 2009-09-24 2014-04-30 三菱电机株式会社 线放电加工装置、线放电加工方法、薄板制造方法及半导体晶片制造方法
DE112011101672B4 (de) 2010-05-18 2019-06-13 Mitsubishi Electric Corp. Drahtelektroerodiervorrichtung und Dünnscheibenherstellungsverfahren
JP5825382B2 (ja) * 2013-06-28 2015-12-02 キヤノンマーケティングジャパン株式会社 ワイヤ放電加工装置、ワイヤ放電加工システム、電源装置、ワイヤ放電加工方法、半導体基板の製造方法。

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420485A (en) * 1977-07-18 1979-02-15 Inoue Japax Res Inc Wire cutting device
JPS6195827A (ja) * 1984-10-16 1986-05-14 シヤルミーユ テクノロジー ソシエテ アノニム ワイヤ放電加工装置の放電加工状態の制御方法及びその装置
JP2006075952A (ja) * 2004-09-10 2006-03-23 Mitsubishi Electric Corp ワイヤ放電加工装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125656A1 (ja) * 2010-04-09 2011-10-13 三菱電機株式会社 放電加工装置および放電加工方法
CN102821901A (zh) * 2010-04-09 2012-12-12 三菱电机株式会社 放电加工装置以及放电加工方法
JPWO2011125656A1 (ja) * 2010-04-09 2013-07-08 三菱電機株式会社 放電加工装置および放電加工方法
WO2012042980A1 (ja) * 2010-10-01 2012-04-05 三菱電機株式会社 ワイヤ放電加工装置、ワイヤ放電加工方法、薄板製造方法および半導体ウェハ製造方法
JP5430771B2 (ja) * 2010-10-01 2014-03-05 三菱電機株式会社 ワイヤ放電加工装置、ワイヤ放電加工方法、薄板製造方法および半導体ウェハ製造方法
US9089916B2 (en) 2010-10-01 2015-07-28 Mitsubishi Electric Corporation Wire electric discharge machining apparatus, wire electric discharge machining method, thin plate manufacturing method, and semiconductor wafer manufacturing method

Also Published As

Publication number Publication date
DE112009001483T5 (de) 2011-04-21
JPWO2009154199A1 (ja) 2011-12-01
US9050672B2 (en) 2015-06-09
US20110092053A1 (en) 2011-04-21
CN102066031A (zh) 2011-05-18
US20150231719A1 (en) 2015-08-20
US9643270B2 (en) 2017-05-09
JP5079091B2 (ja) 2012-11-21
CN102066031B (zh) 2012-05-09
DE112009001483B4 (de) 2020-01-09

Similar Documents

Publication Publication Date Title
JP5079091B2 (ja) ワイヤ放電加工装置、ワイヤ放電加工方法、薄板製造方法および半導体ウエハ製造方法
JP2010005735A (ja) マルチワイヤ放電加工装置
US9089916B2 (en) Wire electric discharge machining apparatus, wire electric discharge machining method, thin plate manufacturing method, and semiconductor wafer manufacturing method
JP4921482B2 (ja) ワイヤ放電加工装置
JP5930883B2 (ja) マルチワイヤ放電加工装置
JP2009226504A (ja) ワイヤ放電加工装置
JP5464506B2 (ja) ワイヤ放電加工システム、ワイヤ放電加工方法。
US8993979B2 (en) Beam control assembly for ribbon beam of ions for ion implantation
JP5393501B2 (ja) ワイヤ放電加工装置
JP6033190B2 (ja) マルチワイヤ加工装置及びマルチワイヤ加工方法
JP4912330B2 (ja) ワイヤ放電加工装置
JP5843889B2 (ja) ワイヤ放電加工装置
EP2895638B1 (en) Electromagnetic stabilizer
JP5746499B2 (ja) マルチワイヤ放電加工装置及びそれを用いた炭化ケイ素板の製造方法
JP2016083773A (ja) マルチワイヤ放電加工システム、マルチワイヤ放電加工方法
JP2014094447A (ja) ワイヤ放電加工システム、ワイヤ放電加工方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122496.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517922

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12999106

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009001483

Country of ref document: DE

Date of ref document: 20110421

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09766647

Country of ref document: EP

Kind code of ref document: A1