WO2005024437A1 - 測定システム - Google Patents

測定システム Download PDF

Info

Publication number
WO2005024437A1
WO2005024437A1 PCT/JP2004/012958 JP2004012958W WO2005024437A1 WO 2005024437 A1 WO2005024437 A1 WO 2005024437A1 JP 2004012958 W JP2004012958 W JP 2004012958W WO 2005024437 A1 WO2005024437 A1 WO 2005024437A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
chip
unit
mobile terminal
sample
Prior art date
Application number
PCT/JP2004/012958
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Iida
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005513699A priority Critical patent/JPWO2005024437A1/ja
Priority to US10/570,312 priority patent/US20060292039A1/en
Publication of WO2005024437A1 publication Critical patent/WO2005024437A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6898Portable consumer electronic devices, e.g. music players, telephones, tablet computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0295Strip shaped analyte sensors for apparatus classified in A61B5/145 or A61B5/157
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N2001/021Correlating sampling sites with geographical information, e.g. GPS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a measurement system.
  • Patent Document 1 a health management support system that automatically collects biometric data at a health management center in a remote place.
  • a measurement target can transfer a measurement result obtained by a thermometer or a sphygmomanometer to a medical institution or the like by setting up a dedicated terminal at home.
  • this system had a relatively large device configuration.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-76791
  • the present invention has been made in view of the above circumstances, and has as its object to provide a technique that allows a user to check his / her health at a desired place without visiting an inspection organization. It is to provide. Another object of the present invention is to provide a technique that allows a user to easily check his / her health condition.
  • the measurement system has a portable mobile terminal
  • the mobile terminal has a communication function, and the user receives remote support via the mobile terminal.
  • the measurement chip and the mobile terminal can be carried safely and hygienically.
  • the part into which the biological sample is introduced and the measuring device are separated.
  • the biological sample is introduced only into the measurement chip, and the measuring device Don't touch it! / ⁇ ⁇ ⁇ It is effective to provide the mobile terminal and dispose of the measurement chip.
  • a mechanism that neutralizes the measurement chip may be required because if the measurement chip is not properly sterilized, it becomes unsuitable for hygiene and portability. .
  • a measurement system comprising: a chip; and a mobile terminal that performs measurement related to a specific component contained in the sample introduced into the measurement chip, wherein the mobile terminal includes an insertion unit into which the measurement chip is inserted;
  • a measurement system is provided, comprising: a measurement unit that measures a characteristic of the component guided to the detection unit; and a transmission unit that transmits a measurement result obtained by the measurement unit to the outside.
  • the measurement system of the present invention includes a mobile terminal having a measurement chip insertion section and a measurement unit. For this reason, the user of the measurement system can insert the measurement chip into the mobile terminal and measure a specific component in the sample at a desired place at a desired time. Yotsu Therefore, measurement can be easily performed on the spot using a measurement system having a simple device configuration without installing a large measuring device at home or visiting an inspection organization.
  • measurement is performed by inserting a predetermined portion of the measurement chip into the insertion section of the mobile terminal. That is, different functions can be given to the two members of the measurement chip that performs a predetermined process on the sample and the mobile terminal that measures the sample on the measurement chip. For this reason, it is possible to perform measurement without directly attaching the sample to the mobile terminal.
  • the mobile terminal and the measurement chip that constitute the measurement system can be designed separately, various effects can be obtained. That is, a plurality of measurement chips can be selected according to the type of measurement. In addition, the measuring chip can be in a disposable form.
  • the configuration of the measurement unit small and simple due to the demand for a small and lightweight mobile terminal.
  • the sample is a biological sample, etc., accurate measurement results may not be obtained if the collected sample is directly subjected to measurement.
  • the measurement unit of the mobile terminal has a minimum and simple configuration, and the predetermined processing required for measurement is performed in the measurement chip.
  • the predetermined processing required for measurement is performed in the measurement chip.
  • various processes can be performed on the sample before measurement. Therefore, the sample introduced into the measurement chip can be guided to the detection unit in a state suitable for measurement. Therefore, it is possible to simplify the device configuration of the mobile terminal, to reduce the size and weight of the mobile terminal, and to obtain a precise measurement result of the components in the sample.
  • the mobile terminal since the mobile terminal has the transmission unit, it is possible to easily transmit the measurement result to the outside and obtain the analysis result based on the measurement result from the outside. . For this reason, there is no need to provide an analysis function in the mobile terminal itself. Therefore, it is possible to obtain an accurate analysis result based on the measurement result while simplifying the device configuration of the mobile terminal.
  • the "measurement chip” refers to a substrate provided with a function of performing a predetermined operation on an introduced sample.
  • the chip in the present invention is, for example, a substrate surface
  • a flow channel is provided in the flow channel, and the liquid sample can flow through the flow channel to develop a predetermined reaction such as a color-forming reaction depending on the concentration of the specific component.
  • the liquid sample may be moved in the flow channel using capillary action or the like, or may be moved by applying an external force such as an electric field or pressure.
  • the predetermined operation may be, for example, dispensing of the sample. By doing so, it becomes possible to guide the sample in an amount suitable for measurement by the measurement unit to the detection unit.
  • the predetermined operation may be dilution of the sample. By diluting the sample, the sample introduced into the measurement chip can be guided to the detection unit at a concentration more suitable for measurement. Therefore, more accurate measurement results can be obtained.
  • a sample introduction unit and a detection unit communicating with the sample introduction unit, wherein a measurement introduced to the sample introduction unit is performed by applying a predetermined operation to the sample introduction unit.
  • a measurement system comprising: a chip; and a mobile terminal that performs measurement relating to a specific component contained in the sample introduced into the measurement chip, wherein the mobile terminal relates to a characteristic of the component guided to the detection unit.
  • a measurement system is provided, comprising: a measurement unit that performs measurement; and a transmission unit that transmits a measurement result obtained by the measurement unit to the outside.
  • the measurement chip and the mobile terminal can be separately designed. Further, according to the measurement system of the present invention, it is possible to measure by a contact method or a non-contact method without inserting a chip into a mobile terminal. In addition, it becomes possible to connect an adapter to the measurement device and measure the sample guided to the detection unit via the adapter. By performing the measurement via the adapter, the contamination of the mobile terminal caused by the attachment of the sample to the mobile terminal can be more reliably suppressed. Further, by using the adapter, the configuration of the chip applicable to the measurement by the mobile terminal can be further diversified.
  • the measurement unit includes: a light source that irradiates the detection unit with light; and a light receiving unit that performs measurement related to optical characteristics of the component using light emitted from the light source. May have.
  • the components in the sample introduced into the measurement chip Can be reliably measured.
  • the mobile terminal it is possible to obtain the minimum required measurement data for a specific component in the sample with a simple configuration. Then, by transmitting the measurement result to the outside, a detailed analysis result can be obtained. For this reason, detailed analysis can be performed while simplifying the device configuration of the mobile terminal.
  • the measurement chip has a flow path from the sample introduction section to the detection section, and a separation section for separating the component is provided in the flow path. It may be provided. This makes it possible to reliably separate the components in the sample introduced into the measurement chip. Therefore, after removing contaminants in the sample, the sample can be guided to the detection unit. Therefore, a sample suitable for measurement in the measurement unit can be prepared on the measurement chip, and even if the amount of the component to be measured is very small, the component is separated and the background during measurement is reduced. be able to. For this reason, more precise measurement can be performed.
  • the detection section may include a detection substance that acts on the component to change its optical property. This makes it possible to reliably detect the components in the sample into which the measurement chip has been introduced. Therefore, measurement can be performed with high sensitivity even for a small amount of components.
  • the transmission unit can transmit the measurement result to the outside in association with a measurement situation.
  • the measurement results can be associated with the measurement situation and provided for external analysis.
  • the measurement situation may be, for example, a measurement date and time or a measurement place.
  • the mobile terminal may have a mobile phone function.
  • the user of the measurement system can carry out the measurement at a desired time on the spot by carrying only the mobile phone and the measurement chip.
  • a mobile terminal such as a mobile phone as a mobile terminal, the entire measurement system can be reduced in size.
  • the measurement system further includes an analysis center connected to the mobile terminal via a network, and configured to receive information transmitted from the mobile terminal.
  • An analysis center a data acquisition unit that acquires the measurement result transmitted from the mobile terminal, an analysis unit that analyzes the sample based on the measurement result acquired by the data acquisition unit, and obtains an analysis result. May be provided.
  • the data acquisition unit acquires the measurement results obtained by the mobile terminal while simplifying the device configuration of the mobile terminal, and obtains the sample introduced into the measurement chip.
  • the analysis of the component can be reliably performed by the analysis unit.
  • the analysis center stores an analysis data storage unit that stores the measurement result or the analysis result obtained by the analysis unit, and stores data referred to by the analysis unit. And a reference data storage unit for storing.
  • the analysis data storage unit By having the analysis data storage unit, it is possible to store the analysis result in the analysis center. In addition, the provision of the reference data storage unit enables the analysis at the analysis center to be performed more reliably. Further, the reference data stored in the reference data storage unit can be corrected based on the information stored in the analysis data storage unit.
  • the measurement chip further has a neutralizing solution reservoir
  • the mobile terminal and the measurement chip are configured to separate the measurement chip having completed measurement from the mobile terminal force.
  • the trigger may be to further include a mechanism for introducing the neutralizing solution in the neutralizing solution reservoir into a channel system included in the measurement chip. This makes it possible to neutralize the path system formed on the used chip, so that the used measuring chip can be carried more safely.
  • the mobile terminal may include a receiving unit that receives the analysis result transmitted from the transmitting unit.
  • the result of the analysis based on the measurement result can also be received by the mobile terminal. Therefore, the user of the measurement system can check the analysis result at a desired place.
  • the channel system refers to a moving path of a liquid from a sample introduction part provided on a measurement chip to the sample introduction part.
  • a configuration may be adopted in which the neutralizing solution is introduced into the channel.
  • the measurement chip further includes a part for recording authentication data, and the mobile terminal transmits the measurement chip, which has been measured, from the mobile terminal.
  • the mobile terminal may further include a mechanism for making the mobile terminal unable to read the authentication data by using the fact that the mobile terminal has completed the data reception as a critical force. In this way, the used chip can be more safely discarded.
  • the sample may be a body fluid. This makes it possible for the measurement system to easily perform the measurement on the body fluid of the user with a simple configuration. Therefore, the user of the measurement system can perform measurement relating to his / her health condition at a desired place at a desired time.
  • a user can check his / her own health condition at a desired place without visiting a laboratory. Further, according to the present invention, a user can easily check his / her own health condition.
  • FIG. 1 is a diagram showing a configuration of an inspection system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a measurement procedure using the inspection device of FIG. 1.
  • FIG. 3 is a diagram showing a configuration of a chip applicable to the inspection system of FIG. 1.
  • FIG. 4 is a diagram showing a configuration of a mobile terminal applicable to the inspection system of FIG. 1.
  • FIG. 5 is a view showing a cross section taken along the line CC ′ of FIG. 4.
  • FIG. 6 is a view showing a cross section taken along the line CC ′ of FIG. 4.
  • FIG. 7 is a view showing a cross section taken along the line CC ′ of FIG. 4.
  • FIG. 8 is a view showing a cross section taken along the line CC ′ of FIG. 4.
  • FIG. 9 is a diagram showing a configuration of a chip applicable to the inspection system of FIG. 1.
  • FIG. 10 is a sectional view taken along the line DD ′ in FIG. 9.
  • FIG. 11 is a diagram showing a configuration of a mobile terminal applicable to the inspection system of FIG. 1.
  • FIG. 12 is a diagram showing a configuration of the inspection system of FIG. 1 for each functional block.
  • FIG. 13 is a diagram showing a configuration of a chip having an electronic chip applicable to the inspection system according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing an example of a data structure of an analysis result storage unit of the inspection system in FIG.
  • FIG. 15 is a diagram showing an example of a data structure of a user information storage unit of the inspection system in FIG.
  • FIG. 16 is a diagram showing an example of a data structure of an area information storage unit of the inspection system of FIG. 12.
  • FIG. 17] is a diagram illustrating a processing procedure using the inspection system of FIG.
  • FIG. 18 is a diagram showing a configuration of a chip applicable to the inspection system of FIG. 1.
  • FIG. 19 is a diagram illustrating a configuration of an isolation region of the chip in FIG. 18.
  • FIG. 20 is a diagram illustrating a separation method using the configuration of the separation region in FIG. 19.
  • FIG. 21 is a diagram illustrating a configuration of a mixing section of the chip in FIG. 18.
  • FIG. 22 is a diagram illustrating a configuration of a mixing section of the chip in FIG. 18.
  • FIG. 23 is an enlarged top view of the liquid switch of FIG. 22.
  • FIG. 24 is a top view showing a damming portion of the liquid switch of FIG. 22.
  • FIG. 25 is a diagram illustrating a configuration of a trigger channel of the liquid switch of FIG. 22.
  • FIG. 26 is a diagram showing a configuration of a chip applicable to the inspection system of FIG. 1.
  • FIG. 27 is a diagram illustrating a configuration of an isolation region of the chip in FIG. 26.
  • FIG. 28 is a diagram illustrating a configuration of an isolation region of the chip in FIG. 26.
  • FIG. 29 is a diagram showing a configuration of an inspection system according to an embodiment of the present invention.
  • FIG. 30 is a diagram showing a configuration of an inspection system according to an embodiment of the present invention.
  • FIG. 31 is a diagram showing a configuration of a chip having an electronic chip applicable to the inspection system according to the embodiment of the present invention.
  • FIG. 32 is a diagram illustrating a configuration of a separation region of the chip in FIG. 18.
  • FIG. 33 is a diagram illustrating a configuration of a separation region of the chip in FIG. 18.
  • FIG. 34 is a diagram showing a configuration of a mobile terminal with a detachable sensor according to an embodiment of the present invention.
  • FIG. 35 is a diagram showing a configuration of a removable optical sensor according to an embodiment of the present invention.
  • FIG. 36 is a diagram showing an example of a configuration of a mobile terminal having a cleaning mechanism according to an embodiment of the present invention.
  • FIG. 37 is a cross-sectional view taken along the line FF ′ showing a configuration near the end of the rod of the mobile terminal shown in FIG. 36
  • FIG. 38 is a diagram showing a configuration of a mobile terminal that generates an invalidation trigger according to an embodiment of the present invention.
  • FIG. 39 is a diagram showing a timing at which a mobile terminal invalidation trigger occurs according to the embodiment of the present invention.
  • FIG. 40 is a diagram showing a configuration of a chip applicable to the inspection system according to the embodiment of the present invention.
  • FIG. 41 is a perspective view showing a configuration of a measuring device applicable to the inspection system according to the embodiment of the present invention.
  • FIG. 42 is a perspective view showing a configuration of a measuring device applicable to the inspection system according to the embodiment of the present invention.
  • FIG. 43 is a cross-sectional view showing a configuration of a measuring device applicable to the inspection system according to the embodiment of the present invention.
  • FIG. 44 is a cross-sectional view showing a configuration of a mobile terminal applicable to the inspection system according to the embodiment of the present invention.
  • FIG. 45 is a diagram showing a configuration of a measuring device applicable to the inspection system according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing an inspection system of the present embodiment.
  • the inspection system 100 includes a measurement device 129 and an analysis center 153.
  • the measuring device 129 includes a chip 101 and a moving terminal 127, each of which has a different function.
  • the body fluid of the user is measured using the measuring device 129 to check the user's health condition.
  • the mobile terminal 127 is a mobile phone or a PDA (Personal Digital Assistance) having a communication function. tant) etc.
  • the mobile terminal 127 includes a measurement unit 151 that measures a detection reaction in the chip 101.
  • the measurement unit 151 is, for example, a spectrophotometer, a fluorometer, a CCD camera, or the like.
  • the mobile terminal 127 is configured to be able to present the determination result transmitted from the analysis center 153 to the user.
  • the introduced sample is guided to the detection unit after being subjected to a predetermined operation, and is measured by the measurement unit 151 of the mobile terminal 127.
  • operations on a sample include dispensing, dilution, pretreatment, separation, mixing, and reaction.
  • the chip 101 is configured so that a user can introduce a sample and dispense an amount suitable for measurement by the measurement unit 151.
  • the user of the mobile terminal 127 dispenses the tip 101 with body fluid such as blood or urine. Then, the chip 101 is set in the mobile terminal 127 to acquire a measurement value, and the result is transmitted from the mobile terminal 127 to the analysis center 153. This procedure will be described with reference to FIG.
  • FIG. 2 is a diagram illustrating a flow of an analysis procedure using the chip 101.
  • the user first collects a body fluid to be measured, such as blood, saliva, urine, and the like (S101). Then, the collected body fluid is introduced as a sample into the chip 101 (S102). Then, it reacts with a detection reagent acting on a specific component in the sample to cause a predetermined detection reaction (S103).
  • the measurement unit 151 of the mobile terminal 127 performs an optical measurement of the sample, and detects a component specified by its characteristic (S105).
  • the mobile terminal 127 transmits the measured value to the analysis center 153 (S106). In the present embodiment, it is assumed that the procedure from the time when the user collects his or her own body fluid to the time when the measurement value is transmitted to the analysis center 153 is continuously performed within the predetermined time at the same place.
  • the chip 101 can be set to or close to the mobile terminal 127, and measurement can be easily performed. It is also possible to transmit the measurement result immediately and request the analysis center 153 for analysis.
  • the measurement in the measurement unit 151 can be, for example, a measurement relating to the optical and electrical properties of the components.
  • the analysis center 153 determines the health condition of the user based on the measurement value transmitted from the user and reference parameters indicating characteristics related to the measurement. Then, the result of the determination is transmitted to mobile terminal 127. This allows the user of the mobile terminal 127 to know his / her own health condition by a simple method without going to a hospital or a laboratory.
  • FIGS. 3A and 3B are diagrams illustrating an example of the configuration of the chip 101.
  • FIG. FIG. 3A is a top view of the chip 101.
  • FIG. FIG. 3B is a cross-sectional view taken along the line AA ′ of FIG. 3A.
  • the chip 101 is composed of a substrate 103 in which an upper substrate portion 103a and a lower substrate portion 103b are joined.
  • a sample introduction section 105, a liquid reservoir 107, a flow path 109, a detection section 113, and a detection section 115 are formed on the lower portion 103b of the substrate.
  • the flow path 109 communicates with the sample introduction unit 105, the liquid reservoir 107, the detection unit 113, and the detection unit 115.
  • the substrate upper portion 103a covers the channel 109 as a lid of the substrate lower portion 103b.
  • a liquid reservoir 107 In the upper portion 103a of the substrate, a liquid reservoir 107, a detecting section 113, and an air hole 123 communicating with the detecting section 115 are formed.
  • an inlet 106 communicating with the sample inlet 105 is provided.
  • the inlet 106 is configured such that the sample to be measured is smoothly introduced into the sample inlet 105 by capillary action. That is, the portion of the sample introduction portion 105 formed in the upper portion 103a of the substrate is narrow enough to exhibit the capillary effect, specifically, for example, 1 mm or less in width, and formed in the lower portion 103b of the substrate. It communicates with the liquid reservoir part.
  • the upper part of the capillary formed on the upper part 103a of the substrate is tapered so as to expand toward the upper surface, so that the user can surely introduce the sample.
  • four recesses 125 are provided in the substrate upper portion 103a and the substrate lower portion 103b, respectively, for appropriately inserting the mobile terminal 127 into the mobile terminal 127.
  • the chip 101 in FIGS. 3A and 3B has two detection units, namely, the detection unit 113 and the detection unit 115, the chip 101 can be set to a predetermined number that is not limited to the number of detection units. it can.
  • a detection reaction for detecting a predetermined component in the sample introduced into the sample introduction unit 105 can be performed.
  • These detection units can be provided with a detection substance that acts on components in the sample to change its optical properties.
  • a coloring agent that develops a color due to the presence of a characteristic component may be introduced into the detection unit 113 or the detection unit 115. Note that multiple One of the detection units does not introduce a coloring agent into one of the liquid reservoirs, and is used as a liquid reservoir for reference.
  • the substrate upper portion 103a and the substrate lower portion 103b for example, a glass substrate such as a silicon substrate or quartz, or a resin substrate such as silicon resin or polymethyl methacrylate can be used.
  • the outer diameter of the chip 101 can be a force appropriately selected according to the size of the mobile phone or the object to be measured, for example, about lcm-5cm in the figure and about lcm-5cm in the figure.
  • the thickness of the chip 101 can be, for example, about 0.5 mm-1 cm.
  • the production of the chip 101 in FIG. 3 is performed, for example, as follows.
  • a groove is formed in the lower portion 103b of the substrate to form a channel 109.
  • a sample introduction section 105, a detection section 113, and a detection section 115 communicating with the flow path 109 are formed.
  • a known method suitable for the type of the material of the substrate lower part 103b such as press molding using a mold such as etching or embossing, injection molding, or light curing, is used. Can be done in a way.
  • the width of the channel 109 is appropriately set according to the purpose of separation.
  • a recess 125 is similarly formed on the back surface of the lower portion 103b of the substrate.
  • an inlet 106, an air hole 123, and a recess 125 are formed in the upper portion 103a of the substrate.
  • chip 101 is obtained.
  • the substrate upper portion 103a and the substrate lower portion 103b are made of a plastic material, they can be joined by, for example, heat fusion.
  • the resin constituting the substrate upper portion 103a and the substrate lower portion 103b is heated to a temperature near the glass transition temperature, the resin is brought into contact with the resin, pressed, and then cooled to room temperature, and then the pressure is released.
  • fusion using a solvent may be performed.
  • a solvent that dissolves the upper substrate portion 103a and the lower substrate portion 103b is sprayed extremely thinly on these surfaces, and these are brought into contact with each other to be joined.
  • ultrasonic vibration is applied to the substrate upper portion 103a and the substrate lower portion 103b in a state where the substrate upper portion 103a and the substrate lower portion 103b are in contact with each other, and the energy thereof is used to melt the surfaces of the substrate upper portion 103a and the substrate lower portion 103b. Just wear it.
  • the bonding may be performed using an adhesive selected according to the type of the substrate upper portion 103a and the substrate lower portion 103b.
  • an adhesive it is necessary to prevent the minute space such as the channel 109 from being buried by the adhesive. Therefore, for example, the adhesive can be applied or spread very thin only on the lower portion 103b of the substrate. Also, using a mask, apply or develop an adhesive only on the portion other than the microstructure of the upper portion 103a of the substrate, and bond the lower portion 103b of the substrate.
  • the substrate upper portion 103a and the substrate lower portion 103b are made of, for example, glass, quartz, or a silicon substrate having an oxidized surface, these can be fused together with a solvent, for example.
  • a solvent for example.
  • an aqueous solution of hydrogen fluoride is sprayed extremely thinly on the surface of the upper substrate 103a or the lower substrate 103b, and then heated and bonded in a state where they are pressed.
  • an adhesive such as SOG (silicon oxide gel) may be used.
  • SOG silicon oxide gel
  • SOG silicon oxide gel
  • a crosslinking agent can be used as an adhesive.
  • An adhesive is applied to the surface of the substrate upper portion 103a or the substrate lower portion 103b, and a cross-linking reaction is caused in a state where they are pressed, thereby joining them.
  • the coating material include substances having a structure similar to phospholipids constituting cell membranes. Also, by coating the channel wall with a water-repellent resin such as a fluorine resin or a hydrophilic substance such as bovine serum albumin, it is possible to prevent molecules such as DNA from adhering to the channel wall. .
  • the surface of the lower portion 103b of the substrate may be coated with a hydrophilic polymer material such as an MPC (2-methacryloyloxetyl phosphorylcholine) polymer or a hydrophilic silane coupling agent.
  • a hydrophilic polymer material such as an MPC (2-methacryloyloxetyl phosphorylcholine) polymer or a hydrophilic silane coupling agent.
  • the sample can be reliably introduced into the inlet 106 by utilizing the capillary phenomenon. Further, the sample introduced into the inlet 106 can be more reliably introduced into the channel 109, and can be moved in the channel 109 by capillary action.
  • a method for hydrophilizing the surface of the substrate lower portion 103b it is effective to form a hydrophilic film such as a silicon oxide film on the surface of the flow path 109. Due to the formation of the hydrophilic film, the buffer solution is smoothly introduced without applying any external force.
  • the capillary effect is promoted. Further, non-specific adsorption of the sample component on the surface of the lower portion 103b of the substrate can be suppressed. For this reason, separation, detection, or measurement can be reliably performed even if the amount of the sample is very small.
  • the surface of the substrate lower part 103b can be made hydrophilic by forming the surface of the substrate lower part 103b with titanium oxide and irradiating the surface with ultraviolet rays. Alternatively, the surface of the lower portion 103b of the substrate may be ashed with oxygen plasma.
  • a predetermined component in the sample can be separated and further detected.
  • the color reaction can be performed to determine the presence or absence of a specific component in the sample or to measure the concentration.
  • the upper substrate portion 103a and the lower substrate portion 103b are formed of a transparent material. By doing so, more accurate detection can be performed.
  • the transparent material specifically, for example, quartz, cyclic polyolefin, PMMA (polymethyl methacrylate), PET (polyethylene terephthalate) and the like can be used.
  • FIGS. 4A and 4B are diagrams illustrating an example of the configuration of the mobile terminal 127.
  • the mobile terminal 127 is a mobile phone
  • the measuring unit 151 shown in FIGS. 5 and 6) is a spectrophotometer. The case of the total is described as an example.
  • the mobile terminal 127 is provided with a chip insertion section 131 for inserting the chip 101.
  • FIG. 4 (A) shows a state where chip 101 is not inserted into mobile terminal 127
  • FIG. 4 (B) shows a state where chip 101 is inserted into mobile terminal 127.
  • the mobile terminal 127 has a battery pack 140, an antenna 141, a function button group 143, a display unit 145, and the like, similarly to a mobile terminal such as a general mobile phone.
  • FIG. 5 is a view showing a cross section taken along the line CC ′ of FIG. 4A.
  • the mobile terminal 127 is provided with a measurement unit 151 at a position corresponding to the detection unit 113 and the detection unit 115 of the chip 101 inserted into the chip insertion unit 131.
  • FIG. 5 exemplifies a mobile terminal 127 having two measurement units 151, and the number of force measurement units 151 is not limited to this, and is appropriately selected according to the number of detection units on chip 101.
  • the measurement unit 151 includes a light source 133a or a light source 133b that irradiates light, and a light receiving unit 135a or a light receiving unit 135b that detects light from these light sources, respectively.
  • the light sources 133a and 133b are provided at positions where the detection unit 113 and the detection unit 115 of the chip 101 can be irradiated with light when the chip 101 is inserted into the chip insertion unit 131. Further, the light receiving unit 135a and the light receiving unit 135b measure the optical characteristics of the liquid contained in the detection unit 113 and the detection unit 115.
  • the transmitted light intensity in the wavelength range of about 280 to 850 nm can be measured with the light sources 133a and 133b.
  • the light receiving unit 135a and the light receiving unit 135b are provided at positions where the light transmitted through the detection unit 113 or the detection unit 115 can be detected.
  • One of the light sources 133a and 133b can be used to illuminate the reference reservoir.
  • a packing 137 provided with a convex portion 139 for holding the chip 101 is provided in the chip insertion portion 131 of the mobile terminal 127.
  • the chip 101 is provided with a concave portion 125 that fits with the convex portion 139 of the packing 137. By fitting these, the chip 101 can be securely mounted on the chip insertion portion 131.
  • the light from the light source 133a and the light source 133b is reliably irradiated to the detection unit 113 or the detection unit 115 of the chip 101, and the light transmitted therethrough can be reliably received by the light receiving units 135a and 135b.
  • the light receiving unit 135a and the light receiving unit 135b convert the intensity of the received transmitted light into a current.
  • the measurement unit 151 includes a calculation unit that calculates the transmittance based on the current values converted by the light receiving units 135a and 135b.
  • the light source 133a and the light source 133b can be, for example, a light emitting diode, a laser diode, a semiconductor laser, or the like. Further, a configuration may be adopted in which light emitted from these light sources is guided to a predetermined position by an optical fiber.
  • the light receiving unit 135a and the light receiving unit 135b can be, for example, a phototransistor, a photoelectric cell, or the like. Further, a photodiode can be used instead of the photoelectric cell.
  • FIG. 6 to FIG. 8 are cross-sectional views in the CC ′ direction of FIG. 4 (A). These figures show an example of the configuration of the measurement unit 151!
  • the LED 247a and the LED 247b correspond to the light source 133a and the light source 133b.
  • a lens 343a and a lens 343b are provided above the phototransistor 249a and the phototransistor 249b, respectively.
  • the size of each component of the measurement unit 151 is designed according to the shape or size of the detection unit 113 and the detection unit 115 on the chip 101.
  • the depth of the detection unit 113 and the detection unit 115 in the chip 101 can be set to, for example, about 0.1 mm to 1 cm, and the interval between them can be set to, for example, about 0.5 to 2 mm.
  • the sizes of the LED 247a, the LED 247b, the lens 343a, the lens 343b, the phototransistor 249a, and the phototransistor 249b are designed accordingly.
  • FIG. 7 is a diagram showing a state where chip 101 is inserted into mobile terminal 127 shown in FIG.
  • the detection section 113 and the detection section 115 are inserted into the corresponding positions of the measurement unit 151. Therefore, if the measuring units 151 are provided by the number of detecting units formed on the chip 101, the optical measurement can be performed on each detecting unit at one time. Therefore, measurement can be performed in a short time.
  • the mobile terminal 127 may have a light splitting unit for splitting light emitted from the light sources 133a and 133b and irradiating light of a predetermined wavelength. In this way, measurement for analyzing the abundance of a specific component having a peak at a specific wavelength can be performed.
  • FIG. 8 is a diagram schematically showing a configuration of a measuring unit 151 having a spectroscopic unit.
  • the measurement unit 151 in FIG. 8 is different from the measurement unit 151 in FIG. 6 in that a single power source 238 having the same basic configuration is provided and a spectroscopic unit 134 is provided.
  • the light splitting unit 134 has an optical filter 340 and a light shielding plate 341.
  • FIG. 8 shows a configuration in which the lens 343a and the lens 343b serving as a light collecting unit are not provided, a configuration in which a light collecting unit is provided may be employed.
  • the optical filter 340 By providing the optical filter 340, it is possible to irradiate the detection unit 113 or the detection unit 115 with only light within a predetermined wavelength range out of the light emitted from the light source 238. Therefore, even when a light source 238 having a broad wavelength distribution of emitted light, such as a lamp light source, is used, the light can be separated and measured by the optical filter 340 corresponding to the measured wavelength. Further, since the optical filter 340 is supported by the light shielding plate 341, it is possible to prevent the light emitted from the light source 238 from leaking to the other measurement unit 151.
  • optical filter 340 a material known as an optical filter can be processed into a predetermined size and used.
  • the detection unit 113 or the detection unit 115 is inserted. It may be configured to irradiate the position. Further, the force measurement unit 151 described above as measuring the transmittance in the detection unit 113 or the detection unit 115 may be configured to measure the absorbance or the scatter.
  • the configuration of the chip 101 and the configuration of the mobile terminal 127 are not limited to those described above, and may be various configurations.
  • the upper surface of the substrate upper portion 103a may be sealed with a seal.
  • the seal may be formed so as to be peelable when the chip 101 is used.
  • a configuration in which an epoxy-based or silicone-based adhesive is applied to the surface of a thin film of various plastic materials may be used.
  • the configuration of the chip 101 may be such that the detection unit 113 and the detection unit 115 are provided on the dispensing channel 114, and the optical waveguide 345 is formed below these detection units. it can.
  • the optical waveguide 345 can be formed of, for example, a quartz-based material or an organic-based polymer material.
  • Optical waveguide 345 is configured to have a higher refractive index than the surrounding material. In this case, light is also introduced into the optical waveguide 345 from the bottom surface force of the chip, and similarly, light is extracted from the bottom surface force of the chip.
  • FIG. 10 is a sectional view taken along the line DD ′ of FIG.
  • a light source for introducing light into the light projecting optical waveguide 346 and a detector for receiving light from the light receiving optical waveguide 347 are provided on the bottom surface of the mobile terminal 127 or the like.
  • a light receiving optical waveguide 347 a light receiving unit
  • the dispensing flow path 114 itself is used for measurement by bringing the exposed surface of the light emitting optical waveguide 346 and the light receiving optical waveguide 347 of the chip into contact with the bottom surface of the mobile terminal 127 or the like.
  • the light source power of the mobile terminal 127 Used as the detection unit 113 or the detection unit 115, the light source power of the mobile terminal 127 also introduced light to the detection unit 113 or the detection unit 115 on the dispensing channel 114, and transmitted through the detection unit 113 or the detection unit 115. Light can be detected by the light receiving unit of the mobile terminal 127.
  • the optical waveguide 345 may not be provided.
  • the emitted light having the light source power of the mobile terminal 127 is transmitted to the detecting unit 113 or the detecting unit 115 via the light emitting optical waveguide 346.
  • the light emitted from the detection unit 113 or the detection unit 115 can be received by the light receiving unit of the mobile terminal 127 via the light receiving optical waveguide 347.
  • the configuration of the chip can be simplified.
  • the mobile terminal 127 When a chip having the configuration shown in FIGS. 9 and 10 or a chip having no optical waveguide 345 in this configuration is used, the mobile terminal 127 is connected to the optical waveguide for light emission when the chip is inserted.
  • mobile terminal 127 has one measurement unit 151, and slides chip 101 in chip insertion unit 131 to perform sequential optical measurement on detection unit 113 and detection unit 115.
  • the configuration is also ⁇ .
  • FIG. 11 is a diagram showing another configuration of the mobile terminal 127.
  • the mobile terminal 127 has a notch 132.
  • the notch 132 is formed so that the side force of the mobile terminal 127 also extends to the bottom surface.
  • the transmittances of the detection unit 113 and the detection unit 115 are sequentially measured.
  • the user 187 can install a large measuring device at home by using the chip 101 and the mobile terminal 127 having the inlet 106, the detecting unit 113, and the detecting unit 115. It is possible to easily measure a predetermined component in a body fluid on the spot without visiting a specialized institution. If the user 187 has the measurement device 129 including the chip 101 and the mobile terminal 127, the user 187 can perform measurement at a desired place at a desired time.
  • the measuring device 129 has a small and simple configuration, and by using this, it is possible to easily obtain the measurement results regarding the components in the body fluid by a simple method. Also, the measurement result can be transmitted to an external analysis center using the mobile terminal 127, and an analysis can be requested for the measurement result.
  • chip 101 can be made a disposable form, and chip 101 can be replaced every measurement.
  • measurement can be performed without introducing a sample into the mobile terminal 127 itself. Therefore, the measurement can be performed with high accuracy without polluting the mobile terminal 127.
  • FIG. 12 is a block diagram showing a configuration of the inspection system 100.
  • the mobile terminal 127 includes a display unit 145, an input / output unit 147, a transmission / reception unit 149, a measurement unit 151 functioning as a measurement unit, and a clock unit 183.
  • the transmission / reception unit 149 transmits the measurement result measured by the measurement unit 151 to the analysis center 153 as measurement data on the health condition of the user 187.
  • data transmitted from the timer unit 183 regarding the time such as the date and time of acquisition of the measured value may be transmitted together.
  • the transmission / reception unit 149 performs analysis based on the measurement value transmitted from the analysis center 153. To receive. The transmission / reception unit 149 transmits the received analysis result to the input / output unit 147. The input / output unit 147 outputs the analysis result to the display unit 145 and presents it to the user 187.
  • the analysis center 153 includes a data acquisition unit 155, an analysis unit 165, a database 167, an estimation processing unit 179, a data writing unit 181, a transmission / reception unit 185, a reading unit 189, and a management Giving section 191.
  • Each component of the analysis center 153 is, in terms of hardware components, a CPU and a memory of an arbitrary computer, a program for realizing the components of the drawing loaded in the memory, a hard disk for storing the program, and the like. It will be understood by those skilled in the art that the storage unit and the network connection interface are mainly implemented, but there are various modifications of the implementation method and apparatus. Each figure, which also explains this power, shows a functional unit block instead of a hardware unit configuration.
  • Data acquisition section 155 includes a measurement target selection reception section 157, a measurement data acquisition section 159, a user information acquisition section 161 and an area information acquisition section 163.
  • the measurement target selection receiving unit 157 acquires the measurement target selected by the user 187 from the information received by the transmission / reception unit 185.
  • Measurement data acquisition section 159 acquires measurement values of detection section 113 and detection section 115.
  • the user information acquisition unit 161 acquires the user ID of the user 187.
  • area information obtaining section 163 obtains information on the position where data is transmitted from mobile terminal 127.
  • the data acquisition unit 155 can acquire the measurement data of the user 187 in association with the creation position and the creation date and time of the measurement data.
  • the “date and time of measurement data creation” includes, for example, the date and time when the user 187 collected his or her bodily fluid, the date and time when the user 187 performed measurement on a specific component using the chip 101, and the user 187 connected to the mobile terminal 127.
  • the date and time when the coloring of the chip 101 is detected or the date and time when the user 187 transmits the measurement data from the mobile terminal 127 can be used.
  • the date and time when the analysis center 153 acquires the measurement data may be set as “the date and time when the measurement data is created”. Such date and time may be determined based on the timing function of the timing unit 183 of the mobile terminal 127 or the timing function of the analysis center 153, or may be determined by the input of the user 187!
  • the "location where measurement data is created” refers to, for example, a case where the user 187 using the mobile terminal 127 performs measurement.
  • the location information of the mobile terminal 127 when the fixed data is transmitted to the analysis center 153 can be used.
  • the position information of the mobile terminal 127 can be obtained by using the position detection function of the base station of the mobile phone network according to the radio wave reception state of the mobile terminal 127.
  • the user 187 has the mobile terminal 127 with the GPS function, it can be obtained using the GPS positioning function.
  • the user 187 can be made to input his / her location information from the mobile terminal 127.
  • the position information of the mobile terminal 127 is transmitted to the analysis center 153 together with the measurement data.
  • the position information is three-dimensional information including height that is not only two-dimensional information.
  • the analysis unit 165 analyzes the data acquired by the measurement data acquisition unit 159 for the selected measurement target. Further, the estimation processing unit 179 estimates the user's health condition based on the analysis result of the analysis unit 165.
  • Management number assigning section 191 assigns a management number in association with each measurement data.
  • the data writing unit 181 stores various data in the database 167 in association with the management number assigned by the management number assigning unit 191.
  • the reading unit 189 reads information stored in the database 167.
  • the transmission / reception unit 185 transmits / receives data to / from the mobile terminal 127.
  • the database 167 includes an analysis information storage unit 169, a related information storage unit 171, an analysis result storage unit 173, a user information storage unit 175, and an area information storage unit 177.
  • the analysis information storage unit 169 stores a program for analyzing measurement data, reference data, and the like for a plurality of measurement targets. For example, various programs, such as an analysis program that defines the procedure and program when the analysis unit 165 analyzes the component to be measured and the procedure when the estimation processing unit 179 estimates the likelihood of morbidity, are applied to a plurality of measurement targets. I remember each one.
  • the analysis information storage unit 169 can also store a program for controlling the measurement unit 151.
  • evaluation criteria for each measurement item can be stored for each ID number of a measurement target. Specifically, for example, with respect to the blood glucose level having the measurement item ID of 0002, the level 1 (one), the level 1 (one), Level 4 (+++), Level 3 (++), and Level 4 (+++) May be stored.
  • the related information storage unit 171 stores information to be transmitted to the user 187 according to the estimation result in the estimation processing unit 179. For example, information on advice to be transmitted to the user 187 together with the result according to the estimation result, information on contact information of a medical institution or an insurance company, and the like can be stored.
  • the analysis result storage unit 173 stores the analysis result by the analysis unit 165 and the estimation result by the estimation processing unit 179 in association with the management place number.
  • the analysis result storage unit 173 stores basic data for each measurement object.
  • FIG. 14 is a diagram showing an example of the data structure of the analysis result storage unit 173.
  • the detected position information and the corresponding measurement area, user ID, analysis value, and onset level are stored in association with the management number.
  • the analysis value of the measurement object 0002 blood sugar level
  • the level is stored as ++ !.
  • the user information storage unit 175 stores the management number assigned to the analysis result and the user ID in association with each other. As a result, the user 187 can read the time-dependent change of the measurement result of the user 187 from the mobile terminal 127.
  • FIG. 15 is a diagram illustrating an example of the data structure of the user information storage unit 175. In the data structure 227, the analysis value, the onset level, and the measurement area of the user 187 whose ID number is 30 are stored over time in association with the management number. Further, the user information storage unit 175 may store a user, a mail address of the user, and the like for each user 187. When acquiring user information, it shall be acquired legally.
  • the area information storage unit 177 stores position information of a plurality of areas.
  • the management number assigned to the analysis result and the area information are stored in association with each other.
  • FIG. 16 is a diagram illustrating an example of the data structure of the area information storage unit 177.
  • the area information storage unit 60 includes an area No. column, a start point position (X, y) column, and an end point position (X, y) column.
  • the area No. column corresponds to the area No. column shown in FIG. 14 or FIG. 15, and each area is set in the range surrounded by the X axis and the y axis passing through the start point position and the end point position, respectively.
  • FIG. 17 is a diagram illustrating a processing procedure using the inspection system in FIG. Below, Figure 12 The description will be made with reference to FIG.
  • the user 187 collects the bodily fluid by the method described above and introduces it into the chip 101.
  • the sample is introduced from the substrate upper portion 103a to the substrate lower portion 103b by capillary action, and is guided to the detection section.
  • the chip 101 is inserted into the mobile terminal 127 (S111).
  • the selected measurement target is input to the input / output unit 147 of the mobile terminal 127 (S112).
  • the measurement target is not particularly limited, and may be an item described in the following embodiments, such as a blood glucose level, or may be other items.
  • the input / output unit 147 of the mobile terminal 127 controls the measurement unit 151 to detect the selected measurement target (S113).
  • the light separating part 134 is controlled.
  • the measurement target is a blood glucose level
  • NAD ⁇ -nicotinamide adenine dinucleotide oxidized form
  • adenosine triphosphate disodium sodium
  • hexokinase glucose It can contain 6-phosphate dehydrogenase and a glucose detection reagent such as magnesium acetate. This allows the measuring unit 151 of the mobile terminal 127 to measure the degree of color development in the detecting unit 113 or the detecting unit 115 of the chip 101.
  • the transmitted light intensity of the detection unit 113 and the detection unit 115 is measured (S114), and the respective measured values are obtained (S115).
  • the measurement unit 151 can make measurement impossible or set the measured value to 0%.
  • the acquired measurement value is transmitted from the transmission / reception unit 149 to the analysis center 153 (S116). At this time, the measurement object selected by the user 187, the user information, and the information on the data transmission area may be transmitted together.
  • the analysis center 153 receives the information transmitted from the mobile terminal 127 by the transmission / reception unit 185, and each data is acquired by the measurement target selection reception unit 157—the area information acquisition unit 163 of the data acquisition unit 155. You.
  • the analysis unit 165 analyzes the data acquired by the data acquisition unit 155 (S116). At this time, a program for analyzing the measurement target received by the measurement target selection receiving unit 157 is obtained from the analysis information storage unit 169. If the result of the analysis is not correct, (S (No at 117), the transmission / reception unit 185 transmits this to the mobile terminal 127. When measuring again at mobile terminal 127 (Yes in S118), each step from step 113 is repeated. If re-measurement is not performed, the display unit 145 displays that the measurement target cannot be estimated based on the data (S123), and presents it to the user 187.
  • the estimation processing unit 179 estimates the possibility of disease (S119).
  • the estimation result is stored in the database 167 by the data writing unit 181 after the management number is assigned by the management number assigning unit 191.
  • the estimation result is transmitted from transmitting / receiving section 185 to mobile terminal 127.
  • the information stored in the related information storage unit 171 may be transmitted together.
  • the mobile terminal 127 displays the result received by the transmission / reception unit 149 on the display unit 145, and presents it to the user 187 (S122).
  • the components in the body fluid can be easily measured with a simple device configuration by inserting the chip 101 into the mobile terminal 127.
  • the user 187 can perform measurements on the go. Also, there is no need to visit a specialized analysis period.
  • the device configuration of the mobile terminal 127 can be simplified to a minimum.
  • the user 187 can transmit a measurement result regarding his / her body fluid without visiting a remote analysis center or medical institution, and can receive the analysis result. Therefore, the user 187 can check his / her health at a desired place.
  • the analysis center 153 can comprehensively grasp analysis data on a plurality of measurement targets by user, area, or measurement target.
  • the chip 101 can be used for many measurements by appropriately changing the detection unit 113 or the substance to be attached to the detection unit 115.
  • the chip 101 has two detection units, the detection unit 113 and the detection unit 115, but the number of the detection units 115 is not particularly limited. Further, different detection substances may be attached to each detection unit of one chip 101.
  • the user 187 can measure a plurality of types of components in a single measurement and transmit it from the mobile terminal 127. Because of this, Various analysis results based on the measurement results of the components can be received in one measurement.
  • a liquid reservoir communicating with the flow path 109 is further provided, and a buffer for diluting a sample is introduced into the liquid reservoir or at a predetermined timing, thereby forming a sample introducing section 105.
  • the sample can be guided to the detection unit 113 and the detection unit 115. This makes it possible to dilute the sample to a concentration suitable for measurement by the measurement unit 151, so that highly sensitive measurement can be performed.
  • the mobile terminal 127 is configured to detect the transmitted light of the detection unit 113 and the detection unit 115.
  • the light receiving units 135a and 135b are configured to detect the reflected light. Just put the rooster.
  • FIG. 18 is a diagram schematically illustrating a configuration of a chip according to the present embodiment.
  • the chip 251 in Fig. 18 is a chip that can separate and detect a sample.
  • the basic configuration is the same as that of the chip 101 in Fig. 3.
  • the plurality of detection units 323 correspond to the detection unit 113 and the detection unit 115 in the chip in FIG.
  • the separation region 318 has a flow path 330 and a flow path 330 communicating with the flow path 109 via a plurality of fine flow paths 329, and is configured in a filter shape.
  • a waste liquid reservoir 319 communicating with the flow path 330 and discharging an unnecessary sample is provided.
  • a buffer inlet 320 is formed in communication with the flow path 109.
  • the chip 251 in FIG. 18 illustrates an example in which the separation region 318 is a filter
  • the configuration of the separation region 318 is not limited to this.
  • a plurality of pillars are arranged in the flow path. It is also possible to adopt a configuration or the like provided.
  • FIG. 19 is a diagram illustrating the configuration of the separation region 318. In FIG.
  • a flow channel 361a and a flow channel 361b are formed on a lower portion 103b of the substrate, and a partition wall 365 is interposed therebetween.
  • one of the flow channel 36 la and the flow channel 36 lb is the flow channel 109, and the other is the flow channel 330.
  • Separation channels are regularly formed in the partition wall 365.
  • the “separation channel” has a configuration corresponding to the fine channel 329.
  • the separation channel is orthogonal to the channel groove 361a and the channel groove 361b, and the separation channel having a width dl is regularly formed at a predetermined interval d2.
  • Each dimension shown in the figure is set to an appropriate value according to the sample to be separated and the like. For example, a suitable numerical value is selected for the following range force.
  • the value of L which corresponds to the length of the separation channel, directly affects the separation characteristics, so it is important to design precisely according to the purpose of separation.
  • the conformation of the molecules changes when passing through the separation channel, resulting in a change in enthalpy. Therefore, the total amount of enthalpy change accompanying the passage of molecules differs depending on the length of the separation channel, and the separation characteristics change.
  • the flow path is formed by the groove, it can be manufactured by etching or molding, and the shape and size can be precisely controlled. As a result, the separation region 318 having desired separation characteristics can be manufactured stably.
  • the flow channel 361a, the flow channel 361b and the separation flow channel can be formed by various methods.
  • the values of dl and d2 are set to lOOnm or less, the electron beam It is desirable to use dry etching combining the above.
  • FIG. 20 is a schematic diagram showing a schematic structure when the separation region 318 is viewed from above.
  • a preparation before sample separation fill each channel groove with a buffer solution serving as a carrier.
  • the sample stock solution containing the mixture 350 flows downward in the figure in the flow channel 361b.
  • the small molecules 351 in the mixture pass through the separation channel provided in the partition shown in the center of the figure and enter the adjacent channel groove 36la.
  • a solvent that does not cause a chemical reaction with the separation target component flows upward in the figure.
  • the small molecules 351 that have entered the channel 361a are carried along the flow in the upward direction in the figure.
  • the large molecules 352 in the flow channel 361b cannot pass through the separation flow channel, they flow through the flow channel 361b as they are, and are collected at the end of the flow channel. As described above, the small molecule 351 and the large molecule 352 are separated.
  • the flow directions of the flow channel 361a and the flow channel 361b are reversed.
  • the orientation can be the same, but if the orientation is reversed, the separation efficiency will be improved.
  • the concentration difference force of the large molecules 352 in the flow channel 361a and the flow channel 361b becomes smaller as the flow proceeds, and becomes equal at a certain point. In the area beyond this point, the movement of large molecules 352 from the flow channel 36 lb to the flow channel 361 a is unlikely to occur and cannot be separated.
  • the concentration difference between the large molecules 352 in the flow channel 361a and the flow channel 361b is ensured, so that the separation flow channel is fixed. Even when formed over a region having a length, high separation ability can be ensured.
  • the separation region 318 has the configuration having the bank portion as described below. You can do it.
  • FIGS. 32A and 32B are diagrams showing the configuration of the separation region 318.
  • FIG. FIGS. 32A and 32B are a cross-sectional view and a perspective view, respectively.
  • two flow grooves 361a and 36 lb are provided in the lower portion 103b of the substrate, and a partition wall 308 corresponding to a bank is provided so as to separate them.
  • the substrate upper part 103a is disposed on the substrate lower part 103b. For convenience, the substrate upper portion 103a is not shown in FIG.
  • FIG. 32 A space is secured between the substrate upper part 103a and the substrate lower part 103b so that the force is divided, so that the flow channel 36 la and the flow path are formed through this space. Trenches 36 lbs communicate with each other are doing.
  • This space corresponds to a separation channel provided in the partition wall 365 of the separation region 318. Therefore, for example, the separation operation can be performed by flowing the sample containing the substance to be separated in the flow channel 361a and flowing the buffer solution in the flow channel 361b.
  • a material having a hydrophobic material such as polydimethylsiloxane or polycarbonate for the upper portion 103a of the substrate.
  • a sample or buffer can be introduced into each flow channel without infiltrating the other flow channel, and at the stage when both the flow channels are filled with the sample or the like.
  • mixing of the sample and the buffer solution in both channel grooves can be caused through the space.
  • Such effects can also be obtained by performing the operation without the upper substrate 103a attached. At this time, it is considered that the air itself functions as a hydrophobic substance similarly to the upper portion 103a of the substrate.
  • the partition wall 308 by providing the partition wall 308, the flow channel 361a and the flow channel 361b are connected with a wider area than the partition 365 having the fine flow channel 329, so that the separation efficiency is improved. Can be done. Further, even a long and slender substance can be easily moved between the flow paths through which the substance is clogged, so that it can be suitably used for separating a sample containing such a substance.
  • the flow channel 361a, the flow channel 361b, and the partition 308 are obtained by, for example, wet etching a (100) Si substrate.
  • a (100) Si substrate is used, in a direction perpendicular or parallel to the 001> direction, etching proceeds in a trapezoidal shape as shown in the figure. Therefore, the height of the partition wall 308 can be adjusted by adjusting the etching time.
  • a partition wall 308 may be provided on the upper portion 103a of the substrate.
  • the substrate upper portion 103a provided with such a partition wall 308 can be easily obtained by injection molding a resin such as polystyrene.
  • only one channel may be provided in the lower portion 103b of the substrate by etching or the like. Therefore, since the separation region 318 is obtained by the simple process as described above, it is suitable for mass production. [0136]
  • the sample solution can be separated by introduction by capillary action and diffusion.
  • separation can be performed by utilizing the osmotic pressure difference of molecules.
  • the sample introduced into inlet 106 is guided to flow channel 330 by capillary action.
  • a predetermined buffer is introduced into the buffer introduction port 320.
  • the buffer is used as a developing solution for separating components in the sample.
  • the buffer introduced into the buffer introduction port 320 is guided to the channel 109 by capillary action, and moves in the direction opposite to the moving direction of the sample in the channel 330.
  • the fine channel 329 that connects the channel 330 and the channel 109 has a smaller width or depth than the channel 330. Only the component having the size or shape can pass through the fine channel 329 and move to the channel 109. Components that cannot pass through the fine flow path 329 are discharged to the waste liquid reservoir 319. Thus, the components in the sample can be separated according to their size or shape in the mobile phase.
  • the fine channel 329 may have a configuration in which small holes are formed in a partition wall separating the channel 330 and the channel 109.
  • a sample can be roughly separated, purified, or the like.
  • coarse separation solid components, cells, and the like in a sample can be separated and removed.
  • liquid sample for example, it is possible to separate a low molecular weight component from a high molecular weight component.
  • the chip is provided with a mixing unit 348 for homogenizing the sample concentration before detection or measurement, between the separation region 318 and the detection unit 323.
  • the mixing unit 348 is not particularly limited as long as it is configured to be able to homogenize the concentration of the sample component in the liquid flowing in the flow channel 109, but may be configured as follows, for example.
  • FIG. 21 is a diagram showing an example of the configuration of the mixing section 348.
  • the mixing section 348 in FIG. 21 is a run-up flow path utilizing the homogenizing effect of the counter flow.
  • This flow path has a configuration in which a forward path 352 and a return path 353 of the flow path 109 are communicated with each other by a fine mixing flow path 354.
  • the fine mixing channel 354 may be, for example, a small hole provided in a partition separating the outward path 352 and the return path 353.
  • the surface of the mixing fine channel 354 is made more hydrophobic than the outward route 352.
  • the configuration may be such that the liquid that has passed through the separation region 318 does not flow into the return path 353 from the fine mixing channel 354 until it fills the outward path 352.
  • the outward path 352 is filled with the liquid and reaches the return path 353, the liquid also enters the forward path 352 side and the return path 353 side into the mixing fine flow path 354, so that the forward path 352 and the return path 353 are mixed with the mixing fine flow path. Communicate by 354. Then, mutual diffusion occurs between the liquid in the forward path 352 and the liquid in the return path 353, and the concentration of the liquid can be made uniform.
  • the homogenized liquid is guided from the flow channel 109 to the detection unit 323 through the dispensing flow channel 114.
  • the concentration of the liquid flowing through the return path 353 and flowing into the dispensing flow path 114 can be uniformed. Therefore, even when the sample component concentration in the body fluid that has passed through the separation region 318 is uneven, the sample component concentration in the liquid supplied to the plurality of detection units can be kept constant. Therefore, the accuracy of the detection reaction can be improved.
  • the flow path 109 may have a straight zigzag shape or a spiral shape. By doing so, the mixing section 348 can be made compact. Therefore, the entire chip can be reduced in size.
  • FIG. 22 is a diagram showing another configuration of the mixing section 348.
  • a liquid reservoir 355 is provided in the flow channel 109, and a trigger flow channel 356 is provided downstream of the liquid reservoir 355 to communicate two places of the flow channel 109.
  • the traveling speed of the liquid in the channel can be adjusted by appropriately adjusting the degree of hydrophilicity in the channel, the channel diameter, and the like. Thereby, the speed of the switch operation can be adjusted.
  • a liquid switch 357 is provided at the downstream side, that is, at the intersection on the dispensing flow path 114 side, of the two intersections of the trigger flow path 356 and the flow path 109.
  • the liquid switch 357 is initially closed, and the liquid that has passed through the separation area 318 is stored in the liquid reservoir 355, and the concentration is homogenized.
  • Reservoir 355 is liquid , A part thereof flows into the trigger channel 356. Then, when the liquid is filled in the trigger flow path 356 and reaches the formation area of the liquid switch 357, the liquid switch 357 is opened, so that the liquid homogenized in the liquid reservoir 355 flows into the dispensing flow path 114. I do.
  • FIG. 23 (A) -FIG. 23 (C) are enlarged top views of the liquid switch 357 in FIG.
  • the liquid switch 357 is a switch for controlling the flow of the liquid, and the liquid is a trigger for opening and closing the switch.
  • FIG. 23 (A) shows the switch closed state
  • FIGS. 23 (B) and 23 (C) show the switch open state.
  • a trigger channel 356 is connected to the side surface of the channel 109.
  • the traveling speed of the liquid in the channel can be adjusted by appropriately adjusting the degree of hydrophilicity in the channel, the channel diameter, and the like. Thereby, the speed of the switch operation can be adjusted.
  • a damming section 358 is provided on the upstream side (upper side in the figure) of the area where the flow path 109 and the trigger flow path 356 intersect.
  • the damming portion 358 is a portion having a stronger capillary force than other portions of the flow path. The following is an example of a specific configuration of the damming portion 358.
  • the flow channel surface area per unit volume of the flow channel in the damming portion 358 is larger than that of the other portion of the flow channel. That is, when the channel 109 is filled with the liquid, the damming portion 358 is configured such that the solid-liquid interface is larger than the other portions of the channel.
  • damming portion 358 is configured so that the solid-liquid interface is larger than other portions of the flow path.
  • the columnar body can be formed by an appropriate method depending on the type of the substrate.
  • a quartz substrate or a silicon substrate it can be formed using a photolithography technique and a dry etching technique.
  • a plastic substrate is used, a mold having an inverted pattern of the pattern of the pillar to be formed is manufactured, and molding is performed using the mold to obtain a desired pillar pattern surface. It should be noted that such a mold can be formed by utilizing photolithography technology and dry etching technology.
  • the porous body and beads can be formed by directly filling and adhering them to a predetermined portion of the flow channel.
  • FIG. 24 is a top view of the damming portion 358.
  • a plurality of pillars 360 are regularly arranged at substantially equal intervals.
  • the area other than the columnar body 360 is the fine channel 195.
  • the channel surface area per unit volume of the channel is larger than that of other portions of the channel. For this reason, the liquid that has entered the damming portion 358 is retained in the fine channel 195 by capillary force.
  • FIG. 23A shows the liquid switch 357 in a standby state.
  • the liquid sample 359 introduced into the flow path 109 is held by the damming section 358.
  • the trigger liquid 362 bypassing the trigger flow path 356 is introduced at a desired timing in this state, the leading end of the liquid surface of the trigger liquid 362 moves forward as shown in FIG. And 358.
  • the liquid sample 359 is held by the damming portion 358 by capillary force, but when the liquid sample 359 comes into contact with the trigger liquid 362 in the state shown in FIG. Move downward (downstream side) in the figure, and the liquid sample 359 flows out downstream of the flow path 109 in FIG. 23 (C). That is, the trigger liquid 362 plays a role as priming water, and an operation as a liquid switch for extracting the liquid sample 359 to the downstream side is developed.
  • the liquid sample 359 and the trigger liquid 362 are liquids that have passed through the liquid reservoir 355. Therefore, according to this configuration, the liquid that has passed through the separation region 318 fills the liquid reservoir 355, and the liquid is dispensed and flowed until the liquid reaches the tip of the trigger channel 356, that is, the intersection on the downstream side of the channel 109. It can be prevented from flowing into the road 114 side. Therefore, in the liquid reservoir 355, the concentration of the sample components can be surely uniformed. Further, the timing of the flow into the dispensing channel 114 can be suitably adjusted by the configuration of the single trigger channel 356.
  • FIG. 25 (A) —FIG. 25 (C) are diagrams illustrating the configuration of the trigger channel 356.
  • a flow channel extension region 363 is formed in a part of the trigger flow channel 356.
  • the channel expansion region 363 functions as a time delay tank in the trigger channel 356. By doing so, the timing of opening the liquid switch 357 can be delayed.
  • FIG. 25 (B) shows the trigger channel 356 having the configuration shown in FIG. 25 (A), in which a hydrophobic region 364 is formed in the channel expansion region 363.
  • the hydrophobic region 364 is formed so as to cross the flow channel extension region 363 in a direction perpendicular to the direction of travel of the liquid in the trigger flow channel 356.
  • FIG. 25C shows an example of a zigzag trigger channel 356.
  • the shape of the trigger channel 356 is not limited to the shape shown in FIG. 25C as long as the shape occupies a small area, and may be, for example, a spiral shape.
  • the sample component in the flow path 109 is guided to the detection unit 323 from the dispensing flow path 114 communicating with the flow path 109.
  • a predetermined number of dispensing channels 114 and detectors can be provided on the lower portion 103b of the substrate.
  • a plurality of dispensing channels 114 are sequentially branched from the channel 109. Since the dispensing channel 114 is a channel narrower than the channel 109, the upstream side is formed by capillary action.
  • Sample components are introduced in order from the detector 323 communicating with the dispensing channel 114. Unnecessary samples after the sample components have been guided to all the detection units are discharged to the reservoir 107.
  • the separation region 318 is provided between the sample introduction unit 105 and the detection unit 323, it is included in the sample introduced into the sample introduction unit 105. Predetermined components can be reliably separated and guided to the detection unit 323. For this reason, it is possible to reduce the background at the time of measurement even with respect to a trace amount of component, and perform high-sensitivity measurement.
  • the mixing unit 348 is provided between the separation region 318 and the detection unit 113 and the detection unit 115, it is possible to guide the liquid to the detection unit 323 after homogenizing the concentration of the liquid that has passed through the separation region 318. it can. For this reason, it is possible to eliminate the unevenness of the sample components in the liquid introduced into the detection unit 323. Therefore, the accuracy of the measurement in the detection unit 323 can be improved.
  • the separation region 318 may have the same configuration as the chip separation region described later in the third embodiment.
  • This embodiment relates to another configuration of a chip applicable to the inspection system 100 (FIG. 1) described in the first embodiment.
  • FIG. 26 is a top view showing a schematic configuration of a chip 224 according to the present embodiment. Tip 22
  • the chip 224 has a configuration in which the first flow path 241 communicating with the sample introduction unit 105 communicates with the second flow path 243 via the separation region 245. Second channel 243 communicates with reservoir 107.
  • the upstream of the first flow path 241 communicates with the sample introduction part 105, and the downstream thereof communicates with the liquid reservoir 239.
  • a pretreatment section 231 is formed upstream of the separation region 245, and a liquid reservoir 233 communicates with the pretreatment section 231.
  • the liquid reservoir 233 is filled with, for example, a buffer solution or the like for diluting the liquid reservoir 239 or a liquid for adjusting the liquidity of the mobile phase, and the liquid reservoir 239 receives a waste liquid that has passed through the first flow path 241.
  • the upstream of the second flow path 243 communicates with the liquid reservoir 235, the downstream thereof communicates with the liquid reservoir 107, and the downstream of the separation region 245 communicates with the detection unit 113 and the detection unit 119.
  • the liquid reservoir 235 is filled with a diluent of the liquid reservoir 239 or a liquid for adjusting the liquidity of the mobile phase, such as a buffer solution, and the liquid reservoir 107 is supplied with a waste liquid that has passed through the second flow path 243.
  • the user 187 collects a bodily fluid using the sample collection section 228, and introduces the obtained sample 229 into the sample introduction section 105.
  • the sample collection unit 228 can be, for example, a dropper or a puncture needle, depending on the method of collecting the body fluid used as the sample 229.
  • the detected component contained in the sample 229 introduced into the sample introduction unit 105 moves into the first flow path 241 after being introduced into the sample introduction unit 105, and is moved to the pretreatment unit. After passing through 231, it moves to the second channel 243 via the separation area 245. Then, it is guided to the detection unit 113-detection unit 119 communicating with the first channel 241 and is detected in the same manner as in the first or second embodiment.
  • the preprocessing unit 231 performs preprocessing before separating the sample 229 in the separation region 245. The content of the pretreatment is appropriately selected according to the concentration of the sample 229 and the components to be detected in the sample 229.
  • the pre-treatment unit 231 may be filled with a porous material or the like, and only components having a predetermined size or less may be introduced downstream. it can.
  • the buffer 233 may be filled with a buffer containing lysozyme chloride and mixed with the sample 229 in the pretreatment unit 231.
  • a buffer having a predetermined pH can be filled in the liquid reservoir 233 and mixed with the sample 229 in the pretreatment unit 231.
  • the first channel 241 communicates with the second channel 243 via the separation region 245.
  • the separation area 245 is a separation flow path that moves only components having a predetermined size or less from the first flow path 241 to the second flow path 243. The configuration of such a separation region 245 will be described later.
  • the separation region 245 when the sample 229 that has passed through the pretreatment unit 231 flows from the first channel 241 and the liquid reservoir 235 filled in the liquid reservoir 235 flows from the second channel 243. Then, the components in the sample 229 that have passed from the first flow path 241 through the separation region 245 move through the second flow path 243 toward the liquid reservoir 107 and are introduced into the detection unit 113—the detection unit 119. .
  • FIG. 27 is a diagram showing an example of the configuration of the separation region 245.
  • a groove having a width W and a depth D is formed in the lower portion 103b of the substrate, and cylindrical pillars 325 having a diameter ⁇ and a height d are regularly formed at regular intervals.
  • the sample penetrates the gap between the pillars 325.
  • the average spacing between adjacent pillars 325 is p.
  • Each dimension can be, for example, in the range shown in FIG.
  • the "pillar” is shown as one form of a columnar body, and refers to a minute columnar body having a cylindrical or elliptical column shape.
  • the “pillar patch” and the “notch region” are shown as one form of the pillar-arranged portion, and a large number of pillars are grouped. The area formed by doing!
  • the pillar 325 can be manufactured by, for example, etching the lower portion 103b of the substrate into a predetermined pattern shape, but the manufacturing method is not particularly limited.
  • the pillar 325 is formed of a material such as press molding using a mold such as an etching boss boss, injection molding, or photo-curing. It can be performed by a suitable known method.
  • the substrate lower part 103b is made of a plastic material
  • a master is manufactured by machining or etching, and the master is manufactured by injection molding or injection compression molding using a mold manufactured by inverting the electrical structure.
  • the lower substrate portion 103b on which the pillar 325 is formed can be formed.
  • the pillar 325 can be formed by press working using a mold.
  • the lower portion 103b of the substrate on which the pillars 325 are formed can be formed by an optical shaping method using a photocurable resin.
  • the patterning can be performed by using a calixarene electron beam negative resist semi-resist NEB (manufactured by Sumitomo Chemical) or the like.
  • a calixarene electron beam negative resist semi-resist NEB manufactured by Sumitomo Chemical
  • the type of the resist it is possible to design the separation region 318 according to the target component.
  • the detection unit 113 can reliably perform a detection reaction. Further, the accuracy and sensitivity of the measurement using the mobile terminal 127 can be improved. In addition, since the pre-processing unit 231 is provided, the separation efficiency and the detection sensitivity of the sample 229 can be further improved.
  • the separation region 245 may have the same configuration as the separation region 318 of the chip 251 (FIG. 18) of the second embodiment.
  • This embodiment relates to measurement of a blood glucose level using the test system 100 according to the first to third embodiments.
  • a case where the chip of FIG. 18 is used for the inspection system 100 will be described as an example.
  • the detection part 323 of the chip 251 as a glucose determination reagent, enzymes such as glucose oxidase, mulotase, peroxidase, and ascorbate oxidase, Color reagents such as 4-aminoantipyrine and phenol.
  • the measurement wavelength at this time is, for example, 505 nm.
  • the separation region 318 is configured so that low-molecular components pass through preferentially.
  • a detection unit 323 that keeps a coloring reagent to be used for acquiring blank data is provided.
  • the detection unit 323 develops a color, measurement and transmission of the measured value are performed in accordance with the procedure described above with reference to FIG.
  • the measurement target selected in step 112 is a blood glucose level.
  • the measurement target selection receiving unit 157 of the analysis center 153 receives that the measurement target is a blood glucose level.
  • the analysis unit 165 and the estimation processing unit 179 obtain information on the measurement of the blood sugar level from the analysis information storage unit 169 and the related information storage unit 171, and perform analysis and estimation.
  • additional information corresponding to the result may be transmitted from transmitting / receiving section 185 to mobile terminal 127 together with the estimation result.
  • a user with a high blood sugar level 187 may be referred to a medical institution near his / her home or may be sent a medical treatment schedule.
  • a meal message or the like for improving the blood sugar level may be transmitted.
  • both a person who is uneasy about the blood glucose level and a person who has diabetes can promptly transmit the measurement result to the analysis center.
  • the measurement target in the present embodiment can be a urine glucose level instead of a blood glucose level.
  • This embodiment relates to measurement of blood cholesterol using the test system 100 according to the first to third embodiments.
  • the chip 224 (FIG. 26) described in the third embodiment is used for the inspection system 100 will be described as an example.
  • These detection reactions for quantifying cholesterol can be performed, for example, by an enzymatic method.
  • the detection unit 115 develops a color
  • measurement and transmission of the measured value are performed according to the same procedure as in the third embodiment.
  • the measurement target selected in step 112 is blood cholesterol.
  • the user 187 who is concerned about the cholesterol level or the user 187 who needs to monitor the progress can visit his or her own healthcare facility without regularly visiting medical institutions. It is possible to know the value of blood cholesterol.
  • the present embodiment relates to determination of a blood type using the test system 100 according to the first to third embodiments.
  • the chip 101 FIG. 3
  • the chip 251 FIG. 18
  • the chip FIG. 26
  • the "frontal test” is a test for detecting an antigen in a blood sample.
  • One type of lyophilized anti-A serum and anti-B serum is set in each of the two detection units 113 and 115.
  • the blood sample When the blood sample is introduced into the sample introduction unit 105, the blood sample fills the detection unit 113 and the detection unit 115 in the process of proceeding in the direction of the liquid reservoir 107 by capillary force in the direction of the reservoir 107, and the anti-A serum set in advance is set. Dissolve anti-B serum.
  • the dissolved anti-A serum and anti-B serum are mixed with a blood sample by diffusion or the like, and when a blood cell antigen (A antigen or B antigen) for each antiserum is present in the blood sample, Red blood cells are agglutinated and sedimented. When the red blood cells aggregate and precipitate, the amount of light transmitted through the detection unit 113 and the detection unit 115 increases, so that it can be optically detected.
  • a antigen or B antigen a blood cell antigen for each antiserum
  • a plurality of flow channels on the chip 101 were prepared on the same chip as a control.
  • a suspension of latex beads coated with a B-type antigen can be introduced, and aggregation can also occur reliably on the bead side, thereby preventing erroneous determination.
  • At least three detection sections 323 were prepared, and a suspension of latex beads coated with an A-type antigen, a suspension of latex beads coated with a B-type antigen, and an O-type antigen were respectively coated. Set the suspension of latex beads in place. At that time, in addition to allowing the amount of the suspension to be about half the total volume of the detection unit 323 to allow mixing with the sample, a liquid switch is provided in the dispensing channel 114 so that the suspension does not flow back to the channel 109, A trigger channel for opening the liquid switch may be branched from the upstream channel 109.
  • the configuration of the liquid switch is, for example, the configuration described above with reference to FIG.
  • the extracted plasma component After the extracted plasma component reaches a certain concentration in the mixing section 348, it flows through the flow path 109 in the direction of the reservoir 107, and fills the detection section 323 via the dispensing flow path 114. Mix with the latex bead suspension preset at 323. If an antibody is present in the extracted plasma, the latex beads coated with the antigen are aggregated and precipitated, so that the presence of the antibody can be detected based on the increase in light transmittance as in the case of the blood cells described above. .
  • Type A blood has anti-B antibody power.
  • Type B blood has anti-A antibody power.
  • Type O blood contains both anti-A and anti-B antibodies, and type AB blood has both. Is not included, so if If agglutination does not occur in all detectors 323, AB-type blood and A-type antigen latex bead suspension are set, and if only detector 323 aggregates, B-type blood and B-type antigen latex bead suspension are collected. If only the set detection part 323 agglutinates, it can be determined as type A blood if both the A-type antigen latex beads suspension and the B-type antigen latex beads suspension agglutinate.
  • HLA type the leukocyte type
  • the primary determination is a method that utilizes a phenomenon in which leukocytes in a blood sample are aggregated or destroyed by reacting with an antiserum against each antigen type.
  • antiserum for each HAL type and subtype, or lyophilized eels complement is set in the detection unit 113 of the chip 224 or the like.
  • the chip 224 in FIG. 26 is provided with four detection units, a detection unit 113, a detection unit 115, a detection unit 117 and a detection unit 119.
  • the following description is based on the assumption that the number of sub-types is sufficiently prepared including that of the sub-type.
  • blood cells in a blood sample can be taken out in order of their size.
  • the separation region 245 in which pillars are formed in a patch shape only the white blood cells in the blood sample are guided to the detection unit by utilizing the fact that the largest leukocyte among blood cells is separated and comes out first.
  • a specific structure of the separation region 245 can be a pillar patch structure of a type that allows components having a large size to pass quickly as shown in FIG.
  • the separation region 245 has a structure in which the left side in FIG. 28 communicates with the first flow path 241 in FIG. 26 and the right side communicates with the second flow path 243 in FIG.
  • the width of the path between adjacent pillar patches 321 is greater than the gap between pillars 325 in pillar patch 321.
  • the gap between the pillars 325 is set to, for example, about lOOnm-lOOOnm, and the width of the path is preferably about 2 to 20 times, more preferably about 5 to 10 times the gap between the pillars 325.
  • the time difference between the outflow of white blood cells, red blood cells, and platelets can be increased.
  • the blood sample is led to the sample introduction section 105.
  • the sample is mixed with a buffer (for example, PBS) held in the liquid reservoir 233 in the pretreatment unit 231 and diluted about 2 to 10 times, and then is passed through the first channel 241 to the separation area 245. Supply.
  • a buffer for example, PBS
  • the timing for leading the buffer from the liquid reservoir 233 to the pretreatment section 231 and the timing for leading the sample from the pretreatment section 231 to the first flow path 241 use the liquid switch and the flow path expansion area described above. You can choose the best.
  • a liquid switch is provided on the flow path connecting the liquid reservoir 233 and the pre-processing unit 231 and on a portion of the first flow path 241 on the pre-processing unit 231 side (upstream side).
  • the trigger flow path to may be configured to be supplied from the sample introduction unit 105 via a flow path expansion region that causes an appropriate delay time.
  • the timing for introducing the buffer from the reservoir 235 is as follows: a liquid switch is provided on the flow path connecting the reservoir 235 and the separation area 245, and the trigger flow path is the blood cell separation speed from the first flow path 241. This can be realized by a configuration in which supply is performed via a flow path expansion region having an optimal delay time according to the condition.
  • the mixed solution of the buffer and leukocytes dispensed to the detection unit dissolves and reacts with the antiserum set in the detection unit.
  • leukocytes agglutinate
  • the presence of an antigen of the type against the antiserum set in the detection unit can be detected based on the improvement in light transmittance of the detection unit due to the agglutination.
  • leukocytes rupture and dissolve and the detection part becomes transparent, so the presence of the antigen can be detected by optically detecting this.
  • FIG. 29 is a diagram showing a configuration of a test system using a blood type test chip.
  • the same components as those of the inspection system 100 (FIG. 12) are denoted by the same reference numerals, and description thereof will not be repeated.
  • the test system 211 includes a medical institution 213 in addition to the measurement device 129 and the analysis center 153.
  • the medical institution 213 includes a transmission / reception unit 215, a blood management unit 217, and a stock status storage unit 219.
  • the medical institution 213 and the analysis center 153 are connected via the network 201.
  • the transmission / reception unit 215 communicates with the analysis center 153 via the network 201, and communicates with the mobile terminal 127 of the user 187.
  • Blood management unit 217 manages information on blood transfusion at medical institution 213. Based on the information about the blood type of the user 187 estimated by the estimation processing unit 179, the stock status of blood transfusable to the user 187 is read from the stock status storage unit 219. The read information is transmitted to the mobile terminal 127. In addition, another medical institution (not shown) may arrange for blood transfusion via the network 201 and prepare to welcome the user 187.
  • the user 187 of the mobile terminal 127 may be an injured person or an emergency rescue worker with a strength of 4. If the injured person is the user 187, the user 187 will perform the measurement by himself if he can measure it. If the measurement is difficult, the rescue personnel will do the measurement.
  • the use of the mobile terminal 127 of the user 187 makes it impossible for the injured person to give his / her identity, such as unconsciousness, but in some circumstances, the identity is revealed using the user ID of the mobile terminal 127. It is possible to contact family members.
  • the blood of the injured part is measured using the mobile terminal 127 and the chip 193 which the rescue personnel has, and the blood type of the injured person is measured. May be determined.
  • the estimation result of the estimation processing unit 179 is transmitted to the medical institution 213,
  • the medical institution 213 receives the information and transmits the matching blood stock status to the mobile terminal 127, the rescue worker can select the optimal medical institution 213 and quickly transport the user 187.
  • the inspection system 211 in Fig. 29 can be applied not only to this embodiment but also to other embodiments, and the configuration of the chip applied to the inspection system 211 can be any of the above. It is possible to arbitrarily select the configuration described in the embodiment.
  • This embodiment relates to determination of a stress level using the inspection system described in the first to third embodiments.
  • the stress level can be determined by detecting the concentration of catecholamine in saliva.
  • catecholamine for example, a luminol-type chemiluminescent reagent can be used!
  • the estimation processing unit 179 determines the stress level of the user 187, and draws attention to the user 187 when the stress level is low.
  • FIG. 30 is a diagram showing another configuration of the inspection system according to the present embodiment.
  • the same components as those of the inspection system 100 (FIG. 1) are denoted by the same reference numerals, and description thereof will not be repeated.
  • the inspection system 209 includes a management company 199 in addition to the measurement device 129 and the analysis center 153.
  • the management company 199 manages the staffing of users 187 who are engaged in tasks where maintenance of workers' stress levels is important, such as nuclear power plants, mines, coal mines, and monitoring operations.
  • the management company 199 includes a transmission / reception unit 203, a personnel assignment management unit 205, and an assignment information storage unit 207.
  • the management company 199 and the analysis center 153 are connected via the network 201.
  • the transmission / reception unit 203 communicates with the analysis center 153 via the network 201, and communicates with the mobile terminal 127 of the user 187.
  • the personnel assignment management unit 205 manages the work schedule of the user 187. Based on the estimation result obtained by the estimation processing unit 179, the staffing of the user 187 is changed. At this time, the information on the staffing arrangement stored in the arrangement information storage unit 207 is referred to and changed. When changing, the new arrangement is stored in the arrangement information storage unit 207.
  • the change of the personnel assignment set by the personnel assignment management unit 205 is transmitted from the transmission / reception unit 203 to the mobile terminal 127 of the user 187, and presented to the display unit 145.
  • a person who can be easily replaced is dispatched based on the area information of the worker to be replaced stored in the user information storage unit 175 or the area information storage unit 177.
  • inspection system 209 of FIG. 30 can be applied not only to this embodiment but also to other embodiments according to the present invention, and the configuration of a chip applied to the inspection system 209 is also The configuration described in any of the above embodiments can be arbitrarily selected.
  • This embodiment relates to another configuration of a chip applicable to the inspection system 100 (FIG. 1) described in the first embodiment.
  • the chip described in the present embodiment is configured to neutralize the chip after measurement at the mobile terminal 127.
  • the inside of the chip used for the measurement may contain an infectious source such as a bacterium derived from a sample or a toxic substance such as a strong acid or a cyanide conjugate derived from a measurement reagent.
  • an infectious source such as a bacterium derived from a sample or a toxic substance such as a strong acid or a cyanide conjugate derived from a measurement reagent.
  • the used chip is neutralized and detoxified as necessary, the possibility of causing health damage is more reliably avoided, and the chip can be carried more safely and disposed of more safely.
  • a configuration is adopted in which a neutralizing solution is filled into a flow path in the chip to neutralize an infection source or a toxic substance held in the chip.
  • Examples of the neutralizing solution include, for bacteria, a neutral detergent and a dilute aqueous solution of sodium hypochlorite.
  • a neutral detergent for strong acids, an aqueous alkali solution such as an aqueous sodium hydroxide solution may be used.
  • an alkaline aqueous sodium hypochlorite solution (pH 8-9) that oxidatively decomposes a cyanide compound can be used.
  • an alkaline aqueous sodium hypochlorite solution containing a trace amount of a surfactant is effective for the source of infection, acid and cyan, and can be preferably used.
  • FIG. 40 (A) is a plan view showing a configuration of a chip provided with a neutralization mechanism.
  • Fig. 40 (B ) Is a sectional view of FIG.
  • the chip shown in FIGS. 40 (A) and 40 (B) is composed of a neutralizing solution reservoir 902, a diaphragm 905, an air hole 904, a needle upper plate 900 having a needle 911 and an air hole 909, and a neutralizing solution channel.
  • An intermediate chip plate 912 having an air hole 909 is joined to an analysis channel system such as a detection tank 906 and a detection channel 907, and a chip lower plate 901 having a waste liquid reservoir 910.
  • the air hole 909 penetrates the chip upper plate 900 and the chip middle plate 912 and communicates with the waste liquid reservoir 910.
  • the chip shown in FIGS. 40 (A) and 40 (B) can be obtained by forming and bonding a chip upper plate 900, a chip middle plate 912, and a chip lower plate 901 respectively.
  • the diaphragm 905 is provided between the chip upper plate 900 and the chip middle plate 912, and separates the neutralizing solution reservoir 902 from the neutralizing solution channel 903.
  • the upper surface of the neutralizing liquid reservoir 902 is configured to be deformed when the user presses the upper surface of the neutralizing liquid reservoir 902 from the thin chip upper plate 900 side. Due to the deformation of the upper surface of the neutralizing solution reservoir 902, the needle 911 fixed on the upper surface is punctured into the diaphragm 905, and a hole is formed in the diaphragm 905.
  • the neutralizing solution flow channel 903 communicates with the analysis flow channel system such as the detection tank 906 and the detection flow channel 907 at at least one location.
  • One end of the neutralizing liquid channel 903 has an enlarged diameter below the diaphragm 905 to form an enlarged diameter portion 908.
  • Needle 911 is located above enlarged diameter portion 908.
  • the detection flow path 907 communicates with the waste liquid reservoir 910.
  • the neutralizing solution reservoir 902 contains the above-described neutralizing solution, and its water surface is held at a position higher than the upper surface of the analysis channel system and the waste solution reservoir 910.
  • the user When neutralizing the inside of the chip, the user opens the air hole 904 and the air hole 909 which are closed with a seal or the like before use, and moves from the upper surface of the neutralization liquid reservoir 902 toward the diaphragm 905. Press the needle 911 to make a hole in a part of the diaphragm 905. Then, the neutralizing solution flows into the neutralizing solution channel 903 due to the capillary effect and the water level difference, and passes through the neutralizing solution channel 903 to the analysis channel including the detection tank 906 and the detection channel 907. Fill the system. As a result, the infection source and the toxic liquid remaining in the analysis channel are pushed down to the waste liquid reservoir 910 and neutralized in the waste liquid reservoir 910. With this configuration, the chip after measurement can be easily neutralized. By the neutralization, the channel system of the chip can be easily disinfected or detoxified.
  • the chip having the neutralizing solution reservoir 902 and the mobile terminal shown in Figs. 40 (A) and 40 (B) may be used to release the chip whose measurement has been completed also from the mobile terminal force.
  • a mechanism may be further provided to be introduced into the detection channel 907 and the detection tank 906 via the neutralizing solution power neutralizing solution channel 903 held in the neutralizing solution reservoir 902.
  • FIG. 45 (A) -FIG. 45 (C) are diagrams showing the configuration of the mobile terminal and the chip having such a configuration.
  • FIG. 45 (A) is a cross-sectional view illustrating a configuration in which the “eave” portion is provided on the back surface of the mobile terminal
  • FIGS. 45 (B) and 45 (C) are cross-sectional views.
  • the back surface of the mobile terminal can be, for example, the back surface of the surface provided with the function buttons 143 of the mobile terminal shown in FIG.
  • the “eave” portion is connected to the plate holding the brute claw on the side (see FIG. B)).
  • the "eave” portion and the plate holding the claws are made of elastically deformable resin or metal. When the “eave” portion is depressed, the plate holding the power claws is also deformed at the same time.
  • the structure is such that the claws are housed inside the moving terminal (Fig. 45 (C)).
  • a protrusion having a curved surface is provided at a position corresponding to the upper surface of the neutralizing solution reservoir 902 of the chip in the "eave” portion, and when the "eave” portion is pressed down, the protrusion becomes the neutralizing solution reservoir 902. Press and deform the top surface.
  • the needle 911 is pressed against the diaphragm 905, a hole is formed in the diaphragm 905. Since the projection has a gentle shape like a part of the force sphere sandwiching the chip, the chip can be removed even with the brute force pressed down. With the above configuration, when removing the chip, the user must always push down the “eave” portion and push the upper surface of the neutralizing solution reservoir 902 thereunder.
  • the chip having a neutralizing mechanism is obtained by forming a desired flow path system in the chip upper plate 900 and the chip lower plate 901 which are also a resin material such as PMMA.
  • the chip can be manufactured by laminating them, but the structure of the chip is not limited to the structure having the chip upper plate 900 and the chip lower plate 901.
  • the neutralization liquid was sent from the neutralization liquid reservoir 902 to the waste liquid reservoir 910 using the capillary effect and the water level difference. It is also possible to keep the gas at a high pressure and send the neutralizing solution using that pressure. Also, it is better to send the neutralizing solution using an external solution sending means.
  • the detection method described above with reference to Fig. 9 is applied to the detection flow path 907 of the chip shown in Figs. 40 (A) and 40 (B), and the detection flow path communicating with each detection tank 906 is obtained.
  • the dispensing area of the road 907 may be used as the detection unit 113 or the detection unit 115 in FIG.
  • This embodiment relates to another configuration of the measuring device 129 applicable to the inspection system 100 (FIG. 1) described in the first embodiment.
  • the optical path passing through the sample must have an appropriate length.
  • a large optical path length of about 5 mm-1 cm can be secured because the cross-sectional area of the flow channel is small even if the sample is very small.
  • the width of the cross section of the flow channel is as small as several hundred meters to several tens; Requires precise alignment. This leaves room for further improvement in terms of reducing measurement time and improving the reproducibility of measurement data.
  • the measuring apparatus of the present embodiment can also be suitably used in such a case.
  • a concave portion is provided on the opposing side surface of the chip, and two convex portions engaging with the concave portion of the chip are provided in the chip insertion portion of the mobile terminal.
  • the light from the light source is guided to one of the two convex portions of the mobile terminal, and the other is provided with a light receiving portion or a waveguide to the light receiving portion.
  • the detection flow path of the chip is formed such that the light source and the light receiving section face each other via the detection flow path of the chip. This reduces the optical path length during measurement. The size can be further increased, and the measurement can be performed stably.
  • FIG. 41 and FIG. 42 are perspective views showing the measuring device according to the present embodiment.
  • the measuring device shown in FIGS. 41 and 42 includes a chip 700 and a mobile terminal 706.
  • FIG. 41 shows a state before the chip 700 is inserted into a predetermined position of the mobile terminal 706, and
  • FIG. 42 shows a state where the chip 700 is inserted into the mobile terminal 706.
  • the area where the chip 700 of the mobile terminal 706 is mounted and the vicinity thereof are shown.
  • the configuration of the mobile terminal 127 described in the above embodiment is applied to the mobile terminal 706, for example. can do
  • the chip 700 has a rectangular channel 701, and the straight portion of the channel 701 is in contact with the notch 702 via a sufficiently thin and transparent partition wall. Also, the mobile terminal 706 has a concave mounting portion 704. When the chip 700 is mounted on the mobile terminal 706, the irradiating section 703 and the light receiving section 705 provided on the mounting section 704 are fitted into the notch 702, and the chip 700 is locked and fixed to the mobile terminal 706 by engagement of these. Is done.
  • Irradiation section 703 and light receiving section 705 are fixed opposite mounting section 704 via an elastic member such as a panel, and are slidable in the axial direction.
  • the irradiating section 703 is made of a material that hardly wears the tip of an optical fiber that guides measurement light from the inside of the mobile terminal 706 to the chip 700, or a light source such as an LED. It has been processed into.
  • the measurement light is also applied to the flow path 701 of the chip 700 for the tip force of the irradiation unit 703.
  • the light receiving section 705 is formed by covering the tip of an optical fiber or a photodiode, which guides light having a flow path 701 as high as possible to the measuring section of the mobile terminal 706, with a material such as a resin that is not easily worn, and forming a substantially trapezoidal shape. Then, the light that has passed through the flow path 701 along the extending direction of the flow path 701 is emitted to the tip of the light receiving unit 705.
  • the positioning between chip 700 and moving terminal 706 can be performed more reliably in a short time. Therefore, the measurement time can be reduced. Further, the reproducibility of the measurement data can be improved.
  • This embodiment relates to another configuration of the measuring device 129 applicable to the inspection system 100 (FIG. 1) described in the first embodiment.
  • the chip has a flow path-shaped detection unit, and the length of the detection unit of the chip can be measured in the mobile terminal.
  • FIG. 43 is a cross-sectional view showing a mechanism for measuring the length of a discolored portion.
  • the mobile terminal includes a substrate 607, a light receiving element 606 such as a photodiode arranged on the substrate 607 along the flow path of the chip when a chip is inserted, and a light receiving element. And a contact portion 605 provided directly above the 606 and made of a material such as crystal glass that is transparent and hard to wear.
  • the configuration of the other members of the mobile terminal can be the configuration of the mobile terminal 127 described in the above embodiment.
  • the chip includes a chip lid 600, a chip bottom plate 600, an optical waveguide 602, and an analysis channel 603. At least the chip bottom plate 601 and the analysis flow channel 603 also have a transparent material such as a transparent resin glass such as PMMA. In addition, a colored content 604 flows into a part of the analysis channel 603.
  • the chip is brought into contact with the contact portion 605 of the mobile terminal in the positional relationship shown in the state where the colored content 604 is present in the analysis channel 603.
  • the light leaked from the optical waveguide 602 illuminates the entire analysis channel 603.
  • This illumination passes through the contents of the analysis channel 603 and reaches the light receiving element 606.
  • the plurality of light receiving elements 606 are arranged in a row along the extending direction of the analysis channel 603, the light receiving elements located immediately below the region where the colored contents 604 are present A smaller amount of light reaches the 606 than the light receiving element 606 located immediately below the other area.
  • the light receiving elements 606 provided in a line are numbered in order, and by monitoring the difference in the amount of light in the longitudinal direction of the analysis channel 603, only a sufficient amount of light is received!
  • the length of the colored content 604 can be quantified as the number of the light receiving element that is not different. For this reason, since the concentration of the predetermined component in the sample can be used as the length of the colored content 604 to quantify the predetermined component, it is possible to prevent the measurement results from being varied by humans.
  • the mobile terminal 127 may further have a detachable sensor.
  • a case where the mobile terminal 127 is a mobile phone will be described as an example.
  • FIG. 34 is a diagram showing a configuration of a mobile terminal with a detachable sensor according to the present embodiment.
  • the mobile terminal shown in FIG. 34 includes a main body 500, a rod 501 protruding from the main body 500, and a sensor unit 502 provided at the tip of the rod 501.
  • a predetermined component in the sample can be measured or detected.
  • the basic configuration of main body 500 can be, for example, the configuration of mobile terminal 127 described above in the first embodiment.
  • the sensor unit 502 is attached to the tip of the rod 501 and connected to a measurement device inside the mobile terminal.
  • the sensor unit 502 is an electrochemical sensor that measures an ion concentration or a glucose concentration, or an optical sensor using an optical fiber having a configuration described below with reference to FIG.
  • the sensor unit 502 is connected to a measuring device inside the mobile terminal via an electrode.
  • FIG. 35 is a diagram illustrating an example of a configuration of a detachable optical sensor.
  • the direction EE in FIG. 35 corresponds to the direction EE in FIG.
  • the optical sensor is It comprises an outer cylinder 510 for holding the lens 513, a capillary cell 512 provided at the tip of the outer cylinder 510, and an optical connector 511 for connecting light from the optical fiber core to the optical system in the rod 501.
  • the optical system in the rod 501 includes a light source and a light receiving unit.
  • the material of the outer cylinder 510 is a clad material that is substantially totally reflected with respect to the optical fiber core 513.
  • the tip of the sensor unit 502 When the tip of the sensor unit 502 is immersed in the sample, the sample enters the capillary cell 512 by the capillary effect.
  • the capillary cell 512 By irradiating light from a light source through one of a pair of optical fiber cores 513 provided to face the end of the capillary cell 512 on the side of the rod 501 and measuring light through the other, the capillary cell 512 The absorption or scattering of the sample that has entered the interior can be measured.
  • the sensor unit 502 is preferably configured to be detachable from the rod 501 in consideration of weather deterioration of the sensor portion, but may be fixed. Further, the rod 501 can be configured to be pulled into the inside of the mobile terminal when it is carried, and to be used when it is used for measurement. In this way, the entire mobile terminal can be reduced in size when it is carried, and the rod 501 does not get in the way when it is carried, and the convenience can be further improved.
  • the mobile terminal shown in FIG. 34 or FIG. 35 can further have a mechanism for cleaning the sensor unit 502.
  • the cleaning mechanism By providing the cleaning mechanism, the sensor unit 502 which is often contaminated with the sample can be cleaned before or after the measurement, so that more accurate measurement data can be obtained.
  • mobile terminals can be carried and carried more hygienically.
  • FIG. 36 is a diagram illustrating an example of a configuration of a mobile terminal having a cleaning mechanism.
  • FIG. 37 is a cross-sectional view of the mobile terminal shown in FIG. 36, taken along the line FF, showing the configuration near the end of the rod 501.
  • the mobile terminal shown in FIGS. 36 and 37 is different from the mobile terminal shown in FIG. 34 in that a cleaning liquid cassette 507, a cleaning channel 505, and a control mechanism 506 are further incorporated in the main body 500.
  • a washing channel 508 is provided inside the rod 501.
  • the washing flow path 508 communicates with the washing liquid cassette 507 via a control mechanism 506.
  • the cleaning liquid cassette 507 contains, for example, a cleaning liquid containing a diluted neutral detergent or hypochlorous acid and an expanding agent such as compressed carbon dioxide. Is housed.
  • the cleaning channel 505 is opened by pressing the control mechanism 506 or the like, the cleaning liquid moves through the cleaning channel 505 and the cleaning channel 508 in the rod 501 in this order, and automatically moves the rod 501.
  • the force near the tip of the nozzle also blows out to clean the sensor unit 502.
  • the sensor unit 502 can be efficiently cleaned while suppressing the scattering of the cleaning liquid. Further, by allowing the hood 504 to slide along the extending direction of the rod 501, the sensor unit 502 can be covered during cleaning. In this case, the sensor cut 502 can be more efficiently cleaned.
  • the material of the rod 501 and the hood 504 can be a chemical resistant resin such as Teflon. In this way, the deterioration of the rod 501 and the hood 504 is suppressed, and the rod 501 and the hood 504 can be used for a long time.
  • the cleaning liquid cassette 507 can be a cartridge that can be attached to and detached from the main body 500. In this way, when the cleaning liquid and the swelling agent in the cleaning liquid cassette 507 become insufficient, the cleaning liquid cassette 507 is removed from the main body 500 and replaced with a new cleaning liquid cassette 507, so that the cleaning liquid and the swelling agent can be replenished. You.
  • the mobile terminal 127 used for the measuring device 129 is a mobile phone. Is not limited, and may be, for example, a portable computer.
  • the analysis center 153 can correct the analysis result of each user 187 according to the position or time of the measurement performed by the user 187 using the mobile terminal 127.
  • the values of corticosteroids such as blood cortisol and pituitary hormones such as growth hormone vary depending on the time of day in the day, and can be corrected according to the measurement time.
  • the analysis information storage unit 1 The analysis may be performed by correcting the information stored in 69 for each user 187.
  • the shape of the detection unit provided on the chip is mainly a cylindrical shape.
  • these are designed to analyze (detect or measure) the contents.
  • the shape is not limited to the round column shape, but can be selected as appropriate.
  • the shape of the detection unit may be a prism such as a square prism.
  • the detection section may not be in the shape of a diverticulum, but may be in the form of a flow path as described above with reference to FIG. 9, for example.
  • the sample introduction part 105 and the liquid reservoir 107 are also provided in the respective liquid reservoirs. It suffices if a sufficient volume is secured to hold the liquid to be introduced or collected, and a shape other than a cylinder can be used.
  • the shape of the liquid reservoir provided in the chip can be, for example, a prism such as a quadrangular prism, or a flow path having a predetermined planar shape.
  • the shape of the liquid reservoir functioning as the waste liquid reservoir may be, for example, a zigzag flow path shape in a plan view, or a column shape having irregularities on the inner surface. With this configuration, the surface area of the waste liquid reservoir can be increased, so that the capillary effect can be further improved, and a configuration can be obtained in which the waste liquid can be collected more reliably.
  • the mobile terminal 127 is configured to have the chip insertion part 131 or the notch 132, but the measurement is performed without inserting the chip 101 into the chip insertion part 131 or the notch 132. It is good also as an aspect. As such a measurement, for example, the following embodiments (I) or ( ⁇ ) are possible.
  • Non-contact measurement can be performed without inserting the chip 101 into the chip insertion section 131 or the notch section 132.
  • the contamination due to the attachment of the reagent to the mobile terminal 127 can be reliably suppressed.
  • the degree of freedom of the form of the chip 101 that can be measured can be increased, and the mobile terminal 127 can be generalized.
  • a non-contact measurement specifically, for example, a POS terminal type scan is possible.
  • a small POS scanning device is mounted on the mobile terminal 127. With this scanning device, a laser pulse of a single wavelength or several wavelengths is sequentially applied to a plurality of detection tanks provided on the chip 101. Of the reflected pulse light from each detection tank during scanning By measuring the strength, measurement for each detection tank becomes possible.
  • light can be reflected by the chip 101, and the intensity of the reflected light can be measured.
  • a mirror surface can be provided on the bottom surface of the detection unit by a method such as metal deposition. Further, the entire bottom surface of the chip 101 may be a mirror surface. By providing the mirror surface, the optical path length can be increased, so that more accurate measurement values can be obtained.
  • the chip 101 may be provided with a positioning target on a barcode. In this way, even when measurement is performed on a large number of detection tanks, it is possible to easily determine which of the detection tanks is the measured value from the positional relationship between the targets.
  • measurement can be performed without directly inserting the chip 101 into the chip insertion portion 131 or the notch 132.
  • the degree of freedom of the form of the chip 101 can be increased. Further, contamination of the mobile terminal 127 can be prevented. Further, the structure of the mobile terminal 127 itself can be simplified.
  • the degree of freedom of the measuring method can be increased.
  • an attachment for measurement by a CCD camera may be provided on mobile terminal 127.
  • an image of the vicinity of the detection tank of the chip 101 is taken through a fixture for fixing the distance and the position of the chip 101 and the camera.
  • the fixture corresponding to the attachment can be miniaturized by being a folding type or the like.
  • chip 101 is placed on the bottom of the fixture, and mobile terminal 127 is placed and fixed at a predetermined position on the top of the fixture.
  • the CCD camera provided on the mobile terminal 127 is installed facing downward. After pressing the shutter button and taking an image, the intensity of color development at each detector can be estimated from the intensity of each color of RBG by image processing.
  • the measurement attachment used by connecting to the mobile terminal can be configured to be connected to the mobile terminal via an interface such as USB, RS232C, GPIB, or parallel IZO.
  • an interface such as USB, RS232C, GPIB, or parallel IZO.
  • the chip 101 may include an electronic chip. Chip with electronic chip 101 By using the mobile terminal 127 and the measuring device 129 and the inspection system 100, for example, the following functions can be further provided.
  • the chip 101 having an electronic chip When the chip 101 having an electronic chip is used, it is possible to perform non-contact measurement without inserting the chip 101 into the mobile terminal 127. For this reason, the measurement can be performed even when the chip insertion section 131 or the notch section 132 is not formed in the mobile terminal 127.
  • the chip 101 itself has a configuration including a measurement unit.
  • FIG. 13 is a diagram showing a configuration of such a chip 101. As shown in FIG. In the chip shown in FIG. 13, information can be transmitted / received to / from the mobile terminal 127 by a communication unit provided in the electronic chip. Further, the electronic chip has a control unit that controls measurement conditions in the measurement unit based on information received in the communication unit. In this configuration, the measurement data can also be transmitted to the mobile terminal 127 by the communication unit. The transmission can be, for example, a wireless signal. Further, according to this configuration, since the device configuration of mobile terminal 127 can be simplified, measuring device 129 can be produced more efficiently.
  • the user of the chip 101 can be limited to a specific individual, and the use of the measurement data can be limited to a specific individual. Therefore, protection of the privacy of the user of the chip 101 can be enhanced. For example, a configuration that prevents others from reading data from the discarded chip 101, Use it as a way to charge your child online
  • the chip 101 on which the user's personal information is written reaches the user, and the chip 101 can be used only when the information of the chip 101 matches the personal information held by the mobile terminal 127. can do.
  • the position information of the chip 101 can be obtained even when the mobile terminal 127 does not have a function of transmitting its own position information. Can be transmitted as information relating to the position of the mobile terminal 127.
  • the chip 101 having an electronic chip When the chip 101 having an electronic chip is used, it is possible to prevent a user from using the chip 101 erroneously. For example, when an individual user places an order for a liver function test chip 101 online, information about the order can be recorded in the mobile terminal 127. In this way, even if a chip 101 used for a function other than the liver function test, for example, a chip 101 for a renal function test arrives erroneously, the information on the type of the chip 101 recorded in the mobile terminal 127 and the chip 101 If the ID, ie, the information such as the chip for renal function test, is different, it is possible to adopt a configuration that cannot be measured.
  • the ID ie, the information such as the chip for renal function test
  • the expiration date of the chip 101 is usually not always checked by the user, not necessarily the force of printing characters on the surface of the chip 101.
  • electronic chips can be used to prevent human errors in expiration date confirmation.
  • an electronic chip for a timer can be provided on the chip 101.
  • the date of manufacture can be recorded in a format that can be read by the mobile terminal 127, such as a barcode or a magnetic tape.
  • the chip 101 having an electronic chip it is possible to prepare a chip 101 of a general-purpose type design, and to customize and use it according to an order. For example, information on the type of chip 101 ordered online, such as a chip for liver function measurement A tip or the like is recorded on the mobile terminal 127, and the specifications of the chip 101 can be changed on the spot according to the data on the type, and can be customized and used for a liver function measurement chip for measuring a specific item.
  • information on the type of chip 101 ordered online such as a chip for liver function measurement A tip or the like is recorded on the mobile terminal 127, and the specifications of the chip 101 can be changed on the spot according to the data on the type, and can be customized and used for a liver function measurement chip for measuring a specific item.
  • FIG. 31 is a diagram showing an example of the configuration of such a chip 101.
  • the chip 101 in FIG. 31 has an electronic chip and an adjustment unit.
  • the electronic chip has a communication unit for transmitting and receiving information to and from the mobile terminal 127, and a valve control unit for controlling the movement path of the sample introduced into the chip 101.
  • an adjustment section capable of adjusting whether or not the sample can be moved is provided on the movement path of the sample.
  • the adjustment unit can be, for example, an openable / closable valve provided in the flow path.
  • the valve control unit can control opening and closing of the valve of the adjustment unit based on the information received from the communication unit. This makes it possible to customize the movement path of the sample in the chip according to information on the type of the sample, the type of the chip, the object to be measured, and the like.
  • the flow of chip customization processing can be, for example, as follows. After ordering online, information about the type of chip 101 is recorded on the mobile terminal 127. Then, information about the type of the chip 101 is converted into ONZOFF pattern data of a valve provided on the chip 101 by the mobile terminal 127, and the pattern data is transmitted to the chip 101. The valve on the chip is opened and closed according to the pattern. Thus, a customized chip is completed and can be used. Further, according to the information on the type of the chip 101, that is, the information recorded on the mobile terminal 127 and the information on the chip 101, the measurement data may be exchanged between them.
  • the design of the chip 101 that can be customized includes, for example, the use of an electric valve device.
  • This valve device has a configuration in which a current is temporarily passed between electrodes to electrolyze a solution in a flow path to generate bubbles. The generated air bubbles stay in that part because the flow path is narrow, and close the flow path. Once generated air bubbles do not disappear immediately, it is possible to irreversibly block a predetermined flow path.
  • the order record can be stored in the mobile terminal 127.
  • the ordered information is transferred to the mobile terminal 127. Power on chip 101 By embedding the child chip, it is possible to provide a system including processing for automatically transferring information on ordering the chip 101 to the mobile terminal 127 side.
  • the chip 101 When an electronic chip including a wireless tag is mounted on the chip 101 used for the mobile terminal 127, if information including the ID of the user and the chip 101 is discarded while being retained, it is necessary to protect the privacy information. May not be preferred. In such a case, when disposing of the mobile terminal 127, the chip 101 generates an ⁇ invalidation trigger '' that determines the timing at which the information on the authentication data such as the ID held by the chip 101 as electronic information cannot be read. It can be configured. By using a configuration in which an invalidation trigger is generated when the chip 101 is detached from the mobile terminal 127, the risk that the ID information can be read by a third party can be reduced, and the chip 101 can be safely discarded. For this reason, privacy information can be more reliably protected.
  • a chip having an electronic chip has a portion for recording authentication data, and the mobile terminal 127 is configured to release the chip 101, for which measurement has been completed, from the mobile terminal 127. May be further provided.
  • FIG. 38 is a diagram showing a configuration of the mobile terminal 800 that generates an invalidation trigger.
  • the basic configuration of the mobile terminal 800 shown here can be the configuration of the mobile terminal 127 described above in the first embodiment.
  • the mobile terminal 800 shown in FIG. 38 has a nullification convex portion 803 in a concave mounting portion 802 to which the chip 801 is mounted. When the chip 801 is attached to the mobile terminal 800, the invalidating convex portion 803 is inserted into the invalidating concave portion 805 provided on the chip 801.
  • a switch 804 that opens and closes an electric circuit related to erasure of HD information protrudes from the invalidation concave portion 805.
  • the switch 804 is pushed into the chip 801. .
  • the invalidating convex portion 803 into which the switch 804 is pushed is separated. This is a trigger to invalidate, and opens or shuts off the electrical circuit related to the erasure of the ID information, making it impossible to read HD information.
  • a method of making the readout impossible by opening or breaking an electric circuit includes, for example, There is a way to use it.
  • the HD information held in the chip 801 is held, and a part of an electric circuit provided for presenting the HD information to the outside is disconnected by using a fuse so that the function is not performed.
  • a fuse is provided in series with any one of the conductors constituting the electric circuit, and a power supply is provided for disconnecting the fuse by applying an excessive current to the fuse.
  • the switch 804 is located at
  • the power source may be installed in a mobile terminal that may be installed inside the chip 801 or may be configured to supply current to the chip 801 through an electrode. In the latter case, if the chip is completely removed from the mobile terminal, no current can be supplied, and the electrodes supplying the current to the chip 801 are in contact with each other until the chip 801 is completely separated from the invalidation protrusion 803.
  • FIG. 39 is a time chart showing the timing at which the invalidation trigger occurs in mobile terminal 800 shown in FIG. 39, as the switch 804, a state switch pressed into the inside of the chip 801 and used to make an electrical connection or disconnection when moving to a state opened to the invalidation recess 805 side is used.
  • the mobile terminal may end up receiving the data transmitted wirelessly from the chip, which makes it impossible to read the ID information. To this end, the mobile terminal sends an invalidation signal to the measurement chip after completing the measurement data of the chip, and the chip invalidates the electric circuit in the chip when receiving the invalidation signal. It is possible to adopt a configuration in which
  • the invalidation is performed, for example, when a chip has a logic circuit and receives an invalidation signal from a mobile terminal, a low-capacity fuse provided on the electric circuit holds a power supply held by the chip. This can be achieved by causing an excessive current to flow to break the wire, or by radiating excessive radio waves from the mobile terminal, causing an excessive current to flow through the electric circuit to break the fuse. it can.
  • the mobile terminal exchanges with a chip that is convenient for chip disposal.
  • a configuration having a replaceable pocket can be adopted. It is often difficult to dispose of the chips on the spot from the viewpoint of environmental protection, so it is conceivable that the used chips will be brought home.
  • a mobile terminal having a chip storage section for storing used chips a used chip can be carried or transported in a state integrated with the mobile terminal. For this reason, convenience when carrying and carrying can be improved.
  • FIG. 44 is a diagram illustrating an example of a configuration of a mobile terminal having a chip storage unit.
  • FIG. 44 is a cross-sectional view showing the configuration of a mobile terminal having a pocket for storing used chips as a chip storage unit.
  • the mobile terminal shown in FIG. 44 has a detachable chip pocket. The attachment and detachment of the chip pocket from the mobile terminal is performed by sliding the chip pocket along a slide-type pocket holder provided in the mobile terminal.
  • the tip pocket is provided with a spring lid. When the panel-type lid is opened and the used chip is stored in the chip pocket, the chip is held in the pocket because the panel-type lid closes.
  • the chip insertion portion of the mobile terminal having the measurement unit may be provided with a coating for preventing dust from entering when not in use.
  • a lid for removing dust can be provided above the chip insertion portion 131 in FIG. 4 and the notch 132 in FIG.
  • a slide-type lid may be provided, and at the time of measurement, the lid may be slid to expose the chip insertion portion 131 or the notch 132 and insert a chip.
  • a panel-type honeycomb lid may be provided instead of a lid other than the slide type.
  • a plug-in dummy chip for a lid may be inserted into the notch of the mobile terminal.
  • a device for measuring electric characteristics of a chip having electrodes may be provided in a mobile terminal.
  • a configuration in which electrodes are arranged on the surface of the chip and the mounting portion can be adopted. This makes it possible to measure a specific component in the sample by using a change in the electrical characteristics. Therefore, the number of types of measurable samples can be increased.

Abstract

 利用者が検査機関を訪問しなくても、所望の場所で自分の健康状態をチェックすることを可能とする。また、利用者が自分の健康状態を簡便にチェックすることを可能とする。利用者は、まず、血液、唾液、尿等、測定対象となる体液を採取する。そして、チップ(101)に、採取した体液を試料として導入する。そして、試料中の特定成分に作用する検出試薬と作用させ、所定の反応を生じさせる。このチップ(101)を移動端末(127)にセットする。移動端末(127)の測定ユニット(151)は、反応の産物を光学的方法等で定量することを介して試料中の特定成分の量を測定する。移動端末(127)は測定値を分析センター(153)に送信する。

Description

明 細 書
測定システム
技術分野
[0001] 本発明は、測定システムに関する。
背景技術
[0002] 近年、人々の間で、データに基づいた健康管理への関心が高まっている。また、継 続的に生体データを取得し、健康状態をチェックする必要のある人がいる。従来、こ のような人が検査機関を訪れて検査を受けるのは、時間および費用の面で制約があ り、多忙な人ほど検査を受ける機会が限られていた。このため、検査機関を訪問しな くても、簡便に自分の健康状態をチェックすることができる技術の開発が望まれてい た。
[0003] そこで、遠隔地の健康管理センターで生体データを自動収集する健康管理支援シ ステムが提案されている(特許文献 1)。特許文献 1に記載の技術によれば、測定対 象者が自宅に専用ターミナルを設置することにより、体温計または血圧計による測定 結果を医療機関等に転送することができるとされている。ところが、このシステムは、 比較的装置構成が大が力りであった。また、外出先では測定を行うことができなかつ た。また、血液検査などに適用することは困難であった。
特許文献 1:特開 2003— 76791号公報
[0004] 発明の開示
[0005] 本発明は上記事情に鑑みてなされたものであり、その目的は、利用者が検査機関 を訪問しなくても、所望の場所で自分の健康状態をチ ックすることができる技術を 提供することにある。また、本発明の別の目的は、利用者が自分の健康状態を簡便 にチェックすることができる技術を提供することにある。
[0006] 所望の場所で健康チェックを可能にするには、
(1)測定システムが携帯可能な移動端末を有すること、
(2)測定システムは安全で衛生的に使用できること、
(3)移動端末は通信機能を有し、当該移動端末を介してユーザは遠隔サポートを受 けられること、
が不可欠である。
[0007] 重く大きな装置では、所望の場所に持ち出すことができないので、測定システムは できるだけ小さく軽い必要がある。分析が自動的に進む、軽く小さな測定チップを利 用して測定することは、移動端末の軽量ィ匕に極めて有利である。
[0008] また、所望の場所で健康チェックするには、測定チップと移動端末とが安全で衛生 的に携帯できる必要がある。健康チェックでは、感染の危険性のある生体試料を測 定するため、生体試料を導入する部分と測定装置を別にして、たとえば、測定チップ にだけ生体試料を導入し、測定装置は生体試料が触れな!/ヽ移動端末に設けること や、測定チップを使い捨てとすることが有効である。さらに、試料の種類や測定の種 類によっては、測定チップに消毒処理が間違いなく施されないと、衛生上、携帯に不 向きとなるため、測定チップを中和する機構が必要となる場合がある。
[0009] また、病院などサポート体制の整った場所でな 、場所で健康チェックを行う場合、 ユーザは、その測定値が健康上どのような意味があるかを理解するにも、測定の結 果が正しいか否かを知るにも、さらには測定システムの誤動作を復旧するにも、遠隔 地の専門家やデータベースと情報をやりとりする必要がある。そのため移動端末が通 信機能を持ち、通信によるユーザサポートシステムに組み込まれていることが極めて 重要である。
[0010] 本発明によれば、試料導入部と、該試料導入部に連通する検出部とを有し、前記 試料導入部に導入された試料に所定の操作を加えて前記検出部に導く測定チップ と、前記測定チップに導入された前記試料に含まれる特定の成分に関する測定を行 う移動端末を有する測定システムであって、前記移動端末は、前記測定チップが挿 入される挿入部と、前記検出部に導かれた前記成分の特性に関する測定を行う測定 ユニットと、前記測定ユニットで得られた測定結果を外部に送信する送信部と、を有 することを特徴とする測定システムが提供される。
[0011] 本発明の測定システムは、測定チップの挿入部と測定ユニットを有する移動端末を 有する。このため、測定システムの利用者は、移動端末に測定チップを挿入し、所望 の時間に所望の場所で試料中の特定の成分に関する測定を行うことができる。よつ て、自宅に大型の測定装置を設置したり、検査機関を訪問したりすることなぐ簡素な 装置構成の測定システムを用いてその場で容易に測定を行うことができる。
[0012] また、本発明の測定システムにおいては、移動端末の挿入部に測定チップの所定 の部分を挿入することにより測定が行われる。すなわち、試料に所定の処理を行う測 定チップと測定チップ上の試料の測定を行う移動端末の二つの部材に異なる機能を 付与することができる。このため、移動端末に直接試料を付着させることなく測定を行 うことが可能となる。
[0013] また、測定システムを構成する移動端末と測定チップとをそれぞれ別々に設計する ことができるため、種々の効果が得られる。すなわち、測定の種類に応じて複数の測 定チップを選択することができる。また、測定チップを使い捨の形態とすることもできる 。一方、測定に移動端末を利用する場合、移動端末に求められる小型軽量化の要 請から、測定ユニットの構成を小型で簡素な形態とする必要がある。他方、試料が生 体試料等である場合には、採取した試料を直接測定に供したのでは正確な測定結 果が得られないことがある。本発明の測定システムにおいては、移動端末と測定チッ プが分離した構成を採用することにより、移動端末の測定ユニットを最小限の簡素な 構成としつつ、測定チップにおいて、測定に必要な所定の処理が可能な構成となつ ている。すなわち、測定チップに導入された試料に所定の操作を加えて検出部に導 くことにより、測定前の試料に対し多様な処理を施すことができる。このため、測定チ ップに導入された試料を測定に適した状態で検出部に導くことができる。よって、移 動端末の装置構成の簡素化、小型軽量ィ匕を可能とし、かつ、試料中の成分について 精密な測定結果を得ることが可能となる。
[0014] また、本発明に係る測定システムにおいて、移動端末は送信部を有するため、測定 結果を容易に外部に送信し、また測定結果に基づく分析結果を外部から取得するこ とが可能となる。このため、移動端末自体に分析機能を設ける必要がない。よって、 移動端末の装置構成を簡素化しつつ、測定結果に基づく正確な分析結果を得ること が可能となる。
[0015] 本発明において、「測定チップ」とは、導入された試料に対し所定の操作を加える 機能が付与された基板のことをいう。本発明におけるチップは、たとえば、基板表面 に流路溝が設けられ、この流路溝中を液体試料が流動して、特定成分の濃度に応じ た発色反応等の所定の反応を発現させるように構成することができる。液体試料は、 毛細管現象等を利用して流路溝中を移動するようにしてもよいし、電界や圧力などの 外力を付与することにより移動するようにしてもょ 、。
[0016] 本発明の測定システムにお 、て、前記所定の操作は、たとえば前記試料の分注と することができる。こうすることにより、測定ユニットによる測定に適した分量の試料を 検出部に導くことが可能となる。また、本発明の測定システムにおいて、前記所定の 操作は、前記試料の希釈とすることもできる。試料を希釈することにより、測定チップ に導入された試料をさらに測定に適した濃度で検出部に導くことができる。よって、さ らに正確な測定結果を得ることができる。
[0017] 本発明によれば、試料導入部と、該試料導入部に連通する検出部とを有し、前記 試料導入部に導入された試料に所定の操作を加えて前記検出部に導く測定チップ と、前記測定チップに導入された前記試料に含まれる特定の成分に関する測定を行 う移動端末を有する測定システムであって、前記移動端末は、前記検出部に導かれ た前記成分の特性に関する測定を行う測定ユニットと、前記測定ユニットで得られた 測定結果を外部に送信する送信部と、を有することを特徴とする測定システムが提供 される。
[0018] 力かる測定システムにお 、ても、測定チップと移動端末をそれぞれ別々に設計する ことができる。また、本発明の測定システムによれば、チップを移動端末中に挿入せ ずに接触方式または非接触方式で測定することができる。また、測定装置にアダプタ 一を接続し、アダプターを介して検出部に導かれた試料の測定を行うことが可能とな る。アダプターを介して測定することにより、移動端末への試料の付着により生じる移 動端末の汚染をさらに確実に抑制することができる。また、アダプターを用いることに より、移動端末による測定に適用可能なチップの構成をさらに多様ィ匕することができ る。
[0019] 本発明の測定システムにおいて、前記測定ユニットは、前記検出部に光を照射す る光源と、前記光源からの出射光を用いて前記成分の光学特性に関する測定を行う 受光部と、を有してもよい。こうすること〖こより、測定チップに導入された試料中の成分 の光学特性を確実に測定することができる。このため、移動端末において、試料中の 特定の成分に関して必要最低限の測定データを簡素な構成で得ることができる。そ して、測定結果を外部に送信することにより、詳細な分析結果を得ることができる。こ のため、移動端末の装置構成を簡素化しつつ、詳細な分析を行うことが可能となる。
[0020] 本発明の測定システムにお 、て、前記測定チップは、前記試料導入部から前記検 出部へ至る流路を有し、前記流路に、前記成分を分離するための分離部が設けられ ていてもよい。こうすること〖こより、測定チップに導入された試料中の成分を確実に分 離することができる。このため、試料中の共雑物を除去した後、検出部に導くことがで きる。よって、測定ユニットにおける測定に好適な試料を測定チップ上で調製すること が可能となるため、測定の対象となる成分が微量であっても、これを分離し、測定時 のバックグラウンドを減少させることができる。このため、さらに精密な測定を行うことが できる。
[0021] 本発明の測定システムにおいて、前記検出部は前記成分に作用してその光学特 性を変化させる検出物質を備えることができる。こうすることにより、測定チップの導入 された試料中の成分を確実に検出することができる。よって、微量な成分に対しても 感度の高 、測定を行うことができる。
[0022] 本発明の測定システムにお 、て、前記送信部は、前記測定結果を測定状況と関連 づけて外部に送信することができる。こうすることにより、測定結果を測定状況に関連 づけて外部の分析に供することができる。また、測定結果を受信した外部において、 測定状況に応じた測定結果の補正が可能となる。なお、本発明において、前記測定 状況は、たとえば測定日時または測定場所等とすることができる。
[0023] 本発明の測定システムにおいて、前記移動端末が携帯電話機能を有する構成とす ることができる。こうすることにより、測定システムの利用者は携帯電話と測定チップの みを携帯することにより所望の時間にその場で測定を行うことができる。また、移動端 末を携帯電話等の携帯端末とすることにより、測定システム全体の小型化が可能とな る。
[0024] 本発明の測定システムにおいて、前記移動端末とネットワークを介して接続され、 前記移動端末から送信される情報を受け付ける分析センターをさらに含み、前記分 析センターは、前記移動端末力 送信された前記測定結果を取得するデータ取得 部と、前記データ取得部にて取得された測定結果に基づいて前記試料を分析し、分 析結果を得る分析部と、を有してもよい。
[0025] 本発明の測定システムは、分析センターを含むため、移動端末の装置構成を簡便 なものとしつつ、移動端末による測定結果をデータ取得部で取得し、測定チップに導 入された試料中の成分の分析を分析部にて確実に行うことができる。
[0026] 本発明の測定システムにお 、て、前記分析センターは、前記測定結果または前記 分析部で得られた前記分析結果を記憶する分析データ記憶部と、前記分析部が参 照するデータを記憶する参照データ記憶部と、を有してもょ 、。
[0027] 分析データ記憶部を有することにより、分析結果を分析センターに記憶させておく ことが可能となる。また、参照データ記憶部を有することにより、分析センターにおけ る分析をさらに確実に行うことができる。また、参照データ記憶部に記憶された参照 データを、分析データ記憶部に記憶された情報に基づき補正することが可能となる。
[0028] また、本発明の測定システムにおいて、前記測定チップは、さらに中和液溜めを有 し、前記移動端末と前記測定チップとは、測定の終了した前記測定チップを前記移 動端末力 離脱させることをきつかけとして、該中和液溜め内の中和液が、前記測定 チップに含まれる流路系に導入される機構をさらに有することができる。こうすることに より、使用後のチップに形成された有路系を中和することができるため、使用後の測 定チップをより一層安全に携帯することができる。
[0029] 本発明の測定システムにお ヽて、前記移動端末は、前記送信部から送信される前 記分析結果を受信する受信部を有してもよい。こうすることにより、測定結果に基づく 分析の結果を、移動端末力も受信することができる。よって、測定システムの利用者 は、分析結果を所望の場所で確認できる。
[0030] なお、本発明において、流路系は、測定チップに設けられた試料導入部から該試 料導入部に至る液体の移動経路を指す。たとえば、本発明において、前記中和液が 前記流路に導入される構成とすることができる。
[0031] 本発明の測定システムにおいて、前記測定チップは、さらに認証データを記録する 部分を有し、前記移動端末は、測定の終了した前記測定チップを前記移動端末から 離脱させること、あるいは、前記移動端末が、データを受信完了したこと、をきつ力 4ナ として、該認証データを読みとり不能にせしめる機構をさらに有することができる。こう することにより、使用後のチップをさらに安全に廃棄することができる。
[0032] 本発明の測定システムにおいて、前記試料は体液とすることができる。こうすること により、測定システムは利用者の体液に関する測定を簡便な構成で容易に実施する ことが可能となる。よって、測定システムの利用者は自己の健康状態に関する測定を 所望の時間に所望の場所で行うことができる。
[0033] 以上説明したように本発明によれば、利用者が検査機関を訪問しなくても、所望の 場所で自分の健康状態をチ ックすることができる。また、本発明によれば、利用者 が自分の健康状態を簡便にチェックすることができる。
図面の簡単な説明
[0034] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
[0035] [図 1]本発明の実施の形態に係る検査システムの構成を示す図である。
[図 2]図 1の検査装置を用いる測定手順を説明する図である。
[図 3]図 1の検査システムに適用可能なチップの構成を示す図である。
[図 4]図 1の検査システムに適用可能な移動端末の構成を示す図である。
[図 5]図 4の C-C'方向の断面を示す図である。
[図 6]図 4の C-C'方向の断面を示す図である。
[図 7]図 4の C-C'方向の断面を示す図である。
[図 8]図 4の C-C'方向の断面を示す図である。
[図 9]図 1の検査システムに適用可能なチップの構成を示す図である。
[図 10]図 9の D— D'断面図である。
[図 11]図 1の検査システムに適用可能な移動端末の構成を示す図である。
[図 12]図 1の検査システムの構成を機能ブロックごとに示す図である。
[図 13]本発明の実施の形態に係る検査システムに適用可能な電子チップを有するチ ップの構成を示す図である。
[図 14]図 12の検査システムの分析結果記憶部のデータ構造の一例を示す図である 図 15]図 12の検査システムの利用者情報記憶部のデータ構造の一例を示す図であ る。
図 16]図 12の検査システムのエリア情報記憶部のデータ構造の一例を示す図である 図 17]図 12の検査システムを用 V、た処理手順を説明する図である。
図 18]図 1の検査システムに適用可能なチップの構成を示す図である。
図 19]図 18のチップの分離領域の構成を説明する図である。
図 20]図 19の分離領域の構成を用いた分離方法を説明する図である。
図 21]図 18のチップの混合部の構成を説明する図である。
図 22]図 18のチップの混合部の構成を説明する図である。
図 23]図 22の液体スィッチを拡大した上面図である。
図 24]図 22の液体スィッチの堰き止め部を示す上面図である。
図 25]図 22の液体スィッチのトリガー流路の構成を例示する図である。
図 26]図 1の検査システムに適用可能なチップの構成を示す図である。
図 27]図 26のチップの分離領域の構成を説明する図である。
図 28]図 26のチップの分離領域の構成を説明する図である。
図 29]本発明の実施の形態に係る検査システムの構成を示す図である。
図 30]本発明の実施の形態に係る検査システムの構成を示す図である。
図 31]本発明の実施の形態に係る検査システムに適用可能な電子チップを有するチ ップの構成を示す図である。
図 32]図 18のチップの分離領域の構成を説明する図である。
図 33]図 18のチップの分離領域の構成を説明する図である。
図 34]本発明の実施の形態に係る着脱式センサつき移動端末の構成を示す図であ る。
図 35]本発明の実施の形態に係る着脱式光学センサの構成を示す図である。
図 36]本発明の実施の形態に係る洗浄機構を有する移動端末の構成の一例を示す 図である。 [図 37]図 36に示した移動端末のロッドの端部近傍の構成を示す F— F'断面図である
[図 38]本発明の実施の形態に係る無効化トリガーを発生する移動端末の構成を示す 図である。
[図 39]本発明の実施の形態に係る移動端末の無効化トリガーが発生するタイミングを 示す図である。
[図 40]本発明の実施の形態に係る検査システムに適用可能なチップの構成を示す 図である。
[図 41]本発明の実施の形態に係る検査システムに適用可能な測定装置の構成を示 す斜視図である。
[図 42]本発明の実施の形態に係る検査システムに適用可能な測定装置の構成を示 す斜視図である。
[図 43]本発明の実施の形態に係る検査システムに適用可能な測定装置の構成を示 す断面図である。
[図 44]本発明の実施の形態に係る検査システムに適用可能な移動端末の構成を示 す断面図である。
[図 45]本発明の実施の形態に係る検査システムに適用可能な測定装置の構成を示 す図である。
発明を実施するための最良の形態
[0036] 以下、本発明の実施の形態について図面を参照して説明する。なお、すべての図 面において、共通する構成要素には同じ符号を付し、適宜説明を省略する。
[0037] (第一の実施形態)
図 1は、本実施形態の検査システムを示す図である。検査システム 100は、測定装 置 129および分析センター 153を含む。測定装置 129は、チップ 101および移動端 末 127から構成され、これらはそれぞれ異なる機能を有する。検査システム 100では 、利用者の体液中に関して測定装置 129を用いた測定を行い、利用者の健康状態 を調べる。
[0038] 移動端末 127は、通信機能を有する携帯電話や PDA (Personal Digital Assis tant)等とすることができる。以下、移動端末 127が携帯電話である場合を例に説明 する。移動端末 127は、チップ 101での検出反応を測定する測定ユニット 151を含む 。ここで、測定ユニット 151は、たとえば分光光度計、蛍光光度計、または CCDカメラ 等である。また、移動端末 127は、分析センター 153から送信される判断結果を利用 者に提示可能に構成される。
[0039] また、チップ 101では、導入された試料は所定の操作を加えられた後検出部に導 かれ、移動端末 127の測定ユニット 151で測定を受ける。試料に対する操作としては たとえば分注、希釈、前処理、分離、混合、反応等が挙げられる。チップ 101は、利 用者が試料を導入し、測定ユニット 151による測定に適した量を分注できるように構 成される。
[0040] 移動端末 127の利用者は、チップ 101に自分の血液や尿などの体液にを分注する 。そして、このチップ 101を移動端末 127にセットして、測定値を取得し、結果を移動 端末 127から分析センター 153に送信する。この手順を図 2を用いて説明する。
[0041] 図 2は、チップ 101を用いた分析手順の流れを説明する図である。利用者は、まず 、血液、唾液、尿等、測定対象となる体液を採取する(S101)。そして、チップ 101に 、採取した体液を試料として導入する(S 102)。そして、試料中の特定成分に作用す る検出試薬と作用させ、所定の検出反応を生じさせる(S103)。このチップ 101を移 動端末 127にセットする力または近接させる(S104)。移動端末 127の測定ユニット 1 51では、試料の光学測定を行い、その特徴カゝら特定される成分を検出する(S 105) 。移動端末 127は測定値を分析センター 153に送信する(S 106)。本実施形態にお いて、利用者が自分の体液を採取してから測定値を分析センター 153に送信するま での手順は連続して同じ場所で一定時間内に行われるものとする。
[0042] このように、本実施形態では、チップ 101を移動端末 127にセットするかまたは近接 させて、簡単に測定を行うことが可能である。また、測定結果を即時に送信し、分析 センター 153に分析を依頼することが可能である。
[0043] なお、測定ユニット 151における測定は、たとえば成分の光学的な性質や電気的な 性質に関する測定とすることができる。以下、測定ユニット 151が光学測定を行う場合 を例に説明する。 [0044] 分析センター 153は、利用者から送信された測定値と、当該測定に関する特徴を 示す参照パラメータとに基づき、その利用者の健康状態を判断する。そして、判断結 果を移動端末 127に送信する。これにより、移動端末 127の利用者は、病院や検査 機関等に行くことなぐ簡易な方法で自己の健康状態を知ることができる。
[0045] 次に、チップ 101および移動端末 127の詳細な構成について説明する。
[0046] 図 3 (A)および図 3 (B)は、チップ 101の構成の一例を示す図である。図 3 (A)はチ ップ 101の上面図である。図 3 (B)は図 3 (A)の A— A'方向の断面図である。
[0047] チップ 101は、基板上部 103aと基板下部 103bとが接合された基板 103からなる。
基板下部 103b上に、試料導入部 105、液溜め 107、流路 109、検出部 113、および 検出部 115が形成されている。流路 109は、試料導入部 105、液溜め 107、検出部 113、および検出部 115に連通している。
[0048] 基板上部 103aは、基板下部 103bの蓋として流路 109を被覆する。基板上部 103 aには、液溜め 107、検出部 113、および検出部 115に連通する空気孔 123が形成 されている。また、試料導入部 105に連通する導入口 106が設けられている。導入口 106は、測定対象の試料が毛細管現象により試料導入部 105に円滑に導入されるよ うに構成されている。すなわち、試料導入部 105のうち、基板上部 103aに形成され た部分は、毛細管効果の発揮に充分な幅の狭さ、具体的にはたとえば lmm以下の 幅となっており、基板下部 103bに形成された液溜め部分に連通している。なお、基 板上部 103aに形成された毛細管の上部は、上面に向かって拡大するテーパーとな つており、利用者が試料を確実に導入することができるようになつている。
[0049] さらに、基板上部 103aおよび基板下部 103bには、移動端末 127に適切に挿入さ れるための凹部 125がそれぞれ 4箇所設けられて 、る。
[0050] 図 3 (A)および図 3 (B)のチップ 101は、検出部 113検出部 115の 2つの検出部を 有するが、検出部の数に限定はなぐ所定の数に設定することができる。これらの検 出部では、試料導入部 105に導入された試料中の所定の成分を検出するための検 出反応を行うことができる。これらの検出部は、試料中の成分に作用してその光学特 性を変化させる検出物質を備えることができる。たとえば、検出部 113または検出部 1 15に特徴成分の存在により発色する発色剤が導入されていてもよい。なお、複数の 検出部のうち、一つの液溜めには発色剤を導入せず、参照用の液溜めとして用いる ことちでさる。
[0051] 基板上部 103aおよび基板下部 103bとして、たとえばシリコン基板、石英等のガラ ス基板、シリコン榭脂ゃポリメチルメタタリレート等の榭脂基板を用いることができる。 また、チップ 101の外径寸法は携帯電話の大きさや測定対象に応じて適宜選択され る力 たとえば、図中の縦 lcm— 5cm程度、横 lcm— 5cm程度とすることができる。 また、チップ 101の厚さは、たとえば 0. 5mm— lcm程度とすることができる。
[0052] 図 3のチップ 101の作製は、たとえば次のようにして行う。基板下部 103bに溝を形 成し、流路 109とする。また、流路 109に連通する試料導入部 105、検出部 113、お よび検出部 115を形成する。これらの形成は、基板下部 103bとしてプラスチック材料 を用いる場合、エッチングやエンボス成形等の金型を用いたプレス成形、射出成形、 光硬化による形成等、基板下部 103bの材料の種類に適した公知の方法で行うこと ができる。流路 109の幅は、分離目的に応じて適宜設定される。たとえば、細胞の液 状分画成分 (細胞質)のうち、高分子量成分 (DNA、 RNA、タンパク質、糖鎖)の抽 出を行う場合、 5 /ζ πι—1000 /ζ πι、とする。基板下部 103bの裏面に、同様にして凹 部 125を形成する。また、基板上部 103aに、導入口 106、空気孔 123、および凹部 125を形成する。
[0053] 得られた基板上部 103aおよび基板下部 103bを接合することにより、チップ 101が 得られる。
[0054] なお、基板上部 103aおよび基板下部 103bがプラスチック材料である場合、たとえ ばこれらを熱融着により接合することができる。この場合、基板上部 103aおよび基板 下部 103bを構成する榭脂のガラス転移温度付近まで加温した状態で、当接させ、 圧着した後、室温まで降温させ、その後圧力を解除すればよい。
また、溶媒を用いた融着を行ってもよい。この場合、基板上部 103aおよび基板下 部 103bを溶解させる溶剤をこれらの表面に極めて薄くスプレーした後、これらを当接 させて、接合させることができる。
[0055] また、基板上部 103aと基板下部 103bとを当接させた状態でこれらに超音波振動 を与え、そのエネルギーで基板上部 103aおよび基板下部 103bの表面を融解し、接 着してちょい。
[0056] また、基板上部 103aおよび基板下部 103bの種類に応じて選択される接着剤を用 いて接着してもよい。接着剤を用いる場合、流路 109等の微小空間が接着剤により 埋設されないようにする必要がある。そこでたとえば接着剤を基板下部 103bにのみ 極めて薄く塗布または展開することができる。また、マスクを用いて基板上部 103aの 微小構造以外の部分にのみ接着剤を塗布または展開し、基板下部 103bを接着して ちょい。
[0057] また、基板上部 103aおよび基板下部 103bがたとえばガラス、石英、または表面を 酸ィ匕したシリコン基板である場合には、たとえば、溶媒によりこれらを融着することが できる。具体的には、たとえばフッ化水素水溶液を基板上部 103aまたは基板下部 1 03bの表面に極めて薄くスプレーした後、これらを押し当てた状態で加温し、接着す ることができる。また、 SOG (シリコンオキサイドゲル)などの接着剤を用いてもよい。 S OGを用いる場合、基板上部 103aまたは基板下部 103bの表面に SOGを塗布、展 開した後これらを当接させ、オーブン中で 200°C程度に加熱してもよい。加熱により S OGをガラス化し、確実に接着することができる。
[0058] また、基板上部 103aおよび基板下部 103bがゴムである場合には、架橋剤を接着 剤として用いることができる。基板上部 103aまたは基板下部 103bの表面に接着剤 を塗布し、これらを押し付けた状態で架橋反応を生じさせることにより、これらが接合 される。
[0059] なお、流路 109等の壁面に DNAやタンパク質などの分子が粘着することを防ぐた めに、壁面をコーティングすることが好ましい。こうすれば、チップ 101が良好な分離 能を発揮することができる。コーティング材料としては、たとえば、細胞膜を構成するリ ン脂質に類似した構造を有する物質等が挙げられる。また、流路壁をフッ素系榭脂 などの撥水性榭脂、あるいは牛血清アルブミンなどの親水性物質によりコーティング することによって、 DNAなどの分子が流路壁に粘着することを防止することもできる。 また、 MPC (2—メタクリロイルォキシェチルホスホリルコリン)ポリマー等の親水性高分 子材料や、親水性のシランカップリング剤により基板下部 103bの表面をコーティング してちよい。 [0060] MPCポリマーを用いて基板下部 103bの表面の親水化を行う場合、具体的には、 たとえばリピジユア (登録商標、 日本油脂社製)などを用いることができる。リピジユア( 登録商標)を用いる場合、たとえばこれを 0. 5wt%となるように TBE (トリスボレイト + EDTA)バッファーなどの緩衝液に溶解させ、この溶液を流路 109内に満たし、数分 間放置することによって流路壁をコーティングすることができる。
[0061] また、流路壁をはじめとする基板下部 103bの表面を親水化することにより、毛細管 現象を利用して導入口 106に試料を確実に導入することができる。また、導入口 106 に導入された試料をより一層確実に流路 109に導入し、毛細管現象により流路 109 中を移動させることができる。基板下部 103bの表面を親水化する方法として、流路 1 09の表面にシリコン酸ィ匕膜等の親水性膜を形成することが有効である。親水性膜の 形成により、特に外力を付与しなくとも緩衝液が円滑に導入される。
[0062] また、基板下部 103bの少なくとも表面を、 PHEMA (ポリヒドロキシェチルメタクリレ ート)等の親水性高分子材料で構成することにより、毛細管効果が促進される。さらに 、基板下部 103b表面への試料成分の非特異的な吸着を抑制することができる。この ため、試料が微量であっても確実に分離および検出または測定を行うことができる。 また、基板下部 103bの表面を酸ィ匕チタンで構成し、この表面に紫外線照射を行うこ とにより、基板下部 103b表面を親水化することができる。また、基板下部 103bの表 面を酸素プラズマによりアツシングしてもょ 、。
[0063] 以上のように、本実施形態に係るチップ 101を用いることにより、試料中の所定の成 分を分離し、さらに検出を行うことができる。このため、たとえば検出部 113または 11 5において呈色反応が行われる場合、これを比色して試料中の特定の成分の有無を 判断したり、濃度を測定したりすることができる。この場合、基板上部 103aおよび基 板下部 103bが透明な材料により形成されていることが好ましい。こうすることにより、 より正確な検出を行うことができる。透明な材料として、具体的には、たとえば石英、 環状ポリオレフイン、 PMMA (ポリメチルメタタリレート)、 PET (ポリエチレンテレフタレ ート)等を用いることができる。
[0064] 図 4 (A)および図 4 (B)は、移動端末 127の構成の一例を示す図である。ここでは、 移動端末 127が携帯電話であって、測定ユニット 151 (図 5、図 6に図示)が分光光度 計である場合を例として説明する。移動端末 127には、チップ 101を挿入するための チップ揷入部 131が設けられている。図 4 (A)は、移動端末 127にチップ 101が挿入 されていない状態を示し、図 4 (B)は、移動端末 127にチップ 101を挿入した状態を 示す。移動端末 127は、一般的な携帯電話等の移動端末と同様、電池パック 140、 アンテナ 141、機能ボタン群 143と、および表示部 145等を有する。
[0065] 図 5は、図 4 (A)の C-C'方向の断面を示す図である。図 5に示すように、移動端末 127には、チップ挿入部 131に挿入されるチップ 101の検出部 113および検出部 11 5に対応する位置に測定ユニット 151が設けられる。図 5では、二つの測定ユニット 1 51を有する移動端末 127が例示されて 、る力 測定ユニット 151の数はこれに限ら れず、チップ 101上の検出部の数に応じて適宜選択される。
[0066] 測定ユニット 151は、光を照射する光源 133aまたは光源 133bと、これらの光源か らの光をそれぞれ検出する受光部 135aまたは受光部 135bとを含む。光源 133aお よび光源 133bは、チップ揷入部 131にチップ 101が挿入されたときにチップ 101の 検出部 113および検出部 115に光を照射することが可能な位置に設けられる。また、 受光部 135aおよび受光部 135bは、検出部 113および検出部 115に収容された液 体の光学特性に関する測定を行う。
[0067] たとえば、光源 133aおよび光源 133bにおいて 280— 850nm程度の波長領域に おける透過光強度を測定することができる。このとき、受光部 135aおよび受光部 135 bは、検出部 113または検出部 115を透過した光を検出可能な位置に設けられる。 光源 133aおよび光源 133bの一方は参照用の液溜めに光を照射するのに用いるこ とがでさる。
[0068] 移動端末 127のチップ挿入部 131内には、チップ 101を保持するための凸部 139 が形成されたパッキン 137が設けられる。チップ 101にはパッキン 137の凸部 139と 嵌合する凹部 125が設けられており、これらが嵌合することにより、チップ 101をチッ プ揷入部 131に確実に装着することができる。これにより、光源 133aおよび光源 133 bからの光が確実にチップ 101の検出部 113または検出部 115に照射され、これらを 透過した光を確実に受光部 135aおよび受光部 135bにより受光することができる。
[0069] 受光部 135aおよび受光部 135bは、受光した透過光の強度を電流に変換する。図 示していないが、測定ユニット 151は、受光部 135aおよび受光部 135bが変換した 電流値に基づき透過度を算出する演算部を含む。光源 133aおよび光源 133bは、 たとえば発光ダイオード、レーザーダイオード、または半導体レーザなどとすることが できる。また、これらの光源からの出射光を光ファイバで所定の位置に導く構成として もよい。また、受光部 135aおよび受光部 135bは、たとえばフォトトランジスタ、光電セ ル等とすることができる。また、光電セルのかわりにフォトダイオードを利用することも できる。
[0070] 図 6—図 8は、図 4 (A)の C C'方向の断面図である。これらの図は、測定ユニット 1 51の構成の例を示して!/、る。
[0071] 図 6では、 LED247aおよび LED247bが光源 133aおよび光源 133bに相当する。
また、フォトトランジスタ 249aおよびフォトトランジスタ 249b力 受光部 135aおよび受 光部 135bに相当する。また、フォトトランジスタ 249aおよびフォトトランジスタ 249bの 上部にそれぞれレンズ 343aおよびレンズ 343bが設けられている。
[0072] 測定ユニット 151の各構成要素の大きさは、チップ 101上の検出部 113および検出 部 115の形状または大きさに対応して設計される。ここで、たとえば、チップ 101にお いて検出部 113および検出部 115の深さはたとえば 0. 1mm— lcm程度とし、これら の間隔はたとえば 0. 5— 2mm程度とすることができる。このとき、 LED247a、 LED2 47b、レンズ 343a、レンズ 343b、フォトトランジスタ 249a、およびフォトトランジスタ 24 9bの大きさもこれに合わせて設計される。
[0073] 図 7は、図 4に示した移動端末 127にチップ 101を挿入する様子を示す図である。
移動端末 127のチップ挿入部 131にチップ 101を挿入すると、測定ユニット 151の対 応する位置に検出部 113および検出部 115が挿入される。このため、チップ 101に 形成された検出部の数だけ測定ユニット 151を設けておけば、それぞれの検出部に ついて、光学測定を一度に行うことができる。よって、短時間での測定が可能となる。
[0074] なお、図 5では図示していないが、移動端末 127は、光源 133aおよび光源 133bか らの出射光を分光し、所定波長の光を照射するための分光部を有することもできる。 このようにすれば、特定の波長にピークを有するような特定成分の存在量を分析する ための測定を行うことができる。 [0075] 図 8は、分光部を有する測定ユニット 151の構成を模式的に示す図である。図 8の 測定ユニット 151は、図 6の測定ユニット 151と基本構成が同様である力 光源 238を 1台とし、分光部 134を有する点が異なる。分光部 134は、光学フィルタ 340および 遮光板 341を有する。なお、図 8では、集光部となるレンズ 343aおよびレンズ 343b を設けな ヽ構成としたが、集光部を設けた構成とすることもできる。
[0076] 光学フィルタ 340を設けることにより、光源 238からの出射光のうち、所定の波長範 囲にある光のみを検出部 113または検出部 115に照射することができる。このため、 ランプ光源など、出射光の波長分布がブロードな光源 238を用いる際にも、測定波 長に対応する光学フィルタ 340で分光し、測定するこができる。また、光学フィルタ 34 0は遮光板 341に支持されて 、るため、他の測定ユニット 151に光源 238からの出射 光が漏洩するのを防止することができる。
[0077] 光学フィルタ 340には、光学フィルタとして既知の材料を所定の大きさに加工して 用!/、ることができる。
[0078] なお、図 6または図 8に示した移動端末 127において、光源を設けずに、外部の光 源からの光を光ファイバ等により導入し、検出部 113または検出部 115の挿入される 位置に照射する構成としてもよい。また、以上においては検出部 113または検出部 1 15における透過度を測定するとして説明した力 測定ユニット 151は、吸光度や散乱 度を測定するように構成されて 、てもよ 、。
[0079] 上記の構成のチップ 101、及び移動端末 127を用いることにより、小型な機器を用 いた、場所を問わない検査が実現する。
[0080] また、チップ 101の構成および移動端末 127の構成は、上述したものに限られず、 種々の構成とすることができる。
[0081] たとえば、チップ 101において、基板上部 103aの上面はシールで封止されていて もよい。シールは、チップ 101を使用する際に剥離可能に形成されていればよい。た とえば各種プラスチック材料の薄膜の表面にエポキシ系やシリコーン系の接着剤が 塗布された構成としてもよい。基板上部 103aの上面をシールで封止することにより、 使用前のチップ 101の汚染を防止し、さらに精密な測定を行うことが可能となる。また 、利用者がシールを剥離することにより基板上部 103aの導入口 106や空気孔 123 が開放されるため、利用者は測定を行 ヽた 、タイミングで直ちにチップ 101を使用す ることがでさる。
[0082] また、チップ 101の構成は、図 9に示すように、検出部 113および検出部 115を分 注流路 114上に設け、これらの検出部の下方に光導波路 345を形成することもでき る。ここで、光導波路 345は、たとえば石英系材料または有機系ポリマー材料により 形成することができる。光導波路 345は、周囲の材料よりも屈折率が高くなるように構 成される。この場合、光導波路 345にはチップの底面力も光が導入され、同様に、チ ップの底面力も光が取り出される。図 10は、図 9の D— D'断面図である。
[0083] この場合、たとえば、移動端末 127の底面等に、チップの投光用光導波路 346へ 光を導入する光源および受光用光導波路 347からの光を受光するための検出器 (受 光部)となるフォトトランジスタを設けておくことができる。このような構成にすれば、移 動端末 127の底面等にチップの投光用光導波路 346および受光用光導波路 347が 露出した面を接触させることにより、分注流路 114自体を測定用の検出部 113または 検出部 115として用い、移動端末 127の光源力も分注流路 114上の検出部 113また は検出部 115へと光を導入し、また、検出部 113または検出部 115を透過した光を 移動端末 127の受光部にて検出することができる。
[0084] また、図 9および図 10に示したチップにおいて、光導波路 345を設けない構成とし てもよい。このとき、投光用光導波路 346および受光用光導波路 347を設けることに より、移動端末 127の光源力もの出射光を、投光用光導波路 346を介して検出部 11 3または検出部 115に導入し、検出部 113または検出部 115からの出射光を、受光 用光導波路 347を介して移動端末 127の受光部にて受光することができる。この構 成についても、検出部 113および検出部 115に分取された液体中の所定の成分に 関する光学測定を行うことができる。また、光導波路 345を設けないため、チップの構 成を簡素化することができる。
[0085] なお、図 9および図 10に示した構成のチップや、この構成において光導波路 345 を設けない構成のチップを用いる場合には、移動端末 127を、チップ挿入時の投光 用光導波路 346および受光用光導波路 347の位置に対応して光源および検出部が それぞれ配置された構成とすることができる。 [0086] さらに、移動端末 127は測定ユニット 151を 1個有するものとし、チップ 101をチップ 挿入部 131中でスライドさせることにより、検出部 113および検出部 115につ 、て順 次光学測定を行う構成としてもょ ヽ。
[0087] 図 11は、移動端末 127の別の構成を示す図である。移動端末 127は、切欠部 132 を有する。切欠部 132は、移動端末 127の側面力も底面にかけて形成されている。 利用者がチップ 101を切欠部 132にスライドさせた際に、検出部 113および検出部 1 15の透過度を順次測定されるようになっている。
[0088] 本実施形態においては、導入口 106、検出部 113および検出部 115を有するチッ プ 101および移動端末 127を用いることにより、利用者 187は自宅に大型の測定機 器を設置したり、専門機関を訪問したりすることなく体液中の所定の成分についてそ の場で簡便に測定を行うことができる。利用者 187は、チップ 101と移動端末 127か らなる測定装置 129を所持していれば、所望の時間に所望の場所で測定を行うこと ができる。
[0089] また、測定装置 129は小型で簡便な構成であり、これを用いて簡便な手法で確実 に体液中の成分に関する測定結果を容易に取得することができる。また移動端末 12 7を用いて測定結果を外部の分析センターに送信し、測定結果に関して分析を依頼 することができる。
[0090] また、移動端末 127にチップ挿入部 131が設けられているため、チップ 101を使い 捨ての形態とし、測定ごとにチップ 101を交換することができる。また、移動端末 127 自体に試料を導入せずに測定が可能である。よって、移動端末 127を汚染せずに、 精度のょ 、測定を行うことができる。
[0091] 図 12は、検査システム 100の構成を示すブロック図である。
移動端末 127は、表示部 145、入出力部 147、送受信部 149、測定部として機能 する測定ユニット 151、および計時部 183を含む。送受信部 149は、測定ユニット 15 1が測定した測定結果を利用者 187の健康状態に関する測定データとして分析セン ター 153に送信する。このとき、測定値の取得日時等の時間に関する計時部 183か ら伝達されるデータをあわせて送信してもよ 、。
[0092] また、送受信部 149は、分析センター 153から送信された測定値に基づく分析結果 を受信する。送受信部 149は、受信した分析結果を入出力部 147に伝達する。入出 力部 147は、分析結果を表示部 145に出力し、利用者 187に提示する。
[0093] 分析センター 153は、データ取得部 155と、分析部 165と、データベース 167と、推 定処理部 179と、データ書込部 181と、送受信部 185と、読出部 189と、管理番号付 与部 191とを有する。
[0094] 分析センター 153の各構成要素は、ハードウェアコンポーネントでいえば、任意の コンピュータの CPU、メモリ、メモリにロードされた本図の構成要素を実現するプログ ラム、そのプログラムを格納するハードディスクなどの記憶ユニット、ネットワーク接続 用インターフェースを中心に実現されるが、その実現方法、装置にはいろいろな変形 例があることは、当業者には理解されるところである。これ力も説明する各図は、ハー ドウエア単位の構成ではなぐ機能単位のブロックを示して 、る。
[0095] データ取得部 155は、測定対象選択受付部 157と、測定データ取得部 159と、利 用者情報取得部 161と、エリア情報取得部 163とを含む。測定対象選択受付部 157 は、送受信部 185にて受信された情報のうち、利用者 187が選択した測定対象を取 得する。測定データ取得部 159は、検出部 113および検出部 115についての測定 値を取得する。利用者情報取得部 161は、利用者 187の利用者 IDを取得する。また 、エリア情報取得部 163は、移動端末 127からデータが送信された位置に関する情 報を取得する。
[0096] なお、データ取得部 155は、利用者 187の測定データを、その測定データの作成 位置および作成日時に対応付けて取得することができる。「測定データの作成日時」 とは、たとえば、利用者 187が自分の体液を採取した日時、利用者 187がチップ 101 を用いて特定成分に関する測定を行った日時、利用者 187が移動端末 127を用い てチップ 101の発色を検出した日時、または利用者 187が移動端末 127から測定デ ータを送信した日時とすることができる。また、分析センター 153が測定データを取得 した日時を「測定データの作成日時」とすることもできる。このような日時は移動端末 1 27の計時部 183または分析センター 153の計時機能に基づき決定されてもよぐ利 用者 187の入力により決定されてもよ!、。
[0097] 「測定データの作成位置」とは、たとえば、移動端末 127を用いる利用者 187が測 定データを分析センター 153に送信したときの移動端末 127の位置情報とすることが できる。移動端末 127の位置情報は、移動端末 127の電波受信状態により、携帯電 話網の基地局の位置検出機能を用いて取得することができる。また、利用者 187が GPS機能付きの移動端末 127を所持している場合、 GPS測位機能を用いて取得す ることもできる。また、利用者 187に移動端末 127から自分のいる位置情報を入力さ せることもできる。移動端末 127の位置情報は、測定データとともに分析センター 15 3に送信される。位置情報は、二次元の情報だけでなぐ高さも含めた三次元の情報 とすることちでさる。
[0098] 分析部 165は、選択された測定対象について、測定データ取得部 159にて取得さ れたデータの分析を行う。また、推定処理部 179は、分析部 165における分析結果 に基づいて、利用者の健康状態を推定する。
[0099] 管理番号付与部 191は、各測定データに対応づけて管理番号を付与する。データ 書込部 181は、各種データを管理番号付与部 191にお ヽて付与された管理番号と 対応づけてデータベース 167に記憶させる。読出部 189は、データベース 167に記 憶されている情報を読み出す。送受信部 185は、移動端末 127との間のデータの送 受信を行う。
[0100] データベース 167は、分析情報記憶部 169と、関連情報記憶部 171と、分析結果 記憶部 173と、利用者情報記憶部 175と、エリア情報記憶部 177とを含む。
[0101] 分析情報記憶部 169は、複数の測定対象について、測定データの分析を行うため のプログラム、参照データ等を記憶する。たとえば、分析部 165が測定対象の成分を 分析する際の手順やプログラムや、推定処理部 179が罹患可能性を推定する際の 手順を規定した解析プログラム等の各種プログラムを、複数の測定対象にっ 、てそ れぞれ記憶する。また、分析情報記憶部 169は、測定ユニット 151を制御するための プログラムをも記憶することができる。分析情報記憶部 169のデータ構造では、測定 対象の ID番号ごとに、各測定項目の評価基準を記憶することができる。具体的には 、たとえば、測定項目 IDが 0002の血糖値について、検出部 115の透過度力 検出 部 113の透過度(ブランク)を引いた数値の増加に対応させて、レベル 1 (一)、レベル 2 ( + )、レベル 3 (+ +)、およびレベル 4 (+ + +)の 4段階のレベルにより評価するこ とを記憶してもよい。
[0102] 関連情報記憶部 171は、推定処理部 179における推定結果に応じて利用者 187 に送信する情報を記憶する。たとえば、推定結果に応じて結果とともに利用者 187に 送信するアドバイスに関する情報や、医療機関や保険会社の連絡先に関する情報 等を記憶することができる。
[0103] 分析結果記憶部 173は、分析部 165による分析結果や、推定処理部 179における 推定結果を管理場号に対応づけて記憶する。分析結果記憶部 173には測定対象ご との基礎データが蓄積される。
[0104] 図 14は、分析結果記憶部 173のデータ構造の一例を示す図である。データ構造 2 25では、検出が行われた位置情報およびこれに対応する測定エリア、利用者 ID、分 析値、および発症レベルが、管理番号に対応付けて記憶されている。たとえば、管理 番号 0022の被診断データは、測定対象 0002 (血糖値)に関する分析値は 0. 42で 、レベルが + +と記憶されて!、る。
[0105] 図 12に戻り、利用者情報記憶部 175は、分析結果に付与された管理番号と利用者 IDとを対応づけて記憶する。これにより、利用者 187は自己の測定結果の経時変化 を移動端末 127から読み出すことができる。図 15は、利用者情報記憶部 175のデー タ構造の一例を示す図である。データ構造 227では、 ID番号が 30である利用者 187 の分析値、発症レベル、および測定エリアが、管理番号に対応付けて経時的に記憶 されている。また、利用者情報記憶部 175は、利用者 187毎に、利用者 、利用者 のメールアドレス等を記憶してもよい。なお、利用者情報を取得するときは、これを適 法に取得するものとする。
[0106] エリア情報記憶部 177は、複数のエリアの位置情報を記憶する。分析結果に付与さ れた管理番号とエリア情報とを対応づけて記憶する。図 16は、エリア情報記憶部 17 7のデータ構造の一例を示す図である。エリア情報記憶部 60は、エリア No.欄、始点 位置 (X, y)欄、および終点位置 (X, y)欄を含む。エリア No.欄は図 14または図 15 に示したエリア No.欄に対応し、各エリアは、始点位置および終点位置をそれぞれ 通る X軸および y軸で囲まれた範囲に設定される。
[0107] 図 17は、図 12の検査システムを用いた処理手順を説明する図である。以下、図 12 も参照して説明する。
[0108] 利用者 187は、上述の方法で体液を採取し、チップ 101に導入する。試料は毛細 管現象により基板上部 103aから基板下部 103bに導入され、検出部に導かれる。検 出部における所定の呈色反応後、移動端末 127にチップ 101を挿入する(S 111)。 そして、移動端末 127の入出力部 147に選択した測定対象を入力する(S112)。本 実施形態において、測定対象は特に限定されず、血糖値等、以降の実施形態にお いて説明する項目とすることもできるし、それ以外の項目とすることもできる。
[0109] 移動端末 127の入出力部 147は、選択された測定対象を検出するために測定ュ- ット 151を制御する(S113)。たとえば図 5において、光源 133aまたは光源 133b、受 光部 135aまたは受光部 135b、または分光部 134を有する場合には分光部 134を 制御する。たとえば、測定対象が血糖値である場合、チップ 101の検出部 113に検 出物質として NAD ( β—ニコチンアミドアデニンジヌクレオチド酸化型)、 ΑΤΡ (アデノ シン 3リン酸 2ナトリウム)、へキソキナーゼ、グルコース 6—リン酸脱水素酵素、および 酢酸マグネシウム等のグルコース検出試薬を含有させておくことができる。こうすれば 、チップ 101の検出部 113または検出部 115における発色の程度を移動端末 127の 測定ユニット 151により測定することができる。
[0110] 図 17に戻り、検出部 113および検出部 115の透過光強度を測定し (S114)、それ ぞれの測定値を取得する(S 115)。測定ユニット 151は、対象成分を検出することが できないときは、測定不能または測定値を 0%とすることができる。取得した測定値を 、送受信部 149から分析センター 153に送信する(S116)。このとき、利用者 187が 選択した測定対象、利用者の情報、およびデータ送信エリアに関する情報が合わせ て送信されてもよい。
[0111] 分析センター 153は、移動端末 127から送信された情報を送受信部 185で受信し 、各データは、データ取得部 155の測定対象選択受付部 157—エリア情報取得部 1 63にて取得される。
[0112] 分析部 165は、データ取得部 155で取得されたデータの分析を行う(S116)。この とき、測定対象選択受付部 157にて受け付けられた測定対象の分析を行うためのプ ログラムが分析情報記憶部 169から取得される。分析の結果が適正でない場合は (S 117の No)、その旨を送受信部 185から移動端末 127に送信する。移動端末 127に おいて再度測定する場合は(S 118の Yes)、ステップ 113からの各ステップを繰り返 す。また、再測定を行わない場合は、当該データによる測定対象の推定が不能であ る旨を表示部 145にて表示し (S123)、利用者 187に提示する。
[0113] 適正な分析結果が得られたら(S 117の Yes)、推定処理部 179において罹患可能 性が推定される (S119)。推定結果は、管理番号付与部 191にて管理番号が付与さ れた後、データ書込部 181にてデータベース 167に記憶される。
[0114] また、推定結果は、送受信部 185から移動端末 127に送信される。このとき、関連 情報記憶部 171に格納されて 、る情報を合わせて送信してもよ 、。移動端末 127は 送受信部 149にて受信した結果を表示部 145に表示し、利用者 187に提示する(S1 22)。
[0115] 検査システム 100によれば、チップ 101を移動端末 127に挿入することにより、簡素 な装置構成で簡便に体液中の成分の測定を行うことができる。また、大型の専用基 材を自宅に設置する必要がないため、利用者 187は外出先でも測定を行うことが可 能である。また、専門の分析期間を訪問する必要もない。
[0116] また、測定値および推定結果の送受信が移動端末 127と分析センター 153との間 で行われるため、移動端末 127の装置構成を必要最低限に簡素化することができる 。また、利用者 187は遠隔地の分析センターや医療機関を訪れることなぐ自己の体 液に関する測定結果を送信し、また分析結果を受信することができる。よって、利用 者 187は所望の場所で自己の健康状態を確認することができる。
[0117] また、分析センター 153は複数の測定対象に関する分析データを利用者別、エリア 別、または測定対象別に網羅的に把握することが可能である。
[0118] なお、図 3において、チップ 101は、検出部 113または検出部 115に付着させる検 出物質を適宜異ならせることにより、多くの測定に用いることが可能である。チップ 10 1には、検出部 113および検出部 115の二つの検出部が形成されているが、検出部 115の数に特に制限はない。また、一枚のチップ 101の各検出部に異なる検出物質 を付着させておいてもよい。こうすれば、利用者 187は一度の測定で複数の種類の 成分に関する測定を行い、移動端末 127から送信することができる。このため、複数 の成分に関する測定結果に基づく多様な分析結果を一度の測定で受信することが できる。
[0119] また、チップ 101において、流路 109に連通する液溜めをさらに設け、この液溜め に、試料希釈用バッファーを導入しておくかあるいは所定のタイミングで導入すること により、試料導入部 105に導入された試料を希釈した後、検出部 113および検出部 115に導くことができる。こうすれば、測定ユニット 151による測定に適した濃度に試 料を希釈することが可能となるため、高感度の測定が可能となる。
[0120] チップ 101上で分注、希釈等の所定の操作を行うことにより、試料に多様な処理を 施すことができるため、測定ユニット 151における測定に適した状態の試料を検出部 113および検出部 115に導くことができる。このため、従来精密な測定装置を用いて 測定して!/、た成分につ!、ても、測定装置 129を用いて容易に測定することができる。
[0121] また、図 5では、移動端末 127が検出部 113および検出部 115の透過光を検出す る構成としたが、反射光を検出するように受光部 135aおよび受光部 135bを構成し、 酉己置してちょい。
[0122] (第二の実施形態)
本実施形態は、第一の実施形態に記載の検査システム 100 (図 1)に適用可能なチ ップの他の構成に関する。図 18は、本実施形態に係るチップの構成を模式的に示 す図である。図 18のチップ 251は、試料の分離および検出を行うことができるチップ であり、基本的な構成は図 3のチップ 101と同様である力 さらに分離領域 318、廃 液溜め 319、ノ ッファー導入口 320、流路 330、および混合部 348を含む。また、複 数の検出部 323は、図 3のチップにおける検出部 113および検出部 115に対応する
[0123] 分離領域 318は、流路 109および複数の微細流路 329を介して流路 109に連通 する流路 330を有し、フィルタ状に構成されている。流路 330に連通して不要な試料 を排出する廃液溜め 319が設けられている。また、流路 109に連通して、バッファー 導入口 320が形成されている。なお、図 18のチップ 251では、分離領域 318がフィ ルタである場合を例示しているが、分離領域 318の構成はこれには限定されず、たと えば、流路に複数の柱状体を配設した構成等とすることもできる。 [0124] 図 19は、分離領域 318の構成を説明する図である。図 19においては、基板下部 1 03b上に流路溝 361aおよび流路溝 361b (いずれも幅 W、深さ D)が形成され、これ らの間に隔壁 365が介在している。ここで、流路溝 36 laおよび流路溝 36 lbのいず れか一方が流路 109となり、他方が流路 330となる。隔壁 365には、分離流路が規則 的に形成されている。ここでいう「分離流路」は、微細流路 329に対応する構成である 。分離流路は、流路溝 361aおよび流路溝 361bと直交し、幅 dlの分離流路が所定 の間隔 d2で規則的に形成されている。図中に示された各寸法は、分離する試料等 に応じて適宜な値に設定されるが、たとえば以下のような範囲力も好適な数値が選択 される。
[0125] Wr lO ^ m— lOOO ^ m
L r lO ^ m— lOOO ^ m
D : 50nm— lOOO ^ m
dl: lOnm一 1 μ m
d2 : lOnm一 1 μ m
このうち、分離流路の長さに相当する Lの数値は、分離特性に直接影響するため、 分離目的に応じて精密に設計することが重要となる。たとえば高分子の分離におい ては、分離流路を通過する際に分子のコンフォーメーションが変化し、ェンタルピー 変化が生じる。したがって、分離流路の長さによって分子の通過に伴うェンタルピー 変化の総量が相違することとなり、分離特性が変化するのである。本発明においては 、流路を溝により構成しているため、エッチングや成型加工により作製することができ 、形状やサイズを精密に制御することができる。この結果、所望の分離特性を有する 分離領域 318を安定的に製造することができる。なお、流路溝 361a、流路溝 361b および分離流路は、様々は方法で形成することができる力 dlや d2の値を lOOnm 以下に設定した場合、微細加工性の点で電子線露光技術を組み合わせたドライエツ チングを用いることが望まし 、。
[0126] 図 19に示した構造の分離領域 318を用いた分離方法について図 20を参照して説 明する。図 20は、この分離領域 318を上力 見たときの概略構造を示した模式図で ある。まず、試料の分離を行う前の準備として、各流路溝にキャリアとなる緩衝液を満 たしておく。図 20では、流路溝 361b中に、図中下向きに混合物 350を含む試料原 液が流れる。すると、混合物中の小さな分子 351が、図の中央に示される隔壁に設け られた分離流路を通過し、隣接する流路溝 36 laに進入する。流路溝 361aには、分 離目的成分と化学反応を起こさない溶媒が図中上向きに流れている。したがって、流 路溝 361aに進入した小さな分子 351は、その流れにのって図中上向きの方向に運 搬される。一方、流路溝 361b中の大きな分子 352は、分離流路を通過できないので 、流路溝 361b中をそのまま流れていき、流路の末端で回収される。以上のようにして 、小さな分子 351および大きな分子 352が分離される。
[0127] 図 20では、流路溝 361aおよび流路溝 361bの流れの方向を逆向きとした。同じ向 きとすることもできるが、逆向きにした場合、分離効率が向上する。たとえば流路溝 36 laの流れの方向を図中下向きとした場合、流れの進行方向に向力うにしたがって小 さな分子 351の濃度が高くなつていく。したがって、流路溝 361aと流路溝 361bにお ける大きな分子 352の濃度差力 流れの進行方向に向かうにしたがって小さくなり、 ある地点で等濃度となる。この地点から先の領域では、流路溝 36 lbから流路溝 361 aへの大きな分子 352の移動は起こりにくくなり、分離できなくなる。これに対して本実 施形態のように逆向きの方向にした場合は、流路溝 361aと流路溝 361bにおける大 きな分子 352の濃度差は担保されるので、分離流路を一定の長さの領域にわたって 形成した場合でも、高 、分離能力を確保することができる。
[0128] また、以上においては、分離流路となる複数の微細流路 329が形成された隔壁を 有する構成を示したが、分離領域 318は、以下に示すように、土手部を有する構成と してちよい。
[0129] 図 32 (A)および図 32 (B)は分離領域 318の構成を示す図である。図 32 (A)、図 3 2 (B)はそれぞれ断面図、斜視図である。図 32 (A)に示されるように、基板下部 103 bに二本の流路溝 361a、流路溝 36 lbが設けられ、それらを分けるようにして土手部 に相当する隔壁 308が設けられている。基板下部 103bの上には基板上部 103aが 配設される。便宜上、基板上部 103aは図 32 (B)には示していない。
[0130] 図 32 (A)力 分力るように、基板上部 103aと基板下部 103bとの間には空間が確 保されて!、るため、この空間を介して流路溝 36 laおよび流路溝 36 lbは互 、に連通 している。この空間は、上記の分離領域 318の隔壁 365に設けられた分離流路に相 当する。したがって、たとえば流路溝 361aに分離対象物質を含む試料を流し、流路 溝 361bに緩衝液を流すことにより分離操作を実行することができる。
[0131] なお、この場合、基板上部 103aにはポリジメチルシロキサンやポリカーボネートなど の疎水性材料力もなるものを選択することが好ましい。このようにすることにより、各々 の流路溝に試料あるいは緩衝液を他の流路溝に浸入させることなく導入することがで き、かつ両方の流路溝に試料等が満たされた段階で、上記空間を介して両流路溝内 の試料および緩衝液の混和を生じさせることができる。このような効果は、基板上部 1 03aを取り付けない状態で操作実施することによつても得ることができる。このとき、空 気自体が疎水性物質として基板上部 103aと同様に機能しているものと考えられる。
[0132] また、ポリエチレンテレフタレートなどの親水性材料力もなる基板上部 103aを取り付 けた状態で、たとえば流路溝 361aに試料を流すと、当該試料は他方の流路溝 361b へ浸入する。この浸入の際に、基板上部 103aと隔壁 308との間に形成された空間よ りも小さなサイズの成分のみが濾しとられるため、試料中の成分の分離が実現する。
[0133] この構成によれば、隔壁 308を設けることにより、流路溝 361aおよび流路溝 361b を、微細流路 329を有する隔壁 365に比較して広い面積で接続するため、分離効率 を向上させることができる。また、細長い物質であっても詰まりにくぐ流路間を容易に 移動できるため、こうした物質を含む試料の分離に好適に用いることができる。
[0134] このような流路溝 361a、流路溝 361bおよび隔壁 308は、たとえば(100) Si基板を ウエットエッチング処理すること〖こより得られる。(100) Si基板を用いた場合、く 001 >方向に直交あるいは平行な方向では、図示されるように台形型にエッチングが進 行する。そのため、エッチング時間を調節することにより隔壁 308の高さを調節するこ とが可能である。
[0135] また、図 33に示されるように、隔壁 308を基板上部 103a上に設けることもできる。こ のような隔壁 308を備えた基板上部 103aは、ポリスチレンなど榭脂を射出成形するこ とにより容易に得ることが可能である。また、基板下部 103bには 1本の流路をエッチ ング等により設けるだけでよい。したがって、この分離領域 318は上記のような簡便な プロセスにより得られるため、大量生産に適している。 [0136] 本実施形態の分離領域 318では、たとえば試料原液の毛細管現象による導入と、 拡散により分離できる。また、分子の浸透圧差を利用して分離することができる。
[0137] 図 18にもどり、導入口 106に導入された試料は、毛細管現象により流路 330に導 かれる。試料が流路 330を満たしたら、ノ ッファー導入口 320に所定のバッファーを 導入する。ノ ッファーは、試料中の成分の分離用展開液として用いられる。バッファ 一導入口 320に導入されたバッファ一は、毛細管現象により流路 109に導かれ、流 路 330中の試料の移動方向と逆向きに移動する。
[0138] ここで、流路 330と流路 109とを連通させている微細流路 329は、流路 330よりも幅 または深さが小さいため、流路 330中の試料成分のうち、所定の大きさまたは形状を 有する成分のみが微細流路 329を通過し、流路 109に移動することができる。また、 微細流路 329中を通過できない成分は、廃液溜め 319に排出される。こうして、試料 中の成分を、その移動相中での大きさまたは形状に従って分離することができる。な お、微細流路 329は、流路 330と流路 109とを隔てる隔壁中に小孔が形成された構 成とすることができる。
[0139] このような分離領域 318を用いて、たとえば試料の粗分離、精製等を行うことができ る。粗分離の場合として、試料中の固形成分や細胞等を分離除去することができる。 また、液体試料の場合、たとえば低分子量成分と高分子量成分との分離等が可能で める。
[0140] また、このチップには、分離領域 318と検出部 323との間に、検出または測定に先 立ち、試料濃度を均質ィ匕するための混合部 348が設けられている。混合部 348は、 流路 109中を流れる液体中の試料成分濃度を均質化することができるように構成さ れていれば、特に制限はないが、たとえば以下のように構成することができる。
[0141] 図 21は、混合部 348の構成の一例を示す図である。図 21の混合部 348は、対向 流による均質ィ匕効果を利用した助走流路である。この流路は、流路 109の往路 352 と復路 353とを混合用微細流路 354により連通させた構成となっている。混合用微細 流路 354は、たとえば往路 352と復路 353とを隔てる隔壁に設けられた小孔とするこ とがでさる。
[0142] 混合用微細流路 354の表面は往路 352に比べて疎水性とする。こうすることにより 、分離領域 318を通過した液体が往路 352を満たすまで、混合用微細流路 354から 復路 353に流入しない構成とすることができる。往路 352が液体で満たされ、復路 35 3に至ると、混合用微細流路 354中に往路 352側と復路 353側力も液体が侵入する ことにより、往路 352と復路 353とが混合用微細流路 354によって連通する。そして、 往路 352内の液体と復路 353内の液体との間で相互拡散が起こり、液体の濃度を均 質ィ匕することができる。均質化された液体は、流路 109から分注流路 114を通って検 出部 323に導かれる。
[0143] このような構成とすれば、復路 353を通過して分注流路 114に流入する液体の濃 度を均質ィ匕することができる。したがって、分離領域 318を通過した体液中の試料成 分濃度にむらがある場合にも、複数の検出部に供給される液体中の試料成分濃度を 一定とすることができる。よって、検出反応の精度を向上させることができる。
[0144] たとえば、試料成分濃度が高い領域が、流路 109中を流れる液体の先端領域にあ る場合、往路 352を進むほど、既に希釈化された低濃度の復路 353中の液体と交換 されて、平均的濃度に均質化される。逆に、高濃度領域が流路 109中を流れる液体 の先端から遠ぐ復路 353に液体が侵入した後も往路 352に存在する場合、復路 35 3を進行する低濃度の液体は、復路 353内の高濃度の液体と混合されて平均的な濃 度に均質化される。なお、図 21では、流路 109を一直線の形状とした力 ジグザグ形 状やらせん状としてもよい。こうすること〖こより、混合部 348をコンパクトな形状とするこ とができる。よって、チップ全体を小型化することができる。
[0145] また、図 22は、混合部 348の別の構成を示す図である。図 22の混合部 348におい ては、流路 109中に液溜め 355が設けられ、液溜め 355の下流において流路 109の 2箇所を連通させるトリガー流路 356が設けられている。トリガー流路 356は、流路内 の親水性の程度や流路径等を適宜に調整することによって、流路内の液体の進行 速度を調整することができる。これにより、スィッチ動作の速度を調整できる。トリガー 流路 356と流路 109との 2箇所の交差点のうち、下流側すなわち分注流路 114側の 交差点に、液体スィッチ 357を有する。
[0146] このような混合部 348では、当初は液体スィッチ 357が閉じており、分離領域 318を 通過した液体は、液溜め 355に貯留され、濃度が均質化される。液溜め 355が液体 で満たされると、その一部がトリガー流路 356へと流入する。そして、トリガー流路 356 中に液体が満たされ、液体スィッチ 357の形成領域に達すると、液体スィッチ 357が 開くため、液溜め 355中で均質ィ匕された液体が分注流路 114へと流入する。
[0147] 図 23 (A)—図 23 (C)は、図 22の液体スィッチ 357部分を拡大した上面図である。
液体スィッチ 357は、液体の流動を制御するスィッチであり、液体がスィッチ開閉のト リガ一となる。図 23 (A)はスィッチ閉状態、図 23 (B)および図 23 (C)はスィッチ開状 態を示す。図中、流路 109の側面にトリガー流路 356が接続している。トリガー流路 3 56は、流路内の親水性の程度や流路径等を適宜に調整することによって、流路内の 液体の進行速度を調整することができる。これにより、スィッチ動作の速度を調整でき る。流路 109とトリガー流路 356の交差する領域の上流側(図中上側)に堰き止め部 358が設けられている。堰き止め部 358は、流路の他の部分よりも強い毛細管力を有 する部分となっている。堰き止め部 358の具体的構成としては、以下のものが例示さ れる。
[0148] (i)複数の柱状体が配設された構成
この構成では、堰き止め部 358における流路単位体積あたりの流路表面積が、流 路の他の部分のそれよりも大きくなつている。すなわち、流路 109に液体が満たされ たとき、堰き止め部 358においては、流路の他の部分よりも固液界面が大きくなるよう に構成されている。
[0149] (ii)多孔質体やビーズが複数充填された構成
この構成では、堰き止め部 358において、流路の他の部分よりも固液界面が大きく なるように構成されて 、る。
[0150] 上記 (i)の構成とする場合、柱状体は、基板の種類に応じて適宜な方法で形成する ことができる。石英基板やシリコン基板を用いる場合、フォトリソグラフィー技術および ドライエッチング技術を利用して形成することができる。プラスチック基板を用いる場 合、形成しょうとする柱状体のパターンの反転パターンを有する金型を作製し、この 金型を用いて成形を行い所望の柱状体パターン面を得ることができる。なお、このよ うな金型は、フォトリソグラフィー技術およびドライエッチング技術を利用することにより 形成することができる。 [0151] 上記 (ii)の構成とする場合、多孔質体やビーズは、これらを流路の所定箇所に直 接充填、接着すること〖こより形成することができる。
[0152] 本実施形態では、上記 (i)の構成を採用する。
[0153] 図 24は、堰き止め部 358の上面図である。複数の柱状体 360が、略等間隔で規則 的に配置されている。柱状体 360以外の領域は微細流路 195となっている。堰き止 め部 358では、流路単位体積あたりの流路表面積が、流路の他の部分のそれよりも 大きい。このため、堰き止め部 358に浸入した液体は、毛細管力により、微細流路 19 5に保持される。
[0154] 図 23 (A)はスタンバイ状態にある液体スィッチ 357を示している。流路 109に導入 された液体試料 359が堰き止め部 358で保持されて ヽる。この状態カゝら所望のタイミ ングでトリガー流路 356を迂回してきたトリガー液 362導入されると、図 23 (B)のよう にトリガー液 362の液面の先端部分が前進し、堰き止め部 358と接触することとなる。 図 23 (A)の状態では、液体試料 359は毛細管力により堰き止め部 358に保持され ているが、液体試料 359がトリガー液 362と接触した図 23 (B)の状態になると、液体 試料 359が図中下方向(下流側)に移動し、図 23 (C)の流路 109下流側に液体試 料 359が流出する。すなわち、トリガー液 362が呼び水としての役割を果たし、液体 試料 359を下流側に引き出す液体スィッチとしての動作が発現する。
[0155] 以上において、液体試料 359およびトリガー液 362は、液溜め 355を通過した液体 である。したがって、この構成によれば、分離領域 318を通過した液体が液溜め 355 を満たし、さらにトリガー流路 356の先端すなわち流路 109の下流側の交差点に達 するまでの間、液体が分注流路 114側に流入しないようにすることができる。よって、 液溜め 355において確実に試料成分濃度の均質ィ匕を図ることができる。また、トリガ 一流路 356の構成によって、分注流路 114へと流入するタイミングを好適に調節する ことができる。
[0156] 図 25 (A)—図 25 (C)は、トリガー流路 356の構成を例示する図である。図 25 (A) では、トリガー流路 356の一部に流路拡張領域 363が形成されている。流路拡張領 域 363は、トリガー流路 356中で時間遅れ槽として機能する。こうすることにより、液体 スィッチ 357を開くタイミングを遅延させることができる。 [0157] 図 25 (B)は、図 25 (A)の構成のトリガー流路 356において、流路拡張領域 363に 疎水性領域 364が形成されている。疎水性領域 364は、トリガー流路 356中の液体 の進行方向に垂直な方向に流路拡張領域 363を横切るように形成されて!、る。この ような疎水性領域 364を設けることにより、流路拡張領域 363において、液体が壁面 のみをったつて他端に到達するのを抑制することができる。
[0158] 図 25 (C)は、じぐざぐ形状のトリガー流路 356の例を示している。このようにトリガー 流路 356の形状、長さを最適化することにより、所望のタイミングで液体スィッチ 357 を開放することが可能となる。トリガー流路 356の形状は、占有面積が小さいような形 状であれば図 25 (C)の形状に限られず、たとえばらせん形とすることもできる。
[0159] 流路 109中の試料成分は、流路 109に連通する分注流路 114から、検出部 323に 導かれる。本実施形態においても、分注流路 114および検出部は基板下部 103b上 に所定の数だけ設けることができる。図 18のチップ 251では、流路 109から複数の分 注流路 114が順次分岐しており、分注流路 114は流路 109よりも細い流路であるた め、毛細管現象によって上流側の分注流路 114に連通する検出部 323から順に試 料成分が導入される。また、すべての検出部に試料成分が導かれた後の不要な試 料は、液溜め 107に排出される。
[0160] 本実施形態に係るチップ 251によれば、試料導入部 105と検出部 323との間に分 離領域 318が設けられて ヽるため、試料導入部 105に導入された試料に含まれる所 定の成分を確実に分離し、検出部 323に導くことができる。このため、微量な成分に 関しても、測定時のバックグラウンドを減少させ、高感度の測定を行うことが可能とな る。
[0161] また、分離領域 318と検出部 113および検出部 115との間に混合部 348を有する ため、分離領域 318を通過した液体の濃度を均質化した後、検出部 323へと導くこと ができる。このため、検出部 323に導入される液体中の試料成分のむらを解消するこ とができる。よって、検出部 323における測定の精度を向上させることができる。
[0162] このように、チップ 251を用いることにより、測定ユニット 151における光学測定に適 した試料をチップ 101内で調製し、測定ユニット 151における測定に供することが可 能となる。 [0163] なお、チップ 251において、分離領域 318は、第三の実施形態で後述するチップ の分離領域と同様の構成とすることもできる。
[0164] (第三の実施形態)
本実施形態は、第一の実施形態に記載の検査システム 100 (図 1)に適用可能なチ ップの他の構成に関する。
[0165] 図 26は、本実施形態に係るチップ 224の概略構成を示す上面図である。チップ 22
4において、第一または第二の実施形態と同様の構成要素には同様の符号を付し、 適宜説明を省略する。
[0166] チップ 224は、試料導入部 105に連通する第一の流路 241が、分離領域 245を介 して第二の流路 243に連通する構成となっている。第二の流路 243は、液溜め 107 に連通する。
[0167] 第一の流路 241の上流は試料導入部 105に、下流は液溜め 239に連通している。
また、分離領域 245より上流に前処理部 231が形成されており、前処理部 231には 液溜め 233が連通している。液溜め 233にはたとえば緩衝液などの、液溜め 239の 希釈液または移動相の液性を調整する液体等が充填され、液溜め 239には第一の 流路 241を通過した廃液等が導かれる。
[0168] 第二の流路 243の上流は液溜め 235に、下流は液溜め 107に連通しており、分離 領域 245より下流には、検出部 113—検出部 119が連通している。液溜め 235には たとえば緩衝液などの、液溜め 239の希釈液または移動相の液性を調整する液体等 が充填され、液溜め 107には第二の流路 243を通過した廃液等が導かれる。
[0169] 利用者 187は、試料採取部 228を用いて体液を採取し、得られた試料 229を試料 導入部 105に導入する。試料採取部 228は、試料 229として用いる体液の採取方法 に応じて、たとえばスポイトや穿刺針等とすることができる。
[0170] チップ 224において、試料導入部 105に導入された試料 229に含まれる被検出成 分は、試料導入部 105に導入された後、第一の流路 241中を移動し、前処理部 231 を通過し、分離領域 245を経由して第二の流路 243に移動する。そして、第一の流 路 241に連通する検出部 113—検出部 119に導かれ、第一または第二の実施形態 と同様にして検出される。 [0171] 前処理部 231は、試料 229を分離領域 245で分離する前に前処理を行う。前処理 の内容は、試料 229および試料 229中の被検出成分の集累に応じて適宜選択され るが、たとえば、
(i)夾雑物の濾過、
(ii)粘度の低下、
(iii) pH調整、
等とすることができる。
[0172] 上記 (i)の前処理の場合、たとえば、前処理部 231に多孔質材料等を充填しておき 、所定の大きさ以下の成分のみが下流に導入されるように構成することができる。また 、上記 (ii)の前処理の場合、液溜め 233に塩化リゾチームを含む緩衝液を充填して おき、前処理部 231で試料 229と混合することができる。また、上記 (iii)の前処理の 場合、たとえば、液溜め 233に所定の pHの緩衝液を充填しておき、前処理部 231で 試料 229と混合することができる。
[0173] 第一の流路 241は、分離領域 245を介して第二の流路 243に連通する。分離領域 245は、所定の大きさ以下の成分のみを第一の流路 241から第二の流路 243へと移 動させる分離流路である。このような分離領域 245の構成は後述する。
[0174] 分離領域 245において、第一の流路 241からは前処理部 231を通過した試料 229 が流れ、第二の流路 243からは液溜め 235に充填されていた液溜め 235が流れると 、第一の流路 241から分離領域 245を通過した試料 229中の成分が、第二の流路 2 43を液溜め 107に向力つて移動し、検出部 113—検出部 119に導入される。
[0175] 図 27は、分離領域 245の構成の一例を示す図である。図 27において、基板下部 1 03bに幅 W、深さ Dの溝部が形成され、この中に、直径 φ、高さ dの円柱形状のビラ 一 325が等間隔で規則正しく形成されている。ピラー 325間の間隙を試料が透過す る。隣接するピラー 325間の平均間隔は pである。各寸法は、たとえば図 27に示され た範囲とすることができる。
[0176] なお、本明細書において、「ピラー」は柱状体の一形態として示したものであり、円 柱ないし楕円柱の形状を有する微小な柱状体をいう。また、「ピラーパッチ」および「 ノツチ領域」は、柱状体配設部の一形態として示したものであり、多数のピラーが群 をなして形成された領域を!ヽぅ。
[0177] ピラー 325の作製は、たとえば基板下部 103bを所定のパターン形状にエッチング することにより行うことができるが、その作製方法に特に制限はない。
[0178] 基板下部 103bにプラスチック材料を用いる場合、ピラー 325は、エッチングゃェン ボス成形等の金型を用いたプレス成形、射出成形、光硬化による形成等、基板下部 103bの材料の種類に適した公知の方法で行うことができる。
[0179] 基板下部 103bをプラスチック材料により構成した場合、機械加工あるいはエツチン グ法によりマスタを製作し、このマスタを電気铸造反転して製作した金型を用いて、射 出成形または射出圧縮成形によりピラー 325が形成された基板下部 103bを形成す ることができる。また、ピラー 325は、金型を用いたプレス加工により形成することもで きる。さらに、光硬化性榭脂を用いた光造形法により、ピラー 325が形成された基板 下部 103bを形成することもできる。
[0180] また、基板下部 103bにシリコンを用いる場合、カリックスァレーン電子ビームネガレ ジストゃスミレジスト NEB (住友化学製)等を用いてパターユングを行うこともできる。 レジストの種類を適宜選択することにより、 目的成分に応じた分離領域 318を設計す ることがでさる。
[0181] このチップによれば、体液中の成分を分離することができるため、検出部 113にお いて検出反応を確実に行わせることができる。また、移動端末 127を用いた測定の精 度および感度を向上させることができる。また、前処理部 231を設けているため、試 料 229の分離効率及び検出感度をさらに向上させることが可能となる。
[0182] なお、チップ 224において、分離領域 245は、第二の実施形態のチップ 251 (図 18 )の分離領域 318と同様の構成とすることもできる。
[0183] (第四の実施形態)
本実施形態は、以上の第一の実施形態一第三の実施形態に記載の検査システム 100を用いた血糖値の測定に関する。以下、検査システム 100に図 18のチップを用 いた場合を例に説明する。
[0184] チップ 251の検出部 323にグルコース定量試薬として、グルコースォキシダーゼ、 ムロターゼ、ペルォキシダーゼ、およびァスコルビン酸ォキシダーゼなどの酵素、なら びに 4ーァミノアンチピリンおよびフエノール等の発色試薬を付着させておく。このとき の測定波長はたとえば 505nmとする。また、分離領域 318は、低分子成分が優先的 に通過するような構成とする。また、図 3の検出部 113に相当する検出部 323として、 ブランクデータの取得に用いるための発色試薬をカ卩えないでおく検出部 323を設け る。
[0185] 利用者 187は従来用いられている穿刺器具や、第三の実施形態における試料採 取部 228 (図 26)等を用いて指を穿刺し、チップ 251上の試料導入部 105に導入す る。検出部 323が発色したら、図 17を用いて前述した手順に従って測定および測定 値の送信を行う。本実施形態では、ステップ 112において選択する測定対象を血糖 値とする。こうすることにより、測定対象が血糖値であることが分析センター 153の測 定対象選択受付部 157にて受け付けられる。そして分析部 165および推定処理部 1 79は血糖値の測定に関する情報を分析情報記憶部 169および関連情報記憶部 17 1から取得し、分析および推定を行う。
[0186] 推定処理部 179における推定後、推定結果とともに、結果に対応する付加情報を 送受信部 185から移動端末 127に送信してもよい。たとえば、血糖値が高い利用者 1 87には、その自宅に近い医療機関を紹介したり、その診療受付日程を送信してもよ い。血糖値がやや高い利用者 187に対しては、これを改善させるための食事のメ-ュ 一等を送信してもよい。また、運動療法のメニューや、スポーツセンターのリスト等を 送信することちでさる。
[0187] 本実施形態の検査システムを用いることにより、血糖値に不安がある人も、糖尿病 の人も、測定結果を速やかに分析センターに送信することができる。
[0188] なお、本実施形態における測定対象を、血糖値に代えて尿糖値とすることもできる
[0189] (第五の実施形態)
本実施形態は、第一の実施形態一第三の実施形態に記載の検査システム 100を 用いた血中コレステロールの測定に関する。以下、検査システム 100に第三の実施 形態に記載のチップ 224 (図 26)を用 、る場合を例に、説明をする。
[0190] チップ 224の検出部 113—検出部 119のうちのいずれか三箇所に、それぞれ、 LD L、 HDL、および血中総コレステロールを測定するための測定試薬を付着させておく 。残りの一つはブランクデータの取得に用いる。
[0191] これらのコレステロールを定量するための検出反応は、たとえば酵素法によって行う ことができる。検出部 115が発色したら、第三の実施形態と同様の手順に従って測定 および測定値の送信を行う。本実施形態では、ステップ 112において選択する測定 対象を血中コレステロールとする。
[0192] 本実施形態に係る検査システムを用いることにより、コレステロールの数値が心配な 利用者 187や、経過の観察が必要な利用者 187が、定期的に医療機関を訪問する ことなく、自己の血中コレステロールの数値を把握することが可能である。
[0193] (第六の実施形態)
本実施形態は、第一の実施形態一第三の実施形態に記載の検査システム 100を 用いた血液型の判定に関する。以下、第一の実施形態に記載のチップ 101 (図 3)と 、第二の実施形態に記載のチップ 251 (図 18)、第三の実施形態に記載のチップ(図 26)を参照して説明する。
[0194] まず図 3のチップ 101を利用して ABO式血液型の「おもて検査」を実施する場合に ついて説明する。「おもて検査」は、血液サンプル中の抗原を検出する検査である。
[0195] 2つの検出部 113および検出部 115のそれぞれに、凍結乾燥した抗 A血清、抗 B 血清を一種ずつセットしておく。血液サンプルを試料導入部 105に導入すると、血液 サンプルは毛細管力により流路 109を液溜め 107方向へと進行する過程で、検出部 113および検出部 115を満たし、予めセットされていた抗 A血清、抗 B血清を溶解す る。
[0196] 溶解した抗 A血清、抗 B血清は拡散等によって血液サンプルと混和し、血液サンプ ル中に、それぞれの抗血清に対する血球抗原 (A抗原な ヽし B抗原)が存在する場 合、赤血球を凝集させ沈殿させる。赤血球が凝集して沈殿すると、検出部 113および 検出部 115を透過する光量が増加するので、光学的に検知することができる。
[0197] 抗 A血清をセットした検出部 113と、抗 B血清をセットした検出部 115がともに凝集 すれば AB型の血液、抗 A血清をセットした検出部 113だけが凝集すれば A型の血 液、抗 B血清をセットした検出部 115だけが凝集すれば B型の血液、どちらも凝集し なければ o型の血液と判定される。
[0198] さらに測定ミスを防ぐために、対照としてチップ 101上の流路群を同じチップ上に複 数用意し、一方には血液サンプルを、他方には血液サンプルに代えて、表面に A型 抗原または B型抗原をコートしたラテックスビーズの懸濁液を導入し、ビーズ側でも確 カゝに凝集が起こることをもって、誤判定を防ぐこともできる。
[0199] 次に図 18のチップ 251を利用して、 ABO血液型の「うら検査」を実施する場合につ いて説明する。「うら検査」は、血液サンプル中の抗体を検出する検査である。
[0200] 検出部 323を少なくとも 3つ用意し、それぞれに、 A型抗原をコートしたラテックスビ ーズの懸濁液、 B型抗原をコートしたラテックスビーズの懸濁液、 O型抗原をコートし たラテックスビーズの懸濁液をセットしておく。その際、懸濁液の量を検出部 323の全 容量の半量程度として試料との混和を許す他、懸濁液が流路 109に逆流しないよう 、分注流路 114に液体スィッチを設け、その液体スィッチを開放するためのトリガー流 路を上流の流路 109から分岐させると良い。液体スィッチの構成は、たとえば、図 23 を参照して前述した構成とする。
[0201] 血液サンプルを導入口 106に導入すると、毛細管効果により流路 330を進行する 1S 第二の実施形態にて図 32 (A)および図 32 (B)を参照して説明した効果により、 反対側の流路 109へは流入しないまま廃液溜め 319へ至る。次に、抽出用のバッフ ァー、たとえば、リン酸緩衝生理的食塩水(PBS)をバッファー導入口 320に導入する と、微細流路 329が開通する力 微細流路 329の最大幅を赤血球の最小サイズより も小さく(たとえば、 1. 8 /z m)作ることで、血球は流路 330に残り、血漿成分だけが流 路 109へと抽出される。抽出された血漿成分は、混合部 348で一定濃度となった後、 流路 109を液溜め 107方向へと進行しつつ、分注流路 114を介して検出部 323を満 たし、検出部 323に予めセットされていたラテックスビーズ懸濁液と混ざる。抽出され た血漿中に抗体が存在する場合、それに対する抗原がコートされたラテックスビーズ を凝集させ沈殿させるため、上記の血球の場合と同様、光の透過度上昇を元に抗体 の存在を検出できる。
[0202] A型の血液には抗 B抗体力 B型の血液には抗 A抗体力 O型の血液には抗 A抗 体と抗 B抗体の両方が含まれ、 AB型の血液には両方とも含まれていないので、もし、 すべての検出部 323で凝集がおこらなければ AB型の血液、 A型抗原ラテックスビー ズ懸濁液をセットした検出部 323だけが凝集すれば B型の血液、 B型抗原ラテックス ビーズ懸濁液をセットした検出部 323だけが凝集すれば A型の血液、 A型抗原ラテツ タスビーズ懸濁液と B型抗原ラテックスビーズ懸濁液の両方が凝集すれば、 O型の血 液と判定できる。
[0203] 次に図 26のチップ 224を利用して、白血球型 (HLA型)を 1次判定する場合につ いて説明する。血球型には、 A、 B、 C、 Dの 4タイプがあり、そぞれ複数のサブタイプ を持つ。 1次判定は、各抗原タイプに対する抗血清と反応して血液サンプル中の白 血球が凝集もしくは破壊される現象を利用して判定する方法である。
[0204] まず、チップ 224の検出部 113等に各 HALタイプとサブタイプに対する抗血清、ま たはゥサギ補体を凍結乾燥したものをセットしておく。図 26のチップ 224には、検出 部 113、検出部 115、検出部 117、検出部 119の 4個の検出部が用意されているが、 HAL型はそれ以上存在するので適宜追加して検出部の数はサブタイプ分も含めて 充分用意されたものとして、以下説明する。
[0205] チップ 224の分離領域 245を利用することで、血液サンプル中の血球をその大きさ の順序に分けて取り出すことができる。ピラーがパッチ状に形成された分離領域 245 の場合、血球の中で最も大きな白血球が、最初に分離されて出てくることを利用して 血液サンプル中の白血球だけを検出部に導く。
[0206] 分離領域 245の具体的構造は、図 28に示すようなサイズの大きい成分を早く通過 させるタイプのピラーパッチ構造とすることができる。分離領域 245は、図 28において 図の左側が図 26における第一の流路 241に、右側は第二の流路 243と連通した構 造となっている。隣接するピラーパッチ 321間のパスの幅は、ピラーパッチ 321中の ピラー 325間の間隙よりも大きい。本実施形態では血球を分離するので、ピラー 325 間の間隙をたとえば lOOnm— lOOOnm程度とし、パスの幅を、ピラー 325間の間隙 の好ましくは 2— 20倍程度、より好ましくは 5— 10倍程度とする。図 28においてビラ 一パッチ部分の長さを長くすることで、白血球、赤血球、血小板が流出してくる時間 差を大きくすることができる。
[0207] 図 26にもどって、処理手順を説明する。まず血液サンプルを試料導入部 105に導 入し、前処理部 231にて液溜め 233に保持されたバッファー(たとえば PBS)と混合し て 2— 10倍程度に希釈したサンプルを、第一の流路 241を介して分離領域 245へと 供給する。その際、液溜め 233からバッファーを前処理部 231に導くタイミング、およ び前処理部 231から第一の流路 241へとサンプルを導くタイミングは、前述した液体 スィッチと流路拡張領域を利用することで最適に選ぶことができる。具体的には、液 溜め 233と前処理部 231を接続している流路上と、第一の流路 241の前処理部 231 側(上流側)の部分に液体スィッチを設け、それらの液体スィッチへのトリガー流路は 、試料導入部 105から、適切な遅延時間を生じるような流路拡張領域を介して供給さ れる構成とすればよい。
[0208] 希釈された血液サンプルが第一の流路 241から分離領域 245を通過して第二の流 路 243側へ出現する際、サイズが最大の白血球が最初に出現し、遅れて赤血球、最 後に血小板が出現してくる。白血球と赤血球の流出時間の差を利用して、白血球の みが第二の流路 243に出現した段階で、液溜め 235から第二の流路 243にバッファ 一を供給すると、白血球だけ力バッファーと混合されつつ第二の流路 243を液溜め 1 07へと流れ、その途中で検出部 113に始まる複数の検出部に分注される。液溜め 2 35からバッファーを導入するタイミングは、液溜め 235と分離領域 245を接続してい る流路上に液体スィッチを設け、そのトリガー流路は、第一の流路 241から、血球の 分離速度に応じた最適な遅延時間を持つ流路拡張領域を介して供給する構成によ つて実現でさる。
[0209] 検出部に分注されたバッファーと白血球の混合液は、検出部にセットされていた抗 血清を溶解してそれと反応する。白血球が凝集した場合、検出部にセットされていた 抗血清に対するタイプの抗原を持つことが、凝集にともなう検出部の光の透過度向上 をもとに検知できる。また、抗血清だけでなくゥサギ補体を同時にセットしておいた場 合は、白血球が破裂溶解して検出部が透明化するので、これを光学的に検出するこ とで抗原の存在を検知してもょ 、。
[0210] 以上のようにすれば、血液サンプルの血液型検査に必要な検出反応をチップを用 いて簡便かつ確実に行い、チップの検出部の光学特性を移動端末 127の測定ュ- ット 151を用 、て測定することができる。 [0211] 次に、上述した血液型検査チップを利用する検査システムについて説明する。図 2 9は、血液型検査チップを利用する検査システムの構成を示す図である。図 29の検 查システム 211において、検査システム 100 (図 12)と同様の構成要素には同様の符 号を付し、適宜説明を省略する。
[0212] 検査システム 211では、測定装置 129、分析センター 153に加え、さらに医療機関 213を含む。医療機関 213は、送受信部 215と、血液管理部 217と、ストック状況記 憶部 219とを含む。医療機関 213と分析センター 153とは、ネットワーク 201を介して 接続している。
[0213] 送受信部 215は、ネットワーク 201を介して分析センター 153と通信を行い、また、 利用者 187の移動端末 127との通信を行う。
[0214] 血液管理部 217は、医療機関 213での輸血に関する情報を管理する。推定処理 部 179において推定された利用者 187の血液型に関する情報に基づき、利用者 18 7に輸血可能な血液のストック状況をストック状況記憶部 219から読み出す。読み出 した情報を、移動端末 127に送信する。また、ネットワーク 201を介して、他の医療機 関(不図示)力も輸血の手配を行 、、利用者 187を迎える準備をしてもょ 、。
[0215] このような構成とすることにより、利用者 187が大きな事故やけが等にみまわれ、救 急車 (不図示)により医療機関 213に搬送する必要が生じた際に、最適な医療機関 に搬送することができる。
[0216] なお、移動端末 127の利用者 187は、負傷した者であっても、力 4ナつけた救急隊員 であってもよい。負傷者が利用者 187である場合、利用者 187自身が測定することが 可能であれば自分で測定を行い、測定が困難である場合には、救急隊員が測定を 行う。利用者 187の移動端末 127を用いることにより、負傷者が意識不明等、身元を 名乗ることができな 、状況にぉ 、ても、移動端末 127の利用者 IDを用いて身元を明 らかにし、家族に連絡を取ることが可能である。
[0217] また、負傷者が移動端末 127を所持していない場合には、救急隊員が所持してい る移動端末 127およびチップ 193を用いて負傷部の血液の測定を行い、負傷者の 血液型を判定してもよい。
[0218] また、本実施形態では、推定処理部 179での推定結果を医療機関 213に送信し、 これを受信した医療機関 213が適合する血液のストック状況を移動端末 127に送信 することにより、救急隊員は最適な医療機関 213を選択し、利用者 187を迅速に搬 送することができる。
[0219] なお、図 29の検査システム 211は、本実施形態だけでなぐ他の実施形態にも適 用することが可能であり、検査システム 211に適用されるチップの構成も、上記いず れかの実施形態に記載の構成を任意に選択することが可能である。
[0220] (第七の実施形態)
本実施形態は、第一一第三の実施形態に記載の検査システムを用いたストレスレ ベルの判定に関する。
[0221] ストレスレベルの判定は、唾液中のカテコールアミン濃度を検出することにより行うこ とができる。カテコールアミンの検出には、たとえばルミノール型の化学発光試薬等を 用!/、ることができる。
[0222] 本実施形態において、推定処理部 179は利用者 187のストレスレベルを判定し、ス トレスレベルが低い場合、利用者 187に注意をうながす。
[0223] また、図 30は、本実施形態に係る検査システムの別の構成を示す図である。図 30 の検査システム 209において、検査システム 100 (図 1)と同様の構成要素には同様 の符号を付し、適宜説明を省略する。
[0224] 検査システム 209では、測定装置 129、分析センター 153に加え、さらに管理会社 199を含む。管理会社 199は、たとえば、原子力発電所、鉱山、炭坑、監視業務等、 作業者のストレスレベルの維持が重要な業務に従事する利用者 187の要員配置を 管理する。管理会社 199は、送受信部 203と、要員配置管理部 205と、配置情報記 憶部 207とを含む。管理会社 199と分析センター 153とは、ネットワーク 201を介して 接続している。
[0225] 送受信部 203は、ネットワーク 201を介して分析センター 153と通信を行い、また、 利用者 187の移動端末 127との通信を行う。
[0226] 要員配置管理部 205は、利用者 187の作業スケジュールを管理する。推定処理部 179での推定結果に基づき、利用者 187の要員配置の変更等を行う。その際、配置 情報記憶部 207に格納された要員配置配置に関する情報を参照し、また、これを変 更する際には新たな配置を配置情報記憶部 207に記憶させる。
[0227] また、要員配置管理部 205で設定された要員配置の変更は、送受信部 203から利 用者 187の移動端末 127に送信され、表示部 145に提示される。代替要員を作業現 場に派遣する際には、利用者情報記憶部 175またはエリア情報記憶部 177に記憶さ れている交代させる作業者のエリア情報に基づき、交代が容易な者を派遣する。
[0228] このような構成とすることにより、作業者のストレスレベルの維持が重要な業務にお いて、要員配置の最適化が可能となる。このため、作業の安全性が好適に維持され る。
[0229] なお、図 30の検査システム 209は、本実施形態だけでなぐ本発明に係る他の実 施形態にも適用することが可能であり、検査システム 209に適用されるチップの構成 も、上記いずれかの実施形態に記載の構成を任意に選択することが可能である。
[0230] (第八の実施形態)
本実施形態は、第一の実施形態に記載の検査システム 100 (図 1)に適用可能なチ ップの他の構成に関する。本実施形態に記載のチップは、移動端末 127における測 定後、チップを中和する構成となっている。
[0231] 測定に用いたチップの内部には、試料に由来する細菌などの感染源や、測定試薬 に由来する強酸やシアンィ匕合物などの毒物が保持されている場合がある。このような 場合、使用後のチップを中和し、また必要に応じて無毒化しておけば、健康被害等 が生じる可能性をさらに確実に回避し、より一層安全に持ち運べ、安全に廃棄できる 。具体的には、測定後、中和液をチップ内の流路に充填することにより、チップ内に 保持された感染源や毒物を中和する構成等とする。
[0232] 中和液としては、たとえば、細菌に対しては、中性洗剤や次亜塩素酸ナトリウムの希 薄水溶液が挙げられる。また、強酸に対しては、水酸ィ匕ナトリウム水溶液等のアルカリ 水溶液等が挙げられる。また、シアンィ匕合物に対しては、シアン化合物を酸化分解す るアルカリ性次亜塩素酸ナトリウム水溶液 (pH8— 9)等を挙げることができる。特に、 微量の界面活性剤を含むアルカリ性次亜塩素酸ナトリウム水溶液は、感染源、酸、シ アンの 、ずれにも有効であるため、好ましく用いることができる。
[0233] 図 40 (A)は、中和機構を備えるチップの構成を示す平面図である。また、図 40 (B )は図 40 (A)の断面図である。図 40 (A)および図 40 (B)に示したチップは、中和液 溜め 902、隔膜 905、空気穴 904、針 911および空気穴 909を有するチップ上板 90 0と、中和液流路 903空気穴 909を有するチップ中板 912と、検出槽 906、検出用流 路 907などの分析用流路系、および廃液溜め 910を有するチップ下板 901とが接合 されてなる。空気穴 909は、チップ上板 900およびチップ中板 912を貫通し、廃液溜 め 910に連通している。図 40 (A)および図 40 (B)に示したチップは、チップ上板 90 0、チップ中板 912、およびチップ下板 901をそれぞれ成形し、張り合わせることによ り得られる。
[0234] 隔膜 905は、チップ上板 900とチップ中板 912との間に設けられ、中和液溜め 902 を中和液流路 903から離隔している。中和液溜め 902の上面は薄ぐチップ上板 90 0側から使用者が中和液溜め 902の上面を押すと変形するように構成される。中和液 溜め 902の上面の変形により、上面に固定されていた針 911が隔膜 905に穿刺され 、隔膜 905に穴ができる。
[0235] 中和液流路 903は、検出槽 906、検出用流路 907などの分析用流路系に少なくと も一箇所で連通している。中和液流路 903の一端は、隔膜 905の下方において拡径 しており、拡径部 908となっている。拡径部 908の上部に針 911が位置している。検 出用流路 907は廃液溜め 910と連通している。中和液溜め 902には、前述した中和 液が収容されており、その水面は、分析用流路系および廃液溜め 910の上面よりも 高い位置に保持されている。
[0236] チップ内を中和する際には、利用者は、使用前はシール等でふさがれている空気 穴 904および空気穴 909を開放し、中和液溜め 902の上面から隔膜 905に向かって 針 911を押しつけ、隔膜 905の一部に穴を開ける。すると、中和液が毛細管効果と水 位差によって中和液流路 903に流入し、中和液流路 903を介して、検出槽 906およ び検出用流路 907を含む分析用流路系を満たしてゆく。その結果、分析用流路内に 残っていた感染源や有毒な液体が廃液溜め 910へと押し流されてゆき、廃液溜め 9 10の中で中和される。この構成により、測定後のチップを簡便に中和することができ る。中和により、チップの流路系を簡便に消毒したり、無毒化したりすることができる。
[0237] また上述した構成では、利用者が中和を忘れる可能性がある。この懸念を避けるた めに、移動端末の側の構造を工夫することで、測定終了後、チップ取り外す際に、中 和液溜め 902の上面を押さざるを得ない構成とすることもできる。
[0238] たとえば、図 40 (A)および図 40 (B)に示した中和液溜め 902を有するチップと移 動端末とは、測定の終了したチップを移動端末力も離脱させることをきつかけとして、 中和液溜め 902に保持されていた中和液力 中和液流路 903を経由して検出用流 路 907および検出槽 906に導入される機構をさらに有してもよい。
[0239] 具体的には、移動端末のチップ装着部分に、チップが抜去できないようにチップを 下側から保持する可動式のかぎ爪と、チップの少なくとも中和液溜め 902の上面部 分を覆う「ひさし」部を設ける。図 45 (A)—図 45 (C)は、こうした構成の移動端末およ びチップの構成を示す図である。図 45 (A)では、「ひさし」部を移動端末の裏面に設 けた構成を例示した断面図であり、図 45 (B)および図 45 (C)は断面図である。移動 端末の裏面は、たとえば図 4に示した移動端末の機能ボタン群 143が設けられた面 の裏面とすることができる。図 40 (A)、図 45 (A)および図 45 (A)—図 45 (C)を参照 すると「ひさし」部は、力ぎ爪を保持する板と側面で結合されている(図 45 (B) )。「ひ さし」部とかぎ爪を保持する板とは、弾性変形可能な榭脂、あるいは金属で構成され 、「ひさし」部を押し下げると、力ぎ爪を保持する板も同時に変形して力ぎ爪が移動端 末の内部に収納されるような構造になって 、る(図 45 (C) )。
[0240] 「ひさし」部のチップの中和液溜め 902の上面に対応する位置には、曲面を有する 突起が設けられており、「ひさし」部を押し下げると、突起が中和液溜め 902の上面を 押し変形させる。このとき、針 911が隔膜 905に押しつけられるため、隔膜 905に穴 があく。突起はチップを挟んでいる力 球面の一部のようななだらかな形状をしている ため、力ぎ爪を押し下げたままの状態でもチップを抜去することができる。以上の構 成により、利用者はチップを抜去する際、必ず「ひさし」部を押し下げて、その下にあ る中和液溜め 902の上面を押さねばならな 、ようにすることができる。
[0241] なお、拡径部 908からトリガー流路を分岐させ、このトリガー流路が液体スィッチを 介して中和液流路 903の所定の位置に接続している構成とすることもできる。こうす れば、検出槽 906から中和液流路 903に向力つて液体が逆流することを抑制できる [0242] また、本実施形態にぉ 、て、中和機構を有するチップは、 PMMAなどの榭脂材料 力もなるチップ上板 900および、チップ下板 901に所望の流路系を構成した後、これ らを張り合わせることで製造できるが、チップの構造は、チップ上板 900、チップ下板 901を持つ構造に限定されるものではない。また、中和液溜め 902から廃液溜め 91 0への中和液の送液に、毛細管効果と水位差を利用したが、空気穴 904を設けず、 予め中和液溜め 902内に大気圧よりも高い圧力のガスを保持しておき、その圧力を 利用して中和液を送ることもできる。また、外付けの送液手段を用いて中和液を送る ことちでさる。
[0243] また、図 40 (A)および図 40 (B)に示したチップの検出用流路 907に図 9を用いて 前述した検出方法を適用し、各検出槽 906に連通する検出用流路 907の分注領域 を図 9における検出部 113または検出部 115として用いてもよい。
[0244] (第九の実施形態)
本実施形態は、第一の実施形態に記載の検査システム 100 (図 1)に適用可能な 測定装置 129の別の構成に関する。分析チップにおいて、吸光または散乱をもとに 所定の物質の濃度を測定しょうとする場合、試料中を通過する光路が適切な長さを 持つ必要があるため、微量な試料を分析する場合、流路の伸長方向に光を透過させ て測定する方法がある。この場合、試料が微量でも流路の断面積が少ないため、 5m m— lcm程度の大きな光路長を確保できる。し力しながら、流路断面の幅が数百 m—数十; z m程度と小さい場合、照射光を流路に確実に入射し、流路の反対側から 透過光を確実に受光部に導くには精密な位置あわせが必要となる。このため、測定 時間の短縮や、測定データの再現性の向上の点で、さらに改善の余地を残す。
[0245] 本実施形態の測定装置は、このような場合にも好適に用いることができる。本実施 形態では、チップの対向する側面に凹部を設け、移動端末のチップ挿入部内に、チ ップの凹部に係合する二つの凸部を設ける。チップを装着する移動端末部分とを、 形状が符合する凸凹に加工しておくことで、位置あわせをより一層簡便に実施できる 。また、移動端末の二つの凸部の一方に光源からの光を導き、他方に受光部、もしく は受光部への導波路を設ける。そして、チップの検出用流路を介して光源と受光部と が対向するように、チップの検出用流路を形成する。これにより、測定時の光路長を さらに大きくし、また、測定を安定的に行うことができる。
[0246] 図 41および図 42は、本実施形態に係る測定装置を示す斜視図である。図 41およ び図 42に示した測定装置は、チップ 700および移動端末 706からなる。図 41は、チ ップ 700を移動端末 706の所定の位置に挿入する前の状態を示し、図 42は、チップ 700が移動端末 706に挿入されている状態を示す。なお、図 41および図 42では、移 動端末 706のチップ 700が装着される領域とその近傍を示したが、移動端末 706に は、たとえば以上の実施形態に記載の移動端末 127の構成を適用することができる
[0247] チップ 700は、矩形に曲がった流路 701を有し、流路 701の直線部分は、十分薄く て透明な隔壁を介して切欠部 702と接している。また、移動端末 706は、凹状の装着 部 704を有する。チップ 700を移動端末 706に装着すると、装着部 704に設けられた 照射部 703と受光部 705とが切欠部 702にはまり込み、これらの係合によりチップ 70 0が移動端末 706に係止、固定される。
[0248] 照射部 703および受光部 705は、パネなどの弾性部材を介して装着部 704に対向 して固定されており、軸方向にスライド可能である。照射部 703は、移動端末 706の 内部からチップ 700へと測定光を導く光ファイバの先端、または LEDなどの光源を摩 耗しにく!/、榭脂等の材料で被覆し略円錐台形状に加工したものである。照射部 703 の先端力も測定光がチップ 700の流路 701に照射される。受光部 705は、流路 701 力もの光を移動端末 706の測定部へ導く光ファイバの先端、またはフォトダイオード を摩耗しにくい榭脂等の材料で被覆し略台形にカ卩ェしたものであり、流路 701の延 在方向に沿って流路 701中を通過した光が、受光部 705の先端へと出射する。
[0249] 図 41に示したように、装着部 704にチップ 700を図中矢印の方向力も押し込むと、 照射部 703および受光部 705は、チップ 700の側面に押されて、一時的に装着部 7 04の側力も移動端末 706の内部側へと押し込まれる力 チップ 700の切欠部 702に 到達すると弹性材によって飛び出し、図 42に示したように、照射部 703および受光 部 705が切欠部 702にはまり込む。この状態で計測した後、チップ 700を図 41中の 矢印と逆の方向に引くと、照射部 703と受光部 705は、切欠部 702の側壁で押される ことにより、再度、移動端末 706の内部に押し込まれ、チップ 700を移動端末 706か ら引き抜くことができる。
[0250] 図 41および図 42に示した構成の測定装置を用いることにより、チップ 700と移動端 末 706との位置あわせを短時間でさらに確実に行うことができる。このため、測定時 間を短縮することができる。また、測定データの再現性を向上させることができる。
[0251] (第十の実施形態)
本実施形態は、第一の実施形態に記載の検査システム 100 (図 1)に適用可能な 測定装置 129の他の構成に関する。本実施形態に記載の測定装置においては、チ ップが流路状の検出部を有し、移動端末においてチップの検出部の長さの計測が可 能である。
[0252] ガス検知管のように、濃度に応じて変色部分が長くなるような検出部を有する場合、 目視にて変色部分の長さを読むことも可能である力 人によって読み方にばらつきが 出るという懸念がある。本発明の測定装置によれば、移動端末に長さを計測する光 学機構が設けられているため、このような場合にも、測定結果のばらつきを低減する ことができる。
[0253] 図 43は、変色部分の長さを計測するための機構を示す断面図である。図 43に示し た測定装置において、移動端末は、基板 607と、基板 607上に、チップ挿入時にチ ップの流路方向に沿うように配置されたフォトダイオードなどの受光素子 606と、受光 素子 606の直上に設けられた透明で摩耗しにくいクリスタルガラスなどの材料力ゝらな る接触部 605と、を備える。また、移動端末の他の部材の構成は、以上の実施形態 に記載の移動端末 127の構成とすることができる。
[0254] また、図 43に示した測定装置において、チップは、チップフタ 600と、チップ底板 6 01と、光導波路 602と、分析用流路 603とを備える。少なくともチップ底板 601と分析 用流路 603は、たとえば PMMA等の透明な榭脂ゃガラスなどの透明な材料力もなる 。また、分析用流路 603の一部には着色した内容物 604が流れてくる。
[0255] 測定の際には、着色した内容物 604が分析用流路 603内に存在している状態で、 チップを、移動端末の接触部 605に、図示した位置関係で接触させる。光導波路 60 2に光を照射すると、光導波路 602から漏出した光が分析用流路 603を全体的に照 明する。この照明が、分析用流路 603の内容を透過して、受光素子 606に届く。この とき、分析用流路 603の延在方向に沿って複数の受光素子 606がー列に並んで設 けられているため、着色した内容物 604が存在している領域の直下に位置する受光 素子 606には、そうでない領域の直下に位置する受光素子 606に比べて少ない光 量しか到達しない。
[0256] 一列に並んで設けられた受光素子 606に順に番号を付しておき、この光量の差を 分析用流路 603の長手方向に対してモニターすることで、充分な光量しか受けて!/ヽ ない受光素子の番号として、着色した内容物 604の長さを定量することができる。こ のため、試料中の所定の成分の濃度を着色した内容物 604の長さとして、所定の成 分の定量を行うことができるので、人による測定結果のばらつきを防ぐことができる。
[0257] (第十一の実施形態)
以上の実施形態に記載の検査システムにおいて、移動端末 127は、着脱式センサ をさら〖こ有する構成とすることもできる。以下、移動端末 127が携帯電話である場合を 例に説明する。
[0258] 図 34は本実施形態に係る着脱式センサつき移動端末の構成を示す図である。図 3 4に示した移動端末は、本体 500、本体 500力ら突出したロッド 501、およびロッド 50 1の先端部に設けられたセンサユニット 502からなる。センサユニット 502を試料に浸 漬することにより、試料中の所定の成分を測定または検出できる。たとえば尿等の体 液が試料として試験管やビーカー等に保持されている場合、移動端末をこのような形 状とすることで、簡便に測定を行うことができる。本体 500の基本構成は、たとえば第 一の実施形態において前述した移動端末 127の構成とすることができる。
[0259] センサユニット 502は、ロッド 501の先に装着され移動端末の内部の測定装置に接 続されている。センサユニット 502は、イオン濃度もしくはグルコース濃度などを測定 する電気化学センサ、または図 35を参照して後述する構成等の光ファイバを利用し た光学的センサである。電気化学的センサの場合、センサユニット 502は電極を介し て移動端末の内部の測定装置に接続される。
[0260] 光学的センサの場合、センサユニット 502は、光コネクタを介して移動端末 127に 接続される。図 35は、着脱式光学センサの構成の一例を示す図である。なお、図 35 の E— E,方向は、図 34の E— E,方向に対応する。光学センサは、複数の光ファイバコ ァ 513を保持する外筒 510と、外筒 510の先端に設けられた毛細管セル 512と、光フ アイバコアからの光をロッド 501中の光学系に接続する光コネクタ 511とからなる。ロッ ド 501中の光学系は、光源および受光部を備える。
[0261] 外筒 510の材料は、光ファイバコア 513に対してほぼ全反射するようなクラッド材料 とする。このセンサユニット 502の先端を試料に浸漬すると、毛細管効果により試料が 毛細管セル 512内に進入する。毛細管セル 512のロッド 501側端部の側方に対向し て設けられた一対の光ファイバコア 513の一方を介して光源からの光を照射し、他方 を介して測光することにより、毛細管セル 512内部に浸入した試料の吸光または散乱 等が測定できる。
[0262] なお、図 34および図 35において、センサユニット 502は、センサ部分の時候劣化を 考慮すると、ロッド 501に対して着脱可能な構成とすることが好ましいが、固定式とし てもよい。また、ロッド 501は、携帯時には移動端末の内部へ引き込まれ、測定に用 いる際に引き出して利用する構成とすることができる。このようにすると、携帯時の移 動端末全体の小型化が可能であり、ロッド 501が携帯の際にじゃまにならず、利便性 をさらに向上させることができる。
[0263] また、本実施形態にぉ ヽて、試料が付着した部分の洗浄が可能な構成とすることも できる。たとえば、図 34または図 35に示した移動端末は、さらにセンサユニット 502を 洗浄する機構を有することもできる。洗浄機構を設けることにより、試料で汚れること の多いセンサユニット 502を、測定前または測定後に洗浄することができるので、さら に正確な測定データが得られる。また、移動端末をより一層衛生的に携帯し、持ち運 ぶことができる。
[0264] 図 36は、洗浄機構を有する移動端末の構成の一例を示す図である。また、図 37は 、図 36に示した移動端末のロッド 501の端部近傍の構成を示す F— F,断面図である 。図 36および図 37に示した移動端末は、図 34に示した移動端末において、本体 50 0にさらに洗浄液カセット 507、洗浄用流路 505、制御機構 506が内蔵されている。
[0265] ロッド 501の内部に洗浄用流路 508が設けられている。洗浄用流路 508は、制御機 構 506を介して洗浄液カセット 507と連通している。洗浄液カセット 507には、たとえ ば希薄な中性洗剤または次亜塩素酸を含む洗浄液と圧縮炭酸ガスなどの膨張剤と が収容されている。制御機構 506を押すなどして洗浄用流路 505が開通すると、洗 浄液は洗浄用流路 505とロッド 501内の洗浄用流路 508とをこの順に移動して、自 動的にロッド 501の先端付近力も吹き出し、センサユニット 502を洗浄する。
[0266] ロッド 501の先端付近には、センサユニット 502に向かって拡径するフード 504が設 けられているため、洗浄液の飛散を抑制しつつセンサユニット 502を効率よく洗浄で きる。また、フード 504をロッド 501の延在方向に沿ってスライド可能とすることにより、 洗浄時にセンサユニット 502を覆う状態にすることもできる。こうすれば、センサュ-ッ ト 502をさらに効率よく洗浄できる。ロッド 501およびフード 504の材料は、化学薬品 耐性のあるテフロン (登録商標)等の榭脂とすることができる。こうすれば、ロッド 501 およびフード 504の劣化を抑制し、長期間使用することができる。
[0267] 洗浄液カセット 507は、本体 500に対して着脱可能なカートリッジとすることができる 。こうすれば、洗浄液カセット 507中の洗浄液および膨張剤が不足した際に、洗浄液 カセット 507を本体 500から取り外し、新しい洗浄液カセット 507に交換することで、 洗浄液および膨張剤を補充できる構造になって 、る。
[0268] 以上、本発明を実施形態に基づき説明した。これらの実施形態は例示であり、様々 な変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理 解されるところである。
[0269] たとえば、以上の実施形態においては、測定装置 129に適用する移動端末 127と して携帯電話を用いる場合を例に説明をしたが、測定装置 129に用いる移動端末 1 27は携帯電話には限定されず、たとえば携帯用コンピュータ等としてもよい。
[0270] また、分析センター 153は、利用者 187が移動端末 127を用いて行った測定の位 置または時間に関する状況に応じて、各利用者 187の分析結果を補正することがで きる。たとえば、血中コルチゾールなどの副腎皮質ホルモンや、成長ホルモンなどの 下垂体ホルモンは、一日の中で時刻により測定値に高低が生じるため、これを測定 時間に応じて補正することができる。また、測定値の気温に応じて測定値が変動する 項目を測定する場合、測定位置の気温に関する情報を別途取得し、これに応じて測 定値を補正した後、分析を行うこともできる。また、利用者情報記憶部 175に記憶さ れた利用者 187ごとの過去の測定結果または分析結果に基づき、分析情報記憶部 1 69に記憶された情報を利用者 187ごとに補正して分析を行ってもよい。
[0271] また、以上の実施形態においては、チップに設けられている検出部の形状が主とし て円柱形である場合を例示したが、これらは内容物の分析 (検出または測定)を行う ような形状であればよぐ円柱形に限られず適宜選択することができる。たとえば、検 出部の形状を、四角柱等の角柱とすることができる。また、検出部は憩室状でなくて もよぐたとえば図 9を参照して前述したように、流路状としてもよい。
[0272] また、以上においては、検出槽以外のチップに設けられている他の液溜め、たとえ ば図 3に示したチップの場合試料導入部 105や液溜め 107についても、それぞれの 液溜めに導入または回収される液体を保持するのに充分な体積が確保されて ヽれ ばよく、円柱以外の形状とすることができる。チップに設ける液溜めの形状は、たとえ ば、四角柱等の角柱や、所定の平面形状の流路状とすることができる。また、廃液溜 めとして機能する液溜めの形状をたとえば平面視においてジグザグ型の流路状とし たり、内面に凹凸が形成された柱状とすることもできる。こうすれば、廃液溜めの表面 積を増加させることができるので、毛細管効果をさらに向上させ、廃液をさらに確実に 回収可能な構成とすることができる。
[0273] また、以上の実施形態においては、移動端末 127にチップ挿入部 131または切欠 部 132が形成された構成としたがチップ 101をチップ挿入部 131または切欠部 132 に挿入せずに測定する態様としてもよい。このような測定として、たとえば下記 (I)また は (Π)の態様が可能である。
[0274] (I)非接触測定
チップ 101をチップ挿入部 131または切欠部 132に挿入せず、非接触による測定 を行うことができる。非接触での測定とすることにより、移動端末 127への試薬の付着 等による汚染を確実に抑制することができる。また、測定可能なチップ 101の形態の 自由度を高め、移動端末 127を汎用化することができる。
[0275] 非接触での測定として、具体的には、たとえば POS端末タイプのスキャンが可能で ある。この場合、移動端末 127に、小型の POSスキャン装置を搭載しておく。このスキ ヤン装置によって、単一波長あるいは数波長のレーザーパルスをチップ 101に設けら れた複数の検出槽に順次照射する。スキャンした際の各検出槽での反射パルス光の 強さを計測することにより、各検出槽についての測定が可能となる。
[0276] また、チップ 101で光を反射させ、反射光の強さを測定することもできる。たとえば、 検出部の底面に金属蒸着などの方法により鏡面を設けることができる。また、チップ 1 01の底面全面を鏡面としてもよい。鏡面を設けることにより、光路長を増加させること ができるため、より正確な測定値を得ることができる。
[0277] また、チップ 101に、バーコード上の位置決め用ターゲットを設けてもよい。こうする と、多数の検出槽について測定を行う場合にも、ターゲット間の位置関係からどの検 出槽につ 、ての測定値であるかを容易に判定することができる。
[0278] (II)移動端末に接続可能な測定用アタッチメントの利用
移動端末 127に接続可能な測定用のアタッチメントを別途設けることにより、チップ 101を直接チップ挿入部 131または切欠部 132に挿入せずに測定することができる 。アダプターを介して測定することにより、チップ 101の形態の自由度を増すことがで きる。また、移動端末 127の汚染を防止することができる。また、移動端末 127自体の 構造を簡素化することができる。また、アタッチメントの種類の選択が可能となるため、 測定方法の自由度を増カロさせることができる。
[0279] 具体的には、移動端末 127上に CCDカメラによる測定のためのアタッチメントを設 けてもよい。この場合、チップ 101およびカメラの距離と位置とを固定するための固定 具を介して、チップ 101の検出槽付近を撮影する。アタッチメントに相当する固定具 は、折りたたみ式等とすることにより、小型化することができる。
[0280] 測定の際には、固定具の底面にチップ 101を設置し、固定具の上面の所定位置に 移動端末 127を設置し、固定する。このとき、移動端末 127に設けられた CCDカメラ を下に向けて設置する。シャッターボタンを押して撮影後、画像処理により、 RBG各 色の強さから、各検出部における発色の強さを推定することができる。
[0281] また、移動端末に接続して用いる測定用アタッチメントは、たとえば USB、 RS232 C、 GPIB、またはパラレル IZO等のインターフェイスを経由して移動端末に接続され る構成とすることができる。こうすれば、移動端末の汚染をさらに確実に抑制し、また、 移動端末と測定用アタッチメントをより一層確実に接続することができる。
[0282] また、チップ 101が電子チップを有していてもよい。電子チップを有するチップ 101 と移動端末 127を用いることにより、測定装置 129および検査システム 100にたとえ ば以下の機能をさらに付与することが可能となる。
(i)非接触化
(ii)個人認証の利用
(iii)位置情報の利用
(iv)チップ自体の IDの利用
(V)チップの有効期限の保障
(vi)移動端末力もカスタムチップ仕様の選択
(vii)移動端末とオンライン発注の組み合わせ
(viii)測定後、 情報を読みとり不能にするトリガーを出力する機能
以下、これらについて順に説明する。
[0283] (i)非接触化
電子チップを有するチップ 101を用いると、チップ 101を移動端末 127に挿入する ことなく非接触で測定することが可能となる。このため、移動端末 127にチップ挿入部 131または切欠部 132が形成されていなくても測定が可能となる。
[0284] この場合、チップ 101自体が測定部を有する構成とする。図 13は、このようなチップ 101の構成を示す図である。図 13のチップでは、電子チップに設けられた通信部で 移動端末 127との間の情報の送受信が可能である。また、電子チップは、通信部で 受信した情報に基づき、測定部での測定条件を制御する制御部を有する。この構成 では、測定データを通信部力も移動端末 127に送信することができる。送信は、たと えば無線信号とすることができる。また、この構成によれば、移動端末 127の装置構 成を簡素化することができるため、測定装置 129をさらに効率よく生産することができ る。
[0285] (ii)個人認証の利用
チップ 101が電子チップを有する構成とすることにより、チップ 101の使用者を特定 の個人に限定したり、測定データの使用を特定の個人に限定したりすることができる 。このため、チップ 101の使用者のプライバシーの保護を強化することができる。たと えば、廃棄したチップ 101からは他人がデータを読み出せないような構成としたり、電 子チップをオンラインで課金するための一手段として利用したり、オンラインでチップ
101を注文すると、使用者の個人情報が書きこまれたチップ 101が使用者に届き、そ のチップ 101の情報が移動端末 127が保持する個人情報と一致した時にのみ使用 可能となる構成としたりすることができる。
[0286] (iii)位置情報の利用
電子チップを有するチップ 101が、限られた範囲において受信可能な弱い電波を 発する構成とすることにより、移動端末 127には自身の位置情報を送信する機能が ない場合にも、チップ 101の位置情報を移動端末 127の位置に関する情報として送 信することが可能となる。
[0287] (iv)チップ自体の IDの利用
電子チップを有するチップ 101を用いると、利用者によるチップ 101の誤使用を防 止することができる。たとえば、個人利用者がオンラインで肝機能検査用のチップ 10 1を注文した場合、移動端末 127に注文に関する情報を記録する構成とすることがで きる。こうすれば、肝機能検査以外に用いるチップ 101、たとえば腎機能検査用のチ ップ 101が誤って届いた場合にも、移動端末 127に記録されたチップ 101の種類に 関する情報と、チップ 101の IDすなわち腎機能検査用のチップであるなどの情報が 異なる場合には測定できない構成とすることができる。
[0288] (V)チップの有効期限保障
チップ 101の有効使用期限は、通常、チップ 101の表面に文字印刷される力 必 ずしも利用者によりチェックされない場合がある。そこで、使用期限確認のヒューマン エラーを防ぐために電子チップを利用することができる。たとえば、チップ 101上にタ イマ一用の電子チップを設けておくことができる。また、製造年月日を移動端末 127 で読み取れる形式、たとえばバーコードや磁気テープなどで記録しておくこともできる
[0289] (vi)移動端末力もカスタムチップ仕様の選択
電子チップを有するチップ 101を用いることにより、汎用タイプのデザインのチップ 1 01を準備しておき、発注に応じてカスタマイズして用いることが可能となる。たとえば 、オンラインで発注したチップ 101の種類に関する情報、たとえば肝機能測定用のチ ップ等が移動端末 127に記録され、その種類に関するデータにしたがってその場で チップ 101の仕様を変更し、特定の項目を測定する肝機能測定用のチップにカスタ マイズして用いることができる。
[0290] 図 31は、このようなチップ 101の構成の一例を示す図である。図 31のチップ 101は 、電子チップと調節部を有する。電子チップは、移動端末 127との間で情報の送受 信を行う通信部と、チップ 101に導入された試料の移動経路を制御する弁制御部を 有する。チップ 101において、試料の移動経路には、試料の移動の可否を調節可能 な調節部が設けられている。調節部は、たとえば流路に設けられた開閉可能な弁と することができる。弁制御部は、通信部力も受信した情報に基づき、調節部の弁の開 閉を制御することができる。こうすれば、試料の種類やチップの種類、測定対象等に 関する情報に応じて、チップ中での試料の移動経路のカスタマイズが可能となる。
[0291] チップのカスタマイズ処理の流れは、たとえば、以下のようにすることができる。オン ラインでの発注後、チップ 101の種類に関する情報を移動端末 127に記録する。そ して、チップ 101の種類に関する情報を移動端末 127でチップ 101上に設けられた 弁の ONZOFFパターンデータに変換し、そのパターンデータをチップ 101に送信 すると、チップ 101に設けられた電子チップがそのパターンに応じてチップ上の弁を 開閉する。こうしてカスタマイズされたチップが完成し、使用可能となる。また、チップ 101の種類に関する情報すなわち移動端末 127に記録された情報とチップ 101上の 情報に応じて、これらの間で測定データの授受をする構成としてもよい。
[0292] なお、カスタマイズ可能なチップ 101のデザインとして、たとえば電気的弁装置の利 用が挙げられる。この弁装置は、電極間に一時的に電流を流して流路中の溶液を電 気分解して気泡を発生させる構成である。発生した気泡は、流路が狭いためにその 部分に留まり、流路を閉鎖する。一度発生した気泡はすぐには消失しないため、所定 の流路を不可逆的に閉塞することができる。
[0293] (vii)移動端末とオンライン発注の組み合わせ
利用者がチップ 101と移動端末 127を用いて直接オンライン発注を行う場合、発注 記録を移動端末 127に記憶させることができる。一方、発注を固定端末力も行った場 合には、発注した情報が移動端末 127に転送されることが好ましい。チップ 101に電 子チップを埋め込むことにより、そのチップ 101の発注に関する情報を移動端末 127 側に自動的に転送されるよう処理を含むシステムとすることができる。
[0294] (viii)測定後、 情報を読みとり不能にするトリガーを出力する機能
移動端末 127に用いられるチップ 101に、無線タグを含む電子チップが実装されて いる場合、利用者やチップ 101の IDを含む情報が保持されたまま廃棄されると、ブラ ィパシー情報保護の観点で好ましくない場合がある。このような場合、移動端末 127 力 チップ 101の廃棄に際して、チップ 101が電子情報として保持している ID等の認 証データに関する情報を読みとり不能にするタイミングを決める「無効化トリガー」を発 生する構成とすることができる。チップ 101を移動端末 127から取り外す際に無効化 トリガーを発生する構成とすることにより、第三者に ID情報を読みとられる危険性を低 減し、チップ 101を安全に廃棄できる。このため、プライバシー情報をより一層確実に 保護することができる。
[0295] たとえば、電子チップを有するチップが認証データを記録する部分を有しており、 移動端末 127は、測定の終了したチップ 101を移動端末 127から離脱させることをき つかけとして、認証データを読みとり不能にせしめる機構をさらに有してもよい。
[0296] 図 38は、無効化トリガーを発生する移動端末 800の構成を示す図である。図 38〖こ 示した移動端末 800の基本構成は第一の実施形態において前述した移動端末 127 の構成とすることができる。また、図 38に示した移動端末 800は、チップ 801が装着 される凹状の装着部 802に無効化凸部 803を有する。移動端末 800にチップ 801を 装着すると、無効化凸部 803が、チップ 801に設けられた無効化凹部 805に挿入さ れる。
[0297] 無効化凹部 805内には、 HD情報の消去に関わる電気回路を開閉するスィッチ 804 が突出しており、無効化凸部 803が挿入されると、スィッチ 804がチップ 801の内部 に押し込まれる。スィッチ 804が押し込まれた状態で所定の測定を行い、測定終了後 、チップ 801を装着部 802から離脱させると、スィッチ 804を押し込んでいた無効化 凸部 803が離れる。このことが無効化トリガーとなり、 ID情報の消去に関わる電気回 路を開通あるいは遮断し、 HD情報の読みとりを不能とする。
[0298] 電気回路の開通、あるいは遮断によって読みとり不能にする方法には、たとえば、ヒ ユーズを利用する方法がある。この方法では、チップ 801内に実装された HD情報を 保持し、それを外部に提示するために設けられた電気回路の一部をヒューズを用い て断線させることで機能しな ヽようにする。該電気回路を構成する 、ずれかの導線に 直列にヒューズを設け、該ヒューズに過大な電流を流して断線させるための電源を用 意し、該電源と該ヒューズで構成される直列回路の途中にスィッチ 804が位置する構 成とする。
[0299] スィッチ 804が導通すると、該電源とヒューズが導通し、ヒューズが断線する。該電 源は、チップ 801の内部に設置してもよぐ移動端末に設置し、電極を介してチップ 8 01に電流を供給する構成としてもよい。後者の場合、チップが完全に移動端末から 外れると、電流の供給ができないので、チップ 801に電流を供給する電極は、チップ 801が無効化凸部 803から完全に離れるまでの間、接触した状態を保つよう変形可 能な電極、たとえば、パネ式の電極とする。
[0300] 図 39は、図 38に示した移動端末 800において、無効化トリガーが発生するタイミン グを示したタイムチャートの図である。図 39においては、スィッチ 804として、チップ 8 01内部に押し込まれた状態力 無効化凹部 805側に開放された状態へ移る際に電 気的接続または遮断を生じる型のスィッチが利用されている。
[0301] また、チップを移動端末力も遠ざけることによる無効化する構成とすることもできる。
たとえば、 情報が無線で提示される場合、移動端末がチップから無線送信される データを受信し終わったことをきつかけとして、 ID情報を読みとれなくすることができ る。そのためには移動端末は、チップ力もの測定データを受信完了した後、測定チッ プに対して無効化信号を送り、チップは、無効化信号を受信した場合に、チップ内の 前記電気回路を無効化する構成とすることができる。
[0302] 無効化は、たとえば、チップがロジック回路を有し、移動端末から無効化信号を受 信した場合に、前記電気回路上に設けられた低容量のヒューズに、チップが保持す る電源力 過大な電流を流して断線させること、あるいは、移動端末から過大な電波 を放射することで、チップのアンテナ力 過大な電流が前記電気回路に流れ、ヒユー ズを断線させることなど、などで実現できる。
[0303] また、以上の実施形態において、移動端末がチップの廃棄に都合のよい着脱と交 換が可能なポケットを有する構成とすることができる。チップをその場に廃棄すること は環境保護の観点から困難な場合が多いため、使用済みのチップを持ち帰ることに なることが考えられる。このような場合に、使用後のチップを収納するチップ収納部を 有する移動端末を用いることにより、使用済みのチップを移動端末と一体の状態で携 帯または運搬することが可能となる。このため、携帯時および持ち運び時の利便性を 向上することができる。
[0304] 図 44は、チップ収納部を有する移動端末の構成の一例を示す図である。図 44は、 チップ収納部として、使用済みチップを入れるポケットを有する移動端末の構成を示 す断面図である。図 44に示した移動端末は、着脱可能なチップポケットを備える。チ ップポケットの移動端末からの着脱は、移動端末に設けられたスライド式ポケットホル ダ一に沿ってチップポケットをスライドさせることにより行われる。チップポケットにはバ ネ式フタが設けられている。パネ式フタを開き、使用後のチップをチップポケット内に 収容すると、パネ式フタが閉まるためチップはポケット内に保持される。
[0305] また、以上の実施形態において、測定部を有する移動端末のチップ挿入部分に、 不使用時の塵芥の混入を防止する被覆を設けてもよい。たとえば、図 4におけるチッ プ揷入部 131や、図 11における切欠部 132の上部に、塵芥を排除するためのフタを 設けることができる。フタとしては、たとえばスライド式のフタを設け、測定の際にはフ タをスライドさせてチップ挿入部 131または切欠部 132を露出させ、チップを挿入す る構成とすることができる。また、スライド式以外のフタに代えて、パネ式のハネフタを 設けることもできる。また、移動端末の切欠部に、差し込み式のフタ用ダミーチップが 挿入されて ヽる構成としてもょ 、。
[0306] また、以上の実施形態にお!ヽて、電極を有するチップに対する電気的特性の計測 装置を移動端末に設けてもよい。たとえば、電気的特性として電気抵抗を計測する 場合、チップの表面と装着部とに電極を配置する構成とすることができる。このように すれば、試料中の特定の成分に関する測定を、電気的特性の変化を用いて行うこと が可能となる。このため、測定可能な試料の種類を増カロさせることができる。

Claims

請求の範囲
[1] 試料導入部と、該試料導入部に連通する検出部とを有し、前記試料導入部に導入 された試料に所定の操作を加えて前記検出部に導く測定チップと、
前記測定チップに導入された前記試料に含まれる特定の成分に関する測定を行う 移動端末を有する測定システムであって、
前記移動端末は、
前記測定チップが挿入される挿入部と、
前記検出部に導かれた前記成分の特性に関する測定を行う測定ユニットと、 前記測定ユニットで得られた測定結果を外部に送信する送信部と、
を有することを特徴とする測定システム。
[2] 試料導入部と、該試料導入部に連通する検出部とを有し、前記試料導入部に導入 された試料に所定の操作を加えて前記検出部に導く測定チップと、
前記測定チップに導入された前記試料に含まれる特定の成分に関する測定を行う 移動端末を有する測定システムであって、
前記移動端末は、
前記検出部に導かれた前記成分の特性に関する測定を行う測定ユニットと、 前記測定ユニットで得られた測定結果を外部に送信する送信部と、
を有することを特徴とする測定システム。
[3] 請求の範囲第 1項または第 2項に記載の測定システムにお 、て、
前記測定ユニットは、前記検出部に光を照射する光源と、前記光源からの出射光を 用いて前記成分の光学特性に関する測定を行う受光部と、を有することを特徴とする 測定システム。
[4] 請求の範囲第 1項乃至第 3項 、ずれかに記載の測定システムにお 、て、前記測定 チップは、前記試料導入部から前記検出部へ至る流路を有し、前記流路に、前記成 分を分離するための分離部が設けられていることを特徴とする測定システム。
[5] 請求の範囲第 1項乃至第 4項いずれかに記載の測定システムにおいて、前記検出 部は前記成分に作用してその光学特性を変化させる検出物質を備えることを特徴と する測定システム。
[6] 請求の範囲第 1項乃至第 5項いずれかに記載の測定システムにおいて、 前記送信部は、前記測定結果を測定状況と関連づけて外部に送信することを特徴 とする測定システム。
[7] 請求の範囲第 1項乃至第 6項いずれかに記載の測定システムにおいて、前記移動 端末が携帯電話機能を有することを特徴とする測定システム。
[8] 請求の範囲第 1項乃至第 7項いずれかに記載の測定システムにおいて、
前記移動端末とネットワークを介して接続され、前記移動端末から送信される情報 を受け付ける分析センターをさらに含み、
前記分析センターは、前記移動端末から送信された前記測定結果を取得するデー タ取得部と、前記データ取得部にて取得された測定結果に基づいて前記試料を分 祈し、分析結果を得る分析部と、を有することを特徴とする測定システム。
[9] 請求の範囲第 8項に記載の測定システムにお 、て、前記分析センターは、前記測 定結果または前記分析部で得られた前記分析結果を記憶する分析データ記憶部と 、前記分析部が参照するデータを記憶する参照データ記憶部と、を有することを特徴 とする測定システム。
[10] 請求の範囲第 8項または第 9項に記載の測定システムにおいて、
前記移動端末は、前記送信部から送信される前記分析結果を受信する受信部を 有することを特徴とする測定システム。
[11] 請求の範囲第 1項乃至第 5項いずれかに記載の測定システムにおいて、
前記測定チップは、さらに中和液溜めを有し、
前記移動端末と前記測定チップとは、
測定の終了した前記測定チップを前記移動端末力 離脱させることをきつかけとし て、該中和液溜め内の中和液が、前記測定チップに含まれる流路系に導入される機 構をさらに有することを特徴とする測定システム。
[12] 請求の範囲第 1項乃至第 5項いずれかに記載の測定システムにおいて、
前記測定チップは、さらに認証データを記録する部分を有し、
前記移動端末は、測定の終了した前記測定チップを前記移動端末から離脱させる こと、あるいは、前記移動端末がデータを受信完了したこと、 をきつかけとして、該認証データを読みとり不能にせしめる機構をさらに有することを 特徴とする測定システム。
PCT/JP2004/012958 2003-09-05 2004-09-06 測定システム WO2005024437A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005513699A JPWO2005024437A1 (ja) 2003-09-05 2004-09-06 測定システム
US10/570,312 US20060292039A1 (en) 2003-09-05 2004-09-06 Measuring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-314341 2003-09-05
JP2003314341 2003-09-05

Publications (1)

Publication Number Publication Date
WO2005024437A1 true WO2005024437A1 (ja) 2005-03-17

Family

ID=34269797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012958 WO2005024437A1 (ja) 2003-09-05 2004-09-06 測定システム

Country Status (3)

Country Link
US (1) US20060292039A1 (ja)
JP (1) JPWO2005024437A1 (ja)
WO (1) WO2005024437A1 (ja)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121510A2 (en) 2005-05-09 2006-11-16 Theranos, Inc. Point-of-care fluidic systems and uses thereof
JP2007178416A (ja) * 2005-12-28 2007-07-12 Hitachi Software Eng Co Ltd 実験解析システム
WO2007083130A1 (en) * 2006-01-20 2007-07-26 Enigma Diagnostics Limited Apparatus for analysing a sample and assessing its global position
JP2009526973A (ja) * 2006-02-15 2009-07-23 フィオ コーポレイション 生体物質認識分子に結合したマイクロビーズを用いた病原体検出システム及び方法
JP2009537808A (ja) * 2006-05-16 2009-10-29 ホリバ アーベーイクス ソシエテ パ アクシオンス シンプリフィエ 生物学的分析のためのパッケージング装置
WO2009145172A1 (ja) * 2008-05-29 2009-12-03 日本電信電話株式会社 フローセル及び送液方法
JP2010008100A (ja) * 2008-06-24 2010-01-14 Sharp Corp マイクロ流路型センサチップ、および測定装置
US20100245803A1 (en) * 2005-04-12 2010-09-30 Chromedx Inc. Blood sample holder for spectroscopic analysis
JP2011232223A (ja) * 2010-04-28 2011-11-17 Power Supply Kk マイクロ流路プレート
US8138909B2 (en) 2007-07-03 2012-03-20 Smiths Detection Inc. Portable detection system and method
US8158430B1 (en) 2007-08-06 2012-04-17 Theranos, Inc. Systems and methods of fluidic sample processing
JP2012132894A (ja) * 2010-12-01 2012-07-12 Arkray Inc デバイス及びその製造方法
CN103189721A (zh) * 2010-11-04 2013-07-03 诺基亚公司 用于光谱测定的方法和装置
US8669047B2 (en) 2006-05-10 2014-03-11 Theranos, Inc. Real-time detection of influenza virus
US8741230B2 (en) 2006-03-24 2014-06-03 Theranos, Inc. Systems and methods of sample processing and fluid control in a fluidic system
JP2014115150A (ja) * 2012-12-07 2014-06-26 Kagawa Univ 自動分析装置、血液型判定用検査試薬、及び凝集体溶血用試薬
US8778665B2 (en) 2006-11-14 2014-07-15 Theranos, Inc. Detection and quantification of analytes in bodily fluids
JP2014525094A (ja) * 2011-07-19 2014-09-25 ジーン オニキス エルティーディー 製品を選択する方法と装置
US8862448B2 (en) 2009-10-19 2014-10-14 Theranos, Inc. Integrated health data capture and analysis system
WO2015102102A1 (ja) * 2013-12-31 2015-07-09 株式会社ティー・ティー・エム 分析システム、この分析システムを構成する分析用補助装置、携帯型通信端末、および携帯型通信端末制御用のプログラム
CN104797912A (zh) * 2012-09-10 2015-07-22 蓝光分析股份有限公司 测量光的设备及方法
JP2015158384A (ja) * 2014-02-21 2015-09-03 国立大学法人九州大学 光分析方法、光分析システム及びプログラム
AU2013201509B2 (en) * 2005-05-09 2015-11-05 Labrador Diagnostics Llc Point-of-care fluidic systems and uses thereof
JP2016151417A (ja) * 2015-02-16 2016-08-22 国立研究開発法人産業技術総合研究所 赤血球凝集検出装置および検出方法
JP2016179198A (ja) * 2013-05-22 2016-10-13 アイメック・ヴェーゼットウェーImec Vzw 小型流体分析デバイスおよび製造方法
CN106370455A (zh) * 2016-09-29 2017-02-01 国网吉林省电力有限公司电力科学研究院 一种适用于现场采样的记录仪及其工作方法
JP2017075912A (ja) * 2015-10-16 2017-04-20 ウシオ電機株式会社 検体濃度測定装置およびマイクロ流路チップ
CN107498525A (zh) * 2017-09-29 2017-12-22 武汉瑞科兴业科技有限公司 一种用于核化样品采集的便携式工具箱
JP2018119813A (ja) * 2017-01-23 2018-08-02 パナソニックIpマネジメント株式会社 マイクロ流路での検体と反応試薬との混合方法
WO2019054123A1 (ja) * 2017-09-14 2019-03-21 オムロンヘルスケア株式会社 健康機器用流路形成部材、健康機器用流路形成ユニット、および健康機器
JP2019219411A (ja) * 2006-10-13 2019-12-26 セラノス アイピー カンパニー エルエルシー 流体装置における光学干渉の減少
JP2020034562A (ja) * 2014-06-18 2020-03-05 スカンジナビアン マイクロ バイオデバイシズ エイピーエスScandinavian Micro Biodevices Aps マイクロ流体検出システム及びマイクロ流体カートリッジ
KR20200082822A (ko) * 2018-12-31 2020-07-08 한국과학기술원 무채혈식 휴대형 광학적 혈당 측정 장치
US10900958B2 (en) 2007-10-02 2021-01-26 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11215610B2 (en) 2006-10-13 2022-01-04 Labrador Diagnostics Llc Reducing optical interference in a fluidic device
US11287421B2 (en) 2006-03-24 2022-03-29 Labrador Diagnostics Llc Systems and methods of sample processing and fluid control in a fluidic system
JP7420695B2 (ja) 2019-12-13 2024-01-23 オートノマス メディカル デバイシズ,インコーポレイテッド Covid-19、ウイルス、抗体、及びマーカのポイントオブケア高速現場展開可能な診断検査の装置及び方法-autolab 20

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020433B2 (en) * 2003-03-25 2011-09-20 Tearlab Research, Inc. Systems and methods for a sample fluid collection device
CA2508456A1 (en) * 2002-12-02 2004-06-17 Nec Corporation Liquid switch, and microchip and mass spectrometry system using thereof
WO2004081554A1 (ja) * 2003-03-14 2004-09-23 Nec Corporation 診断支援システム
PL3026874T3 (pl) * 2005-04-01 2020-05-18 Polymer Technology Systems, Inc. Składnik do badania płynu ustrojowego do detekcji analitu
ITBG20050028A1 (it) * 2005-05-13 2006-11-14 Abb Service Srl Dispositivo per la rilevazione della posizione di un elemento mobile ad esso accoppiato e relativo elemento mobile.
US20070122819A1 (en) * 2005-11-25 2007-05-31 Industrial Technology Research Institute Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same
US7846110B2 (en) * 2006-08-03 2010-12-07 Advanced Medical Products Gmbh Self-contained test unit for testing body fluids
JP4970925B2 (ja) * 2006-12-25 2012-07-11 株式会社タニタ 健康データ生成方法、健康データ生成装置、ユーザ端末およびユーザ端末プログラム。
US20100035357A1 (en) * 2008-08-05 2010-02-11 Ziv Geva Apparatus For Optically Reading Test Kits And Identification Data Associated Therewith
US8493441B2 (en) * 2009-09-11 2013-07-23 Thonhauser Gmbh Absorbance measurements using portable electronic devices with built-in camera
TW201128192A (en) * 2010-02-12 2011-08-16 Middleland Sensing Technology Inc Chemical and biological sensing device
WO2012053199A1 (ja) * 2010-10-19 2012-04-26 パナソニック株式会社 生体試料測定装置及びそれに用いる生体試料測定センサ
US9026190B2 (en) * 2010-11-17 2015-05-05 Rhythm Check, Inc. Portable physiological parameter detection and monitoring device with integratable computer memory and communication disk, systems and methods of use thereof
FI20106259A (fi) * 2010-11-30 2012-05-31 Medisize Oy Järjestely
BR112013018656B1 (pt) 2011-01-21 2021-03-02 Labrador Diagnostics Llc método para detectar a presença ou concentração de um analito numa amostra de fluido contido num recipiente, e, método de medição da concentração de analito numa amostra de fluido
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US20140170735A1 (en) 2011-09-25 2014-06-19 Elizabeth A. Holmes Systems and methods for multi-analysis
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US8840838B2 (en) 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US8380541B1 (en) 2011-09-25 2013-02-19 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
SE536430C2 (sv) * 2011-11-23 2013-10-29 Calmark Sweden Ab Testsystemarrangemang och metod för testning
SE536431C2 (sv) * 2011-11-23 2013-10-29 Calmark Sweden Ab Testsystemarrangemang och metod för testning
US9063091B2 (en) 2012-04-06 2015-06-23 Ixensor Inc. Test strips and method for reading test strips
WO2014064685A1 (en) * 2012-10-22 2014-05-01 Spectrophon Ltd. Method for detecting analytes
US9436924B2 (en) * 2012-12-06 2016-09-06 Ascensia Diabetes Care Holdings Ag Automated analyte sensor ordering methods and apparatus
US9778200B2 (en) 2012-12-18 2017-10-03 Ixensor Co., Ltd. Method and apparatus for analyte measurement
CN105164514A (zh) * 2013-01-21 2015-12-16 康奈尔大学 基于智能手机的装置和用于获取可重复的定量比色测量的方法
US9787815B2 (en) 2013-01-21 2017-10-10 Cornell University Smartphone-based apparatus and method
US10422806B1 (en) 2013-07-25 2019-09-24 Theranos Ip Company, Llc Methods for improving assays of biological samples
US20140036257A1 (en) * 2013-10-08 2014-02-06 Axel Kramer Analyzer Instrument And Methods For Operating Same
US9964552B2 (en) 2013-10-30 2018-05-08 Dh Technologies Development Pte. Ltd. Mass spectrometric identification and/or quantitation of catecholamines using aminopyrazoles
ES2828278T3 (es) 2014-09-23 2021-05-25 Tearlab Res Inc Sistema de integración de recolección de lágrimas microfluídicas y análisis de flujo lateral de analitos de interés
DE102015100845A1 (de) * 2015-01-21 2016-07-21 Gottfried Wilhelm Leibniz Universität Hannover Optisches Sensorsystem
US10436773B2 (en) * 2016-01-18 2019-10-08 Jana Care, Inc. Mobile device based multi-analyte testing analyzer for use in medical diagnostic monitoring and screening
TW201818061A (zh) 2016-10-07 2018-05-16 德商百靈佳殷格翰維美迪加股份有限公司 用於檢測樣本之分析系統及方法
BR112019007138A2 (pt) 2016-10-07 2019-07-02 Boehringer Ingelheim Vetmedica Gmbh método e sistema de análise para testagem de uma amostra
US11536732B2 (en) 2020-03-13 2022-12-27 Jana Care, Inc. Devices, systems, and methods for measuring biomarkers in biological fluids
CN114445767B (zh) * 2021-11-08 2024-02-20 山东科技大学 一种传输带传输异物检测方法及系统
JP2023150022A (ja) * 2022-03-31 2023-10-16 日本光電工業株式会社 血液検査装置、血液検査方法、および血液検査プログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002041654A (ja) * 2000-04-18 2002-02-08 Roche Diagnostics Corp 契約ベースのバイオセンサーモニターシステムおよびバイオセンサーモニター方法
JP2002044007A (ja) * 2000-07-26 2002-02-08 Ricoh Elemex Corp 携帯電話機
JP2003057244A (ja) * 2001-08-10 2003-02-26 Nipro Corp 記録媒体およびこの記録媒体を用いた血糖測定システム
JP2003215122A (ja) * 2002-01-24 2003-07-30 Toshiba Corp 小型検査機器、精度管理チップ及び小型検査機器の精度管理方法
JP2003222611A (ja) * 2001-11-20 2003-08-08 Nec Corp 分離装置、分離方法および分離装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI107080B (fi) * 1997-10-27 2001-05-31 Nokia Mobile Phones Ltd Mittauslaite
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6664104B2 (en) * 1999-06-25 2003-12-16 Cepheid Device incorporating a microfluidic chip for separating analyte from a sample
GB0000896D0 (en) * 2000-01-14 2000-03-08 Univ Glasgow Improved analytical chip
US6494830B1 (en) * 2000-06-22 2002-12-17 Guidance Interactive Technologies, Inc. Handheld controller for monitoring/using medical parameters
KR100797458B1 (ko) * 2001-04-17 2008-01-24 엘지전자 주식회사 건강 진단을 수행하기 위한 시스템과 그를 위한 휴대용 무선 단말기 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002041654A (ja) * 2000-04-18 2002-02-08 Roche Diagnostics Corp 契約ベースのバイオセンサーモニターシステムおよびバイオセンサーモニター方法
JP2002044007A (ja) * 2000-07-26 2002-02-08 Ricoh Elemex Corp 携帯電話機
JP2003057244A (ja) * 2001-08-10 2003-02-26 Nipro Corp 記録媒体およびこの記録媒体を用いた血糖測定システム
JP2003222611A (ja) * 2001-11-20 2003-08-08 Nec Corp 分離装置、分離方法および分離装置の製造方法
JP2003215122A (ja) * 2002-01-24 2003-07-30 Toshiba Corp 小型検査機器、精度管理チップ及び小型検査機器の精度管理方法

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100245803A1 (en) * 2005-04-12 2010-09-30 Chromedx Inc. Blood sample holder for spectroscopic analysis
US10761030B2 (en) 2005-05-09 2020-09-01 Labrador Diagnostics Llc System and methods for analyte detection
US8283155B2 (en) 2005-05-09 2012-10-09 Theranos, Inc. Point-of-care fluidic systems and uses thereof
EP1883341A2 (en) * 2005-05-09 2008-02-06 Theranos, Inc. Point-of-care fluidic systems and uses thereof
JP2015158507A (ja) * 2005-05-09 2015-09-03 セラノス, インコーポレイテッド ポイントオブケア流体システムおよびその使用
JP2008544214A (ja) * 2005-05-09 2008-12-04 セラノス, インコーポレイテッド ポイントオブケア流体システムおよびその使用
EP3763824A1 (en) * 2005-05-09 2021-01-13 Labrador Diagnostics LLC Point-of-care fluidic systems and uses thereof
CN101535499A (zh) * 2005-05-09 2009-09-16 赛拉诺斯股份有限公司 点护理射流系统及其应用
JP2021193390A (ja) * 2005-05-09 2021-12-23 ラブラドール ダイアグノスティクス エルエルシー ポイントオブケア流体システムおよびその使用
US9772291B2 (en) 2005-05-09 2017-09-26 Theranos, Inc. Fluidic medical devices and uses thereof
JP2017142265A (ja) * 2005-05-09 2017-08-17 セラノス, インコーポレイテッド ポイントオブケア流体システムおよびその使用
US9075046B2 (en) 2005-05-09 2015-07-07 Theranos, Inc. Fluidic medical devices and uses thereof
US11630069B2 (en) 2005-05-09 2023-04-18 Labrador Diagnostics Llc Fluidic medical devices and uses thereof
WO2006121510A2 (en) 2005-05-09 2006-11-16 Theranos, Inc. Point-of-care fluidic systems and uses thereof
KR101931899B1 (ko) * 2005-05-09 2018-12-21 테라노스, 인코포레이티드 현장진료 유체 시스템 및 그 용도
US8679407B2 (en) 2005-05-09 2014-03-25 Theranos, Inc. Systems and methods for improving medical treatments
JP2012127978A (ja) * 2005-05-09 2012-07-05 Theranos Inc ポイントオブケア流体システムおよびその使用
US8841076B2 (en) 2005-05-09 2014-09-23 Theranos, Inc. Systems and methods for conducting animal studies
EP1883341A4 (en) * 2005-05-09 2014-09-10 Theranos Inc POINT-OF-CARE SYSTEMS FOR THE DETERMINATION OF LIQUIDS AND APPLICATIONS THEREOF
JP2013029525A (ja) * 2005-05-09 2013-02-07 Theranos Inc ポイントオブケア流体システムおよびその使用
AU2013201509B2 (en) * 2005-05-09 2015-11-05 Labrador Diagnostics Llc Point-of-care fluidic systems and uses thereof
JP2019219416A (ja) * 2005-05-09 2019-12-26 セラノス アイピー カンパニー エルエルシー ポイントオブケア流体システムおよびその使用
US10908093B2 (en) 2005-05-09 2021-02-02 Labrador Diagnostics, LLC Calibration of fluidic devices
US9182388B2 (en) 2005-05-09 2015-11-10 Theranos, Inc. Calibration of fluidic devices
JP2007178416A (ja) * 2005-12-28 2007-07-12 Hitachi Software Eng Co Ltd 実験解析システム
WO2007083130A1 (en) * 2006-01-20 2007-07-26 Enigma Diagnostics Limited Apparatus for analysing a sample and assessing its global position
GB2448454A (en) * 2006-01-20 2008-10-15 Enigma Diagnostics Ltd Apparatus for analysing a sample and assessing its global position
JP2009526973A (ja) * 2006-02-15 2009-07-23 フィオ コーポレイション 生体物質認識分子に結合したマイクロビーズを用いた病原体検出システム及び方法
US10533994B2 (en) 2006-03-24 2020-01-14 Theranos Ip Company, Llc Systems and methods of sample processing and fluid control in a fluidic system
US11287421B2 (en) 2006-03-24 2022-03-29 Labrador Diagnostics Llc Systems and methods of sample processing and fluid control in a fluidic system
US8741230B2 (en) 2006-03-24 2014-06-03 Theranos, Inc. Systems and methods of sample processing and fluid control in a fluidic system
US9176126B2 (en) 2006-03-24 2015-11-03 Theranos, Inc. Systems and methods of sample processing and fluid control in a fluidic system
US8669047B2 (en) 2006-05-10 2014-03-11 Theranos, Inc. Real-time detection of influenza virus
US9885715B2 (en) 2006-05-10 2018-02-06 Theranos IP Comany, LLC Real-time detection of influenza virus
US11162947B2 (en) 2006-05-10 2021-11-02 Labrador Diagnostics Llc Real-time detection of influenza virus
JP2009537808A (ja) * 2006-05-16 2009-10-29 ホリバ アーベーイクス ソシエテ パ アクシオンス シンプリフィエ 生物学的分析のためのパッケージング装置
JP7168529B2 (ja) 2006-10-13 2022-11-09 ラブラドール ダイアグノスティクス エルエルシー 流体装置における光学干渉の減少
JP2019219411A (ja) * 2006-10-13 2019-12-26 セラノス アイピー カンパニー エルエルシー 流体装置における光学干渉の減少
US11215610B2 (en) 2006-10-13 2022-01-04 Labrador Diagnostics Llc Reducing optical interference in a fluidic device
US11442061B2 (en) 2006-10-13 2022-09-13 Labrador Diagnostics Llc Reducing optical interference in a fluidic device
US8778665B2 (en) 2006-11-14 2014-07-15 Theranos, Inc. Detection and quantification of analytes in bodily fluids
US9303286B2 (en) 2006-11-14 2016-04-05 Theranos, Inc. Detection and quantification of analytes in bodily fluids
US10156579B2 (en) 2006-11-14 2018-12-18 Theranos Ip Company, Llc Methods for the detection of analytes in small-volume blood samples
US11802882B2 (en) 2006-11-14 2023-10-31 Labrador Diagnostics Llc Methods for the detection of analytes in small-volume blood samples
US8138909B2 (en) 2007-07-03 2012-03-20 Smiths Detection Inc. Portable detection system and method
US8883518B2 (en) 2007-08-06 2014-11-11 Theranos, Inc. Systems and methods of fluidic sample processing
US8158430B1 (en) 2007-08-06 2012-04-17 Theranos, Inc. Systems and methods of fluidic sample processing
US9575058B2 (en) 2007-08-06 2017-02-21 Theranos, Inc. Systems and methods of fluidic sample processing
US11754554B2 (en) 2007-08-06 2023-09-12 Labrador Diagnostics Llc Systems and methods of fluidic sample processing
US11061022B2 (en) 2007-10-02 2021-07-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11366106B2 (en) 2007-10-02 2022-06-21 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11899010B2 (en) 2007-10-02 2024-02-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US10900958B2 (en) 2007-10-02 2021-01-26 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11137391B2 (en) 2007-10-02 2021-10-05 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11143647B2 (en) 2007-10-02 2021-10-12 Labrador Diagnostics, LLC Modular point-of-care devices, systems, and uses thereof
US11199538B2 (en) 2007-10-02 2021-12-14 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
JPWO2009145172A1 (ja) * 2008-05-29 2011-10-13 日本電信電話株式会社 フローセル及び送液方法
US8663560B2 (en) 2008-05-29 2014-03-04 Nippon Telegraph And Telephone Corporation Flow cell and liquid delivery method
WO2009145172A1 (ja) * 2008-05-29 2009-12-03 日本電信電話株式会社 フローセル及び送液方法
JP2010008100A (ja) * 2008-06-24 2010-01-14 Sharp Corp マイクロ流路型センサチップ、および測定装置
US9460263B2 (en) 2009-10-19 2016-10-04 Theranos, Inc. Integrated health data capture and analysis system
US11195624B2 (en) 2009-10-19 2021-12-07 Labrador Diagnostics Llc Integrated health data capture and analysis system
US11158429B2 (en) 2009-10-19 2021-10-26 Labrador Diagnostics Llc Integrated health data capture and analysis system
US8862448B2 (en) 2009-10-19 2014-10-14 Theranos, Inc. Integrated health data capture and analysis system
US11139084B2 (en) 2009-10-19 2021-10-05 Labrador Diagnostics Llc Integrated health data capture and analysis system
JP2011232223A (ja) * 2010-04-28 2011-11-17 Power Supply Kk マイクロ流路プレート
CN103189721A (zh) * 2010-11-04 2013-07-03 诺基亚公司 用于光谱测定的方法和装置
JP2012132894A (ja) * 2010-12-01 2012-07-12 Arkray Inc デバイス及びその製造方法
JP2014525094A (ja) * 2011-07-19 2014-09-25 ジーン オニキス エルティーディー 製品を選択する方法と装置
CN104797912A (zh) * 2012-09-10 2015-07-22 蓝光分析股份有限公司 测量光的设备及方法
JP2014115150A (ja) * 2012-12-07 2014-06-26 Kagawa Univ 自動分析装置、血液型判定用検査試薬、及び凝集体溶血用試薬
JP2016179198A (ja) * 2013-05-22 2016-10-13 アイメック・ヴェーゼットウェーImec Vzw 小型流体分析デバイスおよび製造方法
WO2015102102A1 (ja) * 2013-12-31 2015-07-09 株式会社ティー・ティー・エム 分析システム、この分析システムを構成する分析用補助装置、携帯型通信端末、および携帯型通信端末制御用のプログラム
JP2015158384A (ja) * 2014-02-21 2015-09-03 国立大学法人九州大学 光分析方法、光分析システム及びプログラム
US11779919B2 (en) 2014-06-18 2023-10-10 Zoetis Denmark Aps Microfluidic detection system and a microfluidic cartridge
JP2020034562A (ja) * 2014-06-18 2020-03-05 スカンジナビアン マイクロ バイオデバイシズ エイピーエスScandinavian Micro Biodevices Aps マイクロ流体検出システム及びマイクロ流体カートリッジ
JP2016151417A (ja) * 2015-02-16 2016-08-22 国立研究開発法人産業技術総合研究所 赤血球凝集検出装置および検出方法
JP2017075912A (ja) * 2015-10-16 2017-04-20 ウシオ電機株式会社 検体濃度測定装置およびマイクロ流路チップ
CN106370455A (zh) * 2016-09-29 2017-02-01 国网吉林省电力有限公司电力科学研究院 一种适用于现场采样的记录仪及其工作方法
JP2018119813A (ja) * 2017-01-23 2018-08-02 パナソニックIpマネジメント株式会社 マイクロ流路での検体と反応試薬との混合方法
WO2019054123A1 (ja) * 2017-09-14 2019-03-21 オムロンヘルスケア株式会社 健康機器用流路形成部材、健康機器用流路形成ユニット、および健康機器
CN111065325B (zh) * 2017-09-14 2022-12-06 欧姆龙健康医疗事业株式会社 健康设备用流路形成构件、健康设备用流路形成单元以及健康设备
JP2019051010A (ja) * 2017-09-14 2019-04-04 オムロンヘルスケア株式会社 健康機器用流路形成部材、健康機器用流路形成ユニット、および健康機器
CN111065325A (zh) * 2017-09-14 2020-04-24 欧姆龙健康医疗事业株式会社 健康设备用流路形成构件、健康设备用流路形成单元以及健康设备
CN107498525A (zh) * 2017-09-29 2017-12-22 武汉瑞科兴业科技有限公司 一种用于核化样品采集的便携式工具箱
KR102225500B1 (ko) * 2018-12-31 2021-03-09 한국과학기술원 무채혈식 휴대형 광학적 혈당 측정 장치
KR20200082822A (ko) * 2018-12-31 2020-07-08 한국과학기술원 무채혈식 휴대형 광학적 혈당 측정 장치
JP7420695B2 (ja) 2019-12-13 2024-01-23 オートノマス メディカル デバイシズ,インコーポレイテッド Covid-19、ウイルス、抗体、及びマーカのポイントオブケア高速現場展開可能な診断検査の装置及び方法-autolab 20

Also Published As

Publication number Publication date
US20060292039A1 (en) 2006-12-28
JPWO2005024437A1 (ja) 2007-11-08

Similar Documents

Publication Publication Date Title
WO2005024437A1 (ja) 測定システム
AU2019229327B2 (en) Device and system for analyzing a sample, particularly blood, as well as methods of using the same
US9116124B2 (en) Feedback control in microfluidic systems
EP1942332B1 (en) Measuring device, measuring apparatus and method of measuring
US11940454B2 (en) Optical reader for analyte testing
WO2005024436A1 (ja) カスタマイズ可能なチップおよびその製造方法
JP2003114193A (ja) ラブ・オン・チップのための吸光検出システム
US11635379B2 (en) Portable wide field fluorimeter systems
JP6238207B2 (ja) 光分析方法、光分析システム及びプログラム
TWI612289B (zh) 使用微晶片的光分析方法及光分析裝置、以及光分析裝置用微晶片及光分析用處理裝置
US20220050054A1 (en) Optical analyte detection
CN112638241A (zh) 便携式诊断设备及其方法
US20220091114A1 (en) Interferometric Detection and Quantification System and Methods of Use in Healthcare
JP2007509324A (ja) 診断デバイス用のマルチレンズ光アセンブリ
US20110203354A1 (en) Continuous Testing Method
US20220323951A1 (en) Extraction device and test system
KR102453637B1 (ko) 검사장치 및 검사장치의 제어방법
CN115349085A (zh) 用于常规化学、免疫分析和核酸检测的临床分光光度计

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513699

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006292039

Country of ref document: US

Ref document number: 10570312

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10570312

Country of ref document: US