WO2009145172A1 - フローセル及び送液方法 - Google Patents

フローセル及び送液方法 Download PDF

Info

Publication number
WO2009145172A1
WO2009145172A1 PCT/JP2009/059577 JP2009059577W WO2009145172A1 WO 2009145172 A1 WO2009145172 A1 WO 2009145172A1 JP 2009059577 W JP2009059577 W JP 2009059577W WO 2009145172 A1 WO2009145172 A1 WO 2009145172A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
flow cell
flow path
reference solution
sample solution
Prior art date
Application number
PCT/JP2009/059577
Other languages
English (en)
French (fr)
Inventor
勉 堀内
達 三浦
弦 岩崎
倫子 瀬山
林 剛
高橋 淳一
恒之 芳賀
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2010514482A priority Critical patent/JPWO2009145172A1/ja
Priority to US12/993,298 priority patent/US8663560B2/en
Priority to EP09754680.8A priority patent/EP2282190B1/en
Publication of WO2009145172A1 publication Critical patent/WO2009145172A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/148Specific details about calibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0694Valves, specific forms thereof vents used to stop and induce flow, backpressure valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502723Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1039Micropipettes, e.g. microcapillary tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation

Definitions

  • the present invention relates to a flow cell and a liquid feeding method.
  • This application claims priority based on Japanese Patent Application No. 2008-141463 filed in Japan on May 29, 2008 and Japanese Patent Application No. 2008-141464 filed on May 29, 2008 in Japan. And the contents thereof are incorporated herein.
  • Measurements using advanced biomolecular identification functions such as antigen-antibody reactions and DNA fragments (DNA probes) and DNA binding are important technologies for clinical tests, biochemical measurements, and environmental pollutant measurements. It has become. Examples of this measurement include micro TAS (Total Analysis Systems), micro combinatorial chemistry, chemical IC, chemical sensor, biosensor, trace analysis, electrochemical analysis, QCM measurement, SPR measurement, and ATR measurement. In such a measurement field, the sample solution to be measured is often in a very small amount.
  • a sample cell capable of holding a sample solution is used (for example, see Patent Document 1). Then, a very small amount of the sample solution is supplied to the sample cell, and the sample solution is flowed to and transferred to the detection unit for measuring the sample cell. Thereby, the measurement is performed with higher sensitivity and higher efficiency without reducing the concentration of the sample (DNA, antibody, etc.) dissolved or dispersed in the sample solution.
  • a sample cell that allows the sample solution to flow through the measurement portion in this way is called a flow cell.
  • Non-Patent Document 1 a technique has been proposed in which a flow cell or a region serving as a pump capable of expressing capillary action is formed in a flow cell (see Non-Patent Document 1).
  • the flow cell produced by this technique is provided between an inlet (feeding unit) through which a sample solution is introduced, a capillary pump (transfer unit) for sucking the introduced sample solution, and between the inlet and the capillary pump.
  • the measured flow paths are formed in a straight line along the planar direction of the plate-like cells.
  • the measurement result of the sample solution to be measured is compared with the measurement result of the reference solution having properties similar to the sample solution, and the difference in the sample results in the sample solution. Measure.
  • a reference solution is first flowed through the flow path of the flow cell, and a first measurement of the reference solution is performed to obtain a result.
  • the sample solution is poured and measurement is performed to obtain the result.
  • the measurement result of the sample solution is obtained using the first and second measurement results of the reference solution.
  • the operator waits for the reference solution to be sucked into the transfer unit and transferred from the supply unit, and then supplies the sample solution. There is a need. Similarly, it is necessary to continue supplying the second reference solution after the sample solution has been transferred. That is, when sequentially supplying different solutions to the supply unit, the timing and liquid supply timing are set so that the solutions do not mix as much as possible and no gap is formed between the different solutions flowing in the flow path. It is necessary to pay attention to the amount of liquid.
  • a plurality of measuring devices are used for measurement using such a flow cell, and the measurements are performed in parallel. For this reason, when one worker operates a plurality of measuring devices, the burden on the worker is large.
  • the measurement result of the sample solution to be measured is compared with the measurement result of the reference solution having a property similar to the sample solution, and the specimen in the sample solution is determined by the difference. Is being measured.
  • the measurement is performed in a flow cell, it is necessary to provide a sample solution system and a reference solution system on the same cell.
  • the structure of the flow cell becomes complicated. For this reason, generally, a reference solution is first flowed through the flow path of the flow cell to measure the reference solution to obtain a result, and then a sample solution is flowed to perform measurement to obtain a result. The measurement results are compared.
  • a plurality of syringe pumps are used. Specifically, each of these syringe pumps is connected to the liquid switch inlet side with a tube or the like, the liquid switch outlet side is connected to the flow cell, and the liquid switch is switched for each solution to be supplied to the flow cell. Has been done.
  • the operator supplies the reference solution and the sample solution to the flow cell using a pipette or the like, the operator supplies the reference solution to the supply unit, and then the reference solution is sucked into the transfer unit and supplied to the supply unit. Therefore, it is necessary to continue supplying the sample solution when the transfer is completed. That is, when sequentially supplying different solutions to the supply unit, it is necessary to work so that the solutions do not mix as much as possible and that no gap is formed between the different solutions flowing through the flow path. .
  • the reference solution is stored and stored in the flow cell in advance and measurement is performed using the flow cell, the reference solution is measured first, and then the sample solution is supplied to the flow cell.
  • a method of measuring the above is also conceivable.
  • the detection unit facing the flow channel is exposed to the reference solution for a long period of time, the detection unit deteriorates and affects measurement accuracy.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a flow cell and a liquid feeding method capable of adjusting the timing of feeding a sample solution and the amount of liquid feeding according to work.
  • Another object of the present invention is to provide a flow cell and a liquid feeding method capable of improving workability with a simple configuration and ensuring measurement accuracy.
  • a flow cell includes a flow path through which a sample solution flows, a supply unit that is connected to the flow path and to which the sample solution is supplied, one end side that is in communication with the flow path, and the other end side that is outside air.
  • a plurality of openings that are open to each other, a transfer section that communicates with the flow path and sucks the sample solution supplied to the supply section and leads to the flow path, and faces the sample solution in the flow path
  • a detection part and the sealing member which seals at least any one of the said opening part or the said supply part so that opening is possible are provided.
  • the opening on the other end side of the transfer part that sucks the sample solution and guides it to the flow path is sealed by the sealing member, so that the supply is continued until the sealing member opens the opening.
  • the sample solution supplied to the section does not flow into the flow path.
  • the some opening part is provided and the quantity of liquid feeding can be determined according to the range which opens these opening parts. That is, the sample solution is transferred only to the portion of the transfer portion corresponding to the opened opening, and the liquid supply is stopped when the sample solution is filled in the portion of the transfer portion. Therefore, the operator can freely adjust the timing and amount of the sample solution supplied to the supply unit in accordance with the operation.
  • the operator when it is desired to flow a solution such as a reference solution different from the sample solution into the flow path before or after supplying the sample solution, the operator actively determines the timing and amount of each solution to be fed. Since it is determined, the following problems as in the prior art do not occur. That is, the operator performs the work passively while paying attention to the amount of decrease in the solution remaining in the supply unit, and the next solution in an empty state after all of the previously supplied solution has been transferred from the supply unit.
  • the sealing member may be attached to at least one of the opening or the supply unit and be peelable.
  • the sealing member is made of, for example, an adhesive tape, and the adhesive tape can be peeled off to easily open the opening, the workability is good and the opening range is accurately set. be able to.
  • the sealing member may have a rod shape that closes the opening with a base end, and the tip may be tilted to open the opening.
  • the sealing member is formed of a rod-like material such as a resin material, and its base end is in a state of being sealed by closing the opening. And if the front-end
  • the transfer unit may include a plurality of through holes.
  • the transfer unit is arranged with a plurality of chambers having one end communicating with the flow path and the other end serving as the opening, and a gap between the chambers.
  • a plurality of columnar members may be provided.
  • the interval between the plurality of columnar members inside the chamber is configured to develop a capillary phenomenon, and the sample solution is sucked up from the flow path, so that the same effect as the above-described flow cell is achieved.
  • the transfer solution that has properties similar to the sample solution and is used for measurement comparison is stored in the supply unit and can be opened, and the transfer The unit includes a first transfer unit that communicates with the other end side of the flow path, sucks the reference solution stored in the supply section, and guides the reference solution to the flow path, and stores the reference by opening the storage section. You may send a solution to the said detection part of the said flow path.
  • the storage unit for storing the reference solution in the supply unit since the storage unit for storing the reference solution in the supply unit is provided, it is not necessary for the operator to supply the reference solution from the outside to the flow cell at the time of measurement.
  • the stored reference solution can be sent to the detection part of the flow path only by a simple operation of opening the container. Therefore, since it is only necessary to supply the sample solution to the flow cell at the time of measurement, the reference solution and the sample solution are respectively supplied to the flow cell using a plurality of syringe pumps, liquid switches, tubes, and the like as in the past. Complex equipment configuration is not required and equipment costs can be reduced. Moreover, there is no troublesome trouble of exchanging these syringe pumps, liquid switches, tubes, etc. for each measurement, washing and drying, and the workability is improved.
  • the amount of the reference solution to be fed is set to a predetermined amount stored in advance in the supply unit, the amount of the reference solution supplied by the operator to the flow cell is adjusted for each measurement as in the past. There is no hassle.
  • the operator can easily perform liquid feeding in accordance with the work, so that no mistake occurs in the work.
  • the operator can adjust the timing of liquid delivery according to the work, and the reference solution can be flowed immediately before the measurement, so that the detection part of the flow path is not exposed to the reference solution for a long time, and the measurement can be performed. Accuracy is increased.
  • the reference solution communicated with the first transfer unit and sucked into the flow path is sucked and supplied to the supply unit following the reference solution.
  • a second transfer unit that supplies the sample solution to the detection unit of the flow path may be provided.
  • the second transfer unit sends the sample solution supplied to the supply unit following the reference solution to the detection unit of the flow path. Therefore, unlike the conventional case, there is no need for a complicated apparatus configuration in which pressure is applied to the flow path by using a syringe pump or the like from the outside of the flow cell and the reference solution and the sample solution are fed, and the equipment cost is reduced.
  • the supply unit has an amount of a part of which remains in the supply unit in an equilibrium state in which the reference solution is supplied to the flow path and the liquid supply is stopped.
  • the reference solution may be stored.
  • the amount of the reference solution stored in the supply unit is set so that a part of the reference solution remains in the supply unit in an equilibrium state in which the liquid supply is stopped.
  • the following problems as in the prior art do not occur. That is, the operator passively works while paying attention to the amount of decrease in the reference solution remaining in the supply unit, and the sample solution is supplied in an empty state after the reference solution has been completely transferred from the supply unit. As a result, a gap is formed between the solutions flowing through the flow path, causing a large change in the measurement result called so-called injection shock, and the measurement result of the reference solution and the measurement result of the sample solution. There is no such a situation that a small amount of change cannot be compared.
  • the operator who sent the reference solution can supply the next sample solution to the flow cell in accordance with the work and actively send the solution, the work can be done easily without requiring the operator. At the same time, sufficient measurement accuracy is ensured.
  • the storage unit is formed of a sealed container-like liquid sealing member connected to the supply unit, and the liquid sealing member is opened to store in the supply unit.
  • the reference solution may be sent to the detection unit.
  • the storage part is made of a sealed container-like liquid sealing member such as an ampule or a microcapsule, and the inside of the liquid sealing member communicates with the supply part to store the reference solution.
  • the liquid sealing member is opened, outside air is sucked from the opened portion, and the reference solution stored in the supply unit is sent to the detection unit of the flow path.
  • the workability is excellent because the reference solution can be flowed to the detection unit simply by opening the liquid seal member.
  • the storage unit includes a sheet-shaped supply unit sealing member that seals the opening of the supply unit, and the supply unit sealing member is opened.
  • the reference solution stored in the supply unit may be sent to the detection unit.
  • the storage part is made of a sheet-like supply part sealing member such as an adhesive tape, for example, and this supply part sealing member is adhered so as to seal the opening of the supply part. And if the supply part sealing member is peeled off from the supply part and opened in accordance with the work, the reference part stored so that the supply part sucks outside air from the opening part is sent to the detection part of the flow path. With a simple structure, liquid can be sent easily and manufacturing costs are reduced.
  • the first transfer unit includes a first through hole having one end communicating with the flow path and the other end opening to the outside air
  • the storage unit includes the first transfer unit. It consists of the 1st sealing member which seals opening of a through-hole, and the said reference solution stored in the said supply part may be sent to the said detection part by opening the said 1st sealing member.
  • the storage portion is made of a first sealing member such as an adhesive tape, for example, and the first sealing member is adhered so as to seal the opening of the first through hole. Then, if the first sealing member is peeled from the first through hole and opened in accordance with the work, the reference solution stored so that the supply unit sucks the outside air is sent to the detection unit of the flow path. With the configuration, the liquid can be fed easily, and the manufacturing cost is reduced.
  • a first sealing member such as an adhesive tape, for example
  • the second transfer unit includes a second through hole having one end communicating with the first transfer unit and the other end opening to the outside air.
  • a second sealing member that seals the opening may be provided, and the sample solution supplied to the supply unit may be supplied to the detection unit by opening the second sealing member.
  • the second transfer part is composed of the second through hole, and the opening of the second through hole is sealed by the second sealing member such as an adhesive tape.
  • the sample solution supplied to the supply unit later is not supplied to the flow path but is stored in the supply unit until the second sealing member is peeled off from the second through hole and opened. That is, the second sealing member is peeled off from the second through hole and opened, so that the sample solution stored so that the supply unit sucks outside air is sent to the detection unit of the flow path. Therefore, it is possible to actively control the timing of feeding the sample solution with a simple configuration, the measurement accuracy is improved, and the workability is improved.
  • a cross-sectional area of the flow path in a region where the detection unit is provided is smaller than a cross-sectional area of the flow path in a region where the detection unit is not provided. Also good.
  • the opening state of the sealing member may be controlled by an external device.
  • a sample solution and a reference solution that has properties similar to the sample solution and are used for comparison of measurement are supplied to a supply unit, and a flow path is provided.
  • a transfer unit communicating with the supply unit via the suction unit sucks the sample solution and the reference solution of the supply unit, guides them to the flow path, and supplies the flow to the detection unit facing the flow path.
  • the reference solution is supplied to the supply unit, and a part of the sealing member that seals the plurality of openings of the transfer unit is opened to suck the reference solution and to detect the detection unit.
  • a reference solution having properties similar to a sample solution and the sample solution are sequentially supplied to a supply unit communicating with one end of a flow path.
  • a flow cell feeding method for leading to a path and feeding to a detection unit facing the channel, wherein the supply unit stores the reference solution and opens the storage unit to open the other channel.
  • the timing of feeding the sample solution and the amount of the delivered solution can be adjusted according to the work, and the operator can be measured easily and accurately without the need for skill, improving workability. can do.
  • the timing and amount of feeding of the sample solution and the timing and amount of feeding of the reference solution can be adjusted according to the work.
  • the sample solution and the reference solution are not mixed in the unit, and no gap is formed between the sample solution flowing through the flow path and the reference solution. In addition to superiority, measurement accuracy is improved.
  • the operator since the storage unit for storing the reference solution in the supply unit is provided, the operator supplies the reference solution to the supply unit each time during measurement. There is no such need, and the stored reference solution can be sent to the detection part of the flow path simply by opening the storage part. Therefore, the workability of measurement can be improved with a simple configuration.
  • the operator since a predetermined amount of the reference solution stored in advance in the supply unit is delivered by opening the storage unit, the operator can actively control the timing of delivery and the amount of delivery, thereby improving measurement accuracy. It has been.
  • FIG. 1 It is explanatory drawing which shows schematic structure of the SPR measuring apparatus using the flow cell which concerns on the 1st Embodiment of this invention. It is a characteristic view explaining the relationship between the reflectance of a detection part and reflection angle which were measured with the SPR measuring device.
  • FIG. 7 is a side sectional view taken along the line A1-A1 of FIG.
  • FIG. 7 is a side sectional view taken along the line B1-B1 of FIG.
  • FIG. 10 is a side sectional view taken along the line C1-C1 of FIG.
  • It is explanatory drawing which shows schematic structure of the SPR measuring apparatus using the flow cell which concerns on the 4th Embodiment of this invention. It is a characteristic view explaining the relationship between the reflectance of a detection part and reflection angle which were measured with the SPR measuring device. It is a disassembled perspective view which shows schematic structure of the flow cell which concerns on the 4th Embodiment of this invention.
  • FIG. 15 is a side sectional view showing an arrow A2-A2 in FIG. It is a sectional side view which shows the B2-B2 arrow of FIG. It is a sectional side view explaining the equilibrium state before the reference solution of the flow cell concerning the 4th Embodiment of this invention is sent to a detection part. It is a sectional side view explaining the equilibrium state after the reference solution of the flow cell concerning the 4th Embodiment of this invention is sent to the detection part. It is a disassembled perspective view which shows schematic structure of the flow cell which concerns on the 5th Embodiment of this invention.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an SPR measurement device using a flow cell according to the first embodiment of the present invention.
  • FIG. 2 is a characteristic diagram for explaining the relationship between the reflectance and the reflection angle of the detection unit measured by the SPR measurement device.
  • FIG. 3 is an exploded perspective view showing a schematic configuration of the flow cell according to the first embodiment of the present invention.
  • FIG. 4 is a plan view showing a schematic configuration of the flow cell according to the first embodiment of the present invention.
  • the flow cell 1 of the present embodiment uses a so-called surface plasmon resonance (SPR) phenomenon, which is a resonance between an evanescent wave and a surface plasmon wave on the surface of a metal thin film in contact with a sample to be measured (DNA, antibody, etc.).
  • SPR surface plasmon resonance
  • this SPR measurement apparatus 100 polarizes light emitted from a light source 101 with a polarizer (not shown) to obtain P-polarized light (hereinafter referred to as “incident light”). Then, the SPR measuring apparatus 100 causes the band-shaped incident light condensed by the condenser lens 102 to enter the curved surface side of the semi-cylindrical prism 103. Then, the SPR measurement device 100 irradiates a metal thin film (described later) of the flow cell 1 that is in close contact with the measurement surface 103a on the flat surface side of the prism 103. Then, the SPR measurement device 100 detects the reflected light with the light receiving unit 104 formed of a CCD image sensor.
  • the reflection intensity decreases at the angle at which the resonance occurs (resonance angle). Is done.
  • the resonance angle depends on the optical property (refractive index) of the sample solution in contact with the metal thin film. Therefore, a specific substance can be quantitatively measured by immobilizing an antibody on a metal thin film and measuring the refractive index change due to the binding between the antibody and the antigen.
  • the flow cell 1 mounted on the SPR measuring device 100 has a substantially rectangular parallelepiped shape or a substantially rectangular plate shape and has a laminated structure. That is, in a state where the flow cell 1 is placed on the SPR measuring device 100, the lower substrate 2 having a substantially rectangular plate shape disposed on the lower side, and the outer shape in plan view stacked on the lower substrate 2 are And an upper substrate 3 formed substantially the same.
  • the thickness of the lower substrate 2 is about 1 mm
  • the thickness of the upper substrate 3 is about 3 mm.
  • the upper substrate 3 is a sample to be measured on one end side (upper right side in FIG. 3 or upper side in FIG. 4) of the substantially center in the width direction (upper left-lower right direction in FIG. 3 or left / right direction in FIG. 4) in the plan view.
  • a hole (supply unit) 4 is provided.
  • the solution supply hole 4 includes a lower cylindrical hole-shaped small-diameter portion 4a and an elliptic cylinder hole-shaped large-diameter portion 4b formed above the small-diameter portion 4a and having a diameter larger than that of the small-diameter portion 4a. 3 is penetrated in the thickness direction.
  • the upper substrate 3 is provided with a plurality of cylindrical hole-shaped through holes (transfer portions) 5 that penetrate the upper substrate 3 in the thickness direction. Further, as shown in FIG. 4, these through holes 5 are arranged in a substantially rectangular shape in plan view on one side (left side in FIG. 4) and the other side (right side in FIG. 4) in the width direction. Further, these through holes 5 are arranged in a straight line so as to connect opposite end portions on the other end side (the lower side in FIG. 4) of the substantially rectangular shape in plan view. These through-holes 5 are set to have an inner diameter within a range in which capillary action is exerted on each solution.
  • the upper end of the through-hole 5 is an opening 6 that is open to the outside air, and the lower end communicates with a suction channel 8 described later. .
  • the lower substrate 2 is composed of two layers, the lower layer is made of a base substrate 2a made of a material that transmits light such as glass or acrylic resin, and the upper layer is a spacer portion 2b such as a resin film. Consists of.
  • an opening portion penetrating in the thickness direction is formed.
  • a circular hole 7 having an inner diameter substantially the same as the inner diameter of the small diameter portion 4a is formed at a position corresponding to the small diameter portion 4a of the solution supply hole 4 of the upper substrate 3 in the opening portion.
  • the spacer portion 2b has a substantially rectangular hole shape so as to correspond to the outer shape of the plurality of through holes 5 arranged in a substantially rectangular shape in plan view on one side and the other side in the width direction of the upper substrate 3, respectively.
  • the respective suction channels 8 formed in the above are provided.
  • the suction flow path 8 is set to such a height that each solution does not form a gap between the solution and the through-hole 5 thereabove when the solution is supplied. It is about 100 ⁇ m.
  • a channel 9 extending in a direction orthogonal to the width direction is formed at a substantially center in the width direction of the spacer portion 2b.
  • the end of one end side of the channel 9 communicates with the circular hole 7, the end of the other end side branches into one side and the other side in the width direction, and communicates with the respective suction channels 8. is doing.
  • the channel 9 has a substantially rectangular cross section.
  • the cross-sectional dimension perpendicular to the extending direction hereinafter abbreviated as “cross-sectional dimension” is about 1 mm in the width direction, and the plate thickness direction (height) is 10 to 10 mm. It is set to about 100 ⁇ m, and is set in a range in which capillary action is developed for each solution. In this way, the circular hole 7 connected to the solution supply hole 4 and the suction flow path 8 connected to the through hole 5 communicate with each other via the flow path 9.
  • a rectangular metal thin film (detection unit) 10 is formed in the approximate center in the width direction of the upper surface of the base substrate 2a.
  • the metal thin film 10 is made of, for example, Au (gold), and is disposed so as to be able to face and contact each solution flowing through the flow path 9 of the spacer portion 2b.
  • a plurality of antibodies are arranged along the flow path 9 on the upper surface of the metal thin film 10.
  • the metal thin film 10 is disposed so as to correspond to the region used for the measurement at the substantially center of the upper surface of the base substrate 2a.
  • the metal thin film 10 is wide and large beyond the range of the region. It may be formed.
  • substantially rectangular surface active regions 11 are formed in portions corresponding to the respective suction channels 8 of the spacer portion 2b on one side and the other side in the width direction of the base substrate 2a.
  • the surface active region 11 is subjected to surface processing, and the wettability with respect to each solution is set to be different from that other than the surface active region 11. That is, the surface processing of the surface active region 11 is variously set, and the suction state and flow rate of each solution are changed and controlled.
  • a plurality of sealing members 12 made of adhesive tape are attached to the upper surface of the upper substrate 3. These sealing members 12 are arranged to face the openings 6 of the through holes 5 of the upper substrate 3, and each sealing member 12 seals the plurality of openings 6.
  • the plurality of openings 6 disposed on one end side of the upper substrate 3 are sealed with a sealing member 12 c.
  • a plurality of openings 6 disposed on one end side of the other side of the upper substrate 3 are sealed with a sealing member 12d.
  • the plurality of openings 6 arranged on the other end side of the sealing member 12c are sealed with the sealing member 12a.
  • the plurality of openings 6 disposed on the other end side of the sealing member 12d are sealed by the sealing member 12b.
  • the flow cell 1 is placed on the measurement surface 103a of the prism 103 of the SPR measurement device 100 via matching oil or the like.
  • the light source 101 irradiates the metal thin film 10 of the flow cell 1 with incident light, and the reflected light is received by the light receiving unit 104 so that a change in refractive index can be measured. Keep it as
  • PBS solution is supplied to the solution supply hole 4 of the placed flow cell 1.
  • the supplied PBS solution flows through the flow path 9 as the flow path 9 communicating with the solution supply hole 4 develops a capillary phenomenon.
  • due to the capillary phenomenon due to the penetration hole 5 disposed in the vicinity of the other end of the flow path 9 and the through hole 5 disposed at the other end of each suction flow path 8 getting wet with the PBS solution. Sucked.
  • the sealing member 12a is peeled off in a state where the PBS solution is filled in all of the through holes 5 that have previously opened the opening 6, and the plurality of openings 6 sealed with the sealing member 12a are formed. Open. Thereby, the through-hole 5 corresponding to the opened opening 6 sucks the PBS liquid.
  • these through holes 5 are filled with the PBS solution, capillary action does not occur, and the PBS solution is no longer sucked from the solution supply hole 4 and the liquid feeding stops.
  • the amount of the PBS solution supplied to the solution supply hole 4 is set in advance so that the solution remains in the small diameter portion 4a of the solution supply hole 4 in a state where the liquid supply is stopped in this way.
  • the reference solution is supplied to the solution supply hole 4 of the flow cell 1.
  • the reference solution is made of a solution having a property close to that of the sample solution and does not include the specimen of the sample solution to be measured.
  • the sealing member 12b is peeled in a state where the reference solution is stored in the solution supply hole 4, and the plurality of openings 6 sealed with the sealing member 12b are opened.
  • the reference solution starts to be sucked by capillary action due to wetting with the PBS solution in which the through-hole 5 corresponding to the opened opening 6 remains and the subsequent reference solution, and the reference solution is applied to the metal thin film 10 facing the channel 9. Flow continuously. In this state, the first measurement of the reference solution is performed.
  • the reference solution that has flowed through the metal thin film 10 is then sucked into the suction channel 8 and sucked into the open through-hole 5.
  • the through solution 5 is filled with the reference solution, the capillary phenomenon does not occur, and the reference solution is no longer sucked from the solution supply hole 4 and the liquid feeding stops.
  • the amount of the reference solution supplied to the solution supply hole 4 is set in advance so that the solution remains in the small diameter portion 4a of the solution supply hole 4 in a state where the liquid supply is stopped in this way.
  • the sample solution is supplied to the solution supply hole 4 of the flow cell 1.
  • the sealing member 12c is peeled in the state which stored the sample solution in the solution supply hole 4, and the several opening part 6 sealed with the said sealing member 12c is opened.
  • the sample solution starts to be sucked by capillary action caused by wetting the reference solution in which the through-hole 5 corresponding to the opened opening 6 remains and the subsequent sample solution, and the sample solution is applied to the metal thin film 10 facing the channel 9. Flow continuously. In this state, the sample solution is measured.
  • the sample solution that has flowed through the metal thin film 10 is then sucked into the suction channel 8 and sucked into the open through-hole 5.
  • the through holes 5 are filled with the sample solution, the capillary phenomenon does not occur, and the sample solution is no longer sucked from the solution supply hole 4 and the liquid feeding stops.
  • the amount of the sample solution supplied to the solution supply hole 4 is set in advance so that the solution remains in the small diameter portion 4a of the solution supply hole 4 in a state where the liquid supply is stopped in this way.
  • a second reference solution is supplied to the solution supply hole 4 of the flow cell 1.
  • the sealing member 12d is peeled in a state where the reference solution is stored in the solution supply hole 4, and a plurality of openings 6 sealed with the sealing member 12d are opened.
  • the reference solution starts to be sucked by capillary action due to wetting of the sample solution in which the through-hole 5 corresponding to the opened opening 6 remains and the subsequent reference solution, and the reference solution is continuously flowed to the metal thin film 10.
  • the second measurement of the reference solution is performed.
  • the reference solution that has flowed through the metal thin film 10 is then sucked into the suction channel 8 and sucked into the open through-hole 5.
  • the through solution 5 is filled with the reference solution, the capillary phenomenon does not occur, and the reference solution is no longer sucked from the solution supply hole 4 and the liquid feeding stops.
  • the measurement result of a sample solution is calculated
  • the opening 6 of the through hole 5 that sucks each solution of the sample solution, the reference solution, and the PBS solution and guides it to the flow path 9 is the sealing member 12. It is sealed by. Therefore, each solution is prevented from flowing into the flow path 9 until the sealing member 12 opens the opening 6 in a state where each solution is stored in the solution supply hole 4.
  • Each of the sealing members 12a to 12d seals the plurality of openings 6, and each solution is supplied in accordance with the range in which the sealing members 12a to 12d are peeled and the openings 6 are opened. You can decide the amount.
  • each solution is transferred only to the through holes 5 corresponding to the respective openings 6 opened in the respective sealing members 12a to 12d, and the liquid feeding is stopped when the through holes 5 are filled with the solution. It has become. Therefore, the operator can freely adjust the timing and amount of each solution supplied to the solution supply hole 4 in accordance with the operation.
  • the operator can actively determine the timing and amount of each solution to be fed. Therefore, as in the prior art, the operator passively works while paying attention to the amount of reduction of each solution remaining in the solution supply hole 4, and all of the previously supplied solution has been transferred from the solution supply hole 4. After that, the next solution is supplied to the solution supply hole 4 in an empty state, and a gap is formed between the solutions flowing through the flow path 9, so that a large change in the measurement result called so-called injection shock occurs. It will not be generated. Therefore, it is not possible to compare a minute amount of change between the measurement result of the sample solution and the measurement result of the reference solution. Therefore, the operator does not need skill, the operation can be performed easily, and the measurement accuracy is sufficiently ensured.
  • the sealing member 12 is made of an adhesive tape, and the adhesive tape can be peeled off to easily open the opening 6, the workability is good and the opening range can be set with high accuracy.
  • each solution supplied to the solution supply hole 4 is continuously sucked into the flow path 9 and supplied to the metal thin film 10. It has become so. Therefore, as in the prior art, in order to continuously transfer each solution to the metal thin film 10, pressure is applied to the flow path 9 from the outside of the flow cell 1 using a syringe pump or the like, or each solution is measured. High-accuracy measurement can be performed with a simple configuration without the need for a large-scale apparatus configuration or troublesome work such as washing and drying each time.
  • FIG. 5 is an exploded perspective view showing a schematic configuration of a flow cell according to the second embodiment of the present invention.
  • FIG. 6 is a plan view showing a schematic configuration of a flow cell according to the second embodiment of the present invention.
  • FIG. 7 is a side sectional view showing the A1-A1 arrow in FIG.
  • FIG. 8 is a side sectional view showing the B1-B1 arrow of FIG.
  • symbol is attached
  • the upper substrate 23 of the flow cell 21 has one end side (upper right side or diagram in FIG. 5) of the substantially center in the width direction (upper left-lower right direction in FIG. 5 or left / right direction in FIG. 6). 6 is provided with a cylindrical hole-shaped solution supply hole (supply part) 24 for supplying each solution.
  • the solution supply hole 24 penetrates the upper substrate 23 in the plate thickness direction.
  • the upper substrate 23 has a lower side in the plate thickness direction on one side in the width direction (the lower right side in FIG. 5 or the left side in FIG. 6) and the other side (the upper left side in FIG. 5 or the right side in FIG. 6).
  • a plurality of rectangular groove-shaped chambers (transfer portions) 25 that are open toward the bottom are formed. These chambers 25 are formed to extend in a direction orthogonal to the width direction, and adjacent chambers 25 are partitioned from each other by a wall portion 25a.
  • an opening 26 having a substantially prismatic hole shape penetrating the upper substrate 23 in the plate thickness direction is formed at an end portion on one end side of the chamber 25.
  • a plurality of openings 26 are provided corresponding to the respective chambers 25, and the upper end portion in the thickness direction is open to the outside air.
  • the end portions on the other end side (the lower left side in FIG. 5 or the lower side in FIG. 6) of the plurality of chambers 25 arranged on one side communicate with each other.
  • the end portions on the other end side of the plurality of chambers 25 arranged on the other side are also in communication with each other.
  • each chamber 25 a plurality of substantially columnar columnar members (transfer portions) 27 are suspended from a ceiling portion which is a bottom surface. These columnar members 27 are arranged inside the chamber 25 with a gap therebetween, and are arranged linearly in a direction perpendicular to the width direction. Further, a slight gap is provided between the outer periphery of the columnar member 27 and the adjacent wall portion 25a. And the space
  • a meandering groove 28 having a meandering groove shape opening toward the lower surface side in the thickness direction is formed at the other end of the upper substrate 23 in the center in the width direction.
  • the meandering channel 28 is formed in a crank shape or a wave shape so as to be folded back multiple times on one side and the other side in the width direction, and each folded portion is formed in a smooth curved shape.
  • the end portion on the other end side of the meandering channel 28 is branched toward one side and the other side in the width direction.
  • the other end of the chamber 25 arranged on the inner side in the width direction on one side communicates with the end on the other end side of the chamber 25 arranged on the other side in the width direction.
  • an end portion on one end side of the meandering flow path 28 is disposed at a substantially center of the upper substrate 23 and communicates with a flow path 30 described later.
  • the cross-sectional dimension of the meandering channel 28 is set to a dimension within a range in which capillary action is developed for each solution.
  • the lower substrate 22 is composed of two layers.
  • the lower layer is composed of a base substrate 22a made of a material that transmits light such as glass or acrylic resin, and the upper layer is a spacer portion 22b such as a resin film. Consists of.
  • an opening portion penetrating in the thickness direction is formed in the spacer portion 22b.
  • a circular hole 29 having an inner diameter substantially the same as the inner diameter of the solution supply hole 24 is formed at a position corresponding to the solution supply hole 24 of the upper substrate 23 in the opening portion.
  • a channel 30 extending in a direction orthogonal to the width direction is formed at a substantially center in the width direction of the spacer portion 22b.
  • the end of one end of the channel 30 communicates with the circular hole 29, and the end of the other end communicates with one end of the meandering channel 28 of the spacer portion 22b.
  • the channel 30 has a substantially rectangular cross section.
  • the cross-sectional dimension has a width direction of about 1 mm and a plate thickness direction (height) of about 10 to 100 ⁇ m, and exhibits a capillary action for each solution.
  • a rectangular metal thin film (detection unit) 31 is formed at substantially the center in the width direction of the upper surface of the base substrate 22a.
  • An antibody is applied on the metal thin film 31.
  • the metal thin film 31 and the antibody are arranged so as to be able to face and contact each solution flowing through the flow path 30 of the spacer portion 22b.
  • a plurality of sealing members 32 made of adhesive tape are attached to the upper surface of the upper substrate 23. These sealing members 32 are arranged to face the openings 26 of the upper substrate 23, respectively, and seal the openings 26.
  • the sample solution is measured by the SPR measurement device 100 using the flow cell 21 configured as described above.
  • the flow cell 21 is placed on the measurement surface 103a of the prism 103 of the SPR measurement device 100 via matching oil or the like so that a change in refractive index can be measured.
  • a PBS solution is supplied to the solution supply hole 24 of the placed flow cell 21.
  • the supplied PBS solution flows through the flow channel 30 as the flow channel 30 communicating with the solution supply hole 24 develops a capillary phenomenon.
  • the PBS liquid is sucked into the meandering flow path 28 communicating with the end portion on the other end side of the flow path 30 and sucked into the chambers 25 arranged on the one side and the other side in the width direction on the upper substrate 23. Is done.
  • the PBS solution sucked into the chambers 25 in the width direction flows through the inside as each chamber 25 develops capillary action due to the wetness of the respective chambers 25 with the PBS solution. Guided to the opening 26.
  • the capillary phenomenon does not occur and the feeding stops.
  • the sealing member 32a When the PBS member was supplied to each chamber 25 arranged inward in the width direction, the sealing member 32a was peeled off, and the opening 26 sealed by the sealing member 32a was opened.
  • the chamber 25 corresponding to the opening 26 sucks the PBS solution.
  • the chamber 25 When the chamber 25 is filled with the PBS solution, capillary action does not occur, and the PBS solution is no longer sucked from the solution supply hole 24 and the liquid feeding stops.
  • the amount of the PBS solution supplied to the solution supply hole 24 is set in advance so that the solution remains slightly in the solution supply hole 24 in a state where the liquid supply is stopped in this way.
  • the reference solution is supplied to the solution supply hole 24 of the flow cell 21.
  • the sealing member 32b is peeled in the state which stored the reference solution in the solution supply hole 24, and the opening part 26 sealed with the said sealing member 32b is opened.
  • the reference solution is started to be sucked by capillary action due to the wetting of the PBS solution remaining in the chamber 25 corresponding to the opened opening 26 and the subsequent reference solution, and the reference solution is applied to the metal thin film 31 facing the channel 30. Run continuously. In this state, the first measurement of the reference solution is performed.
  • the reference solution that has flowed through the metal thin film 31 is then sucked into the meandering flow path 28 and sucked into the chamber 25 corresponding to the opening 26 that opened.
  • the capillary phenomenon does not occur, the reference solution is no longer sucked from the solution supply hole 24, and the liquid feeding stops.
  • the amount of the reference solution supplied to the solution supply hole 24 is set in advance so that the solution remains slightly in the solution supply hole 24 in a state where the liquid supply is stopped in this way.
  • the sample solution is supplied to the solution supply hole 24 of the flow cell 21.
  • the sealing member 32c is peeled in the state which stored the sample solution in the solution supply hole 24, and the opening part 26 sealed with the said sealing member 32c is opened.
  • the sample solution begins to be sucked by capillary action due to the wetness of the reference solution and the subsequent sample solution in which the chamber 25 corresponding to the opened opening 26 remains, and the sample solution is continuously applied to the metal thin film 31 of the channel 30. Shed. In this state, the sample solution is measured.
  • the sample solution that has flowed through the metal thin film 31 is sucked into the meandering flow path 28 and sucked into the chamber 25 having the opening 26 opened.
  • the sample solution is no longer sucked from the solution supply hole 24 and the liquid feeding stops.
  • the amount of the sample solution supplied to the solution supply hole 24 is set in advance so that the solution remains slightly in the solution supply hole 24 in a state where the liquid supply is stopped in this way.
  • a second reference solution is supplied to the solution supply hole 24 of the flow cell 21.
  • the sealing member 32d is peeled off in a state where the reference solution is stored in the solution supply hole 24, and the opening 26 sealed with the sealing member 32d is opened.
  • the reference solution starts to be sucked by capillary action due to wetting of the sample solution in which the chamber 25 corresponding to the opened opening 26 remains and the subsequent reference solution, and the reference solution is continuously passed through the metal thin film 31.
  • the second measurement of the reference solution is performed.
  • the reference solution that has flowed through the metal thin film 31 is sucked into the meandering flow path 28 and sucked into the chamber 25 having the opening 26 opened.
  • the reference solution is no longer sucked from the solution supply hole 24 and liquid feeding stops.
  • the measurement result of a sample solution is calculated
  • the third and fourth reference solutions may be passed through the metal thin film 31 for measurement. If the measurement result of the sample solution is obtained using the measurement results of the first to fourth reference solutions, more accurate measurement can be performed.
  • each chamber 25 has an opening 26.
  • the respective sealing members 32 corresponding to the openings 26 are peeled to open the openings 26, and each solution is sucked up from the flow path 30 and supplied to the metal thin film 31. Since the liquid feeding stops when the chamber 25 corresponding to the opened opening 26 is filled with each solution, the same effect as in the first embodiment described above is achieved.
  • FIG. 9 is a plan view showing a schematic configuration of a flow cell according to the third embodiment of the present invention.
  • FIG. 10 is a side sectional view showing the arrow C1-C1 in FIG.
  • symbol is attached
  • the upper substrate 43 of the flow cell 41 of the third embodiment is made of a resin material or the like.
  • a rectangular groove shape that opens toward the lower surface side in the plate thickness direction on one side (left side in FIG. 9) and the other side (right side in FIG. 9) in the width direction (left-right direction in FIG. 9) of the flow cell 41 in plan view.
  • a plurality of chambers (transfer sections) 45 are provided. These chambers 45 are formed to extend in a direction orthogonal to the width direction, and the adjacent chambers 45 are separated from each other by a wall portion 45a.
  • a substantially cylindrical hole-shaped recess (opening) 46 that opens toward the lower surface in the thickness direction is formed at the end of one end side (upper side in FIG. 9) of the chamber 45.
  • a plurality of the concave portions 46 are provided corresponding to the respective chambers 45, and the upper end portion in the thickness direction, which is the bottom surface thereof, is a base end portion of the sealing member 52 made of a resin material having a substantially round bar shape or a truncated cone shape. And is sealed.
  • each chamber 45 a plurality of substantially columnar columnar members (transfer portions) 47 are suspended. These columnar members 47 are arranged inside the chamber 45 with a gap therebetween, and are arranged linearly in a direction orthogonal to the width direction. Further, a slight gap is provided between the outer periphery of the columnar member 47 and the adjacent wall portion 45a. And the space
  • the sample solution is measured by the SPR measuring device 100 using the flow cell 41 configured as described above.
  • the flow cell 41 is placed on the measurement surface 103a of the prism 103 of the SPR measurement device 100 via matching oil or the like so that a change in refractive index can be measured.
  • PBS solution is supplied to the solution supply hole 24 of the placed flow cell 41.
  • the supplied PBS solution is not sent to the flow path 30 but is stored in the solution supply hole 24.
  • the tip end portion of the sealing member 52a disposed on the inner side in the width direction on one side of the sealing member 52 is tilted as shown in FIG. And the base end part is isolate
  • the PBS solution is sucked by capillary action due to the chamber 45 corresponding to the recess 46 where the sealing member 52a is opened getting wet with the PBS solution.
  • the chamber 45 is filled with the PBS solution, capillary action does not occur, and the PBS solution is no longer sucked from the solution supply hole 24, and the liquid feeding stops.
  • the amount of the PBS solution supplied to the solution supply hole 24 is set in advance so that the solution remains slightly in the solution supply hole 24 in a state where the liquid supply is stopped in this way.
  • the reference solution is supplied to the solution supply hole 24 of the flow cell 41. Then, with the reference solution stored in the solution supply hole 24, the tip portion of the sealing member 52b disposed on the other side in the width direction is tilted. And the base end part is isolate
  • the reference solution is started to be sucked by capillary action due to wetting of the remaining PBS solution and the subsequent reference solution in the chamber 45 corresponding to the recess 46 where the sealing member 52b is opened.
  • the reference solution is continuously passed through the metal thin film 31 facing the flow path 30. In this state, the first measurement of the reference solution is performed.
  • the capillary phenomenon does not occur, the reference solution is no longer sucked from the solution supply hole 24, and the liquid feeding stops.
  • the amount of the reference solution supplied to the solution supply hole 24 is set in advance so that the solution remains slightly in the solution supply hole 24 in a state where the liquid supply is stopped in this way.
  • the sample solution is supplied to the solution supply hole 24 of the flow cell 41. Then, in a state where the sample solution is stored in the solution supply hole 24, the distal end portion of the sealing member 52c adjacent to one side of the sealing member 52a is tilted and the proximal end portion is separated from the recess 46, and the proximal end The concave portion 46 sealed with the portion is opened to the outside air.
  • the sample solution begins to be sucked by capillary action due to wetting of the reference solution and the subsequent sample solution in which the chamber 45 corresponding to the recess 46 where the sealing member 52c is opened remains.
  • the sample solution is continuously passed through the metal thin film 31 facing the flow path 30. In this state, the sample solution is measured.
  • the amount of the sample solution supplied to the solution supply hole 24 is set in advance so that the solution remains slightly in the solution supply hole 24 in a state where the liquid supply is stopped in this way.
  • a second reference solution is supplied to the solution supply hole 24 of the flow cell 41.
  • the distal end portion of the sealing member 52 d adjacent to the other side of the sealing member 52 b is tilted and the base end portion is separated from the recess 46. Thereby, the recessed part 46 sealed with the said base end part is opened to external air.
  • the reference solution starts to be sucked by capillary action due to wetting of the sample solution in which the chamber 45 corresponding to the concave portion 46 opened by the sealing member 52d remains and the subsequent reference solution.
  • the reference solution is continuously passed through the metal thin film 31 facing the flow path 30. In this state, the second measurement of the reference solution is performed.
  • the capillary phenomenon does not occur, the reference solution is no longer sucked from the solution supply hole 24, and the liquid feeding stops.
  • the measurement result of a sample solution is calculated
  • the measurement may be performed by flowing the third and fourth reference solutions to the metal thin film 31 using the sealing members 52e and 52f. If the measurement result of the sample solution is obtained using the measurement results of the first to fourth reference solutions, more accurate measurement can be performed.
  • the sealing member 52 is made of a substantially round bar-like resin material or the like, and its base end portion closes and seals the recess 46. And if the front-end
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the order of opening the openings 6 and 26 and the recess 46 is not limited to the first to third embodiments, and may be appropriately changed in view of the workability of the operator.
  • the shape, quantity and arrangement of the openings 6 and 26 and the recess 46 may be appropriately set according to various measurements.
  • the sealing members 12 and 32 are adhesive tapes attached to the openings 6 and 26, and the sealing member 52 is a resin material that closes the recess 46.
  • the opening members 6, 26 and the recesses 46 are formed of a sealing member made of a movable arm or a clamp plate that is installed in the SPR measurement device 100 in advance. Therefore, it may be mechanically closed and sequentially opened in accordance with the timing of feeding each solution.
  • the through-hole 5, the chambers 25 and 45, and the columnar members 27 and 47 are described as being a transfer unit that sucks each solution and guides it to the flow paths 9 and 30.
  • the present invention is not limited to these, and for example, it may be configured by a flow path or a cavity that expresses capillary action and sucks each solution.
  • the shape, quantity, and arrangement of the through-hole 5, the chambers 25, 45, and the columnar members 27, 47 are not limited to the present embodiment.
  • the flow cell has been described as being used in the SPR measurement device 100, but the present invention can also be applied to other devices that flow and measure a sample solution. That is, for example, it can be applied in the field of handling sample solutions such as micro TAS, Lab on a chip, micro combinatorial chemistry, chemical IC, chemical sensor, biosensor, trace analysis, electrochemical analysis, chromatography, QCM measurement, ATR measurement, etc. It is.
  • FIG. 11 is an explanatory diagram showing a schematic configuration of an SPR measurement device using a flow cell according to the fourth embodiment of the present invention.
  • FIG. 12 is a characteristic diagram for explaining the relationship between the reflectance and the reflection angle of the detection unit measured by the SPR measurement device.
  • FIG. 13 is an exploded perspective view showing a schematic configuration of a flow cell according to the fourth embodiment of the present invention.
  • FIG. 14 is a plan view showing a schematic configuration of a flow cell according to the fourth embodiment of the present invention.
  • FIG. 15 is a side sectional view showing the A2-A2 arrow in FIG.
  • FIG. 16 is a side sectional view showing the arrow B2-B2 in FIG.
  • FIG. 17 is a side sectional view for explaining an equilibrium state before the reference solution of the flow cell according to the fourth embodiment of the present invention is sent to the detection unit.
  • FIG. 18 is a side cross-sectional view illustrating an equilibrium state after the reference solution of the flow cell according to the fourth embodiment of the present invention has been sent to the detection unit.
  • the flow cell 201 of the present embodiment is applied to an SPR measurement apparatus 300 that uses a so-called surface plasmon resonance (SPR) phenomenon, which is a resonance between an evanescent wave and a surface plasmon wave on the surface of a metal thin film that is in contact with a specimen to be measured. Used for measurement.
  • SPR surface plasmon resonance
  • the SPR measurement apparatus 300 polarizes light emitted from the light source 301 by a polarizer (not shown) to obtain P-polarized light (hereinafter referred to as “incident light”). Then, the SPR measuring apparatus 300 causes the band-shaped incident light collected by the condenser lens 302 to enter the curved surface side of the semi-cylindrical prism 303. Then, the SPR measurement device 300 irradiates a metal thin film (to be described later) of the flow cell 201 that is in close contact with the measurement surface 303a on the plane side of the prism 303. Then, the SPR measurement device 300 detects the reflected light by the light receiving unit 304 including a CCD image sensor.
  • the reflection intensity decreases at the angle at which the resonance occurs (resonance angle), so that a valley 305 having a low reflectance is observed. Is done.
  • the resonance angle depends on the optical property (refractive index) of the sample solution in contact with the metal thin film. Therefore, a specific substance can be quantitatively measured by immobilizing an antibody on a metal thin film and measuring the refractive index change due to the binding between the antibody and the antigen.
  • the flow cell 201 mounted on the SPR measuring device 300 has a substantially rectangular parallelepiped shape or a substantially rectangular plate shape and has a laminated structure. That is, with the flow cell 201 placed on the SPR measuring device 300, the lower substrate 202 having a substantially rectangular plate shape disposed on the lower side, and the outer shape in plan view stacked on the upper side of the lower substrate 202 are And an upper substrate 203 formed substantially the same.
  • the thickness of the lower substrate 202 is about 1 mm
  • the thickness of the upper substrate 203 is about 3 mm.
  • the upper substrate 203 is a sample to be measured on one end side (upper right side in FIG. 13 or upper side in FIG. 14) of the substantially center in the width direction in the plan view (upper left-lower right direction in FIG. 13 or left / right direction in FIG. 14).
  • a cylindrical hole-shaped solution supply hole (supply unit) 204 for supplying each of the solution and the reference solution is provided.
  • the reference solution is a solution that has properties similar to the sample solution and does not include the specimen of the sample solution to be measured.
  • the solution supply hole 204 penetrates the upper substrate 203 in the plate thickness direction.
  • the upper substrate 203 is provided with a plurality of first through holes (first transfer portions) 205 and second through holes (second transfer portions) 206 each having a cylindrical hole shape, and penetrates the upper substrate 203 in the plate thickness direction. is doing.
  • the plurality of second through holes 206 are arranged in a substantially rectangular shape in plan view on one side (left side in FIG. 14) and the other side (right side in FIG. 14) in the width direction.
  • These second through holes 206 are aggregates of capillaries for sucking the sample solution supplied to the solution supply holes 204.
  • These second through-holes 206 are set to have an inner diameter within a range in which each second through-hole 206 is wetted with respect to the sample solution and exhibits a capillary phenomenon that sucks the sample solution.
  • These second through-holes 206 are opened at the upper end to the outside air and communicated with a suction channel 208 described later at the lower end.
  • first through holes 205 are arranged in a direction orthogonal to the width direction on the other end side (lower side in FIG. 14) at the substantially center in the width direction.
  • These first through holes 205 are aggregates of capillaries that suck the reference solution supplied to the solution supply holes 204.
  • These first through-holes 205 are set to have an inner diameter in a range in which each first through-hole 205 is wetted with respect to the reference solution and exhibits a capillary phenomenon that sucks the reference solution.
  • These first through holes 205 have upper ends opened to the outside air and lower ends communicating with a flow path 209 described later.
  • the lower substrate 202 is composed of two layers.
  • the lower layer is made of a base substrate 202a made of a material that transmits light such as glass or acrylic resin, and the upper layer is a spacer portion 202b such as a resin film. Consists of.
  • the spacer portion 202b has an opening that penetrates in the thickness direction.
  • a circular hole 207 having an inner diameter substantially the same as the inner diameter of the solution supply hole 204 is formed at a position corresponding to the solution supply hole 204 of the upper substrate 203 in the opening portion.
  • the spacer 202b has a substantially rectangular hole shape corresponding to the outer shape of the plurality of second through holes 206 arranged in a substantially rectangular shape in plan view on one side and the other side in the width direction of the upper substrate 203.
  • Each formed suction channel 208 is provided.
  • the suction channel 208 is set to a height that does not form a gap with the second through-hole 206 above when the sample solution is supplied.
  • the height in the plate thickness direction is 10 About 100 ⁇ m.
  • a channel 209 extending in a direction orthogonal to the width direction is formed at a substantially center in the width direction of the spacer portion 202b.
  • the flow path 209 has an end portion on one end side communicating with the circular hole 207, and an end portion on the other end side is branched into one side and the other side in the width direction to communicate with the respective suction flow paths 208. is doing.
  • a first through hole 205 of the upper substrate 203 is disposed above the vicinity of the end portion on the other end side of the flow path 209.
  • the channel 209 has a substantially rectangular cross section.
  • the width direction of the cross section dimension orthogonal to the extending direction is about 1 mm
  • the plate thickness direction (height) is about 10 to 100 ⁇ m. It is set in a range where capillary action is manifested.
  • the solution supply hole 204 and the first through hole 205 are communicated with each other via the circular hole 207 and the flow path 209.
  • the first through hole 205 and the second through hole 206 communicate with each other through the flow path 209 and the suction flow path 208.
  • a rectangular metal thin film (detection unit) 210 is formed in the approximate center of the upper surface of the base substrate 202a in the width direction.
  • the metal thin film 210 is made of, for example, Au (gold) and is disposed so as to be able to face and contact each solution flowing through the flow path 209 of the spacer portion 202b.
  • a plurality of antibodies are arranged along the flow path 209 on the upper surface of the metal thin film 210.
  • the metal thin film 210 is disposed so as to correspond to the region used for the measurement at the substantially center of the upper surface of the base substrate 202a.
  • the metal thin film 210 is wide and large beyond the range of the region. It may be formed.
  • substantially rectangular surface active regions 211 are formed in portions corresponding to the respective suction channels 208 of the spacer portion 202b on one side and the other side in the width direction of the base substrate 202a.
  • the surface active region 211 is subjected to surface processing, and the wettability with respect to the sample solution is set to be different from the region other than the surface active region 211. That is, the surface processing of the surface active region 211 is variously set, and the suction state and flow rate of the sample solution are changed and controlled.
  • an ampoule (reservoir) 212 that fits into the solution supply hole 204 is disposed on the upper surface of the upper substrate 203.
  • the ampoule 212 is a hermetically sealed container-like liquid seal member capable of storing a reference solution therein, and has a substantially multi-stage cylindrical main body part 212a and a substantially truncated conical protrusion 212b communicating with the upper surface side of the main body part 212a. It consists of.
  • the lower end portion of the main body portion 212a is formed to have a slightly smaller outer diameter, is approximately the same size as the inner diameter of the solution supply hole 204, and opens downward.
  • the base end portion connected to the main body portion 212a of the protruding portion 212b has a slightly smaller outer diameter.
  • a predetermined amount of a reference solution to be described later is stored in advance in the body 212a of the ampoule 212 and in the solution supply hole 204.
  • the lower end of the stored reference solution remains on one end side of the flow path 209. Until the protrusion 212b of the ampoule 212 is separated from the main body 212a and the main body 212a is opened, the state shown in FIG. 17 is maintained without being fed to the metal thin film 210 of the flow path 209.
  • the flow cell 201 is placed on the measurement surface 303a of the prism 303 of the SPR measurement device 300 via matching oil or the like.
  • the light source 301 irradiates the metal thin film 210 of the flow cell 201 with incident light, and the reflected light is received by the light receiving unit 304 so that a change in refractive index can be measured. Keep it as
  • the protrusion 212b of the ampoule 212 of the solution supply hole 204 of the placed flow cell 201 is tilted to be separated from the main body 212a, and the main body 212a is opened.
  • the reference solution stored so that the solution supply hole 204 sucks outside air is sent to the flow path 209. That is, the reference solution is guided to the channel 209 as the channel 209 communicating with the solution supply hole 204 develops a capillary phenomenon.
  • the first through-hole 205 disposed in the vicinity of the end on the other end side of the flow path 209 is sucked by capillary action due to getting wet with the reference solution, and continuously fed to the metal thin film 210. In this state, the reference solution is measured.
  • the feeding of the reference solution is stopped.
  • the reference solution remains slightly at the bottom of the solution supply hole 204 and does not reach the opening at the upper end of the first through hole 205. That is, the amount of the reference solution stored in the ampoule 212 in advance is set to a level that slightly remains in the solution supply hole 204 in the equilibrium state after the liquid feeding shown in FIG.
  • the sample solution is supplied to the solution supply hole 204 of the flow cell 201.
  • the reference solution already sent to the flow path 209 is sucked as the first through-hole 205 again exhibits the capillary phenomenon, and the sample solution is guided to the flow path 209. .
  • the capillary phenomenon of the first through hole 205 does not appear.
  • the sample solution is sucked and guided to the flow path 209 by capillary action due to the wetness of the reference solution and the subsequent sample solution in which the second through-hole 206 communicating with the first through-hole 205 remains, and the metal thin film 210 continuously. To liquid. In this state, the sample solution is measured.
  • the ampoule 212 is provided in communication with the solution supply hole 204 so as to store the reference solution in the solution supply hole 204.
  • the ampoule 212 By opening the upper surface of the main body portion 212a of the ampoule 212, outside air is sucked from the opened portion and the stored reference solution is allowed to flow through the metal thin film 210 of the flow path 209. Therefore, at the time of measurement, the operator does not need to supply the reference solution from the outside to the flow cell 201 each time, and the stored reference solution can be sent to the metal thin film 210 only by a simple operation of opening the ampoule 212.
  • the amount of the reference solution to be fed is set to a predetermined amount stored in the solution supply hole 204 in advance, the amount of the reference solution supplied to the flow cell 201 by the operator is measured every time as in the past. There is no hassle to adjust each time. Further, the amount of the reference solution stored in the solution supply hole 204 is set so that a part of the reference solution remains in the solution supply hole 204 in an equilibrium state in which the liquid supply is stopped. Therefore, when the sample solution is supplied following the reference solution, the following problems as in the conventional case do not occur.
  • the operator who sent the reference solution can supply the next sample solution to the flow cell 201 in accordance with the work and actively feed the solution, the work is not required for the worker and the work is simple. It can be performed and sufficient measurement accuracy is ensured.
  • the operator can easily perform liquid feeding in accordance with the work, so that no mistake occurs in the work. .
  • the timing of liquid feeding can be adjusted according to the work, the reference solution can be flowed and measured immediately before the measurement of the sample solution, and the metal thin film 210 in the channel 209 may be exposed to the reference solution for a long time.
  • the accuracy of measurement is improved. That is, for example, the reference solution is stored and stored in advance in the flow path 209 of the flow cell 201.
  • the metal thin film 210 facing the flow path 209 is formed. It will be exposed to the reference solution for a long time. Therefore, it is conceivable that the activity of the antibody on the metal thin film 210 is lowered and affects the measurement accuracy. However, in this embodiment, since the reference solution is sent to the metal thin film 210 in the flow path 209 immediately before the measurement, sufficient measurement accuracy is ensured.
  • FIG. 19 is an exploded perspective view showing a schematic configuration of a flow cell according to the fifth embodiment of the present invention.
  • FIG. 20 is a plan view showing a schematic configuration of a flow cell according to the fifth embodiment of the present invention.
  • FIG. 21 is a side sectional view for explaining an equilibrium state before the reference solution of the flow cell according to the fifth embodiment of the present invention is sent to the detection unit.
  • FIG. 22 is a side sectional view for explaining an equilibrium state after the reference solution of the flow cell according to the fifth embodiment of the present invention has been fed to the detection unit.
  • symbol is attached
  • a sheet-like supply unit made of a substantially circular adhesive tape having a diameter larger than the inner diameter of the solution supply hole 204.
  • a sealing member (reservoir) 222 is attached so as to seal the opening of the solution supply hole 204.
  • the supply portion sealing member 222 is peeled from the upper substrate 203 so that the solution supply hole 204 can be opened.
  • the supply portion sealing member 222 is opened in the solution supply hole 204 in a state where a predetermined amount of the reference solution is stored in the solution supply hole 204 in advance. It sticks so that it may seal. Then, the stored reference solution stays at one end of the flow path 209 and maintains the state shown in FIG. That is, the reference solution is not fed to the metal thin film 210 in the flow path 209 until the supply portion sealing member 222 is peeled from the upper substrate 203 and the solution supply hole 204 is opened.
  • incident light is irradiated from the light source 301 onto the metal thin film 210 of the flow cell 221 with the flow cell 221 placed on the measurement surface 303 a of the prism 303 of the SPR measurement device 300 via matching oil or the like. Then, the reflected reflected light is received by the light receiving unit 304 so that a change in refractive index can be measured.
  • the supply portion sealing member 222 of the solution supply hole 204 of the placed flow cell 221 is peeled off, and the solution supply hole 204 is opened.
  • the solution supply hole 204 is thus opened, the first through hole 205 sucks up the reference solution.
  • the reference solution stored so that the solution supply hole 204 sucks outside air is sent to the metal thin film 210 of the flow path 209. In this state, the reference solution is measured.
  • the reference solution is set to remain slightly at the bottom of the solution supply hole 204 in a state where the liquid feeding is stopped.
  • the sample solution is supplied to the solution supply hole 204 of the flow cell 221.
  • the supplied sample solution is guided to the channel 209 and continuously sent to the metal thin film 210. In this state, the sample solution is measured.
  • the opening of the solution supply hole 204 storing the reference solution is sealed by the supply portion sealing member 222.
  • the supply portion sealing member 222 is peeled off from the solution supply hole 204 and opened in accordance with the work, the reference solution stored so that the solution supply hole 204 sucks outside air from the opening portion is used as the metal thin film 210 of the flow path 209.
  • liquid feeding can be easily performed with a simple configuration, and manufacturing costs can be reduced.
  • FIG. 23 is an exploded perspective view showing a schematic configuration of a flow cell according to the sixth embodiment of the present invention.
  • FIG. 24 is a plan view showing a schematic configuration of a flow cell according to the sixth embodiment of the present invention.
  • FIG. 25 is a side sectional view for explaining an equilibrium state before the reference solution of the flow cell according to the sixth embodiment of the present invention is sent to the detection unit.
  • FIG. 26 is a side sectional view for explaining an equilibrium state after the reference solution of the flow cell according to the sixth embodiment of the present invention has been fed to the detection unit.
  • symbol is attached
  • a first sealing member (reservoir) 232 made of a substantially rectangular adhesive tape has a first penetration. It sticks so that the opening of the hole 205 may be sealed. Then, the first through-hole 205 can be opened by peeling the first sealing member 232 from the upper substrate 203.
  • a pair of second sealing members (reservoirs) 233 made of a substantially rectangular adhesive tape are arranged in a substantially rectangular shape on one side in the width direction (left side in FIG. 24).
  • a portion corresponding to the outer shape of the second through-hole 206 and a portion corresponding to the outer shape of the second through-hole 206 arranged in a substantially rectangular shape on the other side (the right side in FIG. 24) are pasted, respectively. 2
  • the opening of the through-hole 206 is sealed.
  • These second sealing members 233 are peeled off from the upper substrate 203 so that the respective second through holes 206 can be opened.
  • the 1st sealing member 232 is affixed on opening of the upper end of the 1st through-hole 205, the said 1st through-hole 205 is sealed, and also width
  • the second through-holes 206 are sealed by adhering the respective second sealing members 233 to the openings of the second through-holes 206 on one side in the direction and the openings of the second through-holes 206 on the other side.
  • a predetermined amount of reference solution is stored in the solution supply port 204. Then, the reference solution stored in the solution supply hole 204 stays at one end side of the flow path 209 and maintains the state shown in FIG.
  • the sample solution is measured by the SPR measurement device 300 using the flow cell 231 configured as described above.
  • incident light is irradiated from the light source 301 to the metal thin film 210 of the flow cell 231.
  • the reflected reflected light is received by the light receiving unit 304 so that a change in refractive index can be measured.
  • the first sealing member 232 of the first through hole 205 of the placed flow cell 231 is peeled off, and the first through hole 205 is opened.
  • the first through hole 205 sucks up the reference solution.
  • the reference solution stored so that the solution supply hole 204 sucks outside air is sent to the metal thin film 210 of the channel 209. In this state, the reference solution is measured.
  • the reference solution is set to remain slightly at the bottom of the solution supply hole 204 in a state where the liquid feeding is stopped.
  • the sample solution is supplied to the solution supply hole 204 of the flow cell 231.
  • the supplied sample solution stays at one end of the flow path 209 in a state where it is stored in the solution supply hole 204 and is in an equilibrium state without being sent.
  • the sample solution stored in the solution supply hole 204 is continuously fed to the metal thin film 210 so that the sample solution is guided to the flow path 209. The In this state, the sample solution is measured.
  • the first sealing member 232 seals the opening of the first through hole 205 in a state where the reference solution is stored in the solution supply hole 204. It is affixed to.
  • the reference solution stored so that the solution supply hole 204 sucks outside air is flowed. 209 to the metal thin film 210. Therefore, liquid feeding can be easily performed with a simple configuration, and manufacturing costs can be reduced.
  • the opening of the second through hole 206 is sealed by the second sealing member 233. Therefore, the sample solution supplied to the solution supply hole 204 is stored in the solution supply hole 204 without being fed to the flow path 209 until the second sealing member 233 is peeled off from the second through hole 206 and opened. It is assumed that That is, the second sealing member 233 is peeled off from the second through hole 206 and opened, so that the sample solution stored so that the solution supply hole 204 sucks outside air is sent to the metal thin film 210 of the flow path 209. It is like that. Therefore, the timing at which the sample solution is fed with a simple configuration can be actively controlled, and workability is improved.
  • the ampoule 212 is used as the liquid sealing member of the storage unit.
  • any configuration may be used as long as the reference solution can be stored in the solution supply hole 204 and the solution supply hole 204 can be opened.
  • the present invention is not limited to this, and other microcapsules, sealed containers, and the like may be used.
  • the second sealing member 233 described in the sixth embodiment may be used in the fourth and fifth embodiments to seal the second through hole 206 so that the second through hole 206 can be opened.
  • the operator since the operator can actively control the timing of feeding the sample solution in accordance with the work, the measurement accuracy is improved and the workability is improved.
  • the measurement of the reference solution and the measurement of the sample solution are performed once each.
  • the present invention is not limited to this, after the measurement of the sample solution, the second reference solution is supplied to the solution supply hole 204 to perform the measurement, and the first and second measurement results of the reference solution are used to measure the sample solution.
  • the measurement result may be obtained.
  • the reference solution may be measured three or more times, and the measurement result of the sample solution may be obtained using these measurement results of the reference solution.
  • the first through hole 205 is described as the first transfer unit and the second through hole 206 is described as the second transfer unit.
  • the present invention is not limited thereto.
  • the first transfer unit and the second transfer unit may be configured with, for example, a flow path or a cavity that expresses a capillary phenomenon and sucks each solution.
  • the shape, quantity, and arrangement of the first through-hole 205 and the second through-hole 206 are not limited to the present embodiment, and can be variously set according to the demand and application.
  • the flow cell is described as being used for the SPR measurement device 300, but the present invention can also be applied to other devices that flow and measure a sample solution. That is, for example, it can be applied in the field of handling sample solutions such as micro TAS, Lab on a chip, micro combinatorial chemistry, chemical IC, chemical sensor, biosensor, trace analysis, electrochemical analysis, chromatography, QCM measurement, ATR measurement, etc. It is.
  • the flow cell according to the seventh embodiment is provided with a flow path 9a instead of the flow path 9 of the first embodiment.
  • the flow path 9a of the seventh embodiment is similar to the flow path 9 (FIG. 4) of the first embodiment, from the area where the circular hole 7 is provided to the area where the through hole 5 is provided. It is formed in a straight line.
  • FIG. 27 is a plan view of a region (corresponding to region Z1 in FIG. 4) where the metal thin film 10 of the flow path 9a according to the seventh embodiment of the present invention is not provided.
  • the channel 9a shown in FIG. 27 has a width y1.
  • FIG. 28 is a plan view of a region (corresponding to region Z2 in FIG. 4) where the metal thin film 10 of the flow path 9a according to the seventh embodiment of the present invention is provided.
  • the width at both ends is y1
  • the width at the center is y2.
  • y2 is smaller than y1. That is, the width of the channel 9a becomes narrower from both ends toward the center.
  • antibodies 91, 92, and 93 are arranged in an array. The liquid flowing in the flow path 9a passes over the antibodies 91, 92, and 93.
  • the capillary force F1 in the circular tube as shown in FIG. 29 is expressed by the following formula (1).
  • the cross section of this circular tube is a circle with a radius r.
  • the surface tension is ⁇ and the contact angle is ⁇ .
  • the capillary force F1 acting on the circular tube of FIG. 29 is inversely proportional to the radius r of the cross section of the circular tube.
  • the capillary force F2 in a rectangular tube as shown in FIG. 30 is represented by the following formula
  • the horizontal width of this rectangular tube is w and the height is d.
  • the contact angle on the upper surface is ⁇ t
  • the contact angle on the lower surface is ⁇ b
  • the contact angle on the left surface is ⁇ l
  • the contact angle on the right surface is ⁇ r .
  • the capillary force F2 acting on the rectangular tube in FIG. 30 is inversely proportional to the lateral width w and height d of the cross section of the rectangular tube.
  • the capillary force at the center is larger than both ends of the flow path 9a.
  • the capillary force becomes stronger as the tube becomes thinner, it is more stable that the liquid flowing through the capillary is collected in a narrow place.
  • the liquid such as the reference solution that passes through the flow path 9a in the region where the metal thin film 10 is provided has a property of being collected near the center of the flow path 9a.
  • the measurement of the reference solution or the like is performed in the flow path in the region where the metal thin film 10 is provided.
  • the shape of the flow path 9a in the region where the metal thin film 10 is provided has the structure shown in FIG. That is, the cross-sectional area of the flow path 9a in the region Z2 where the metal thin film 10 (detection unit) is provided (see FIG. 28) is the cross-sectional area of the flow path 9a in the region Z1 where the metal thin film 10 is not provided (see FIG. 27). Smaller than).
  • region Z2 in which the metal thin film 10 is provided is narrower than the width
  • the reference solution after the reference solution is flowed, even if time elapses and the reference solution gradually evaporates, the reference solution remains in the region Z2 where the metal thin film 10 is provided until the end. For this reason, it can prevent that an antibody is exposed to air
  • the shape of the flow path 9 of 1st Embodiment was changed was demonstrated in 7th Embodiment, it is not limited to this.
  • the shape of the cross section of the flow channel of the other embodiment may be the structure of the flow channel 9a according to the seventh embodiment.
  • the shape of the channel in the region where the metal thin film 10 is provided is not limited to the shape of FIG.
  • region in which the metal thin film 10 is provided should just be narrower than the width
  • the same effect as that of the seventh embodiment can be obtained without using the structure of the flow path 9a of the seventh embodiment.
  • the reason will be described with reference to FIG. 26 described in the sixth embodiment. That is, the cross-sectional area of the flow path 9 in the region where the metal thin film 10 is provided is smaller than both the cross-sectional area of the opening of the solution supply hole 204 and the cross-sectional area of the opening of the first through hole 205. Therefore, the liquid concentrates on the flow path 9 in the region where the metal thin film 10 is provided. Therefore, similarly to the seventh embodiment, it is possible to prevent the occurrence of injection shock and to prevent the antibody from drying.
  • the plurality of openings 6 are sealed with a plurality of sealing members 12 made of adhesive tape, and the user can use the opening 6 when the flow cell 1 is used.
  • the case where the sealing member 12 is removed has been described.
  • FIG. 31 and 32 are schematic views showing the structure of a flow cell according to the eighth embodiment of the present invention.
  • an external device 400 is used.
  • the external device 400 includes pads 120a and 120b (sealing members) that can move up and down.
  • the pad 120a seals the opening of the through hole 5a formed in the flow cell region R11.
  • the pad 120b seals the opening of the through hole 5b formed in the region R12 different from the region R11 of the flow cell.
  • the pads 120a and 120b can be moved up and down independently in a direction parallel to the depth direction of the through holes 5a and 5b of the flow cell.
  • the openings of the through holes 5a and 5b formed in the regions R11 and R12 are sealed together by the pads 120a and 120b.
  • the user of the flow cell gives an instruction to open the opening of the through hole 5a formed in the region R11 to the drive mechanism (not shown), whereby the pad 120a that has sealed the through hole 5a is It leaves
  • the liquid supplied from the circular hole 7 passes the flow path 9 and the through hole 5a, and flows out of the flow cell from the opening of the through hole 5a.
  • the present invention is not limited to this.
  • the opening of the through hole 5a may be changed from the opened state to the sealed state by driving the pad 120a.
  • the present invention is not limited to this.
  • the sealing state and the opening state of the pad 120a may be switched.
  • the predetermined condition for example, when the flow rate of the liquid flowing in the flow cell becomes equal to or less than a predetermined amount, the sealing state and the opening state of the pad 120a may be switched.
  • the present invention can be applied to a flow cell and a liquid feeding method capable of adjusting the timing of feeding a sample solution and the amount of liquid feeding according to work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 フローセルは、試料溶液が流れる流路と、流路に連通し試料溶液が供給される供給部と、一端側が流路に連通し、他端側が外気に開放される複数の開口部からなり、流路に連通し供給部に供給された試料溶液を吸引して当該流路に導く移送部と、流路の試料溶液に対面する検出部と、開口部又は供給部の少なくともいずれか一方を、開封可能に封止する封止部材とを備える。

Description

フローセル及び送液方法
 本発明は、フローセル及び送液方法に関する。
 本願は、2008年5月29日に、日本に出願された特願2008-141463号と、2008年5月29日に、日本に出願された特願2008-141464号とに基づき優先権を主張し、その内容をここに援用する。
 抗原抗体反応やDNA断片(DNAプローブ)とDNAとの結合などの高度な生体分子の識別機能を利用した測定は、臨床検査、生化学分野での測定及び環境汚染物質の測定で重要な技術となっている。この測定としては、例えば、マイクロTAS(Total Analysis Systems)、マイクロコンビナトリアルケミストリ、化学IC、化学センサ、バイオセンサ、微量分析、電気化学分析、QCM測定、SPR測定、ATR測定などがある。このような測定の分野では、測定対象の試料溶液は微量な場合が多い。
 上述したような測定においては、試料溶液を保持可能な試料セルが用いられている(例えば特許文献1参照)。そして、試料セルに微量の試料溶液を供給して、当該試料セルの測定を行う検出部まで流し移送する。これにより、試料溶液に溶解又は分散している検体(DNAや抗体など)の濃度を低下させることなく、より高感度、高効率に測定を行う。このように試料溶液を測定部分に流す試料セルは、フローセルと呼ばれる。
 フローセルで微量な試料溶液の移送を実現する技術としては、例えば、以下のような方法がある。つまり、フローセルの検出部に対面する流路を設けるとともに、シリンジポンプ等による外部からの圧力で試料溶液を移送させる方法、静電気力で移送させる方法、エレクトロウエッティング法、加熱による体積変化や気泡の生成により溶液を移送させる方法及び電気浸透流を利用する方法などがある。
 また近年では、フローセルに、試料溶液に対し毛細管現象を発現可能な流路又はポンプとなる領域を形成する技術が提案されている(非特許文献1参照)。この技術により作製されたフローセルは、試料溶液が導入される導入口(供給部)と、導入された試料溶液を吸引する毛細管ポンプ(移送部)と、これら導入口と毛細管ポンプとの間に設けられた測定のための流路とが板状のセルの平面方向に沿って直線状に並んで形成される。
 そして、このフローセルに試料溶液を供給すると、試料溶液は導入口から流路を通って毛細管ポンプへと達し、毛細管ポンプに吸引されて連続的に流路を流れる。
 また一般に、試料溶液の検体の測定を行う場合、測定対象の試料溶液の測定結果と、試料溶液に近似した性質を有する参照溶液の測定結果とを比較して、その差分により試料溶液中の検体を測定する。このような測定をフローセルで行う場合、試料溶液用の系と参照溶液用の系とを同一セル上に設けることが容易ではない。そのため、一般にフローセルの流路にまず参照溶液を流し当該参照溶液の1回目の測定を行って結果を求める。次いで、試料溶液を流し測定を行って結果を求める。次いで、参照溶液の2回目の測定を行って結果を求めた後、参照溶液の1回目及び2回目の測定結果を用いて、試料溶液の測定結果を求める。
 ところで、上述したような測定では、作業者は、参照溶液を供給部に供給した後、参照溶液が移送部に吸引されて供給部から移送し終わる頃合を見計らって、続けて試料溶液を供給する必要がある。また同様に、供給した試料溶液が移送し終わる頃合を見計らって、続けて2回目の参照溶液を供給する必要がある。すなわち、異なる溶液を順次供給部に供給するにあたり、互いの溶液が極力混ざり合うことがないように、かつ、流路を流れる異なる溶液同士の間に空隙が形成されないように送液のタイミング及び送液の量に留意して作業を行う必要がある。
 ここで、供給部に溶液が充分に貯留されたままの状態で次の異なる溶液を供給した場合、互いの溶液が混ざり合い、測定の精度を充分に確保することが難しくなる。また、供給部の溶液が全て移送された空の状態で次の溶液を供給部へ供給した場合、互いの溶液同士の間に空隙が形成され、所謂インジェクションショックと呼ばれる測定結果の大きな変化が生じてしまう。このため、参照溶液の測定結果と試料溶液の測定結果との微量な変化量の比較が難しくなり、測定の精度が確保できない。従って、このような作業には、作業者の熟練を要していた。
 また、一般に、このようなフローセルを用いた測定には、複数の測定装置が用いられ、測定が並行して行われる。このため、複数の測定装置を、一人の作業者が操作する場合、その作業者の負担が大きい。
 また、作業に手間がかかるので、複数の試料溶液を連続して測定するという一連の測定が迅速に行えず、測定間隔が大きくなり、作業性が妨げられていた。
 また一般に、試料溶液の検体の測定を行う場合、測定対象の試料溶液の測定結果と、当該試料溶液に近似した性質の参照溶液の測定結果とを比較して、その差分により試料溶液中の検体を測定することが行われている。このような測定をフローセルで行う場合、試料溶液用の系と参照溶液用の系とを同一セル上に設ける必要がある。しかし、この場合、フローセルの構造が複雑になる。
 そのため、一般にフローセルの流路にまず参照溶液を流し当該参照溶液の測定を行って結果を求め、次いで、試料溶液を流し測定を行って結果を求めた後、参照溶液の測定結果と試料溶液の測定結果とを比較するようにしている。
 このように、参照溶液と試料溶液とをフローセルに各々供給するには、例えば複数のシリンジポンプが用いられている。具体的には、これらシリンジポンプをリキッドスイッチの入液側にチューブ等で各々接続し、当該リキッドスイッチの出液側をフローセルに接続して、溶液毎にリキッドスイッチを切り替えてフローセルに供給することが行われている。
 しかしながら、フローセルに参照溶液と試料溶液とを各々供給するにあたって、上述のようにシリンジポンプ、リキッドスイッチ及びチューブ等を用いた場合、装置の構成が複雑になり、設備費用が嵩むという問題が生じる。また測定精度を確保するため、試料溶液の測定毎にこれらシリンジポンプ、リキッドスイッチ及びチューブ等を交換したり、洗浄・乾燥したりする面倒な手間がかかり、測定の作業性が妨げられていた。
 また、作業者がピペット等を用いて、フローセルに参照溶液と試料溶液とを各々供給する場合、作業者は、参照溶液を供給部に供給した後、参照溶液が移送部に吸引されて供給部から移送し終わる頃合を見計らって、続けて試料溶液を供給する必要がある。すなわち、異なる溶液を順次供給部に供給するにあたり、互いの溶液が極力混ざり合うことがないように、かつ、流路を流れる異なる溶液同士の間に空隙が形成されないように作業を行う必要がある。
 ここで、供給部に参照溶液が充分に貯留されたままの状態で試料溶液を供給した場合、互いの溶液が混ざり合ってしまい、測定の精度を確保することが難しくなる。また、供給部の参照溶液が全て移送された空の状態で試料溶液を供給部へ供給した場合、互いの溶液同士の間に空隙が形成され、所謂インジェクションショックと呼ばれる測定結果の大きな変化が生じる。これにより、参照溶液の測定結果と試料溶液の測定結果との微量な変化量の比較が難しくなり、測定の精度が確保できない。従って、このような作業には、作業者の熟練を要していた。
 また、一般に、このようなフローセルを用いた測定には、複数の測定装置が用いられ、測定が並行して行われることがある。そのため、作業がより複雑になり、作業者の負荷となっていた。
 また、作業に手間がかかるので、複数の試料溶液を連続して測定するという一連の測定が迅速に行えず、測定間隔が大きくなり、作業性が妨げられていた。
 また、予めフローセルの流路に参照溶液を貯留して保管しておき、このフローセルを用いて測定を行う際に、まず参照溶液の測定を行った後、フローセルに試料溶液を供給して試料溶液の測定を行う方法も考えられる。しかし、このような方法では、流路に対面する検出部が長期に亘り参照溶液に晒されることとなるため、当該検出部が劣化して、測定精度に影響を及ぼすこととなる。
特開2002-148187号公報
Martin Zimmermann,Heinz Schmid,Patrick Hunziker and Emmanuel Delamarche,"Capillary pumps for autonomous capillary systems",The Royal Society of Chemistry 2007,Lab Chip,2007,7,p.119-125,First published as an Advance Article on the web 17th October 2006
 本発明は、上述した事情に鑑みてなされたものであって、試料溶液の送液のタイミングと送液の量とを作業に合わせ調整できるフローセル及び送液方法を提供することを目的とする。
 また、本発明は、簡便な構成で作業性を高めることができ、測定精度を確保することができるフローセル及び送液方法を提供することを目的とする。
(1) 本発明の一態様によるフローセルは、試料溶液が流れる流路と、前記流路に連通し前記試料溶液が供給される供給部と、一端側が前記流路に連通し、他端側が外気に開放される複数の開口部からなり、前記流路に連通し前記供給部に供給された前記試料溶液を吸引して当該流路に導く移送部と、前記流路の前記試料溶液に対面する検出部と、前記開口部又は前記供給部の少なくともいずれか一方を、開封可能に封止する封止部材と、を備える。
 このフローセルによれば、試料溶液を吸引して流路に導く移送部の他端側の開口部を、封止部材により封止することにより、封止部材が開口部を開封するまでは、供給部に供給された試料溶液が流路に流れないようになっている。また、複数の開口部が設けられており、これら開口部を開口する範囲に合わせて、送液の量を決めることができる。すなわち、開口された開口部に対応する移送部の部分にのみ試料溶液が移送されていき、当該移送部の部分に試料溶液が満たされると送液が停止するようになっている。従って、作業者が作業に合わせて、供給部に供給した試料溶液の送液のタイミングと送液の量とを自由に調整することができる。
 これによれば、試料溶液を供給する前又は後に試料溶液とは異なる参照溶液等の溶液を流路に流したいような場合に、各溶液の送液のタイミング及び量を作業者が能動的に決められるので、従来のような下記問題が生じない。すなわち、作業者が、供給部に残存する溶液の減少量を気にしながら受動的に作業を行い、先に供給した溶液が供給部から全て移送されてしまった後の空の状態で次の溶液を供給部へと供給することとなり、流路を流れる互いの溶液同士の間に空隙が形成され、所謂インジェクションショックと呼ばれる測定結果の大きな変化を生じさせてしまい、試料溶液の測定結果と参照溶液の測定結果との微量な変化量の比較ができなくなるようなことがない。従って、作業者に熟練を必要とせず、作業が簡便に行えるとともに、測定の精度が充分に確保される。
 また、複数の測定装置を用い、複数のフローセルで並行して測定を行うような場合であっても、作業者が作業に合わせて送液のタイミングを自由に調整できるので、作業に間違いが生じない。
 また、作業に手間がかからないので、複数の試料溶液を連続して測定するという一連の測定がより迅速に行え、測定間隔が削減されて、作業性が向上する。
(2) 本発明の一態様によるフローセルでは、前記封止部材は、前記開口部又は前記供給部の少なくともいずれか一方に貼着され、剥離可能とされてもよい。
 このフローセルによれば、封止部材が例えば粘着テープ等からなり、この粘着テープを剥離して簡便に開口部を開口することができるので、作業性がよく、又開口する範囲を精度よく設定することができる。
(3) 本発明の一態様によるフローセルでは、前記封止部材は、前記開口部を基端で塞ぐ棒状からなり、先端を傾倒して当該開口部を開口させてもよい。
 このフローセルによれば、封止部材が棒状の例えば樹脂材料等で形成されており、その基端が開口部を塞いで封止した状態とされている。そして、封止部材の先端を傾倒すると、傾倒に伴って基端が開口部から剥離又は分離するように当該開口部を開口させる。すなわち、封止部材の先端を傾倒するのみで開口部を開口できるので、作業性がよい。
(4) 本発明の一態様によるフローセルでは、前記移送部は、複数の貫通孔からなってもよい。
 このフローセルによれば、移送部が複数の貫通孔からなるとともに、これら貫通孔が試料溶液で濡れる場合に、所謂毛細管現象によって流路から試料溶液を吸い上げるので、供給部に供給された試料溶液は連続的に流路に吸引されて検出部に供給されるようになっている。よって、従来のように、試料溶液を検出部に連続的に移送するため、フローセルの外部からシリンジポンプ等を用いて流路へ圧力をかけ試料溶液を流したり、当該シリンジポンプ等を測定毎に洗浄、乾燥したりするような、大掛かりな装置の構成や面倒な作業の手間をかけずに、簡便な構成で精度の高い測定を行うことができる。
(5) 本発明の一態様によるフローセルでは、前記移送部は、一端が前記流路に連通し他端が前記開口部とされた複数の室と、前記室の内部に互いに間隙を設けて配列された複数の柱状部材とを備えてもよい。
 このフローセルによれば、室の内部の複数の柱状部材の間隔が、毛細管現象を発現するように構成されており、流路から試料溶液を吸い上げるので、前述のフローセルと同様の効果を奏功する。
(6) 本発明の一態様によるフローセルでは、前記試料溶液に近似した性質を有し測定の比較に用いられる前記参照溶液を、前記供給部に貯留させるとともに開封可能な貯留部を備え、前記移送部は、前記流路の他端側に連通し、前記供給部に貯留した前記参照溶液を吸引して前記流路に導く第1移送部を備え、前記貯留部の開封によって、貯留した前記参照溶液を前記流路の前記検出部に送液してもよい。
 このフローセル及び送液方法によれば、参照溶液を供給部に貯留させるための貯留部が設けられているので、測定時に、作業者が外部からフローセルに参照溶液を供給する必要がなく、貯留部を開封する簡便な作業のみで、貯留した参照溶液を流路の検出部に送液することができる。よって、測定に際し、フローセルに試料溶液を供給するのみで足りるので、従来のように、複数のシリンジポンプ、リキッドスイッチ及びチューブ等を用いて、参照溶液と試料溶液とを各々フローセルに供給するような複雑な装置の構成が必要なく、設備費用が低減できる。また、これらシリンジポンプ、リキッドスイッチ及びチューブ等を測定毎に交換したり、洗浄・乾燥したりするような面倒な手間がなく、作業性が向上する。
 また、参照溶液を送液する量は、予め供給部に貯留された所定量に設定されるので、従来のように、作業者が測定毎にフローセルに供給する参照溶液の量を調整するような面倒な手間がない。
 また、例えば複数の測定装置を用い、複数のフローセルで並行して測定を行うような場合であっても、作業者が作業に合わせて簡便に送液を行えるので、作業に間違いが生じない。また、作業者が作業に合わせ送液のタイミングを調整でき、測定の直前に参照溶液を流すことができるので、流路の検出部が参照溶液に長時間晒されるようなことがなく、測定の精度が高められる。
(7) 本発明の一態様によるフローセルでは、前記第1移送部に連通し、前記流路に送液された前記参照溶液を吸引するとともに、前記参照溶液に続いて前記供給部に供給される前記試料溶液を前記流路の前記検出部に送液する第2移送部が設けられてもよい。
 このフローセルによれば、第1移送部が参照溶液を検出部に送液した後、第2移送部が参照溶液に続いて供給部に供給される試料溶液を流路の検出部に送液するので、従来のように、フローセルの外部からシリンジポンプ等を用いて流路に圧力をかけ、参照溶液及び試料溶液を送液するような複雑な装置の構成が必要なく、設備費用が低減する。
(8) 本発明の一態様によるフローセルでは、前記供給部は、当該参照溶液が前記流路に送液され、この送液が停止した平衡状態で、前記供給部に一部が残留する量の前記参照溶液を貯留してもよい。
 このフローセルによれば、供給部に貯留される参照溶液の量が、送液の停止した平衡状態で、供給部に一部が残留するように設定されているので、参照溶液に続けて試料溶液を供給するにあたり、従来のような下記問題が生じない。すなわち、作業者が、供給部に残存する参照溶液の減少量を気にしながら受動的に作業を行い、参照溶液が供給部から全て移送されてしまった後の空の状態で試料溶液を供給部へと供給することとなり、流路を流れる互いの溶液同士の間に空隙が形成され、所謂インジェクションショックと呼ばれる測定結果の大きな変化を生じさせてしまい、参照溶液の測定結果と試料溶液の測定結果との微量な変化量の比較ができなくなるようなことがない。
 すなわち、参照溶液を送液した作業者は、次の試料溶液を作業に合わせフローセルに供給し、能動的に送液することができるので、作業者に熟練を要さず、作業が簡便に行えるとともに、測定の精度が充分に確保される。
(9) 本発明の一態様によるフローセルでは、前記貯留部は、前記供給部に接続された密閉容器状の液封部材からなり、前記液封部材が開封されることで、前記供給部に貯留した前記参照溶液を前記検出部に送液してもよい。
 このフローセルによれば、貯留部が、例えばアンプルやマイクロカプセル等の密閉容器状の液封部材からなり、この液封部材の内部が供給部に連通して参照溶液を貯留している。そして、液封部材が開封されることにより、開封部分から外気を吸引するとともに供給部に貯留した参照溶液を流路の検出部に送液するようになっている。すなわち、液封部材を開封するのみで参照溶液を検出部に流すことができるので、作業性に優れている。
(10) 本発明の一態様によるフローセルは、前記貯留部は、前記供給部の開口を封止するシート状の供給部封止部材からなり、前記供給部封止部材が開封されることで、前記供給部に貯留した前記参照溶液を前記検出部に送液してもよい。
 このフローセルによれば、貯留部が、例えば粘着テープ等のシート状の供給部封止部材からなり、この供給部封止部材が供給部の開口を封止するように貼着されている。そして、作業に合わせ供給部封止部材を供給部から剥離して開封すれば、供給部が開封部分から外気を吸引するように貯留した参照溶液を流路の検出部に送液するので、簡便な構成で容易に送液でき、製作費用が低減する。
(11) 本発明の一態様によるフローセルでは、前記第1移送部は、一端を前記流路に連通し、他端を外気に開口する第1貫通孔からなり、前記貯留部は、前記第1貫通孔の開口を封止する第1封止部材からなり、前記第1封止部材が開封されることで、前記供給部に貯留した前記参照溶液を前記検出部に送液してもよい。
 このフローセルによれば、貯留部が、例えば粘着テープ等の第1封止部材からなり、この第1封止部材が第1貫通孔の開口を封止するように貼着されている。そして、作業に合わせ第1封止部材を第1貫通孔から剥離して開封すれば、供給部が外気を吸引するように貯留した参照溶液を流路の検出部に送液するので、簡便な構成で容易に送液を行うことができ、製作費用が低減する。
(12) 本発明の一態様によるフローセルでは、前記第2移送部は、一端を前記第1移送部に連通し、他端を外気に開口する第2貫通孔からなり、前記第2貫通孔の開口を封止する第2封止部材が設けられ、前記第2封止部材が開封されることで、前記供給部に供給された前記試料溶液を前記検出部に送液してもよい。
 このフローセルによれば、第2移送部が第2貫通孔からなり、第2貫通孔の開口が、例えば粘着テープ等の第2封止部材により封止されているので、参照溶液の送液の後に供給部に供給された試料溶液は、第2封止部材を第2貫通孔から剥離して開封するまでは流路に送液されずに供給部に貯留された状態となる。すなわち、第2封止部材を第2貫通孔から剥離して開封することで、供給部が外気を吸引するように貯留した試料溶液を流路の検出部に送液するようになっている。従って、簡便な構成で試料溶液を送液するタイミングを能動的に制御でき、測定精度が高められ、作業性が向上する。
(13) 本発明の一態様によるフローセルでは、前記検出部が設けられている領域の前記流路の断面積は、前記検出部が設けられていない領域の前記流路の断面積よりも小さくてもよい。
(14) 本発明の一態様によるフローセルでは、外部装置によって前記封止部材の開封状態が制御されてもよい。
(15) 本発明の一態様によるフローセルの送液方法は、供給部に、試料溶液と前記試料溶液に近似した性質を有し測定の比較に用いられる参照溶液とを夫々供給し、流路を介して前記供給部に連通する移送部が、当該供給部の試料溶液と参照溶液とを夫々吸引して前記流路に導き、前記流路に対面する検出部に送液するフローセルの送液方法であって、前記参照溶液を前記供給部に供給し、前記移送部の複数の開口部を封止する前記封止部材のうち一部を開封することで、前記参照溶液を吸引し前記検出部に流す工程と、前記試料溶液を前記供給部に供給し、前記封止部材のうち前記一部とは異なる部分を開封することで、当該試料溶液を吸引し前記検出部に流す工程と、を備える。
(16) 本発明の一態様によるフローセルの送液方法は、流路の一端側に連通する供給部に、試料溶液に近似した性質を有する参照溶液と前記試料溶液とを順次供給して前記流路に導き、前記流路に対面する検出部に送液するフローセルの送液方法であって、前記供給部に前記参照溶液を貯留させるための貯留部を開封することで、前記流路の他端側に連通する第1移送部に前記参照溶液を吸引させ前記流路の前記検出部に送液する工程と、前記供給部に前記試料溶液を供給する工程と、前記第1移送部に連通する第2移送部で前記流路に送液された前記参照溶液を吸引するとともに、前記供給部の前記試料溶液を前記流路の前記検出部に送液する工程と、を備える。
 本発明に係るフローセルによれば、試料溶液の送液のタイミングと送液の量とを作業に合わせ調整でき、作業者に熟練を必要とせず、簡便かつ精度よく測定を行え、作業性を向上することができる。
 また本発明に係るフローセルの送液方法によれば、試料溶液の送液のタイミング及び送液の量と、参照溶液の送液のタイミング及び送液の量とを作業に合わせ調整できるので、供給部で試料溶液と参照溶液とが混ざり合うことなく、かつ、流路を流れる試料溶液と参照溶液との間に空隙が形成されることもなく、簡便に各溶液を流路に送液でき作業性に優れるとともに、測定精度が向上する。
 また、本発明に係るフローセル及び送液方法によれば、参照溶液を供給部に貯留させるための貯留部が設けられているので、測定の際に作業者が参照溶液を都度供給部に供給するような必要がなく、貯留部を開封するだけで、貯留した参照溶液を流路の検出部に送液することができる。従って、簡便な構成で測定の作業性を高めることができる。また、貯留部を開封することで供給部に予め貯留した所定量の参照溶液が送液されるので、作業者が送液のタイミング及び送液の量を能動的に制御でき、測定精度が高められている。
本発明の第1の実施形態に係るフローセルを用いたSPR測定装置の概略構成を示す説明図である。 SPR測定装置で測定された検出部の反射率と反射角度との関係を説明する特性図である。 本発明の第1の実施形態に係るフローセルの概略構成を示す分解斜視図である。 本発明の第1の実施形態に係るフローセルの概略構成を示す平面図である。 本発明の第2の実施形態に係るフローセルの概略構成を示す分解斜視図である。 本発明の第2の実施形態に係るフローセルの概略構成を示す平面図である。 図6のA1-A1矢視を示す側断面図である。 図6のB1-B1矢視を示す側断面図である。 本発明の第3の実施形態に係るフローセルの概略構成を示す平面図である。 図9のC1-C1矢視を示す側断面図である。 本発明の第4の実施形態に係るフローセルを用いたSPR測定装置の概略構成を示す説明図である。 SPR測定装置で測定された検出部の反射率と反射角度との関係を説明する特性図である。 本発明の第4の実施形態に係るフローセルの概略構成を示す分解斜視図である。 本発明の第4の実施形態に係るフローセルの概略構成を示す平面図である。 図14のA2-A2矢視を示す側断面図である。 図14のB2-B2矢視を示す側断面図である。 本発明の第4の実施形態に係るフローセルの参照溶液が検出部に送液される前の平衡状態を説明する側断面図である。 本発明の第4の実施形態に係るフローセルの参照溶液が検出部に送液された後の平衡状態を説明する側断面図である。 本発明の第5の実施形態に係るフローセルの概略構成を示す分解斜視図である。 本発明の第5の実施形態に係るフローセルの概略構成を示す平面図である。 本発明の第5の実施形態に係るフローセルの参照溶液が検出部に送液される前の平衡状態を説明する側断面図である。 本発明の第5の実施形態に係るフローセルの参照溶液が検出部に送液された後の平衡状態を説明する側断面図である。 本発明の第6の実施形態に係るフローセルの概略構成を示す分解斜視図である。 本発明の第6の実施形態に係るフローセルの概略構成を示す平面図である。 本発明の第6の実施形態に係るフローセルの参照溶液が検出部に送液される前の平衡状態を説明する側断面図である。 本発明の第6の実施形態に係るフローセルの参照溶液が検出部に送液された後の平衡状態を説明する側断面図である。 本発明の第7の実施形態による流路9aの金属薄膜10が設けられていない領域の平面図である。 本発明の第7の実施形態による流路9aの金属薄膜10が設けられている領域の平面図である。 円管における毛細管力について説明する図である。 矩形管における毛細管力について説明する図である。 本発明の第8の実施形態によるフローセルの構造を示す模式図である。 本発明の第8の実施形態によるフローセルの構造を示す模式図である。
 以下、図面を参照し、この発明の各実施形態について説明する。
 図1は本発明の第1の実施形態に係るフローセルを用いたSPR測定装置の概略構成を示す説明図である。図2はSPR測定装置で測定された検出部の反射率と反射角度との関係を説明する特性図である。図3は本発明の第1の実施形態に係るフローセルの概略構成を示す分解斜視図である。図4は本発明の第1の実施形態に係るフローセルの概略構成を示す平面図である。
 本実施形態のフローセル1は、測定対象の検体(DNAや抗体など)が接触した金属薄膜の表面におけるエバネッセント波と表面プラズモン波との共鳴、所謂表面プラズモン共鳴(Surface Plasmon Resonance:SPR)現象を利用したSPR測定装置100に搭載して測定に用いられる。
 図1に示すように、このSPR測定装置100は、光源101が発する光を偏光子(不図示)により偏光してP偏光光(以下「入射光」とする)とする。そして、SPR測定装置100は、集光レンズ102で集光した帯状の入射光を半円柱状のプリズム103の曲面側に入射させる。そして、SPR測定装置100は、当該プリズム103の平面側の測定面103aに密着するフローセル1の後述する金属薄膜に照射する。そして、SPR測定装置100は、その反射光をCCDイメージセンサからなる受光部104で検出する。
 受光部104で検出した反射光の強度(光強度)を測定すると、図2に示すように、上記共鳴が起こる角度(共鳴角)で反射強度が減少するため、反射率の低い谷105が観測される。共鳴角は、金属薄膜に接する試料溶液の光学的な性質(屈折率)に依存する。そのため、金属薄膜上に抗体を固定し、当該抗体と抗原との結合による屈折率変化を測定することにより、特定物質の定量測定を行うことができる。
 図3及び図4に示すように、SPR測定装置100に搭載するフローセル1は、略直方体状又は略矩形板状の外形をなし積層構造を有している。すなわち、フローセル1をSPR測定装置100に載置した状態で、下側に配置される略矩形板状の下部基板2と、下部基板2の上側に積層され平面視の外形が当該下部基板2と略同一に形成される上部基板3とを備えている。また、例えば下部基板2の板厚は1mm程度とされ、上部基板3の板厚は3mm程度とされている。
 上部基板3は、その平面視の幅方向(図3における左上-右下方向又は図4における左右方向)の略中央の一端側(図3における右上側又は図4における上側)に、測定する試料溶液、当該試料溶液に近似した性質(屈折率、粘性など)の参照溶液及び洗浄用のリン酸緩衝液(Phosphate Buffered Saline:PBS)の各溶液を供給するための略多段円柱孔状の溶液供給孔(供給部)4を備えている。溶液供給孔4は、下側の円柱孔状の小径部4aと、小径部4aの上側に形成され当該小径部4aより拡径された楕円柱孔状の大径部4bとを備え、上部基板3を板厚方向に貫通している。
 また上部基板3には、円柱孔状の複数の貫通孔(移送部)5が設けられ当該上部基板3を板厚方向に貫通している。また、図4に示すように、これら貫通孔5は、幅方向の一方側(図4における左側)と他方側(図4における右側)とに夫々平面視略矩形状に配列されている。また、これら貫通孔5は、夫々の平面視略矩形状の他端側(図4における下側)の向かい合う端部を繋ぐように直線状に配列されている。これら貫通孔5は、各溶液に対し毛細管現象を発現する範囲の内径に設定され、その上端が外気に開放された開口部6とされるとともに下端が後述する吸引流路8に連通している。
 また、下部基板2は2層から構成されており、その下側の層がガラスやアクリル樹脂等の光を透過する材料の下地基板2aからなり、上側の層が樹脂のフィルム等のスペーサ部2bからなる。
 スペーサ部2bには、厚み方向に貫通する開口部分が形成されている。この開口部分のうち、上部基板3の溶液供給孔4の小径部4aに対応する位置には、当該小径部4aの内径と略同一の内径を有する円孔7が形成されている。また、スペーサ部2bには、上部基板3の幅方向の一方側と他方側とに夫々平面視略矩形状に配列された前述の複数の貫通孔5の外形に対応するように略矩形孔状に形成された夫々の吸引流路8が設けられている。吸引流路8は、各溶液が供給された際に、各溶液がその上方の貫通孔5との間に空隙を形成しない程度の高さに設定され、例えば板厚方向の高さが10~100μm程度とされる。
 また、スペーサ部2bの幅方向の略中央には、幅方向に直交する向きに延在する流路9が形成されている。流路9は、その一端側の端部を円孔7に連通しており、他端側の端部を幅方向の一方側と他方側とに分岐して、夫々の吸引流路8に連通している。また、流路9は、断面略矩形状をなし、例えばその延在方向に直交する断面寸法(以下「断面寸法」と省略)の幅方向が1mm程度、板厚方向(高さ)が10~100μm程度とされ、各溶液に対し毛細管現象を発現する範囲に設定される。
 また、このようにして、溶液供給孔4に接続する円孔7と貫通孔5に接続する吸引流路8とが流路9を介し互いに連通している。
 また、下地基板2aの上面の幅方向の略中央には、矩形状の金属薄膜(検出部)10が形成されている。金属薄膜10は、例えばAu(金)からなり、スペーサ部2bの流路9を流れる各溶液に対面して接触可能に配置される。また、金属薄膜10の上面には、複数の抗体(不図示)が流路9に沿うように配列されている。尚、本実施形態では金属薄膜10を、下地基板2aの上面のうち略中央の測定に用いられる領域に対応するように配置しているが、金属薄膜10は前記領域の範囲を超えて広く大きく形成されていても構わない。
 また、下地基板2aの幅方向の一方側及び他方側のスペーサ部2bの夫々の吸引流路8に対応する部分には、略矩形状の夫々の表面活性領域11が形成されている。表面活性領域11には表面加工が施されており、各溶液に対する濡れ性が当該表面活性領域11以外の領域とは異なるように設定される。すなわち、表面活性領域11の表面加工を種々に設定して、各溶液の吸引状態や流速を変化させ制御するようにしている。
 また、上部基板3の上面には、粘着テープからなる複数の封止部材12が貼着されている。これら封止部材12は、上部基板3の貫通孔5の開口部6に対向配置されており、各封止部材12が、複数の開口部6を夫々封止している。
 図4に示すように、上部基板3の一方側の一端側に配置される複数の開口部6は、封止部材12cに封止されている。上部基板3の他方側の一端側に配置される複数の開口部6は、封止部材12dに封止されている。又、封止部材12cの他端側に配置される複数の開口部6は封止部材12aに封止されている。封止部材12dの他端側に配置される複数の開口部6は封止部材12bに封止されている。これら封止部材12は、夫々に上部基板3から剥離可能とされている。
 次いで、このように構成されたフローセル1を用いてSPR測定装置100で試料溶液を測定する手順について説明する。
 まず、SPR測定装置100のプリズム103の測定面103aにマッチングオイル等を介しフローセル1を載置する。このようにフローセル1を載置した状態で、光源101から当該フローセル1の金属薄膜10に入射光を照射し、反射した反射光を受光部104で受光して屈折率の変化を測定可能な状態としておく。
 次いで、載置したフローセル1の溶液供給孔4に、PBS液を供給する。供給されたPBS液は、溶液供給孔4に連通する流路9が毛細管現象を発現するのに伴って流路9を流れていく。次いで流路9の他端側の端部近傍に配置された貫通孔5及び夫々の吸引流路8の他端側の端部に配置された貫通孔5がPBS液に濡れることによる毛細管現象により吸引される。
 このように予め開口部6を開口した貫通孔5の全てにPBS液が満たされた状態で、封止部材12aを剥離し、当該封止部材12aで封止していた複数の開口部6を開口させる。これにより、開口した開口部6に対応する貫通孔5がPBS液を吸引する。そしてこれら貫通孔5にPBS液が満たされると毛細管現象が発現しなくなり、PBS液はそれ以上溶液供給孔4から吸引されなくなって、送液が停止する。尚、PBS液を溶液供給孔4に供給する量は、このように送液が停止した状態で、溶液供給孔4の小径部4aに溶液が残留している程度に予め設定される。
 次いで、フローセル1の溶液供給孔4に、参照溶液を供給する。参照溶液は、試料溶液に近似した性質の溶液からなり、かつ、測定する試料溶液の検体を含まないものが用いられる。このように溶液供給孔4に参照溶液を貯留した状態で封止部材12bを剥離して、当該封止部材12bで封止していた複数の開口部6を開口させる。これにより、開口した開口部6に対応する貫通孔5が残留するPBS液及び後続の参照溶液に濡れることによる毛細管現象により参照溶液を吸引し始め、流路9に対面する金属薄膜10に参照溶液を連続的に流す。この状態で、参照溶液の1回目の測定を行う。
 金属薄膜10を流れた参照溶液は、次いで吸引流路8に吸引され、開口した貫通孔5に吸引される。そして、これら貫通孔5に参照溶液が満たされると毛細管現象が発現しなくなり、参照溶液はそれ以上溶液供給孔4から吸引されなくなって、送液が停止する。尚、参照溶液を溶液供給孔4に供給する量は、このように送液が停止した状態で、溶液供給孔4の小径部4aに溶液が残留している程度に予め設定される。
 次いで、フローセル1の溶液供給孔4に、試料溶液を供給する。そして、溶液供給孔4に試料溶液を貯留した状態で封止部材12cを剥離して、当該封止部材12cで封止していた複数の開口部6を開口させる。これにより、開口した開口部6に対応する貫通孔5が残留する参照溶液及び後続の試料溶液に濡れることによる毛細管現象により試料溶液を吸引し始め、流路9に対面する金属薄膜10に試料溶液を連続的に流す。この状態で、試料溶液の測定を行う。
 金属薄膜10を流れた試料溶液は、次いで吸引流路8に吸引され、開口した貫通孔5に吸引される。そして、これら貫通孔5に試料溶液が満たされると毛細管現象が発現しなくなり、試料溶液はそれ以上溶液供給孔4から吸引されなくなって、送液が停止する。尚、試料溶液を溶液供給孔4に供給する量は、このように送液が停止した状態で、溶液供給孔4の小径部4aに溶液が残留している程度に予め設定される。
 次いで、フローセル1の溶液供給孔4に、2回目の参照溶液を供給する。溶液供給孔4に参照溶液を貯留した状態で封止部材12dを剥離して、当該封止部材12dで封止していた複数の開口部6を開口させる。これにより、開口した開口部6に対応する貫通孔5が残留する試料溶液及び後続の参照溶液に濡れることによる毛細管現象により参照溶液を吸引し始め、金属薄膜10に参照溶液を連続的に流す。この状態で、参照溶液の2回目の測定を行う。
 金属薄膜10を流れた参照溶液は、次いで吸引流路8に吸引され、開口した貫通孔5に吸引される。そして、これら貫通孔5に参照溶液が満たされると毛細管現象が発現しなくなり、参照溶液はそれ以上溶液供給孔4から吸引されなくなって、送液が停止する。
 そして、参照溶液の1回目及び2回目の測定結果を用いて、試料溶液の測定結果を求める。
 以上説明したように、第1の実施形態のフローセル1によれば、試料溶液、参照溶液及びPBS液の各溶液を吸引して流路9に導く貫通孔5の開口部6が封止部材12により封止されている。そのため、溶液供給孔4に各溶液を貯留した状態で、封止部材12が開口部6を開口するまでは、各溶液が流路9に流されないようになっている。また、各封止部材12a~12dが夫々複数の開口部6を封止しており、これら封止部材12a~12dを剥離し開口部6を開口する範囲に合わせて、各溶液の送液の量を決めることができる。
 すなわち、各封止部材12a~12dに開口された夫々の開口部6に対応する貫通孔5にのみ各溶液が移送されていき、当該貫通孔5に溶液が満たされると送液が停止するようになっている。従って、作業者が作業に合わせて、溶液供給孔4に供給した各溶液の送液のタイミングと送液の量とを自由に調整することができる。
 このように各溶液の送液のタイミング及び量を作業者が能動的に決めることができる。よって、従来のように、作業者が、溶液供給孔4に残存する各溶液の減少量を気にしながら受動的に作業を行い、先に供給した溶液が溶液供給孔4から全て移送されてしまった後の空の状態で次の溶液を当該溶液供給孔4へ供給することとなり、流路9を流れる互いの溶液同士の間に空隙が形成され、所謂インジェクションショックと呼ばれる測定結果の大きな変化を生じさせてしまうことがない。そのため、試料溶液の測定結果と参照溶液の測定結果との微量な変化量の比較ができなくなるようなことがない。従って、作業者に熟練を必要とせず、作業が簡便に行えるとともに、測定の精度が充分に確保されている。
 また、複数のSPR測定装置100を用い、複数のフローセル1で並行して測定を行うような場合であっても、作業者が作業に合わせて送液のタイミングを自由に調整できるので、作業に間違いが生じない。
 また、作業に手間がかからないので、複数の試料溶液を連続して測定するという一連の測定がより迅速に行え、測定間隔が削減されて、作業性が向上する。
 また、封止部材12が粘着テープからなり、粘着テープを剥離して簡便に開口部6を開封することができるので、作業性がよく、又開口する範囲を精度よく設定することができる。
 また、複数の貫通孔5が、所謂毛細管現象によって流路9から各溶液を吸い上げるので、溶液供給孔4に供給された各溶液は連続的に流路9に吸引されて金属薄膜10に供給されるようになっている。よって、従来のように、各溶液を金属薄膜10に連続的に移送するため、フローセル1の外部からシリンジポンプ等を用いて流路9へ圧力をかけ各溶液を流したり、シリンジポンプ等を測定毎に洗浄、乾燥したりするような、大掛かりな装置の構成や面倒な作業の手間をかけずに、簡便な構成で精度の高い測定を行うことができる。
 次に、本発明の第2の実施形態について、図5~図8を参照しながら説明する。
 図5は本発明の第2の実施形態に係るフローセルの概略構成を示す分解斜視図である。図6は本発明の第2の実施形態に係るフローセルの概略構成を示す平面図である。図7は図6のA1-A1矢視を示す側断面図である。図8は図6のB1-B1矢視を示す側断面図である。
 尚、前述の第1の実施形態と同一部材には同一の符号を付し、その説明を省略する。
 第2の実施形態のフローセル21の上部基板23は、その平面視の幅方向(図5における左上-右下方向又は図6における左右方向)の略中央の一端側(図5における右上側又は図6における上側)に、各溶液を供給するための円柱孔状の溶液供給孔(供給部)24を備えている。溶液供給孔24は、上部基板23を板厚方向に貫通している。
 また上部基板23には、その幅方向の一方側(図5における右下側又は図6における左側)と他方側(図5における左上側又は図6における右側)とに夫々板厚方向の下面側に向け開口する矩形凹溝状の複数の室(移送部)25が形成されている。これらの室25は、幅方向に直交する方向に延在して形成されており、隣り合う室25同士は、壁部25aで互いに区画される。
 また、室25の一端側の端部には、上部基板23を板厚方向に貫通する略角柱孔状の開口部26が形成されている。開口部26は、夫々の室25に対応して複数設けられ、板厚方向の上端部分が外気に開放されている。また、一方側に配置される複数の室25の他端側(図5における左下側又は図6における下側)の端部は互いに連通している。また他方側に配置される複数の室25の他端側の端部も互いに連通している。
 また、夫々の室25には、底面である天井部分から略円柱状の複数の柱状部材(移送部)27が垂設されている。これら柱状部材27は、室25の内部に互いに間隙を設けて配置され、幅方向に直交する方向に直線状に配列している。また、柱状部材27の外周と隣り合う壁部25aとの間には若干の間隙が設けられている。そして、夫々の室25の内部の間隙が、各溶液に対し毛細管現象を発現する範囲の寸法に設定されている。
 また、上部基板23の幅方向の略中央の他端側には、板厚方向の下面側に向け開口する蛇行凹溝状の蛇行流路28が形成されている。蛇行流路28は、幅方向の一方側と他方側とに複数回折り返されるようにクランク状又は波状に形成されており、夫々の折り返し部分が滑らかな曲線状に形成される。
 また、蛇行流路28の他端側の端部は、幅方向の一方側と他方側とに向け分岐している。一方側の幅方向内方に配置される室25の他端側の端部と、他方側の幅方向内方に配置される室25の他端側の端部とに夫々連通している。また、蛇行流路28の一端側の端部は上部基板23の略中央に配置され、後述する流路30に連通する。また蛇行流路28の断面寸法は、各溶液に対し毛細管現象を発現する範囲の寸法に設定される。
 また、下部基板22は2層から構成されており、その下側の層がガラスやアクリル樹脂等の光を透過する材料の下地基板22aからなり、上側の層が樹脂のフィルム等のスペーサ部22bからなる。
 スペーサ部22bには、厚み方向に貫通する開口部分が形成されている。この開口部分のうち上部基板23の溶液供給孔24に対応する位置には、当該溶液供給孔24の内径と略同一の内径を有する円孔29が形成されている。また、スペーサ部22bの幅方向の略中央には、幅方向に直交する向きに延在する流路30が形成されている。
 流路30は、その一端側の端部を円孔29に連通しており、他端側の端部をスペーサ部22bの蛇行流路28の一端側の端部に連通させている。また、流路30は、断面略矩形状をなし、例えばその断面寸法の幅方向が1mm程度、板厚方向(高さ)が10~100μm程度とされ、各溶液に対し毛細管現象を発現する範囲に設定される。
 また、このようにして、溶液供給孔24に接続する円孔29と室25に接続する蛇行流路28とが、流路30を介し互いに連通している。
 また、下地基板22aの上面の幅方向の略中央には、矩形状の金属薄膜(検出部)31が形成されている。金属薄膜31上には、抗体が塗布されている。金属薄膜31及び抗体は、スペーサ部22bの流路30を流れる各溶液に対面して接触可能に配置されている。
 また、上部基板23の上面には、粘着テープからなる複数の封止部材32が貼着されている。これら封止部材32は、上部基板23の開口部26に夫々対向配置されて、当該開口部26を封止している。
 図6に示すように、上部基板23の一方側に配置される複数の開口部26のうち、幅方向内方に配置される開口部26のみ開口された状態とされ、それ以外の開口部26が、封止部材32a,32c,32eに夫々封止されている。また、上部基板23の他方側に配置される複数の開口部26のうち、幅方向内方に配置される開口部26のみ開口された状態とされ、それ以外の開口部26が、封止部材32b,32d,32fに夫々封止されている。これら封止部材32は、夫々に上部基板23から剥離可能とされている。
 このように構成されたフローセル21を用いて、SPR測定装置100で試料溶液を測定する。まず、SPR測定装置100のプリズム103の測定面103aにマッチングオイル等を介しフローセル21を載置し、屈折率の変化を測定可能な状態とする。
 次いで、載置したフローセル21の溶液供給孔24に、PBS液を供給する。供給されたPBS液は、溶液供給孔24に連通する流路30が毛細管現象を発現するのに伴って流路30を流れていく。そして、PBS液は、流路30の他端側の端部に連通する蛇行流路28に吸引され、上部基板23の一方側及び他方側の各幅方向内方に配置された室25に吸引される。幅方向内方の各室25に吸引されたPBS液は、夫々の室25がPBS液に濡れることによる毛細管現象を発現するのにともなって内部を流れていき、これら室25の一端側の各開口部26まで導かれる。このように開口部26までPBS液が送液され各室25が満たされると、毛細管現象が発現しなくなり、送液が停止する。
 PBS液が幅方向内方に配置された各室25に供給された状態で、封止部材32aを剥離し、当該封止部材32aが封止していた開口部26を開口させると、開口した開口部26に対応する室25がPBS液を吸引する。そして室25にPBS液が満たされると毛細管現象が発現しなくなり、PBS液はそれ以上溶液供給孔24から吸引されなくなって、送液が停止する。尚、PBS液を溶液供給孔24に供給する量は、このように送液が停止した状態で、溶液供給孔24に溶液が僅かに残留する程度に予め設定される。
 次いで、フローセル21の溶液供給孔24に、参照溶液を供給する。そして、溶液供給孔24に参照溶液を貯留した状態で封止部材32bを剥離して、当該封止部材32bで封止していた開口部26を開口させる。これにより、開口した開口部26に対応する室25が残留するPBS液及び後続の参照溶液に濡れることによる毛細管現象により参照溶液を吸引し始め、流路30に対面する金属薄膜31に参照溶液を連続的に流す。この状態で、参照溶液の1回目の測定を行う。
 金属薄膜31を流れた参照溶液は、次いで蛇行流路28に吸引され、開口した開口部26に対応する室25に吸引される。そして、この室25に参照溶液が満たされると毛細管現象が発現しなくなり、参照溶液はそれ以上溶液供給孔24から吸引されなくなって、送液が停止する。尚、参照溶液を溶液供給孔24に供給する量は、このように送液が停止した状態で、溶液供給孔24に溶液が僅かに残留している程度に予め設定される。
 次いで、フローセル21の溶液供給孔24に、試料溶液を供給する。そして、溶液供給孔24に試料溶液を貯留した状態で封止部材32cを剥離して、当該封止部材32cで封止していた開口部26を開口させる。これにより、開口した開口部26に対応する室25が残留する参照溶液及び後続の試料溶液に濡れることによる毛細管現象により試料溶液を吸引し始め、流路30の金属薄膜31に試料溶液を連続的に流す。この状態で、試料溶液の測定を行う。
 金属薄膜31を流れた試料溶液は、蛇行流路28に吸引され、開口した開口部26を有する室25に吸引される。そして、この室25に試料溶液が満たされると、試料溶液はそれ以上溶液供給孔24から吸引されなくなって、送液が停止する。尚、試料溶液を溶液供給孔24に供給する量は、このように送液が停止した状態で、溶液供給孔24に溶液が僅かに残留している程度に予め設定される。
 次いで、フローセル21の溶液供給孔24に、2回目の参照溶液を供給する。溶液供給孔24に参照溶液を貯留した状態で封止部材32dを剥離して、当該封止部材32dで封止していた開口部26を開口させる。これにより、開口した開口部26に対応する室25が残留する試料溶液及び後続の参照溶液に濡れることによる毛細管現象により参照溶液を吸引し始め、金属薄膜31に参照溶液を連続的に流す。この状態で、参照溶液の2回目の測定を行う。
 金属薄膜31を流れた参照溶液は、蛇行流路28に吸引され、開口した開口部26を有する室25に吸引される。そして、この室25に参照溶液が満たされると、参照溶液はそれ以上溶液供給孔24から吸引されなくなって、送液が停止する。
 そして、参照溶液の1回目及び2回目の測定結果を用いて、試料溶液の測定結果を求める。
 ここで、さらに封止部材32e,32fを用いて、3回目及び4回目の参照溶液を金属薄膜31に流して夫々測定を行ってもよい。1回目~4回目の参照溶液の測定結果を用いて、試料溶液の測定結果を求めれば、より精度の高い測定が行える。
 以上説明したように、第2の実施形態のフローセル21によれば、毛細管現象を発現可能な複数の室25が設けられ、夫々の室25が開口部26を有する。これら開口部26に対応した夫々の封止部材32を剥離して開口部26を開口させ、流路30から各溶液を吸い上げ金属薄膜31に供給する。開口した開口部26に対応した室25が各溶液で満たされると送液が停止するので、前述の第1の実施形態と同様の効果を奏功する。
 次に、本発明の第3の実施形態について、図9及び図10を参照しながら説明する。
 図9は本発明の第3の実施形態に係るフローセルの概略構成を示す平面図である。図10は図9のC1-C1矢視を示す側断面図である。
 尚、前述の第1、第2の実施形態と同一部材には同一の符号を付し、その説明を省略する。
 第3の実施形態のフローセル41の上部基板43は、樹脂材料等からなる。フローセル41の平面視の幅方向(図9における左右方向)の一方側(図9における左側)と他方側(図9における右側)とに夫々板厚方向の下面側に向け開口する矩形凹溝状の複数の室(移送部)45を備えている。これら室45は、幅方向に直交する方向に延在して形成されており、隣り合う室45同士は、壁部45aで互いに区画される。
 また、室45の一端側(図9における上側)の端部には、板厚方向の下面側に向け開口する略円柱穴状の凹部(開口部)46が形成されている。凹部46は、夫々の室45に対応して複数設けられ、その底面である板厚方向の上端部分が、略丸棒状又は切頭円錐状の樹脂材料等からなる封止部材52の基端部分に一体とされ、封止されている。
 また、夫々の室45には、略円柱状の複数の柱状部材(移送部)47が垂設されている。これら柱状部材47は、室45の内部に互いに間隙を設けて配置され、幅方向に直交する方向に直線状に配列している。また、柱状部材47の外周と隣り合う壁部45aとの間には若干の間隙が設けられている。そして、夫々の室45の内部の間隙が、各溶液に対し毛細管現象を発現する範囲の寸法に設定されている。
 このように構成されたフローセル41を用いて、SPR測定装置100で試料溶液を測定する。まず、SPR測定装置100のプリズム103の測定面103aにマッチングオイル等を介しフローセル41を載置し、屈折率の変化を測定可能な状態とする。
 次いで、載置したフローセル41の溶液供給孔24に、PBS液を供給する。ここで、供給されたPBS液は、流路30に送液されずに溶液供給孔24に貯留された状態となる。次いで、封止部材52のうち、一方側の幅方向内方に配置される封止部材52aの先端部分を図10に示すように傾倒する。そして、その基端部分を凹部46から分離させ、当該基端部分で封止していた凹部46を外気に開口させる。
 凹部46を開口すると、封止部材52aが開口した当該凹部46に対応する室45がPBS液に濡れることによる毛細管現象によりPBS液を吸引する。そして当該室45にPBS液が満たされると毛細管現象が発現しなくなり、PBS液はそれ以上溶液供給孔24から吸引されなくなって、送液が停止する。尚、PBS液を溶液供給孔24に供給する量は、このように送液が停止した状態で、溶液供給孔24に溶液が僅かに残留する程度に予め設定される。
 次いで、フローセル41の溶液供給孔24に、参照溶液を供給する。そして、溶液供給孔24に参照溶液を貯留した状態で、他方側の幅方向内方に配置される封止部材52bの先端部分を傾倒する。そして、その基端部分を凹部46から分離させ、当該基端部分で封止していた凹部46を外気に開口させる。
 凹部46を開口すると、封止部材52bが開口した当該凹部46に対応する室45が残留するPBS液及び後続の参照溶液に濡れることによる毛細管現象により参照溶液を吸引し始める。これにより、流路30に対面する金属薄膜31に参照溶液を連続的に流す。この状態で、参照溶液の1回目の測定を行う。
 そして、この室45に参照溶液が満たされると毛細管現象が発現しなくなり、参照溶液はそれ以上溶液供給孔24から吸引されなくなって、送液が停止する。尚、参照溶液を溶液供給孔24に供給する量は、このように送液が停止した状態で、溶液供給孔24に溶液が僅かに残留している程度に予め設定される。
 次いで、フローセル41の溶液供給孔24に、試料溶液を供給する。そして、溶液供給孔24に試料溶液を貯留した状態で、封止部材52aの一方側に隣り合う封止部材52cの先端部分を傾倒するとともにその基端部分を凹部46から分離させ、当該基端部分で封止していた凹部46を外気に開口させる。
 凹部46を開口すると、封止部材52cが開口した当該凹部46に対応する室45が残留する参照溶液及び後続の試料溶液に濡れることによる毛細管現象により試料溶液を吸引し始める。これにより、流路30に対面する金属薄膜31に試料溶液を連続的に流す。この状態で、試料溶液の測定を行う。
 そして、この室45に試料溶液が満たされると毛細管現象が発現しなくなり、試料溶液はそれ以上溶液供給孔24から吸引されなくなって、送液が停止する。尚、試料溶液を溶液供給孔24に供給する量は、このように送液が停止した状態で、溶液供給孔24に溶液が僅かに残留している程度に予め設定される。
 次いで、フローセル41の溶液供給孔24に、2回目の参照溶液を供給する。溶液供給孔24に参照溶液を貯留した状態で、封止部材52bの他方側に隣り合う封止部材52dの先端部分を傾倒するとともにその基端部分を凹部46から分離させる。これにより、当該基端部分で封止していた凹部46を外気に開口させる。
 凹部46を開口すると、封止部材52dが開口した当該凹部46に対応する室45が残留する試料溶液及び後続の参照溶液に濡れることによる毛細管現象により参照溶液を吸引し始める。これにより、流路30に対面する金属薄膜31に参照溶液を連続的に流す。この状態で、参照溶液の2回目の測定を行う。
 そして、この室45に参照溶液が満たされると毛細管現象が発現しなくなり、参照溶液はそれ以上溶液供給孔24から吸引されなくなって、送液が停止する。
 そして、参照溶液の1回目及び2回目の測定結果を用いて、試料溶液の測定結果を求める。
 ここで、さらに封止部材52e,52fを用いて、3回目及び4回目の参照溶液を金属薄膜31に流して夫々測定を行ってもよい。1回目~4回目の参照溶液の測定結果を用いて、試料溶液の測定結果を求めれば、より精度の高い測定が行える。
 以上説明したように、第3の実施形態のフローセル41によれば、封止部材52が略丸棒状の樹脂材料等からなり、その基端部分が凹部46を塞いで封止している。そして、封止部材52の先端部分を傾倒すると、傾倒に伴って基端部分が凹部46から分離するように当該凹部46を開口させる。すなわち、封止部材52の先端部分を傾倒するのみで凹部46を開封することができるので、作業性に優れている。
 尚、本発明は前述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、開口部6,26及び凹部46を開口する順序は、第1~第3の実施形態に限定されるものではなく、作業者の作業性等を鑑み適宜変更して構わない。
 また、開口部6,26及び凹部46の形状、数量及び配置は種々測定に合わせ適宜設定することとしてよい。
 また本実施形態では、封止部材12,32が開口部6,26に貼着された粘着テープであり、封止部材52が凹部46を塞ぐ樹脂材料等であることとして説明した。しかし、封止した開口部6,26及び凹部46を外気に開放するように開封可能な構成であればよく、これらに限定されるものではない。例えば、SPR測定装置100にフローセル1,21,41を搭載した状態で、これら開口部6,26及び凹部46を当該SPR測定装置100に予め設置した可動アーム等やクランプ板等からなる封止部材により機械的に塞ぎ、各溶液の送液のタイミングに合わせて順次開封することとしても構わない。
 また本実施形態では、貫通孔5、室25,45及び柱状部材27,47が各溶液を吸引して流路9,30に導く移送部であることとして説明した。しかし、これらに限定されるものではなく、例えば毛細管現象を発現して各溶液を吸引する流路や空洞等で構成されていてもよい。
 また、貫通孔5、室25,45及び柱状部材27,47の形状、数量及び配列は本実施形態に限定されるものではない。
 また本実施形態では、フローセルをSPR測定装置100に用いることとして説明したが、試料溶液を流し測定するそれ以外の装置にも適用することができる。すなわち、例えばマイクロTAS、Lab on a chip、マイクロコンビナトリアルケミストリ、化学IC、化学センサ、バイオセンサ、微量分析、電気化学分析、クロマトグラフィー、QCM測定、ATR測定等、試料溶液をハンドリングする分野において適用可能である。
 次に、本発明の第4の実施形態について説明する。
 図11は本発明の第4の実施形態に係るフローセルを用いたSPR測定装置の概略構成を示す説明図である。図12はSPR測定装置で測定された検出部の反射率と反射角度との関係を説明する特性図である。図13は本発明の第4の実施形態に係るフローセルの概略構成を示す分解斜視図である。図14は本発明の第4の実施形態に係るフローセルの概略構成を示す平面図である。図15は図14のA2-A2矢視を示す側断面図である。図16は図14のB2-B2矢視を示す側断面図である。図17は本発明の第4の実施形態に係るフローセルの参照溶液が検出部に送液される前の平衡状態を説明する側断面図である。図18は本発明の第4の実施形態に係るフローセルの参照溶液が検出部に送液された後の平衡状態を説明する側断面図である。
 本実施形態のフローセル201は、測定対象の検体が接触した金属薄膜の表面におけるエバネッセント波と表面プラズモン波との共鳴、所謂表面プラズモン共鳴(Surface Plasmon Resonance:SPR)現象を利用したSPR測定装置300に搭載して測定に用いられる。
 図11に示すように、このSPR測定装置300は、光源301が発する光を偏光子(不図示)により偏光してP偏光光(以下「入射光」とする)とする。そして、SPR測定装置300は、集光レンズ302で集光した帯状の入射光を半円柱状のプリズム303の曲面側に入射させる。そして、SPR測定装置300は、当該プリズム303の平面側の測定面303aに密着するフローセル201の後述する金属薄膜に照射する。そして、SPR測定装置300は、その反射光をCCDイメージセンサからなる受光部304で検出する。
 受光部304で検出した反射光の強度(光強度)を測定すると、図12に示すように、上記共鳴が起こる角度(共鳴角)で反射強度が減少するため、反射率の低い谷305が観測される。共鳴角は、金属薄膜に接する試料溶液の光学的な性質(屈折率)に依存する。そのため、金属薄膜上に抗体を固定し、当該抗体と抗原との結合による屈折率変化を測定することにより、特定物質の定量測定を行うことができる。
 図13~図16に示すように、SPR測定装置300に搭載するフローセル201は、略直方体状又は略矩形板状の外形をなし積層構造を有している。すなわち、フローセル201をSPR測定装置300に載置した状態で、下側に配置される略矩形板状の下部基板202と、下部基板202の上側に積層され平面視の外形が当該下部基板202と略同一に形成される上部基板203とを備えている。また、例えば下部基板202の板厚は1mm程度とされ、上部基板203の板厚は3mm程度とされている。
 上部基板203は、その平面視の幅方向(図13における左上-右下方向又は図14における左右方向)の略中央の一端側(図13における右上側又は図14における上側)に、測定する試料溶液及び参照溶液の各溶液を供給するための円柱孔状の溶液供給孔(供給部)204を備えている。参照溶液は、試料溶液に近似した性質からなり、かつ、測定する試料溶液の検体を含まない溶液である。溶液供給孔204は、上部基板203を板厚方向に貫通している。
 また上部基板203には、円柱孔状の複数の第1貫通孔(第1移送部)205及び第2貫通孔(第2移送部)206が設けられ、当該上部基板203を板厚方向に貫通している。複数の第2貫通孔206は、幅方向の一方側(図14における左側)と他方側(図14における右側)とに夫々平面視略矩形状に配列されている。これら第2貫通孔206は、溶液供給孔204に供給された試料溶液を吸引する毛細管の集合体である。これら第2貫通孔206は、夫々の第2貫通孔206が試料溶液に対し、濡れて試料溶液を吸引する毛細管現象を発現する範囲の内径に設定されている。これら第2貫通孔206は、その上端が外気に開口されるとともに下端が後述する吸引流路208に連通している。
 また、幅方向の略中央の他端側(図14における下側)には、複数の第1貫通孔205が幅方向に直交する向きに配列されている。これら第1貫通孔205は、溶液供給孔204に供給された参照溶液を吸引する毛細管の集合体である。これら第1貫通孔205は、夫々の第1貫通孔205が参照溶液に対し、濡れて参照溶液を吸引する毛細管現象を発現する範囲の内径に設定されている。これら第1貫通孔205は、その上端が外気に開口されるとともに下端が後述する流路209に連通している。
 また、下部基板202は2層から構成されており、その下側の層がガラスやアクリル樹脂等の光を透過する材料の下地基板202aからなり、上側の層が樹脂のフィルム等のスペーサ部202bからなる。
 スペーサ部202bには、厚み方向に貫通する開口部分が形成されている。この開口部分のうち、上部基板203の溶液供給孔204に対応する位置には、当該溶液供給孔204の内径と略同一の内径を有する円孔207が形成されている。また、スペーサ部202bには、上部基板203の幅方向の一方側と他方側とに夫々平面視略矩形状に配列する複数の第2貫通孔206の外形に対応するように略矩形孔状に形成された夫々の吸引流路208が設けられている。吸引流路208は、試料溶液が供給された際に、溶液がその上方の第2貫通孔206との間に空隙を形成しない程度の高さに設定され、例えば板厚方向の高さが10~100μm程度とされる。
 また、スペーサ部202bの幅方向の略中央には、幅方向に直交する向きに延在する流路209が形成されている。流路209は、その一端側の端部を円孔207に連通しており、他端側の端部を幅方向の一方側と他方側とに分岐して、夫々の吸引流路208に連通している。また、流路209の他端側の端部近傍の上方には、上部基板203の第1貫通孔205が配置される。
 また、流路209は、断面略矩形状をなし、例えばその延在方向に直交する断面寸法の幅方向が1mm程度、板厚方向(高さ)が10~100μm程度とされ、各溶液に対し毛細管現象を発現する範囲に設定される。
 また、このようにして、溶液供給孔204と第1貫通孔205とが円孔207及び流路209を介し互いに連通している。また、第1貫通孔205と第2貫通孔206とが流路209及び吸引流路208を介し互いに連通している。
 また、下地基板202aの上面の幅方向の略中央には、矩形状の金属薄膜(検出部)210が形成されている。金属薄膜210は、例えばAu(金)からなり、スペーサ部202bの流路209を流れる各溶液に対面して接触可能に配置される。また、金属薄膜210の上面には、複数の抗体(不図示)が流路209に沿うように配列されている。尚、本実施形態では金属薄膜210を、下地基板202aの上面のうち略中央の測定に用いられる領域に対応するように配置しているが、金属薄膜210は前記領域の範囲を超えて広く大きく形成されていても構わない。
 また、下地基板202aの幅方向の一方側及び他方側のスペーサ部202bの夫々の吸引流路208に対応する部分には、略矩形状の夫々の表面活性領域211が形成されている。表面活性領域211には表面加工が施されており、試料溶液に対する濡れ性が当該表面活性領域211以外の領域とは異なるように設定される。すなわち、表面活性領域211の表面加工を種々に設定して、試料溶液の吸引状態や流速を変化させ制御する。
 また、上部基板203の上面には、溶液供給孔204に嵌合するアンプル(貯留部)212が配設されている。アンプル212は、参照溶液を内部に貯留可能な密閉容器状の液封部材であり、略多段円柱状の本体部212aと、本体部212aの上面側に連通する略切頭円錐状の突起部212bとからなる。また、本体部212aの下端部分は外径が若干小さく形成されており、溶液供給孔204の内径と略同一寸法とされ、下方へ向け開口されている。また、突起部212bの本体部212aに接続する基端部分は外径が若干小さく形成されている。当該突起部212bの先端部分を傾倒することで、この基端部分が本体部212aの上面から離反するように分離され、本体部212aを開封可能としている。
 そして、フローセル201を製造する際、図17に示すように、アンプル212の本体部212aの内部及び溶液供給孔204に予め参照溶液を後述する所定の量貯留しておく。貯留した参照溶液は、その下端が流路209の一端側に留まる。アンプル212の突起部212bが本体部212aから分離され当該本体部212aが開封されるまでは、流路209の金属薄膜210に送液されることなく、図17に示す状態を保つ。
 次いで、このように構成されたフローセル201を用いてSPR測定装置300で試料溶液を測定する手順について説明する。
 まず、SPR測定装置300のプリズム303の測定面303aにマッチングオイル等を介しフローセル201を載置する。このようにフローセル201を載置した状態で、光源301から当該フローセル201の金属薄膜210に入射光を照射し、反射した反射光を受光部304で受光して屈折率の変化を測定可能な状態としておく。
 次いで、図18に示すように、載置したフローセル201の溶液供給孔204のアンプル212の突起部212bを傾倒して本体部212aから分離させ、本体部212aを開封する。このように本体部212aが開封されると、溶液供給孔204が外気を吸引するように貯留した参照溶液を流路209に送液する。すなわち、溶液供給孔204に連通する流路209が毛細管現象を発現するのに伴って参照溶液が流路209に導かれる。次いで流路209の他端側の端部近傍に配置された第1貫通孔205が参照溶液に濡れることによる毛細管現象により吸引されて、連続的に金属薄膜210に送液される。この状態で、参照溶液の測定を行う。
 そして、参照溶液を吸引する力が図18に示すように平衡すると、参照溶液の送液が停止する。送液が停止した状態で、参照溶液は溶液供給孔204の底部に僅かに残留するとともに、第1貫通孔205の上端の開口まで達しないようになっている。すなわち、予めアンプル212に貯留される参照溶液の量は、図18に示す送液後の平衡状態で、溶液供給孔204に僅かに残留する程度に設定されている。
 次いで、フローセル201の溶液供給孔204に、試料溶液を供給する。試料溶液が供給されると、既に流路209に送液された参照溶液が第1貫通孔205が再び毛細管現象を発現するのに伴って吸引されるとともに、試料溶液が流路209に導かれる。そして、これら第1貫通孔205に溶液が満たされると当該第1貫通孔205の毛細管現象が発現しなくなる。次いで当該第1貫通孔205に連通する第2貫通孔206が残留する参照溶液及び後続の試料溶液に濡れることによる毛細管現象により試料溶液を吸引して流路209に導き、連続的に金属薄膜210に送液する。この状態で、試料溶液の測定を行う。
 以上説明したように、第4の実施形態のフローセル201によれば、アンプル212が、溶液供給孔204に参照溶液を貯留させるように当該溶液供給孔204に連通して設けられる。このアンプル212の本体部212aの上面が開封されることにより、開封部分から外気を吸引するとともに貯留した参照溶液を流路209の金属薄膜210に流すようになっている。よって、測定時に、作業者が外部からフローセル201に参照溶液を都度供給する必要がなく、アンプル212を開封する簡便な作業のみで、貯留した参照溶液を金属薄膜210に送液できる。
 よって、従来のように、例えば複数のシリンジポンプ、リキッドスイッチ及びチューブ等を用いて、参照溶液と試料溶液とを各々フローセル201に供給するような複雑な装置の構成が必要なく、設備費用が低減できる。また、これらシリンジポンプ、リキッドスイッチ及びチューブ等を測定毎に交換したり、洗浄・乾燥したりするような面倒な手間がなく、作業性が向上する。
 また、参照溶液を送液する量は、予め溶液供給孔204に貯留された所定の量に設定されているので、従来のように、作業者がフローセル201に供給する参照溶液の量を測定毎に都度調整するような面倒な手間がない。また、溶液供給孔204に貯留される参照溶液の量が、送液の停止した平衡状態で、溶液供給孔204に一部が残留するように設定されている。よって、参照溶液に続けて試料溶液を供給するにあたり、従来のような下記問題が生じない。
 すなわち、従来、作業者が、溶液供給孔204に残存する参照溶液の減少量を気にしながら受動的に作業を行い、参照溶液が溶液供給孔204から全て移送されてしまった後の空の状態で試料溶液を溶液供給孔204へと供給していた。そのため、流路209を流れる互いの溶液同士の間に空隙が形成され、所謂インジェクションショックと呼ばれる測定結果の大きな変化が生じていた。そのため、参照溶液の測定結果と試料溶液の測定結果との微量な変化量の比較ができなかった。本実施形態では、このような問題を解決することができる。
 すなわち、参照溶液を送液した作業者は、次の試料溶液を作業に合わせフローセル201に供給し、能動的に送液することができるので、作業者に熟練を要さず、作業が簡便に行えるとともに、測定の精度が充分に確保される。
 また、例えば複数の測定装置を用い、複数のフローセル201で並行して測定を行うような場合であっても、作業者が作業に合わせて簡便に送液を行えるので、作業に間違いが生じない。また、作業に合わせ送液のタイミングを調整できるので、試料溶液の測定の直前に参照溶液を流し測定することができ、流路209の金属薄膜210が参照溶液に長時間晒されるようなことがなく、測定の精度がより高められている。すなわち、例えばフローセル201の流路209に予め参照溶液を貯留して保管しておく。このフローセル201を用いて、まず参照溶液の測定を行った後、当該フローセル201に試料溶液を供給して試料溶液の測定を行うこととした場合には、流路209に対面する金属薄膜210が長期に亘り参照溶液に晒されることとなる。そのため、金属薄膜210上の抗体の活性が低下して測定精度に影響を及ぼしてしまうことが考えられる。しかし、本実施形態では、測定の直前に参照溶液が流路209の金属薄膜210に送液されるので、測定の精度が充分に確保されている。
 次に、本発明の第5の実施形態について、図19~図22を参照しながら説明する。
 図19は本発明の第5の実施形態に係るフローセルの概略構成を示す分解斜視図である。図20は本発明の第5の実施形態に係るフローセルの概略構成を示す平面図である。図21は本発明の第5の実施形態に係るフローセルの参照溶液が検出部に送液される前の平衡状態を説明する側断面図である。図22は本発明の第5の実施形態に係るフローセルの参照溶液が検出部に送液された後の平衡状態を説明する側断面図である。
 尚、前述の第4の実施形態と同一部材には同一の符号を付し、その説明を省略する。
 図19及び図20に示すように、第5の実施形態のフローセル221の上部基板203の上面には、溶液供給孔204の内径より大径の略円形状の粘着テープからなるシート状の供給部封止部材(貯留部)222が、当該溶液供給孔204の開口を封止するように貼着している。供給部封止部材222は、上部基板203から剥離されて、溶液供給孔204を開封可能としている。
 そして、フローセル221を製造する際、図21に示すように、溶液供給孔204の内部に予め参照溶液を所定の量だけ貯留した状態で供給部封止部材222を当該溶液供給孔204の開口を封止するように貼着する。すると、貯留した参照溶液は流路209の一端側に留まり、図21に示す状態を保つ。すなわち、参照溶液は、供給部封止部材222が上部基板203から剥離され溶液供給孔204が開封されるまでは、流路209の金属薄膜210に送液されない。
 次いで、このように構成されたフローセル221を用いてSPR測定装置300で試料溶液を測定するには、以下の処理を行う。まず、SPR測定装置300のプリズム303の測定面303aにマッチングオイル等を介しフローセル221を載置した状態で、光源301から当該フローセル221の金属薄膜210に入射光を照射する。そして、反射した反射光を受光部304で受光して屈折率の変化を測定可能な状態としておく。
 次いで、図22に示すように、載置したフローセル221の溶液供給孔204の供給部封止部材222を剥離して、溶液供給孔204を開封する。このように溶液供給孔204が開封されると、第1貫通孔205が参照溶液を吸い上げる。そして、当該溶液供給孔204が外気を吸引するように貯留した参照溶液を流路209の金属薄膜210に送液する。この状態で、参照溶液の測定を行う。
 そして、参照溶液を吸引する力が図22に示すように平衡すると、参照溶液の送液が停止する。送液が停止した状態で、参照溶液は溶液供給孔204の底部に僅かに残留するように設定される。
 次いで、フローセル221の溶液供給孔204に、試料溶液を供給する。供給された試料溶液は、流路209に導かれ、連続的に金属薄膜210に送液される。この状態で、試料溶液の測定を行う。
 以上説明したように、第5の実施形態のフローセル221によれば、参照溶液を貯留した溶液供給孔204の開口が供給部封止部材222により封止されている。そして、作業に合わせ供給部封止部材222を溶液供給孔204から剥離して開封すれば、溶液供給孔204が開封部分から外気を吸引するように貯留した参照溶液を流路209の金属薄膜210に送液する。よって、簡便な構成で容易に送液を行うことができ、製作費用を低減することができる。
 次に、本発明の第6の実施形態について、図23~図26を参照しながら説明する。
 図23は本発明の第6の実施形態に係るフローセルの概略構成を示す分解斜視図である。図24は本発明の第6の実施形態に係るフローセルの概略構成を示す平面図である。図25は本発明の第6の実施形態に係るフローセルの参照溶液が検出部に送液される前の平衡状態を説明する側断面図である。図26は本発明の第6の実施形態に係るフローセルの参照溶液が検出部に送液された後の平衡状態を説明する側断面図である。
 尚、前述の第4、第5の実施形態と同一部材には同一の符号を付し、その説明を省略する。
 図23及び図24に示すように、第6の実施形態のフローセル231の上部基板203の上面には、略矩形状の粘着テープからなる第1封止部材(貯留部)232が、第1貫通孔205の開口を封止するように貼着している。そして、第1封止部材232が上部基板203から剥離されることで、第1貫通孔205が開封可能とされている。
 また、上部基板203の上面には、略矩形状の粘着テープからなる一対の第2封止部材(貯留部)233が、幅方向の一方側(図24における左側)に略矩形状に配列する第2貫通孔206の外形に対応する部分と他方側(図24における右側)に略矩形状に配列する第2貫通孔206の外形に対応する部分とを覆うように夫々貼着され、これら第2貫通孔206の開口を封止している。そして、これら第2封止部材233が上部基板203から剥離されることで、夫々の第2貫通孔206が開封可能とされている。
 そして、フローセル231を製造する際、図25に示すように、第1貫通孔205の上端の開口に第1封止部材232を貼着して当該第1貫通孔205を封止し、さらに幅方向の一方側の第2貫通孔206の開口及び他方側の第2貫通孔206の開口に、それぞれの第2封止部材233を粘着して、これら第2貫通孔206を封止する。この状態で、溶液供給口204の内部に参照溶液を所定の量貯留する。すると、溶液供給孔204に貯留した参照溶液は流路209の一端側に留まり、図25に示す状態を保つ。
 次いで、このように構成されたフローセル231を用いてSPR測定装置300で試料溶液を測定する。まず、SPR測定装置300のプリズム303の測定面303aにマッチングオイル等を介しフローセル231を載置した状態で、光源301から当該フローセル231の金属薄膜210に入射光を照射する。そして、反射した反射光を受光部304で受光して屈折率の変化を測定可能な状態としておく。
 次いで、図26に示すように、載置したフローセル231の第1貫通孔205の第1封止部材232を剥離して、第1貫通孔205を開封する。第1貫通孔205が開封されると、第1貫通孔205が参照溶液を吸い上げる。そして、溶液供給孔204が外気を吸引するように貯留した参照溶液を流路209の金属薄膜210に送液する。この状態で、参照溶液の測定を行う。
 そして、参照溶液を吸引する力が図26に示すように平衡すると、参照溶液の送液が停止する。送液が停止した状態で、参照溶液は溶液供給孔204の底部に僅かに残留するように設定される。
 次いで、フローセル231の溶液供給孔204に、試料溶液を供給する。供給された試料溶液は、溶液供給孔204に貯留された状態で流路209の一端側に留まり送液されずに平衡状態となる。次いで、第2封止部材233を剥離して第2貫通孔206を開封すると、溶液供給孔204に貯留した試料溶液が流路209に導かれるように、連続的に金属薄膜210に送液される。この状態で、試料溶液の測定を行う。
 以上説明したように、第6の実施形態のフローセル221によれば、溶液供給孔204に参照溶液を貯留した状態で、第1封止部材232が第1貫通孔205の開口を封止するように貼着されている。そして、作業に合わせ第1封止部材232を第1貫通孔205から剥離して当該第1貫通孔205を開封すれば、溶液供給孔204が外気を吸引するように貯留した参照溶液を流路209の金属薄膜210に送液する。よって、簡便な構成で容易に送液を行うことができ、製作費用を低減することができる。
 また、第2貫通孔206の開口が、第2封止部材233により封止されている。よって、溶液供給孔204に供給された試料溶液は、第2封止部材233を第2貫通孔206から剥離して開封するまでは流路209に送液されずに溶液供給孔204に貯留された状態とされる。すなわち、第2封止部材233を第2貫通孔206から剥離して開封することで、溶液供給孔204が外気を吸引するように貯留した試料溶液を流路209の金属薄膜210に送液するようになっている。よって、簡便な構成で試料溶液を送液するタイミングを能動的に制御でき、作業性が向上する。
 尚、本発明は前述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、第4の実施形態では貯留部の液封部材としてアンプル212を用いて説明したが、参照溶液を溶液供給孔204に貯留でき、かつ、溶液供給孔204を開封可能な構成であればよい。なお、これに限定されることはなく、それ以外のマイクロカプセルや密閉容器等を用いることとしても構わない。
 また、第6の実施形態で説明した第2封止部材233を、第4、第5の実施形態に用い、第2貫通孔206を開封可能に封止する構成としてもよい。この場合、第4、第5の実施形態においても、試料溶液の送液のタイミングを作業者が作業に合わせ能動的に制御できるので、測定精度が高められ、作業性が向上する。
 また、第4~第6の実施形態では、参照溶液の測定と試料溶液の測定とを夫々1回ずつ行うこととして説明した。しかし、これに限らず、試料溶液の測定の後、溶液供給孔204に2回目の参照溶液を供給して測定を行い、参照溶液の1回目及び2回目の測定結果を用いて、試料溶液の測定結果を求めてもよい。また、参照溶液の測定を3回以上行い、参照溶液のこれら測定結果を用いて、試料溶液の測定結果を求めてもよい。
 また本実施形態では、第1貫通孔205を第1移送部として、第2貫通孔206を第2移送部として夫々説明したが、これらに限定されるものではない。例えば、これら第1移送部及び第2移送部は、例えば毛細管現象を発現して各溶液を吸引する流路や空洞等で構成されていても構わない。
 また、第1貫通孔205、第2貫通孔206の形状、数量及び配列は、本実施形態に限定されるものではなく、要望・用途に合わせ種々様々に設定することが可能である。
 また本実施形態では、フローセルをSPR測定装置300に用いることとして説明したが、試料溶液を流し測定するそれ以外の装置にも適用することができる。すなわち、例えばマイクロTAS、Lab on a chip、マイクロコンビナトリアルケミストリ、化学IC、化学センサ、バイオセンサ、微量分析、電気化学分析、クロマトグラフィー、QCM測定、ATR測定等、試料溶液をハンドリングする分野において適用可能である。
 次に、本発明の第7の実施形態について説明する。第7の実施形態が、第1の実施形態と同様の部分については、それらの説明を省略する。
 第7の実施形態によるフローセルは、第1の実施形態の流路9の代わりに、流路9aが設けられている。第7の実施形態の流路9aは、第1の実施形態の流路9(図4)と同様に、円孔7が設けられている領域から、貫通孔5が設けられている領域まで、直線状に形成されている。
 図27は、本発明の第7の実施形態による流路9aの金属薄膜10が設けられていない領域(図4の領域Z1に相当)の平面図である。図27に示す流路9aは、幅がy1である。
 図28は、本発明の第7の実施形態による流路9aの金属薄膜10が設けられている領域(図4の領域Z2に相当)の平面図である。図28に示す流路9bは、両端における幅がy1であり、中央における幅がy2である。y2はy1よりも小さい。つまり、流路9aの幅は、両端から中央に向かうにつれて、狭くなっている。
 図28の流路9aの中央付近には、抗体91、92、93がアレイ状に配置されている。流路9a内を流れる液体は、抗体91、92、93上を通過する。
 図29に示すような、円管における毛細管力F1は、以下の式(1)で表される。なお、この円管の断面は、半径がrの円である。また、表面張力をγとし、接触角をθとする。
 F1=-2γcosθ/r ・・・ (1)
 つまり、図29の円管に働く毛細管力F1は、円管の断面の半径rに反比例する。
 また、図30に示すような、矩形管における毛細管力F2は、以下の式(2)で表される。なお、この矩形管の横幅はwであり、高さはdである。また、上面での接触角をθとし、下面での接触角をθとし、左面での接触角をθとし、右面での接触角をθとする。
 F2=-γ(cosθ/d+cosθ/d+cosθ/w+cosθ/w) ・・・ (2)
 つまり、図30の矩形管に働く毛細管力F2は、矩形管の断面の横幅wと高さdとに反比例する。
 つまり、第7の実施形態において、金属薄膜10が設けられている領域の流路9a(図28)を通過する液体に対しては、流路9aの両端よりも、中央の方が大きな毛細管力が働く。つまり、細い管ほど毛細管力は強くなるため、毛細管を流れる液体は狭いところに集まる方が、安定である。このため、金属薄膜10が設けられている領域の流路9aを通過する参照溶液などの液体は、流路9aの中央付近に集まる特性を有する。
 第1の実施形態で説明したように、金属薄膜10が設けられている領域の流路で、参照溶液等の測定が行われる。第7の実施形態では、金属薄膜10が設けられている領域の流路9aの形状を、図28に示す構造としている。つまり、金属薄膜10(検出部)が設けられている領域Z2の流路9aの断面積(図28参照)は、金属薄膜10が設けられていない領域Z1の流路9aの断面積(図27)よりも小さい。また、金属薄膜10が設けられている領域Z2の流路9aの中央における幅が、両端における幅よりも狭い。
 そのため、参照溶液を流した後、時間が経過し、徐々に参照溶液が蒸発する過程であっても、金属薄膜10が設けられている領域Z2に参照溶液が最後まで残る。このため、抗体が大気に曝露されることを防ぎ、乾燥による抗体の活性低下を避けることができる。
 なお、第7の実施形態では、第1の実施形態の流路9の形状を変えた場合について説明したが、これに限定されるものではない。例えば、その他の実施形態の流路の断面の形状を、第7の実施形態による流路9aの構造としてもよい。
 また、金属薄膜10が設けられている領域の流路の形状は、図28の形状に限定されるものではない。金属薄膜10が設けられている領域の流路9aの中央における幅が、両端における幅よりも狭ければよい。例えば、金属薄膜10が設けられている領域の流路9aの幅が、両端から中央に向かうに従って、直線的に狭くなるような形状を用いてもよい。
 なお、上述した第1~第6の実施形態において、第7の実施形態の流路9aの構造を用いなくても、第7の実施形態と同様の効果を得ることはできる。その理由を、第6の実施形態で説明した図26を参照して説明する。つまり、金属薄膜10が設けられている領域の流路9の断面積は、溶液供給孔204の開口部の断面積や、第1貫通孔205の開口部の断面積のいずれよりも小さい。そのため、液体は、金属薄膜10が設けられている領域の流路9に集中する。よって、第7の実施形態と同様に、インジェクションショックの発生を防ぐことができるとともに、抗体が乾燥することを防ぐことができる。
 次に、本発明の第8の実施形態について説明する。第7の実施形態が、第1の実施形態と同様の部分については、それらの説明を省略する。
 第1の実施形態では、図4に示すように、複数の開口部6を、粘着テープからなる複数の封止部材12で封止し、フローセル1の使用時に、利用者が、開口部6から封止部材12を除去する場合について説明した。
 図31及び図32は、本発明の第8の実施形態によるフローセルの構造を示す模式図である。第8の実施形態では、外部装置400を用いる。外部装置400は、上下動が可能なパッド120a、120b(封止部材)を備える。
 パッド120aは、フローセルの領域R11に形成されている貫通孔5aの開口部を封止する。また、パッド120bは、フローセルの領域R11とは異なる領域R12に形成されている貫通孔5bの開口部を封止する。パッド120a、120bは、外部装置400の制御に基づいて、フローセルの貫通孔5a、5bの深さ方向と平行な方向に、それぞれ独立して、上下動させることができる。
 第8の実施形態によるフローセルの使用前は、図31に示すように、パッド120a、120bによって、領域R11、R12に形成された貫通孔5a、5bの開口部が、ともに封止されている。
 フローセルの使用者が、領域R11に形成された貫通孔5aの開口部を開口させる指示を、駆動機構(図示省略)に対して与えることにより、貫通孔5aを封止していたパッド120aが、貫通孔5aから離れる。これにより、円孔7から供給される液体が、流路9、貫通孔5aを通過し、貫通孔5aの開口部から、フローセルの外部に流出する。
 なお、ここでは、パッド120aを駆動することにより、貫通孔5aの開口部を、封止された状態から、開口された状態に変化させる場合について説明したが、これに限定されるものではない。例えば、パッド120aを駆動することにより、貫通孔5aの開口部を、開口された状態から、封止された状態に変化させてもよい。
 なお、ここでは、パッド120aを、封止状態とするか、開口状態とするかを、フローセルの使用者の指示に基づいて制御する場合について説明したが、これに限定されるものではない。例えば、所定時刻になった場合に、パッド120aの封止状態と開口状態とを切り替えてもよい。また、所定条件を満たした場合、例えば、フローセル中を流れる液体の流量が、所定量以下となった場合に、パッド120aの封止状態と開口状態とを切り替えてもよい。
 本発明は、試料溶液の送液のタイミングと送液の量とを作業に合わせ調整できるフローセル及び送液方法などに適用できる。
1,21,41・・・フローセル、
4,24・・・溶液供給孔(供給部)、
5・・・貫通孔(移送部)、
6,26・・・開口部、
9,30・・・流路、
10,31・・・金属薄膜(検出部)、
12,32,52・・・封止部材、
25,45・・・室(移送部)、
27,47・・・柱状部材(移送部)、
46・・・凹部(開口部)、
201,221,231・・・フローセル、
204・・・溶液供給孔(供給部)、
205・・・第1貫通孔(第1移送部)、
206・・・第2貫通孔(第2移送部)、
209・・・流路、
210・・・金属薄膜(検出部)、
212・・・アンプル(貯留部)、
222・・・供給部封止部材(貯留部)、
232・・・第1封止部材(貯留部)、
233・・・第2封止部材

Claims (16)

  1.  試料溶液が流れる流路と、
     前記流路に連通し前記試料溶液が供給される供給部と、
     一端側が前記流路に連通し、他端側が外気に開放される複数の開口部からなり、前記流路に連通し前記供給部に供給された前記試料溶液を吸引して当該流路に導く移送部と、
     前記流路の前記試料溶液に対面する検出部と、
     前記開口部又は前記供給部の少なくともいずれか一方を、開封可能に封止する封止部材と、
     を備えるフローセル。
  2.  請求項1に記載のフローセルであって、
     前記封止部材は、前記開口部又は前記供給部の少なくともいずれか一方に貼着され、剥離可能とされるフローセル。
  3.  請求項1に記載のフローセルであって、
     前記封止部材は、前記開口部を基端で塞ぐ棒状からなり、先端を傾倒して当該開口部を開口させるフローセル。
  4.  請求項1に記載のフローセルであって、
     前記移送部は、複数の貫通孔からなるフローセル。
  5.  請求項1に記載のフローセルであって、
     前記移送部は、一端が前記流路に連通し他端が前記開口部とされた複数の室と、前記室の内部に互いに間隙を設けて配列された複数の柱状部材とを備えるフローセル。
  6.  請求項1に記載のフローセルであって、
     前記試料溶液に近似した性質を有し測定の比較に用いられる前記参照溶液を、前記供給部に貯留させるとともに開封可能な貯留部を備え、
     前記移送部は、前記流路の他端側に連通し、前記供給部に貯留した前記参照溶液を吸引して前記流路に導く第1移送部を備え、
     前記貯留部の開封によって、貯留した前記参照溶液を前記流路の前記検出部に送液するフローセル。
  7.  請求項6に記載のフローセルであって、
     前記第1移送部に連通し、前記流路に送液された前記参照溶液を吸引するとともに、前記参照溶液に続いて前記供給部に供給される前記試料溶液を前記流路の前記検出部に送液する第2移送部が設けられるフローセル。
  8.  請求項6に記載のフローセルであって、
     前記供給部は、当該参照溶液が前記流路に送液され、この送液が停止した平衡状態で、前記供給部に一部が残留する量の前記参照溶液を貯留するフローセル。
  9.  請求項6に記載のフローセルであって、
     前記貯留部は、前記供給部に接続された密閉容器状の液封部材からなり、
     前記液封部材が開封されることで、前記供給部に貯留した前記参照溶液を前記検出部に送液するフローセル。
  10.  請求項6に記載のフローセルであって、
     前記貯留部は、前記供給部の開口を封止するシート状の供給部封止部材からなり、
     前記供給部封止部材が開封されることで、前記供給部に貯留した前記参照溶液を前記検出部に送液するフローセル。
  11.  請求項6に記載のフローセルであって、
     前記第1移送部は、一端を前記流路に連通し、他端を外気に開口する第1貫通孔からなり、
     前記貯留部は、前記第1貫通孔の開口を封止する第1封止部材からなり、
     前記第1封止部材が開封されることで、前記供給部に貯留した前記参照溶液を前記検出部に送液するフローセル。
  12.  請求項7に記載のフローセルであって、
     前記第2移送部は、一端を前記第1移送部に連通し、他端を外気に開口する第2貫通孔からなり、
     前記第2貫通孔の開口を封止する第2封止部材が設けられ、
     前記第2封止部材が開封されることで、前記供給部に供給された前記試料溶液を前記検出部に送液するフローセル。
  13.  請求項1に記載のフローセルであって、
     前記検出部が設けられている領域の前記流路の断面積は、前記検出部が設けられていない領域の前記流路の断面積よりも小さいフローセル。
  14.  請求項1に記載のフローセルであって、
     外部装置によって前記封止部材の開封状態が制御されるフローセル。
  15.  供給部に、試料溶液と前記試料溶液に近似した性質を有し測定の比較に用いられる参照溶液とを夫々供給し、流路を介して前記供給部に連通する移送部が、当該供給部の試料溶液と参照溶液とを夫々吸引して前記流路に導き、前記流路に対面する検出部に送液するフローセルの送液方法であって、
     前記参照溶液を前記供給部に供給し、前記移送部の複数の開口部を封止する前記封止部材のうち一部を開封することで、前記参照溶液を吸引し前記検出部に流す工程と、
     前記試料溶液を前記供給部に供給し、前記封止部材のうち前記一部とは異なる部分を開封することで、当該試料溶液を吸引し前記検出部に流す工程と、
     を備えるフローセルの送液方法。
  16.  流路の一端側に連通する供給部に、試料溶液に近似した性質を有する参照溶液と前記試料溶液とを順次供給して前記流路に導き、前記流路に対面する検出部に送液するフローセルの送液方法であって、
     前記供給部に前記参照溶液を貯留させるための貯留部を開封することで、前記流路の他端側に連通する第1移送部に前記参照溶液を吸引させ前記流路の前記検出部に送液する工程と、
     前記供給部に前記試料溶液を供給する工程と、
     前記第1移送部に連通する第2移送部で前記流路に送液された前記参照溶液を吸引するとともに、前記供給部の前記試料溶液を前記流路の前記検出部に送液する工程と、
     を備えるフローセルの送液方法。
PCT/JP2009/059577 2008-05-29 2009-05-26 フローセル及び送液方法 WO2009145172A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010514482A JPWO2009145172A1 (ja) 2008-05-29 2009-05-26 フローセル及び送液方法
US12/993,298 US8663560B2 (en) 2008-05-29 2009-05-26 Flow cell and liquid delivery method
EP09754680.8A EP2282190B1 (en) 2008-05-29 2009-05-26 Flow cell and liquid delivery method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008141463 2008-05-29
JP2008141464 2008-05-29
JP2008-141463 2008-05-29
JP2008-141464 2008-05-29

Publications (1)

Publication Number Publication Date
WO2009145172A1 true WO2009145172A1 (ja) 2009-12-03

Family

ID=41377045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059577 WO2009145172A1 (ja) 2008-05-29 2009-05-26 フローセル及び送液方法

Country Status (4)

Country Link
US (1) US8663560B2 (ja)
EP (1) EP2282190B1 (ja)
JP (1) JPWO2009145172A1 (ja)
WO (1) WO2009145172A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172992A1 (ja) * 2011-06-14 2012-12-20 コニカミノルタホールディングス株式会社 検体検出装置に用いられるセンサーチップおよびセンサーチップを用いた検体検出装置
JP2013002928A (ja) * 2011-06-15 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> フローセルおよびフローセルの送液方法
JP2014508306A (ja) * 2011-03-15 2014-04-03 カルクロ テクニカル プラスチックス リミテッド 試料測定
JP2014098700A (ja) * 2012-11-15 2014-05-29 Ortho Clinical Diagnostics Inc 流れモニタリングに基づく、側方流動アッセイ装置の品質/プロセス制御
US9945773B2 (en) 2014-02-05 2018-04-17 Nippon Telegraph And Telephone Corporation Flow cell and liquid feed system
WO2018180357A1 (ja) * 2017-03-31 2018-10-04 株式会社エンプラス 液体取扱装置
WO2019045118A1 (ja) * 2017-09-04 2019-03-07 国立研究開発法人産業技術総合研究所 液体包装容器及び液体吐出装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894946B2 (en) * 2011-10-21 2014-11-25 Integenx Inc. Sample preparation, processing and analysis systems
US9410893B2 (en) * 2013-11-22 2016-08-09 Taiwan Semiconductor Manufacturing Company, Ltd. Bio-chip package with waveguide integrated spectrometer
EP3271127B1 (en) * 2015-03-17 2020-11-18 President and Fellows of Harvard College Method for automated membrane fabrication
WO2019077499A1 (en) * 2017-10-16 2019-04-25 The Royal Institution For The Advancement Of Learning/Mcgill University CELL AND MINIATURIZED FLOW SYSTEM FOR SINGLE MOLECULE NANOCONFINEMENT AND IMAGING
KR102079262B1 (ko) * 2018-03-13 2020-02-19 한국과학기술연구원 단백질 구조 변화 관찰 시스템
JP2021527821A (ja) 2018-06-19 2021-10-14 アバイルズ メディカル,インコーポレイテッド 微生物を含むサンプルの溶液特性を測定するためのデバイス、システムおよび方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148187A (ja) 2000-11-08 2002-05-22 Nippon Telegr & Teleph Corp <Ntt> 光導波路型spr現象計測チップ、その製造方法およびspr現象計測方法
WO2003093836A1 (en) * 2002-04-30 2003-11-13 Arkray, Inc. Analysis instrument, sample analysis method and analysis device using the instrument, and method of forming opening in the instrument
WO2004051228A1 (ja) * 2002-11-29 2004-06-17 Nec Corporation マイクロチップならびにこれを用いた送液方法、質量分析システム
JP2004170408A (ja) * 2002-11-14 2004-06-17 Steag Microparts Gmbh 毛細管現象により発生する力を利用して液体を段階的に移送するための装置
JP2004286501A (ja) * 2003-03-20 2004-10-14 Enplas Corp 微小流体取扱装置
WO2005024437A1 (ja) * 2003-09-05 2005-03-17 Nec Corporation 測定システム
JP2006078364A (ja) * 2004-09-10 2006-03-23 Ntt Advanced Technology Corp 表面プラズモン測定装置および測定方法
JP2006337221A (ja) * 2005-06-03 2006-12-14 Sharp Corp 電気化学検出装置
JP2008141464A (ja) 2006-12-01 2008-06-19 Fuji Xerox Co Ltd 画像処理装置と画像形成システムおよびプログラム
JP2008141463A (ja) 2006-12-01 2008-06-19 Pioneer Electronic Corp オンスクリーン表示装置及びテレビジョン受像機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763678A (ja) 1993-08-31 1995-03-10 Olympus Optical Co Ltd 流体濃度測定用検出器
US7214298B2 (en) * 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
JPH11160229A (ja) 1997-12-01 1999-06-18 Dainippon Screen Mfg Co Ltd 濃度測定用セル
US20030175980A1 (en) * 2002-03-14 2003-09-18 Hayenga Jon W. Ribbon flow cytometry and cell sorting
US8003049B2 (en) 2004-09-30 2011-08-23 Arkray, Inc. Analyzer
US7355696B2 (en) * 2005-02-01 2008-04-08 Arryx, Inc Method and apparatus for sorting cells
SE531948C2 (sv) 2006-06-20 2009-09-15 Aamic Ab Analysanordning för vätskeprover innefattande filter i direkt kontakt med projektioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148187A (ja) 2000-11-08 2002-05-22 Nippon Telegr & Teleph Corp <Ntt> 光導波路型spr現象計測チップ、その製造方法およびspr現象計測方法
WO2003093836A1 (en) * 2002-04-30 2003-11-13 Arkray, Inc. Analysis instrument, sample analysis method and analysis device using the instrument, and method of forming opening in the instrument
JP2004170408A (ja) * 2002-11-14 2004-06-17 Steag Microparts Gmbh 毛細管現象により発生する力を利用して液体を段階的に移送するための装置
WO2004051228A1 (ja) * 2002-11-29 2004-06-17 Nec Corporation マイクロチップならびにこれを用いた送液方法、質量分析システム
JP2004286501A (ja) * 2003-03-20 2004-10-14 Enplas Corp 微小流体取扱装置
WO2005024437A1 (ja) * 2003-09-05 2005-03-17 Nec Corporation 測定システム
JP2006078364A (ja) * 2004-09-10 2006-03-23 Ntt Advanced Technology Corp 表面プラズモン測定装置および測定方法
JP2006337221A (ja) * 2005-06-03 2006-12-14 Sharp Corp 電気化学検出装置
JP2008141464A (ja) 2006-12-01 2008-06-19 Fuji Xerox Co Ltd 画像処理装置と画像形成システムおよびプログラム
JP2008141463A (ja) 2006-12-01 2008-06-19 Pioneer Electronic Corp オンスクリーン表示装置及びテレビジョン受像機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTIN ZIMMERMANN; HEINZ SCHMID; PATRICK HUNZIKER; EMMANUEL DELAMARCHE: "Capillary pumps for autonomous capillary systems", vol. 7, 2007, THE ROYAL SOCIETY OF CHEMISTRY, pages: 119 - 125
See also references of EP2282190A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352316B2 (en) 2011-03-15 2016-05-31 Carclo Technical Plastics Limited Capillary fluid flow control
JP2014508306A (ja) * 2011-03-15 2014-04-03 カルクロ テクニカル プラスチックス リミテッド 試料測定
JP2014514538A (ja) * 2011-03-15 2014-06-19 カルクロ テクニカル プラスチックス リミテッド 毛細管における液体流れ制御
WO2012172992A1 (ja) * 2011-06-14 2012-12-20 コニカミノルタホールディングス株式会社 検体検出装置に用いられるセンサーチップおよびセンサーチップを用いた検体検出装置
JPWO2012172992A1 (ja) * 2011-06-14 2015-02-23 コニカミノルタ株式会社 検体検出装置に用いられるセンサーチップおよびセンサーチップを用いた検体検出装置
US9080940B2 (en) 2011-06-14 2015-07-14 Konica Minolta, Inc. Sensor chip that is used in specimen material detection device and specimen material detection device using sensor chip
JP2013002928A (ja) * 2011-06-15 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> フローセルおよびフローセルの送液方法
JP2014098700A (ja) * 2012-11-15 2014-05-29 Ortho Clinical Diagnostics Inc 流れモニタリングに基づく、側方流動アッセイ装置の品質/プロセス制御
US10509031B2 (en) 2012-11-15 2019-12-17 Ortho-Clinical Diagnostics, Inc. Quality/process control of a lateral flow assay device based on flow monitoring
US9945773B2 (en) 2014-02-05 2018-04-17 Nippon Telegraph And Telephone Corporation Flow cell and liquid feed system
WO2018180357A1 (ja) * 2017-03-31 2018-10-04 株式会社エンプラス 液体取扱装置
JPWO2018180357A1 (ja) * 2017-03-31 2020-02-06 株式会社エンプラス 液体取扱装置
WO2019045118A1 (ja) * 2017-09-04 2019-03-07 国立研究開発法人産業技術総合研究所 液体包装容器及び液体吐出装置
JPWO2019045118A1 (ja) * 2017-09-04 2020-10-22 国立研究開発法人産業技術総合研究所 液体包装容器及び液体吐出装置

Also Published As

Publication number Publication date
US20110070655A1 (en) 2011-03-24
EP2282190A1 (en) 2011-02-09
EP2282190B1 (en) 2017-07-12
EP2282190A4 (en) 2011-10-19
US8663560B2 (en) 2014-03-04
JPWO2009145172A1 (ja) 2011-10-13

Similar Documents

Publication Publication Date Title
WO2009145172A1 (ja) フローセル及び送液方法
US8263025B2 (en) Flow cell
JP4987088B2 (ja) フローセル
CN101437616B (zh) 用于化学、生物化学、生物和物理分析、反应、测定等的装置和方法
US11940454B2 (en) Optical reader for analyte testing
KR20120013316A (ko) 분석물의 생물검정을 위한 일회용 마이크로유체 시험 카트리지
KR20090011557A (ko) 미세유로형 센서 복합 구조물
JP4811267B2 (ja) マイクロチップ及びそれを用いた分析デバイス
WO2009125998A2 (en) Micro-nano fluidic biochip for assaying biological sample
US20100317538A1 (en) Microanalysis measuring apparatus and microanalysis measuring method using the same
US9079179B2 (en) Microfluidic device comprising sensor
JP4683633B2 (ja) 液体の分析システムおよびカートリッジ
US20210055284A1 (en) Microchip immunoassay device having precise incubation time control and signal scaling and related methods
US8241589B2 (en) Flow cell
JP5177915B2 (ja) フローセル
JP5507991B2 (ja) アプリケータ
JP2014001980A (ja) 分析用器具、乾燥装置および分析装置
JP6950955B2 (ja) アッセイ装置
JP5483616B2 (ja) フローセルおよびフローセルの送液方法
KR20220157269A (ko) 다층구조의 면역반응 바이오칩 및 이를 이용한 면역반응 측정 장치
JP2009180707A (ja) フローセル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514482

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12993298

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009754680

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009754680

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE