WO2009149687A1 - Halbleiterkörper und verfahren zur herstellung eines halbleiterkörpers - Google Patents

Halbleiterkörper und verfahren zur herstellung eines halbleiterkörpers Download PDF

Info

Publication number
WO2009149687A1
WO2009149687A1 PCT/DE2009/000756 DE2009000756W WO2009149687A1 WO 2009149687 A1 WO2009149687 A1 WO 2009149687A1 DE 2009000756 W DE2009000756 W DE 2009000756W WO 2009149687 A1 WO2009149687 A1 WO 2009149687A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type semiconductor
type
dopant
semiconductor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DE2009/000756
Other languages
German (de)
English (en)
French (fr)
Inventor
Martin Strassburg
Hans-Jürgen LUGAUER
Vincent Grolier
Berthold Hahn
Richard FLÖTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to CN2009801090568A priority Critical patent/CN101971372B/zh
Priority to KR1020107020378A priority patent/KR101642524B1/ko
Priority to AT09761309T priority patent/ATE540432T1/de
Priority to JP2011512826A priority patent/JP5661614B2/ja
Priority to EP09761309A priority patent/EP2286469B1/de
Priority to US12/922,864 priority patent/US8581264B2/en
Publication of WO2009149687A1 publication Critical patent/WO2009149687A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/8215Bodies characterised by crystalline imperfections, e.g. dislocations; characterised by the distribution of dopants, e.g. delta-doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • H10H20/8252Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures

Definitions

  • a semiconductor body has an n-conducting semiconductor layer and a p-conducting one Semiconductor layer on.
  • the p-type semiconductor layer contains a p-type impurity.
  • the n-type semiconductor layer contains an n-type dopant and another dopant.
  • the degree of activation of the p-type semiconductor layer is permanently increased. That is, the proportion of the atoms of the p-type impurity providing holes as carriers is increased.
  • the n-conducting semiconductor layer has a thickness of at least 5 nm, preferably at least 10 nm, particularly preferably at least 20 nm.
  • Such an n-type semiconductor layer without further dopant, ie only with an n-type dopant, is impermeable to hydrogen. Only by the addition of the further dopant is a permeability of the layer for hydrogen achieved.
  • the n-type semiconductor layer may in this case be formed thicker than 20 nm, which for example improves the transverse conductivity of the n-type semiconductor layer.
  • the semiconductor body is preferably based on a nitride compound semiconductor material.
  • the further dopant with respect to the material and / or the concentration is formed in the n-type semiconductor layer such that a permeability of the n-type semiconductor layer for hydrogen is increased.
  • hydrogen can pass through the n-type semiconductor layer in an improved manner.
  • the degree of activation of the p-type semiconductor layer can thus be increased.
  • the solubility of hydrogen in the n-type semiconductor layer may in this case be increased by means of the further dopant.
  • the further dopant in the n-type semiconductor layer acts as an acceptor.
  • n-doping By acting as an acceptor further dopant n-doping is partially compensated by means of the further dopant. It has been found that, despite the partial compensation of the n-type doping in the n-type semiconductor layer, the acceptor as a further dopant causes an overall improvement in the optoelectronic properties of the semiconductor body due to the increased degree of activation of the p-type dopant in the p-type semiconductor layer.
  • the further dopant of the n-type semiconductor layer is equal to the p-type dopant the p-type semiconductor layer.
  • the further dopant and the p-type dopant may each be magnesium.
  • the concentration of the further dopant is in the n-type semiconductor layer is at least 1 x 10 ⁇ cm "3 In particular, the concentration between 1 x 10 ⁇ 7 cm ⁇ 3 an d including 5 x lO ⁇ cm -. 3, particularly preferably between 1 x 10 17 cm “3 and including 2 x 10 18 cm" 3, respectively.
  • the permeability of the n-type semiconductor layer for hydrogen may be increased without a significant deterioration of the optical quality of the n-type semiconductor layer occurs.
  • the semiconductor body preferably has an active region provided for generating radiation.
  • the active region may in particular be formed between the p-type semiconductor layer and the n-type semiconductor layer.
  • the n-type semiconductor layer may be formed between the active region and the further active region.
  • the p-type semiconductor layer covered by the n-type semiconductor layer can be activated more effectively in the production of the semiconductor body.
  • a growth substrate for the semiconductor body is completely or at least partially removed.
  • a semiconductor chip is also referred to as a thin-film semiconductor chip.
  • the semiconductor layer sequence contains at least one semiconductor layer having at least one surface having a mixing structure, which leads in the ideal case to an approximately ergodic distribution of light in the semiconductor layer sequence, that is, it has a possible ergodisch stochastisch.es scattering behavior.
  • the semiconductor body has a polarization-inverted structure, with the following sequence of layers:
  • the semiconductor body comprises a growth substrate on which the p-conducting semiconductor layer is arranged.
  • the active region is arranged on the side of the p-type semiconductor layer facing away from the growth substrate.
  • the n-type semiconductor layer is arranged with an n-type dopant and a further dopant.
  • the p-type semiconductor layer is buried, that is, it is covered by other semiconductor layers.
  • hydrogen must therefore pass through the further semiconductor layers, in particular pass through the n-type semiconductor layer in order to be able to leave the semiconductor body.
  • a further dopant for example the p-type dopant, which is also used in the p-type semiconductor layer.
  • a sequence in which first the p-type semiconductor layer and subsequently the active region and the n-type semiconductor layer are deposited can exploit the polarity of the piezoelectric fields to promote the trapping of carriers in the active region.
  • the piezoelectric fields thus contribute in this sequence of the layer structure to an improved capture of charge carriers in the active region.
  • the internal quantum efficiency is thereby almost independent of the current density.
  • the buried p-type semiconductor layer is doped with magnesium, it can be activated in an improved manner due to the improved hydrogen permeability of the overlying n-type semiconductor layer.
  • the method described is particularly suitable for producing a semiconductor body described above.
  • executed features can therefore be used for the process and vice versa.
  • a first exemplary embodiment of a semiconductor body is shown schematically in a sectional view in FIG.
  • the semiconductor body 2 has an n-type semiconductor layer 21 and a p-type semiconductor layer 22. Between the n-type semiconductor layer and the p-type semiconductor layer is formed an active region 20 which is provided for generating radiation.
  • This layer sequence exploits the polarity of the piezoelectric fields that form in the semiconductor body 10 in order to support the trapping of charge carriers in the active region 20.
  • the piezoelectric fields thus contribute to an improved capture of charge carriers in the active region 20 in this sequence.
  • the internal quantum efficiency of multiple quantum wells, for example active region 20 thereby becomes almost independent of the current density.
  • the n-type semiconductor layer 21 contains a further dopant.
  • magnesium is particularly suitable as a further dopant for the n-type semiconductor layer.
  • the further dopant may thus correspond to the p-type dopant of the p-type semiconductor layer.
  • the hydrogen incorporated in the semiconductor layer 220 can thus pass through the n-conducting semiconductor layer 21 in a simplified manner and escape from the semiconductor body 2.
  • the degree of activation of the p-type semiconductor layer 22 can thus be improved in a simple and reproducible manner.
  • the concentration of the further dopant is preferably at most 50%. Excessive compensation of the n-dopant by the other dopant can be avoided.
  • the semiconductor body can be embodied such that charge carriers are injected into the active region in a simplified manner and, furthermore, the piezoelectric fields that occur promote the recombination of charge carriers in the active region can. Furthermore, the p-type semiconductor layer can have a high degree of activation, so that a semiconductor chip with such a semiconductor body can have improved optoelectronic properties.
  • the semiconductor body 2 is arranged on a carrier 5, which is different from the growth substrate for the semiconductor layer sequence of the semiconductor body 2.
  • the semiconductor body 2 is mechanically stable connected to the carrier 5 by means of a connecting layer 6.
  • the bonding layer 6 may be, for example, a solder layer or an electrically conductive adhesive layer.
  • the semiconductor chip 1 has a first contact 71 and a second contact 72.
  • the contacts are provided for external electrical contacting of the semiconductor chip 1 and arranged such that charge carriers can be injected from different sides into the active region 20 during operation of the semiconductor chip and recombine there with the emission of radiation.
  • the current spreading layer can be, for example, a TCO (transparent conductive oxide),
  • the carrier 5 is preferably designed to be electrically conductive.
  • the carrier 5 may contain a semiconductor material, such as germanium, gallium arsenide or silicon or consist of such a material. Deviating from the carrier 5 may also contain a ceramic, such as aluminum nitride or boron nitride, or consist of such a material.
  • FIG. 1 A second exemplary embodiment of a semiconductor body is shown schematically in a sectional view in FIG. This second embodiment substantially corresponds to the first embodiment described in connection with FIG.
  • the semiconductor body 2 has a further active region 25, a further n-conducting semiconductor layer 26 and a further p-conducting semiconductor layer 27. Between the active region 20 and the further active region 25, a first tunnel layer 23 and a second tunnel layer 24 are arranged. The first tunnel layer and the second tunnel layer form a tunnel contact, via which the active regions 20, 25 are electrically interconnected in series. As a result of the additional active region, the total radiation power that can be generated in the semiconductor body can be increased.
  • the tunnel layers 23, 24 are preferably with respect to the conduction type different from each other and have further preferably a high doping concentration, more preferably of at least 1 x 10 19 cm "3 on.
  • the p-type is Semiconductor layer 22 on the Aufwachsubstrat 50 facing away from the n-type semiconductor layer 21 is arranged.
  • the n-type semiconductor layer 21 in this embodiment covers the p-type semiconductor layer 27 on the side facing away from the growth substrate 50.
  • the p-type semiconductor layer is thus deposited on the growth substrate after the n-type semiconductor layer 21.
  • the further p-type semiconductor layer 27 may be formed substantially like the p-type semiconductor layer 22 here. When the p-type semiconductor layers 22 are activated, they are exposed, so that hydrogen can escape from this semiconductor layer unhindered.
  • the further p-type semiconductor layer 27 is covered by the n-type semiconductor layer 21 on the side facing away from the carrier 50. Due to the further dopant formed in the n-type semiconductor layer 21, this n-type semiconductor layer has an increased permeability to hydrogen, so that upon activation of the further p-type semiconductor layer 27, hydrogen can pass through the n-type semiconductor layer 21.
  • FIGS. 4A and 4B An exemplary embodiment of a method for producing a semiconductor body is shown schematically in FIGS. 4A and 4B by means of intermediate steps. The method is described by way of example with reference to the production of a semiconductor body, which is designed as described in connection with FIG.
  • a semiconductor layer 220 is deposited, which contains a p-type dopant and hydrogen.
  • an active region 20 and an n-type semiconductor layer 21 are deposited.
  • the semiconductor layer, the active region 20 and the n-type semiconductor layer 21 form the semiconductor body 2.
  • the semiconductor layer 220 is activated. This can be done, for example, thermally.
  • hydrogen can diffuse out of the semiconductor layer through the active region and the n-conducting semiconductor layer 21. The hydrogen can therefore be expelled from the semiconductor body 2 on the side facing away from the growth substrate.

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
PCT/DE2009/000756 2008-06-13 2009-05-28 Halbleiterkörper und verfahren zur herstellung eines halbleiterkörpers Ceased WO2009149687A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2009801090568A CN101971372B (zh) 2008-06-13 2009-05-28 半导体本体和制造半导体本体的方法
KR1020107020378A KR101642524B1 (ko) 2008-06-13 2009-05-28 반도체 몸체 및 반도체 몸체 제조 방법
AT09761309T ATE540432T1 (de) 2008-06-13 2009-05-28 Halbleiterkörper und verfahren zur herstellung eines halbleiterkörpers
JP2011512826A JP5661614B2 (ja) 2008-06-13 2009-05-28 半導体ボディおよび半導体ボディの製造方法
EP09761309A EP2286469B1 (de) 2008-06-13 2009-05-28 Halbleiterkörper und verfahren zur herstellung eines halbleiterkörpers
US12/922,864 US8581264B2 (en) 2008-06-13 2009-05-28 Semiconductor body and method of producing a semiconductor body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008028345.2 2008-06-13
DE102008028345A DE102008028345A1 (de) 2008-06-13 2008-06-13 Halbleiterkörper und Verfahren zur Herstellung eines Halbleiterkörpers

Publications (1)

Publication Number Publication Date
WO2009149687A1 true WO2009149687A1 (de) 2009-12-17

Family

ID=41131617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/000756 Ceased WO2009149687A1 (de) 2008-06-13 2009-05-28 Halbleiterkörper und verfahren zur herstellung eines halbleiterkörpers

Country Status (9)

Country Link
US (1) US8581264B2 (enExample)
EP (1) EP2286469B1 (enExample)
JP (1) JP5661614B2 (enExample)
KR (1) KR101642524B1 (enExample)
CN (1) CN101971372B (enExample)
AT (1) ATE540432T1 (enExample)
DE (1) DE102008028345A1 (enExample)
TW (1) TWI396305B (enExample)
WO (1) WO2009149687A1 (enExample)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466343B (zh) * 2012-01-06 2014-12-21 華夏光股份有限公司 發光二極體裝置
DE102013104192A1 (de) 2013-04-25 2014-10-30 Osram Opto Semiconductors Gmbh Halbleiterbauelement mit einer Zwischenschicht
EP3459123B1 (en) 2016-05-20 2020-03-18 Lumileds LLC Methods for using remote plasma chemical vapor deposition (rp-cvd) and sputtering deposition to grow layers in light emitting devices
KR101931798B1 (ko) * 2017-09-19 2018-12-21 주식회사 썬다이오드코리아 다중 터널 정션 구조를 가지는 발광 다이오드

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187568A1 (en) * 2001-06-11 2002-12-12 Stockman Stephen A. Forming semiconductor structures including acticated acceptors in buried p-type gan layers
US20040058465A1 (en) * 2002-09-19 2004-03-25 Toyoda Gosei Co., Ltd. Method for producing p-type Group III nitride compound semiconductor
US20040104399A1 (en) * 2002-10-16 2004-06-03 Chen Ou Light emitting diode having a dual dopant contact layer

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US187568A (en) * 1877-02-20 Improvement in harness-saddle pads
US197104A (en) * 1877-11-13 Improvement in trusses
US90900A (en) * 1869-06-01 Improved wooden shoe
US203407A (en) * 1878-05-07 Improvement in piano-forte actions
US58465A (en) * 1866-10-02 Improvement in carriage-shackles
US104399A (en) * 1870-06-21 Improvement in cultivators
US97269A (en) * 1869-11-30 Harrison berdan and john bantly
JPH10242586A (ja) 1997-02-24 1998-09-11 Fuji Electric Co Ltd Iii 族窒化物半導体装置およびその製造方法
JP3916361B2 (ja) * 2000-02-18 2007-05-16 独立行政法人科学技術振興機構 低抵抗p型単結晶ZnS薄膜およびその製造方法
US20020157596A1 (en) 2001-04-30 2002-10-31 Stockman Stephen A. Forming low resistivity p-type gallium nitride
JP4233268B2 (ja) 2002-04-23 2009-03-04 シャープ株式会社 窒化物系半導体発光素子およびその製造方法
KR20050093319A (ko) * 2004-03-18 2005-09-23 삼성전기주식회사 발광효율이 개선된 질화물 반도체 발광소자 및 그 제조방법
US7061026B2 (en) * 2004-04-16 2006-06-13 Arima Optoelectronics Corp. High brightness gallium nitride-based light emitting diode with transparent conducting oxide spreading layer
US7095052B2 (en) * 2004-10-22 2006-08-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and structure for improved LED light output
US7720124B2 (en) * 2005-03-03 2010-05-18 Panasonic Corporation Semiconductor device and fabrication method thereof
DE102005035722B9 (de) 2005-07-29 2021-11-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
TWI277226B (en) * 2005-10-24 2007-03-21 Formosa Epitaxy Inc Light emitting diode
DE102007019079A1 (de) * 2007-01-26 2008-07-31 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
DE102007018307A1 (de) * 2007-01-26 2008-07-31 Osram Opto Semiconductors Gmbh Halbleiterchip und Verfahren zur Herstellung eines Halbleiterchips
US7759670B2 (en) 2007-06-12 2010-07-20 SemiLEDs Optoelectronics Co., Ltd. Vertical LED with current guiding structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187568A1 (en) * 2001-06-11 2002-12-12 Stockman Stephen A. Forming semiconductor structures including acticated acceptors in buried p-type gan layers
US20040058465A1 (en) * 2002-09-19 2004-03-25 Toyoda Gosei Co., Ltd. Method for producing p-type Group III nitride compound semiconductor
US20040104399A1 (en) * 2002-10-16 2004-06-03 Chen Ou Light emitting diode having a dual dopant contact layer

Also Published As

Publication number Publication date
TW201019508A (en) 2010-05-16
TWI396305B (zh) 2013-05-11
KR20110015510A (ko) 2011-02-16
EP2286469A1 (de) 2011-02-23
KR101642524B1 (ko) 2016-07-25
CN101971372B (zh) 2013-05-15
US20110073902A1 (en) 2011-03-31
JP5661614B2 (ja) 2015-01-28
JP2011523219A (ja) 2011-08-04
CN101971372A (zh) 2011-02-09
EP2286469B1 (de) 2012-01-04
DE102008028345A1 (de) 2009-12-17
US8581264B2 (en) 2013-11-12
ATE540432T1 (de) 2012-01-15

Similar Documents

Publication Publication Date Title
DE102009060747B4 (de) Halbleiterchip
WO2009135457A1 (de) Strahlungsemittierender halbleiterchip
DE102007032555A1 (de) Halbleiterchip und Verfahren zur Herstellung eines Halbleiterchips
DE102006015788A1 (de) Optoelektronischer Halbleiterchip
DE112018000553B4 (de) Optoelektronischer Halbleiterchip
DE102008021403A1 (de) Optoelektronischer Halbleiterkörper und Verfahren zu dessen Herstellung
EP1906460A2 (de) Halbleiterkörper und Halbleiterchip mit einem Halbleiterkörper
DE102007008524A1 (de) Strahlung emittierender Chip mit mindestens einem Halbleiterkörper
EP2599131A1 (de) Strahlungsemittierender halbleiterchip und verfahren zur herstellung eines strahlungsemittierenden halbleiterchips
WO2014072254A1 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung von optoelektronischen halbleiterchips
EP1658643B1 (de) Strahlungemittierendes halbleiterbauelement
EP2286469B1 (de) Halbleiterkörper und verfahren zur herstellung eines halbleiterkörpers
EP2338182B1 (de) Optoelektronisches halbleiterbauelement
EP3120391A1 (de) Photoaktives halbleiterbauelement sowie verfahren zum herstellen eines photoaktiven halbleiterbauelementes
DE10346605B4 (de) Strahlungemittierendes Halbleiterbauelement
EP1929552B1 (de) Optoelektronisches halbleiterbauelement mit stromaufweitungsschicht
DE102016113274B4 (de) Optoelektronischer Halbleiterchip
DE102011115299B4 (de) Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
DE202004012665U1 (de) Leuchtdiodenanordnung auf Basis einer Galliumnitrid-Halbleiterverbindung
DE112013003772B4 (de) Reflektierendes Kontaktschichtsystem für ein optoelektronisches Bauelement, Verfahren zu dessen Herstellung und ein solches optoelektronisches Bauelement
WO2015176873A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip
DE102011114380A1 (de) Strahlungsemittierender Halbleiterchip
DE102012111573A1 (de) Optoelektronisches Halbleiterbauelement und Verfahren zum Herstellen eines optoelektronischen Halbleiterbauelements
WO2019072520A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip
WO2019042746A1 (de) Optoelektronisches halbleiterbauelement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109056.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09761309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009761309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011512826

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107020378

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12922864

Country of ref document: US