WO2009147893A1 - 誘電体磁器およびコンデンサ - Google Patents

誘電体磁器およびコンデンサ Download PDF

Info

Publication number
WO2009147893A1
WO2009147893A1 PCT/JP2009/056297 JP2009056297W WO2009147893A1 WO 2009147893 A1 WO2009147893 A1 WO 2009147893A1 JP 2009056297 W JP2009056297 W JP 2009056297W WO 2009147893 A1 WO2009147893 A1 WO 2009147893A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
terms
dielectric ceramic
barium titanate
dielectric
Prior art date
Application number
PCT/JP2009/056297
Other languages
English (en)
French (fr)
Inventor
勝義 山口
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN200980120793.8A priority Critical patent/CN102066286B/zh
Priority to US12/996,379 priority patent/US8305732B2/en
Publication of WO2009147893A1 publication Critical patent/WO2009147893A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Definitions

  • the present invention relates to a dielectric ceramic formed of crystal particles mainly composed of barium titanate and a capacitor using the dielectric ceramic for a dielectric layer.
  • digital electronic devices such as mobile computers and mobile phones have been widely used, and digital terrestrial broadcasting is being developed nationwide in the near future.
  • liquid crystal displays, plasma displays, and the like as digital electronic devices that are receivers for digital terrestrial broadcasting, and many LSIs are used for these digital electronic devices.
  • the capacitor used here is a multilayer ceramic capacitor having a high dielectric constant (for example, see Patent Document 1) when a high capacitance is required.
  • a temperature compensation type multilayer ceramic capacitor having a small capacity change rate for example, see Patent Document 2 is employed.
  • the dielectric layer is composed of crystal grains of dielectric ceramic having ferroelectricity, so that the temperature change rate of the relative dielectric constant is large.
  • the hysteresis in the electric field-dielectric polarization characteristics is large.
  • the temperature compensation type multilayer ceramic capacitor has a small hysteresis in the electric field-dielectric polarization characteristics because the dielectric ceramic constituting it is paraelectric. For this reason, although this multilayer ceramic capacitor has the advantage that the electrical induced strain peculiar to ferroelectricity does not occur, since the dielectric constant of the dielectric ceramic is low, the storage capacity is low and the performance as a bypass capacitor is not satisfied. There was a problem.
  • JP 2002-89231 A Japanese Patent Application Laid-Open No. 2002-294481
  • An object of the present invention is to provide a dielectric ceramic exhibiting a temperature characteristic of a high dielectric constant and a stable relative dielectric constant, and a capacitor using the dielectric ceramic.
  • the dielectric ceramic of the present invention comprises crystal grains mainly composed of barium titanate and a grain boundary phase formed between the crystal grains.
  • this dielectric ceramic at least one selected from 0.01 to 0.06 mol of magnesium in terms of MgO and gadolinium, terbium, dysprosium, holmium and erbium with respect to 1 mol of barium constituting the barium titanate. It contains 0.0007 to 0.03 mol of rare earth element (RE) in terms of REO 3/2 , 0.0002 to 0.03 mol of manganese in terms of MnO, and further to 100 parts by mass of barium titanate. In addition, 3.6 to 52.1 parts by mass of ytterbium in terms of Yb 2 O 3 is contained.
  • the average particle size of the crystal particles is 0.05 to 0.2 ⁇ m.
  • the magnesium is 0.017 to 0.023 mol in terms of MgO and the rare earth element (RE) is REO 3/2 with respect to 1 mol of barium constituting the barium titanate.
  • RE rare earth element
  • the titanium ratio is 0.97 to 0.98 with respect to 1 mole of barium which is contained in an amount of .3 to 15.6 parts by mass and constitutes the barium titanate.
  • the capacitor of the present invention is characterized in that it is composed of a laminate of a dielectric layer made of the dielectric ceramic and a conductor layer.
  • the rare earth element RE is based on the rare earth element English notation (Rare earth) in the periodic table.
  • the temperature change rate of the relative permittivity is smaller than that of the conventional dielectric porcelain, and is higher than that of the conventional dielectric porcelain.
  • the temperature characteristics of the dielectric constant can be reduced and the spontaneous polarization can be reduced.
  • the capacitor of the present invention by applying the dielectric ceramic as the dielectric layer, it is possible to form a capacitor having higher capacity and more stable capacitance-temperature characteristics than conventional capacitors. Therefore, when this capacitor is used in a power supply circuit, it is possible to suppress the generation of noise noise caused by electrically induced distortion.
  • FIG. 3 is an X-ray diffraction diagram of a dielectric ceramic (sample No. 1-4) obtained in Example 1.
  • FIG. 3 is an X-ray diffraction diagram of a dielectric ceramic (sample No. 1-4) obtained in Example 1.
  • the dielectric porcelain of the present invention comprises barium titanate as a main component, magnesium, at least one rare earth element (RE) selected from gadolinium, terbium, dysprosium, holmium and erbium, manganese, and ytterbium. It contains. The content thereof is 0.01 to 0.06 mol in terms of MgO with respect to 1 mol of barium, and 0.0007 to 0.03 in terms of REO 3/2 with respect to at least one rare earth element (RE) described above. MnO contains 0.0002 to 0.03 mol of MnO, and 3.6 to 52.1 parts by mass of ytterbium in terms of Yb 2 O 3 with respect to 100 parts by mass of the barium titanate.
  • RE rare earth element
  • the average particle size of the crystal particles constituting the dielectric ceramic is 0.05 to 0.2 ⁇ m.
  • the relative dielectric constant at room temperature (25 ° C.) described later is 180 or more
  • the relative dielectric constant at 125 ° C. is 160 or more
  • Such a dielectric ceramic according to the present invention is obtained by dissolving magnesium, at least one rare earth element (RE), manganese, and ytterbium in barium titanate.
  • RE rare earth element
  • the crystal structure of the crystal particles is mainly cubic. It can be said that.
  • the ferroelectricity due to the tetragonal crystal structure is lowered, the paraelectricity can be increased, and the spontaneous polarization can be reduced by increasing the paraelectricity.
  • the curve indicating the rate of change of the relative dielectric constant is a temperature range of ⁇ 55 ° C. to 125 ° C. In both cases, the hysteresis in the electric field-dielectric polarization characteristics becomes small. Therefore, even when the relative dielectric constant is 180 or more, a dielectric ceramic having a small relative dielectric constant temperature coefficient can be obtained.
  • the Curie temperature of 25 ° C. or higher is exhibited, and a relative dielectric constant.
  • This is a dielectric ceramic showing a positive temperature coefficient.
  • the curve showing the rate of change of the relative dielectric constant is one between ⁇ 55 ° C. and 25 ° C. and 25 ° C. and 125 ° C. with a center of 25 ° C. in the temperature range of ⁇ 55 ° C. to 125 ° C.
  • ytterbium has a function of suppressing coarsening of crystal grains mainly composed of barium titanate, and 3.6 to 52.1 in terms of Yb 2 O 3 in terms of ytterbium with respect to 100 parts by mass of barium titanate. Contains part by mass.
  • the dielectric ceramic according to the present invention includes 0.01 to 0.06 mol of magnesium in terms of MgO, at least one rare earth selected from gadolinium, terbium, dysprosium, holmium and erbium with respect to 1 mol of barium.
  • the element (RE) is contained in an amount of 0.0007 to 0.03 mol in terms of REO 3/2
  • manganese is contained in an amount of 0.0002 to 0.03 mol in terms of MnO.
  • the temperature coefficient of the dielectric constant of the dielectric ceramic increases.
  • the content of at least one rare earth element (RE) with respect to 1 mol of barium is less than 0.0007 mol or more than 0.03 mol in terms of RE 2 O 3
  • the relative permittivity of porcelain is high, the temperature coefficient of the relative permittivity increases.
  • the manganese content relative to 1 mol of barium is less than 0.0002 mol or more than 0.03 mol in terms of MnO, the temperature coefficient of the dielectric constant of the dielectric ceramic becomes large.
  • the rare earth element (RE) contained in the dielectric ceramic is at least one of holmium and erbium in that the relative dielectric constant at room temperature (25 ° C.) can be increased to 250 or higher, and the dielectric constant can be increased.
  • the rare earth element (RE) is more preferable.
  • the average particle diameter of crystal grains mainly composed of barium titanate is 0.05 to 0.2 ⁇ m.
  • the crystal particles mainly composed of barium titanate have a cubic crystal structure.
  • the hysteresis in the electric field-dielectric polarization characteristic is small and the characteristic close to paraelectricity can be obtained.
  • the average particle diameter of the crystal grains mainly composed of barium titanate is smaller than 0.05 ⁇ m, the contribution of orientation polarization is lost, so that the dielectric constant of the dielectric ceramic decreases.
  • the average particle size of the crystal particles is larger than 0.2 ⁇ m, a tetragonal crystal phase is observed in the measurement by X-ray diffraction, and the temperature coefficient of the dielectric constant of the dielectric ceramic becomes large.
  • the crystal structure mainly composed of a cubic system means a state in which the intensity of the diffraction peak of the (110) plane, which is the strongest peak of cubic barium titanate, is larger than the intensity of the diffraction peak of a different phase.
  • a preferable range of the composition of the above components contained in the dielectric ceramic of the present invention is 0.017 to 0.023 mol of magnesium in terms of MgO with respect to 1 mol of barium, and at least one rare earth element described above.
  • (RE) is 0.0015 to 0.01 mol in terms of REO 3/2
  • manganese is 0.01 to 0.013 mol in terms of MnO.
  • Ytterbium is in the range of 6.3 to 15.6 parts by mass in terms of Yb 2 O 5 with respect to 100 parts by mass of barium titanate, and the ratio of titanium to 1 mol of barium is 0.97 to 0.98. good.
  • the average particle size of the crystal particles is more preferably 0.14 to 0.18 ⁇ m.
  • the relative dielectric constant at 25 ° C. is 420 or more
  • the relative dielectric constant at 125 ° C. is 400 or more
  • the temperature coefficient of the relative dielectric constant is 570 ⁇ 10 ⁇ 6 / ° C. or less in absolute value.
  • a polarization charge showing hysteresis of dielectric polarization can be reduced to 40 nC / cm 2 or less at 0V.
  • the average particle diameter of the crystal particles mainly composed of barium titanate is determined as follows, as will be described later. First, after polishing the fracture surface of the sintered dielectric ceramic sample, a picture of the internal structure is taken using a scanning electron microscope. Draw a circle with 50 to 100 crystal grains on the photograph, select the crystal grains in and around the circle, image the outline of each crystal grain, find the area of each grain, The diameter when replaced with a circle having the same area is calculated, and the average particle diameter is obtained from the average value.
  • the relative dielectric constant at 25 ° C. and 125 ° C. is a frequency using a LCR meter 4284A for a sample made of a dielectric ceramic having a predetermined pellet shape and a conductor film formed on the surface, as will be described later.
  • the capacitance is measured at 1.0 kHz, the input signal level is 1.0 V, the temperatures are 25 ° C. and 125 ° C., and is calculated from the diameter and thickness of the pellet-like sample and the area of the conductor film.
  • the temperature coefficient of the relative permittivity between 25 ° C. and 125 ° C. is the relative permittivity at 25 ° C. and 125 ° C., respectively (( ⁇ 125 ⁇ 25 ) / ⁇ 25 (125-25)) (where ⁇ 25 : It is a value calculated by applying to an expression represented by (dielectric constant at 25 ° C., ⁇ 125 : relative dielectric constant at 125 ° C.).
  • At least one rare earth element (RE) oxide powder selected from three powders and Er 2 O 3 powder and manganese carbonate (MnCO 3 ) powder are used.
  • at least one rare earth element (RE) oxide selected from Er 2 O 3 in a ratio of 0.0007 to 0.03 mol in terms of REO 3/2 , and MnCO 3 in a proportion of 0.0002 to 0.03 mol. Mix each one.
  • the mixture of raw material powders described above is wet-mixed and dried, and then calcined at a temperature of 900 to 1100 ° C. to produce a calcined powder, and the calcined powder is pulverized.
  • a dielectric ceramic having a high dielectric constant that maintains temperature characteristics of a dielectric constant close to paraelectricity by growing grains so that the crystal structure of the calcined powder is mainly composed of a cubic system. can be obtained.
  • the average particle size of the calcined powder is preferably 0.04 to 0.1 ⁇ m. Thereby, in the calcined powder, the expression of ferroelectricity can be suppressed.
  • the average particle diameter of the calcined powder is, as will be described later, the calcined powder dispersed on an electron microscope sample stage, photographed with a scanning electron microscope, and the contour of the calcined powder displayed in the photograph The image is processed, a circle containing 50 to 100 crystal particles is drawn on the photograph, the powder that falls within and around the circle is selected, and the contour of each powder is image processed to determine the area of each powder. Calculate the diameter when the diameter is replaced with a circle having the same area, and obtain the average value.
  • Yb 2 O 3 powder is mixed at a ratio of 3.5 to 50 parts by mass with respect to 100 parts by mass of the calcined powder. Thereafter, the mixed powder is formed into a pellet and fired in a temperature range of 1300 ° C. to 1400 ° C. in H 2 —N 2 to obtain the dielectric ceramic of the present invention.
  • the firing temperature is lower than 1300 ° C., the grain growth and densification of crystal grains are suppressed, so that the density of the dielectric ceramic becomes low.
  • the firing temperature is higher than 1400 ° C., the crystal grains of the dielectric ceramic may grow too much.
  • FIG. 1 is a schematic cross-sectional view showing an example of the capacitor of the present invention.
  • the following capacitor can be formed using the dielectric ceramic of the present invention.
  • the capacitor of the present invention is one in which external electrodes 12 are provided at both ends of a capacitor body 10 as shown in FIG.
  • the capacitor body 10 is composed of a laminated body in which a plurality of dielectric layers 13 and a plurality of conductor layers 14 as internal electrode layers are alternately laminated.
  • the dielectric layer 13 is formed by the dielectric ceramic of the present invention described above. That is, as the dielectric layer 13, by applying the above dielectric ceramic exhibiting a high dielectric constant and a stable relative dielectric constant temperature characteristic and having a small spontaneous polarization, the capacitance is higher than that of the conventional capacitor and the capacitance temperature characteristic is more stable. It becomes a simple capacitor. For this reason, when this capacitor is used in a power supply circuit, it is possible to suppress the generation of noise noise caused by electrically induced distortion.
  • the thickness of the dielectric layer 13 is desirably 1 to 30 ⁇ m. In particular, when the thickness of the dielectric layer 13 is 5 ⁇ m or less, there is an advantage that the capacitance of the capacitor can be increased by thinning the dielectric layer 13.
  • the conductor layer 14 is preferably a base metal such as Ni or Cu in that the manufacturing cost can be suppressed even when the layer is made highly stacked, and in particular, Ni is more preferable in terms of simultaneous firing with the dielectric layer 13.
  • the thickness of the conductor layer 14 is preferably 1 ⁇ m or less on average.
  • the above-mentioned mixed powder is formed into a green sheet.
  • a conductor paste to be the conductor layer 14 is prepared, printed on the surface of the green sheet, laminated, and fired to form the laminate 1.
  • a conductor paste is further printed on both end faces of the laminate 1 and fired to form the external electrode 12, whereby the capacitor of the present invention can be obtained.
  • Example 1 An evaluation sample was prepared as follows. First, BaCO 3 powder, TiO 2 powder, MgO powder, Gd 2 O 3 powder, and MnCO 3 powder each having a purity of 99.9% were prepared and mixed at a ratio shown in Table 1 to prepare a mixed powder. The amounts of magnesium (Mg), gadolinium (Gd) and manganese (Mn) shown in Table 1 are amounts corresponding to MgO, GdO 3/2 and MnO, respectively. Titanium (Ti) is a molar ratio with respect to 1 mole of barium (Ba).
  • the obtained calcined powder was pulverized to obtain a calcined powder having an average particle size shown in Table 1.
  • the average particle size of the calcined powder is obtained by dispersing the obtained calcined powder on a sample stage for an electron microscope, taking a picture with a scanning electron microscope, and performing image processing on the outline of the calcined powder displayed in the photograph. Then, draw a circle containing 50 to 100 calcined powders on the photograph, select the powder that falls within and around the circle, image the outline of each powder, and determine the area of each powder. The diameter was calculated by replacing it with a circle having the same area as, and the average value was obtained.
  • Yb 2 O 3 powder having a purity of 99.9% was mixed at a ratio shown in Table 1 with respect to 100 parts by mass of the calcined powder.
  • This mixed powder was granulated and formed into pellets having a diameter of 16.5 mm and a thickness of 1 mm.
  • the average particle diameter of the crystal particles mainly composed of barium titanate was determined as follows. First, the fracture surface of the fired sample was roughly polished using # 1200 abrasive paper, then polished with a 3 ⁇ m particle size diamond paste applied on a hard buff, and further on a soft buff. A 0.3 ⁇ m alumina abrasive grain was applied and finish polishing was performed. Next, after etching with an acidic aqueous solution (hydrochloric acid-hydrogen fluoride), a picture of the internal structure was taken using a scanning electron microscope.
  • an acidic aqueous solution hydroochloric acid-hydrogen fluoride
  • the magnitude of the electrically induced strain of the obtained sample was determined by measuring dielectric polarization (polarization charge).
  • the evaluation was based on the value of the charge amount (residual polarization) at 0 V when the voltage was changed in the range of ⁇ 1250 V.
  • composition analysis of the sample was performed by ICP (Inductively Coupled Plasma) analysis or atomic absorption analysis.
  • ICP Inductively Coupled Plasma
  • the obtained sample is mixed with boric acid and sodium carbonate, and the molten material is dissolved in hydrochloric acid.
  • qualitative analysis of the elements contained in the sample is performed by atomic absorption analysis, and then each specified element is analyzed.
  • a standard sample a diluted standard solution was subjected to ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.
  • Table 1 shows the preparation composition, the average particle size of the calcined powder, and the firing temperature.
  • Table 2 shows the average particle size and characteristics of the crystal particles after firing (relative permittivity, absolute value of temperature coefficient of relative permittivity, relative permittivity). The temperature change curve and the polarization charge) result are shown respectively.
  • the amount of Yb 2 O 3 added in Table 1 is a ratio with respect to 100 parts by mass of the calcined powder.
  • the content of Yb 2 O 3 in Table 2 is a ratio with respect to 100 parts by mass of barium titanate in the dielectric ceramic (sample).
  • the amounts of Mg, rare earth element (RE) and Mn shown in Table 2 are oxide equivalent amounts.
  • the “average particle size of crystal particles” in Table 2 means the average particle size of crystal particles mainly composed of barium titanate.
  • “Absolute value of temperature coefficient of relative permittivity” in Table 2 means the absolute value of the average value of the temperature coefficient of relative permittivity obtained above.
  • the ones not marked with a circle in the curve of the temperature change of the relative dielectric constant are one between ⁇ 55 ° C. and 25 ° C., and 25 ° C. and 125 ° C. around 25 ° C.
  • Samples in which a total of two protrusions were not observed between the samples and those not marked with ⁇ in the column of polarization charge indicate samples whose polarization charge is not less than 40 nC / cm 2 .
  • These samples contain 0.017 to 0.023 mol of MgO, 0.0015 to 0.01 mol of GdO 3/2 with respect to 1 mol of barium, 0.01 to 0.013 mol of MnO,
  • the content of Yb 2 O 3 is 6.3 to 15.6 parts by mass with respect to 100 parts by mass of the main component barium titanate, and the titanium ratio to 1 mol of barium is 0.97 to 0.98.
  • FIG. 2 shows an X-ray diffraction pattern of the dielectric ceramic (sample No. 1-4) obtained in Example 1.
  • the dielectric ceramic of 1-4 is mainly composed of a cubic crystal structure. Further, other samples within the scope of the present invention also have a crystal structure mainly composed of a cubic system.
  • samples outside the scope of the present invention both had a temperature coefficient of relative permittivity of an absolute value larger than 1000 ⁇ 10 ⁇ 6 / ° C.
  • Example 2 A sample was prepared and evaluated in the same manner as in Example 1 except that Gd 2 O 3 as an additive component was changed to Tb 2 O 3 among the compositions shown in Example 1 (Sample No. 2- 1-3-2).
  • Table 3 shows the preparation composition, the average particle size of the calcined powder and the firing temperature
  • Table 4 shows the average particle size and characteristics of the crystal particles after firing (relative permittivity, absolute value of temperature coefficient of relative permittivity, relative permittivity The temperature change curve and the polarization charge) result are shown respectively.
  • the amount of Yb 2 O 3 added in Table 3 and the proportion of Yb 2 O 3 content in Table 4 are the same as the proportions shown in Example 1, respectively.
  • the amounts of Mg, rare earth elements (RE) and Mn shown in Table 4 are oxide equivalent amounts as in Example 1.
  • “average particle diameter of crystal grains” and “absolute value of temperature coefficient of relative dielectric constant” have the same meanings as in Example 1.
  • the presence / absence of ⁇ in the curve of the temperature change of the relative permittivity shown in Table 4 and the polarization charge column also means the same effect as in Example 1.
  • the sample No. which is the dielectric ceramic of the present invention.
  • the relative dielectric constant at 24 ° C. was 244 or more
  • the relative dielectric constant at 125 ° C. was 222 or more
  • the temperature coefficient of the relative dielectric constant at 25 to 125 ° C. was 994 ⁇ 10 ⁇ 6 / ° C. or less in absolute value.
  • the relative dielectric constant at 25 ° C. is 569 or more
  • temperature coefficient of relative permittivity is 491 ⁇ 10 ⁇ 6 / ° C. or less in absolute value
  • the curve showing the rate of change of relative permittivity has two peaks in the temperature range of ⁇ 55 ° C. to 125 ° C.
  • no large hysteresis was observed in the measurement of the electric field-dielectric polarization characteristics.
  • Example 2 The sample with almost no hysteresis has a polarization charge of 40 nC / cm 2 or less at 0V.
  • the dielectric ceramics obtained in Example 2 (Sample Nos. 2-2 to 2-8, 2-11 to 2-15, 2-18 to 2-21, 2-23 to 2-27, 2-29, 2-30, 2-32 and 2-35) all had a cubic crystal structure as in the X-ray diffraction pattern shown in FIG.
  • the temperature coefficient of relative permittivity was an absolute value larger than 1000 ⁇ 10 ⁇ 6 / ° C.
  • Example 3 A sample was prepared and evaluated in the same manner as in Example 1 except that Gd 2 O 3 as an additive component in each composition shown in Example 1 was changed to Dy 2 O 3 (Sample No. 3-1 ⁇ 3-35).
  • Table 5 shows the prepared composition, the average particle diameter of the calcined powder and the firing temperature
  • Table 6 shows the average particle diameter and characteristics of the crystal particles after firing (relative permittivity, absolute value of temperature coefficient of relative permittivity, relative permittivity The temperature change curve and the polarization charge) result are shown respectively.
  • the amount of Yb 2 O 3 added in Table 5 and the proportion of Yb 2 O 3 content in Table 6 are the same as the proportions shown in Example 1, respectively. Further, the amounts of Mg, rare earth elements (RE) and Mn shown in Table 6 are also equivalent to oxides as in Example 1.
  • “average particle diameter of crystal grains” and “absolute value of temperature coefficient of relative permittivity” have the same meaning as in the first embodiment. Further, the presence / absence of ⁇ in the temperature change curve of the dielectric constant and the polarization charge column shown in Table 6 also means the same effect as in Example 1.
  • the relative dielectric constant at 185 ° C. was 181 or more
  • the relative dielectric constant at 125 ° C. was 163 or more
  • the temperature coefficient of the relative dielectric constant at 25 to 125 ° C. was 999 ⁇ 10 ⁇ 6 / ° C. or less in absolute value.
  • Example 3 The dielectric ceramics obtained in Example 3 (Sample Nos. 3-2 to 3-8, 3-11 to 3-15, 3-18 to 3-21, 3-23 to 3-27, 3-29, 3-30, 3-32, and 3-35) all had a crystal structure mainly composed of a cubic system, as in the X-ray diffraction pattern shown in FIG.
  • the temperature coefficient of relative permittivity was an absolute value larger than 1000 ⁇ 10 ⁇ 6 / ° C.
  • Example 4 Next, a sample was prepared and evaluated in the same manner as in Example 1 except that Gd 2 O 3 as an additive component in each composition shown in Example 1 was changed to Ho 2 O 3 (Sample No. 1). 4-1 to 4-35).
  • Table 7 shows the preparation composition, the average particle size of the calcined powder and the firing temperature
  • Table 8 shows the average particle size and characteristics of the crystal particles after firing (relative permittivity, absolute value of temperature coefficient of relative permittivity, relative permittivity The temperature change curve and the polarization charge) result are shown respectively.
  • the amount of Yb 2 O 3 added in Table 7 and the proportion of Yb 2 O 3 content in Table 8 are the same as the proportions shown in Example 1, respectively.
  • the amounts of Mg, rare earth elements (RE) and Mn shown in Table 8 are oxide equivalent amounts as in Example 1.
  • “average particle diameter of crystal grains” and “absolute value of temperature coefficient of relative dielectric constant” have the same meanings as in Example 1.
  • the presence / absence of ⁇ in the curve of relative permittivity temperature change and polarization charge shown in Table 8 also means the same effect as in Example 1.
  • Example 4 The sample with almost no hysteresis has a polarization charge of 40 nC / cm 2 or less at 0V.
  • the dielectric ceramics obtained in Example 4 (Sample Nos. 4-2 to 4-8, 4-11 to 4-15, 4-18 to 4-21, 4-23 to 4-27, 4-29, 4-30, 4-32, and 4-35) all had a cubic crystal structure as the main component, as in the X-ray diffraction diagram shown in FIG.
  • the temperature coefficient of relative permittivity was an absolute value larger than 1000 ⁇ 10 ⁇ 6 / ° C.
  • Example 5 Next, a sample was prepared and evaluated in the same manner as in Example 1 except that Gd 2 O 3 as an additive component in each composition shown in Example 1 was changed to Er 2 O 3 (Sample No. 1). 5-1 to 5-34).
  • Table 9 shows the preparation composition, the average particle size of the calcined powder, and the firing temperature
  • Table 10 shows the average particle size and characteristics of the crystal particles after firing (relative permittivity, absolute value of temperature coefficient of relative permittivity, relative permittivity The temperature change curve and the polarization charge) result are shown respectively.
  • the amount of Yb 2 O 3 added in Table 9 and the proportion of Yb 2 O 3 content in Table 10 are the same as the proportions shown in Example 1, respectively.
  • the amounts of Mg, rare earth elements (RE) and Mn shown in Table 10 are equivalent to oxides as in Example 1.
  • “average particle diameter of crystal grains” and “absolute value of temperature coefficient of relative dielectric constant” have the same meanings as in Example 1.
  • the presence / absence of ⁇ in the curve of the temperature change of the relative permittivity shown in Table 10 and the polarization charge column means the same effect as in Example 1.
  • Example 5 The sample with almost no hysteresis has a polarization charge of 40 nC / cm 2 or less at 0V.
  • the dielectric ceramics obtained in Example 5 (Sample Nos. 5-2 to 5-8, 5-11 to 5-15, 5-18 to 5-21, 5-23 to 5-27, 5-29, 5-30, 5-32, and 5-35) all had a cubic crystal structure as in the X-ray diffraction pattern shown in FIG.
  • the temperature coefficient of the relative permittivity was an absolute value larger than 1000 ⁇ 10 ⁇ 6 / ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

 チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に形成された粒界相とを有する誘電体磁器であって、前記チタン酸バリウムを構成するバリウム1モルに対してマグネシウム、ガドリニウム,テルビウム,ディスプロシウム,ホルミウムおよびエルビウムから選ばれる少なくとも1種の希土類元素(RE)、マンガンを酸化物換算で所定の割合で含有するとともに、チタン酸バリウム100質量部に対して、イッテルビウムを酸化物換算で所定の割合で含有し、結晶粒子の平均粒径が0.05~0.2μmである。また、上記誘電体磁器を誘電体層として適用することにより、高容量かつ容量温度特性の安定なコンデンサを形成できる。        

Description

誘電体磁器およびコンデンサ
 本発明は、チタン酸バリウムを主成分とする結晶粒子によって形成された誘電体磁器とそれを誘電体層に用いたコンデンサに関する。
 現在、モバイルコンピュータや携帯電話をはじめとするデジタル方式の電子機器の普及が目覚ましく、近い将来、地上デジタル放送が全国に展開されようとしている。地上デジタル放送用の受信機であるデジタル方式の電子機器として液晶ディスプレイやプラズマディスプレイなどがあるが、これらデジタル方式の電子機器には多くのLSIが用いられている。
 そのため、液晶ディスプレイやプラズマディスプレイなど、これらデジタル方式の電子機器を構成する電源回路には、バイパス用のコンデンサが数多く実装されている。ここで用いられているコンデンサは、高い静電容量を必要とする場合には、高誘電率の積層セラミックコンデンサ(例えば、特許文献1を参照)が採用される。一方、低容量でも温度特性を重視する場合には、容量変化率の小さい温度補償型の積層セラミックコンデンサ(例えば、特許文献2を参照)が採用されている。
 しかしながら、特許文献1に開示された高誘電率の積層セラミックコンデンサは、誘電体層が強誘電性を有する誘電体磁器の結晶粒子によって構成されているため、比誘電率の温度変化率が大きく、かつ電界-誘電分極特性におけるヒステリシスが大きいという不具合があった。
 また、特許文献1に開示された誘電体層が強誘電性の誘電体磁器を用いて形成されたコンデンサでは、電源回路上において電気誘起歪に起因するノイズ音を発生させやすい性質があることから、この性質がプラズマディスプレイなどに使用する際の障害となっていた。
 一方、温度補償型の積層セラミックコンデンサは、それを構成する誘電体磁器が常誘電性であるため、電界-誘電分極特性におけるヒステリシスが小さい。このため、この積層セラミックコンデンサは、強誘電性特有の電気誘起歪が起こらないという利点があるものの、誘電体磁器の比誘電率が低いために蓄電能力が低くバイパスコンデンサとしての性能を満たさないという問題があった。
特開2002-89231号公報 特開2002-294481号公報
 本発明の目的は、高誘電率かつ安定な比誘電率の温度特性を示す誘電体磁器と、それを用いたコンデンサを提供することである。
 本発明の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に形成された粒界相とからなる。この誘電体磁器は、前記チタン酸バリウムを構成するバリウム1モルに対して、マグネシウムをMgO換算で0.01~0.06モル、ガドリニウム,テルビウム,ディスプロシウム,ホルミウムおよびエルビウムから選ばれる少なくとも1種の希土類元素(RE)をREO3/2換算で0.0007~0.03モル、マンガンをMnO換算で0.0002~0.03モル含有するとともに、さらに前記チタン酸バリウム100質量部に対して、イッテルビウムをYb換算で3.6~52.1質量部含有する。前記結晶粒子の平均粒径が0.05~0.2μmである。
 また、本発明の誘電体磁器は、前記チタン酸バリウムを構成するバリウム1モルに対して、前記マグネシウムをMgO換算で0.017~0.023モル、前記希土類元素(RE)をREO3/2換算で0.0015~0.01モル、前記マンガンをMnO換算で0.01~0.013モル含有するとともに、前記チタン酸バリウム100質量部に対して、前記イッテルビウムをYb換算で6.3~15.6質量部含有し、かつ前記チタン酸バリウムを構成するバリウム1モルに対するチタン比が0.97~0.98であることが望ましい。
 また、本発明のコンデンサは、前記誘電体磁器からなる誘電体層と導体層との積層体から構成されていることを特徴とする。
 なお、希土類元素をREとしたのは、周期表における希土類元素の英文表記(Rare earth)に基づくものである。
 本発明の誘電体磁器によれば、従来の強誘電性を有する誘電体磁器よりも比誘電率の温度変化率が小さく、また、従来の常誘電性を有する誘電体磁器に比較して高誘電率にできかつ安定な比誘電率の温度特性を示すとともに自発分極を小さくできる。
 本発明のコンデンサによれば、誘電体層として前記誘電体磁器を適用することにより、従来のコンデンサよりも高容量かつ容量温度特性の安定なコンデンサを形成できる。その為、このコンデンサを電源回路に用いた場合、電気誘起歪に起因するノイズ音の発生を抑制できる。
本発明のコンデンサの一例を示す断面模式図である。 実施例1で得た誘電体磁器(試料No.1-4)のX線回折図である。
符号の説明
10 コンデンサ本体
12 外部電極
13 誘電体層
14 導体層
 本発明の誘電体磁器は、チタン酸バリウムを主成分として、これにマグネシウムと、ガドリニウム,テルビウム,ディスプロシウム,ホルミウムおよびエルビウムから選ばれる少なくとも1種の希土類元素(RE)と、マンガンと、イッテルビウムとを含有するものである。その含有量はバリウム1モルに対して、マグネシウムをMgO換算で0.01~0.06モル、前記した少なくとも1種の希土類元素(RE)をREO3/2換算で0.0007~0.03モル、マンガンをMnO換算で0.0002~0.03モル含有するとともに、前記チタン酸バリウム100質量部に対して、イッテルビウムをYb換算で3.6~52.1質量部含有する。
 また、本発明の誘電体磁器では、誘電体磁器を構成する結晶粒子の平均粒径が0.05~0.2μmである。
 誘電体磁器が上記組成および粒径の範囲であると、後述する室温(25℃)における比誘電率を180以上、125℃における比誘電率を160以上および25℃~125℃間における比誘電率の温度係数((ε125-ε25)/(ε25(125-25)))を絶対値で1000×10-6/℃以下にでき、電界-誘電分極特性におけるヒステリシスの小さい誘電体磁器を形成できる。
 このような本発明の誘電体磁器は、チタン酸バリウムに、マグネシウムと、前記した少なくとも1種の希土類元素(RE)と、マンガンと、イッテルビウムとが固溶したものである。また、これらの成分が固溶したチタン酸バリウムを主成分とする結晶粒子の平均粒径を0.05~0.2μmの範囲とすることで、当該結晶粒子の結晶構造が立方晶系を主体としたものとすることができる。これにより正方晶系の結晶構造に起因する強誘電性が低下し、常誘電性を高めることができ、常誘電性が増すことで自発分極を低減できる。
 また、チタン酸バリウムを主成分とする結晶粒子の結晶構造を、立方晶系を主体とする結晶構造とすることで、比誘電率の変化率を示す曲線が-55℃~125℃の温度範囲において平坦となり、いずれも電界-誘電分極特性におけるヒステリシスが小さくなる。そのため、比誘電率が180以上でも比誘電率の温度係数の小さい誘電体磁器を得ることができる。
 即ち、上述した範囲でチタン酸バリウムに対して、マグネシウムと、前記した少なくとも1種の希土類元素(RE)と、マンガンとを所定量含有させると、25℃以上のキュリー温度を示し、比誘電率の温度係数が正の値を示す誘電体磁器となる。しかし、このような誘電特性を示す誘電体磁器に対して、さらにイッテルビウムを含有させた場合に、さらに大きな効果が得られ、比誘電率の温度係数を小さくして温度特性を平坦化できる。この場合、比誘電率の変化率を示す曲線は、-55℃~125℃の温度範囲において25℃を中心にして、-55℃と25℃との間に1つおよび25℃と125℃との間に1つの計2つの凸を有するものとなる。
 ここで、イッテルビウムはチタン酸バリウムを主成分とする結晶粒子の粗大化を抑制する働きをもち、チタン酸バリウム100質量部に対して、イッテルビウムをYb換算で3.6~52.1質量部含有する。
 チタン酸バリウム100質量部に対するイッテルビウムの含有量がYb換算で3.6質量部よりも少ないと、誘電体磁器の比誘電率が高いものの、比誘電率の温度係数が大きいものとなる。一方、チタン酸バリウム100質量部に対するイッテルビウムの含有量がYb換算で52.1質量部よりも多いと、25℃における比誘電率が180よりも低くなり、また、125℃における比誘電率が160未満となるためである。
 また、本発明の誘電体磁器は、バリウム1モルに対して、マグネシウムをMgO換算で0.01~0.06モル、ガドリニウム,テルビウム,ディスプロシウム,ホルミウムおよびエルビウムから選ばれる少なくとも1種の希土類元素(RE)をREO3/2換算で0.0007~0.03モル、マンガンをMnO換算で0.0002~0.03モル含有する。
 即ち、バリウム1モルに対するマグネシウムの含有量がMgO換算で0.01モルより少ないか、または0.06モルより多い場合には、誘電体磁器の比誘電率の温度係数が大きくなる。また、バリウム1モルに対する前記した少なくとも1種の希土類元素(RE)の含有量がRE換算で0.0007モルよりも少ないか、または0.03モルよりも多い場合には、誘電体磁器の比誘電率は高いものの、比誘電率の温度係数が大きくなる。さらにバリウム1モルに対するマンガンの含有量がMnO換算で0.0002モルよりも少ないか、または0.03モルよりも多い場合には、誘電体磁器の比誘電率の温度係数が大きくなる。
 なお、誘電体磁器に含まれる希土類元素(RE)としては、室温(25℃)における比誘電率を250以上にでき、高誘電率化が図れるという点で、ホルミウムおよびエルビウムのうちの少なくとも1種の希土類元素(RE)がより好ましい。
 さらに、本発明の誘電体磁器において、チタン酸バリウムを主成分とする結晶粒子の平均粒径が0.05~0.2μmである。
 即ち、チタン酸バリウムを主成分とする結晶粒子の平均粒径を0.05~0.2μmとすることで、そのチタン酸バリウムを主成分とする結晶粒子が立方晶系を主体とする結晶構造となり、電界-誘電分極特性におけるヒステリシスが小さく常誘電性に近い特性を示すものにできる。
 これに対し、チタン酸バリウムを主成分とする結晶粒子の平均粒径が0.05μmよりも小さい場合には、配向分極の寄与が無くなるため、誘電体磁器の比誘電率が低下する。一方、結晶粒子の平均粒径が0.2μmよりも大きい場合には、X線回折による測定において、正方晶系の結晶相が見られ、誘電体磁器の比誘電率の温度係数が大きくなる。
 なお、立方晶系を主体とする結晶構造とは、立方晶系のチタン酸バリウムの最も強いピークである(110)面の回折ピークの強度が異相の回折ピークの強度よりも大きい状態をいう。
 そして、本発明の誘電体磁器に含まれる上記成分の組成の好ましい範囲としては、バリウム1モルに対して、マグネシウムがMgO換算で0.017~0.023モル、前記した少なくとも1種の希土類元素(RE)がREO3/2換算で0.0015~0.01モル、マンガンがMnO換算で0.01~0.013モルである。チタン酸バリウム100質量部に対してイッテルビウムがYb換算で6.3~15.6質量部の範囲であるとともに、バリウム1モルに対するチタン比が0.97~0.98であるものが良い。また、結晶粒子の平均粒径は0.14~0.18μmがより望ましい。
 これらの範囲の誘電体磁器は、25℃における比誘電率を420以上、125℃における比誘電率を400以上、比誘電率の温度係数を絶対値で570×10-6/℃以下にすることが可能になるとともに、誘電分極のヒステリシスを示す分極電荷を0Vにおいて、40nC/cm以下にできる。
 ここで、チタン酸バリウムを主成分とする前記結晶粒子の平均粒径は、後述するように、以下のようにして求められる。まず、焼成後の誘電体磁器からなる試料の破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮る。その写真上で結晶粒子が50~100個入る円を描き、円内および円周にかかった結晶粒子を選択し、各結晶粒子の輪郭を画像処理して、各粒子の面積を求め、これと同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より平均粒径を求める。
 また、前記25℃および125℃における比誘電率は、後述するように、所定のペレット状に成形され且つ表面に導体膜が形成された誘電体磁器からなる試料について、LCRメーター4284Aを用いて周波数1.0kHz、入力信号レベル1.0V、温度25℃および125℃にて静電容量を測定し、ペレット状の試料の直径と厚み、および導体膜の面積から算出される。
 25℃~125℃間における比誘電率の温度係数は、25℃および125℃における比誘電率を、それぞれ((ε125-ε25)/ε25(125-25))(但し、ε25:25℃における比誘電率、ε125:125℃における比誘電率)で表される式に当てはめて算出される値である。
 次に、本実施形態の誘電体磁器の製法について説明する。
 先ず、素原料粉末として、純度がいずれも99%以上のBaCO粉末と、TiO粉末と、MgO粉末と、Gd粉末,Tb粉末,Dy粉末,Ho粉末およびEr粉末から選ばれる少なくとも1種の希土類元素(RE)の酸化物粉末と、炭酸マンガン(MnCO)粉末とを用いる。これらの素原料粉末を、チタン酸バリウムを構成するバリウム1モルに対して、MgOを0.01~0.06モル、Gd,Tb,Dy,HoおよびErから選ばれる少なくとも1種の希土類元素(RE)の酸化物をREO3/2換算で0.0007~0.03モル、MnCOを0.0002~0.03モルの割合でそれぞれ配合する。
 次に、上記した素原料粉末の混合物を湿式混合し、乾燥させた後、温度900~1100℃で仮焼して仮焼粉末を作製し、この仮焼粉末を粉砕する。このとき、仮焼粉末の結晶構造が、立方晶系を主体とするものとなるように粒成長させることにより、常誘電性に近い比誘電率の温度特性を維持した高誘電率の誘電体磁器を得ることが可能になる。
 仮焼粉末の平均粒径は、0.04~0.1μmであるのが好ましい。これにより、仮焼粉末において、強誘電性の発現を抑制できる。前記仮焼粉末の平均粒径は、後述するように、仮焼粉末を電子顕微鏡用試料台上に分散させて走査型電子顕微鏡により写真を撮り、その写真に映し出されている仮焼粉末の輪郭を画像処理し、その写真上で結晶粒子が50~100個入る円を描き、円内および円周にかかった粉末を選択し、各粉末の輪郭を画像処理して、各粉末の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より求める。
 次いで、この仮焼粉末100質量部に対してYb粉末を3.5~50質量部の割合で混合する。この後、混合粉末をペレット状に成形し、H-N中で1300℃~1400℃の温度範囲で焼成を行うことにより本発明の誘電体磁器を得ることができる。ここで、焼成温度が1300℃よりも低い場合には、結晶粒子の粒成長と緻密化が抑えられるために誘電体磁器の密度が低いものとなる。一方、焼成温度が1400℃よりも高い場合には、誘電体磁器の結晶粒子が粒成長しすぎてしまうおそれがある。
 図1は、本発明のコンデンサの一例を示す断面模式図である。本発明の誘電体磁器を用いて、以下のようなコンデンサを形成できる。
 本発明のコンデンサは、図1に示すように、コンデンサ本体10の両端部に外部電極12が設けられたものである。コンデンサ本体10は、複数の誘電体層13と、内部電極層である複数の導体層14とが交互に積層された積層体から構成されている。そして、誘電体層13は、上述した本発明の誘電体磁器によって形成されている。即ち、誘電体層13として、高誘電率かつ安定な比誘電率の温度特性を示し、自発分極の小さい上記誘電体磁器を適用することにより、従来のコンデンサよりも高容量かつ容量温度特性の安定なコンデンサになる。そのため、このコンデンサを電源回路に用いた場合には、電気誘起歪に起因するノイズ音の発生を抑制することができる。
 誘電体層13の厚みは1~30μmであることが望ましい。特に、誘電体層13の厚みが5μm以下であると、誘電体層13の薄層化によりコンデンサの静電容量が高められるという利点がある。
 導体層14は、高積層化しても製造コストを抑制できるという点でNiやCuなどの卑金属が望ましく、特に、誘電体層13との同時焼成を図るという点でNiがより望ましい。この導体層14の厚みは、平均で1μm以下が好ましい。
 このようなコンデンサを作製する場合には、先ず、上述した混合粉末をグリーンシートに成形する。ついで、導体層14となる導体ペーストを調製して前記グリーンシートの表面に印刷した後積層し焼成して積層体1を形成する。しかる後、積層体1の両端面にさらに導体ペーストを印刷して焼成し、外部電極12を形成することにより本発明のコンデンサを得ることができる。
 以下、実施例を挙げて本発明についてさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 [実施例1]
 評価試料を以下のようにして作製した。先ず、いずれも純度が99.9%のBaCO粉末、TiO粉末、MgO粉末、Gd粉末、MnCO粉末を用意し、表1に示す割合で調合し混合粉末を調製した。なお、表1に示すマグネシウム(Mg)、ガドリニウム(Gd)およびマンガン(Mn)の量は、それぞれMgO、GdO3/2およびMnOに相当する量である。チタン(Ti)はバリウム(Ba)1モルに対するモル比である。
 次に、調製した混合粉末を温度1000℃にて仮焼して仮焼粉末を作製した後、得られた仮焼粉末を粉砕して表1に示す平均粒径を有する仮焼粉末を得た。仮焼粉末の平均粒径は、得られた仮焼粉末を電子顕微鏡用試料台上に分散させて走査型電子顕微鏡により写真を撮り、その写真に映し出されている仮焼粉末の輪郭を画像処理し、その写真上で仮焼粉末が50~100個入る円を描き、円内および円周にかかった粉末を選択し、各粉末の輪郭を画像処理して、各粉末の面積を求め、これと同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より求めた。
 この後、仮焼粉末100質量部に対して、純度99.9%のYb粉末を表1に示す割合で混合した。この混合粉末を造粒し、直径16.5mm、厚さ1mmの形状のペレット状に成形した。
 次に、各組成のペレットを10個ずつ、H-N中にて、表1に示す温度で焼成して試料としての誘電体磁器を得た。チタン酸バリウムを主成分とする結晶粒子の平均粒径は、以下のようにして求めた。先ず、焼成後の試料の破断面を、#1200の研磨紙を用いて粗研磨した後、硬質バフ上に塗った粒径3μmのダイヤモンドペーストを用いて研磨を行い、さらに軟質バフ上に粒径0.3μmのアルミナ砥粒を塗り、仕上げ研磨を行った。次いで、酸性水溶液(塩酸-フッ化水素)によりエッチングを行った後、走査型電子顕微鏡を用いて内部組織の写真を撮った。次に、その写真上で結晶粒子が50~100個入る円を描き、円内および円周にかかった結晶粒子を選択し、各結晶粒子の輪郭を画像処理して、各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より求めた。
 焼成後の試料の表面にインジウム・ガリウムの導体層を印刷して誘電特性の評価試料を得た(表2中の試料No.1-1~35)。
 作製した誘電体磁器であるこれらの試料は、LCRメーター4284Aを用いて周波数1.0kHz、入力信号レベル1.0V、温度25℃および125℃にて静電容量を測定し、試料の直径と厚みおよび導体層の面積から25℃および125℃の比誘電率を算出した。また、比誘電率の温度係数は、25℃および125℃における比誘電率を、それぞれ式:((ε125-ε25)/(ε25(125-25)))〔但し、ε25:25℃における比誘電率、ε125:125℃における比誘電率〕に当てはめて算出した。これらの測定は試料数を各10個とし、その平均値を求めた。
 また、得られた試料について、電気誘起歪の大きさを誘電分極(分極電荷)の測定によって求めた。この場合、電圧を±1250Vの範囲で変化させた時の、0Vにおける電荷量(残留分極)の値で評価した。
 また、試料の組成分析は、ICP(Inductively Coupled Plasma)分析もしくは原子吸光分析により行った。この場合、得られた試料を硼酸および炭酸ナトリウムに混合し、溶融させたものを塩酸に溶解させて、まず、原子吸光分析により試料に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。
 表1に調製組成、仮焼粉末の平均粒径および焼成温度を、表2に焼成後の結晶粒子の平均粒径と特性(比誘電率、比誘電率の温度係数の絶対値、比誘電率の温度変化の曲線、および分極電荷)の結果をそれぞれ示す。
 ここで、表1におけるYbの添加量は、仮焼粉末100質量部に対する割合である。一方、表2におけるYbの含有量は、誘電体磁器(試料)中におけるチタン酸バリウム100質量部に対する割合である。また、表2に示すMg、希土類元素(RE)およびMnの量は、酸化物換算量である。表2中の「結晶粒子の平均粒径」は、チタン酸バリウムを主成分とする結晶粒子の平均粒径を意味する。表2中の「比誘電率の温度係数の絶対値」は前記で求めた比誘電率の温度係数における平均値の絶対値を意味する。
 なお、表2中、比誘電率の温度変化の曲線の欄において○を付してないものは、25℃を中心にして-55℃と25℃との間に1つおよび25℃と125℃との間に1つの計2つの凸がみられなかった試料を、分極電荷の欄において○を付してないものは、分極電荷が40nC/cm以下ではない試料をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
 表2の結果から明らかなように、本発明の誘電体磁器である試料No.1-2~1-8,1-11~1-15,1-18~1-21,1-23~1-27,1-29,1-30,1-32および1-35では、25℃における比誘電率が239以上、125℃における比誘電率が217以上であり、25~125℃における比誘電率の温度係数が絶対値で987×10-6/℃以下であった。
 特に、試料No.1-4~1-6,1-12~1-14,1-19,1-20,1-25および1-29では、25℃における比誘電率が558以上、125℃における比誘電率が468以上、比誘電率の温度係数が絶対値で499×10-6/℃以下であり、比誘電率の変化率を示す曲線が-55℃~125℃の温度範囲において2つのピークを有し、かつ電界-誘電分極特性の測定において大きなヒステリシスが見られなかった。これらの試料は、バリウム1モルに対して、MgOを0.017~0.023モル、GdをGdO3/2として0.0015~0.01モル、MnOを0.01~0.013モル、主成分であるチタン酸バリウム100質量部に対するYbの含有量が6.3~15.6質量部であり、バリウム1モルに対するチタン比が0.97~0.98である。
 ヒステリシスのほとんど見られない試料は、分極電荷が0Vにおいて40nC/cm以下であった。図2に、実施例1で得た誘電体磁器(試料No.1-4)のX線回折図を示す。図2から明らかなように、試料No.1-4の誘電体磁器は結晶構造が立方晶系を主体とするものである。また、本発明の範囲内の他の試料についても結晶構造が立方晶系を主体とするものであった。
 これに対して、本発明の範囲外の試料(試料No.1-1,1-9,1-10,1-16,1-17,1-22,1-28,1-31,1-33および1-34)は、いずれも比誘電率の温度係数が絶対値で1000×10-6/℃よりも大きいものであった。
 [実施例2]
 実施例1に示した各組成のうち、添加成分であるGdをTbに変えた以外は、実施例1と同様の方法で試料を作製し評価した(試料No.2-1~2-34)。
 表3に調製組成、仮焼粉末の平均粒径および焼成温度を、表4に焼成後の結晶粒子の平均粒径と特性(比誘電率、比誘電率の温度係数の絶対値、比誘電率の温度変化の曲線、および分極電荷)の結果をそれぞれ示す。
 ここで、表3におけるYbの添加量および表4におけるYbの含有量の割合は、それぞれ実施例1で示した割合と同様の割合である。また、表4に示すMg、希土類元素(RE)およびMnの量も実施例1と同様に酸化物換算量である。また、表4中の「結晶粒子の平均粒径」および「比誘電率の温度係数の絶対値」は実施例1の場合と同じ意味である。さらに、表4中に記した比誘電率の温度変化の曲線および分極電荷の欄における○の有無についても実施例1と同じ効果を示す意味である。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 表4の結果から明らかなように、本発明の誘電体磁器である試料No.2-2~2-8,2-11~2-15,2-18~2-21,2-23~2-27,2-29,2-30,2-32および2-35では、25℃における比誘電率が244以上、125℃における比誘電率が222以上であり、25~125℃における比誘電率の温度係数が絶対値で994×10-6/℃以下であった。
 特に、試料No.2-4~2-6、2-12~2-14、2-19、2-20、2-25および2-29では、25℃における比誘電率が569以上、125℃における比誘電率が479以上、比誘電率の温度係数が絶対値で491×10-6/℃以下であり、比誘電率の変化率を示す曲線が-55℃~125℃の温度範囲において2つのピークを有し、かつ電界-誘電分極特性の測定において大きなヒステリシスが見られなかった。これらの試料は、バリウム1モルに対して、MgOを0.017~0.023モル、TbをTbO3/2として0.0015~0.01モル、MnOを0.01~0.013モル、主成分であるチタン酸バリウム100質量部に対するYbの含有量が6.3~15.6質量部であり、バリウム1モルに対するチタン比が0.97~0.98である。
 ヒステリシスのほとんど見られない試料は、分極電荷が0Vにおいて40nC/cm以下であった。この実施例2で得た誘電体磁器(試料No.2-2~2-8,2-11~2-15,2-18~2-21,2-23~2-27,2-29,2-30,2-32および2-35)は、図2に示したX線回折図と同様、いずれも結晶構造が立方晶系を主体とするものであった。
 これに対して、本発明の範囲外の試料(試料No.2-1,2-9,2-10,2-16,2-17,2-22,2-28,2-31,2-33および2-34)は、比誘電率の温度係数が絶対値で1000×10-6/℃よりも大きいものであった。
 [実施例3]
 実施例1に示した各組成のうち添加成分であるGdをDyに変えた以外は、実施例1と同様の方法で試料を作製し評価した(試料No.3-1~3-35)。
 表5に調製組成、仮焼粉末の平均粒径および焼成温度を、表6に焼成後の結晶粒子の平均粒径と特性(比誘電率、比誘電率の温度係数の絶対値、比誘電率の温度変化の曲線、および分極電荷)の結果をそれぞれ示す。
 ここで、表5におけるYbの添加量および表6におけるYbの含有量の割合は、それぞれ実施例1で示した割合と同様の割合である。また、表6に示すMg、希土類元素(RE)およびMnの量も実施例1と同様に酸化物換算量である。また、表6中の「結晶粒子の平均粒径」および「比誘電率の温度係数の絶対値」は実施例1の場合と同じ意味である。さらに、表6中に記した比誘電率の温度変化の曲線および分極電荷の欄における○の有無についても実施例1と同じ効果を示す意味である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 
 表6の結果から明らかなように、本発明の誘電体磁器である試料No.3-2~3-8,3-11~3-15,3-18~3-21,3-23~3-27,3-29,3-30,3-32および3-35では、25℃における比誘電率が181以上、125℃における比誘電率が163以上であり、25~125℃における比誘電率の温度係数が絶対値で999×10-6/℃以下であった。
 特に、試料No.3-4~3-6、3-12~3-14、3-19、3-20、3-25および3-29では、25℃における比誘電率が423以上、125℃における比誘電率が403以上、比誘電率の温度係数が絶対値で570×10-6/℃以下であり、比誘電率の変化率を示す曲線が-55℃~125℃の温度範囲において2つのピークを有し、かつ電界-誘電分極特性の測定において大きなヒステリシスが見られなかった。これらの試料は、バリウム1モルに対して、MgOを0.017~0.023モル、DyをDyO3/2として0.0015~0.01モル、MnOを0.01~0.013モル、主成分であるチタン酸バリウム100質量部に対するYbの含有量が6.3~15.6質量部であり、バリウム1モルに対するチタン比が0.97~0.98である。
 ヒステリシスのほとんど見られない試料は、分極電荷が0Vにおいて40nC/cm以下であった。この実施例3で得た誘電体磁器(試料No.3-2~3-8,3-11~3-15,3-18~3-21,3-23~3-27,3-29,3-30,3-32および3-35)は、図2に示したX線回折図と同様、いずれも結晶構造が立方晶系を主体とするものであった。
 これに対して、本発明の範囲外の試料(試料No.3-1,3-9,3-10,3-16,3-17,3-22,3-28,3-31,3-33および3-34)は、比誘電率の温度係数が絶対値で1000×10-6/℃よりも大きいものであった。
 [実施例4]
 次に、実施例1に示した各組成のうち添加成分であるGdをHoに変えた以外は、実施例1と同様の方法で試料を作製し評価した(試料No.4-1~4-35)。
 表7に調製組成、仮焼粉末の平均粒径および焼成温度を、表8に焼成後の結晶粒子の平均粒径と特性(比誘電率、比誘電率の温度係数の絶対値、比誘電率の温度変化の曲線、および分極電荷)の結果をそれぞれ示す。
 ここで、表7におけるYbの添加量および表8におけるYbの含有量の割合は、それぞれ実施例1で示した割合と同様の割合である。また、表8に示すMg、希土類元素(RE)およびMnの量も実施例1と同様に酸化物換算量である。また、表8中の「結晶粒子の平均粒径」および「比誘電率の温度係数の絶対値」は実施例1の場合と同じ意味である。さらに、表8中に記した比誘電率の温度変化の曲線および分極電荷の欄における○の有無についても実施例1と同じ効果を示す意味である。
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
 表8の結果から明らかなように、本発明の誘電体磁器である試料No.4-2~4-8,4-11~4-15,4-18~4-21,4-23~4-27,4-29,4-30,4-32および4-35では、25℃における比誘電率が257以上、125℃における比誘電率が234以上であり、25~125℃における比誘電率の温度係数が絶対値で978×10-6/℃以下であった。
 特に、試料No.4-4~4-6,4-12~4-14,4-19,4-20,4-25および4-29では、25℃における比誘電率が599以上、125℃における比誘電率が572以上、比誘電率の温度係数が絶対値で476×10-6/℃以下であり、比誘電率の変化率を示す曲線が-55℃~125℃の温度範囲において2つのピークを有し、かつ電界-誘電分極特性の測定において大きなヒステリシスが見られなかった。これらの試料は、バリウム1モルに対して、MgOを0.017~0.023モル、HoをHoO3/2として0.0015~0.01モル、MnOを0.01~0.013モル、主成分であるチタン酸バリウム100質量部に対するYbの含有量が6.3~15.6質量部であり、バリウム1モルに対するチタン比が0.97~0.98である。
 ヒステリシスのほとんど見られない試料は、分極電荷が0Vにおいて40nC/cm以下であった。この実施例4で得た誘電体磁器(試料No.4-2~4-8,4-11~4-15,4-18~4-21,4-23~4-27,4-29,4-30,4-32および4-35)は、図2に示したX線回折図と同様、いずれも結晶構造が立方晶系を主体とするものであった。
 これに対して、本発明の範囲外の試料(試料No.4-1,4-9,4-10,4-16,4-17,4-22,4-28,4-31,4-33および4-34)は、比誘電率の温度係数が絶対値で1000×10-6/℃よりも大きいものであった。
 [実施例5]
 次に、実施例1に示した各組成のうち添加成分であるGdをErに変えた以外は、実施例1と同様の方法で試料を作製し評価した(試料No.5-1~5-34)。
 表9に調製組成、仮焼粉末の平均粒径および焼成温度を、表10に焼成後の結晶粒子の平均粒径と特性(比誘電率、比誘電率の温度係数の絶対値、比誘電率の温度変化の曲線、および分極電荷)の結果をそれぞれ示す。
 ここで、表9におけるYbの添加量および表10におけるYbの含有量の割合は、それぞれ実施例1で示した割合と同様の割合である。また、表10に示すMg、希土類元素(RE)およびMnの量も実施例1と同様に酸化物換算量である。また、表10中の「結晶粒子の平均粒径」および「比誘電率の温度係数の絶対値」は実施例1の場合と同じ意味である。さらに、表10中に記した比誘電率の温度変化の曲線および分極電荷の欄における○の有無についても実施例1と同じ効果を示す意味である。
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
 表10の結果から明らかなように、本発明の誘電体磁器である試料No.5-2~5-8,5-11~5-15,5-18~5-21,5-23~5-27,5-29,5-30,5-32および5-35では、25℃における比誘電率が260以上、125℃における比誘電率が237以上であり、25~125℃における比誘電率の温度係数が絶対値で973×10-6/℃以下であった。
 特に、試料No.5-4~5-6,5-12~5-14,5-19,5-20,5-25および5-29では、25℃における比誘電率が605以上、125℃における比誘電率が578以上、比誘電率の温度係数が絶対値で470×10-6/℃以下であり、比誘電率の変化率を示す曲線が-55℃~125℃の温度範囲において2つのピークを有し、かつ電界-誘電分極特性の測定において大きなヒステリシスが見られなかった。これらの試料は、バリウム1モルに対して、MgOを0.017~0.023モル、ErをErO3/2として0.0015~0.01モル、MnOを0.01~0.013モル、主成分であるチタン酸バリウム100質量部に対するYbの含有量が6.3~15.6質量部であり、バリウム1モルに対するチタン比が0.97~0.98である。
 ヒステリシスのほとんど見られない試料は、分極電荷が0Vにおいて40nC/cm以下であった。この実施例5で得た誘電体磁器(試料No.5-2~5-8,5-11~5-15,5-18~5-21,5-23~5-27,5-29,5-30,5-32および5-35)は、図2に示したX線回折図と同様、いずれも結晶構造が立方晶系を主体とするものであった。
 また、試料No.5-4の組成において、Erの量の半分をHoで置き換えて調製し、同様の温度で焼成して作製した誘電体磁器についても、結晶粒子の平均粒径、25℃および125℃における比誘電率は試料No.5-4の結果と同様の結晶構造および特性を有するものであり、また、比誘電率の温度変化の曲線には2つのピークがあり、分極電荷は40nC/cm以下であった。
 これに対して、本発明の範囲外の試料(試料No.5-1,5-9,5-10,5-16,5-17,5-22,5-28,5-31,5-33および5-34)は、比誘電率の温度係数が絶対値で1000×10-6/℃よりも大きいものであった。
 

Claims (3)

  1.  チタン酸バリウムを主成分とする結晶粒子と、該結晶粒子間に形成された粒界相とからなる誘電体磁器であって、
    前記チタン酸バリウムを構成するバリウム1モルに対して、マグネシウムをMgO換算で0.01~0.06モル、ガドリニウム,テルビウム,ディスプロシウム,ホルミウムおよびエルビウムから選ばれる少なくとも1種の希土類元素(RE)をREO3/2換算で0.0007~0.03モル、マンガンをMnO換算で0.0002~0.03モル含有するとともに、
    さらに前記チタン酸バリウム100質量部に対して、イッテルビウムをYb換算で3.6~52.1質量部含有し、
    かつ前記結晶粒子の平均粒径が0.05~0.2μmである
    ことを特徴とする誘電体磁器。
  2.  前記チタン酸バリウムを構成するバリウム1モルに対して、前記マグネシウムをMgO換算で0.017~0.023モル、前記希土類元素(RE)をREO3/2換算で0.0015~0.01モル、前記マンガンをMnO換算で0.01~0.013モル含有するとともに、前記チタン酸バリウム100質量部に対して、前記イッテルビウムをYb換算で6.3~15.6質量部含有し、かつ前記チタン酸バリウムを構成するバリウム1モルに対するチタン比が0.97~0.98であることを特徴とする請求項1に記載の誘電体磁器。
  3.  請求項1または2に記載の誘電体磁器からなる誘電体層と導体層との積層体から構成されていることを特徴とするコンデンサ。
PCT/JP2009/056297 2008-06-04 2009-03-27 誘電体磁器およびコンデンサ WO2009147893A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980120793.8A CN102066286B (zh) 2008-06-04 2009-03-27 电介质瓷器及电容器
US12/996,379 US8305732B2 (en) 2008-06-04 2009-03-27 Dielectric ceramic and capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008146533A JP5317538B2 (ja) 2008-06-04 2008-06-04 誘電体磁器およびコンデンサ
JP2008-146533 2008-06-04

Publications (1)

Publication Number Publication Date
WO2009147893A1 true WO2009147893A1 (ja) 2009-12-10

Family

ID=41397972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056297 WO2009147893A1 (ja) 2008-06-04 2009-03-27 誘電体磁器およびコンデンサ

Country Status (5)

Country Link
US (1) US8305732B2 (ja)
JP (1) JP5317538B2 (ja)
CN (1) CN102066286B (ja)
TW (1) TWI406311B (ja)
WO (1) WO2009147893A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9396880B2 (en) 2011-11-16 2016-07-19 Martin A. Stuart High energy density storage device
WO2013074577A1 (en) 2011-11-16 2013-05-23 Stuart Martin A High energy density storage device
US9287046B2 (en) * 2012-03-30 2016-03-15 Taiyo Yuden Co., Ltd. Multi-layer ceramic capacitor
JP7005852B2 (ja) * 2017-11-01 2022-01-24 サムソン エレクトロ-メカニックス カンパニーリミテッド. 誘電体磁器組成物、キャパシタ、及び、多層積層セラミックキャパシタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612917A (ja) * 1992-06-26 1994-01-21 Teika Corp 誘電体磁器およびその製造方法
JP2001031467A (ja) * 1999-07-21 2001-02-06 Tdk Corp 誘電体磁器組成物および電子部品
JP2003192432A (ja) * 2002-09-27 2003-07-09 Tdk Corp 誘電体磁器組成物および電子部品
JP2006137633A (ja) * 2004-11-11 2006-06-01 Tdk Corp 誘電体磁器組成物の製造方法、電子部品及び積層セラミックコンデンサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3878778B2 (ja) 1999-07-21 2007-02-07 Tdk株式会社 誘電体磁器組成物および電子部品
JP3642282B2 (ja) 2000-02-09 2005-04-27 松下電器産業株式会社 誘電体磁器組成物とこれを用いた積層セラミックコンデンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612917A (ja) * 1992-06-26 1994-01-21 Teika Corp 誘電体磁器およびその製造方法
JP2001031467A (ja) * 1999-07-21 2001-02-06 Tdk Corp 誘電体磁器組成物および電子部品
JP2003192432A (ja) * 2002-09-27 2003-07-09 Tdk Corp 誘電体磁器組成物および電子部品
JP2006137633A (ja) * 2004-11-11 2006-06-01 Tdk Corp 誘電体磁器組成物の製造方法、電子部品及び積層セラミックコンデンサ

Also Published As

Publication number Publication date
CN102066286A (zh) 2011-05-18
TWI406311B (zh) 2013-08-21
US20110085281A1 (en) 2011-04-14
CN102066286B (zh) 2013-06-12
US8305732B2 (en) 2012-11-06
TW200952010A (en) 2009-12-16
JP2009292671A (ja) 2009-12-17
JP5317538B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
TWI399767B (zh) Dielectric ceramics and capacitors
JP5039039B2 (ja) 誘電体磁器およびコンデンサ
JP5210300B2 (ja) 誘電体磁器および積層セラミックコンデンサ
JP5137429B2 (ja) 誘電体磁器およびコンデンサ
JPWO2008050863A1 (ja) 誘電体磁器およびコンデンサ
JP5185924B2 (ja) 誘電体磁器およびコンデンサ
JP5204770B2 (ja) 誘電体磁器およびコンデンサ
US8107219B2 (en) Dielectric ceramic and capacitor
WO2009147893A1 (ja) 誘電体磁器およびコンデンサ
JP4931697B2 (ja) 誘電体磁器およびコンデンサ
JP5142649B2 (ja) 誘電体磁器およびコンデンサ
JP4960203B2 (ja) 誘電体磁器およびコンデンサ
JP4959634B2 (ja) 誘電体磁器およびコンデンサ
JP5142666B2 (ja) 誘電体磁器およびコンデンサ
JP5289239B2 (ja) 誘電体磁器およびコンデンサ
JP2009292679A (ja) 誘電体磁器およびコンデンサ
JP2009292678A (ja) 誘電体磁器およびコンデンサ
JP5137430B2 (ja) 誘電体磁器およびコンデンサ
JP2009292672A (ja) 誘電体磁器およびコンデンサ
JP4949219B2 (ja) 誘電体磁器およびコンデンサ
JP5142651B2 (ja) 誘電体磁器およびコンデンサ
JP5137431B2 (ja) 誘電体磁器およびコンデンサ
JP5142665B2 (ja) 誘電体磁器およびコンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120793.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12996379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758160

Country of ref document: EP

Kind code of ref document: A1