WO2009145338A1 - ラミネート金属板di成形用水性クーラントおよびラミネート金属板のdi成形方法 - Google Patents

ラミネート金属板di成形用水性クーラントおよびラミネート金属板のdi成形方法 Download PDF

Info

Publication number
WO2009145338A1
WO2009145338A1 PCT/JP2009/059937 JP2009059937W WO2009145338A1 WO 2009145338 A1 WO2009145338 A1 WO 2009145338A1 JP 2009059937 W JP2009059937 W JP 2009059937W WO 2009145338 A1 WO2009145338 A1 WO 2009145338A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
coolant
fatty acid
laminated metal
acid
Prior art date
Application number
PCT/JP2009/059937
Other languages
English (en)
French (fr)
Inventor
大島安秀
多田雅毅
岩佐浩樹
小島克己
北川淳一
安江良彦
池田俊和
鹿子木智浩
福田健仁
Original Assignee
Jfeスチール株式会社
日本クエーカー・ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, 日本クエーカー・ケミカル株式会社 filed Critical Jfeスチール株式会社
Priority to US12/993,943 priority Critical patent/US8962538B2/en
Priority to CA 2723299 priority patent/CA2723299C/en
Priority to CN200980119413.9A priority patent/CN102046764B/zh
Publication of WO2009145338A1 publication Critical patent/WO2009145338A1/ja
Priority to US14/579,148 priority patent/US20150107326A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/201Work-pieces; preparation of the work-pieces, e.g. lubricating, coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/091Water solubility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/62Food grade properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal

Definitions

  • the present invention relates to an aqueous coolant for forming a laminated metal plate DI (lubricant 'coolant), a DI forming method for a laminated metal plate using the aqueous coolant, and a method for producing a laminated DI molded body.
  • aqueous coolant for forming a laminated metal plate DI lubricant 'coolant
  • DI forming method for a laminated metal plate using the aqueous coolant a method for producing a laminated DI molded body.
  • iron forming or redrawing / ironing forming is performed.
  • the water-based coolant for forming a laminated metal plate DI of the present invention is particularly suitable for such forming processing. Is preferred. Background art
  • the DI can is one of the two-piece cans that have no joint between the body and the bottom.
  • the can is made by drawing (drawing) a metal plate, and then ironing or redrawing and ironing ( It is a can that is processed by ironing.
  • This DI can is widely used as a container for beverages such as beer and soft drinks, and for food such as soups and vegetables.
  • draw forming is a drawing machine called a cutting press that uses a tool made of a combination of a punch and a die. It is the processing method which shape
  • ironing is a process of thinly extending the side wall of a molded product (cup) obtained by drawing or redrawing. The combination of drawing and ironing or redrawing and ironing is called DI molding.
  • metal plates such as tinned copper plates or aluminum thin plates have been generally used. After these metal sheets are formed into a desired shape by DI molding, post-treatments such as cleaning, surface treatment, and painting are performed to obtain a product (DI can). Recently, however, a metal plate laminated with a polyester film (hereinafter sometimes simply referred to as “film”) has been designed so that post-treatment such as cleaning, surface treatment, and painting can be omitted or simplified.
  • film polyester film
  • the DI molding method differs greatly between DI molding of a metal sheet laminated with a film and conventional metal sheet.
  • this water-soluble coolant is for DI molding using a metal plate as a raw material, in order to increase the formability by reducing the friction between the metal surface and the molding tool, it has a trihydric alcohol and a carbon number of 18 Viscosity is increased by esters with fatty acids (Patent Document 2), polyoxyalkylene (Patent Document 3), and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 2 7 1 8 6 9
  • Patent Document 2 Japanese Patent Laid-Open No. 10-8 8 87 2
  • Patent Document 3 Japanese Patent Laid-Open No. 10-8 8 1 7 6 Summary of Invention
  • the forming method is fundamentally different from conventional metal plate DI forming because the surface of the metal plate is covered with a laminate film.
  • the surface of the laminate film is more smooth and lubricious than the metal surface, using a high-viscosity coolant containing a polymer used for DI molding of conventional metal plates, Conversely, DI moldability will be reduced.
  • the polyester film used for the laminated metal plate is slightly inferior in durability to high-grade fatty acids having a large number of carbon atoms, and the adhesion to the base is lowered, resulting in damage to the film.
  • conventional coolant assumes that the coolant is completely removed by post-processing such as a cleaning process after DI molding, and the food safety of the coolant itself is low.
  • the object of the present invention is to solve the above-mentioned problems of the prior art and to obtain excellent DI moldability in DI molding of a laminated metal plate, and (i) a laminated film of a laminated metal plate (especially polyester). Film)
  • Another object of the present invention is to provide a DI molding method for a laminated metal plate using such an aqueous coolant and a method for producing a laminated DI molded body. Means for solving the problem
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • An aqueous coolant comprising at least one base (a) selected from alkanolamine and alkali metal hydroxide, fatty acid (b) and water (c), wherein the base (a) and the fatty acid (b ) Is 0.02 to 4% by mass, and the proportion of straight chain fatty acids having 6 to 12 carbon atoms in fatty acid (b) is 80 to 100% by mass.
  • Laminated metal plate characterized by / 0 Water-based coolant for DI molding.
  • the molar ratio of the base (a) Z fatty acid (b) is 0.2 to 3.0, and the molar ratio of the alkanolamine fatty acid (b) is 0.
  • An aqueous coolant for DI molding of laminated metal sheet characterized in that the molar ratio of alkali metal hydroxide Z fatty acid (b) is 0 to 1.8.
  • aqueous coolant in the aqueous coolant according to any one of the above [1] to [3], at least one selected from the group consisting of fatty acid (b) strong caproic acid, strong prillic acid and strong purinate opilauric acid.
  • Laminated metal sheet characterized by being Aqueous coolant for DI molding.
  • alkanolamine is included as at least a part of the base (a).
  • An aqueous coolant for DI metal laminate characterized in that it is at least one selected from noramine and triethanolamine.
  • an alkali metal hydroxide is contained as at least a part of the base (a), and the alkali metal hydroxide comprises sodium hydroxide and water.
  • Laminated metal sheet characterized by being at least one selected from potassium oxide Water-based coolant for DI molding.
  • a DI molding method for a laminated metal sheet wherein the laminated metal sheet is DI molded using the aqueous coolant according to any one of [1] to [6] above.
  • a method for producing a laminate DI molded article characterized in that a laminate DI molded article is produced by DI molding a laminated metal plate using the aqueous coolant according to any one of [1] to [6] above. .
  • the water-based coolant for laminating metal plates of the present invention has excellent DI formability in DI molding of laminated metal plates, and (i) damages the laminate film (especially polyester film) of laminated metal plates. No, (ii) Easy to clean and can obtain DI can with high food safety even if the cleaning process of DI molded products is simplified. It has performances such as difficult to play. Therefore, according to the DI molding method and the DI manufacturing method of the laminated metal plate of the present invention using such an aqueous coolant, DI molding of the laminated metal plate can be performed appropriately, and excellent Has quality and yet Laminated DI molded bodies (for example, laminated DI cans) with excellent food safety and durability can be obtained. In addition, since the cleaning process after molding is simplified, there is an advantage that productivity is greatly increased. BEST MODE FOR CARRYING OUT THE INVENTION
  • the laminated metal sheet DI water-based coolant of the present invention is an aqueous coolant containing at least one base (a), fatty acid (b) and water (selected from alkanolamine and hydroxide-alkali metal.
  • the total content of the base (a) and the fatty acid (b) is 0.02 to 4% by mass, and the ratio of the linear fatty acid having 6 to 12 carbon atoms in the fatty acid (b) is 8 It is an aqueous coolant that is 0 to 100% by mass.
  • the base (a) comprises at least one selected from alkanolamines and alkali metal hydroxides.
  • alkanolamine examples include saturated aliphatic amines having a hydroxyl group in the molecule, and are not particularly limited.
  • an alkenolamine having 1 to 12 carbon atoms is used.
  • alkanolamine having 1 to 12 carbon atoms include, for example, monomethanolamine, dimethanolamine, trimethanolamine, N-ethylmethanolamine, N-propanemethanolamine, N-n-butynolemethanolamine.
  • More preferable alkanolamines are trimetairamine, from the viewpoint of liquid stability of aqueous coolant, cleanability after DI molding, and suppression of damage to laminate film (especially polyester film, the same applies hereinafter).
  • Monoethanolamine, dietanolamine, triethanolamine, and monopropanolamine are monoethanolamine and triethanolamine.
  • One or more of the alkanolamines listed above can be used.
  • Examples of the hydroxy hydrated metal include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and francium hydroxide. From the viewpoints of liquid stability of aqueous coolant, detergency after DI molding, suppression of damage to the laminate film and food safety, the most preferred alkali metal hydroxide is sodium hydroxide or lithium hydroxide.
  • One or two or more of the above-mentioned strong metal hydroxides can be used.
  • fatty acid (b) examples include aliphatic monocarboxylic acids, and although not particularly limited, fatty acids having 2 to 34 carbon atoms are preferably used.
  • fatty acids having 2 to 34 carbon atoms include butyric acid, valeric acid, caproic acid, enanthic acid, strong prillic acid, pelargonic acid, strong prinic acid, undecanoic acid, lauric acid, tridecanoic acid, myristic acid, bentazane power Acid, palmitic acid, margaric acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid v serotic acid, montanic acid, melicic acid, linoleic acid, linolenic acid, ⁇ -linolenic acid, arachidonic acid, ricinoleic acid, c-oxylinolenic acid Tonosuccinic acid, linoelaidic acid, oleic acid
  • a more preferable fatty acid is a linear fatty acid having 6 to 12 carbon atoms.
  • the straight chain fatty acid having 6 to 12 carbon atoms include caproic acid, strong prillic acid, strong purine acid, and lauric acid. Among these, caproic acid, strong prillic acid, strong purine are most preferable. It is an acid. One or more of these fatty acids can be used.
  • Examples of the water (c) include tap water, ion-exchanged water, distilled water, and the like, but are not particularly limited. Liquid stability of aqueous coolant, cleanability after DI molding, suppression of damage to the laminate film From the viewpoint of the above, ion exchange water is most preferable.
  • the DI molding aqueous coolant of the present invention has a total content of the base (a) and the fatty acid (b) from the viewpoint of DI moldability and corrosion resistance (soundness of film on the inner surface of the can). 4 mass%, preferably 0.04 to 3.0 mass%, more preferably 0.06 to 2.0 mass%, most preferably 0.07 to 1.5 mass%. That is, if the total content of the base (a) and the fatty acid (b) is less than 0.02% by mass, the corrosion resistance (the soundness of the film on the inner surface of the can) is inferior, whereas if it exceeds 4% by mass, the DI moldability ( The stripping property is inferior.
  • the base (a) and the fatty acid (b) may undergo a neutralization reaction.
  • the proportion of linear fatty acids having 6 to 1.2 carbon atoms in the fatty acid (b) is set to 80 to 1 0 0 mass. / 0 , preferably 85 to 100% by mass. That is, when the proportion of the straight chain fatty acid having 6 to 12 carbon atoms is less than 80% by mass, the film damage is remarkable and the corrosion resistance (the soundness of the film on the inner surface of the can) is also inferior.
  • the ratio (content) of the water (c) in the aqueous coolant is 80 mass. / 0 or more, more preferably 85% by mass or more, most preferably 90% by mass or more Sile,. If the ratio of water (c) is less than 80% by mass, DI moldability, cleanability after DI molding, and suppression of film damage tend to be insufficient.
  • the water-based coolant for laminating metal plate DI molding of the present invention having the composition as described above provides very excellent DI moldability in DI molding of a laminated metal plate.
  • Laminated film of laminated metal plate Particularly polyester film
  • Easy to clean and DI can be obtained with high food safety even if the cleaning process for DI molded products is simplified.
  • Aqueous However, it has the performance of not causing wrinkles on the molding equipment surface.
  • the aqueous metal coolant for DI molding of the laminated metal sheet of the present invention has corrosion resistance (soundness of the film on the inner surface of the can), anti-molding property on the surface of the molding machine, cleanability after DI molding, suppression of damage to the laminate film From the viewpoint of liquid stability of the coolant, base (a) Z fatty acid
  • (b) has a molar ratio of 0, 2 to 3.0, more preferably 0.3 to 2.9, particularly preferably 0.4 to 2.8, and an alkanolamine Z fatty acid (b)
  • the molar ratio of 0 to 3.0, more preferably 0.1 to 2.9, particularly preferably 0.2 to 2.8, and the molar ratio of the hydroxy hydroxide metal fatty acid (b) is 0 to 1. 8, more preferably 0.1 to 1.7, and particularly preferably 0.2 to 1.6.
  • the laminated metal sheet DI water-based coolant of the present invention has a pH of 7. at 40 ° C from the viewpoint of coolant stability and corrosion resistance (soundness of the film on the inner surface of the can) 1 . 3 to: LI. 5, more preferably 7.3 to: L 1.0, more preferably 7.5 to: L 0.
  • pH 7.
  • the liquid stability of the coolant tends to be lowered, and the corrosion resistance (the soundness of the film on the inner surface of the can) tends to be lowered.
  • the pH exceeds 11.5, the corrosion resistance (the soundness of the film on the inner surface of the can) tends to be reduced.
  • the aqueous metal coolant for DI molding of the present invention comprises a base (a), a fatty acid (b) and water (c) as essential components. Furthermore, the DI moldability, the liquid stability of the coolant, and the molding apparatus Other additive components can be added for the purpose of further enhancing the effects of surface anti-mold properties, suppression of damage to the laminate film, cleanability after DI molding, food safety, and the like. Examples of the additive component include surfactants, detergents, dispersants, preservatives, antifoaming agents, metal ion sealing agents, and the like, and one or more of these may be appropriately blended.
  • the content of additive components other than the base (a), fatty acid (b) and water (c) is not particularly limited, but is preferably 16% by mass or less based on the preferred content of water (c) mentioned in Also, from the viewpoint of coolant stability, 6% by mass or less is preferred.
  • Nonionic surfactants include, for example, polyoxyethylene alkyl etherol, block-type polyoxyethylene polyoxypropylene anolenoquine ethere, random polyoxyethylene polyoxypropylene alkyl ether, block-type polyoxyalkylene glycol, random -Type polyoxyalkylene glycol, block-type polyoxyalkylene glycol alkyldiamine, polyoxyethylene ether surfactants such as random-type polyoxyalkylene glycol alkyldiamine, sorbitan fatty acid ester, fatty acid sugar ester, glycerin Polyhydric alcohol fatty acid ester surfactants such as fatty acid esters and pentaerythritol fatty acid esters, polyoxyethylene fatty acid esters, sorbi Tanpolyoxyethylene
  • nonionic surfactant and an anionic surfactant can be used in combination.
  • known cationic surfactants and amphoteric surfactants can also be used.
  • more preferred nonionic surfactants include polyoxyethylene alkyl ether, block type polyoxyethylene polyoxypropylene alkyl ether, random type polyoxyethylene polyoxypropylene alkyl.
  • Polyoxyethylene ether surfactants such as ether, block-type polyoxyalkylene glycol, random-type polyoxyalkylene glycol, block-type polyoxyalkylene glycol alkyldiamine, random-type polyoxyalkylene glycol alkyldiamine, sorbitan Polyhydric alcohol fatty acid ester surfactants such as fatty acid ester, fatty acid sugar ester, glycerin fatty acid ester, pentaerythritol fatty acid ester, polyoxyethylene And polyoxyethylene ester surfactants such as polyethylene fatty acid ester, sorbitan polyoxyethylene fatty acid ester, sorbitol polyoxyethylene fatty acid ester, and polyoxyethylene castor oil ester.
  • Polyhydric alcohol fatty acid ester surfactants such as fatty acid ester, fatty acid sugar ester, glycerin fatty acid ester, pentaerythritol fatty acid ester, polyoxyethylene And polyoxyethylene ester surfactants such as
  • examples of the detergent include Al strength metal or Al strength earth metal sulfonate, alkali metal or alkaline earth metal salicylate, alkali metal or alkaline earth metal phenate, fatty acid soap, and the like. One or two or more of these can be used.
  • Typical examples of the preservative include phenol, triazine and isothiazoline preservatives.
  • phenolic systems include o-phenylphenol, Na-o-phenolenophenol, 2, 3, 4, 6-tetrachlorophenol and the like.
  • triazines include hexahydro-1,3,5-tris (2-hydroxychetyl) _1,3,5-triazine.
  • the isothiazoline series includes 1,2-benzoisothiazoline 3-one, 5-chloro Rho 2-methyl-4-isothiazoline-3-one, 2-methyl-isothiazoline-3-one and the like.
  • One or more of the above preservatives can be used.
  • antifoaming agent examples include silicone emulsion, higher alcohol, metal soap, ethylene-propylene copolymer, etc., from the viewpoint of food safety, and one or more of these can be used.
  • the laminated metal plate is DI formed using the aqueous coolant as described above.
  • a laminate DI molded body such as a DI can is produced by DI molding a laminated metal plate using the aqueous coolant as described above.
  • the material of the laminated metal plate for example, a steel plate, an aluminum plate, an aluminum alloy plate, or the like can be used, but an inexpensive steel plate is preferable from the viewpoint of economy.
  • a chrome-plated steel plate or a tinplate steel plate can be used as the laminate base steel plate.
  • a chrome-plated steel plate (tin-free steel) a metal chromium layer (upper layer) with an adhesion amount of 50 to 20 O mg / m 2 and an adhesion amount in terms of metal chromium of 3 to 3 O mg Zm 2 Those having a chromium oxide layer (lower layer) are preferred.
  • the steel plate a steel plate having an adhesion amount of 0.5 to 15 g Zm 2 is preferable.
  • the thickness of the steel plate is not particularly limited, but, for example, a thickness in the range of 0.15 to 0.3 O mm can be suitably used.
  • the resin layer (laminate film) constituting the laminated metal plate is preferably composed of a polyester resin film. Further, the aqueous coolant of the present invention is particularly useful for DI molding of a laminated metal plate having such a resin layer.
  • the polyester resin film has excellent mechanical strength, a low friction coefficient, good lubricity, excellent shielding effect against gas and liquid, that is, barrier property, and is inexpensive. Therefore, it can sufficiently withstand the high degree of processing with elongation of 300% as in DI molding, and the film is sound after molding.
  • the dicarboxylic acid component of the polyester resin is mainly composed of terephthalic acid, and the diol component is mainly composed of ethylene glycol. And, from the balance between processability and strength of the polyester resin layer, it is preferable to contain 8 to 2 O m o 1% isophthalic acid component as a copolymer component. Further, the crystallization temperature is preferably 120 to 160 ° C.
  • the copolymer component ratio When the copolymer component ratio is low, the molecules are easily oriented, and when the degree of processing is high, there is a tendency that film peeling occurs or cracks (breaks) parallel to the can height direction occur. In addition, the orientation proceeds in the same manner when the processed can body is subjected to heat treatment. From the standpoint of difficulty in orientation, the higher the ratio of the copolymer component, the better. However, if it exceeds 2 O mo 1%, the film cost increases, resulting in poor economics, and the film becomes flexible and scratch-resistant. N Chemical resistance may be reduced.
  • the crystallization temperature is less than 120 ° C, it is very easy to crystallize, and cracks and pinholes may occur in the film resin when processing at a high degree of processing.
  • the temperature exceeds 160 ° C., the crystallization speed is very slow, and even heat treatment at 150 ° C. or higher does not cause sufficient crystallization, which may impair the strength and durability of the film.
  • additives such as pigments, lubricants and stabilizers may be added to the resin layer, or a resin layer having other functions may be disposed between the upper layer or the base steel plate to form two or more layers of resin. Even as a layer.
  • a resin layer having a thickness of 5 to 50 / m can be suitably used.
  • the laminated metal plate usually has resin tanks such as the above-described polyester resin layer on both sides of the metal plate.
  • the method for laminating the resin on the metal plate is not particularly limited. Biaxial stretching A thermocompression bonding method in which a film or an unstretched film is thermocompression bonded, an extrusion method in which a resin layer is directly formed on a metal plate using a T die, or the like can be appropriately selected. Furthermore, it is also possible to bond the polyester resin film to the base metal plate using an adhesive such as polyester urethane or saturated polyester, and it has been confirmed that any method can provide a sufficient effect. However, the thermocompression bonding method is particularly economical because it has excellent adhesion to the base metal and does not require an adhesive.
  • the water-based coolant for forming a laminated metal sheet D I of the present invention can be used particularly suitably for ironing (and redrawing) in a DI press machine, and circulates in the machine to cool during molding.
  • Paraffin is a fatty acid ester wax having a melting point of 30 to 80 ° C.
  • the one coated with O mg / m 2 shows good moldability.
  • a molded product obtained by molding with a DI press apparatus is subjected to a heat treatment to improve drying and film adhesion without washing or washing.
  • the heat treatment temperature at this time is preferably 200 ° C. or higher.
  • the heat treatment temperature is preferably below the melting point of the resin layer.
  • a chrome-plated steel sheet with a tempering degree of T 3 with a thickness of 0.2 O mm (metal Cr layer: 120 mg / m 2 , Cr oxide layer: 1 O mg Zm 2 in terms of metal Cr)
  • metal Cr layer 120 mg / m 2
  • Cr oxide layer 1 O mg Zm 2 in terms of metal Cr
  • a nip roll on both sides of a base steel sheet heated to 2400 ° C, a 25% ⁇ -thick isophthalic acid 10% copolymerized polyethylene terephthalate film made by biaxial stretching. Pressure
  • the laminate was then cooled with water within 1 second, and then dried to produce a laminated steel sheet for a laminated DI can.
  • the laminated steel sheet thus obtained is DI molded under the following conditions to produce a laminated DI can, and the water-based coolant shown in Tables 1 to 3 in the redrawing and ironing process at that time was used.
  • this DI forming first, 5 O mg Zm 2 of paraffin wax with a melting point of 45 ° C was applied to both sides of a laminated steel plate, then a blank of 1 2 3 mm was punched out, and the blank was cut with a commercially available cutting press. It was drawn into a cup with an inner diameter of 7 1 ⁇ ⁇ and a height of 36 mm.
  • this cup was placed in a commercially available DI press machine, punching speed: 20 O mm / s, stroke: 5 6 O mm, redrawing and 3 stages of ironing (each reduction 20) %, 19%, 23%), and finally, a laminated DI can having a can inner diameter of 52 mm and a can height of 90 mm was formed.
  • aqueous coolant was circulated at a temperature of 50 ° C. This aqueous coolant used tap water as water.
  • liquid stability was evaluated by the method shown below.
  • the stripping property at the time of DI molding the corrosion resistance of the manufactured laminated DI can (soundness of the inner film of the can), the damage to the film, and the taste evaluation were evaluated by the following performance tests.
  • the surface of the obtained laminated DI can was sprayed with 50 ° C ion-exchange water for 2 minutes to clean the surface, and then 2100 ° The test was performed after drying for 30 seconds in a C drying oven.
  • Tables 1 to 3 together with the composition and physical properties of the aqueous coolant used.
  • the liquid properties after maintaining the coolant at 40 ° C. for 1 hour were visually observed to evaluate the liquid stability.
  • the evaluation criteria for liquid properties were: ⁇ : transparent, ⁇ : translucent, X: cloudy.
  • Distortion occurs at the opening edge, but the distortion does not reach the trimming part.
  • Distortion occurs at the open end, but the distortion remains at the ear at the open end.
  • Corrosion resistance was evaluated based on the soundness of the inner film of the can (those with fewer film defects were good). After cleaning and drying the laminated DI can, scratch the can mouth with a file so that the underlying steel plate can be energized, and then add the electrolyte (NaCl 1% solution, temperature 25 ° C) to the can. After pouring to fill the can mouth, a voltage of 6.2 V was applied between the can body and the electrolyte. According to the current value measured at this time, evaluation was performed as follows.
  • More than 0.1 mA, 1 mA or less
  • More than 0.01mA, (1mA or less
  • More than 0.5mA, 5mA or less
  • More than 0.05mA, 0.5mA or less
  • the water-based coolant for DI molding of the laminated metal plate of the present invention provides excellent DI moldability in DI molding of the laminated metal plate, and (i) damages the laminate film (especially polyester film) of the laminated metal plate. No, (ii) Easy to clean and can obtain DI can with high food safety even if the cleaning process of DI molded products is simplified. It has performances such as difficult to play. Therefore, according to the DI molding method and the DI manufacturing method of the laminated metal plate of the present invention using such an aqueous coolant, DI molding of the laminated metal plate can be performed appropriately, and excellent A laminé with quality and excellent food safety and durability. G DI molded body (for example, laminated D I can) can be obtained. In addition, since the cleaning process after molding is simplified, there is an advantage that productivity is greatly increased. Therefore, industrial applicability is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Lubricants (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

ラミネート金属板DI成形用水性クーラントは、アルカノールアミンおよび水酸化アルカリ金属の中から選ばれる少なくとも1種の塩基(a)、脂肪酸(b)および水(c)を含む水性クーラントであって、塩基(a)と脂肪酸(b)の合計含有量が0.02~4質量%であり、脂肪酸(b)中に占める炭素数6~12の直鎖脂肪酸の割合が80~100質量%である。該クーラントにより、ラミネート金属板に対する優れたDI成形性が得られ、かつラミネート金属板のフィルムにダメージを与えることもない。しかも、洗浄が容易であり、DI成形品の洗浄工程を簡略化しても食品安全性の高いDI缶を得ることができる。

Description

明 細 書 発明の名称:ラミネート金属板 D I成形用水性クーラントおよびラミネート金属板 の D I成形方法 技術分野
本発明は、 ラミネート金属板 D I成形用水性クーラント (潤滑 '冷却剤) と、 こ の水性クーラントを使用したラミネート金属板の D I成形方法およびラミネート D I成形体の製造方法に関するものである。 ラミネート D I成形体を製造する際のラ ミネート金属板の D I成形では、 しごき成形または再絞り · しごき成形を行うが、 本発明のラミネート金属板 D I成形用水性クーラントは、 特にそのような成形加工 に好適なものである。 背景技術
D I缶は、 その胴と底の部分につなぎ目の無い 2ピース缶の一つであり、 金属板 を絞り成形 (ドローイング) して作製した絞り缶を、 しごき成形または再絞り · し ごき成形 (アイアニング) して加工される缶である。 この D I缶は、 ビール、 清涼 飲料などの飲料用容器や、 スープ、 野菜などの食品用容器として広く使用されてい る。
ここで、 絞り成形とは、 カツビングプレスと称される絞り成形機において、 円盤 状に切り抜レ、た金属板をしわ押さえ装置により固定し、 ポンチとダイスの組み合わ せからなる工具で底付きのカップ状に成形する加工方法である。 また、 しごき成形 とは、 絞りまたは再絞り成形により得られた成形品 (カップ) の側壁を薄く伸ばす 加工である。 絞り成形としごき成形または再絞り · しごき成形を併せて D I成形と 言う。
絞り成形において、 円盤状に切り抜かれた金属板の直径がしごきポンチの直径に 比べて大きすぎる場合には、 1回の絞り成形では所要の形状の力ップを得ることが 困難なことがあり、 その場合、 2回の絞り成形 (絞り一再絞り成形) で所要の形状 に成形することが一般に行われる。 この工程では、 カツビングプレスと称される絞 り成形機により比較的直径の大きな力ップが製造され、 次レ、でボディメーカーと称 される缶体成形機において、 先ず再絞り成形が行われ、 その後しごき成形が実施さ れる。
D I缶用金属板の素材としては、 これまでは錫めつき銅板またはアルミ薄板など の金属板が一般に用いられてきた。 そして、 これらの金属板を D I成形により所望 の形状に成形にした後に洗浄、 表面処理、 塗装等の後処理が行われ、 製品 (D I缶) となる。 し力 し、 最近は、 このような洗浄、 表面処理、 塗装等の後処理を省略また は簡略化できるようにと、 ポリエステルフィルム (以下、 単に 「フィルム」 という こともある) をラミネートした金属板 (ラミネート金属板) を用いて D I成形によ り容器製品 (D I缶) を製造する方法が検討されている。
フィルムがラミネートされた金属板を D I成形する場合と、 従来の金属板を素材 とする場合とでは D I成形方法が大きく異なる。
従来の金属板を素材とした D I缶の製造では、 特許文献 1に記載されるように、 一般には乳化液型クーラントが用いられる。 この乳化液型クーラントは水中に油が 分散されているため、 缶表面に残存した油の洗浄に薬剤を使用する必要があり、 フ イルムにダメージを与えやすいために、ラミネート金属板の D I成形には適さない。 また、 最近では、 特許文献 2, 3に示されるように、 洗浄性に優れる水溶性クー ラントが開発され一般的になってきた。 この水溶性クーラントは、 金属板を素材と した D I成形用であるため、 金属表面と成形工具の間の摩擦を低減して成形性を高 める目的で、 三価アルコールと炭素数 1 8の脂肪酸とのエステル (特許文献 2 ) 、 ポリオキシアルキレン (特許文献 3 ) などにより粘度を高くしている。
しかし、 このような水溶性クーラントを、 ラミネート金属板を素材とする D I成 形に適用した場合、 D I成形性に劣り、 フィルムにダメージを与えやすい上、 D I 缶の食品安全性にも劣るなど、 さまざまな問題があり適用できない。 また、 水性のクーラントを使用する場合、 D I成形のための成形装置の表面に锖 が生じやすレ、という問題もある。
特許文献 1 :特開平 9一 2 7 1 8 6 9号公報
特許文献 2 :特開平 1 0— 8 5 8 7 2号公報
特許文献 3 :特開平 1 0— 8 8 1 7 6号公報 発明の概要
発明が解決しょうとする課題
ラミネート金属板を D I成形する場合は、 金属板表面がラミネートフィルムで被 覆されているために、 従来の金属板の D I成形とは成形方法が根本的に異なる。 す なわち、 ラミネートフィルムの表面は金属表面に比べ らかくまた潤滑性もあるた め、 従来の金属板の D I成形に使用されるような高分子を含んだ高粘性のクーラン トを使用すると、 逆に D I成形性が低下することになる。
また、 ラミネート金属板に使用されるポリエステルフィルムは、 炭素数の多い高 級脂肪酸に対してやや耐久性に劣り、 下地との密着性が低下して、 フィルムにダメ ージを受ける。 また、 従来のクーラントは、 D I成形後に洗浄工程等の後処理で、 クーラントが完全に除去されることを前提としており、 クーラント自体の食品安全 性が低い。
したがって本発明の目的は、 以上のような従来技術の課題を解決し、 ラミネート 金属板の D I成形において優れた D I成形性が得られ、 しかも、 (i) ラミネート金 属板のラミネートフィルム (特にポリエステルフィルム) にダメージを与えない、
(ii) 洗浄が容易であり、 D I成形品の洗浄工程を簡略化しても食品安全性の高い D I缶を得ることができる、 (iii) 水性でありながら成形装置表面に鲭を生じさせ にくい、 などの性能を満足するラミネート金属板 D I成形用水性クーラントを提供 することにある。
また、 本発明の他の目的は、 そのような水性クーラントを使用したラミネート金 属板の D I成形方法およびラミネート D I成形体の製造方法を提供することにある。 課題を解決するための手段
本発明者らは、 ラミネート金属板の D I成形において上記課題を解決できるクー ラントについて鋭意研究した結果、 従来の金属板 D I成形用クーラントに用いられ ているような高分子成分を含まず、 炭素数の少ない脂肪酸成分を含む粘性が低い水 性液とし、 且つそのような脂肪酸に対して特定の塩基を複合添加することにより、 ラミネート金属板の D I成形において非常に優れた D I成形性が得られ、 しかも、 上記 (i) 〜 (iii) の諸性能を兼ね備えたラミネート金属板 D I成形用クーラント が得られることを見出した。
本発明は、 以上のような知見に基づきなされたもので、 その要旨は以下のとおり である。
[1]アルカノールァミンおよび水酸ィヒアルカリ金属の中から選ばれる少なくとも 1種の塩基 (a) 、 脂肪酸 (b) および水 (c) を含む水性クーラントであって、 塩基 (a) と脂肪酸 (b) の合計含有量が 0 . 0 2〜4質量%であり、 脂肪酸 (b) 中に占 める炭素数 6〜1 2の直鎖脂肪酸の割合が 8 0〜 1 0 0質量。 /0であることを特徴と するラミネート金属板 D I成形用水性クーラント。
[2] 上記 [1] の水性クーラントにおいて、 塩基 (a) Z脂肪酸 (b) のモル比が 0 . 2〜3 . 0であって、 且つ、 アル力ノールアミン 脂肪酸 (b) のモル比が 0〜 3 . 0、 水酸化アルカリ金属 Z脂肪酸 (b) のモル比が 0〜1 . 8であることを特徴 とするラミネート金属板 D I成形用水性クーラント。
[3]上記 [1]または [2]の水性クーラントにおいて、 4 0 °Cにおける p Hが 7 . 3 - 1 1 . 5であることを特徴とするラミネート金属板 D I成形用水性クーラント。
[4] 上記 [1] 〜 [3] のいずれかの水性クーラントにおいて、 脂肪酸 (b) 力 カプロン酸、 力プリル酸、 力プリン酸おょぴラウリン酸の中から選ばれる少なくと も 1種であることを特徴とするラミネート金属板 D I成形用水性クーラント。
[5] 上記 [1] 〜 [4] のいずれかの水性クーラントにおいて、 塩基 (a) の少な く とも一部としてアルカノールァミンを含み、 該ァルカノールアミンは、 モノエタ ノールァミンおよびトリエタノールァミンの中から選ばれる少なくとも 1種である ことを特徴とするラミネート金属板 D I成形用水性クーラント。
[6] 上記 [1] 〜 [5] のいずれかの水性クーラントにおいて、 塩基 (a) の少な くとも一部として水酸化アルカリ金属を含み、 該水酸化アルカリ金属は、 水酸化ナ トリゥムおよび水酸化カリゥムの中から選ばれる少なくとも 1種であることを特徴 とするラミネート金属板 D I成形用水性クーラント。
[7] 上記 [1] 〜 [6] のいずれかの水性クーラントを用いてラミネート金属板を D I成形することを特徴とするラミネート金属板の D I成形方法。
[8] 上記 [7] の D I成形方法において、 ラミネート金属板を構成する金属板が クロムめつき銅板またはぶりき鋼板であることを特徴とするラミネート金属板の D I成形方法。
[9] 上記 [1] 〜 [6] のいずれかの水性クーラントを用い、 ラミネート金属板を D I成形することにより、 ラミネート D I成形体を製造することを特徴とするラミ ネート D I成形体の製造方法。
[10] 上記 [9] の製造方法において、 ラミネート金属板を構成する金属板がクロ ムめっき鋼板またはぶりき鋼板であることを特徴とするラミネート D I成形体の製 造方法。 発明の効果
本発明のラミネート金属板 D I成形用水性クーラントは、 ラミネート金属板の D I成形において優れた D I成形性が獰られ、 しかも、 (i) ラミネート金属板のラミ ネートフィルム (特にポリエステルフィルム) にダメージを与えない、 (ii) 洗浄 が容易であり、 D I成形品の洗浄工程を簡略化しても食品安全性の高い D I缶を得 ることができる、 (iii) 水性でありながら成形装置表面に鲭を生じさせにくレ、、 な どの性能を有する。 したがつてまた、 このような水性クーラントを用いる本発明の ラミネート金属板の D I成形方法およびラミネート D I成形体の製造方法によれば、 ラミネート金属板の D I成形を適切に行うことができ、 優れた品質を有し、 しかも 食品安全性と耐久性に優れたラミネート D I成形体 (例えば、 ラミネート D I缶) を得ることができる。 また、 成形後の洗浄工程も簡略化されるため、 生産性も非常 に高まるという利点がある。 発明を実施するための形態
本発明のラミネート金属板 D I成形用水性クーラントは、 アルカノールァミンお よび水酸ィ匕アルカリ金属の中から選ばれる少なくとも 1種の塩基 (a) 、脂肪酸 (b) および水 ( を含む水性クーラントであって、 塩基 (a) と脂肪酸 (b) の合計含有 量が 0 . 0 2〜4質量%であり、脂肪酸 (b) 中に占める炭素数 6〜1 2の直鎖脂肪 酸の割合が 8 0〜 1 0 0質量%である水性クーラントである。
前記塩基(a) は、 アルカノールァミンおよび水酸化アルカリ金属の中から選ばれ る少なくとも 1種からなる。
前記アルカノールァミンとしては、 分子内に水酸基を有する飽和脂肪族ァミンが 挙げられ、 特に限定されないが、 好ましくは炭素数が 1〜1 2のアル力ノールアミ ンを用いる。 炭素数が 1〜1 2のアルカノールァミンとしては、 例えば、 モノメタ ノールァミン、 ジメタノールァミン、 トリメタノールァミン、 N—ェチルメタノー ノレアミン、 N—プロパンメタノーノレアミン、 N—n—ブチノレメタノーノレアミン、 N— tert—ブチルメタノールァミン、 N, N—ジェチルメタノールァミン、 N, N—ジ プロパンメタノールァミン、 N, N—ジ n—ブチルメタノールァミン、 N, N—ジ t ert—ブチルメタノーノレアミン、 モノエタノールァミン、 ジェタノ一/レアミン、 トリ エタノールァミン、 N—プロパンエタノールァミン、 N—n—ブチルエタノールアミ ン、 N— tert—ブチノレエタノーノレアミン、 N, N—ジメチノレエタノーノレアミ ン、 N, N—ジプロパンエタノーノレアミン、 N, N—ジ n—ブチ^^エタノー^/アミン、 N, N—ジ tert—ブチルエタノールァミン、 モノプロパノーノレアミン、 ジプロパノール ァミン、 トリプロパノールァミン、 N—メチルプロパノールァミン、 N—ェチルプ ロパノールァミン、 N _ n _ブチルプロパノールァミン、 N— tert—ブチルプロパ ノールァミン、 N, N—ジメチルプロパノールァミン、 N, N—ジェチルプロパノ ールァミン、 N, N—ジ n—ブチルプロパノールァミン、 N, N—ジ tert—ブチル プロパノールアミン等を挙げることができる。
水性クーラントの液安定性、 D I成形後の洗浄性、 ラミネートフィルム (特にポ リエステルフィルム。 以下同様) へのダメージの抑制などの観点から、 より好まし いアルカノールァミンは、 トリメタィールァミン、 モノエタノールァミン、 ジエタ ノールァミン、 トリエタノールァミン、 モノプロパノールァミンである。 また、 D I成形後の洗浄性、 ラミネートフィルムへのダメージの抑制および食品安全性の観 点から最も好ましいアルカノールァミンは、 モノエタノールァミン、 トリエタノー ルァミンである。
以上挙げたアルカノールァミンは、 それらの 1種または 2種以上を用いることが できる。
前記水酸ィヒ Tルカリ金属としては、 水酸化リチウム、 水酸化ナトリウム、 水酸化 カリウム、 水酸化ルビジウム、 水酸化セシウム、 水酸化フランシウムなどが挙げら れる。 水性クーラントの液安定性、 D I成形後の洗浄性、 ラミネートフィルムへの ダメージの抑制および食品安全性の観点から、最も好ましい水酸化アルカリ金属は、 水酸化ナトリウム、 水酸化力リゥムである。
以上挙げた水酸化アル力リ金属は、 それらの 1種または 2種以上を用いることが できる。
前記脂肪酸 (b) としては、脂肪族モノカルボン酸が挙げられ、 特に限定されない が、 好ましくは炭素数が 2〜3 4の脂肪酸を用いる。 炭素数が 2〜 3 4の脂肪酸と しては、 酪酸、 吉草酸、 カプロン酸、 ェナント酸、 力プリル酸、 ペラルゴン酸、 力 プリン酸、 ゥンデカン酸、 ラウリン酸、 トリデカン酸、 ミリスチン酸、 ベンタザ力 ン酸、パルミチン酸、マルガリン酸、 ステアリン酸、 ノナデカン酸、ァラキジン酸、 ベヘン酸、 リグノセリン酸 v セロチン酸、 モンタン酸、 メリシン酸、 リノール酸、 リノレン酸、 γ -リノレン酸、 ァラキドン酸、 リシノール酸、 c -ォキシリノレン酸 トウノヽク酸、 リノエライジン酸、 ォレイン酸、 イソ吉草酸、 イソ酪酸、 アンティソ 酸、 リカン酸、 ゴノレリン酸、 ヒ ドロカルビン酸、 マルバリック酸等を挙げることが できる。
ラミネートブイルムへのダメージの抑制、 D I成形後の洗浄性および食品安全性 の観点から、 より好ましい脂肪酸は、 炭素数 6〜1 2の直鎖脂肪酸である。 この炭 素数 6〜1 2の直鎖脂肪酸としては、 カプロン酸、 力プリル酸、 力プリン酸、 ラウ リン酸などが挙げられ、このなかで最も好ましいものは、カプロン酸、力プリル酸、 力プリン酸である。 以上挙げた脂肪酸は、 それらの 1種または 2種以上を用いるこ とができる。
前記水 (c) としては、 水道水、 イオン交換水、 蒸留水等が挙げられ、 特に限定さ れないが、 水性クーラントの液安定性、 D I成形後の洗浄性、 ラミネートフィルム へのダメージの抑制の観点から、 最も好ましいものはイオン交換水である。
本発明の D I成形用水性クーラントは、 D I成形性および耐食性 (缶内面のフィ ルムの健全性) などの観点から、 前記塩基 (a) と脂肪酸 (b) の合計含有量を 0 . 0 2〜4質量%、 好ましくは 0 . 0 4〜3 . 0質量%、 さらに好ましくは 0 . 0 6 〜2 . 0質量%、 最も好ましくは 0 . 0 7〜1 . 5質量%とする。 すなわち、 塩基 (a) と脂肪酸 (b) の合計含有量が 0 . 0 2質量%未満では耐食性 (缶内面のフィ ルムの健全性) が劣り、 一方、 4質量%を超えると D I成形性 (ストリッビング性) が劣る。
本発明の D I'成形用水性クーラント中において、 前記塩基 (a) と脂肪酸 (b) は 中和反応をしてもよい。
また、 耐食性 (缶内面のフィルムの健全性) およびラミネートフィルムへのダメ ージの抑制の観点から、脂肪酸(b) 中に占める炭素数 6〜 1 .2の直鎖脂肪酸の割合 を 8 0〜1 0 0質量。 /0、 好ましくは 8 5〜1 0 0質量%とする。 すなわち、 炭素数 6〜 1 2の直鎖脂肪酸の割合が 8 0質量%未満では、 フィルムダメ一ジが著しく且 つ耐食性 (缶内面のフィルムの健全性) も劣る。
また、 水性クーラント中での前記水 (c) の割合 (含有量) は、 8 0質量。 /0以上、 より好ましくは 8 5質量%以上、 最も好ましくは 9 0質量%以上とすることが望ま しレ、。 水 (c) の割合が 80質量%未満では、 D I成形性、 D I成形後の洗浄性、 フ イルムダメージの抑制が不十分になりやすい。
以上のような組成を有する本発明のラミネート金属板 D I成形用水性クーラント は、 ラミネート金属板の D I成形において非常に優れた D I成形性が得られ、 しか も、 (i) ラミネート金属板のラミネートフィルム (特にポリエステルフィルム) に ダメージを与えない、 (ii) 洗浄が容易であり、 D I成形品の洗浄工程を簡略ィ匕し ても食品安全性の高い D I缶を得ることができる、 (iii) 水性でありながら成形装 置表面に鲭を生じさせにくい、 などの性能を有する。
—本発明のラミネート金属板 D I成形用水性クーラントは、 耐食性 (缶内面のフィ ルムの健全性) 、 成形装置表面の防鲭性、 D I成形後の洗浄性、 ラミネートフィル ムへのダメージの抑制およびクーラントの液安定性の観点から、塩基 (a) Z脂肪酸
(b) のモル比が 0、 2〜3. 0、 より好ましくは 0. 3〜2. 9、 特に好ましくは 0. 4〜2. 8であって、 且つ、 アルカノールァミン Z脂肪酸 (b) のモル比が 0〜 3. 0、 より好ましくは 0. 1~2. 9、 特に好ましくは 0. 2〜2. 8、 水酸化 アル力リ金属 脂肪酸(b)のモル比が 0〜 1. 8、 より好ましくは 0. 1〜1. 7、 特に好ましくは 0. 2〜1. 6であることが望ましい。
すなわち、 塩基 (a) ノ脂肪酸 (b) のモル比が 0. 2未満では、 耐食性 (缶内面 のフィルムの健全性) 、 フィルムダメージの抑制、 D I成形後の洗浄性、 クーラン トの液安定性、 成形装置表面の防鲭性が低下する傾向がある。 一方、 3. 0を超え ると、 耐食性 (缶内面のフィルムの健全性) が低下傾向となるとともに、 フィルム ダメージを生じ易くなる。 さらに、 塩基 (a) の一部または全部としてアル力ノール アミンを含む場合、 アルカノールァミン/脂肪酸 (b) のモル比が 3. 0を超え、 ま た、塩基 (a) の一部または全部として水酸化アルカリ金属を含む場合、 水酸化アル カリ金属/脂肪酸 (b) のモル比が 1. 8を超えても、 フィルムダメージを生じ易く なる。
本発明のラミネート金属板 D I成形用水性クーラントは、クーラントの液安定性、 耐食性 (缶内面のフィルムの健全性) 1などの観点から、 40°Cにおける pHが 7. 3〜: L I . 5、 より好ましくは 7 . 3〜: L 1 . 0、 さらに好ましくは 7 . 5〜: L 0 .
5、 最も好ましくは 7 . 5〜9 . 5であることが望ましい。 すなわち、 p Hが 7 .
3未満では、 クーラントの液安定性が低下しやすく、 また耐食性 (缶内面のフィル ムの健全性) も低下する傾向がある。 一方、 p Hが 1 1 . 5を超えると、耐食性(缶 内面のフィルムの健全性) が低下する傾向がある。
本発明のラミネート金属板 D I成形用水性クーラントは、 塩基 (a) 、 脂肪酸 (b) および水 (c) を必須成分するものであるが、 さらに、 D I成形性、 クーラントの液 安定性、 成形装置表面の防鲭性、 ラミネートフィルムへのダメージの抑制、 D I成 形後の洗浄性、 食品安全性などに関する効果をさらに高める目的で、 他の添加成分 を添加することができる。 その添加成分としては、 例えば、 界面活性剤、 清浄剤、 分散剤、 防腐剤、 消泡剤、 金属イオン封止剤等が挙げられ、 これらの 1種以上を適 宜配合してもよい。
塩基 (a) 、 脂肪酸 (b) および水 (c) 以外の添加成分の含有量は特に限定しない が、 ざきに述べた水 (c) の好ましい含有量からして 1 6質量%以下が好ましく、 ま た、 クーラントの液安定性の観点からは 6質量%以下が好ましレ、。
前記界面活性剤としては、 ノニオン系、 ァニオン系、 カチオン系または両性系の 各界面活性剤を用いることができ、 これらの中でも、 特にノニオン系界面活性剤が 好ましい。 ノニオン系界面活性剤としては、 例えば、 ポリオキシエチレンアルキル エーテノレ、ブロック型ポリオキシエチレンポリオキシプロピレンァノレキノレエーテノレ、 ランダム型ポリオキシエチレンポリオキシプロピレンアルキルエーテル、 ブロック 型ポリオキシアルキレングリコール、ランダム型ポリオキシアルキレングリコール、 ブロック型ポリオキシアルキレングリコールアルキルジァミン、 ランダム型ポリオ キシァノレキレングリコールアルキルジァミン等のポリオキシエチレンエーテル系界 面活性剤、 ソルビタン脂肪酸エステル、 脂肪酸シュガーエステル、 グリセリン脂肪 酸エステル、 ペンタエリスリ トール脂肪酸エステル等の多価アルコール脂肪酸エス テル系界面活性剤、 ポリオキシエチレン脂肪酸エステル、 ソルビタンポリオキシェ チレン脂肪酸エステル、 ソルビトールポリオキシエチレン脂肪酸エステル、 ペンタ エリスリ トールポリオキシエチレン脂肪酸エステル、 ポリオキシエチレンひまし油 エステル等のポリオキシエチレンエステル系界面活性剤等が挙げられ、 これらの 1 種または 2種以上を用いることができる。
また、 ノ二オン系界面活性剤とァニオン系界面活性剤を併用することもできる。 さらに公知のカチオン系界面活性剤、 両性系界面活性剤を用いることもできる。 また、 食品安全性の観点から、 より好ましいノ-オン系界面活性剤としては、 ポ リオキシエチレンアルキルエーテル、 ブロック型ポリオキシエチレンポリオキシプ 口ピレンアルキルエーテル、 ランダム型ポリオキシエチレンポリオキシプロピレン アルキルエーテル、 ブロック型ポリオキシアルキレングリコール、 ランダム型ポリ ォキシアルキレングリコール、 ブロック型ポリオキシアルキレングリコールアルキ ルジァミン、 ランダム型ポリオキシアルキレングリコールアルキルジァミン等の'ポ リオキシエチレンエーテル系界面活性剤、 ソルビタン脂肪酸エステル、 脂肪酸シュ ガーエステル、 グリセリン脂肪酸エステル、 ペンタエリスリ トール脂肪酸エステル 等の多価アルコール脂肪酸エステル系界面活性剤、 ポリオキシエチレン脂肪酸エス テル、 ソルビタンポリオキシエチレン脂肪酸エステル、 ソルビトールポリオキシェ チレン脂肪酸エステル、.ポリオキシエチレンひまし油エステル等のポリオキシェチ レンエステル系界面活性剤が挙げられる。
前記清浄剤としては、 食品安全性の観点から、 アル力リ金属またはアル力リ土類 金属スルホネート、 アルカリ金属またはアルカリ土類金属サルシレート、 アルカリ 金属またはアルカリ土類金属フエネート、 脂肪酸石けん等が挙げられ、 これらの 1 種または 2種以上を用いることができる。
前記防腐剤としては、 フエノール系、 トリアジン系又はィソチアゾリン系の各防 腐剤等が代表的なものとして挙げられる。 具体的には、 フヱノール系としては、 o —フエニルフエノーノレ、 N a— o—フエニノレフエノーノレ、 2, 3, 4, 6—テトラ クロ口フエノール等が挙げられる。 トリアジン系としては、へキサヒ ドロ一 1, 3, 5—トリス (2—ヒ ドロキシェチル) _ 1, 3, 5—トリアジン等が挙げられる。 イソチアゾリン系としては、 1, 2—ベンゾイソチアゾリン一 3—オン、 5—クロ ロー 2—メチル一4一イソチアゾリン一 3—オン、 2—メチルーイソチアゾリンー 3—オン等が挙げられる。 以上の防腐剤は、 1種または 2種以上を用いることがで きる。
また、 食品安全性の観点から、 より好ましい防腐剤として、 。 一フエエルフエノ ール、 N a— o—フエ-ノレフエノール、 へキサヒ ドロ一 1 , 3, 5—トリス (2— ヒ ドロキシェチル) 一 1 , 3, 5—トリアジン、 1, 2—べンゾイソチアゾリンー 3—オン、 5—クロロー 2—メチノレー 4一イソチアゾリン一 3—オン、 2—メチノレ 一イソチアゾリンー 3—オン等が挙げられる。
前記消泡剤としては、 食品安全性の観点から、 シリコーンのエマルシヨン、 高級 アルコーノレ、金属石けん、エチレン一プロピレンコポリマー等を挙げることができ、 これらの 1種または 2種以上を用いることができる。
本発明のラミネート金属板の D I成形方法では、 以上述べたような水性クーラン トを用いてラミネート金属板を D I成形する。 また、 本発明のラミネート D I成形 体の製造方法では、 以上述べたような水性クーラントを用い、 ラミネート金属板を D I成形することにより、 D I缶などのラミネート D I成形体を製造する。
以下、 このような本発明によるラミネート佥属板の D I成形方法およびラミネー ト D I成形体の製造方法について、 好ましい条件などを説明する。
まず、 ラミネート金属板の素材としては、 例えば、 鋼板、 アルミニウム板、 アル ミニゥム合金板などが使用可能であるが、 経済性から安価な鋼板が好ましい。 ラミ ネート下地用の鋼板としては、 例えば、 クロムめつき鋼板、 ぶりき鋼板などが使用 可能である。 クロムめつき鋼板 (ティンフリースチール) としては、 鋼板面に付着 量 5 0〜 2 0 O m g /m2の金属クロム層 (上層) と、 金属クロム換算の付着量が 3〜 3 O m g Zm2のクロム酸化物層 (下層) を有するものが好ましい。 また、 ぶ りき鋼板としては、 0 . 5〜 1 5 g Zm2のめつき量を有するものが好ましい。 鋼 板の板厚は特に限定されないが、 例えば、 0 . 1 5〜 0 . 3 O mmの範囲のものが 好適に使用できる。 ラミネート金属板を構成する樹脂層 (ラミネートフィルム) は、 ポリエステル樹 脂フィルムで構成されるのが好ましい。 また、 本発明の水性クーラントは、 このよ うな樹脂層を有するラミネート金属板の D I成形に特に有用である。
ポリエステル樹脂フィルムは、 機械的強度に優れるとともに、 摩擦係数が小さく 潤滑性が良好であって、 ガスや液体に対する遮蔽効果すなわちバリア性に優れ、 か つ安価である。 したがって、 D I成形のように伸び率が 3 0 0 %にもなる加工度の 高い成形にも十分に耐えることができ、 皮膜は成形後も健全である。
ポリエステル樹脂のジカルボン酸成分はテレフタル酸を主成分とし、 ジオール成 分はエチレングリコールを主成分とする。 そして、 ポリエステル樹脂層の加工性と 強度のバランスから、 共重合成分として 8〜2 O m o 1 %のイソフタル酸成分を含 有することが好ましい。 また、 結晶化温度は 1 2 0〜1 6 0 °Cであることが好まし い。
共重合成分比率が低レ、場合、 分子が配向し易く、 加工度が高くなると、 フィルム 剥離が発生したり、 缶高さ方向に平行な亀裂 (破断) が生じる傾向がある。 また、 加工後の缶体に熱処理を施した場合も同様に配向が進む。配向のし難さの点からは、 共重合成分の比率は高いほど良いが、 2 O m o 1 %を超えるとフィルムコストが高 くなるため経済性が劣るほか、 フィルムが柔軟になり耐傷付き性ゃ耐薬品性が低下 する可能性がある。
結晶化温度が 1 2 0 °C未満では非常に結晶化しやすいため、 高加工度の加工では フィルム樹脂にクラックやピンホールが発生する場合がある。 一方、 1 6 0 °Cを超 えると結晶化スピードが非常に遅いため、 1 5 0 °C以上の熱処理でも十分に結晶化 せず、 フィルムの強度や耐久性が損なわれる場合がある。
さらに、樹脂層中には顔料や滑剤、安定剤などの添加剤を加えて用いてもよいし、 他の機能を有する樹脂層を上層または下地鋼板との間に配置して 2層以上の樹脂層 としてもよレ、。 樹脂層の厚みは、 5〜5 0 / mのものが好適に使用できる。
ラミネート金属板は、 通常、 上述したポリエステル樹脂層などの樹脂槽を金属板 の両面に有する。 金属板への樹脂のラミネート方法は特に限定されない。 2軸延伸 フィルム、 あるいは無延伸フィルムを熱圧着させる熱圧着法、 Tダイなどを用いて 金属板上に直接樹脂層を形成させる押し出し法などを適宜選択することができる。 さらに、 ポリエステルウレタン系、 飽和ポリエステル系等の接着剤を使用して、 ポ リエステル樹脂フィルムを下地金属板に貼り合わせることも可能であり、 いずれの 方法でも十分な効果が得られることが確認されているが、 特に熱圧着法が、 下地金 属との密着性にも優れ、 また接着剤を必要としない等の理由で経済的にも有利であ る。
ラミネート金属板の D I成形では、 市販のカツビングプレスおよび D Iプレス装 置が使用可能であり、 その仕様による差はない。 本発明のラミネート金属板 D I成 形用水性クーラントは、 特に D Iプレス装置でのしごき成形 (および再絞り成形) に 適に使用でき、 装置内を循環して成形時の冷却を行う。
一方、 カツビングプレスの絞り加工時の潤滑としては、 ラミネート金属板表面に ワックスを塗布することが好ましく、 融点 3 0〜 8 0 °Cのパラフィンゃ脂肪酸エス テル系のワックスを 1 0〜5 0 O m g /m 2塗布したものが良好な成形性を示す。
D Iプレス装置で成形して得られた成形体は、洗浄し若しくは洗浄することなく、 乾燥とフィルムの密着性向上のために熱処理が施される。 この時の熱処理温度は 2 0 0 °C以上が好ましい。 2 0 0 °C以上での乾燥処理を行うことによりクーラントの 含有成分がほとんど消失し、 安全性の高いラミネート成形体 (ラミネート D I缶な ど) が得られる。 一方、 フィルムの耐久性を劣化させないためには、 熱処理温度は 樹脂層の融点以下が好ましい。 なお、 D I成形後に洗浄を行う場合は、 水による洗 浄で十分である。 実施例
厚さ 0 . 2 O mmのテンパー度 T 3のクロムめつき鋼板 (金属 C r層: 1 2 0 m g /m 2、 C r酸化物層:金属 C r換算で 1 O m g Zm 2) を下地鋼板とし、 2軸延 伸法で作製された厚さ 2 5 μ πιのイソフタル酸 1 0 %共重合ポリエチレンテレフタ レートフィルムを、 2 4 0 °Cに加熱した下地鋼板の両面にニップロールを用いて圧 着し、 その後 1秒以内に水冷し、 次いで、 乾燥することにより、 ラミネート D I缶 用のラミネート鋼板を作製した。
このようにして得られたラミネート鋼板を、 以下に示す条件で D I成形すること でラミネート D I缶を製造し、 その際の再絞り加工おょぴアイアニング加工におい て表 1〜表 3に示す水性クーラントを用いた。 この D I成形では、 まず、 ラミネー ト鋼板の両面に融点 4 5 °Cのパラフィンワックスを 5 O m g Zm2塗布した後、 1 2 3 mm のブランクを打ち抜き、 そのブランクを市販のカツビングプレスで、 内 径: 7 1 πιιη φ、 高さ : 3 6 mmのカップに絞り成形した。 次いで、 このカップを 市販の D Iプレス装置に装入して、ポンチスピード: 2 0 O mm/ s , ストローク : 5 6 O mmで、 再絞り加工および 3段階のアイアニング加工 (それぞれのリダクシ ヨン 2 0 %、 1 9 %、 2 3 %) を行い、 最終的に缶内径: 5 2 mm、 缶高さ : 9 0 mmのラミネート D I缶を成形した。 この D I成形では、 水性クーラントを 5 0 °C の温度で循環させて使用した。 また、 この水性クーラントは、 水として水道水を使 用した。
使用した水性クーラントについて、以下に示す方法で液安定性を評価した。また、 D I成形時のストリツビング性、 製造されたラミネート D I缶の耐食性 (缶内面フ イルムの健全性) 、 フィルムへのダメージ、 食味評価を、 以下に示す性能試験で評 価した。 なお、 D I成形性および D I成形後の耐食性の評価については、 得られた ラミネート D I缶について、 5 0 °Cのイオン交換水を 2分間スプレーして表面を洗 浄し、 次いで、 2 1 0 °Cの乾燥炉で 3 0秒間乾燥した後に、 試験を行った。 以上の 評価結果を、 使用した水性クーラントの組成 ·物性とともに表 1〜表 3に示す。
(1) クーラントの液宏定性
クーラントを 4 0 °Cに 1時間保持した後の液性状を目視で観察し、 液安定性を評 価した。 液性状の評価基準は、 〇:透明、 △:半透明、 X : 白濁とした。
(2) ストリッビング性
D I成形時に、 成形された缶体からポンチが引抜かれる際に、 缶体の開口端がス トリッパーに引っ掛かって缶の開口部端が歪む現象を、 下記のように評価した。 X :開口端に発生した歪みがトリミング部にまで達する。
△:開口端に歪みが発生するが、 その歪みがトリミング部にまで達しない。 〇:開口端に歪みが発生するが、 その歪みが開口端の耳の部分に留まる。
◎ :開口端に歪み無し。
(3) 耐食性 (缶内面フィルムの健全性)
缶内面フィルムの健全性 (フィルム欠陥の少ないものが良好) により耐食性を評 価した。 洗浄、 乾燥後のラミネート D I缶について、 その下地鋼板に通電できるよ うに、 やすりで缶口に傷をつけた後に、 缶内に電解液 (Na C l 1%溶液, 温度 2 5°C) を注いで缶口まで満たし、 その後、 缶体と電解液間に 6. 2 Vの電圧を付与 した。 この際に測定される電流値に応じて、 下記のように評価した。
X : 1 mA超
△: 0. 1 mA超、 1 mA以下
〇: 0. 01mA超、 ( 1mA以下
◎: 0. 01 mA以下
(4) フイノレムへのダメージ
成形後の缶内面フィルムについて、クーラントによるダメージを評価した。洗浄、 乾燥後のラミネート D I缶について、 各組成のクーラント液を充填して蓋を卷き締 め、 レトルト処理 (125°C, 90分間) を行った。 レトルト後に蓋を開け、 ラミ ネート D I缶の下地鋼板に通電できるように、 やすりで缶口に傷をつけた後に、 缶 内に電解液 (Na C l 1%溶液, 温度 25°C) を注いで缶口まで満たし、 その後、 缶体と電解液間に 6.2 Vの電圧を付与した。この際に測定される電流値に応じて、 下記のように評価した。
X : 5mA超
△: 0. 5mA超、 5mA以下
〇 : 0. 05mA超、 0. 5mA以下
◎: 0. 05mA以下
(5) 食味評価 熱処理後の缶内面でのクーラント含有成分の残存の有無について、 食味官能試験 により評価した。 熱処理後のラミネート D I缶にフランジ処理を施した後、 缶に純 水を注いで缶口まで満たし、 次いで蓋を卷き締めてレトルト処理 (1 2 5 °C, 9 0 分間) を行った。 このレトルト処理後の缶内の水について、 5人の試験者に対して 官能試験を行ない、 下記のように評価した。
X : 5人中 2人以上が異臭または味の違いを感じたもの
〇: 5人中 1人以下が異臭または味の違いを感じたもの
Figure imgf000020_0001
*1 括弧内の数字は炭素数
2
Figure imgf000021_0001
*1 括弧内の数宇は炭素数 *5 花王社製「ルナック 8-98j(=力:;' yル酸 (C8):98質量《½以上)
*2 BASF Japan社製 rPluronic PE 6400」 *6 花王社製 Γルナック 10-98J(=カブリン酸(C10) :98質量%以上〉
*3 BASF Japan社製 rpiuronic PE 4300J *7 卜リ: nタノ-ルァミン: 1質量 W+水酸化カリウム: 99踅量½
*4 配合比率 (質量比) =1 :1 *8 卜リエタノ-ルァミン: 99貧量%+水酸化: ¾リウム: 1質量%
Figure imgf000022_0001
*11 トリエタノールァミン: 20H量 ¾ +水酸化カリウム: 80質 S¾
*12 トリエタノールァミン: 95質量%+水酸化カリウム: 5質量 <½
*13 花王社製 Γルナック 8-98」(=カプリル酸 (C8) : 98貧量%以上):90質量%+ォ仆ン酸 (C18): 10質量 96 *14 花王社製 Γルナック 8-98j ( =カブリル酸(C8) : 98質量 W以上):70質量 W +リノ-ル酸 (C18 ):.30質量%
表 1〜表 3によれば、 本発明例である No. 1〜4 3の水性クーラントを用いた場 合には、 D I成形性 (ストリツビング性および耐食性) 、 フィルムダメージ、 食味 評価のいずれについても良好な結果が得られている。 一方、 比較例である No. 4 4 〜5 4の水性クーラントを用いた場合には、 D I成形性 (ストリツビング性および 耐食性) 、 フィルムダメージ、 食味評価のいずれか 1つ以上が劣っている。
なお、 本発明例の水性クーラントを使用した場合、 D I成形装置のスチール製部 材表面の防鲭にも効果が認められ、 長期間の使用或いはクーラントの長期接触によ つても、 特段の発鲭等の問題は発生しなかった。 産業上の利用可能性
本発明のラミネート金属板 D I成形用水性クーラントは、 ラミネート金属板の D I成形において優れた D I成形性が得られ、 しかも、 (i) ラミネート金属板のラミ ネートフィルム (特にポリエステルフィルム) にダメージを与えない、 (ii) 洗浄 が容易であり、 D I成形品の洗浄工程を簡略化しても食品安全性の高い D I缶を得 ることができる、 (iii) 水性でありながら成形装置表面に鲭を生じさせにくレ、、 な どの性能を有する。 したがつてまた、 このような水性クーラントを用いる本発明の ラミネート金属板の D I成形方法およびラミネート D I成形体の製造方法によれば、 ラミネート金属板の D I成形を適切に行うことができ、 優れた品質を有し、 しかも 食品安全性と耐久性に優れたラミネ一。ト D I成形体 (例えば、 ラミネート D I缶) を得ることができる。 また、 成形後の洗浄工程も簡略化されるため、 生産性も非常 に高まるという利点がある。 よって、 産業上の利用可能性が極めて大きい。

Claims

請 求 の 範 囲
1 . アルカノールァミンおよび水酸化アルカリ金属の中から選ばれる少なくと も 1種の塩基 (a) 、 脂肪酸 (b) および水 (c) を含む水性クーラントであって、 塩 基 (a) と脂肪酸 (b) の合計含有量が 0 . 0 2〜4質量%であり、 脂肪酸 (b) 中に 占める炭素数 6〜1 2の直鎖脂肪酸の割合が 8 0〜1 0 0質量。 /0であることを特徴 とするラミネート金属板 D I成形用水性クーラント。
2 . 塩基 (a) /脂肪酸 (b) のモル比が 0 . 2〜3 . 0であって、 且つ、 アル カノールァミン Z脂肪酸 (b) のモル比が 0〜3 . 0、 水酸化アルカリ金属 Z脂肪酸
(b)のモル比が 0〜1 . 8であることを特徴とする請求項 1に記載のラミネート金 属板 D I成形用水性クーラント。 ,.
3 . 4 0 °Cにおける p Hが 7 . 3〜1 1 . 5であることを特徴とする請求項 1 または 2に記載のラミネート金属板 D I成形用水性クーラント。
4 . 脂肪酸 (b) 力 カプロン酸、 力プリル酸、 力プリン酸およびラウリン酸の 中から選ばれる少なくとも 1種であることを特徴とする請求項 1〜 3のいずれかに 記載のラミネート金属板 D I成形用水性クーラント。
5 . 塩基 (a) の少なくとも一部としてアル力ノールァミンを含み、 該ァルカノ ールァミンは、 モノエタノールァミンおよびトリエタノールァミンの中から選ばれ る少なくとも 1種であることを特徴とする請求項 1〜4のいずれかに記載のラミネ ート金属板 D I成形用水性クーラント。
6 . 塩基 (a) の少なくとも一部として水酸化アル力リ金属を含み、 該水酸化ァ ルカリ金属は、 水酸化ナトリゥムおよび水酸化力リゥムの中から選ばれる少なくと も 1種であることを特徴とする請求項 1〜 5のいずれかに記載のラミネ一ト金属板 D I成形用水性クーラント。
7 . 請求項 1〜 6のいずれかに記載の水性クーラントを用いてラミネート金属 板を D I成形することを特徴とするラミネート金属板の D I成形方法。
8 . ラミネート金属板を構成する金属板がクロムめつき鋼板またはぶりき鋼板 であることを特徴とする請求項 7に記載のラミネート金属板の D I成形方法。
9 . 請求項 1〜6のいずれかに記載の水性クーラントを用い、 ラミネート金属 板を D I成形することにより、 ラミネート D I成形体を製造することを特徴とする ラミネート D I成形体の製造方法。
1 0 . ラミネート金属板を構成する金属板がクロムめつき鋼板またはぶりき鋼 板であることを特徴とする請求項 9に記載のラミネート D I成形体の製造方法。
PCT/JP2009/059937 2008-05-27 2009-05-26 ラミネート金属板di成形用水性クーラントおよびラミネート金属板のdi成形方法 WO2009145338A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/993,943 US8962538B2 (en) 2008-05-27 2009-05-26 DI forming water-based collant of laminated metal sheet and method for DI forming laminated metal sheet
CA 2723299 CA2723299C (en) 2008-05-27 2009-05-26 Drawing/ironing (di) forming water-based coolant of laminated metal sheet and method for di forming laminated metal sheet
CN200980119413.9A CN102046764B (zh) 2008-05-27 2009-05-26 层压金属板di成型用水基冷却液及层压金属板的di成型方法
US14/579,148 US20150107326A1 (en) 2008-05-27 2014-12-22 Di forming water-based coolant of laminated metal sheet and method of di forming laminated metal sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-138741 2008-05-27
JP2008138741A JP5329126B2 (ja) 2008-05-27 2008-05-27 ラミネート金属板di成形用水性クーラントおよびラミネート金属板のdi成形方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/993,943 A-371-Of-International US8962538B2 (en) 2008-05-27 2009-05-26 DI forming water-based collant of laminated metal sheet and method for DI forming laminated metal sheet
US14/579,148 Division US20150107326A1 (en) 2008-05-27 2014-12-22 Di forming water-based coolant of laminated metal sheet and method of di forming laminated metal sheet

Publications (1)

Publication Number Publication Date
WO2009145338A1 true WO2009145338A1 (ja) 2009-12-03

Family

ID=41377205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059937 WO2009145338A1 (ja) 2008-05-27 2009-05-26 ラミネート金属板di成形用水性クーラントおよびラミネート金属板のdi成形方法

Country Status (7)

Country Link
US (2) US8962538B2 (ja)
JP (1) JP5329126B2 (ja)
KR (1) KR101275893B1 (ja)
CN (2) CN102046764B (ja)
CA (1) CA2723299C (ja)
TW (1) TWI408224B (ja)
WO (1) WO2009145338A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018116333A1 (de) * 2018-07-05 2020-01-09 Franke Technology And Trademark Ltd. Verfahren und Vorrichtung zur Trockenbearbeitung tiefgezogener Spülen
JP7363023B2 (ja) * 2018-10-31 2023-10-18 東洋製罐グループホールディングス株式会社 プレス加工用金型およびプレス加工方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681397A (en) * 1979-12-06 1981-07-03 Nippon Kokan Kk <Nkk> Temper rolling lubricant
JPS59166595A (ja) * 1983-03-11 1984-09-19 Toyo Seikan Kaisha Ltd 絞り−しごき缶用潤滑剤
JPH09285827A (ja) * 1996-04-23 1997-11-04 Sky Alum Co Ltd 絞りしごき缶の製造方法
JPH09285826A (ja) * 1996-04-23 1997-11-04 Sky Alum Co Ltd 絞りしごき缶の製造方法
JPH1085872A (ja) * 1996-09-12 1998-04-07 Daiwa Can Co Ltd Di缶の製造方法
JP2002080882A (ja) * 2000-09-07 2002-03-22 Kyodo Yushi Co Ltd 水溶性金属加工用油剤
JP2003089797A (ja) * 2001-09-18 2003-03-28 Cosmo Sekiyu Lubricants Kk マグネシウム合金用塑性加工潤滑剤
JP2004051870A (ja) * 2002-07-23 2004-02-19 Kasatani:Kk マグネシウム及びマグネシウム合金の温間塑性加工用潤滑剤並びに該潤滑剤を用いた加工方法
WO2004069968A1 (ja) * 2003-02-03 2004-08-19 Honda Motor Co., Ltd. 水溶性金属加工用潤滑剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750847A (en) * 1972-05-03 1973-08-07 Master Chemical Corp Method of supplying an aqueous cutting fluid to machine tools
SE452627B (sv) * 1986-05-13 1987-12-07 Berol Suisse Sa Forfarande vid mekanisk bearbetning av metaller i nervaro av ett vattenbaserat kylsmorjmedel samt koncentrat av kylsmorjmedlet
JP3848398B2 (ja) 1996-04-05 2006-11-22 ユニバーサル製缶株式会社 アルミニウム合金缶体の製造方法
JPH1088176A (ja) 1996-09-18 1998-04-07 Yushiro Chem Ind Co Ltd 水溶性しごき成形用潤滑剤原液組成物
CN1065787C (zh) * 1998-03-11 2001-05-16 日石三菱株式会社 拉深展薄罐的生产方法
JP4001007B2 (ja) * 2002-12-19 2007-10-31 日本軽金属株式会社 矩形断面電池容器用アルミニウム合金板
CN100555711C (zh) * 2004-07-23 2009-10-28 索尼株式会社 电池组
JP4628047B2 (ja) * 2004-09-02 2011-02-09 東洋製罐株式会社 樹脂被覆金属板の絞りしごき加工方法、およびそれを用いた樹脂被覆絞りしごき缶
SI1652909T2 (sl) * 2004-10-19 2011-09-30 Helmut Theunissen Sredstvo za prepreäśevanje korozije za funkcionalne tekoäśine, vodne meĺ anice mazivnih koncentratov in njegova uporaba
CN101437929B (zh) * 2006-05-05 2013-06-12 恩琪斯化学公司 包含中和的脂肪酸的金属加工液

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681397A (en) * 1979-12-06 1981-07-03 Nippon Kokan Kk <Nkk> Temper rolling lubricant
JPS59166595A (ja) * 1983-03-11 1984-09-19 Toyo Seikan Kaisha Ltd 絞り−しごき缶用潤滑剤
JPH09285827A (ja) * 1996-04-23 1997-11-04 Sky Alum Co Ltd 絞りしごき缶の製造方法
JPH09285826A (ja) * 1996-04-23 1997-11-04 Sky Alum Co Ltd 絞りしごき缶の製造方法
JPH1085872A (ja) * 1996-09-12 1998-04-07 Daiwa Can Co Ltd Di缶の製造方法
JP2002080882A (ja) * 2000-09-07 2002-03-22 Kyodo Yushi Co Ltd 水溶性金属加工用油剤
JP2003089797A (ja) * 2001-09-18 2003-03-28 Cosmo Sekiyu Lubricants Kk マグネシウム合金用塑性加工潤滑剤
JP2004051870A (ja) * 2002-07-23 2004-02-19 Kasatani:Kk マグネシウム及びマグネシウム合金の温間塑性加工用潤滑剤並びに該潤滑剤を用いた加工方法
WO2004069968A1 (ja) * 2003-02-03 2004-08-19 Honda Motor Co., Ltd. 水溶性金属加工用潤滑剤

Also Published As

Publication number Publication date
TWI408224B (zh) 2013-09-11
CA2723299C (en) 2013-03-26
US20110067798A1 (en) 2011-03-24
CA2723299A1 (en) 2009-12-03
JP5329126B2 (ja) 2013-10-30
TW201006920A (en) 2010-02-16
CN102046764B (zh) 2015-01-28
JP2009286852A (ja) 2009-12-10
CN102046764A (zh) 2011-05-04
US20150107326A1 (en) 2015-04-23
KR101275893B1 (ko) 2013-06-14
KR20110021810A (ko) 2011-03-04
CN104607522B (zh) 2017-01-04
CN104607522A (zh) 2015-05-13
US8962538B2 (en) 2015-02-24

Similar Documents

Publication Publication Date Title
JP2009184262A (ja) 2ピース缶体用ラミネート金属板および2ピースラミネート缶体
MX2008012451A (es) Metodo para recubrimiento de bobinas metalicas o placas para la produccion de articulos huecos.
JP3354024B2 (ja) アルミニウム及びアルミニウム合金板の低温成形用潤滑剤
JPWO2013157379A1 (ja) ラミネート金属板および食品用缶詰容器
JP4787625B2 (ja) 潤滑組成物被覆金属板
WO2009145338A1 (ja) ラミネート金属板di成形用水性クーラントおよびラミネート金属板のdi成形方法
JP4963527B2 (ja) 成形加工用マグネシウム合金板、マグネシウム合金容器およびマグネシウム合金容器の製造方法
JP5205871B2 (ja) ラミネート金属板di成形用水性クーラント、ラミネート金属板のdi成形方法
JP2002146380A (ja) アルミニウムdi缶用成形加工潤滑剤組成物および該潤滑剤組成物を用いたアルミニウムdi缶成形加工方法
JP5205862B2 (ja) ラミネート金属板di成形用水性クーラント
JP2016199794A (ja) 鋼板およびその製造方法
JP5237525B2 (ja) マグネシウム合金板の成形加工性向上用処理液、それを用いたマグネシウム合金板の製造方法及び温間加工方法
JP5205870B2 (ja) ラミネート金属板di成形用水性クーラント
JP2000017285A (ja) 金属加工用潤滑油組成物及びそれを用いた表面処理アルミニウム板材
JPS59166595A (ja) 絞り−しごき缶用潤滑剤
JP2013215783A (ja) 金属製飲料缶製造方法及び金属製飲料缶
JP4519544B2 (ja) アルミ箔プレス成形用潤滑剤とこれを用いた容器の製造方法
KR101665800B1 (ko) 고강도 냉연강판의 피막형성용 코팅조성물 및 그 피막이 형성된 냉연강판
JP2008201951A (ja) アルミ箔プレス成形用潤滑剤及び該潤滑剤を用いた容器の製造方法
JP2000024722A (ja) シームレス缶用ポリエステル樹脂被覆アルミニウム板およびシームレス缶の製造方法
JP2004359813A (ja) 水溶性潤滑皮膜剤及び成形加工方法
WO2009123295A1 (ja) Di缶の成形方法
JPS63112693A (ja) 冷間加工用水溶性防錆潤滑鋼板
JPH1088177A (ja) 水溶性絞り成形用潤滑剤原液組成物
CN104046461A (zh) 一种防腐性能好的切削液

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119413.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2723299

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12010502603

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 12993943

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107026404

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754846

Country of ref document: EP

Kind code of ref document: A1