WO2009145227A1 - 感光性樹脂組成物 - Google Patents
感光性樹脂組成物 Download PDFInfo
- Publication number
- WO2009145227A1 WO2009145227A1 PCT/JP2009/059711 JP2009059711W WO2009145227A1 WO 2009145227 A1 WO2009145227 A1 WO 2009145227A1 JP 2009059711 W JP2009059711 W JP 2009059711W WO 2009145227 A1 WO2009145227 A1 WO 2009145227A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- photosensitive resin
- resin composition
- general formula
- Prior art date
Links
- 0 *OCc1cc(*c(cc2CO*)cc(CO*)c2O*)cc(CO*)c1O* Chemical compound *OCc1cc(*c(cc2CO*)cc(CO*)c2O*)cc(CO*)c1O* 0.000 description 7
- BRGKJXKQMGHOMK-FYZOBXCZSA-N CC[C@@H](C)[N](C)(C)[Zn] Chemical compound CC[C@@H](C)[N](C)(C)[Zn] BRGKJXKQMGHOMK-FYZOBXCZSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/0226—Quinonediazides characterised by the non-macromolecular additives
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
- G03F7/0233—Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
Definitions
- the present invention relates to a photosensitive resin composition used as a surface protective film and an interlayer insulating film of a semiconductor device, a method for producing a cured relief pattern having heat resistance using the photosensitive resin composition, and the cured relief pattern.
- the present invention relates to a semiconductor device.
- a polyimide resin having both excellent heat resistance, electrical characteristics, mechanical characteristics, and the like has been used for a surface protective film and an interlayer insulating film of a semiconductor device.
- This polyimide resin is generally provided in the form of a photosensitive polyimide precursor composition, and is applied to a substrate, patterned with actinic rays, developed, heat imidized, and the like to form a surface protective film on a semiconductor device.
- an interlayer insulating film or the like can be easily formed, and the process can be significantly shortened as compared with the conventional non-photosensitive polyimide precursor composition.
- the photosensitive polyimide precursor composition needs to use a large amount of an organic solvent such as N-methyl-2-pyrrolidone as a developing solution in the development process. Solvent measures have been demanded. In response to this, recently, various proposals have been made on heat-resistant photosensitive resin materials that can be developed with an alkaline aqueous solution, as with photoresists.
- PBO precursor composition obtained by mixing an alkaline aqueous solution-soluble hydroxypolyamide, such as polybenzoxazole (hereinafter also referred to as “PBO”) precursor, with a photoactive component such as a diazoquinone compound is used as a positive photosensitive resin composition.
- PBO polybenzoxazole
- a method to be used has been attracting attention in recent years (for example, see Patent Document 1 below).
- This positive photosensitive resin is that the unexposed portion of the diazoquinone compound is insoluble in the alkaline aqueous solution, but the exposure causes the diazoquinone compound to undergo a chemical change to become an indenecarboxylic acid compound, which becomes an alkaline aqueous solution. It utilizes the fact that it becomes soluble. By utilizing the difference in the dissolution rate with respect to the developer between the exposed portion and the unexposed portion, it becomes possible to produce a relief pattern of only the unexposed portion.
- the above-mentioned PBO precursor composition can form a positive relief pattern by exposure and development with an alkaline aqueous solution. Further, when heated (hereinafter also referred to as “cure”), an oxazole ring is generated, and the cured PBO film has the same thermosetting film characteristics as a polyimide film. Has attracted attention as an alternative material.
- stepper a reduction projection exposure machine using the i-line of a mercury lamp. Since this stepper is a very expensive machine, if the photosensitive resin composition has a low sensitivity, the exposure time required to form a relief pattern becomes longer, and the number of required steppers increases and the exposure process becomes more expensive. This leads to cost reduction.
- a technique for improving the photosensitivity of a positive photosensitive resin composition a technique of adding a compound having a thermally crosslinkable group to the composition is known.
- a compound having a thermally crosslinkable group When a compound having a thermally crosslinkable group is added to the photosensitive resin composition, it causes an addition reaction with the aromatic ring of the polymer during curing, suppresses shrinkage due to polymer decomposition and thermal relaxation, and cures during curing. It has the function of suppressing membrane shrinkage.
- shrinkage during curing is suppressed, a thicker final film thickness can be obtained even with an initial coating film thickness of the same composition. In other words, a thin initial coating film thickness is sufficient to obtain the same final film thickness. The thinner the initial coating film thickness, the easier the light energy in the exposure process reaches the bottom of the film, and high sensitivity can be realized as a positive photosensitive resin composition in which the exposed part opens.
- a conventionally known thermally crosslinkable group for example, a compound having a methylolic thermally crosslinkable urea-based organic group added to an alkali-soluble resin (for example, claim of Patent Document 1) 2) or a compound having an epoxy group added to an alkali-soluble resin (for example, Patent Document 2 below), or a compound having a benzoxazine group added to an alkali-soluble resin (for example, Patent Document 2 below)
- a compound having a methylolic thermally crosslinkable urea-based organic group added to an alkali-soluble resin for example, claim of Patent Document 1
- a compound having an epoxy group added to an alkali-soluble resin for example, Patent Document 2 below
- a compound having a benzoxazine group added to an alkali-soluble resin for example, Patent Document 2 below
- the thermal crosslinking agent reacts with the polymer with high efficiency and exhibits a high crosslinking effect, but due to its high reactivity, heating in the step of forming the photosensitive resin layer by applying the composition onto the substrate (hereinafter referred to as “pre-baking”) May also cause cross-linking of unexposed areas and loss of resolution, a risk that a thermal cross-linking agent may react with an acid generated by exposure in an exposed area, thereby impairing sensitivity, or loss of storage stability of the composition. May cause problems.
- a compound in which a compound containing a methylol group not containing a phenolic hydroxyl group is added to an alkali-soluble resin is known (see, for example, Patent Document 5), but a compound having a methylol group reacts gently in the composition (dark). Reaction), the storage stability (viscosity stability) of the photosensitive resin composition is poor.
- the composition which adds the heat-crosslinkable compound which has an alkoxy methyl group more stable than a methylol group to alkali-soluble resin is disclosed (refer patent document 2, patent document 6), and the compound which does not contain a phenolic hydroxyl group is also used. Although the description which can be seen is seen, the Example by the alkoxymethyl group containing compound which does not actually have a phenolic hydroxyl group is not shown.
- the problem to be solved by the present invention is a novel photosensitivity having positive lithographic performance that has excellent storage stability, high sensitivity, and excellent temporal stability of sensitivity after exposure. It is providing the resin composition, the manufacturing method of the hardening relief pattern using this composition, and the semiconductor device which has this hardening relief pattern.
- the present inventor has combined a polybenzoxazole resin precursor with a heat-crosslinkable low molecular weight compound having a specific structure, so that storage stability (viscosity stability) is achieved. It was found that a photosensitive resin composition having high-sensitivity positive-type lithography characteristics can be obtained without impairing the above. Furthermore, in combination with a thermally crosslinkable low molecular weight compound having a specific structure, a photosensitive resin composition having a small sensitivity change with time after exposure of high-sensitivity lithography characteristics and excellent sensitivity stability over time may be obtained.
- the headline and the present invention were completed.
- n, p, q, R 1 , and R 2 may be the same as or different from each other. ⁇ 0.01 to 30 parts by mass of an alkoxyalkyl group-containing compound represented by the formula (1) and 1 to 100 parts by mass of (C) a diazoquinone compound.
- a monovalent organic group selected from the group consisting of a urethane group and an alkoxy group having 1 to 10 carbon atoms, n is an integer of 1 to 3, and (ii) when k 2, X is a single group.
- R 1 is a monovalent organic group selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, and an isopropyl group
- n, p, q, R 1 , and R 2 may be the same as or different from each other.
- ⁇ The photosensitive resin composition as described in said [1] represented by these.
- the alkoxyalkyl group-containing compound is bis (methoxymethyl) benzene, tris (methoxymethyl) benzene, tetrakis (methoxymethyl) benzene, pentakis (methoxymethyl) benzene, hexakis (methoxymethyl) benzene, tris ( Any one of [1] to [3] above, selected from the group consisting of (methoxymethyl) trimethoxybenzene, methoxymethylbiphenyl, bis (methoxymethyl) biphenyl, bis (methoxymethyl) diphenyl ether, and bis (methoxymethyl) diphenylmethane
- the photosensitive resin composition as described in 2.
- n is an integer of 1 to 3
- Z 2 is a single bond or a divalent to tetravalent organic group, and when a plurality of Z 1 are present, Z 1 may be the same or different.
- each R independently represents a methyl group or an ethyl group
- each Z 1 independently represents the following general formula (10):
- R 3 to R 5 are each independently an organic group having 1 to 9 carbon atoms, and R 6 is selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, and an isopropyl group
- R 7 to R 10 are each independently a substituent selected from the group represented by C 1-12
- Z 3 is a single group.
- Z 3 is a single bond
- each Z 1 independently represents the following general formula (12):
- R 3 and R 5 are each independently an organic group having 1 to 9 carbon atoms
- R 7 is an organic group having 1 to 12 carbon atoms.
- Z 3 is a single bond, and each Z 1 is independently the following general formula (13):
- a step of forming a photosensitive resin layer comprising the photosensitive resin composition according to any one of the above [1] to [8] on a substrate, exposure with actinic rays through a mask, light rays, electrons
- a method for producing a cured relief pattern comprising a step of directly irradiating a line or ion beam, a step of developing, and a step of heating the obtained relief pattern.
- a novel photosensitive resin composition having excellent storage stability and high-sensitivity positive lithography performance, a method for producing a cured relief pattern using the composition, and the cured relief pattern are provided.
- a semiconductor device is provided.
- Hydroxypolyamide Hydroxypolyamide which is the base polymer of the photosensitive resin composition of the present invention, includes a structure represented by the following general formula (1).
- X 1 is a tetravalent organic group having a carbon atom
- X 2 , Y 1 and Y 2 are each independently a divalent organic group having 2 or more carbon atoms
- l is an integer from 2 to 1000
- m is an integer from 0 to 500
- the order of arrangement of the m diamide units including Y 2 is not limited. ⁇ .
- X 1 is preferably a tetravalent organic group having 2 to 30 carbon atoms
- X 2 , Y 1 , and Y 2 are each independently two A divalent organic group having 30 or less carbon atoms is preferred.
- the dihydroxydiamide unit of the hydroxypolyamide has a structure in which a dicarboxylic acid having a Y 1 (COOH) 2 structure and a bisaminophenol having a X 1 (NH 2 ) 2 (OH) 2 structure are polycondensed.
- the two amino groups and the hydroxy group of the bisaminophenol are each in the ortho position, and the dihydroxydiamide unit is closed by heating the hydroxypolyamide at about 280 to 400 ° C.
- the benzoxazole unit which is a heat resistant resin, is changed.
- l is in the range of 2 to 1000, preferably 2 to 200, more preferably 3 to 50, and still more preferably 3 to 20.
- the hydroxypolyamide may be condensed with m diamide units of the general formula (1).
- the diamide unit has a structure in which a diamine having a structure of X 2 (NH 2 ) 2 and a dicarboxylic having a structure of Y 2 (COOH) 2 are polycondensed.
- m is in the range of 0 to 500, and preferably in the range of 0 to 10.
- Examples of the bisaminophenol having the structure of X 1 (NH 2 ) 2 (OH) 2 include 3,3′-dihydroxybenzidine, 3,3′-diamino-4,4′-dihydroxybiphenyl, and 4,4 ′.
- Preferred examples of the diamine having a X 2 (NH 2 ) 2 structure include aromatic diamines and silicon diamines.
- aromatic diamine include m-phenylenediamine, p-phenylenediamine, 2,4-tolylenediamine, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, and 4,4′-diamino.
- Diphenyl ether 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'- Diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ketone, 4,4'-diaminodiphenyl ketone, 3,4'-diaminodiphenyl ketone, 2,2'-bis (4-aminophenyl) ) Propane, 2,2'-bis (4-aminophenyl) hexa Fluoropropane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy)
- silicon diamine can be selected in order to enhance the adhesion to the substrate.
- examples thereof include bis (4-aminophenyl) dimethylsilane, bis (4-aminophenyl) tetramethylsiloxane, and bis (4 -Aminophenyl) tetramethyldisiloxane, bis ( ⁇ -aminopropyl) tetramethyldisiloxane, 1,4-bis ( ⁇ -aminopropyldimethylsilyl) benzene, bis (4-aminobutyl) tetramethyldisiloxane, bis ( and ( ⁇ -aminopropyl) tetraphenyldisiloxane.
- Examples of the dicarboxylic acid having a Y 1 (COOH) 2 or Y 2 (COOH) 2 structure include those in which Y 1 and Y 2 are an aliphatic group or an aromatic group having a linear, branched, or cyclic structure. It is done. Among these, when Y 1 and Y 2 are aromatic groups, for example, the following may be mentioned as preferred: ⁇ Wherein A is selected from the group consisting of —CH 2 —, —O—, —S—, —SO 2 —, —CO—, —NHCO—, —C (CF 3 ) 2 —, and a single bond.
- R represents a group selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, and a halogen atom, and k represents an integer of 0 to 4. ⁇ .
- 5-aminoisophthalic acid for a part or all of the dicarboxylic acid having the Y 1 (COOH) 2 or Y 2 (COOH) 2 structure.
- Specific compounds to be reacted with 5-aminoisophthalic acid to obtain the derivative include 5-norbornene-2,3-dicarboxylic acid anhydride, exo-3,6-epoxy-1,2,3, 6-tetrahydrophthalic anhydride, 3-ethynyl-1,2-phthalic anhydride, 4-ethynyl-1,2-phthalic anhydride, cis-4-cyclohexene-1,2-dicarboxylic anhydride, -Cyclohexene-1,2-dicarboxylic anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methyltetrahydro
- a dicarboxylic acid having a Y 1 (COOH) 2 or Y 2 (COOH) 2 structure a compound obtained by ring-opening a tetracarboxylic dianhydride with a monoalcohol, a monoamine or the like can also be used.
- the monoalcohol include methanol, ethanol, propanol, isopropanol, butanol, t-butanol, and benzyl alcohol.
- the monoamine include butylamine and aniline.
- Examples of the tetracarboxylic dianhydride include the following: ⁇ Wherein B is selected from the group consisting of —CH 2 —, —O—, —S—, —SO 2 —, —CO—, —NHCO—, and —C (CF 3 ) 2 —. Means a valent group. ⁇ .
- trimellitic acid chloride to the bisaminophenol generates tetracarboxylic dianhydride, by ring-opening in the same way Y 1 (COOH) 2 or Y 2 (COOH) 2 It can also be used as a dicarboxylic acid having a structure.
- the tetracarboxylic dianhydrides obtained here include the following: ⁇ Wherein X 3 represents X 1 (OH) 2 (NH—) 2 , and X 1 is the same as defined in the general formula (1). ⁇ .
- the carboxylic acid residue formed by reacting the tetracarboxylic dianhydride with the bisaminophenol can be esterified or amidated with a monoalcohol or monoamine.
- Y 1 and Y 2 are aliphatic groups
- substituents such as an alkyl chain, a cyclobutyl ring, a cyclopentyl ring, a cyclohexyl ring, and a bicyclo ring
- Examples of the dicarboxylic acid having a Y 1 (COOH) 2 or Y 2 (COOH) 2 structure having an aliphatic group include malonic acid, methyl malonic acid, dimethyl malonic acid, succinic acid, glutaric acid, adipic acid, and itaconic acid.
- dicarboxylic acid having an aliphatic group examples include Octahydro-1H-4,7-methanoindenedicarboxylic
- a high solubility in solvents preferred.
- a dicarboxylic acid having a Y 1 (COOH) 2 structure and a bisaminophenol having a X 1 (NH 2 ) 2 (OH) 2 structure As a method for polycondensation of a dicarboxylic acid having a Y 1 (COOH) 2 structure and a bisaminophenol having a X 1 (NH 2 ) 2 (OH) 2 structure to form a dihydroxydiamide unit, a dicarboxylic acid is used. And thionyl chloride to form diacid chloride and then react with bisaminophenol, and dicarboxylic acid and bisaminophenol are polycondensed with dicyclohexylcarbodiimide. In the method using dicyclohexylcarbodiimide, hydroxybenztriazole can be allowed to act simultaneously. In the above-mentioned (A) hydroxypolyamide, it is also preferable to use the end group sealed with an organic group (hereinafter referred to as “sea
- a compound having an amino group or a hydroxyl group is used as the sealing group.
- the compound include aniline, ethynylaniline, norborneneamine, butylamine, propargylamine, ethanol, propargyl alcohol, benzyl alcohol, hydroxyethyl methacrylate, hydroxyethyl acrylate and the like.
- the sealing group has an acid anhydride, carboxylic acid, acid chloride, isocyanate group, etc. It is preferable to use a compound.
- Examples of such compounds include benzoyl chloride, norbornene dicarboxylic anhydride, norbornene carboxylic acid, ethynyl phthalic anhydride, glutaric anhydride, maleic anhydride, phthalic anhydride, cyclohexane dicarboxylic anhydride, methyl cyclohexane dicarboxylic anhydride Products, cyclohexenedicarboxylic anhydride, methacryloyloxyethyl methacrylate, phenyl isocyanate, mesyl chloride, tosylic chloride and the like.
- the weight average molecular weight in terms of polystyrene by gel permeation chromatography (hereinafter also referred to as “GPC”) of hydroxypolyamide is preferably 3,000 to 50,000, more preferably 6,000 to 30,000. It is more preferable.
- the weight average molecular weight is preferably 3,000 or more from the viewpoint of the physical properties of the cured relief pattern. Moreover, from a viewpoint of resolution, 50,000 or less is preferable.
- GPC gel permeation chromatography
- THF tetrahydrofuran
- NMP N-methyl-2-pyrrolidone
- the molecular weight is determined from a calibration curve prepared using standard monodisperse polystyrene. The standard monodisperse polystyrene is recommended to be selected from Showa Denko's organic solvent standard sample STANDARD SM-105.
- n, p, q, R 1 , and R 2 may be the same as or different from each other. ⁇ .
- the present inventor has achieved high-sensitivity lithography performance without impairing storage stability by adding the (B) alkoxyalkyl group-containing compound to the photosensitive resin composition containing (A) hydroxypolyamide. It was also found that the sensitivity change after exposure was small and the sensitivity stability was excellent. That is, by adding the compound (B) to the photosensitive resin composition, it is crosslinked to the aromatic ring of the hydroxypolyamide during curing to suppress shrinkage due to thermal decomposition or thermal relaxation of the hydroxypolyamide, and shrinkage of the film thickness due to curing. Can be suppressed.
- the photosensitive resin composition to which the compound (B) is added can reduce the coating film thickness, thereby enabling the light energy in the exposure process to reach the bottom of the film efficiently, resulting in high sensitivity.
- the storage stability of the varnish is excellent, and by not having a phenolic hydroxyl group, the difference in dissolution rate (contrast) between the exposed and unexposed areas is not lowered, resulting in high sensitivity. It becomes.
- the (B) alkoxyalkyl group-containing compound of the present invention is a diazoquinone compound in the exposed portion.
- indenecarboxylic acid is generated due to a chemical change and is in an acidic condition, it is considered that a chemical reaction that lowers the sensitivity is not caused.
- the (B) alkoxyalkyl group-containing compound of the present invention is synthesized by a known method. For example, after adding a halogenated alkyl group to a compound having an aromatic ring, the compound is reacted with an alcohol to obtain an alkoxyalkyl group-containing compound.
- Method a method obtained by reacting an alcohol with an aromatic alkyl alcohol compound obtained by reducing an aromatic compound having an alkyl group or a carboxyl group, or a reaction after adding a halogenated alkyl group to a phenol compound. And a method of acylating the alkoxyalkyl group-containing phenol obtained above.
- Preferred examples of the alkoxyalkyl group-containing compound represented by the general formula (2) include compounds having one alkoxyalkyl group, such as methoxymethylbenzene, ethoxymethylbenzene, methoxyethylbenzene, ethoxymethylbenzene, and 2-methoxymethyl.
- the (B) alkoxyalkyl group-containing compound of the present invention is at least one selected from the group consisting of compounds represented by the following general formula (3).
- Alkoxyalkyl group-containing compounds are preferred: ⁇ Wherein R 1 is a monovalent organic group selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and R 2 is a hydrogen atom, an alkyl having 1 to 4 carbon atoms.
- Specific examples include methoxymethylbenzene, ethoxymethylbenzene, methoxyethylbenzene, ethoxymethylbenzene, 2-methoxymethyltoluene, 3-methoxymethyltoluene, 4-methoxymethyltoluene, 2-methoxymethylbiphenyl, 3-methoxymethylbiphenyl, 4-methoxymethylbiphenyl, 1,2-bis (methoxymethyl) benzene, 1,3-bis (methoxymethyl) benzene, 1,4-bis (methoxymethyl) benzene, 1,2-bis (ethoxymethyl) benzene, 1,3-bis (ethoxymethyl) benzene, 1,4-bis (ethoxymethyl) benzene, 2,4′-bis (methoxymethyl) biphenyl, 3,4′-bis (methoxymethyl) biphenyl, 4,4 ′ -Bis (methoxymethyl) biphenyl, 2,4'-bis (Methoxy
- the (B) alkoxyalkyl group-containing compound of the present invention is at least one alkoxyalkyl group selected from the group consisting of compounds represented by the following general formula (5).
- Specific examples include methoxymethylbenzene, ethoxymethylbenzene, methoxyethylbenzene, ethoxymethylbenzene, 2-methoxymethyltoluene, 3-methoxymethyltoluene, 4-methoxymethyltoluene, 2-methoxymethylbiphenyl, 3-methoxymethylbiphenyl, 4-methoxymethylbiphenyl, 1,2-bis (methoxymethyl) benzene, 1,3-bis (methoxymethyl) benzene, 1,4-bis (methoxymethyl) benzene, 1,2-bis (ethoxymethyl) benzene, 1,3-bis (ethoxymethyl) benzene, 1,4-bis (ethoxymethyl) benzene, 2,4′-bis (methoxymethyl) biphenyl, 3,4′-bis (methoxymethyl) biphenyl, 4,4 ′ -Bis (methoxymethyl) biphenyl, 2,4'-bis (Methoxy
- the (B) alkoxyalkyl group-containing compound of the present invention includes methoxymethylbiphenyl, bis (methoxymethyl) benzene, bis (methoxymethyl) biphenyl, bis (methoxymethyl).
- At least one compound selected from the group consisting of diphenyl ether and bis (methoxymethyl) diphenylmethane is particularly preferred.
- tris (methoxymethyl) benzene tris (methoxymethyl) benzene, tetrakis (methoxymethyl) benzene, pentakis (methoxymethyl) benzene, hexakis (methoxymethyl) benzene, tris (methoxymethyl) trimethoxybenzene, and Particularly preferred is at least one compound selected from the group consisting of tetrakis (methoxymethyl) dimethoxybenzene.
- the photosensitive resin composition of the present invention is (B) the following general formula (7):
- n is an integer of 1 to 3
- Z 2 is a single bond or a divalent to tetravalent organic group, and when a plurality of Z 1 are present, Z 1 may be the same or different.
- An isocyanate compound, a carboxylic acid chloride, a sulfonic acid anhydride, a sulfonyl chloride, a silyl chloride, and the like can be obtained by reacting them in an appropriate solvent.
- each R is independently a methyl group or an ethyl group
- Z 3 is a single bond or the following general formula (16):
- R may be the same or different from each other, and represents a methyl group or an ethyl group.
- R may be the same or different from each other, and represents a methyl group or an ethyl group.
- R 3 to R 5 are each independently an organic group having 1 to 9 carbon atoms
- R 6 is selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. It is a monovalent organic group
- R 7 to R 10 are each independently an organic group having 1 to 12 carbon atoms.
- Examples of the compound represented by the general formula (19) include acetyl chloride, cyclopropanecarbonyl chloride, oxalic acid monoethyl chloride, tert-butylacetyl chloride, 3-cyclohexene-1-carboxylic acid chloride, 2-furancarboxylic acid chloride.
- Crotonic acid chloride cinnamic acid chloride, methacrylic acid chloride, acrylic acid chloride, propiolic acid chloride, tetrolic acid chloride, thiophene-2-acetyl chloride, 2-ethoxybenzoyl chloride, 2-methoxybenzoyl chloride, 4-methoxybenzoyl chloride , Trimellitic acid chloride, 3,5,5-trimethylhexanoyl chloride, 2,4,6-trimethylbenzoyl chloride, 4-nitrophenyl chloroformate, 9-fluorenylmethylchlorophosphate Mate, di-tert-butyl dicarbonate, dibenzyl dicarbonate, 4-ethylbenzenesulfonyl chloride, p-toluenesulfonyl chloride, benzenesulfonyl chloride, p-xylene-2-sulfonyl chloride, 2-mesitylenesulfonyl chloride, 4-propyl
- methacrylic acid chloride is most preferable from the viewpoint of solubility in an organic solvent.
- Solvents used in the synthesis of the compound represented by the general formula (7) include acetone, tetrahydrofuran (THF), ⁇ -butyrolactone (GBL), N-methyl-2-pyrrolidone (NMP), N, N-dimethyl.
- Examples include acetamide (DMAc) and dimethyl sulfoxide (DMSO).
- a basic compound such as pyridine, picoline, collidine, lutidine, triethylamine, 4-dimethylaminopidine.
- the basic catalysts may be used alone or in combination of two or more.
- the amount of the basic catalyst used can be adjusted according to the type of the basic catalyst, and can be selected from a range of 0.01 to 10 equivalents (molar equivalents) relative to 1 mol of the alkoxyalkyl group-containing phenol compound as a raw material. Usually, it is about 0.1 to 5 equivalents, more preferably about 1 to 3 equivalents.
- the reaction temperature is preferably controlled between 10 ° C. and 50 ° C., and 10 ° C. to 30 ° C. is preferable for highly reactive compounds such as carboxylic acid chloride and sulfonyl chloride.
- the reaction time varies depending on the amount and type of the compound to be reacted and the catalyst, but is preferably 1 to 48 hours. For highly reactive compounds such as carboxylic acid chloride and sulfonyl chloride, about 1 to 5 hours is preferable.
- the alkoxyalkyl group-containing compound obtained by the above method has the following general formula (9): ⁇ In the formula, each R independently represents a methyl group or an ethyl group; and each Z 1 independently represents the following general formula (10): (Wherein R 3 to R 5 are each independently an organic group having 1 to 9 carbon atoms, and R 6 is selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, and an isopropyl group) A monovalent organic group, and R 7 to R 10 are each independently a substituent selected from the group represented by C 1-12, and Z 3 is a single group.
- Z 3 is a single bond, and each Z 1 independently represents the following general formula (12): ⁇ Wherein R 3 and R 5 are each independently an organic group having 1 to 9 carbon atoms, and R 7 is an organic group having 1 to 12 carbon atoms. ⁇ The alkoxyalkyl group containing compound represented by this is preferable.
- Z 3 is a single bond
- Z 1 is each independently represented by the following general formula (13):
- An alkoxyalkyl group-containing compound that is a substituent selected from the group represented by formula (II) is preferred from the viewpoint of heat resistance.
- the alkoxyalkyl group-containing compound may be used alone or in combination of two or more.
- the blending amount of the (B) alkoxyalkyl group-containing compound is 0.01 to 30 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of (A) hydroxypolyamide.
- the compounding amount of the alkoxyalkyl group-containing compound is 1 part by mass or more, the remaining film ratio after curing ((film thickness of relief pattern after curing) / (film thickness of relief pattern after development) ⁇ 100) And the sensitivity is good when it is 30 parts by mass or less.
- the diazoquinone compound used in the photosensitive resin composition is a compound having a 1,2-benzoquinonediazide structure or a 1,2-naphthoquinonediazide structure.
- Examples of preferred ones include, for example: ⁇ Wherein Q is a hydrogen atom or the following: The naphthoquinonediazide sulfonic acid ester group shown in the following, and not all Q are hydrogen atoms at the same time. ⁇ .
- the blending amount of the diazoquinone compound is 1 to 100 parts by weight, preferably 10 to 30 parts by weight, based on 100 parts by weight of (A) hydroxypolyamide.
- the blending amount of the diazoquinone compound is 1 part by mass or more, the patterning property of the resin is good. On the other hand, when it is 100 parts by mass or less, the tensile elongation of the cured film is good and the development residue (scum) in the exposed part Less is.
- a thermal radical generator may be added to the photosensitive resin composition.
- the radical generator used here is preferably one that generates radicals under heat treatment conditions, and examples of preferable ones include organic peroxides such as dicumyl peroxide and organic non-peroxides such as dimethyldiphenylbutane.
- the addition amount is preferably 0 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of (A) hydroxypolyamide. If the addition amount is within 20 parts by mass, the storage stability is good.
- a phenol compound, a dye, a surfactant, an adhesion aid for improving the adhesion to the substrate, a stability which are conventionally used as additives for the photosensitive resin composition.
- the additive may be a ballast agent, paracumylphenol, bisaminophenol, resorcinol, or the like.
- a ballast agent means the phenol compound currently used as a raw material for the above-mentioned diazoquinone compound which is a phenol compound in which a part of the phenolic hydrogen atom is converted to naphthoquinonediazide sulfonic acid ester.
- the dye include methyl violet, crystal violet, and malachite green.
- the addition amount is preferably 0 to 50 parts by mass and more preferably 1 to 30 parts by mass with respect to 100 parts by mass of (A) hydroxypolyamide. If the addition amount is within 50 parts by mass, the tensile elongation of the film after thermosetting is good.
- nonionic surfactants made of polyglycols such as polypropylene glycol or polyoxyethylene lauryl ether or derivatives thereof such as Fluorard (registered trademark, trade name, manufactured by Sumitomo 3M), Fluorosurfactants such as MegaFuck (registered trademark, trade name, manufactured by Dainippon Ink and Chemicals) or Lumiflon (registered trademark, trade name, manufactured by Asahi Glass), such as KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) And organosiloxane surfactants such as DBE (trade name, manufactured by Chisso Corporation) and Granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.).
- Fluorard registered trademark, trade name, manufactured by Sumitomo 3M
- Fluorosurfactants such as MegaFuck (registered trademark, trade name, manufactured by Dainippon Ink and Chemicals) or Lumiflon (registered trademark, trade name,
- the addition amount is preferably 0 to 10 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of (A) hydroxypolyamide. If the addition amount is within 10 parts by mass, the tensile elongation of the film after thermosetting is good. By adding the surfactant, it is possible to make it more difficult for the coating film to be repelled at the wafer edge during coating.
- adhesion assistant examples include alkyl imidazoline, butyric acid, alkyl acid, polyhydroxystyrene, polyvinyl methyl ether, t-butyl novolac, epoxy silane, epoxy polymer, and various silane coupling agents.
- silane coupling agent examples include, for example, N-phenyl-3-aminopropyltrialkoxysilane, 3-mercaptopropyltrialkoxysilane, 2- (trialkoxysilylethyl) pyridine, and 3-methacryloxypropyl.
- the addition amount in the case of adding an adhesion aid is preferably 0 to 30 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of (A) hydroxypolyamide. If the addition amount is within 30 parts by mass, the tensile elongation of the film after thermosetting is good.
- the above-described photosensitive resin composition can be dissolved in a solvent to form a varnish and used as a photosensitive resin composition solution.
- solvents examples include N-methyl-2-pyrrolidone, ⁇ -butyrolactone (hereinafter also referred to as “GBL”), isophorone, N, N-dimethylacetamide (hereinafter also referred to as “DMAc”), dimethylimidazo.
- Linone tetramethylurea, dimethyl sulfoxide, diethylene glycol dimethyl ether (hereinafter also referred to as “DMDG”), diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl Ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glyco -3-monomethyl ether, methyl pyruvate, ethyl pyruvate, may be used alone or as a mixture of methyl 3-methoxy propionate or the like.
- DMDG diethylene glycol dimethyl ether
- DMDG diethylene glycol dimethyl ether
- propylene glycol monomethyl ether propylene glycol monoethyl ether
- non-amide solvents are preferred because they have little effect on photoresists.
- the amount of the solvent added is preferably 50 to 1000 parts by mass with respect to 100 parts by mass of the hydroxy polyamide.
- the addition amount of the solvent is preferably set to a viscosity suitable for the coating apparatus and the coating thickness within the above range, because the production of the cured relief pattern can be facilitated.
- a step of forming a photosensitive resin layer made of a photosensitive resin composition on a substrate (first step).
- the photosensitive resin composition solution is applied to a substrate such as a silicon wafer, a ceramic substrate, or an aluminum substrate by spin coating using a spin coater or a coater such as a die coater or a roll coater. Or it is also possible to apply
- a step of exposing with active light through a mask or directly irradiating with a light beam, an electron beam or an ion beam (second step).
- the photosensitive resin layer is exposed to actinic rays through a mask, that is, exposed to actinic radiation using a contact aligner or a stepper.
- exposure is performed by directly irradiating a light beam, an electron beam or an ion beam.
- actinic ray g-line, h-line, i-line, or KrF laser can also be used.
- the exposed portion or irradiated portion is eluted or removed with a developer.
- the desired relief pattern is obtained preferably by rinsing with a rinsing solution.
- a developing method methods such as spray, paddle, dip, and ultrasonic can be used.
- the rinsing liquid distilled water, deionized water or the like can be used.
- the developer used for developing the photosensitive resin layer made of the photosensitive resin composition dissolves and removes the alkali-soluble polymer and needs to be an alkaline aqueous solution in which an alkali compound is dissolved.
- the alkali compound dissolved in the alkaline aqueous solution may be either an inorganic alkali compound or an organic alkali compound.
- Examples of the inorganic alkali compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, diammonium hydrogen phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, lithium silicate, sodium silicate, potassium silicate. , Lithium carbonate, sodium carbonate, potassium carbonate, lithium borate, sodium borate, potassium borate, and ammonia.
- organic alkali compound examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, trimethylhydroxyethylammonium hydroxide, methylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, n-propylamine, diethylamine.
- -N-propylamine isopropylamine, diisopropylamine, methyldiethylamine, dimethylethanolamine, ethanolamine, triethanolamine.
- a water-soluble organic solvent such as methanol, ethanol, propanol, or ethylene glycol
- a surfactant such as methanol, ethanol, propanol, or ethylene glycol
- a storage stabilizer such as a surfactant, a storage stabilizer, a resin dissolution inhibitor, or the like
- the obtained relief pattern is heat-treated to form a heat-resistant cured relief pattern made of a resin having a polybenzoxazole structure.
- the heating device an oven furnace, a hot plate, a vertical furnace, a belt conveyor furnace, a pressure oven, or the like can be used.
- a heating method heating by hot air, infrared rays, electromagnetic induction, or the like is recommended.
- the temperature is preferably 200 to 450 ° C, more preferably 250 to 400 ° C.
- the heating time is preferably 15 minutes to 8 hours, more preferably 1 hour to 4 hours.
- the atmosphere is preferably in an inert gas such as nitrogen or argon.
- a semiconductor device combines a cured relief pattern with a known semiconductor device manufacturing method as a surface protective film, an interlayer insulating film, a rewiring insulating film, a protective film for a flip chip device, or a protective film for a device having a bump structure. Can be manufactured.
- the photosensitive resin composition of the present invention is also useful for applications such as interlayer insulation of multilayer circuits, cover coating of flexible copper-clad plates, solder resist films, or liquid crystal alignment films.
- VF-2000 type manufactured by Koyo Lindberg Co., Ltd.
- the film thickness was measured with an optical film thickness measuring device (Lambda Ace VM-1200, manufactured by Dainippon Screen Mfg. Co., Ltd.) with a refractive index of 1.65.
- the cure shrinkage rate (%) was calculated from the film thickness before and after the cure.
- the photosensitive resin composition was spin-coated on a 5-inch wafer by the method described above to form a coating film.
- This coating film was exposed through a reticle with a test pattern using a Nikon stepper (NSR2005i8A) having an exposure wavelength of i-line (365 nm) while changing the exposure stepwise.
- NSR2005i8A an alkali developer
- TMAH tetramethylammonium hydroxide
- the development time was such that the development residual film ratio in the unexposed area was 85%.
- paddle development was performed at 23 ° C. and rinsed with pure water to form a positive relief pattern.
- curing was performed at 320 ° C. for 1 hour.
- the applied film thickness of the coating film was set by calculating backward from the cure shrinkage so that the final film thickness of the relief pattern obtained by performing the curing at 320 ° C. for 1 hour was 7.0 ⁇ m.
- the sensitivity of the photosensitive resin composition was evaluated as follows.
- the time required for the dropwise addition was 40 minutes, and the maximum reaction solution temperature was 28 ° C.
- the mixture was heated to 50 ° C. with a hot water bath and stirred for 18 hours, and then the IR spectrum of the reaction solution was measured to confirm that characteristic absorption of imide groups at 1385 cm ⁇ 1 and 1772 cm ⁇ 1 appeared.
- This reaction solution was dropped as it was into 1 L of ion-exchanged water with stirring, and the precipitate was filtered off, and then 500 mL of THF was added to dissolve it with stirring. This homogeneous solution was added to a glass column filled with a cation-exchange resin. The remaining pyridine was removed. Next, this solution was dropped into 3 L of ion exchange water under high-speed stirring to precipitate a product, which was filtered off and then vacuum-dried.
- the product is imidized, it not characteristic absorption of amide groups in the vicinity of 1540 cm -1 and 1650 cm -1 appear characteristic absorption of an imide group 1394Cm -1 and 1774 cm -1 in the IR spectrum is present and, NMR The spectrum was confirmed by the absence of amide and carboxylic acid proton peaks.
- 65.9 g (0.1 mol) of the product, 53.7 g (0.2 mol) of 1,2-naphthoquinonediazide-4-sulfonyl chloride and 560 g of acetone were added and dissolved by stirring at 20 ° C.
- a solution prepared by diluting 21.2 g (0.21 mol) of triethylamine with 106.2 g of acetone was added dropwise thereto at a constant rate over 30 minutes. At this time, the temperature of the reaction solution was controlled in the range of 20 to 30 ° C. using an ice water bath or the like.
- a solution prepared by diluting 26.2 g (0.26 mol) of triethylamine with 131.1 g of acetone was added dropwise thereto at a constant rate over 30 minutes.
- the temperature of the reaction solution was controlled in the range of 20 to 30 ° C. using an ice water bath or the like.
- the mixture was allowed to stir at 20 ° C. for another 30 minutes, and then 5.6 g of a 36 wt% hydrochloric acid aqueous solution was added at once.
- the reaction solution was then cooled in an ice water bath, and the precipitated solid was filtered off with suction. .
- the filtrate obtained at this time was dropped into 5 L of a 0.5% by weight aqueous hydrochloric acid solution over 1 hour with stirring to precipitate the desired product, which was collected by suction filtration.
- the obtained cake-like recovered material was dispersed again in 5 L of ion-exchanged water, stirred, washed, collected by filtration, and this water washing operation was repeated three times. Finally, the obtained cake-like material was vacuum-dried at 40 ° C. for 24 hours to obtain a diazoquinone compound (Q-2).
- This reaction liquid was poured into 2176 g of cold water at 5 ° C., 1741 g of toluene was further added, and the mixture was separated into an organic solvent layer and an aqueous layer. The aqueous layer was discarded by adding 1306 g of 20% brine and this was repeated three times.
- the magnesium sulfate was filtered and washed, and the toluene solvent was distilled off by vacuum drying at 10 mmHg while heating the solvent to 50 ° C.
- a crude product of the desired product was obtained, and this was subjected to column chromatogram purification with 3 kg of silica gel using a developing solvent in which hexane and ethanol were mixed at a ratio of 4: 1.
- the main chromatogram was recovered and vacuum dried at 50 ° C. for 40 hours.
- 56 g of 1,3,5-tris (methoxymethyl) -2,4,6-trimethoxybenzene was obtained.
- the reaction was confirmed by HPLC, no starting material was detected, and the product was detected as a single peak with a purity of 99%.
- This concentrated reaction liquid was put into 2 L of ice water. After adding 2 L of toluene to this, it moved to the separatory funnel, extraction operation was performed, and the target object was extracted to the toluene layer. 50 g of magnesium sulfate was added thereto to perform a dehydration operation, and after magnesium sulfate was filtered off, toluene was distilled off using a rotary evaporator to obtain a crude product of interest. This was subjected to column chromatography purification using 600 g of silica gel using toluene and ethyl acetate as developing solvents.
- This reaction solution is dropped as it is into 1 L of ion-exchanged water with stirring, and the precipitate is separated by filtration. Then, 500 ml of GBL is added and dissolved by stirring, and this homogeneous solution is filled with a cation exchange resin and an anion exchange resin. The remaining chlorine ions and pyridine were removed through a glass column. Next, this solution was dropped into 3 L of ion-exchanged water under high-speed stirring to precipitate the product, which was filtered and dried under vacuum to obtain an alkoxyalkyl group-containing compound (C-1, structural formula It is shown below).
- C-1 alkoxyalkyl group-containing compound
- Example 1 As an alkoxyalkyl group-containing compound, 20 parts by mass of the diazoquinone compound (Q-1) obtained in Reference Example 3 with respect to 100 parts by mass of the hydroxypolyamide (P-1) obtained in Reference Example 1 above. 2 parts by mass of 4,4′-bis (methoxymethyl) biphenyl was dissolved in 170 parts by mass of ⁇ -butyrolactone and then filtered through a 0.2 ⁇ m filter to prepare a photosensitive resin composition A. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Example 2 As an alkoxyalkyl group-containing compound, 20 parts by mass of the diazoquinone compound (Q-1) obtained in Reference Example 3 with respect to 100 parts by mass of the hydroxypolyamide (P-1) obtained in Reference Example 1 above. 8 parts by mass of 4,4′-bis (methoxymethyl) biphenyl was dissolved in 170 parts by mass of ⁇ -butyrolactone and then filtered through a 0.2 ⁇ m filter to prepare a photosensitive resin composition B. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Example 3 As an alkoxyalkyl group-containing compound, 20 parts by mass of the diazoquinone compound (Q-1) obtained in Reference Example 3 with respect to 100 parts by mass of the hydroxypolyamide (P-1) obtained in Reference Example 1 above. After dissolving 20 parts by mass of 4,4′-bis (methoxymethyl) biphenyl in 170 parts by mass of ⁇ -butyrolactone, it was filtered through a 0.2 ⁇ m filter to prepare photosensitive resin composition C. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Example 4 A photosensitive resin composition D was prepared in the same manner as in Example 2, except that 1,4-bis (methoxymethyl) benzene was used as the alkoxyalkyl group-containing compound. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Photosensitive resin composition E was prepared in the same manner as in Example 2, except that 4,4′-bis (methoxymethyl) diphenyl ether was used as the alkoxyalkyl group-containing compound. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Photosensitive resin composition F was prepared in the same manner as in Example 2, except that the alkoxyalkyl group-containing compound was 4,4′-bis (methoxymethyl) diphenylmethane.
- the alkoxyalkyl group-containing compound was 4,4′-bis (methoxymethyl) diphenylmethane.
- a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Photosensitive resin composition G was prepared in the same manner as in Example 2 except that 4-methoxymethylbiphenyl was used as the alkoxyalkyl group-containing compound. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Example 8 A photosensitive resin composition H was prepared in the same manner as in Example 2, except that the alkoxyalkyl group-containing compound (C-1) obtained in Reference Example 7 was used as the alkoxyalkyl group-containing compound. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- the alkoxyalkyl group-containing compound (C-1) obtained in Reference Example 7 was used as the alkoxyalkyl group-containing compound.
- Example 9 The hydroxypolyamide (P-2) obtained in Reference Example 2 was used in place of the hydroxypolyamide (P-1), and the diazoquinone obtained in Reference Example 4 was used instead of 20 parts by mass of the diazoquinone compound (Q-1).
- a photosensitive resin composition I was prepared in the same manner as in Example 2 except that 14 parts by mass of the compound (Q-2) was used.
- a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated.
- the temporal stability of sensitivity after exposure was evaluated by the method described above.
- the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Example 10 The hydroxypolyamide (P-2) obtained in Reference Example 2 was used in place of the hydroxypolyamide (P-1), and the diazoquinone obtained in Reference Example 4 was used instead of 20 parts by mass of the diazoquinone compound (Q-1).
- a photosensitive resin composition J was prepared in the same manner as in Example 4 except that 14 parts by mass of the compound (Q-2) was used.
- a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated.
- the temporal stability of sensitivity after exposure was evaluated by the method described above.
- the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Example 11 The hydroxypolyamide (P-2) obtained in Reference Example 2 was used in place of the hydroxypolyamide (P-1), and the alkoxyalkyl group-containing compound was converted to 1,3,5-tris (methoxymethyl) -2,4,6.
- a photosensitive resin composition K was prepared in the same manner as in Example 2 except that -trimethoxybenzene was used.
- a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated.
- the temporal stability of sensitivity after exposure was evaluated by the method described above.
- the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Example 12 Photosensitive resin composition L was prepared in the same manner as in Example 11, except that the alkoxyalkyl group-containing compound was 1,2,4,5-tetrakis (methoxymethyl) benzene. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- the alkoxyalkyl group-containing compound was 1,2,4,5-tetrakis (methoxymethyl) benzene.
- Example 13 A photosensitive resin composition M was prepared in the same manner as in Example 11, except that the alkoxyalkyl group-containing compound (C-2) obtained in Reference Example 8 was used as the alkoxyalkyl group-containing compound.
- the obtained photosensitive resin composition Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Example 14 A photosensitive resin composition N was prepared in the same manner as in Example 11 except that the alkoxyalkyl group-containing compound (C-3) obtained in Reference Example 9 was used as the alkoxyalkyl group-containing compound. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- the alkoxyalkyl group-containing compound (C-3) obtained in Reference Example 9 was used as the alkoxyalkyl group-containing compound.
- the photosensitive resin composition P was prepared in the same manner as in Example 1, except that 8 parts by mass of DMOM-PTBP (produced by Honshu Chemical Industry Co., Ltd.) (the structural formula is shown below) was used as the alkoxyalkyl group-containing compound.
- DMOM-PTBP produced by Honshu Chemical Industry Co., Ltd.
- the structural formula is shown below
- Photosensitive resin composition Q was prepared in the same manner as in Example 1, except that 8 parts by mass of 2,6-dimethylol-p-cresol was used instead of the alkoxyalkyl group-containing compound. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- a photosensitive resin composition R was prepared in the same manner as in Example 1 except that 8 parts by mass of 1,4-dibenzyl alcohol was used instead of the alkoxyalkyl group-containing compound.
- a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated.
- the temporal stability of sensitivity after exposure was evaluated by the method described above.
- the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- a photosensitive resin composition T was prepared in the same manner as in Example 1 except that 8 parts by mass of TMOM-BP (manufactured by Honshu Chemical Industry Co., Ltd.) (structural formula was described above) was used as the alkoxyalkyl group-containing compound. Prepared. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- TMOM-BP manufactured by Honshu Chemical Industry Co., Ltd.
- a photosensitive resin composition U was prepared in the same manner as in Example 1, except that 8 parts by mass of the methylol group-containing compound (C-4) obtained in Reference Example 10 was used instead of the alkoxyalkyl group-containing compound. did.
- a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated.
- the temporal stability of sensitivity after exposure was evaluated by the method described above.
- the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- a photosensitive resin composition V was prepared in the same manner as in Example 1 except that 8 parts by mass of dimethoxymethylurea (trade name MX-290, manufactured by Mitsui Cytec Co., Ltd.) was used as the alkoxyalkyl group-containing compound. .
- dimethoxymethylurea trade name MX-290, manufactured by Mitsui Cytec Co., Ltd.
- a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated.
- the temporal stability of sensitivity after exposure was evaluated by the method described above.
- the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- Example 9 Except for using 8 parts by mass of hydrogenated bisphenol A diglycidyl ether (trade name Epolite 4000, manufactured by Kyoeisha Chemical Co., Ltd.), which is an epoxy group-containing compound, instead of the alkoxyalkyl group-containing compound, the same procedure as in Example 1 was performed.
- a photosensitive resin composition W was prepared. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- a photosensitive resin was prepared in the same manner as in Example 1, except that 8 parts by mass of a benzoxazine compound (trade name Ba type benzoxazine, manufactured by Shikoku Kasei Kogyo Co., Ltd.) was used instead of the alkoxyalkyl group-containing compound.
- Composition X was prepared. Using the obtained photosensitive resin composition, a relief pattern was created on a silicon wafer by the method described above, and the cure shrinkage, the sensitivity of the composition, and the resolution were evaluated. Furthermore, the temporal stability of sensitivity after exposure was evaluated by the method described above. Moreover, the viscosity of the composition was measured by the method described above, and the storage stability was evaluated.
- compositions of the photosensitive resin compositions of Examples 1 to 14 and Comparative Examples 1 to 10 is shown in Table 1 below, and the evaluation results are shown in Table 2 below. From Table 2, it can be seen that the photosensitive resin composition of the present invention has good storage stability, can form a relief pattern with high sensitivity and high resolution, and is excellent in sensitivity over time after exposure. . On the other hand, the compositions of Comparative Examples 1 to 10 that do not contain an alkoxyalkyl group-containing compound that satisfies the requirements of the present invention have problems that good sensitivity and resolution cannot be obtained, or that the composition has poor stability. I understand.
- the photosensitive resin composition of the present invention includes a surface protective film for a semiconductor device, an interlayer insulating film, an insulating film for rewiring, a protective film for a flip chip device, a protective film for a device having a bump structure, an interlayer insulating film for a multilayer circuit, It can be suitably used as a cover coat of a flexible copper-clad plate, a solder resist film, and a liquid crystal alignment film.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
[1](A)下記一般式(1):
で表される、前記[1]に記載の感光性樹脂組成物。
本発明の感光性樹脂組成物を構成する各成分について、以下具体的に説明する。
(A)ヒドロキシポリアミド
本発明の感光性樹脂組成物のベースポリマーであるヒドロキシポリアミドは、下記一般式(1)で表される構造を含む。
該ヒドロキシポリアミドが有するジヒドロキシジアミド単位は、Y1(COOH)2の構造を有するジカルボン酸及びX1(NH2)2(OH)2の構造を有するビスアミノフェノールが重縮合した構造を有する。ここで、該ビスアミノフェノールの2組のアミノ基とヒドロキシ基は、それぞれ互いに、オルト位にあるものであり、該ヒドロキシポリアミドを約280~400℃で加熱することによって該ジヒドロキシジアミド単位が閉環して、耐熱性樹脂であるベンゾオキサゾール単位に変化する。lは、2~1000の範囲であり、2~200が好ましく、3~50の範囲がより好ましく、3~20の範囲であることがさらに好ましい。
このうち芳香族ジアミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、2,4-トリレンジアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルケトン、4,4’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4-メチル-2,4-ビス(4-アミノフェニル)-1-ペンテン、4-メチル-2,4-ビス(4-アミノフェニル)-2-ペンテン、1,4-ビス(α,α-ジメチル-4-アミノベンジル)ベンゼン、イミノ-ジ-p-フェニレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、4-メチル-2,4-ビス(4-アミノフェニル)ペンタン、5(または6)-アミノ-1-(4-アミノフェニル)-1,3,3-トリメチルインダン、ビス(p-アミノフェニル)ホスフィンオキシド、4,4’-ジアミノアゾベンゼン、4,4’-ジアミノジフェニル尿素、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ベンゾフェノン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、4,4’-ビス[4-(α,α-ジメチル-4-アミノベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(α,α-ジメチル-4-アミノベンジル)フェノキシ]ジフェニルスルホン、4,4’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、フェニルインダンジアミン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、o-トルイジンスルホン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシフェニル)スルフィド、1,4-(4-アミノフェノキシフェニル)ベンゼン、1,3-(4-アミノフェノキシフェニル)ベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ジ-(3-アミノフェノキシ)ジフェニルスルホン、及び4,4’-ジアミノベンズアニリド、並びにこれら芳香族ジアミンの芳香核の水素原子が、塩素原子、フッ素原子、臭素原子、メチル基、メトキシ基、シアノ基、及びフェニル基からなる群より選ばれた少なくとも一種の基又は原子によって置換された化合物が挙げられる。
該誘導体を得るために5-アミノイソフタル酸に対して反応させる具体的な化合物としては、5-ノルボルネン-2,3-ジカルボン酸無水物、エキソ-3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、3-エチニル-1,2-フタル酸無水物、4-エチニル-1,2-フタル酸無水物、シス-4-シクロヘキセン-1,2-ジカルボン酸無水物、1-シクロヘキセン-1,2-ジカルボン酸無水物、マレイン酸無水物、無水シトラコン酸、無水イタコン酸、無水エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸無水物、メチルテトラヒドロ無水フタル酸、アリルスクシン酸無水物、イソシアナートエチルメタクリレート、3-イソプロペニル-α,α-ジメチルベンジルイソシアネート、3-シクロヘキセン-1-カルボン酸クロライド、2-フランカルボン酸クロリド、クロトン酸クロリド、ケイ皮酸クロリド、メタクリル酸クロリド、アクリル酸クロリド、プロピオリック酸クロリド、テトロリック酸クロリド、チオフェン-2-アセチルクロリド、p-スチレンスルフォニルクロリド、グリシジルメタクリレート、アリルグリシジルエーテル、クロロぎ酸メチルエステル、クロロぎ酸エチルエステル、クロロぎ酸n-プロピルエステル、クロロぎ酸イソプロピルエステル、クロロぎ酸イソブチルエステル、クロロぎ酸2-エトキシエステル、クロロぎ酸-sec-ブチルエステル、クロロぎ酸ベンジルエステル、クロロぎ酸2-エチルヘキシルエステル、クロロぎ酸アリルエステル、クロロぎ酸フェニルエステル、クロロぎ酸2,2,2-トリクロロエチルエステル、クロロぎ酸-2-ブトキシエチルエステル、クロロぎ酸-p-ニトロベンジルエステル、クロロぎ酸-p-メトキシベンジルエステル、クロロぎ酸イソボルニルベンジルエステル、クロロぎ酸-p-ビフェニルイソプロピルベンジルエステル、2-t-ブチルオキシカルボニル-オキシイミノ-2-フェニルアセトニトリル、S-t-ブチルオキシカルボニル-4,6-ジメチル-チオピリミジン、ジ-t-ブチル-ジカルボナート、N-エトキシカルボニルフタルイミド、エチルジチオカルボニルクロリド、ぎ酸クロリド、ベンゾイルクロリド、p-トルエンスルホン酸クロリド、メタンスルホン酸クロリド、アセチルクロリド、塩化トリチル、トリメチルクロロシラン、ヘキサメチルジシラザン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)トリフルオロアセトアミド、(N,N-ジメチルアミノ)トリメチルシラン、(ジメチルアミノ)トリメチルシラン、トリメチルシリルジフェニル尿素、ビス(トリメチルシリル)尿素、イソシアン酸フェニル、イソシアン酸n-ブチル、イソシアン酸n-オクタデシル、イソシアン酸o-トリル、1,2-フタル酸無水物、シス-1,2-シクロヘキサンジカルボン酸無水物、グルタル酸無水物が挙げられる。
逆にビスアミノフェノール成分とジアミン成分の和をジカルボン酸成分に比べて過剰のモル数で使用する場合には、封止基としては、酸無水物、カルボン酸、酸クロリド、イソシアネート基等を有する化合物を用いるのが好ましい。該化合物の例としては、ベンゾイルクロリド、ノルボルネンジカルボン酸無水物、ノルボルネンカルボン酸、エチニルフタル酸無水物、グルタル酸無水物、無水マレイン酸、無水フタル酸、シクロヘキサンジカルボン酸無水物、メチルシクロヘキサンジカルボン酸無水物、シクロへキセンジカルボン酸無水物、メタクロイルオキシエチルメタクリレート、フェニルイソシアネート、メシルクロリド、トシル酸クロリド等が挙げられる。
感光性樹脂組成物には、(B)下記一般式(2)で表される化合物からなる群より選ばれる少なくとも一種のアルコキシアルキル基含有化合物を含む:
が挙げられる。
下記一般式(7):
(B)アルコキシアルキル基含有化合物の配合量は、(A)ヒドロキシポリアミド100質量部に対し、0.01~30質量部であり、1~20質量部が好ましい。(B)アルコキシアルキル基含有化合物の配合量が1質量部以上であるとキュア後の残膜率((キュア後のレリーフパターンの膜厚)/(現像後のレリーフパターンの膜厚)×100)が高く、30質量部以下だと感度が良好である。
感光性樹脂組成物で用いるジアゾキノン化合物は、1,2-ベンゾキノンジアジド構造又は1,2-ナフトキノンジアジド構造を有する化合物であり、米国特許明細書2,772,972号、第2,797,213号、第3,669,658号等により公知の物質である。好ましいものの例としては、例えば、下記の:
上記添加剤について更に具体的に述べると、フェノール化合物は、バラスト剤、パラクミルフェノール、ビスアミノフェノール、レゾルシノール等が挙げられる。なお、バラスト剤とは、フェノール性水素原子の一部がナフトキノンジアジドスルホン酸エステル化されたフェノール化合物である前述のジアゾキノン化合物に原料として使用されているフェノール化合物をいう。染料としては、例えば、メチルバイオレット、クリスタルバイオレット、マラカイトグリーン等が挙げられる。
また、界面活性剤としては、例えば、ポリプロピレングリコール又はポリオキシエチレンラウリルエーテル等のポリグリコール類あるいはその誘導体からなる非イオン系界面活性剤、例えばフロラード(登録商標、商品名、住友3M社製)、メガファック(登録商標、商品名、大日本インキ化学工業社製)あるいはルミフロン(登録商標、商品名、旭硝子社製)等のフッ素系界面活性剤、例えばKP341(商品名、信越化学工業社製)、DBE(商品名、チッソ社製)、グラノール(商品名、共栄社化学社製)等の有機シロキサン界面活性剤が挙げられる。
上述した感光性樹脂組成物を溶媒に溶解してワニス状にし、感光性樹脂組成物溶液として使用するができる。
以下、本発明の感光性樹脂組成物を基板に塗布して硬化レリーフパターンを製造する方法について具体的に説明する。
(1)感光性樹脂組成物からなる感光性樹脂層を基板上に形成する工程(第一の工程)。
感光性樹脂組成物溶液を、例えばシリコンウェハー、セラミック基板、アルミ基板等の基板に、スピンコーターを用いた回転塗布、又はダイコーター若しくはロールコーター等のコーターにより塗布する。あるいはインクジェットノズルやディスペンサーを用いて、所定の場所に塗布することも可能である。これをオーブンやホットプレートを用いて50~140℃で乾燥して溶媒を除去する(「プリベーク」)。
続いて感光性樹脂層を、マスクを介して活性光線により露光、すなわち、コンタクトアライナーやステッパを用いて化学線による露光を行う。あるいは光線、電子線又はイオン線を直接照射することによって露光を行う。活性光線としては、g線、h線、i線、KrFレーザーを用いることもできる。
第三の工程として、露光部又は照射部を現像液で溶出又は除去する。引き続き、好ましくはリンス液によるリンスを行うことで所望のレリーフパターンを得る。現像方法としてはスプレー、パドル、ディップ、超音波等の方式が可能である。リンス液は蒸留水、脱イオン水等が使用できる。
感光性樹脂組成物からなる感光性樹脂層を現像するために用いられる現像液は、アルカリ可溶性ポリマーを溶解除去するものであり、アルカリ化合物を溶解したアルカリ性水溶液であることが必要である。アルカリ性水溶液中に溶解されるアルカリ化合物は、無機アルカリ化合物又は有機アルカリ化合物のいずれであってもよい。
さらに、必要に応じて、上記アルカリ性水溶液に、メタノール、エタノール、プロパノール、エチレングリコール等の水溶性有機溶媒、界面活性剤、保存安定剤、樹脂の溶解抑止剤等を適量添加することができる。
最後に、得られたレリーフパターンを加熱処理して、ポリベンゾオキサゾール構造を有する樹脂からなる耐熱性硬化レリーフパターンを形成する。加熱装置としては、オーブン炉、ホットプレート、縦型炉、ベルトコンベアー炉、圧力オーブン等を使用することができ、加熱方法としては、熱風、赤外線、電磁誘導による加熱等が推奨される。温度は200~450℃が好ましく、250~400℃がより好ましい。
加熱時間は15分~8時間が好ましく、1時間~4時間がより好ましい。
雰囲気は窒素、アルゴン等不活性ガス中が好ましい。半導体装置は、硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜又はバンプ構造を有する装置の保護膜として、公知の半導体装置の製造方法と組み合わせることで製造することができる。
また、本発明の感光性樹脂組成物は、多層回路の層間絶縁、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、または液晶配向膜等の用途にも有用である。
<感光性樹脂組成物の評価>
(1)パターニング特性評価
感光性樹脂組成物をスピンコーター(Dspin・SW-636、大日本スクリーン製造(株)製)にて、5インチシリコンウェハーにスピン塗布し、ホットプレートにて125℃、180秒間プリベークを行い、膜厚9.0μmの塗膜を形成した。この塗膜を、昇温プログラム式キュア炉(VF-2000型、光洋リンドバーグ(株)製)を用いて、窒素雰囲気下、320℃で1時間熱処理(キュア)することにより硬化膜をシリコンウェハー上に得た。膜厚は光学式膜厚測定装置(ラムダエースVM-1200、大日本スクリーン製造(株)製)にて、屈折率を1.65として測定した。キュア前後の膜厚から、キュア収縮率(%)を算出した。
[感度(mJ/cm2)]
上記現像時間において、塗膜の露光部を完全に溶解除去しうる最小露光量。
[解像度(μm)]
上記露光量での最小解像パターン寸法。
[露光後の感度の経時安定性]
感光性樹脂組成物を上述した方法で5インチウェハー上にスピン塗布し、塗膜を形成し、この塗膜に上述した方法で露光した後、クリーンルーム内に24時間放置した。その後、上述した方法で現像しレリーフパターンを形成した。このときの、露光後の感度の経時変化が±50(mJ/cm2)未満を良好とし、±50(mJ/cm2)以上を不良とした。
[保存安定性評価]
上記感光性樹脂組成物を、E型粘度計(RE-80E、東機産業(株)製)を用いて23℃で粘度を測定した後、室温で2週間放置した後、再度粘度を測定し、その変化率(増粘率)を算出した。粘度変化が±5%未満を良好とし、±5%以上を不良とした。
〔参考例1〕
容量2Lのセパラブルフラスコ中で、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン197.8g(0.54mol)、ピリジン75.9g(0.96mol)、DMAc692gを室温(25℃)で混合攪拌し溶解させた。これに、別途DMDG88g中に5-ノルボルネン-2,3-ジカルボン酸無水物19.7g(0.12mol)を溶解させたものを、滴下ロートより滴下した。滴下に要した時間は40分、反応液温は最大で28℃であった。
滴下終了後、湯浴により50℃に加温し18時間撹拌したのち反応液のIRスペクトルの測定を行い1385cm-1及び1772cm-1のイミド基の特性吸収が現れたことを確認した。
容離液:テトラヒドロフラン 40℃
流速:1.0ml/分
検出器:昭和電工製 商標名 Shodex RI SE-61
参考例1において、4,4’-ジフェニルエーテルジカルボン酸ジクロライド142.3g(0.48mol)の代わりに、オクタヒドロ-1H-4,7-メタノインデンジカルボン酸ジクロライド125.35g(0.48mol)を、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン197.8g(0.54mol)の代わりに、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-プロパン139.45g(0.54mol)を用いた以外は、全て参考例1と同様にして、ポリベンゾオキサゾール樹脂前駆体を得た(P-2)。この樹脂のポリスチレン換算重量平均分子量は22000(Mw)であった。
容量1Lのセパラブルフラスコに2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-ヘキサフルオロプロパン109.9g(0.3mol)、テトラヒドロフラン(THF)330g、ピリジン47.5g(0.6mol)を入れ、これに室温下で5-ノルボルネン-2,3-ジカルボン酸無水物98.5g(0.6mol)を粉体のまま加えた。そのまま室温で3日間撹拌反応を行ったあと、HPLCにて反応を確認したところ、原料は全く検出されず、生成物が単一ピークとして純度99%で検出された。この反応液をそのまま1Lのイオン交換水中に撹拌下で滴下し、析出物を濾別した後、これにTHF500mLを加え撹拌溶解し、この均一溶液を、陽イオン交換樹脂が充填されたガラスカラムを通し残存するピリジンを除去した。次にこの溶液を3Lのイオン交換水中に高速撹拌下で滴下することにより生成物を析出させ、これを濾別した後、真空乾燥した。
次に、該生成物65.9g(0.1mol)、1,2-ナフトキノンジアジド-4-スルホニルクロライドを53.7g(0.2mol)、アセトン560g加え、20℃で撹拌溶解した。これに、トリエチルアミン21.2g(0.21mol)をアセトン106.2gで希釈したものを、30分かけて一定速度で滴下した。この際、反応液は氷水浴などを用いて20~30℃の範囲で温度制御した。
容量1Lのセパラブルフラスコに、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール(商品名Tris-P-PA-MF、本州化学工業(株)製)30.6g(0.1mol)、1,2-ナフトキノンジアジド-4-スルホニルクロライドを67.1g(0.25mol)、アセトン560gを加え、20℃で撹拌溶解した。これに、トリエチルアミン26.2g(0.26mol)をアセトン131.1gで希釈したものを、30分かけて一定速度で滴下した。この際、反応液は氷水浴などを用いて20~30℃の範囲で温度制御した。
滴下終了後、更に30分間、20℃で撹拌放置した後、36重量%濃度の塩酸水溶液5.6gを一気に投入し、次いで反応液を氷水浴で冷却し、析出した固形分を吸引濾別した。この際得られた濾液を、0.5重量%濃度の塩酸水溶液5Lに、その撹拌下で1時間かけて滴下し、目的物を析出させ、吸引濾別して回収した。得られたケーク状回収物を、再度イオン交換水5Lに分散させ、撹拌、洗浄、濾別回収し、この水洗操作を3回繰り返した。最後に得られたケーク状物を、40℃で24時間真空乾燥し、ジアゾキノン化合物(Q-2)を得た。
攪拌棒、乾燥管、温度計を備えた5Lセパラブルフラスコに1,3,5-トリメトキシベンゼンを235g(1.4mol)、アセトアルデヒド156g(5.19mol)、氷酢酸532gを加え、20℃~25℃で2時間スラリー状に攪拌した。これに7.41モル相当の30%臭化水素水溶液と酢酸を混合した溶液2000gを滴下すると、56℃まで発熱した。滴下に従い溶液の色が白から黄色、紫色に変化した。滴下終了後、70℃で50分攪拌すると完全に溶解し、さらに3時間攪拌すると褐色に反応液が変化した。その後20℃に冷却し、水7860gに反応液を投入した。これにクロロホルム9000gを加え、反応物を抽出した。これに5%重曹水4080g重曹600gを加えて洗浄した。その後20%食塩水4080gを加え、さらに硫酸マグネシウム600gを加え脱水し、クロロホルム層を濾過洗浄後、溶媒を50℃に加温しながら8mmHgで真空乾燥することで溶媒を留去し、褐色液体456gの1,3,5-トリメトキシー2,4,6-トリブロモメチルベンゼンを得た。
温度計、及び乾燥管、攪拌機を備えた容量2.0Lの4つ口フラスコに、1,2,4,5-テトラキス(ブロモメチル)ベンゼン(アルドリッチ社製)101.7g(0.226モル)及びメタノール1.5Lを仕込み、室温で攪拌した。これに、ナトリウムメトキシド80.9g(1.49モル)を加えると、20℃程度温度が上昇した。65℃のオイルバスに浸漬し、65℃で4時間攪拌し、攪拌を終了したのち、ロータリーエバポレーターを使用して、メタノールを500ml留去して、濃縮操作を行った。この濃縮反応液を2Lの氷水に投入した。これにトルエンを2L加えた後、分液漏斗に移し、抽出操作を行い、目的物をトルエン層に抽出した。これに硫酸マグネシウム50gを加えて脱水操作をおこない、硫酸マグネシウムを濾別したのち、ロータリーエバポレーターを使用して、トルエンを留去し、目的物の粗品を得た。これをトルエンと酢酸エチルを展開溶媒に使用して、シリカゲル量600gのカラムクロマト精製を行った。メイン部を回収し、再度、ロータリーエバポレーターを使用して、溶媒を留去し、1,2,4,5-テトラキス(トリメトキシメチル)ベンゼンの精製品20gを得た。HPLCにて目的物を確認したところ、原料は全く検出されず、生成物が単一ピークとして純度99%で検出された。
容量500mlのセパラブルフラスコに3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(商品名TMOM-BP、本州化学工業(株)製、構造式を以下に示す)36.2g(0.1mol)、GBL110g、ピリジン19.0g(0.24mol)を入れ、安息香酸クロリド28.1g(0.2mol)を滴下した。この際、反応液は氷水浴を用いて10~30℃の範囲で温度制御し、2時間撹拌し反応させたあと、HPLCにて反応を確認したところ、原料は全く検出されず、生成物が単一ピークとして純度99%で検出された。この反応液をそのまま1Lのイオン交換水中に撹拌下で滴下し、析出物を濾別した後、これにGBL500mlを加え撹拌溶解し、この均一溶液を陽イオン交換樹脂と陰イオン交換樹脂とが充填されたガラスカラムを通し、残存する塩素イオンとピリジンを除去した。次にこの溶液を3Lのイオン交換水中に高速撹拌下で滴下することにより生成物を析出させ、これを濾別、真空乾燥し、アルコキシアルキル基含有化合物を得た(C-1、構造式を以下に示す)。
参考例7において、安息香酸クロリド28.1g(0.2mol)の代わりに、メタクリル酸クロリド21.0g(0.2mol)を用いた以外は、全て参考例7と同様にして、アルコキシアルキル基含有化合物を得た(C-2、構造式を以下に示す)。HPLCにて反応を確認したところ、原料は全く検出されず、生成物が単一ピークとして純度99%で検出された。
参考例7において、安息香酸クロリド28.1g(0.2mol)の代わりに、p-トルエンスルホン酸クロリド38.2g(0.2mol)を用いた以外は、全て参考例7と同様にして、アルコキシアルキル基含有化合物を得た(C-3、構造式を以下に示す)。HPLCにて反応を確認したところ、原料は全く検出されず、生成物が単一ピークとして純度97.7%で検出された。
参考例7において、3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル36.2g(0.1mol)の代わりに、3,3’,5,5’-テトラキス(ヒドロキシメチル)-4,4’-ジヒドロキシビフェニル(商品名TML-BP、本州化学工業(株)製、構造式を以下に示す)30.6g(0.1mol)を用いた以外は、全て参考例7と同様にして、メチロール基含有化合物を得た(C-4、構造式を以下に示す)。HPLCにて反応を確認したところ、原料は全く検出されず、生成物が単一ピークとして純度99%で検出された。
上記参考例1にて得られたヒドロキシポリアミド(P-1)100質量部に対して、上記参考例3にて得られたジアゾキノン化合物(Q-1)の20質量部、アルコキシアルキル基含有化合物として4,4’-ビス(メトキシメチル)ビフェニル2質量部を、γ-ブチロラクトン170質量部に溶解した後、0.2μmのフィルターで濾過して、感光性樹脂組成物Aを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
上記参考例1にて得られたヒドロキシポリアミド(P-1)100質量部に対して、上記参考例3にて得られたジアゾキノン化合物(Q-1)の20質量部、アルコキシアルキル基含有化合物として4,4’-ビス(メトキシメチル)ビフェニル8質量部を、γ-ブチロラクトン170質量部に溶解した後、0.2μmのフィルターで濾過して、感光性樹脂組成物Bを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
上記参考例1にて得られたヒドロキシポリアミド(P-1)100質量部に対して、上記参考例3にて得られたジアゾキノン化合物(Q-1)の20質量部、アルコキシアルキル基含有化合物として4,4’-ビス(メトキシメチル)ビフェニル20質量部を、γ-ブチロラクトン170質量部に溶解した後、0.2μmのフィルターで濾過して、感光性樹脂組成物Cを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物を1,4-ビス(メトキシメチル)ベンゼンとした以外は、実施例2と同様にして、感光性樹脂組成物Dを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物を4,4’-ビス(メトキシメチル)ジフェニルエーテルとした以外は、実施例2と同様にして、感光性樹脂組成物Eを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物を4,4’-ビス(メトキシメチル)ジフェニルメタンとした以外は、実施例2と同様にして、感光性樹脂組成物Fを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物を4-メトキシメチルビフェニルとした以外は、実施例2と同様にして、感光性樹脂組成物Gを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物を、上述した参考例7で得られたアルコキシアルキル基含有化合物(C-1)とした以外は、実施例2と同様にして、感光性樹脂組成物Hを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
ヒドロキシポリアミド(P-1)の代わりに参考例2で得られたヒドロキシポリアミド(P-2)を用い、ジアゾキノン化合物(Q-1)の20質量部の代わりに、参考例4で得られたジアゾキノン化合物(Q-2)の14質量部を用いた以外は、実施例2と同様にして、感光性樹脂組成物Iを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
ヒドロキシポリアミド(P-1)の代わりに参考例2で得られたヒドロキシポリアミド(P-2)を用い、ジアゾキノン化合物(Q-1)の20質量部の代わりに、参考例4で得られたジアゾキノン化合物(Q-2)の14質量部を用いた以外は、実施例4と同様にして、感光性樹脂組成物Jを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
ヒドロキシポリアミド(P-1)の代わりに参考例2で得られたヒドロキシポリアミド(P-2)を用い、アルコキシアルキル基含有化合物を1,3,5-トリス(メトキシメチル)-2,4,6-トリメトキシベンゼンとした以外は、実施例2と同様にして、感光性樹脂組成物Kを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物を1,2,4,5-テトラキス(メトキシメチル)ベンゼンとした以外は、実施例11と同様にして、感光性樹脂組成物Lを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物を、上述した参考例8で得られたアルコキシアルキル基含有化合物(C-2)とした以外は、実施例11と同様にして、感光性樹脂組成物Mを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物を、上述した参考例9で得られたアルコキシアルキル基含有化合物(C-3)とした以外は、実施例11と同様にして、感光性樹脂組成物Nを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物の代わりにメチロール基含有化合物DML-PTBP(本州化学工業(株)製)(構造式を以下に示す)の8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Oを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物として、DMOM-PTBP(本州化学工業(株)製)(構造式を以下に示す)の8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Pを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物の代わりに2,6-ジメチロール-p-クレゾールの8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Qを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物の代わりに1,4-ジベンジルアルコールの8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Rを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物の代わりに、メチロール基含有化合物TML-BP(本州化学工業(株)製)(構造式は前記した)の8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Sを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物として、TMOM-BP(本州化学工業(株)製)(構造式は前記した)の8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Tを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物の代わりに、参考例10で得られたメチロール基含有化合物(C-4)の8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Uを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物として、ジメトキシメチル尿素(商品名MX-290、三井サイテック(株)製)の8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Vを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物の代わりに、エポキシ基含有化合物である水添ビスフェノールAジグリシジルエーテル(商品名エポライト4000、共栄社化学(株)製)の8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Wを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
アルコキシアルキル基含有化合物の代わりに、ベンゾオキサジン化合物(商品名B-a型ベンゾオキサジン、四国化成工業(株)製)の8質量部とした以外は、実施例1と同様にして、感光性樹脂組成物Xを調製した。得られた感光性樹脂組成物を用いて、上述した方法によりシリコンウェハー上にレリーフパターンを作成し、キュア収縮率、組成物の感度、解像度を評価した。さらに、上述した方法により露光後の感度の経時安定性を評価した。また、上述した方法により組成物の粘度測定を行い、保存安定性を評価した。
表2から、本発明の感光性樹脂組成物は、保存安定性が良好で、高感度、高解像度のレリーフパターンを形成することができ、さらに露光後の感度の経時安定性に優れることがわかる。これに反し、本発明の要件を満たすアルコキシアルキル基含有化合物を含まない比較例1~10の組成物は良好な感度、解像度が得られない、または組成物の安定性に劣るという不具合があることが分かる。
Claims (10)
- (A)下記一般式(1):
- (B)アルコキシアルキル基含有化合物が、下記一般式(3):
で表される、請求項1に記載の感光性樹脂組成物。 - (B)アルコキシアルキル基含有化合物が、ビス(メトキシメチル)ベンゼン、トリス(メトキシメチル)ベンゼン、テトラキス(メトキシメチル)ベンゼン、ペンタキス(メトキシメチル)ベンゼン、ヘキサキス(メトキシメチル)ベンゼン、トリス(メトキシメチル)トリメトキシベンゼン、メトキシメチルビフェニル、ビス(メトキシメチル)ビフェニル、ビス(メトキシメチル)ジフェニルエーテル、及びビス(メトキシメチル)ジフェニルメタンからなる群より選ばれる、請求項1に記載の感光性樹脂組成物。
- (B)アルコキシアルキル基含有化合物が、下記一般式(7):
- 請求項1~8のいずれか1項に記載の感光性樹脂組成物からなる感光性樹脂層を基板上に形成する工程、マスクを介して活性光線で露光するか又は光線、電子線若しくはイオン線を直接照射する工程、現像する工程、及び得られたレリーフパターンを加熱する工程を含む硬化レリーフパターンの製造方法。
- 請求項9に記載の方法により得られた硬化レリーフパターン層を有してなる半導体装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010514514A JP5185999B2 (ja) | 2008-05-29 | 2009-05-27 | 感光性樹脂組成物 |
CN200980119560.6A CN102047181B (zh) | 2008-05-29 | 2009-05-27 | 感光性树脂组合物 |
KR1020107025832A KR101355788B1 (ko) | 2008-05-29 | 2009-05-27 | 감광성 수지 조성물 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-141253 | 2008-05-29 | ||
JP2008141253 | 2008-05-29 | ||
JP2008229982 | 2008-09-08 | ||
JP2008-229982 | 2008-09-08 | ||
JP2009011352 | 2009-01-21 | ||
JP2009-011352 | 2009-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009145227A1 true WO2009145227A1 (ja) | 2009-12-03 |
Family
ID=41377098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059711 WO2009145227A1 (ja) | 2008-05-29 | 2009-05-27 | 感光性樹脂組成物 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5185999B2 (ja) |
KR (1) | KR101355788B1 (ja) |
CN (1) | CN102047181B (ja) |
TW (1) | TWI401530B (ja) |
WO (1) | WO2009145227A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102566274A (zh) * | 2010-12-31 | 2012-07-11 | 第一毛织株式会社 | 正型光敏树脂组合物,利用其制备的光敏树脂膜,和包括该光敏树脂膜的半导体器件 |
US9176381B2 (en) | 2009-12-29 | 2015-11-03 | Cheil Industries Inc. | Positive type photosensitive resin composition |
JP2020511446A (ja) * | 2017-03-09 | 2020-04-16 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung | 重合性化合物および液晶ディスプレイにおけるその使用 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5547933B2 (ja) * | 2008-09-08 | 2014-07-16 | 旭化成イーマテリアルズ株式会社 | アルコキシメチル化合物 |
JP5431027B2 (ja) * | 2009-05-26 | 2014-03-05 | 旭化成イーマテリアルズ株式会社 | 熱架橋性化合物 |
TWI428699B (zh) * | 2011-12-01 | 2014-03-01 | Chi Mei Corp | 光硬化性聚矽氧烷組成物、保護膜及具有保護膜的元件 |
JP6195018B2 (ja) * | 2015-03-27 | 2017-09-13 | 東レ株式会社 | ジアミン化合物に由来する構造を有する耐熱性樹脂または耐熱性樹脂前駆体 |
KR102645134B1 (ko) * | 2020-09-03 | 2024-03-06 | 삼성에스디아이 주식회사 | 중합체, 하드마스크 조성물 및 패턴 형성 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005037925A (ja) * | 2003-06-23 | 2005-02-10 | Sumitomo Bakelite Co Ltd | ポジ型感光性樹脂組成物、半導体装置及び表示素子、並びに半導体装置及び表示素子の製造方法 |
JP2007016214A (ja) * | 2005-06-09 | 2007-01-25 | Toray Ind Inc | 樹脂組成物およびそれを用いた表示装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW574620B (en) * | 2001-02-26 | 2004-02-01 | Toray Industries | Precursor composition of positive photosensitive resin and display device using it |
EP1491952B1 (en) * | 2003-06-23 | 2015-10-07 | Sumitomo Bakelite Co., Ltd. | Positive-working photosensitive resin composition, method for producing pattern-formed resin film, semiconductor device, display device, and method for producing the semiconductor device and the display device |
JP4327616B2 (ja) * | 2004-01-26 | 2009-09-09 | 旭化成イーマテリアルズ株式会社 | 感光性コーティング樹脂組成物 |
-
2009
- 2009-05-27 JP JP2010514514A patent/JP5185999B2/ja not_active Expired - Fee Related
- 2009-05-27 TW TW98117855A patent/TWI401530B/zh not_active IP Right Cessation
- 2009-05-27 CN CN200980119560.6A patent/CN102047181B/zh not_active Expired - Fee Related
- 2009-05-27 KR KR1020107025832A patent/KR101355788B1/ko active IP Right Grant
- 2009-05-27 WO PCT/JP2009/059711 patent/WO2009145227A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005037925A (ja) * | 2003-06-23 | 2005-02-10 | Sumitomo Bakelite Co Ltd | ポジ型感光性樹脂組成物、半導体装置及び表示素子、並びに半導体装置及び表示素子の製造方法 |
JP2007016214A (ja) * | 2005-06-09 | 2007-01-25 | Toray Ind Inc | 樹脂組成物およびそれを用いた表示装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9176381B2 (en) | 2009-12-29 | 2015-11-03 | Cheil Industries Inc. | Positive type photosensitive resin composition |
CN102566274A (zh) * | 2010-12-31 | 2012-07-11 | 第一毛织株式会社 | 正型光敏树脂组合物,利用其制备的光敏树脂膜,和包括该光敏树脂膜的半导体器件 |
US8841064B2 (en) | 2010-12-31 | 2014-09-23 | Cheil Industries Inc. | Positive photosensitive resin composition, photosensitive resin film prepared by using the same, and semiconductor device including the photosensitive resin film |
JP2020511446A (ja) * | 2017-03-09 | 2020-04-16 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung | 重合性化合物および液晶ディスプレイにおけるその使用 |
US11718791B2 (en) | 2017-03-09 | 2023-08-08 | Merck Patent Gmbh | Polymerisable compounds and the use thereof in liquid-crystal displays |
Also Published As
Publication number | Publication date |
---|---|
TWI401530B (zh) | 2013-07-11 |
JP5185999B2 (ja) | 2013-04-17 |
KR20100133495A (ko) | 2010-12-21 |
CN102047181B (zh) | 2013-01-23 |
JPWO2009145227A1 (ja) | 2011-10-13 |
CN102047181A (zh) | 2011-05-04 |
KR101355788B1 (ko) | 2014-01-24 |
TW201011464A (en) | 2010-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4925732B2 (ja) | ポジ型感光性樹脂組成物 | |
JP4397418B2 (ja) | ポジ型感光性樹脂組成物 | |
JP5185999B2 (ja) | 感光性樹脂組成物 | |
JP5260646B2 (ja) | 感光性樹脂組成物 | |
JP4780586B2 (ja) | ポジ型感光性樹脂組成物 | |
JP4931644B2 (ja) | 感光性樹脂組成物 | |
JP5120539B2 (ja) | 耐熱性樹脂組成物 | |
JP4128116B2 (ja) | ポジ型感光性樹脂組成物 | |
JP4804312B2 (ja) | ポジ型感光性樹脂組成物 | |
JP5111234B2 (ja) | アルカリ現像可能なネガ型感光性樹脂組成物 | |
JP5486201B2 (ja) | 感光性樹脂組成物 | |
JP4627030B2 (ja) | ポジ型感光性樹脂組成物 | |
JP5139886B2 (ja) | 感光性樹脂組成物 | |
JP2005338481A (ja) | ポジ型感光性樹脂組成物 | |
JP4726730B2 (ja) | ポジ型感光性樹脂組成物 | |
JP4578369B2 (ja) | ポジ型感光性樹脂組成物 | |
JP4836607B2 (ja) | ポジ型感光性樹脂組成物 | |
JP5241142B2 (ja) | ポジ型感光性樹脂組成物 | |
JP5571914B2 (ja) | 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置 | |
JP4969333B2 (ja) | ポジ型感光性樹脂組成物 | |
JP4744318B2 (ja) | ポジ型感光性樹脂組成物 | |
JP5111223B2 (ja) | ネガ型感光性樹脂組成物 | |
JP2007225942A (ja) | ポジ型感光性樹脂組成物 | |
JP5213518B2 (ja) | 耐熱性樹脂組成物 | |
JP2013082944A (ja) | 耐熱性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980119560.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09754735 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010514514 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107025832 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09754735 Country of ref document: EP Kind code of ref document: A1 |