WO2009148097A1 - コア-シェル粒子の製造方法、コア-シェル粒子、中空粒子の製造方法、塗料組成物および物品 - Google Patents

コア-シェル粒子の製造方法、コア-シェル粒子、中空粒子の製造方法、塗料組成物および物品 Download PDF

Info

Publication number
WO2009148097A1
WO2009148097A1 PCT/JP2009/060193 JP2009060193W WO2009148097A1 WO 2009148097 A1 WO2009148097 A1 WO 2009148097A1 JP 2009060193 W JP2009060193 W JP 2009060193W WO 2009148097 A1 WO2009148097 A1 WO 2009148097A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
core
shell
producing
dispersion
Prior art date
Application number
PCT/JP2009/060193
Other languages
English (en)
French (fr)
Inventor
洋平 河合
米田 貴重
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2009801209030A priority Critical patent/CN102046522A/zh
Priority to EP09758364A priority patent/EP2298694A4/en
Priority to JP2010515900A priority patent/JP5578073B2/ja
Publication of WO2009148097A1 publication Critical patent/WO2009148097A1/ja
Priority to US12/959,021 priority patent/US20110076484A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • C09C1/3054Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/42Gloss-reducing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof

Definitions

  • the present invention relates to a method for producing core-shell particles, a core-shell particle obtained by the production method, a method for producing hollow particles using the core-shell particle, and a coating material containing the hollow particles obtained by the production method
  • the present invention relates to an article having a coating film comprising the composition and the coating composition.
  • Metal oxide particles such as titanium oxide and zinc oxide are used as fillers for resins, cosmetics and the like because they have an ultraviolet shielding ability. Further, metal oxide particles such as tin oxide doped with indium (hereinafter referred to as ITO) are used as fillers for resins, coatings for glass, and the like because they have infrared shielding ability.
  • ITO tin oxide doped with indium
  • the metal oxide particles have the following problems.
  • the core-shell is usually formed by using metal oxide particles as core particles and covering the surfaces of the particles with a shell made of a metal oxide such as silicon oxide (silica). Used as particles.
  • core particles of the core-shell particles are dissolved to obtain hollow particles made of a shell made of a metal oxide such as silicon oxide (silica). Since the hollow particles have a low refractive index, they are used for materials such as antireflection films.
  • Patent Document 1 As a method for producing the core-shell particles and hollow particles, a method having the following steps is known (Patent Document 1).
  • the shell since the shell is formed at room temperature, it takes time to manufacture the core-shell particles.
  • the reaction of the silicon oxide precursor proceeds on the surface other than the surface of the core particles, and particles composed only of the silicon oxide precursor are generated.
  • the generation of particles consisting only of the silicon oxide precursor other than the surface of the core particles is called precipitation.
  • the dispersion precipitates without gelation or solid matter not being dispersed in the dispersion medium.
  • the present invention relates to a method capable of producing core-shell particles and hollow particles while suppressing the formation of particles and gels made of a shell-forming material, core-shell particles and coating compositions with precisely controlled shell thickness, and antireflection An article having a highly effective coating film is provided.
  • the method for producing core-shell particles according to the present invention comprises irradiating a liquid containing core particles made of a material having a dielectric constant of 10 or more and a metal oxide precursor with microwaves, so that the surfaces of the core particles A shell made of an oxide is formed.
  • the core particles are preferably zinc oxide particles, titanium oxide particles, ITO particles, or manganese-doped zinc sulfide.
  • the metal oxide precursor is preferably alkoxysilane.
  • the core-shell particles of the present invention are obtained by the method for producing core-shell particles of the present invention.
  • the method for producing hollow particles of the present invention is characterized in that the core particles of the core-shell particles obtained by the method for producing core-shell particles of the present invention are dissolved or decomposed.
  • the core particles are preferably zinc oxide particles.
  • the metal oxide precursor is preferably alkoxysilane.
  • the coating composition of the present invention comprises hollow particles obtained by the method for producing hollow particles of the present invention and a dispersion medium.
  • the article of the present invention is such that a coating film made of the coating composition of the present invention is formed on a substrate.
  • core-shell particles can be produced while suppressing the formation of particles and gel made of a shell-forming material. Since the core-shell particles of the present invention have few particles and gels made of a shell-forming material, the shell thickness is precisely controlled. According to the method for producing hollow particles of the present invention, hollow particles can be produced while suppressing the formation of particles and gel made of a shell-forming material.
  • the coating composition of the present invention has few particles and gel made of a shell-forming material.
  • the article of the present invention has a coating film having a high antireflection effect.
  • the method for producing core-shell particles according to the present invention comprises irradiating a liquid containing core particles made of a material having a dielectric constant of 10 or more and a metal oxide precursor with microwaves, so that the surface of the core particles has a metal. This is a method of forming a shell made of an oxide.
  • Specific examples include a method having the following steps.
  • Process. (B) The raw material liquid is irradiated with microwaves to heat the raw material liquid, and the metal oxide precursor is hydrolyzed with an alkali or acid to precipitate the metal oxide on the surface of the core particles, Forming to obtain a dispersion of core-shell particles.
  • the electric power that replaces heat inside the dielectric when irradiated with microwaves is expressed by the following equation.
  • the dielectric loss tangent is preferably 0.001 to 1, and more preferably 0.01 to 1.
  • the dielectric constant and dielectric loss tangent can be calculated from values obtained by applying an electric field to the sample by a bridge circuit using a network analyzer and measuring the reflection coefficient and phase.
  • the material of the core particles may be a material having a dielectric constant of 10 or more.
  • Materials having a dielectric constant of 10 or more include zinc oxide, titanium oxide, ITO, aluminum oxide, zirconium oxide, zinc sulfide, gallium arsenide, indium phosphide, copper aluminum sulfide, copper gallium sulfide, copper indium sulfide, copper indium.
  • Dye selenide silver indium diselenide, yttria, yttrium vanadate, iron oxide, cadmium oxide, copper oxide, bismuth oxide, tungsten oxide, cerium oxide, tin oxide, gold, silver, copper, platinum, palladium, ruthenium, iron Platinum, carbon, etc. are mentioned.
  • the core particles zinc oxide particles and titanium oxide particles are preferable from the viewpoint of excellent ultraviolet shielding ability, ITO particles are preferable from the viewpoint of excellent infrared shielding ability, and manganese-doped zinc sulfide from the viewpoint of excellent fluorescence characteristics. Particles are preferred.
  • the shape of the core particle is not particularly limited, and a spherical shape, a square shape, a needle shape, a sheet shape, a chain shape, a fiber shape, a hollow shape, and the like can be used.
  • the average aggregate particle diameter (diameter) of the core particles in the dispersion is preferably 1 to 1000 nm, more preferably 1 to 300 nm.
  • the average aggregate particle diameter of the core particles is 1 nm or more, the surface area per mass of the core particles does not increase excessively, and the amount of metal oxide necessary for coating can be suppressed.
  • the average aggregate particle diameter of the core particles is 1000 nm or less, the dispersibility in the dispersion medium is good.
  • the average aggregate particle diameter of the core particles in the dispersion is measured by a dynamic light scattering method.
  • the concentration of the core particles is preferably 0.1 to 40% by mass, more preferably 0.5 to 20% by mass in the core particle dispersion (100% by mass). When the concentration of the core particles is 0.5% by mass or more, the production efficiency of the core-shell particles is good. When the concentration of the core particles is 20% by mass or less, the core particles hardly aggregate.
  • the dispersion medium examples include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), esters (ethyl acetate, acetic acid, etc.). Methyl, etc.), glycol ethers (ethylene glycol monoalkyl ether, etc.), nitrogen-containing compounds (N, N-dimethylacetamide, N, N-dimethylformamide, etc.), sulfur-containing compounds (dimethylsulfoxide, etc.) Etc. Since the dispersion medium requires water for hydrolysis of the metal oxide precursor, the dispersion medium preferably contains 5 to 100% by mass of water in 100% by mass of the dispersion medium.
  • the metal oxide examples include oxides of one or more metals selected from the group consisting of Si, Al, Cu, Ce, Sn, Ti, Cr, Co, Fe, Mn, Ni, Zn, and Zr.
  • the metal is Si
  • the metal oxide is SiO 2
  • Al is Al 2 O 3
  • Cu is CuO
  • Ce CeO 2
  • Sn is SnO 2.
  • Ti TiO 2
  • Cr Cr 2 O 3
  • Co CoO
  • CoO in the case of Fe, Fe 2 O 3
  • MnO 2 Ni NiO
  • Zn ZnO
  • Zr ZrO 2 .
  • Examples of the metal oxide precursor include metal alkoxide and the like, and alkoxysilane is preferable from the viewpoint of forming a dense shell.
  • Examples of the alkoxysilane include tetramethoxysilane, tetraethoxysilane (hereinafter referred to as TEOS), tetra n-propoxysilane, tetraisopropoxysilane and the like, and TEOS is preferable from the viewpoint of an appropriate reaction rate.
  • the amount of the metal oxide precursor is preferably such that the shell thickness is 1 to 500 nm, and more preferably the shell thickness is 1 to 100 nm. Specifically, the amount of the metal oxide precursor (in terms of metal oxide) is preferably 0.1 to 10,000 parts by mass with respect to 100 parts by mass of the core particles.
  • alkali examples include potassium hydroxide, sodium hydroxide, ammonia, ammonium carbonate, ammonium hydrogen carbonate, dimethylamine, triethylamine, aniline and the like. Ammonia is preferable because it can be removed by heating.
  • the amount of the alkali is preferably such that the pH of the raw material liquid is 8.5 to 10.5 from the viewpoint that the metal oxide precursor is three-dimensionally polymerized to form a dense shell. An amount of 10.0 is more preferable.
  • Examples of the acid include hydrochloric acid and nitric acid. Since zinc oxide particles are dissolved in an acid, when using zinc oxide particles as core particles, it is preferable to hydrolyze the metal oxide precursor with an alkali.
  • the amount of the acid is preferably such that the pH of the raw material solution is 3.5 to 5.5.
  • Examples of other additive compounds include metal chelate compounds, organotin compounds, metal alcoholates, metal fatty acid salts, and the like. From the viewpoint of shell strength, metal chelate compounds and organotin compounds are preferred, and metal chelate compounds are particularly preferred. .
  • the amount of the other additive compound is preferably 0.1 to 20 parts by mass, preferably 0.2 to 8 parts by mass, based on 100 parts by mass of the amount of metal oxide precursor (in terms of metal oxide). Part is more preferred.
  • the microwave usually refers to an electromagnetic wave having a frequency of 300 MHz to 300 GHz.
  • a microwave having a frequency of 2.45 GHz is used, but a frequency at which the non-heated material is effectively heated may be selected, and the present invention is not limited to this.
  • frequency bands are defined for uses that use radio waves for purposes other than communication called ISM bands. For example, 433.92 ( ⁇ 0.87) MHz, 896 ( ⁇ 10) MHz, 915 ( Microwaves such as ⁇ 13) MHz, 2375 ( ⁇ 50) MHz, 2450 ( ⁇ 50) MHz, 5800 ( ⁇ 75) MHz, 24125 ( ⁇ 125) MHz can be used.
  • the output of the microwave is preferably an output in which the raw material liquid is heated to 30 to 500 ° C., and an output in which the raw material liquid is heated to 50 to 300 ° C. is more preferable. If the temperature of the raw material liquid is 30 ° C. or higher, a dense shell can be formed in a short time. When the temperature of the raw material liquid is 500 ° C. or lower, the amount of metal oxide deposited on the surface other than the core particle surface can be suppressed.
  • the microwave heat treatment may be a batch process, but in the case of mass production, continuous treatment by a flow type apparatus is more preferable.
  • the microwave irradiation method may be a single mode, but in the case of mass production, a multimode capable of heating uniformly is more preferable.
  • the microwave irradiation time may be adjusted according to the microwave output (temperature of the raw material liquid) to the time for forming a shell having a desired thickness, and is, for example, 10 seconds to 60 minutes.
  • Step (c): Examples of a method for removing the dispersion medium from the core-shell particle dispersion and recovering the core-shell particles include the following methods.
  • C-1) A method of heating the dispersion of core-shell particles to volatilize the dispersion medium and the like.
  • C-2) A method of solid-liquid separation of a dispersion of core-shell particles and drying the solid content.
  • C-3) A method of spraying a dispersion of core-shell particles in a heated gas by using a spray dryer to volatilize the dispersion medium or the like (spray drying method).
  • C-4) A method in which the dispersion medium or the like is sublimated by cooling the core-shell particle dispersion and reducing the pressure (freeze-drying method).
  • the raw material liquid containing the core particles made of a material having a dielectric constant of 10 or more and the metal oxide precursor is irradiated with microwaves,
  • the core particles can be selectively heated to a high temperature. Therefore, even if the whole raw material liquid becomes high temperature, since the core particles are heated to a higher temperature, hydrolysis of the metal oxide precursor proceeds preferentially on the surface of the core particles, and the surface of the core particles A metal oxide is selectively deposited on the substrate. Therefore, the amount of particles made of a shell forming material (metal oxide) that precipitates independently other than the surface of the core particles can be suppressed. Moreover, since a shell can be formed on high temperature conditions, a shell is formed in a short time.
  • the core-shell particles of the present invention are core-shell particles obtained by the method for producing core-shell particles of the present invention.
  • the shell thickness of the core-shell particles is preferably 1 to 500 nm, more preferably 1 to 100 nm. When the thickness of the shell is 1 nm or more, the photocatalytic activity of the core particles is sufficiently suppressed, and the alteration and deterioration of the core particles are sufficiently suppressed. If the thickness of the shell is 500 nm or less, functions such as ultraviolet shielding ability and infrared shielding ability of the core particles are sufficiently exhibited.
  • the thickness of the shell can be adjusted by appropriately adjusting the amount of the metal oxide precursor, the microwave output, the irradiation time, and the like. For example, from the volume ratio of the core particle to the shell assuming that a shell of the target thickness is formed around the core particle, the mass ratio is calculated using the specific gravity of the core particle and the shell forming material (metal oxide). The thickness of the shell can be controlled by converting and adjusting the amount of the metal oxide precursor charged to the core particles.
  • the thickness of the shell is determined by observing core-shell particles with a transmission electron microscope, randomly selecting 100 particles, measuring the shell thickness of each core-shell particle, and measuring 100 core-shell particles. It is a value obtained by averaging the thicknesses of the shells of the particles.
  • the average aggregate particle diameter (diameter) of the core-shell particles is preferably 3 to 1000 nm, and more preferably 3 to 300 nm.
  • the average agglomerated particle diameter of the core-shell particles is an average agglomerated particle diameter of the core-shell particles in the dispersion medium, and is measured by a dynamic light scattering method.
  • the average primary particle diameter of the core-shell particles is preferably 3 to 500 nm, more preferably 3 to 200 nm.
  • the average primary particle diameter (diameter) of the core-shell particles is determined by observing the core-shell particles with a transmission electron microscope, randomly selecting 100 particles, and measuring the particle diameter of each core-shell particle. The average particle diameter of 100 core-shell
  • the core-shell particles of the present invention described above are obtained by the core-shell particle production method of the present invention, the amount of particles made of a shell-forming material (metal oxide) is small, The shell thickness can be precisely controlled.
  • the method for producing hollow particles of the present invention is a method for dissolving or decomposing the core particles of the core-shell particles obtained by the method for producing core-shell particles of the present invention.
  • Specific examples include a method having the following steps.
  • a ′ To a dispersion of core particles in which core particles are dispersed in a dispersion medium, a metal oxide precursor, water, an organic solvent, an alkali or an acid, other additive compounds, etc. are added as necessary, and a raw material liquid is added. Preparing step.
  • (B ′) The raw material liquid is irradiated with microwaves to heat the raw material liquid, and the metal oxide precursor is hydrolyzed with an alkali or an acid to precipitate a metal oxide on the surface of the core particle, Forming a dispersion of core-shell particles.
  • C ′ A step of dissolving or decomposing core particles of the core-shell particles contained in the dispersion to obtain a dispersion of hollow particles composed of the shell.
  • Step (a ′) is the same step as step (a) in the method for producing core-shell particles of the present invention.
  • the material of the core particles may be any material having a dielectric constant of 10 or more and can be dissolved or decomposed in the step (c ′).
  • Core particles include thermally decomposable organic particles (surfactant micelles, water-soluble organic polymers, styrene resins, acrylic resins, etc.), acid-soluble inorganic particles (zinc oxide, sodium aluminate, calcium carbonate, basic zinc carbonate). Etc.), photo-soluble inorganic particles (zinc sulfide, cadmium sulfide, zinc oxide, etc.) and the like. In particular, zinc oxide particles are preferable.
  • Step (b ′) is the same as step (b) in the method for producing core-shell particles of the present invention.
  • the core particles can be dissolved and removed by adding an acid.
  • the acid include inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, etc.), organic acids (formic acid, acetic acid, etc.), acidic cation exchange resins, and the like.
  • the core-shell particles obtained by the core-shell particle production method of the present invention are used in the hollow particle production method of the present invention described above, the shell-forming material contained in the obtained dispersion liquid The amount of particles made of (metal oxide) can be suppressed. Moreover, since a shell can be formed on high temperature conditions, a shell is formed in a short time.
  • the thickness of the shell of the hollow particles is preferably 1 to 50 nm, more preferably 1 to 20 nm. If the thickness of the shell is 1 nm or more, it has sufficient strength. When the thickness of the shell is 50 nm or less, a coating film having a high antireflection effect can be formed.
  • the thickness of the shell can be adjusted by appropriately adjusting the amount of the metal oxide precursor, the microwave output, the irradiation time, and the like. The thickness of the shell is determined by observing hollow particles with a transmission electron microscope, randomly selecting 100 particles, measuring the thickness of the shell of each hollow particle, and measuring the thickness of the shell of 100 hollow particles. Is an average value.
  • the average aggregate particle diameter (diameter) of the hollow particles is preferably 5 to 300 nm, and more preferably 10 to 100 nm. If the average aggregate particle diameter of the hollow particles is 5 nm or more, sufficient voids are formed between the adjacent hollow particles, so that the refractive index of the coating film is lowered and the antireflection effect is enhanced. If the average aggregate particle diameter of the hollow particles is 300 nm or less, light scattering can be suppressed, so that a highly transparent coating film can be obtained.
  • the average aggregate particle diameter of the hollow particles is the average aggregate particle diameter of the hollow particles in the dispersion medium, and is measured by a dynamic light scattering method.
  • the average primary particle diameter (diameter) of the hollow particles is preferably 5 to 100 nm, and more preferably 5 to 80 nm. If the average primary particle diameter of the hollow particles is within this range, the antireflection effect of the coating film is enhanced.
  • the average primary particle size of the hollow particles is determined by observing the hollow particles with a transmission electron microscope, randomly selecting 100 particles, measuring the particle size of each hollow particle, and determining the particle size of the 100 hollow particles. The average value.
  • the coating composition of this invention contains the hollow particle obtained by the manufacturing method of the hollow particle of this invention, a dispersion medium, and a binder as needed.
  • the dispersion medium include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), esters (ethyl acetate, acetic acid, etc.).
  • glycol ethers ethylene glycol monoalkyl ether, etc.
  • nitrogen-containing compounds N, N-dimethylacetamide, N, N-dimethylformamide, etc.
  • sulfur-containing compounds dimethylsulfoxide, etc.
  • alkoxysilane tetramethoxysilane, TEOS, etc.
  • silicic acid oligomer obtained by hydrolyzing alkoxysilane, silicon compound having silanol group (silicic acid, trimethylsilanol, etc.), active silica ( Water glass, sodium orthosilicate, etc.), organic polymers (polyethylene glycol, polyacrylamide derivatives, polyvinyl alcohol, etc.).
  • the mass ratio of the hollow particles to the binder is preferably 10/0 to 5/5, and more preferably 9/1 to 7/3. If the hollow particle / binder (mass ratio) is within this range, the refractive index of the coating film can be kept low, and a coating film having a high antireflection effect can be formed.
  • the solid content concentration of the coating composition of the present invention is preferably 0.1 to 20% by mass.
  • the coating composition of the present invention may contain hollow particles or solid particles obtained by a method other than the method for producing hollow particles of the present invention as long as the effects of the present invention are not impaired.
  • the coating composition of the present invention comprises chlorides such as Mg, Ca, Sr and Ba, alkaline earth metal salts such as nitrates, sulfates, formates and acetates; inorganic acids, organic acids, bases, metal chelate compounds, Curing catalysts such as quaternary ammonium salts and organotin compounds; inorganic particles exhibiting ultraviolet shielding properties, infrared shielding properties, and conductivity; may contain known additives such as pigments, dyes, and surfactants.
  • chlorides such as Mg, Ca, Sr and Ba
  • alkaline earth metal salts such as nitrates, sulfates, formates and acetates
  • inorganic acids, organic acids, bases, metal chelate compounds Curing catalysts such as quaternary ammonium salts and organotin compounds
  • inorganic particles exhibiting ultraviolet shielding properties, infrared shielding properties, and conductivity may contain known additives such as pigments, dyes, and surfactants
  • the coating composition of the present invention is further blended with various coating compounding agents composed of inorganic and / or organic substances, hard coat, alkali barrier, coloring, conductivity, antistatic, polarized light, ultraviolet shielding, infrared shielding, antifouling, One or more functions selected from anti-fogging, photocatalyst, antibacterial, fluorescence, phosphorescence, refractive index control, water repellency, oil repellency, fingerprint removal, slipperiness, and the like may be provided.
  • various coating compounding agents composed of inorganic and / or organic substances, hard coat, alkali barrier, coloring, conductivity, antistatic, polarized light, ultraviolet shielding, infrared shielding, antifouling,
  • One or more functions selected from anti-fogging, photocatalyst, antibacterial, fluorescence, phosphorescence, refractive index control, water repellency, oil repellency, fingerprint removal, slipperiness, and the like may be provided.
  • additives usually used according to the function required for the coating film for example, antifoaming agent, leveling agent, ultraviolet absorber, viscosity modifier, antioxidant, antifungal agent Etc. can be suitably added.
  • additives usually used according to the function required for the coating film for example, antifoaming agent, leveling agent, ultraviolet absorber, viscosity modifier, antioxidant, antifungal agent Etc.
  • blend various pigments normally used for coating materials for example, titania, zirconia, lead white, bengara and the like.
  • the coating composition of the present invention described above includes hollow particles obtained by the method for producing hollow particles of the present invention, the amount of solid particles made of a shell-forming material (metal oxide) is small. Therefore, a coating film having a low refractive index and a high antireflection effect can be formed.
  • the article of the present invention has a coating film formed of the coating composition of the present invention.
  • the thickness of the coating film is preferably 50 to 300 nm, more preferably 80 to 200 nm. When the thickness of the coating film is 50 nm or more, light interference occurs and an antireflection effect is exhibited. If the thickness of the coating film is 300 nm or less, the film can be formed without generating cracks.
  • the film thickness of the coating film can be obtained by measuring the coating and non-coating interfaces with a step gauge.
  • the refractive index of the coating film is preferably 1.2 to 1.4, more preferably 1.23 to 1.35.
  • the refractive index of the coating film is 1.2 or more, the light reflected on the upper surface of the film and the light reflected on the lower surface interfere with each other, and a coating film having a high antireflection effect is obtained. If the refractive index of the coating film is 1.4 or less, the light reflected on the upper surface of the film and the light reflected on the lower surface cancel each other, and the antireflection effect is high when glass is used as the base material. A coating film is obtained.
  • the reflectance of the coating film is preferably 0.0 to 1.4%, more preferably 0.0 to 1.0%.
  • the refractive index of a coating film is a refractive index in 550 nm, and is measured with a refractometer.
  • the coating film can be formed by applying the coating composition of the present invention to the substrate surface and drying it.
  • the coating film is preferably further heated or baked from the viewpoint of film strength, and more preferably baked in the glass strengthening step in terms of cost.
  • the material for the base material examples include glass, metal, organic polymer, silicon, and the like, and a base material on which a coating film is formed in advance may be used.
  • a base material on which a coating film is formed in advance examples include glass, metal, organic polymer, silicon, and the like, and a base material on which a coating film is formed in advance may be used.
  • glass in addition to glass molded by the float method, etc., template glass obtained by roll-out molding by supplying molten glass between a roll member with irregularities engraved on the surface and another roll member Can also be used.
  • a template glass on which a coating film has been formed by applying and drying the coating composition of the present invention can be preferably used as a cover glass for solar cells. In this case, it is preferable that the coating film is formed on the smooth surface of the template glass (the surface on the side where the unevenness is small).
  • Examples of the organic polymer include polyethylene terephthalate (hereinafter referred to as PET), polycarbonate, polymethyl methacrylate, triacetyl acetate, and the like.
  • Examples of the shape of the substrate include a plate and a film.
  • another functional layer (an adhesion improving layer, a protective layer, etc.) may be formed within a range not impairing the effects of the present invention.
  • a coating film made of an inorganic substance and / or an organic substance is formed in advance on the substrate, and a hard coat, an alkali barrier, coloring, conductivity, antistatic, polarization, ultraviolet shielding, infrared shielding, antifouling, antifogging, photocatalyst, antibacterial,
  • a hard coat an alkali barrier, coloring, conductivity, antistatic, polarization, ultraviolet shielding, infrared shielding, antifouling, antifogging, photocatalyst, antibacterial,
  • One or more functions selected from fluorescence, phosphorescence, refractive index control, water repellency, oil repellency, fingerprint removal, slipperiness, and the like may be provided.
  • a functional coating film composed of an inorganic substance and / or an organic substance is formed on the coating film to which the coating composition of the present invention is applied, and a hard coat, an alkali barrier, coloring, conductivity, antistatic, polarization,
  • the coating method examples include known methods such as bar coating, die coating, gravure coating, roll coating, flow coating, spray coating, online spray coating, ultrasonic spray coating, ink jet, and dip coating.
  • the on-line spray coating is a method of spray coating as it is on a line for forming a base material, and since the process of reheating the substrate can be omitted, the article can be produced at low cost and is useful. Since the article of the present invention described above has a coating film made of the coating composition of the present invention, the antireflection effect is high.
  • Examples 1 to 8 are examples, and examples 9 to 14 are comparative examples.
  • the average aggregate particle size of the core particles was measured using a dynamic light scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac UPA).
  • the dielectric constant of the material of the core particle is based on the value obtained by measuring the reflection coefficient and phase by applying an electric field to the sample with a bridge circuit using a network analyzer (manufactured by Agilent Technologies, PNA microwave vector network analyzer). Calculated.
  • (Liquid state) The state of the heated raw material liquid was confirmed visually and with a transmission electron microscope.
  • Dispersion Core-shell particles are uniformly dispersed in a dispersion medium.
  • Precipitation Apart from the core-shell particles, many silicon oxide particles are precipitated. (Confirmed with a transmission electron microscope) Precipitation: The solid is not dispersed in the dispersion medium but is precipitated. (Check visually) (Shell thickness) After the core-shell particle dispersion is diluted to 0.1% by mass with ethanol, it is sampled on a collodion membrane and observed with a transmission electron microscope, and 100 particles are randomly selected and each core-shell particle is selected. The shell thickness of 100 core-shell particles was averaged.
  • the reflectance of the coating film on the substrate at 380 to 1200 nm was measured with a spectrophotometer (manufactured by Hitachi, Ltd., model: U-4100), and the minimum reflectance (minimum reflectance) was determined.
  • Example 1 In a 200 mL quartz pressure vessel, 55.6 g of an aqueous dispersion of zinc oxide (ZnO, dielectric constant: 18) particles (average aggregate particle size: 30 nm, solid content concentration: 20% by mass), TEOS (in terms of silicon oxide) 6.9 g (solid shell concentration: 28.8% by mass) (target shell thickness: 2 nm), 36.9 g of ethanol, and 0.6 g of 28% by mass of aqueous ammonia solution were added to prepare a raw material solution having a pH of 10. .
  • ZnO zinc oxide
  • dielectric constant 18
  • TEOS in terms of silicon oxide
  • target shell thickness 2 nm
  • 36.9 g of ethanol 36.9 g of ethanol
  • 0.6 g of 28% by mass of aqueous ammonia solution were added to prepare a raw material solution having a pH of 10. .
  • microwave material is used to irradiate the raw material liquid with microwave (MW) of maximum output: 500 W, frequency: 2.45 GHz for 5 minutes, hydrolyzing TEOS, Silicon oxide was deposited on the surface to form a shell, and 100 g of a dispersion of core-shell particles was obtained.
  • the temperature of the reaction solution during microwave irradiation was 120 ° C.
  • the state of the core-shell particle dispersion was observed. The results are shown in Table 1.
  • a part of the dispersion of core-shell particles was collected and the thickness of the shell was measured with a transmission microscope. As a result, the thickness was 2 nm, similar to the target shell thickness.
  • the results are shown in Table 1.
  • 100 g of a strongly acidic cation exchange resin (total exchange capacity of 2.0 meq / mL or more) is added to 100 g of the dispersion of core-shell particles, and the mixture is stirred for 1 hour to reach pH 4, and then strongly acidic cation is filtered.
  • the exchange resin was removed to obtain a dispersion of hollow particles.
  • the dispersion was concentrated to a solid content concentration of 20% by mass by ultrafiltration.
  • the coating composition is applied to the surface of a glass substrate (100 mm ⁇ 100 mm, thickness 3.5 mm) wiped with ethanol, spin-coated at a rotation speed of 200 rpm for 60 seconds, and then baked at 650 ° C. for 10 minutes. A coating film having a thickness of 100 nm was formed. The minimum reflectance of the coating film was measured. The results are shown in Table 1.
  • Example 2 Change the aqueous dispersion of zinc oxide particles to 62.5 g, TEOS 3.5 g (target shell thickness: 1 nm), ethanol 33.7 g, aqueous ammonia solution 0.3 g, and maximum microwave output to 1000 W Then, 100 g of a dispersion of core-shell particles was obtained in the same manner as in Example 1 except that the microwave irradiation time was changed to 2 minutes. The temperature of the reaction solution during microwave irradiation was 180 ° C. The state of the core-shell particle dispersion was observed. The results are shown in Table 1.
  • Example 1 when the same operation as in Example 1 was performed and the thickness of the shell was measured, it was 1 nm as with the target shell thickness. The results are shown in Table 1. Further, the same operation as in Example 1 was performed to obtain a dispersion of hollow particles and a coating composition, and then a coating film was formed. The minimum reflectance of the coating film was measured. The results are shown in Table 1.
  • Example 3 100 g of a dispersion of core-shell particles was obtained in the same manner as in Example 1 except that the maximum microwave output was changed to 100 W and the microwave irradiation time was changed to 60 minutes. The temperature of the reaction solution during microwave irradiation was 60 ° C. The state of the core-shell particle dispersion was observed. The results are shown in Table 1. After applying a silicic acid oligomer solution (solid content concentration of 2% by mass) to the surface of a glass substrate (100 mm ⁇ 100 mm, thickness 3.5 mm) wiped with ethanol, and spin-coating for 60 seconds at a rotation speed of 200 rpm, The film was dried at 200 ° C. for 10 minutes to form a coating film having a thickness of 100 nm.
  • a silicic acid oligomer solution solid content concentration of 2% by mass
  • Example 1 when the same operation as in Example 1 was performed and the thickness of the shell was measured, it was 2 nm as in the target shell thickness. The results are shown in Table 1. Further, the same operation as in Example 1 was carried out to obtain a dispersion of hollow particles and a coating composition, and then a coating film was formed. The minimum reflectance of the coating film was measured. The results are shown in Table 1.
  • Example 4 In a 200 mL quartz pressure vessel, 45.5 g of an aqueous dispersion of zinc oxide particles (average aggregate particle size: 70 nm, solid content concentration: 20% by mass), TEOS (silicon oxide equivalent solid content concentration: 28.8 mass). %) 3.5 g (target shell thickness: 2 nm), ethanol 50.7 g and 28 mass% ammonia aqueous solution 0.3 g were added to prepare a raw material solution having a pH of 10.
  • microwave material is used to irradiate the raw material liquid with microwave of maximum output: 1400W, frequency: 2.45GHz for 15 minutes, hydrolyze TEOS, and oxidize on the surface of zinc oxide particles Silicon was deposited to form a shell to obtain 100 g of a dispersion of core-shell particles.
  • the temperature of the reaction solution during microwave irradiation was 280 ° C.
  • the state of the core-shell particle dispersion was observed. The results are shown in Table 1.
  • Example 1 when the same operation as in Example 1 was performed and the thickness of the shell was measured, it was 2 nm as in the target shell thickness. The results are shown in Table 1. Further, the same operation as in Example 1 was carried out to obtain a dispersion of hollow particles and a coating composition, and then a coating film was formed. The minimum reflectance of the coating film was measured. The results are shown in Table 1.
  • Example 5 In a 200 mL quartz pressure vessel, 50 g of an aqueous dispersion of titanium oxide (dielectric constant: 30) particles (average aggregated particle size: 20 nm, solid content concentration: 1.0 mass%), TEOS (solid content in terms of silicon oxide) 1 g (concentration: 28.8 mass%) (target shell thickness: 3 nm), 48.1 g of ethanol, and 0.9 g of 28 mass% ammonia aqueous solution were added to prepare a raw material liquid having a pH of 10.
  • a microwave heating device is used to irradiate the raw material liquid with microwaves having a maximum output of 1000 W and a frequency of 2.45 GHz for 5 minutes, to hydrolyze TEOS and to produce titanium oxide (TiO 2 ) particles. Silicon oxide was deposited on the surface to form a shell, and 100 g of a dispersion of core-shell particles was obtained. The temperature of the reaction solution during microwave irradiation was 120 ° C. The state of the core-shell particle dispersion was observed. The results are shown in Table 1. Moreover, when the same operation as in Example 1 was performed and the thickness of the shell was measured, it was 3 nm as in the target shell thickness. The results are shown in Table 1.
  • Example 6 In a 200 mL quartz pressure vessel, 62.5 g of an aqueous dispersion of ITO (dielectric constant: 24) particles (average aggregated particle size: 60 nm, solid content concentration: 8 mass%), TEOS (solid content concentration in terms of silicon oxide) : 28.8 mass%) 10.4 g (target shell thickness: 15 nm), ethanol 26.2 g, and 28 mass% ammonia aqueous solution 0.9 g were added to prepare a raw material solution having a pH of 10.
  • ITO dielectric constant: 24 particles
  • TEOS solid content concentration in terms of silicon oxide
  • microwave material is used to irradiate the raw material liquid with microwave of maximum output: 1000W, frequency: 2.45GHz for 5 minutes, hydrolyze TEOS, and silicon oxide on the surface of ITO particles
  • microwave of maximum output 1000W
  • frequency: 2.45GHz for 5 minutes
  • hydrolyze TEOS and silicon oxide on the surface of ITO particles
  • 100 g of a dispersion of core-shell particles was obtained.
  • the temperature of the reaction solution during microwave irradiation was 120 ° C.
  • the state of the core-shell particle dispersion was observed.
  • Table 1 when the same operation as in Example 1 was performed and the thickness of the shell was measured, it was 15 nm as in the target shell thickness.
  • Table 1 when the same operation as in Example 1 was performed and the thickness of the shell was measured, it was 15 nm as in the target shell thickness. The results are shown in Table 1.
  • Example 7 In a 20 L plastic container, 5560 g of an aqueous dispersion of zinc oxide (ZnO, dielectric constant: 18) particles (average aggregated particle size: 30 nm, solid content concentration: 20 mass%), TEOS (solid content concentration in terms of silicon oxide: 690 g (target shell thickness: 2 nm) of 28.8% by mass), 3690 g of ethanol, and 60 g of 28% by mass of aqueous ammonia solution were added to prepare a raw material solution having a pH of 10.
  • the raw material liquid is introduced into the flow-type microwave heating device by a pump at 167 mL / min, irradiated with multimode microwave of maximum output: 5 kW, frequency: 2.45 GHz, hydrolyzed TEOS, Silicon oxide was deposited on the surface to form a shell, and 10 kg of a dispersion of core-shell particles was obtained.
  • the temperature of the reaction solution reached 120 ° C. in 3 minutes by microwave irradiation.
  • the state of the core-shell particle dispersion was observed. The results are shown in Table 1.
  • a part of the dispersion of core-shell particles was collected and the thickness of the shell was measured with a transmission microscope. As a result, the thickness was 2 nm, similar to the target shell thickness.
  • the results are shown in Table 1.
  • 100 g of a strongly acidic cation exchange resin (total exchange capacity of 2.0 meq / mL or more) is added to 100 g of the dispersion of core-shell particles, and the mixture is stirred for 1 hour to reach pH 4, and then strongly acidic cation is filtered.
  • the exchange resin was removed to obtain a dispersion of hollow particles.
  • the dispersion was concentrated to a solid content concentration of 20% by mass by ultrafiltration.
  • the coating composition was applied to the surface of a glass substrate wiped with ethanol (100 mm ⁇ 100 mm, thickness 3.5 mm), spin-coated at 200 rpm for 60 seconds, and then baked at 650 ° C. for 10 minutes. Thereafter, it was rapidly cooled (glass strengthening conditions) to form a coating film having a thickness of 100 nm. The minimum reflectance of the coating film was measured. The results are shown in Table 1. Similarly, hollow particles having the same performance as particles synthesized by a small batch-type apparatus were obtained using a flow-type microwave heating apparatus.
  • Example 8 In a 200 mL quartz pressure vessel, 50 g of an aqueous dispersion of manganese-doped zinc sulfide (ZnS: Mn, dielectric constant: 13) particles (average aggregate particle diameter: 10 nm, solid content concentration: 1.0 mass%), TEOS ( 4 g (target shell thickness: 3 nm) of solid content in terms of silicon oxide (28.8% by mass), 42.4 g of ethanol, 3.6 g of 28% by mass of aqueous ammonia solution, and a raw material solution having a pH of 10 Prepared.
  • ZnS manganese-doped zinc sulfide
  • TEOS 4 g (target shell thickness: 3 nm) of solid content in terms of silicon oxide (28.8% by mass)
  • 42.4 g of ethanol 3.6 g of 28% by mass of aqueous ammonia solution
  • a raw material solution having a pH of 10 Prepared.
  • a microwave heating device is used to irradiate the raw material liquid with microwaves having a maximum output of 1000 W and a frequency of 2.45 GHz for 5 minutes to hydrolyze TEOS to obtain manganese-doped zinc sulfide (ZnS: Silicon oxide was deposited on the surface of the (Mn) particles to form a shell to obtain 100 g of a dispersion of core-shell particles.
  • the temperature of the reaction solution during microwave irradiation was 120 ° C.
  • the state of the core-shell particle dispersion was observed.
  • Table 2 Moreover, when the same operation as in Example 1 was performed and the thickness of the shell was measured, it was 3 nm as in the target shell thickness. The results are shown in Table 2.
  • Example 9 In a 200 mL quartz pressure vessel, 25.0 g of an aqueous dispersion of zinc oxide particles (average aggregated particle size: 30 nm, solid content concentration: 20 mass%), TEOS (silicon oxide equivalent solid content concentration: 28.8 mass) %) 10.4 g (target shell thickness: 5.5 nm), 63.7 g of ethanol, and 0.9 g of 28 mass% ammonia aqueous solution were added to prepare a raw material solution having a pH of 10. After sealing the pressure vessel, the raw material liquid was heated at 120 ° C. for 5 minutes using an oil bath (OB). However, the solid was precipitated without being dispersed in the dispersion medium, and a dispersion of core-shell particles was not obtained. The results are shown in Table 2.
  • Example 10 The same operation as in Example 7 was performed except that heating with an oil bath was performed at 180 ° C. for 2 minutes. However, the solid was precipitated without being dispersed in the dispersion medium, and a dispersion of core-shell particles was not obtained. The results are shown in Table 2.
  • Example 11 The same operation as in Example 7 was performed except that heating with an oil bath was performed at 60 ° C. for 60 minutes to obtain 100 g of a dispersion of core-shell particles. The state of the core-shell particle dispersion was observed. The results are shown in Table 2. Apart from the core-shell particles, many silicon oxide particles were precipitated. Moreover, when the same operation as in Example 1 was performed and the thickness of the shell was measured, it was 1 nm, which was significantly less than the target shell thickness. The results are shown in Table 2. Further, the same operation as in Example 1 was carried out to obtain a dispersion of hollow particles and a coating composition, and then a coating film was formed. The minimum reflectance of the coating film was measured. The results are shown in Table 2. The antireflection effect of the coating film was low.
  • Example 12 A raw material solution was prepared in the same manner as in Example 5. After sealing the pressure vessel, the raw material liquid was heated at 120 ° C. for 5 minutes using an oil bath. However, the solid was precipitated without being dispersed in the dispersion medium, and a dispersion of core-shell particles was not obtained. The results are shown in Table 2.
  • Example 13 A raw material solution was prepared in the same manner as in Example 6. After sealing the pressure vessel, the raw material liquid was heated at 120 ° C. for 5 minutes using an oil bath. However, the solid was precipitated without being dispersed in the dispersion medium, and a dispersion of core-shell particles was not obtained. The results are shown in Table 2.
  • Example 14 Except for stirring at 20 ° C. for 6 hours, the same operation as in Example 8 was performed to obtain 100 g of a dispersion of core-shell particles. The dispersion state of the core-shell particles was observed. The results are shown in Table 1. Although the dispersion state was good, it took a long time to form the shell. Moreover, when the same operation as in Example 1 was performed and the thickness of the shell was measured, it was 5.5 nm, similar to the target shell thickness. The results are shown in Table 2. Further, the same operation as in Example 1 was carried out to obtain a dispersion of hollow particles and a coating composition, and then a coating film was formed. The minimum reflectance of the coating film was measured. The results are shown in Table 2.
  • the core-shell particles without precipitation of the shell composition and single precipitation could be synthesized in a short time by microwave heating. This was thought to be because the shell formation reaction proceeded only on the surface of the core particles because the core particles were selectively heated by irradiation with microwaves. By applying microwave heating, the thickness of the shell can be controlled as set. Therefore, it is useful in that core-shell particles having a thick shell and a high protective effect for core particles and hollow particles having a thin shell thickness and a low refractive index can be synthesized.
  • the core-shell particles obtained by the production method of the present invention are useful as fillers for resins, cosmetics, coatings for glass and the like.
  • the hollow particles obtained by the production method of the present invention are useful as a material for forming an antireflection film.
  • Articles on which a coating film made of the coating composition of the present invention is formed include transparent components for vehicles (headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, etc.), transparent components for vehicles (in Instrument panel surfaces, etc.), meters, architectural windows, show windows, displays (notebook computers, monitors, LCDs, PDPs, ELDs, CRTs, PDAs, etc.), LCD color filters, touch panel substrates, pickup lenses, optical lenses Glasses lenses, camera parts, video parts, CCD cover substrates, optical fiber end faces, projector parts, copier parts, transparent substrates for solar cells, mobile phone windows, backlight unit parts (for example, light guide plates, cold cathode tubes, etc.).
  • transparent components for vehicles headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, etc.
  • transparent components for vehicles in Instrument panel surfaces, etc.
  • meters include architectural windows, show windows, displays (notebook computers, monitors, LCDs, PDPs, ELDs,
  • LCD brightness enhancement film for example, prism
  • Transflective film etc.
  • liquid crystal brightness enhancement film organic EL light-emitting element component, inorganic EL light-emitting element component, phosphor light-emitting element component, optical filter, end face of optical component, illumination lamp, cover of lighting fixture, amplification laser light source It is useful as an antireflection film, a polarizing film, an agricultural film and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Paints Or Removers (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

 シェル形成材料からなる粒子およびゲルの生成を抑えつつ、コア-シェル粒子および中空粒子を製造できる方法、シェル厚が精密に制御されたコア-シェル粒子および塗料組成物、ならびに反射防止効果の高い塗膜を有する物品を提供する。  誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液に、マイクロ波を照射して、コア粒子の表面に金属酸化物からなるシェルを形成するコア-シェル粒子の製造方法で得られたコア-シェル粒子を用いる。

Description

コア-シェル粒子の製造方法、コア-シェル粒子、中空粒子の製造方法、塗料組成物および物品
 本発明は、コア-シェル粒子の製造方法、該製造方法で得られたコア-シェル粒子、該コア-シェル粒子を用いた中空粒子の製造方法、該製造方法で得られた中空粒子を含む塗料組成物および該塗料組成物からなる塗膜を有する物品に関する。
 酸化チタン、酸化亜鉛等の金属酸化物粒子は、紫外線遮蔽能を有することから、樹脂用フィラー、化粧料等として用いられている。また、インジウムがドープされた酸化スズ(以下、ITOと記す。)等の金属酸化物粒子は、は、赤外線遮蔽能を有することから、樹脂用フィラー、ガラス用コーティング等として用いられている。
 しかし、該金属酸化物粒子は、下記の問題を有する。
 (i)酸化チタン、酸化亜鉛等は光触媒活性を有するため、該金属酸化物粒子を樹脂用フィラー、化粧料等に用いた場合、有機物(樹脂、化粧料の他の成分等。)を分解する。
 (ii)酸化亜鉛粒子をフッ素樹脂用フィラーに用いた場合、フッ素樹脂から遊離するフッ素化合物と酸化亜鉛とが反応してフッ化亜鉛に変質し、紫外線遮断能が低下する。
 (iii)ITO粒子を樹脂用フィラー、ガラス用コーティング等として用いた場合、ITOが酸化劣化して、赤外線遮蔽能が低下する。
 そのため、金属酸化物粒子を前記用途に用いる場合は、通常、金属酸化物粒子をコア粒子とし、該粒子の表面を、酸化ケイ素(シリカ)等の金属酸化物からなるシェルで被覆したコア-シェル粒子として用いる。
 また、該コア-シェル粒子のコア粒子を溶解させて、酸化ケイ素(シリカ)等の金属酸化物からなるシェルからなる中空粒子を得ることが知られている。該中空粒子は、屈折率が低いことから、反射防止膜等の材料に用いられている。
 前記コア-シェル粒子および中空粒子の製造方法としては、下記工程を有する方法が知られている(特許文献1)。
 特許文献1は、“コア粒子である酸化亜鉛粒子の分散液中で、酸化ケイ素前駆体をpH>8で反応させて、酸化亜鉛粒子の表面に酸化ケイ素からなるシェルを形成し、コア-シェル粒子を含む分散液を得る工程”を開示している。また、特許文献1は、“コア-シェル粒子を含む分散液と酸性カチオン交換樹脂とを混合接触させ、pH=2~8で酸化亜鉛粒子を溶解させ、シェルからなる中空粒子を含む分散液を得る工程”を開示している。
 しかし、該方法では、シェルの形成を室温で行っているため、コア-シェル粒子の製造に時間がかかる。また、酸化ケイ素前駆体の反応速度を上げるために加熱を行うと、コア粒子の表面以外でも酸化ケイ素前駆体の反応が進行し、酸化ケイ素前駆体のみからなる粒子が生成する。ここで、コア粒子の表面以外で酸化ケイ素前駆体のみからなる粒子が生成することを析出という。さらに、この析出が進行すると、分散液がゲル化もしくは固形物が分散媒に分散せずに沈殿する。
特開2006-335605号公報
 本発明は、シェル形成材料からなる粒子およびゲルの生成を抑えつつ、コア-シェル粒子および中空粒子を製造できる方法、シェル厚が精密に制御されたコア-シェル粒子および塗料組成物、ならびに反射防止効果の高い塗膜を有する物品を提供する。
 本発明のコア-シェル粒子の製造方法は、誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液に、マイクロ波を照射して、前記コア粒子の表面に金属酸化物からなるシェルを形成することを特徴とする。
 前記コア粒子は、酸化亜鉛粒子、酸化チタン粒、ITO粒子またはマンガンドープ硫化亜鉛であることが好ましい。
 前記金属酸化物前駆体は、アルコキシシランであることが好ましい。
 本発明のコア-シェル粒子は、本発明のコア-シェル粒子の製造方法で得られたものである。
 本発明の中空粒子の製造方法は、本発明のコア-シェル粒子の製造方法で得られたコア-シェル粒子のコア粒子を溶解または分解させることを特徴とする。
 前記コア粒子は、酸化亜鉛粒子であることが好ましい。
 前記金属酸化物前駆体は、アルコキシシランであることが好ましい。
 本発明の塗料組成物は、本発明の中空粒子の製造方法で得られた中空粒子と分散媒とを含むことを特徴とする。
 本発明の物品は、基材上に、本発明の塗料組成物からなる塗膜が形成されたものである。
 本発明のコア-シェル粒子の製造方法によれば、シェル形成材料からなる粒子およびゲルの生成を抑えつつ、コア-シェル粒子を製造できる。
 本発明のコア-シェル粒子は、シェル形成材料からなる粒子およびゲルが少ないため、シェル厚が精密に制御される。
 本発明の中空粒子の製造方法によれば、シェル形成材料からなる粒子およびゲルの生成を抑えつつ、中空粒子を製造できる。
 本発明の塗料組成物は、シェル形成材料からなる粒子およびゲルが少ない。
 本発明の物品は、反射防止効果の高い塗膜を有する。
<コア-シェル粒子の製造方法>
 本発明のコア-シェル粒子の製造方法は、誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液に、マイクロ波を照射して、前記コア粒子の表面に金属酸化物からなるシェルを形成する方法である。
 具体的には、下記の工程を有する方法が挙げられる。
 (a)コア粒子を分散媒に分散させたコア粒子の分散液に、金属酸化物前駆体、必要に応じて水、有機溶媒、アルカリまたは酸、他の添加化合物等を加え、原料液を調製する工程。
 (b)該原料液にマイクロ波を照射して該原料液を加熱するとともに、金属酸化物前駆体をアルカリまたは酸によって加水分解して、コア粒子の表面に金属酸化物を析出させ、シェルを形成し、コア-シェル粒子の分散液を得る工程。
 (c)必要に応じて、コア-シェル粒子の分散液から分散媒を除去し、コア-シェル粒子を回収する工程。
工程(a):
 コア粒子の材料の誘電率は、10以上であり、10~200が好ましく、15~100がより好ましい。コア粒子の材料の誘電率が10以上であれば、マイクロ波を吸収しやすくなるため、マイクロ波によってコア粒子を選択的に、かつ高温に加熱できる。
 マイクロ波を照射した際に誘電体内部で熱に代わる電力は次式で示される。
          P=2πfEεtanδ
 (P:電力、f:周波数、E:電界の大きさ、ε:誘電率、tanδ:誘電正接)
 したがって、発生熱量は誘電率と誘電正接の積によって決まるため、誘電率だけでなく誘電正接が大きい材料ほど加熱されやすい。誘電正接は、0.001~1が好ましく、さらに好ましくは0.01~1である。
 誘電率および誘電正接は、ネットワークアナライザを用いて、ブリッジ回路によって試料に電場を印加し、反射係数と位相を測定した値から算出することができる。
 コア粒子の材料は、誘電率が10以上の材料であればよい。
 誘電率が10以上の材料としては、酸化亜鉛、酸化チタン、ITO、酸化アルミニウム、酸化ジルコニウム、硫化亜鉛、ガリウム砒素、インジウムリン、2硫化銅アルミニウム、2硫化銅ガリウム、2硫化銅インジウム、銅インジウムダイセレナイド、銀インジウムダイセレナイド、イットリア、バナジン酸イットリウム、酸化鉄、酸化カドミウム、酸化銅、酸化ビスマス、酸化タングステン、酸化セリウム、酸化すず、金、銀、銅、白金、パラジウム、ルテニウム、鉄白金、カーボン等が挙げられる。
 コア粒子としては、紫外線遮蔽能に優れる点からは、酸化亜鉛粒子、酸化チタン粒子が好ましく、赤外線遮蔽能に優れる点からは、ITO粒子が好ましく、蛍光特性に優れる点からは、マンガンドープ硫化亜鉛粒子が好ましい。
 コア粒子の形状は特に限定されるものではなく、球状、角状、針状、シート状、鎖状、繊維状、中空状等を用いることができる。
 分散液中におけるコア粒子の平均凝集粒子径(直径)は、1~1000nmが好ましく、1~300nmがより好ましい。コア粒子の平均凝集粒子径が1nm以上であれば、コア粒子の質量あたりの表面積が増えすぎることがなく、被覆に必要な金属酸化物の量が抑えられる。コア粒子の平均凝集粒子径が1000nm以下であれば、分散媒への分散性が良好となる。
 分散液中におけるコア粒子の平均凝集粒子径は、動的光散乱法で測定される。
 コア粒子の濃度は、コア粒子の分散液(100質量%)中、0.1~40質量%が好ましく、0.5~20質量%がより好ましい。コア粒子の濃度が0.5質量%以上であれば、コア-シェル粒子の製造効率が良好となる。コア粒子の濃度が20質量%以下であれば、コア粒子が凝集しにくい。
 分散媒としては、水、アルコール類(メタノール、エタノール、イソプロパノール等。)、ケトン類(アセトン、メチルエチルケトン等。)、エーテル類(テトラヒドロフラン、1,4-ジオキサン等。)、エステル類(酢酸エチル、酢酸メチル等。)、グリコールエーテル類(エチレングリコールモノアルキルエーテル等。)、含窒素化合物類(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等。)、含硫黄化合物類(ジメチルスルホキシド等。)等が挙げられる。
 分散媒は、金属酸化物前駆体の加水分解に水が必要であるため、分散媒100質量%中、5~100質量%の水を含むことが好ましい。
 金属酸化物としては、Si、Al、Cu、Ce、Sn、Ti、Cr、Co、Fe、Mn、Ni、Zn、およびZrからなる群から選ばれる1種以上の金属の酸化物が挙げられる。金属酸化物は、金属がSiの場合、SiOであり、Alの場合、Alであり、Cuの場合、CuOであり、Ceの場合、CeOであり、Snの場合、SnOであり、Tiの場合、TiOであり、Crの場合、Crであり、Coの場合、CoOであり、Feの場合、Feであり、Mnの場合、MnOであり、Niの場合、NiOであり、Znの場合、ZnOであり、Zrの場合、ZrOである。
 金属酸化物前駆体としては、金属アルコキシド等が挙げられ、緻密なシェルを形成する点から、アルコシキシランが好ましい。
 アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン(以下、TEOSと記す。)、テトラn-プロポキシシラン、テトライソプロポキシシラン等が挙げられ、反応速度が適正な点から、TEOSが好ましい。
 金属酸化物前駆体の量は、シェルの厚さが1~500nmとなる量が好ましく、シェルの厚さが1~100nmとなる量がより好ましい。
 金属酸化物前駆体の量(金属酸化物換算)は、具体的には、コア粒子100質量部に対して、0.1~10000質量部が好ましい。
 アルカリとしては、水酸化カリウム、水酸化ナトリウム、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、ジメチルアミン、トリエチルアミン、アニリン等が挙げられ、加温により除去可能な点から、アンモニアが好ましい。
 アルカリの量は、金属酸化物前駆体が三次元的に重合して緻密なシェルを形成しやすい点から、原料液のpHが8.5~10.5となる量が好ましく、9.0~10.0となる量がより好ましい。
 酸としては、塩酸、硝酸等が挙げられる。なお、酸化亜鉛粒子は酸に溶解するため、コア粒子として酸化亜鉛粒子を用いる場合、金属酸化物前駆体の加水分解はアルカリによって行うことが好ましい。
 酸の量は、原料液のpHが3.5~5.5となる量が好ましい。
 他の添加化合物としては、金属キレート化合物、有機スズ化合物、金属アルコレート、金属脂肪酸塩等が挙げられ、シェルの強度の点から、金属キレート化合物、有機スズ化合物が好ましく、金属キレート化合物が特に好ましい。
 他の添加化合物の量(金属酸化物換算)は、金属酸化物前駆体の量(金属酸化物換算)の100質量部に対して0.1~20質量部が好ましく、0.2~8質量部がより好ましい。
工程(b):
 マイクロ波とは、通常、周波数が300MHz~300GHzの電磁波を指す。通常は、周波数が2.45GHzのマイクロ波が用いられるが非加熱物が有効に加熱される周波数を選択すればよく、これに限定されるものではない。電波法により、ISMバンドと呼ばれる通信以外の目的で電波を利用する用途のために周波数帯が定められており、例えば433.92(±0.87)MHz、896(±10)MHz、915(±13)MHz、2375(±50)MHz、2450(±50)MHz、5800(±75)MHz、24125(±125)MHz等のマイクロ波を用いることができる。
 マイクロ波の出力は、原料液が30~500℃に加熱される出力が好ましく、原料液が50~300℃に加熱される出力がより好ましい。
 原料液の温度が30℃以上であれば、緻密なシェルを短時間で形成できる。原料液の温度が500℃以下であれば、コア粒子表面以外で析出する金属酸化物の量が抑えられる。
 マイクロ波加熱処理は、バッチ処理でもよいが、大量に製造する場合には流通式装置による連続処理がより好ましい。マイクロ波の照射方式はシングルモードでもよいが、大量に製造する場合には均一に加熱できるマルチモードがより好ましい。
 マイクロ波の照射時間は、マイクロ波の出力(原料液の温度)に応じて、所望の厚さのシェルが形成される時間に調整すればよく、たとえば、10秒~60分である。
工程(c):
 コア-シェル粒子の分散液から分散媒を除去し、コア-シェル粒子を回収する方法としては、下記の方法が挙げられる。
 (c-1)コア-シェル粒子の分散液を加熱して、分散媒等を揮発させる方法。
 (c-2)コア-シェル粒子の分散液を固液分離して、固形分を乾燥する方法。
 (c-3)スプレードライヤーを用い、加熱されたガス中にコア-シェル粒子の分散液を噴霧して分散媒等を揮発させる方法(スプレードライ法)。
 (c-4)コア-シェル粒子の分散液を冷却し減圧することで、分散媒等を昇華させる方法(凍結乾燥法)。
 以上説明した本発明のコア-シェル粒子の製造方法にあっては、誘電率が10以上の材料からなるコア粒子と金属酸化物前駆体とを含む原料液にマイクロ波を照射しているため、コア粒子を選択的に、かつ高温に加熱できる。そのため、原料液全体が高温になったとしても、コア粒子がさらに高温に加熱されているため、金属酸化物前駆体の加水分解がコア粒子の表面にて優先的に進行し、コア粒子の表面に金属酸化物が選択的に析出する。よって、コア粒子の表面以外に単独で析出するシェル形成材料(金属酸化物)からなる粒子の量が抑えられる。また、シェルを高温条件にて形成できるため、シェルが短時間で形成される。
<コア-シェル粒子>
 本発明のコア-シェル粒子は、本発明のコア-シェル粒子の製造方法で得られたコア-シェル粒子である。
 コア-シェル粒子のシェルの厚さは、1~500nmが好ましく、1~100nmがより好ましい。シェルの厚さが1nm以上であれば、コア粒子の光触媒活性が充分に抑えられ、また、コア粒子の変質、劣化が充分に抑えられる。シェルの厚さが500nm以下であれば、コア粒子が有する紫外線遮蔽能、赤外線遮蔽能等の機能が充分に発揮される。
 シェルの厚さは、金属酸化物前駆体の量、マイクロ波の出力、照射時間等を適宜調整することにより調整できる。例えば、コア粒子の周囲に目標厚さのシェルが形成したと仮定した場合のコア粒子とシェルとの体積比から、コア粒子とシェル形成材料(金属酸化物)との比重を用いて質量比に換算し、コア粒子に対する金属酸化物前駆体の仕込量を調整することでシェルの厚さをコントロールできる。
 シェルの厚さは、コア-シェル粒子を透過型電子顕微鏡にて観察し、100個の粒子を無作為に選び出し、各コア-シェル粒子のシェルの厚さを測定し、100個のコア-シェル粒子のシェルの厚さを平均した値である。
 コア-シェル粒子の平均凝集粒子径(直径)は、3~1000nmが好ましく、3~300nmがより好ましい。
 コア-シェル粒子の平均凝集粒子径は、分散媒中におけるコア-シェル粒子の平均凝集粒子径であり、動的光散乱法で測定される。
 コア-シェル粒子の平均一次粒子径は、3~500nmが好ましく、3~200nmがより好ましい。
 コア-シェル粒子の平均一次粒子径(直径)は、コア-シェル粒子を透過型電子顕微鏡にて観察し、100個の粒子を無作為に選び出し、各コア-シェル粒子の粒子径を測定し、100個のコア-シェル粒子の粒子径を平均した値である。
 以上説明した本発明のコア-シェル粒子にあっては、本発明のコア-シェル粒子の製造方法で得られたものであるため、シェル形成材料(金属酸化物)からなる粒子の量が少なく、シェル厚を精密に制御することができる。
<中空粒子の製造方法>
 本発明の中空粒子の製造方法は、本発明のコア-シェル粒子の製造方法で得られたコア-シェル粒子のコア粒子を溶解または分解させる方法である。
 具体的には、下記の工程を有する方法が挙げられる。
 (a’)コア粒子を分散媒に分散させたコア粒子の分散液に、金属酸化物前駆体、必要に応じて水、有機溶媒、アルカリまたは酸、他の添加化合物等を加え、原料液を調製する工程。
 (b’)該原料液にマイクロ波を照射して該原料液を加熱するとともに、金属酸化物前駆体をアルカリまたは酸によって加水分解して、コア粒子の表面に金属酸化物を析出させ、シェルを形成し、コア-シェル粒子の分散液を得る工程。
 (c’)該分散液に含まれるコア-シェル粒子のコア粒子を溶解または分解し、シェルからなる中空粒子の分散液を得る工程。
工程(a’):
 工程(a’)は、本発明のコア-シェル粒子の製造方法における工程(a)と同様の工程である。
 コア粒子の材料は、誘電率が10以上の材料であり、かつ工程(c’)にて溶解または分解できるものであればよい。
 コア粒子としては、熱分解性有機粒子(界面活性剤ミセル、水溶性有機ポリマー、スチレン樹脂、アクリル樹脂等。)、酸溶解性無機粒子(酸化亜鉛、アルミン酸ナトリウム、炭酸カルシウム、塩基性炭酸亜鉛等。)、光溶解性無機粒子(硫化亜鉛、硫化カドミウム、酸化亜鉛等。)等が挙げられる。特に、酸化亜鉛粒子が好ましい。
工程(b’):
 工程(b’)は、本発明のコア-シェル粒子の製造方法における工程(b)と同様の工程である。
工程(c’):
 コア粒子が酸溶解性無機粒子の場合、酸を添加することによってコア粒子を溶解、除去できる。
 酸としては、無機酸(塩酸、硫酸、硝酸等。)、有機酸(ギ酸、酢酸等。)、酸性カチオン交換樹脂等が挙げられる。
 以上説明した本発明の中空粒子の製造方法にあっては、本発明のコア-シェル粒子の製造方法で得られたコア-シェル粒子を用いているため、得られる分散液に含まれるシェル形成材料(金属酸化物)からなる粒子の量が抑えられる。また、シェルを高温条件にて形成できるため、シェルが短時間で形成される。
<中空粒子>
 中空粒子のシェルの厚さは、1~50nmが好ましく、1~20nmがより好ましい。シェルの厚さが1nm以上であれば、充分な強度を有する。シェルの厚さが50nm以下であれば、反射防止効果の高い塗膜を形成できる。
 シェルの厚さは、金属酸化物前駆体の量、マイクロ波の出力、照射時間等を適宜調整することにより調整できる。
 シェルの厚さは、中空粒子を透過型電子顕微鏡にて観察し、100個の粒子を無作為に選び出し、各中空粒子のシェルの厚さを測定し、100個の中空粒子のシェルの厚さを平均した値である。
 中空粒子の平均凝集粒子径(直径)は、5~300nmが好ましく、10~100nmがより好ましい。中空粒子の平均凝集粒子径が5nm以上であれば、隣接する中空粒子間に充分な空隙が形成されるため、塗膜の屈折率が低くなり、反射防止効果が高くなる。中空粒子の平均凝集粒子径が300nm以下であれば、光の散乱が抑えられるため、透明性の高い塗膜が得られる。
 中空粒子の平均凝集粒子径は、分散媒中における中空粒子の平均凝集粒子径であり、動的光散乱法で測定される。
 中空粒子の平均一次粒子径(直径)は、5~100nmが好ましく、5~80nmがより好ましい。中空粒子の平均一次粒子径が該範囲内にあれば、塗膜の反射防止効果が高くなる。
 中空粒子の平均一次粒子径は、中空粒子を透過型電子顕微鏡にて観察し、100個の粒子を無作為に選び出し、各中空粒子の粒子径を測定し、100個の中空粒子の粒子径を平均した値である。
<塗料組成物>
 本発明の塗料組成物は、本発明の中空粒子の製造方法で得られた中空粒子と、分散媒と、必要に応じてバインダーとを含む。
 分散媒としては、水、アルコール類(メタノール、エタノール、イソプロパノール等。)、ケトン類(アセトン、メチルエチルケトン等。)、エーテル類(テトラヒドロフラン、1,4-ジオキサン等。)、エステル類(酢酸エチル、酢酸メチル等。)、グリコールエーテル類(エチレングリコールモノアルキルエーテル等。)、含窒素化合物類(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等。)、含硫黄化合物類(ジメチルスルホキシド等。)等が挙げられる。
 バインダーとしては、アルコシキシラン(テトラメトキシシラン、TEOS等。)、アルコシキシランを加水分解して得られるケイ酸オリゴマー、シラノール基を有するケイ素化合物(ケイ酸、トリメチルシラノール等。)、活性シリカ(水ガラス、オルトケイ酸ナトリウム等。)、有機ポリマー(ポリエチレングリコール、ポリアクリルアミド誘導体、ポリビニルアルコール等。)等が挙げられる。
 中空粒子とバインダーとの質量比(中空粒子/バインダー)は、10/0~5/5が好ましく、9/1~7/3がより好ましい。中空粒子/バインダー(質量比)が該範囲であれば、塗膜の屈折率を低く維持でき、反射防止効果が高い塗膜を形成できる。
 本発明の塗料組成物の固形分濃度は、0.1~20質量%が好ましい。
 本発明の塗料組成物は、本発明の中空粒子の製造方法以外で得られた中空粒子または中実粒子を、本発明の効果を損なわない範囲で含んでいてもよい。
 本発明の塗料組成物は、Mg、Ca、Sr、Ba等の塩化物、硝酸塩、硫酸塩、蟻酸塩、酢酸塩等のアルカリ土類金属塩;無機酸、有機酸、塩基、金属キレート化合物、4級アンモニウム塩、有機スズ化合物等の硬化触媒;紫外線遮蔽性、赤外線遮蔽性、導電性を示す無機粒子;顔料、染料、界面活性剤等の公知の添加剤を含んでいてもよい。
 本発明の塗料組成物には、さらに無機物及び/又は有機物からなる各種塗料用配合剤が配合され、ハードコート、アルカリバリア、着色、導電、帯電防止、偏光、紫外線遮蔽、赤外線遮蔽、防汚、防曇、光触媒、抗菌、蛍光、蓄光、屈折率制御、撥水、撥油、指紋除去、滑り性等より選ばれる1種または2種以上の機能が付与されてもよい。
 本発明の塗料組成物には、塗膜に求められる機能に応じて、通常使用される添加剤、例えば、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤等を適宜添加することができる。また、塗膜を目的に応じた色に着色するため、塗料用として通常使用される種々の顔料、例えばチタニア、ジルコニア、鉛白、ベンガラ等を配合することも可能である。
 以上説明した本発明の塗料組成物にあっては、本発明の中空粒子の製造方法で得られた中空粒子を含むため、シェル形成材料(金属酸化物)からなる中実粒子の量が少ない。よって、屈折率が低く、反射防止効果が高い塗膜を形成できる。
<物品>
 本発明の物品は、本発明の塗料組成物からなる塗膜が形成されたものである。
 塗膜の膜厚は、50~300nmが好ましく、80~200nmがより好ましい。塗膜の膜厚が50nm以上であれば、光の干渉が起こり、反射防止効果が発現する。塗膜の膜厚が300nm以下であれば、クラックが発生せずに製膜できる。
 塗膜の膜厚は、塗工および非塗工界面を段差計で測定することによって得られる。
 塗膜の屈折率は、1.2~1.4が好ましく、1.23~1.35がより好ましい。塗膜の屈折率が1.2以上であれば、膜の上面で反射される光と下面で反射される光が干渉することで打ち消し合い、反射防止効果が高い塗膜が得られる。塗膜の屈折率が1.4以下であれば、膜の上面で反射される光と下面で反射される光が干渉することで打ち消し合い、ガラスを基材とした場合に反射防止効果が高い塗膜が得られる。該塗膜の反射率は、0.0~1.4%が好ましく、0.0~1.0%がより好ましい。
 塗膜の屈折率は、550nmにおける屈折率であり、屈折計により測定される。
 塗膜は、基材表面に本発明の塗料組成物を塗布し、乾燥することによって形成できる。塗膜は、膜強度の点からは、さらに加熱または焼成されることが好ましく、ガラスの強化工程において焼成されることがコストの点においてより好ましい。
 基材の材料としては、ガラス、金属、有機ポリマー、シリコン等が挙げられ、あらかじめ何らかの塗膜が形成されている基材でもよい。ガラスとしては、フロート法等により成形されたガラスのほか、表面に凹凸が刻印されたロール部材と他のロール部材との間に溶融したガラスが供給されロールアウト成形されることにより得られる型板ガラスも使用できる。特に、本発明の塗料組成物を塗布し、乾燥することによって塗膜を形成した型板ガラスは太陽電池用カバーガラスとして好ましく使用できる。この場合、型板ガラスの平滑面(凹凸が小さい側の面)に塗膜が形成されるのが好ましい。有機ポリマーとしては、ポリエチレンテレフタレート(以下、PETと記す。)、ポリカーボネート、ポリメタクリル酸メチル、トリアセチルアセテート等が挙げられる。
 基材の形状としては、板、フィルム等が挙げられる。
 本発明の物品には、別の機能層(密着改善層、保護層等)が本発明の効果を損なわない範囲において形成されていてもよい。なお、本発明においては、生産性、耐久性の点から、本発明における塗膜のみが形成されていることが好ましい。
 基材には、あらかじめ無機物及び/又は有機物からなる塗膜が形成され、ハードコート、アルカリバリア、着色、導電、帯電防止、偏光、紫外線遮蔽、赤外線遮蔽、防汚、防曇、光触媒、抗菌、蛍光、蓄光、屈折率制御、撥水、撥油、指紋除去、滑り性等より選ばれる1種または2種以上の機能が付与されていてもよい。さらにまた、本発明の塗料組成物が塗布されてなる塗膜の上に無機物及び/又は有機物からなる機能性の塗膜が形成され、ハードコート、アルカリバリア、着色、導電、帯電防止、偏光、紫外線遮蔽、赤外線遮蔽、防汚、防曇、光触媒、抗菌、蛍光、蓄光、屈折率制御、撥水、撥油、指紋除去、滑り性等より選ばれる1種または2種以上の機能が付与されてもよい。
 塗布方法としては、バーコート、ダイコート、グラビアコート、ロールコート、フローコート、スプレーコート、オンラインスプレーコート、超音波スプレーコート、インクジェット、ディップコート等の公知の方法が挙げられる。オンラインスプレーコートとは、基材を成型するライン上でそのままスプレー塗布する方法であり、基板を再加熱する工程が省けるため、物品を低コストで製造でき、有用である。
 以上説明した本発明の物品にあっては、本発明の塗料組成物からなる塗膜を有するため、反射防止効果が高い。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例にのみに限定されるものではない。
 例1~8は、実施例であり、例9~14は、比較例である。
(コア粒子の平均凝集粒子径)
 コア粒子の平均凝集粒子径は、動的光散乱法粒度分析計(日機装社製、マイクロトラックUPA)を用いて測定した。
(誘電率)
 コア粒子の材料の誘電率は、ネットワークアナライザ(アジレント・テクノロジー社製、PNAマイクロ波ベクトル・ネットワーク・アナライザ)を用いて、ブリッジ回路によって試料に電場を印加し、反射係数と位相を測定した値から算出した。
(液の状態)
 加熱後の原料液の状態を目視および透過型電子顕微鏡で確認した。
 分散:コア-シェル粒子が分散媒に均一に分散している。(目視で確認)
 析出:コア-シェル粒子とは別に、酸化ケイ素粒子が多く析出している。(透過型電子顕微鏡で確認)
 沈殿:固形物が分散媒に分散せず、沈殿している。(目視で確認)
(シェルの厚さ)
 コア-シェル粒子の分散液をエタノールで0.1質量%に希釈した後、コロジオン膜にサンプリングして透過型電子顕微鏡にて観察し、100個の粒子を無作為に選び出し、各コア-シェル粒子のシェルの厚さを測定し、100個のコア-シェル粒子のシェルの厚さを平均した。
(最低反射率)
 380~1200nmにおける、基材上の塗膜の反射率を分光光度計(日立製作所社製、型式:U-4100)で測定し、反射率の最小値(最低反射率)を求めた。
〔例1〕
 200mLの石英製耐圧容器に、酸化亜鉛(ZnO、誘電率:18)粒子の水分散液(平均凝集粒子径:30nm、固形分濃度:20質量%)の55.6g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の6.9g(目標シェル厚:2nm)、エタノールの36.9g、28質量%のアンモニア水溶液の0.6gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:500W、周波数:2.45GHzのマイクロ波(MW)を5分間照射し、TEOSを加水分解して、酸化亜鉛粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液の100gを得た。マイクロ波照射中の反応液の温度は120℃であった。コア-シェル粒子の分散液の状態を観察した。結果を表1に示す。
 コア-シェル粒子の分散液の一部を採取し、透過型顕微鏡にてシェルの厚さを測定したところ、目標シェル厚と同様に2nmであった。結果を表1に示す。
 コア-シェル粒子の分散液の100gに、強酸性カチオン交換樹脂(総交換容量2.0meq/mL以上)の100gを加え、1時間撹拌してpHが4となった後、ろ過により強酸性カチオン交換樹脂を除去し、中空粒子の分散液を得た。該分散液を限外ろ過により固形分濃度20質量%まで濃縮した。
 200mLのガラス製容器に、中空粒子の分散液(固形分濃度20質量%)の6g、ケイ酸オリゴマー溶液(固形分濃度5質量%)の6g、エタノールの88gを入れ、10分間撹拌して、塗料組成物(固形分濃度1.5質量%)を得た。
 該塗料組成物を、エタノール拭きしたガラス基板(100mm×100mm、厚さ3.5mm)の表面に塗布し、回転数200rpmで60秒間スピンコートして均一化した後、650℃で10分間焼成し、厚さ100nmの塗膜を形成した。該塗膜の最低反射率を測定した。結果を表1に示す。
〔例2〕
 酸化亜鉛粒子の水分散液を62.5g、TEOSを3.5g(目標シェル厚:1nm)、エタノールを33.7g、アンモニア水溶液を0.3gに変更し、マイクロ波の最大出力を1000Wに変更し、マイクロ波の照射時間を2分に変更した以外は、例1と同様にして、コア-シェル粒子の分散液の100gを得た。マイクロ波照射中の反応液の温度は180℃であった。コア-シェル粒子の分散液の状態を観察した。結果を表1に示す。
 また、例1と同様の操作を行い、シェルの厚さを測定したところ、目標シェル厚と同様に1nmであった。結果を表1に示す。
 また、例1と同様の操作を行い、中空粒子の分散液、塗料組成物を得た後、塗膜を形成した。該塗膜の最低反射率を測定した。結果を表1に示す。
〔例3〕
 マイクロ波の最大出力を100Wに変更し、マイクロ波の照射時間を60分に変更した以外は、例1と同様にして、コア-シェル粒子の分散液の100gを得た。マイクロ波照射中の反応液の温度は60℃であった。コア-シェル粒子の分散液の状態を観察した。結果を表1に示す。
 ケイ酸オリゴマー溶液(固形分濃度2質量%)をエタノール拭きしたガラス基板(100mm×100mm、厚さ3.5mm)の表面に塗布し、回転数200rpmで60秒間スピンコートして均一化した後、200℃で10分間乾燥し、厚さ100nmの塗膜を形成した。
 また、例1と同様の操作を行い、シェルの厚さを測定したところ、目標シェル厚と同様に2nmであった。結果を表1に示す。
 また、例1と同様の操作を行い、中空粒子の分散液、塗料組成物を得た後、塗膜を形成した。該塗膜の最低反射率を測定した。結果を表1に示す。
〔例4〕
 200mLの石英製耐圧容器に、酸化亜鉛粒子の水分散液(平均凝集粒子径:70nm、固形分濃度:20質量%)の45.5g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の3.5g(目標シェル厚:2nm)、エタノールの50.7g、28質量%のアンモニア水溶液の0.3gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:1400W、周波数:2.45GHzのマイクロ波を15分間照射し、TEOSを加水分解して、酸化亜鉛粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液の100gを得た。マイクロ波照射中の反応液の温度は280℃であった。コア-シェル粒子の分散液の状態を観察した。結果を表1に示す。
 また、例1と同様の操作を行い、シェルの厚さを測定したところ、目標シェル厚と同様に2nmであった。結果を表1に示す。
 また、例1と同様の操作を行い、中空粒子の分散液、塗料組成物を得た後、塗膜を形成した。該塗膜の最低反射率を測定した。結果を表1に示す。
〔例5〕
 200mLの石英製耐圧容器に、酸化チタン(誘電率:30)粒子の水分散液(平均凝集粒子径:20nm、固形分濃度:1.0質量%)の50g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の1g(目標シェル厚:3nm)、エタノールの48.1g、28質量%のアンモニア水溶液の0.9gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:1000W、周波数:2.45GHzのマイクロ波を5分間照射し、TEOSを加水分解して、酸化チタン(TiO)粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液の100gを得た。マイクロ波照射中の反応液の温度は120℃であった。コア-シェル粒子の分散液の状態を観察した。結果を表1に示す。
 また、例1と同様の操作を行い、シェルの厚さを測定したところ、目標シェル厚と同様に3nmであった。結果を表1に示す。
〔例6〕
 200mLの石英製耐圧容器に、ITO(誘電率:24)粒子の水分散液(平均凝集粒子径:60nm、固形分濃度:8質量%)の62.5g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の10.4g(目標シェル厚:15nm)、エタノールの26.2g、28質量%のアンモニア水溶液の0.9gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:1000W、周波数:2.45GHzのマイクロ波を5分間照射し、TEOSを加水分解して、ITO粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液の100gを得た。マイクロ波照射中の反応液の温度は120℃であった。コア-シェル粒子の分散液の状態を観察した。結果を表1に示す。
 また、例1と同様の操作を行い、シェルの厚さを測定したところ、目標シェル厚と同様に15nmであった。結果を表1に示す。
〔例7〕
 20Lのポリ容器に、酸化亜鉛(ZnO、誘電率:18)粒子の水分散液(平均凝集粒子径:30nm、固形分濃度:20質量%)の5560g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の690g(目標シェル厚:2nm)、エタノールの3690g、28質量%のアンモニア水溶液の60gを入れ、pHが10の原料液を調製した。
 流通式マイクロ波加熱装置にポンプによって原料液を167mL/分で導入し、最大出力:5kW、周波数:2.45GHzのマルチモードのマイクロ波を照射し、TEOSを加水分解して、酸化亜鉛粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液の10kgを得た。マイクロ波照射によって反応液の温度は3分間で120℃に達した。コア-シェル粒子の分散液の状態を観察した。結果を表1に示す。
 コア-シェル粒子の分散液の一部を採取し、透過型顕微鏡にてシェルの厚さを測定したところ、目標シェル厚と同様に2nmであった。結果を表1に示す。
 コア-シェル粒子の分散液の100gに、強酸性カチオン交換樹脂(総交換容量2.0meq/mL以上)の100gを加え、1時間撹拌してpHが4となった後、ろ過により強酸性カチオン交換樹脂を除去し、中空粒子の分散液を得た。該分散液を限外ろ過により固形分濃度20質量%まで濃縮した。
 200mLのガラス製容器に、中空粒子の分散液(固形分濃度20質量%)の6g、ケイ酸オリゴマー溶液(固形分濃度5質量%)の6g、エタノールの88gを入れ、10分間撹拌して、塗料組成物(固形分濃度1.5質量%)を得た。
 該塗料組成物を、エタノール拭きしたガラス基板(100mm×100mm、厚さ3.5mm)の表面に塗布し、回転数200rpmで60秒間スピンコートして均一化した後、650℃で10分間焼成した後に急冷(ガラス強化条件)して、厚さ100nmの塗膜を形成した。該塗膜の最低反射率を測定した。結果を表1に示す。
 同様に流通式マイクロ波加熱装置を用いても少量バッチ式装置で合成した粒子と同等の性能を有する中空粒子が得られた。
〔例8〕
 200mLの石英製耐圧容器に、マンガンドープ硫化亜鉛(ZnS:Mn、誘電率:13)粒子の水分散液(平均凝集粒子径:10nm、固形分濃度:1.0質量%)の50g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の4g(目標シェル厚:3nm)、エタノールの42.4g、28質量%のアンモニア水溶液の3.6gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:1000W、周波数:2.45GHzのマイクロ波を5分間照射し、TEOSを加水分解して、マンガンドープ硫化亜鉛(ZnS:Mn)粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液の100gを得た。マイクロ波照射中の反応液の温度は120℃であった。コア-シェル粒子の分散液の状態を観察した。結果を表2に示す。
 また、例1と同様の操作を行い、シェルの厚さを測定したところ、目標シェル厚と同様に3nmであった。結果を表2に示す。
〔例9〕
 200mLの石英製耐圧容器に、酸化亜鉛粒子の水分散液(平均凝集粒子径:30nm、固形分濃度:20質量%)の25.0g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の10.4g(目標シェル厚:5.5nm)、エタノールの63.7g、28質量%のアンモニア水溶液の0.9gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、オイルバス(OB)を用い、原料液を120℃で5分間加熱した。しかし、固形物が分散媒に分散せずに沈殿し、コア-シェル粒子の分散液は得られなかった。結果を表2に示す。
〔例10〕
 オイルバスによる加熱を180℃で2分間行った以外は、例7と同様の操作を行った。しかし、固形物が分散媒に分散せずに沈殿し、コア-シェル粒子の分散液は得られなかった。結果を表2に示す。
〔例11〕
 オイルバスによる加熱を60℃で60分間行った以外は、例7と同様の操作を行い、コア-シェル粒子の分散液の100gを得た。コア-シェル粒子の分散液の状態を観察した。結果を表2に示す。コア-シェル粒子とは別に、酸化ケイ素粒子が多く析出していた。
 また、例1と同様の操作を行い、シェルの厚さを測定したところ、1nmであり目標シェル厚を大幅に下回った。結果を表2に示す。
 また、例1と同様の操作を行い、中空粒子の分散液、塗料組成物を得た後、塗膜を形成した。該塗膜の最低反射率を測定した。結果を表2に示す。塗膜の反射防止効果は低かった。
〔例12〕
 例5と同様にして原料液を調製した。
 耐圧容器を密封した後、オイルバスを用い、原料液を120℃で5分間加熱した。しかし、固形物が分散媒に分散せずに沈殿し、コア-シェル粒子の分散液は得られなかった。結果を表2に示す。
〔例13〕
 例6と同様にして原料液を調製した。
 耐圧容器を密封した後、オイルバスを用い、原料液を120℃で5分間加熱した。しかし、固形物が分散媒に分散せずに沈殿し、コア-シェル粒子の分散液は得られなかった。結果を表2に示す。
〔例14〕
 20℃で6時間攪拌を行った以外は、例8と同様の操作を行い、コア-シェル粒子の分散液を100g得た。
 コア-シェル粒子の分散状態を観察した。結果を表1に示す。分散状態は良好であったが、シェルの形成に長い時間を要した。
 また、例1と同様の操作を行い、シェルの厚さを測定したところ、目標シェル厚と同様に5.5nmであった。結果を表2に示す。
 また、例1と同様の操作を行い、中空粒子の分散液、塗料組成物を得た後、塗膜を形成した。該塗膜の最低反射率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
 マイクロ波加熱によって、シェル組成物の沈殿および単独析出がないコア-シェル粒子を短時間で合成できた。これは、コア粒子がマイクロ波を照射することで選択的に加熱されたことで、コア粒子表面でのみシェル形成反応が進行したためであると考えられた。マイクロ波加熱を適用することで、シェルの厚みを設定通りに制御することが可能になる。したがって、シェルが厚くコア粒子の保護効果が高いコア-シェル粒子、シェル厚が薄く屈折率の低い中空粒子を合成できる点で有用である。
 本発明の製造方法によって得られたコア-シェル粒子は、樹脂用フィラー、化粧料、ガラス用コーティング等として有用である。
 本発明の製造方法によって得られた中空粒子は、反射防止膜形成用の材料等として有用である。
 本発明の塗料組成物からなる塗膜が形成された物品は、車両用透明部品(ヘッドライトカバー、サイドミラー、フロント透明基板、サイド透明基板、リア透明基板等。)、車両用透明部品(インスツルメントパネル表面等。)、メーター、建築窓、ショーウインドウ、ディスプレイ(ノート型パソコン、モニター、LCD、PDP 、ELD、CRT、PDA等。)、LCDカラーフィルター、タッチパネル用基板、ピックアップレンズ、光学レンズ、眼鏡レンズ、カメラ部品、ビデオ部品、CCD用カバー基板、光ファイバー端面、プロジェクター部品、複写機部品、太陽電池用透明基板、携帯電話窓、バックライトユニット部品(たとえば、導光板、冷陰極管等。)、バックライトユニット部品液晶輝度向上フィルム(たとえば、プリズム、半透過フィルム等。)、液晶輝度向上フィルム、有機EL発光素子部品、無機EL発光素子部品、蛍光体発光素子部品、光学フィルター、光学部品の端面、照明ランプ、照明器具のカバー、増幅レーザー光源、反射防止フィルム、偏光フィルム、農業用フィルム等として有用である。
 なお、2008年6月3日に出願された日本特許出願2008-145490号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液に、マイクロ波を照射して、前記コア粒子の表面に金属酸化物からなるシェルを形成する、コア-シェル粒子の製造方法。
  2.  前記コア粒子が、酸化亜鉛粒子、酸化チタン粒子またはインジウムがドープされた酸化スズ粒子である、請求項1に記載のコア-シェル粒子の製造方法。
  3.  前記金属酸化物前駆体が、アルコキシシランである、請求項1または2に記載のコア-シェル粒子の製造方法。
  4.  マイクロ波の出力が、誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む前記液が30~500℃に加熱される出力である、請求項1~3のいずれかに記載のコア-シェル粒子の製造方法。
  5.  前記コア粒子の平均凝集粒子径が、1~1000nmである、請求項1~4のいずれかに記載のコア-シェル粒子の製造方法。
  6.  前記コア-シェル粒子のシェルの厚さが、1~500nmである、請求項1~5のいずれかに記載のコア-シェル粒子の製造方法。
  7.  前記コア-シェル粒子の平均凝集粒子径が、3~1000nmである、請求項1~6のいずれかに記載のコア-シェル粒子の製造方法。
  8.  請求項1ないし7のいずれかに記載の製造方法で得られたコア-シェル粒子。
  9.  請求項1に記載の製造方法で得られたコア-シェル粒子のコア粒子を溶解または分解させる、中空粒子の製造方法。
  10.  前記コア粒子が、酸化亜鉛粒子である、請求項9に記載の中空粒子の製造方法。
  11.  前記金属酸化物前駆体が、アルコキシシランである、請求項9または10に記載の中空粒子の製造方法。
  12.  請求項9ないし11のいずれかに記載の製造方法で得られた中空粒子と分散媒とを含む、塗料組成物。
  13.  基材上に、請求項12に記載の塗料組成物によって形成される塗膜が形成された物品。
  14.  前記塗膜の反射率が、0.0~1.4%である、請求項13に記載の物品。
PCT/JP2009/060193 2008-06-03 2009-06-03 コア-シェル粒子の製造方法、コア-シェル粒子、中空粒子の製造方法、塗料組成物および物品 WO2009148097A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801209030A CN102046522A (zh) 2008-06-03 2009-06-03 核—壳粒子的制造方法、核—壳粒子、中空粒子的制造方法、涂料组合物及物品
EP09758364A EP2298694A4 (en) 2008-06-03 2009-06-03 PROCESS FOR PRODUCTION OF CORE / ENVELOPE PARTICLES, CORE / ENVELOPE PARTICLES, METHOD FOR PRODUCTION OF HOLLOW PARTICLES, COMPOSITION OF PAINTS AND ARTICLE
JP2010515900A JP5578073B2 (ja) 2008-06-03 2009-06-03 コア−シェル粒子の製造方法および中空粒子の製造方法
US12/959,021 US20110076484A1 (en) 2008-06-03 2010-12-02 Method for producing core-shell particles, core-shell particles, method for producing hollow particles, coating composition and article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008145490 2008-06-03
JP2008-145490 2008-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/959,021 Continuation US20110076484A1 (en) 2008-06-03 2010-12-02 Method for producing core-shell particles, core-shell particles, method for producing hollow particles, coating composition and article

Publications (1)

Publication Number Publication Date
WO2009148097A1 true WO2009148097A1 (ja) 2009-12-10

Family

ID=41398170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060193 WO2009148097A1 (ja) 2008-06-03 2009-06-03 コア-シェル粒子の製造方法、コア-シェル粒子、中空粒子の製造方法、塗料組成物および物品

Country Status (6)

Country Link
US (1) US20110076484A1 (ja)
EP (1) EP2298694A4 (ja)
JP (1) JP5578073B2 (ja)
CN (1) CN102046522A (ja)
TW (1) TW201004864A (ja)
WO (1) WO2009148097A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527622A (ja) * 2010-06-04 2013-06-27 ソリブロ ゲーエムベーハー 太陽電池モジュールおよびそのための製造方法
KR20140011959A (ko) 2012-07-19 2014-01-29 신에쓰 가가꾸 고교 가부시끼가이샤 코어 쉘형 정방정계 산화티탄 고용체 수분산액, 그의 제조 방법, 자외선 차폐성 실리콘 코팅 조성물, 및 피복 물품
JP2015221907A (ja) * 2008-04-25 2015-12-10 スリーエム イノベイティブ プロパティズ カンパニー 粒子の表面改質のためのプロセス
JP2017507110A (ja) * 2014-03-07 2017-03-16 エネルサンスEnersens 誘電加熱によってエアロゲルを製造するための方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305607A4 (en) * 2008-07-07 2011-09-07 Asahi Glass Co Ltd PARTICLE WITH C UR-ENVELOPE STRUCTURE AND PROCESS FOR PRODUCING A C UR-ENVELOPE STRUCTURE PARTICLE
JP5186545B2 (ja) * 2009-12-23 2013-04-17 ローム アンド ハース カンパニー 光バンドパスフィルタのための複合体粒子
US9340433B2 (en) * 2011-04-27 2016-05-17 Behr Process Corporation Titanium oxide spacing by SIP
WO2013021575A2 (en) * 2011-08-11 2013-02-14 Canon Kabushiki Kaisha Light-shielding coating, light-shielding film, and optical element
KR101689212B1 (ko) * 2011-12-07 2016-12-26 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP6103950B2 (ja) 2012-03-26 2017-03-29 キヤノン株式会社 中空粒子の製造方法、反射防止膜の製造方法及び光学素子の製造方法
JP2014034488A (ja) * 2012-08-08 2014-02-24 Canon Inc 中空粒子の分散液の製造方法、反射防止膜の製造方法及び光学素子の製造方法
CN103205249B (zh) * 2013-04-11 2015-06-24 常州大学 一种基于氧化钒核壳结构的制备方法
CN104914021B (zh) * 2014-12-15 2017-09-19 中山大学 一种定性定量分析化妆品中二氧化钛或/和氧化锌纳米颗粒的方法
CN105113247B (zh) * 2015-08-26 2017-07-07 浙江理工大学 一种乳胶粒减反射的涂层液及其制备方法和应用
JP6507969B2 (ja) * 2015-09-25 2019-05-08 コニカミノルタ株式会社 ガス検知方法及びガス検知装置
JP2019527252A (ja) * 2016-06-27 2019-09-26 ナノシス・インク. ナノ構造体の緩衝化被覆のための方法
US10315137B2 (en) 2016-11-18 2019-06-11 Caterpillar Inc. Sensing system for detecting machine fluid degradation
US10598651B2 (en) * 2016-12-15 2020-03-24 Caterpillar Inc. Sensing system for detecting machine fluid degradation
CN110838560B (zh) * 2018-08-15 2021-06-04 Tcl科技集团股份有限公司 核壳纳米材料及其制备方法和量子点发光二极管
CN113122802B (zh) * 2021-04-16 2023-03-10 郑州航空工业管理学院 基于等离激元颗粒的防蓝光保护膜制备方法
CN115703933B (zh) * 2021-08-03 2023-07-07 香港科技大学 纳米微球、其制备方法及其用于隔热涂料的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267705A (ja) * 2002-01-11 2003-09-25 Nippon Shokubai Co Ltd 金属酸化物被着体およびその製造方法
JP2006335605A (ja) 2005-06-02 2006-12-14 Asahi Glass Co Ltd 中空状SiO2微粒子分散液の製造方法、塗料組成物及び反射防止塗膜付き基材
JP2006335881A (ja) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd 中空状SiO2を含有する分散液、塗料組成物及び反射防止塗膜付き基材
JP2008139581A (ja) * 2006-12-01 2008-06-19 Asahi Glass Co Ltd 反射防止膜付き基体
JP2008145490A (ja) 2006-12-06 2008-06-26 Canon Inc トナー及び画像形成方法
JP2009079106A (ja) * 2007-09-26 2009-04-16 Sanyo Chem Ind Ltd 多層構造粒子の製造方法
JP2009091203A (ja) * 2007-10-10 2009-04-30 Sanyo Chem Ind Ltd チタニア被覆粒子の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012457C2 (de) * 1990-04-19 2003-12-04 Zinkweiss Forschungsgmbh Oberflächenbehandeltes Zinkoxid und Verfahren zu seiner Herstellung
FR2747669B1 (fr) * 1996-04-22 1998-05-22 Rhone Poulenc Chimie Procede de preparation de particules creuses de silice
FR2751225B1 (fr) * 1996-07-19 1998-11-27 Rhone Merieux Formule de vaccin polynucleotidique aviaire
US5863468A (en) * 1997-10-31 1999-01-26 Raychem Corporation Preparation of calcined ceramic powders
EP1896215B1 (en) * 2005-06-08 2015-07-15 Toyota Jidosha Kabushiki Kaisha Metal oxide nanoparticles and process for producing the same
BRPI0910662A2 (pt) * 2008-04-25 2015-09-29 3M Innovative Properties Co processo para modificação de superfície de partículas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267705A (ja) * 2002-01-11 2003-09-25 Nippon Shokubai Co Ltd 金属酸化物被着体およびその製造方法
JP2006335605A (ja) 2005-06-02 2006-12-14 Asahi Glass Co Ltd 中空状SiO2微粒子分散液の製造方法、塗料組成物及び反射防止塗膜付き基材
JP2006335881A (ja) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd 中空状SiO2を含有する分散液、塗料組成物及び反射防止塗膜付き基材
JP2008139581A (ja) * 2006-12-01 2008-06-19 Asahi Glass Co Ltd 反射防止膜付き基体
JP2008145490A (ja) 2006-12-06 2008-06-26 Canon Inc トナー及び画像形成方法
JP2009079106A (ja) * 2007-09-26 2009-04-16 Sanyo Chem Ind Ltd 多層構造粒子の製造方法
JP2009091203A (ja) * 2007-10-10 2009-04-30 Sanyo Chem Ind Ltd チタニア被覆粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2298694A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221907A (ja) * 2008-04-25 2015-12-10 スリーエム イノベイティブ プロパティズ カンパニー 粒子の表面改質のためのプロセス
JP2013527622A (ja) * 2010-06-04 2013-06-27 ソリブロ ゲーエムベーハー 太陽電池モジュールおよびそのための製造方法
KR20140011959A (ko) 2012-07-19 2014-01-29 신에쓰 가가꾸 고교 가부시끼가이샤 코어 쉘형 정방정계 산화티탄 고용체 수분산액, 그의 제조 방법, 자외선 차폐성 실리콘 코팅 조성물, 및 피복 물품
JP2014019611A (ja) * 2012-07-19 2014-02-03 Shin Etsu Chem Co Ltd コアシェル型正方晶系酸化チタン固溶体水分散液、その製造方法、紫外線遮蔽性シリコーンコーティング組成物、及び被覆物品
EP2708513A1 (en) 2012-07-19 2014-03-19 Shin-Etsu Chemical Co., Ltd. Core/shell type tetragonal titanium oxide particle water dispersion, making method, uv-shielding silicone coating composition and coated article
JP2017507110A (ja) * 2014-03-07 2017-03-16 エネルサンスEnersens 誘電加熱によってエアロゲルを製造するための方法

Also Published As

Publication number Publication date
JPWO2009148097A1 (ja) 2011-11-04
JP5578073B2 (ja) 2014-08-27
EP2298694A1 (en) 2011-03-23
US20110076484A1 (en) 2011-03-31
TW201004864A (en) 2010-02-01
CN102046522A (zh) 2011-05-04
EP2298694A4 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP5578073B2 (ja) コア−シェル粒子の製造方法および中空粒子の製造方法
JP5057199B2 (ja) 中空状SiO2微粒子分散液の製造方法、塗料組成物及び反射防止塗膜付き基材
JP5633371B2 (ja) コア−シェル粒子の製造方法
JP4883383B2 (ja) 中空状SiO2を含有する分散液、塗料組成物及び反射防止塗膜付き基材
JP5434928B2 (ja) 中空粒子、その製造方法、塗料組成物および物品
WO2008041681A1 (fr) Composition de revêtement destinée à la formation d'un film antireflet, et article sur lequel est formé un film antireflet
JP5370147B2 (ja) 中空微粒子、その製造方法、塗料組成物および塗膜が形成された物品
TW201130766A (en) Method of producing reflection preventive tempered glass
JP6599666B2 (ja) 光散乱性被膜を有する透明スクリーン及び光散乱性被膜形成用塗布液
JP5304638B2 (ja) 中空微粒子、その製造方法、塗料組成物および塗膜が形成された物品
CN106029798B (zh) 用于形成透明被膜的涂布液以及具有透明被膜的基材的制造方法
JP5432430B2 (ja) 透明被膜形成用塗布液および透明被膜付基材
WO2018198937A1 (ja) 被膜付き透明基板、被膜付き透明基板の被膜を形成するための塗工液及び被膜付き透明基板の製造方法
WO2018198936A1 (ja) 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法
JP2002338302A (ja) 着色膜形成用塗布液およびその作製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120903.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515900

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009758364

Country of ref document: EP