WO2009142196A1 - 脂肪族ポリエステル樹脂の製造方法および脂肪族ポリエステル樹脂組成物 - Google Patents
脂肪族ポリエステル樹脂の製造方法および脂肪族ポリエステル樹脂組成物 Download PDFInfo
- Publication number
- WO2009142196A1 WO2009142196A1 PCT/JP2009/059177 JP2009059177W WO2009142196A1 WO 2009142196 A1 WO2009142196 A1 WO 2009142196A1 JP 2009059177 W JP2009059177 W JP 2009059177W WO 2009142196 A1 WO2009142196 A1 WO 2009142196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- polyester resin
- aliphatic polyester
- compound
- compounds
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/80—Solid-state polycondensation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/823—Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
- C08G63/87—Non-metals or inter-compounds thereof
Definitions
- the present invention relates to a method for efficiently producing an aliphatic polyester resin having a high molecular weight and, in a preferred embodiment, having a high melting point and excellent thermal stability and hue.
- polylactic acid resins have attracted attention as plant-derived carbon neutral materials.
- Polylactic acid resin has a high melting point of about 170 ° C., and can be melt-molded. Furthermore, since lactic acid, which is a monomer, has been produced at low cost by fermentation using microorganisms, It is expected to be a biomass plastic that can replace plastic, and is gradually being used.
- the main production methods of polylactic acid resin include a ring-opening polymerization method in which lactide which is a dimer of lactic acid is ring-opened and polymerized, and a direct polycondensation method in which dehydration polycondensation is performed using lactic acid.
- a ring-opening polymerization method in which lactide which is a dimer of lactic acid is ring-opened and polymerized
- a direct polycondensation method in which dehydration polycondensation is performed using lactic acid.
- Patent Documents 1 to 6 disclose a method for producing a polylactic acid resin using a volatile organic sulfonic acid compound such as methanesulfonic acid, p-toluenesulfonic acid or trifluoromethanesulfonic acid as a catalyst. When this catalyst was used, the catalyst volatilized during the polymerization, so that it did not work effectively as a catalyst, and the polymerization time was long and there was a problem in productivity. Further, Patent Document 5 discloses an organic sulfonic acid metal salt, but since it is a metal salt, it does not work effectively as a sulfonic acid, and also contains a large amount of metal. There were problems with productivity and thermal stability of the resulting polymer.
- a volatile organic sulfonic acid compound such as methanesulfonic acid, p-toluenesulfonic acid or trifluoromethanesulfonic acid
- JP-A-8-183840 (page 1-4) JP 2000-297145 A (page 1-8) JP 2000-297143 A (page 1-14) JP 2000-302852 A (page 1-32) International Publication No. 07/145195 pamphlet (pages 1-17) JP 2008-260893 A (page 1-11)
- An object of the present invention is to provide a method for efficiently producing an aliphatic polyester resin having a high molecular weight, having a high melting point, and excellent in thermal stability and hue.
- the present invention has been studied to solve the above problems, and as a result, has a high molecular weight, and in a preferred embodiment, a method for efficiently producing an aliphatic polyester resin having a high melting point and excellent thermal stability and hue. And reached the present invention.
- the present invention (1) A method for producing an aliphatic polyester resin comprising a melt polymerization step followed by a solid phase polymerization step using a sulfonic acid group-containing compound as a catalyst, wherein the addition amount of the sulfonic acid group-containing compound during melt polymerization is It is 300 to 3000 ppm relative to the raw material monomer in terms of atoms, the content of the sulfonic acid group-containing compound after solid phase polymerization is 300 to 3000 ppm relative to the produced polymer in terms of sulfur atoms, and contains sulfonic acid groups after solid phase polymerization.
- the content of the sulfonic acid group-containing compound after solid-phase polymerization is 300 to 3000 ppm relative to the produced polymer in terms of sulfur atoms, and the residual ratio of the sulfonic acid group-containing compound after solid-phase polymerization is 80% or more.
- the method for producing an aliphatic polyester resin according to (1) characterized in that: (3) The method for producing an aliphatic polyester resin according to (1), wherein the sulfonic acid group-containing compound has two or more sulfonic acid groups in one molecule, (4) A sulfonic acid group-containing compound having two or more sulfonic acid groups in one molecule is methanedisulfonic acid, ethanedisulfonic acid, propanedisulfonic acid, butanedisulfonic acid, benzenedisulfonic acid, naphthalenedisulfonic acid, biphenyldisulfonic acid.
- Polyester resin production method (8) One or more compounds selected from nitrogen-containing organic compounds, alkali metal compounds, and alkaline earth metal compounds are added after the addition of the sulfonic acid group-containing compound, as described in (6) above Production method of aliphatic polyester resin, (9) Further, in the above (1), one or more metal compounds selected from tin compounds, titanium compounds, lead compounds, zinc compounds, cobalt compounds, iron compounds, lithium compounds, and rare earth compounds are added.
- a process for producing the aliphatic polyester resin according to the description (10) The molar amount of sulfur atom of the sulfonic acid group-containing compound with respect to the total molar amount of metal of tin compound, titanium compound, lead compound, zinc compound, cobalt compound, iron compound, lithium compound, rare earth compound after solid phase polymerization
- the melt polymerization process is continuously performed under the conditions including at least the following two stages, and the solid phase polymerization process is continuously performed under the conditions including at least the following two stages.
- a process for producing the aliphatic polyester resin according to the description Melt polymerization process Condition 1 140 ° C.
- a sulfonic acid group-containing compound having two or more sulfonic acid groups in one molecule is methanedisulfonic acid, ethanedisulfonic acid, propanedisulfonic acid, butanedisulfonic acid, benzenedisulfonic acid, naphthalenedisulfonic acid, biphenyldisulfonic acid.
- the ratio of the molar amount of nitrogen atom of the nitrogen-containing organic compound to the molar amount of sulfur atom of the sulfonic acid group-containing compound having two or more sulfonic acid groups in one molecule is 0.3 to 3.3.
- the aliphatic polyester resin composition according to (17), (19) The weight average molecular weight is 100,000 or more, the ratio of the weight average molecular weight to the number average molecular weight is 1.4 to 3, and the weight reduction rate when held at 200 ° C. for 20 minutes in a nitrogen stream is 0.6. % Or less of the aliphatic polyester resin composition according to (15), (20) The aliphatic polyester resin composition according to (15), wherein the aliphatic polyester resin is a polylactic acid resin, It is.
- An aliphatic polyester resin having a high molecular weight, having a high melting point, and excellent in thermal stability and hue can be efficiently produced.
- the aliphatic polyester resin is a polymer in which the basic structural unit is an ester bond and an aliphatic group
- the component unit include aliphatic polycarboxylic acid, aliphatic polyhydric alcohol, and aliphatic hydroxycarboxylic acid.
- Specific examples include acids and aliphatic lactones.
- aliphatic polyvalent carboxylic acids such as succinic acid, adipic acid, sebacic acid, fumaric acid or derivatives thereof, ethylene glycol, propylene glycol, butanediol, hexanediol, octane.
- a polylactic acid resin which is a polymer mainly composed of L-lactic acid and / or D-lactic acid, is preferable from the viewpoint of high molecular weight and high melting point.
- L-lactic acid is the main component
- D-lactic acid is the main component
- poly-D-lactic acid is a polymer mainly composed of L-lactic acid and / or D-lactic acid
- the polylactic acid-based resin is poly-L-lactic acid
- it preferably contains 70 mol% or more of L-lactic acid units, preferably contains 80 mol% or more, and contains 90 mol% or more. More preferably, it is more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
- the polylactic acid resin is poly-D-lactic acid, it preferably contains 70 mol% or more, preferably 80 mol% or more, and preferably contains 90 mol% or more D-lactic acid units. More preferably, it is more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
- the total of alcohols is 70 ppm or less
- the total of organic acids is 800 ppm or less
- the aldehydes are used as impurities in the 90% aqueous lactic acid solution.
- High purity lactic acid having a total of 50 ppm or less and a total of esters of 400 ppm or less is preferably used as the main raw material.
- the optical purity of lactic acid used is preferably 95% or more, more preferably 98% or more, and particularly preferably 99% or more.
- the content of D-lactic acid is preferably 2.5% or less, more preferably 1% or less, and particularly preferably 0.5% or less.
- the content of L-lactic acid is preferably 2.5% or less, more preferably 1% or less, and particularly preferably 0.5% or less.
- the polylactic acid-based resin is preferably a polylactic acid stereocomplex composed of poly-L-lactic acid and poly-D-lactic acid, and is a block copolymer composed of poly-L-lactic acid and poly-D-lactic acid. It is also preferable that there is.
- aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid or their derivatives, bisphenol and ethylene oxide And aromatic polyhydric alcohols obtained by addition reaction.
- the method for producing an aliphatic polyester of the present invention includes a melt polymerization step and a subsequent solid phase polymerization step using a sulfonic acid group-containing compound as a catalyst.
- the sulfonic acid group-containing compound here is an acidic compound having proton generating ability.
- a sulfonic acid group-containing compound is used as a catalyst.
- the sulfonic acid group-containing compound may be any compound as long as the residual rate after solid-state polymerization, which will be defined later, exceeds 50%, but is preferably a sulfone having a boiling point of 200 ° C. or higher at normal pressure or a melting point of 160 ° C. or higher.
- Acid group-containing compounds can be used. More preferably, it is a sulfonic acid group-containing compound having a melting point of 180 ° C. or higher.
- a sulfonic acid group-containing compound having two or more sulfonic acid groups in one molecule, particularly disulfone, in that an aliphatic polyester resin having a high molecular weight or a high melting point and particularly excellent in thermal stability can be obtained.
- An acid compound or a polyvalent sulfonic acid compound is preferred.
- sulfonic acid group-containing compound having two sulfonic acid groups in one molecule examples include aromatic disulfone and aromatic polyvalent sulfonic acid, specifically dinonyl naphthalene disulfonic acid and 1,5-naphthalene disulfonic acid.
- 1,6-naphthalenedisulfonic acid 1,6-naphthalenedisulfonic acid, 2,6-naphthalenedisulfonic acid, 2,7-naphthalenedisulfonic acid, 1,3,6-naphthalenetrisulfonic acid, 4,4-biphenyldisulfonic acid, o-benzenedisulfonic acid, m-benzenedisulfonic acid, p-benzenedisulfonic acid, 2,5-diamino-1,3-benzenedisulfonic acid, phenol-2,4-disulfonic acid, aniline-2,4-disulfonic acid, anthraquinone-1,5- Disulfonic acid, benzidine disulfonic acid, 2-naphthol-3,6-disulfonic acid, 2-naphthol- , 8-disulfonic acid, 1,3,5-benzenetricarboxylic acid, and the like polystyrene sulphonic acid.
- Examples of the sulfonic acid group-containing compound having two sulfonic acid groups in one molecule include aliphatic disulfonic acids represented by the molecular formula HO 3 S—R—SO 3 H, wherein R is C1 to C20.
- Alkylene (C represents carbon, Cn represents n carbon atoms; the same shall apply hereinafter), C1 to C20 alkylidene, C3 to C20 cycloalkylidene, C3 to C20 alkenylene, C4 to C20 alkynylene groups, C1 to C20 A substituted alkylidene group of C20, a substituted cycloalkylidene group of C3 to C20, a substituted alkenylene group of C3 to C20, or a substituted alkynylene group of C4 to C20.
- R is methylene, ethylidene, linear or side chain propylidene, linear or side chain butylene, linear or side chain pentamethylene, linear or side chain hexylidene, linear or side chain.
- R may be a substituted alkylidene group containing at least an alkyl group, a naphthene group, an amino group, a hydroxyl group, an alkoxy group, a carboxyl group, an ester group, a file, an aldehyde group, an amide group, a nitrile group, a nitro group, or a halogen group. It may be a C3-C20 cycloalkylidene group or a substituted cycloalkylidene group, and R may be a C3-C20 alkenylene in which the ethylene bond is in an arbitrary position or a C3-C20 alkenylene in which the substituted ethylene bond is in an arbitrary position. R may be a C4 to C20 substituted alkynylene group in which the acetal bond is in an arbitrary position or a C4 to C20 substituted alkynylene group in which the substituted acetal bond is in an arbitrary position.
- aliphatic disulfonic acid examples include methanedisulfonic acid, ethanedisulfonic acid, propiondisulfonic acid, butanedisulfonic acid, pentanedisulfonic acid, hexanedisulfonic acid, heptanedisulfonic acid, octanedisulfonic acid, nonanedisulfonic acid, decanedisulfonic acid, Mention may be made of 1,11-undecanedisulfonic acid or 1,12-dodecanedisulfonic acid.
- sulfonic acid group-containing compound examples include methane disulfonic acid, ethane disulfonic acid, propane disulfonic acid, butane disulfonic acid, benzene disulfonic acid, naphthalene disulfonic acid, biphenyl disulfonic acid, phenol disulfonic acid, catechol disulfonic acid, benzidine disulfonic acid, and naphthol. Disulfonic acid and benzenetrisulfonic acid are particularly preferred. Moreover, 1 type may be sufficient as a sulfonic acid group containing compound, and it may use 2 or more types together.
- the addition amount of the sulfonic acid group-containing compound of the catalyst used in the melt polymerization step is such that an aliphatic polyester resin having a high molecular weight and a high melting point can be obtained efficiently (L- Relative to lactic acid and / or D-lactic acid) in terms of sulfur atom, it is 300 to 3000 ppm, more preferably 350 to 2700 ppm, still more preferably 400 to 2500 ppm, and particularly preferably 450 to 2200 ppm.
- an acid catalyst other than the metal catalyst and the sulfonic acid group-containing compound can be added as the other catalyst as long as the effects of the present invention are not impaired.
- the metal catalyst include metal compounds such as tin compounds, titanium compounds, lead compounds, zinc compounds, cobalt compounds, iron compounds, lithium compounds, rare earth compounds, and the types of compounds include metal alkoxides, metal halogen compounds, and organic compounds. Carboxylate, carbonate, sulfate, oxide and the like are preferable.
- tin powder tin (II) chloride, tin (IV) chloride, tin (II) bromide, tin (IV) bromide, ethoxy tin (II), t-butoxy tin (IV), isopropoxy Tin (IV), tin acetate (II), tin acetate (IV), tin octylate (II), tin (II) laurate, tin (II) myristate, tin (II) palmitate, tin stearate (II) ), Tin (II) oleate, tin (II) linoleate, tin (II) acetylacetone, tin (II) oxalate, tin (II) lactate, tin (II) tartrate, tin (II) pyrophosphate, p- Phenol sulfonate t
- Titanium compounds lead diisopropoxy (II), lead monochloride, lead acetate, lead (II) octylate, lead (II) isooctanoate, lead (II) isononanoate, lead (II) laurate, lead oleate (II), lead compounds such as lead (II) linoleate, lead naphthenate, lead (II) neodecanoate, lead oxide, lead (II) sulfate, zinc powder, methyl propoxy zinc, zinc chloride, zinc acetate, octylic acid Zinc (II), zinc naphthenate, zinc carbonate, zinc oxide, zinc sulfate and other zinc compounds, cobalt chloride, cobalt acetate, oct Cobalt (II) titanate, cobalt (II) isooctanoate, cobalt (II) isononanoate, cobalt (II) laurate
- potassium compounds such as potassium isopropoxide, potassium chloride, potassium acetate, potassium octylate, potassium naphthenate, tert-butyl potassium carbonate, potassium sulfate, potassium oxide, copper (II) diisopropoxide, copper chloride (II), copper acetate (II), copper octylate, copper naphthenate, copper sulfate (II), copper compounds such as dicopper carbonate, nickel chloride, nickel acetate, nickel octylate, nickel carbonate, nickel sulfate (II) , Nickel compounds such as nickel oxide, tetraisopropoxyzirconium (IV), zirconium trichloride, zirconium acetate, zirconium octylate, zirconium naphthenate, zirconium carbonate (II), zirconium carbonate (IV), zirconium sulfate, zirconium oxide (II ) Zircon
- the acid catalyst other than the sulfonic acid group-containing compound may be a Bronsted acid as a proton donor, a Lewis acid as an electron pair acceptor, or an organic acid or an inorganic acid.
- monocarboxylic acid compounds such as formic acid, acetic acid, propionic acid, heptanoic acid, octanoic acid, octylic acid, nonanoic acid, isononanoic acid, trifluoroacetic acid and trichloroacetic acid, oxalic acid, succinic acid, maleic acid, tartaric acid and malonic acid
- Dicarboxylic acid compounds such as, tricarboxylic acid compounds such as citric acid and tricarballylic acid, acidic amino acids such as aspartic acid and glutamic acid, ascorbic acid, retinoic acid, phosphoric acid, metaphosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid Phosphoric acid monoesters such as monod
- the acid catalyst other than the sulfonic acid group-containing compound is not particularly limited in shape, and may be either a solid acid catalyst or a liquid acid catalyst.
- the solid acid catalyst include acidic clay, kaolinite, bentonite, and montmorillonite.
- Natural minerals such as talc, zirconium silicate and zeolite, oxides such as silica, alumina, titania and zirconia or oxide complexes such as silica alumina, silica magnesia, silica boria, alumina boria, silica titania and silica zirconia, chlorination Examples thereof include alumina, fluorinated alumina, and cation exchange resin.
- poly-L-lactic acid and Poly-D-lactic acid can also be produced simultaneously.
- a tin compound, a titanium compound, a lead compound, a zinc compound, a cobalt compound, an iron compound, a lithium compound, a rare earth compound, and an antimony compound can be obtained in that an aliphatic polyester resin having a high molecular weight and a high melting point can be obtained.
- an acid catalyst other than a bismuth compound and a sulfonic acid group-containing compound is preferable, and in terms of excellent productivity, a tin compound, a titanium compound, a lead compound, a zinc compound, a cobalt compound, an iron compound, a lithium compound, a rare earth compound, and a sulfonic acid Compounds and phosphorus compounds are more preferable, and tin compounds, titanium compounds, rare earth compounds, sulfonic acid compounds, and phosphorus compounds are more preferable.
- the metal catalyst a tin-based organic carboxylate having two ligands is more preferable in that a polylactic acid-based resin having excellent thermal stability and hue can be obtained.
- the amount of other catalyst added is not particularly limited, but is preferably 0.0001 to 2 parts by weight, more preferably 0.001 to 1 part by weight based on 100 parts by weight of the aliphatic polyester resin. 0.005 to 0.5 parts by weight is more preferable, and 0.01 to 0.3 parts by weight is particularly preferable.
- the reaction conditions of the melt polymerization step are not particularly limited, and can be carried out under various conditions, and can be carried out in one stage or in two or more stages, and can be performed batchwise or continuously. However, it is preferable to perform the melt polymerization step continuously under the conditions including at least the following two stages.
- the melt polymerization step is preferably 120 to 220 ° C., more preferably 130 to 200 ° C. as a substantial reaction temperature in that an aliphatic polyester resin having a high molecular weight can be efficiently obtained.
- 140 to 180 ° C. is particularly preferable, and it is preferably performed at a temperature of 145 to 175 ° C. in that an aliphatic polyester resin having a high melting point and excellent hue can be obtained efficiently. More preferably, it is carried out at a temperature of ° C.
- the temperature of the melt polymerization step may be one step or may be two or more steps, but two or more steps in that a polylactic acid resin having a high molecular weight and a high melting point can be efficiently obtained.
- a method of reacting at a temperature of 140 to 160 ° C. and then reacting at a temperature of 160 to 180 ° C. is preferable.
- the melt polymerization step is preferably performed at a pressure of 0.13 to 130 kPa as a substantial reaction pressure in that an aliphatic polyester resin having a high molecular weight can be efficiently obtained.
- it is preferably carried out at a pressure of 1 to 100 kPa, more preferably at a pressure of 10 to 90 kPa, and more preferably at a pressure of 10 to 80 kPa. Is more preferable, and it is particularly preferable to carry out at a pressure of 20 to 70 kPa.
- the pressure of the melt polymerization process may be one stage or may be two or more stages, but is preferably two or more stages in terms of high molecular weight and excellent hue. Examples include a method in which the reaction is performed at a pressure of 13.3 to 66.6 kPa, and then the reaction is performed at a pressure of 1.3 to 6.5 kPa.
- the melt polymerization step is preferably performed for a reaction time of 0.5 to 50 hours, and a reaction of 1 to 45 hours is possible in that an aliphatic polyester resin excellent in hue can be efficiently obtained.
- the reaction time is 2 to 40 hours, more preferably 3 to 35 hours, still more preferably 4 to 30 hours.
- the temperature and pressure of the melt polymerization process are performed in multiple stages of two or more stages, for example, the reaction is performed at a temperature of 140 to 160 ° C. and a pressure of 13.3 to 66.6 Pa for a reaction time of 2 to 15 hours And a method of carrying out the reaction at a temperature of 160 to 180 ° C. and a pressure of 1.3 to 6.5 kPa for a reaction time of 2 to 15 hours.
- the total reaction time of the melt polymerization step is preferably 0.5 to 50 hours even when the temperature and pressure are carried out in two or more stages.
- the melt polymerization step may be a batch method or a continuous method, but in the case of a batch method, the time required to reach the substantial reaction temperature shown in Condition 1 from room temperature is preferably within 30% of the process time. It is more preferably within 20%, and further preferably within 10%. Further, the time required to reach the substantial reaction pressure shown in Condition 1 from normal pressure is preferably within 50% of the process time, more preferably within 40%, and within 30%. Is more preferable.
- the melt polymerization step may be a batch method or a continuous method
- the reaction vessel is not particularly limited.
- a stirring vessel type reaction vessel for example, a stirring vessel type reaction vessel, a mixer type reaction vessel, a tower type reaction vessel, and an extruder.
- a type reaction tank can be used, and these reaction tanks can be used in combination of two or more.
- any reaction apparatus can be used for the melt polymerization step, but an aliphatic polyester resin having a high molecular weight and a high melting point, and excellent in thermal stability and hue can be obtained efficiently.
- the reaction vessel may have one reaction chamber or may be composed of two or more reaction chambers divided by a partition plate or the like, but a polylactic acid resin having a high molecular weight is efficiently used. It is preferable that the reaction chamber is composed of two or more reaction chambers.
- the reflux device is preferably connected to the upper part of the reaction vessel, and more preferably a vacuum pump is connected to the reflux device.
- the reflux device is for separating volatile components, and works to remove a part of the volatile components from the reaction system and a part of the volatile components to return to the reaction system. Any of those having a condensing part with a volatile component can be used. Specifically, among volatile components, water is removed, and lactic acid and lactide or their low molecular weight polymers are returned to the reaction vessel in the melt polymerization step. Any of them can be used.
- a condenser which comprises a condensation part
- methods such as a double tube type, a multi-tube type, a coil type, a plate type, a plate fin type, a spiral type, and a jacket type, can be mentioned, for example.
- the method for taking out the produced low molecular weight substance from the reaction vessel is not particularly limited, and the method for taking it out by extrusion with an inert gas such as nitrogen, the method for taking it out with a gear pump, etc. From the viewpoint of handling properties of a low molecular weight substance having a low viscosity, a method of taking out by extrusion with an inert gas such as nitrogen is preferable.
- the melt polymerization step it is preferable to produce a prepolymer having a weight average molecular weight of more than 10,000 and less than 100,000, but it is preferred to produce a prepolymer having a weight average molecular weight of 10,000 to 90,000. It is more preferable to produce a prepolymer having a molecular weight of 12,000 to 80,000, more preferably a prepolymer having a weight average molecular weight of 15,000 to 70,000, and a weight average molecular weight of 17,000 to 50,000.
- a weight average molecular weight is a value of a weight average molecular weight in terms of standard polymethyl methacrylate by gel permeation chromatography (GPC) measurement using hexafluoroisopropanol as a solvent, or by GPC measurement using chloroform as a solvent. It is a value of weight average molecular weight in terms of standard polystyrene.
- the reaction conditions of the solid phase polymerization step are not particularly limited, and can be carried out under various conditions, can be carried out in one step, can be carried out in two or more steps, and can be carried out batchwise. Although it can be carried out continuously, it is preferred that the solid phase polymerization step is carried out continuously under the conditions including the following two steps at least.
- the solid phase polymerization step is preferably performed at a temperature not higher than the melting point of the prepolymer, and it is possible to efficiently obtain an aliphatic polyester resin having a high molecular weight and a high melting point and excellent in hue.
- the temperature is preferably 90 ° C to 170 ° C, more preferably 130 ° C to 165 ° C, more preferably 135 ° C to 160 ° C, and 140 ° C to 160 ° C.
- the temperature of the solid phase polymerization process may be one stage or may be two or more stages, but it should be two or more stages in terms of being easy to increase the molecular weight in a short time and excellent in hue. It is preferable to raise the temperature stepwise as the reaction proceeds, for example, a method in which the reaction is performed at a temperature of 130 ° C. to 150 ° C., and then the reaction is performed at a temperature of over 150 ° C. to 165 ° C. It is done.
- the solid-phase polymerization step has a reaction time of 1 to 100 hours in that a polylactic acid resin having a high molecular weight and a high melting point and excellent in thermal stability and hue can be obtained efficiently. It is preferable to carry out the reaction for 3 to 80 hours, preferably 5 to 50 hours in that an aliphatic polyester resin excellent in hue can be efficiently obtained. More preferably, the reaction time is 10 to 30 hours.
- the first stage is a temperature of 130 ° C. to 150 ° C. for 1 to 50 hours
- the second stage is a temperature of more than 150 ° C.
- the first step is a temperature of 120 to 140 ° C. for 5 to 20 hours
- the second step is More preferably, it is carried out at a temperature of 140 ° C. to 150 ° C. for 5 to 20 hours, and as the third stage at a temperature of 150 ° C. to 160 ° C. for 10 to 30 hours.
- the total reaction time of the solid phase polymerization step is 1 to 100 hours.
- the pressure condition is not particularly limited, and any of the reduced pressure condition, the normal pressure condition and the pressurized condition may be used, but a polylactic acid resin having a high molecular weight is efficiently obtained. It is preferable that the pressure is reduced or normal. When performed under reduced pressure conditions, it is preferably performed at a pressure of 0.13 to 1300 Pa. The pressure is preferably 1 to 1000 Pa, more preferably 10 to 900 Pa, still more preferably 100 to 800 Pa, and particularly preferably 500 to 700 Pa. Further, the pressure of the solid phase polymerization process may be one stage or may be two or more stages, but is preferably two or more stages, for example, after the reaction is performed at a pressure of 700 to 1300 Pa. And a method of carrying out the reaction at a pressure of 0.13 to 700 Pa. When it is carried out under normal pressure conditions, it is preferably carried out under an inert gas stream such as dry nitrogen.
- the shape of the prepolymer is not particularly limited, and any of a lump shape, a film, a pellet, and a powder may be used, but the solid phase polymerization is efficiently advanced.
- Pellets or powders are preferably used in that they can be used.
- a method for forming pellets a melted prepolymer is extruded into strands, pelletized with a strand cutter, dropped into droplets using a dropping nozzle, and contacted with a gas or liquid to form pellets Etc.
- pulverizing using a mixer, a blender, a ball mill, and a hammer grinder is mentioned.
- the average particle diameter is preferably 0.01 to 3 mm, more preferably 0.1 to 1 mm, from the viewpoint that solid-phase polymerization can be efficiently performed.
- the solid phase polymerization step may be a batch method or a continuous method
- the reaction vessel may be a stirred vessel type reaction vessel, a mixer type reaction vessel, a tower type reaction vessel, or the like. Can be used in combination of two or more. Moreover, it is preferable to carry out by a continuous method from the point of productivity.
- the weight average molecular weight of the aliphatic polyester resin obtained by the method of the present invention is not particularly limited, but is preferably 30,000 or more, particularly 100,000 or more from the viewpoint of mechanical properties. In particular, in terms of excellent moldability and mechanical properties, it is preferably 100,000 to 1,200,000, more preferably 120,000 to 300,000, and even more preferably 140,000 to 250,000.
- a weight average molecular weight is a value of a weight average molecular weight in terms of standard polymethyl methacrylate by gel permeation chromatography (GPC) measurement using hexafluoroisopropanol as a solvent, or by GPC measurement using chloroform as a solvent.
- GPC gel permeation chromatography
- weight average molecular weight in terms of standard polystyrene.
- the ratio of the weight average molecular weight to the number average molecular weight is preferably 1.4 to 3 from the viewpoint of uniformity of polymer physical properties, and more preferably 1.5 to 2.5.
- the weight loss rate when held at 200 ° C. for 20 minutes under a nitrogen stream is preferably 2% or less, particularly preferably 1% or less, and more preferably 0.6% or less in view of excellent heat resistance, more preferably. It is 0.4% or less, more preferably 0.1% or less.
- the thermal weight reduction rate is 0.1% by weight / min or less, particularly 0.05% by weight / min or less, more preferably 0.03% by weight / min or less, more preferably 0.02% by weight / min or less. Yes, more preferably 0.005 wt% / min or less.
- the weight reduction rate can be measured, for example, with a thermogravimetric apparatus (TGA), and the nitrogen flow rate is preferably 20 to 200 ml / min, more preferably 60 to 120 ml / min.
- TGA thermogravimetric apparatus
- the content of the sulfonic acid group-containing compound after solid-phase polymerization is 300 to 3000 ppm relative to the produced polymer in terms of sulfur atoms, and the residual ratio of the sulfonic acid group-containing compound after solid-phase polymerization is 50%. It is super.
- the residual rate (R) here is a measure of the change in concentration of the sulfonic acid group-containing compound that is the catalyst before and after the polymerization reaction, and is represented by the following formulas (1) to (3).
- the content of the sulfonic acid group-containing compound after solid phase polymerization is preferably 350 to 2500 ppm, more preferably 400 to 2000 ppm, and particularly preferably 500 to 1500 ppm relative to the produced polymer in terms of sulfur atoms.
- the remaining rate can also be expressed by the following equation (4).
- R [%] (mp ⁇ Csp) / (m0 ⁇ Cs0) ⁇ 100 (4) (M0 is the weight of the monomer added in the polymerization process, mp is the weight of the polymer obtained after polymerization, Cs0 is the concentration of sulfur relative to the monomer during polymerization, and Csp is the concentration of sulfur after polymerization. is there).
- the residual ratio is preferably 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably 90% or more.
- the ratio of the molar amount of sulfur atoms of the sulfonic acid group-containing compound to the total molar amount of metal after solid-phase polymerization Is preferably from 3.0 to 50 from the viewpoint of the interaction between the metal compound and the sulfonic acid group-containing compound, and more preferably from 4.0 to 40.
- the prepolymer when the solid phase polymerization step is performed, the prepolymer is preferably crystallized, and it is more preferable to perform the crystallization treatment after the end of the melt polymerization step and before the start of the solid phase polymerization step.
- the method for crystallization is not particularly limited, and a known method can be used.
- a method of treating at a crystallization temperature in a gas phase or a liquid phase a method of volatilizing a solvent after dissolving the prepolymer in a solvent, a method of bringing the prepolymer into contact with the solvent, and a molten prepolymer
- the method include cooling and solidifying while performing stretching or shearing operations. From the viewpoint of easy operation, a method of treating at a crystallization temperature in a gas phase or a liquid phase is preferable.
- the crystallization temperature here is not particularly limited as long as it is higher than the glass transition temperature of the prepolymer that can be obtained in the melt polymerization step and lower than the melting point.
- a differential scanning calorimeter is used in advance. More preferably, the temperature is within the range of the temperature-rise crystallization temperature and the temperature-fall crystallization temperature measured by (DSC).
- the aliphatic polyester resin is a polylactic acid resin, it has a high molecular weight and a high melting point, and has a hue. From the viewpoint that an excellent polylactic acid-based resin can be obtained efficiently, it is preferably 50 to 150 ° C., more preferably 55 to 145 ° C., and most preferably 60 to 140 ° C.
- the time for crystallization is not particularly limited, but it is sufficiently crystallized within 3 hours, and within 2 hours is preferable.
- the pressure condition in the crystallization process may be any of reduced pressure, normal pressure and increased pressure.
- the shape of the prepolymer at the time of crystallization treatment is not particularly limited, and any of a lump, a film, a pellet, and a powder may be used, but the pellet or the powder can be efficiently crystallized. Is preferably used.
- a method for forming pellets a melted prepolymer is extruded into strands, pelletized with a strand cutter, dropped into droplets using a dropping nozzle, and contacted with a gas or liquid to form pellets And a method of cutting together with extrusion from a base into gas or liquid.
- pulverizing using a mixer, a blender, a ball mill, and a hammer grinder is mentioned.
- the average particle diameter is preferably 0.01 to 3 mm, more preferably 0.1 to 1 mm, from the viewpoint of efficient crystallization.
- the present invention is selected from a nitrogen-containing organic compound, an alkali metal compound, and an alkaline earth metal compound at any stage from the start of the melt polymerization process to the end of the solid phase polymerization process in terms of excellent hydrolysis resistance. It is preferable to add at least one selected from the above.
- a polymerization catalyst particularly an acid-containing catalyst remains, hydrolysis of the aliphatic polyester resin during melt kneading and melt molding with the remaining catalyst can be suppressed, and hydrolysis resistance can be improved.
- the nitrogen-containing organic compound in the present invention is one or more compounds selected from aliphatic amine compounds, aromatic amine compounds, nitrogen-containing heterocyclic compounds, and the like.
- nitrogen-containing organic compounds include methylethylamine, triethylamine, dimethylpropylamine, ethylamine, isoamylamine, butylamine, propylamine, ethylenediamine, butanediamine, hexamethylenediamine, 1,2,3-triaminopropane, tetraethylammonium.
- polyvalent amines such as N, N ′′ -disalicylidene-N′-methyl-dipropylenetriamine, 3-salicyloylamino-1,2,4-triazole, among which aromatic amine compounds, having 4 or more carbon atoms It is preferable that at least one kind of an alkylamine compound or a compound having a pyrimidine skeleton is included.
- alkali metal compound examples include lithium compounds such as lithium isopropoxide, lithium chloride, lithium acetate, lithium lactate, lithium octylate, lithium stearate, lithium naphthenate, tert-butyllithium carbonate, lithium sulfate, and lithium oxide.
- potassium compound it is preferred among them comprising at least one of the number 4 or more organic carboxylic acids alkali metal compound carbon.
- alkaline earth metal compounds include magnesium diisopropoxide, magnesium chloride, magnesium acetate, magnesium lactate, magnesium stearate, magnesium carbonate, magnesium sulfate, magnesium oxide, and other magnesium compounds, diisopropoxy calcium, calcium chloride.
- Calcium compounds such as calcium acetate, calcium octylate, calcium naphthenate, calcium lactate, calcium stearate, calcium sulfate, diisopropoxy barium, barium chloride, barium acetate, barium octylate, barium naphthenate, barium lactate, barium stearate
- barium compounds such as barium sulfate.
- it contains at least one organic carboxylic acid alkaline earth metal compound having 4 or more carbon atoms. Masui.
- the addition amount of the nitrogen-containing organic compound, alkali metal, and alkaline earth metal is not particularly limited, but is 0.001 to 2 parts by weight with respect to 100 parts by weight of the aliphatic polyester resin in terms of excellent hydrolysis resistance. It is preferably 0.01 to 1 part by weight, more preferably 0.05 to 0.5 part by weight, most preferably 0.08 to 0.3 part by weight. preferable.
- the ratio of the nitrogen atom molar amount of the nitrogen-containing organic compound to the sulfur atom molar amount of the sulfonic acid group-containing compound is 0.2 to 5 in the polymer after solid phase polymerization. It is preferably from 0.25 to 4, more preferably from 0.3 to 3.3, and even more preferably from 0.4 to 2.5.
- the nitrogen-containing organic compound is an aliphatic amine, it is preferably 0.3 to 0.9.
- the addition timing of the nitrogen-containing organic compound, alkali metal, or alkaline earth metal is not particularly limited, and may be any before or after the start of each of the melt polymerization step and the solid phase polymerization step. It is preferably added at the stage of the melt polymerization step in that a polylactic acid-based resin can be obtained, and is added immediately before the end of condition 1 of the melt polymerization step or at the start of condition 2 in terms of excellent productivity. More preferably, it is more preferably added immediately before the end of condition 1 and at the start of condition 2 in the melt polymerization step. Moreover, it is preferable to add after addition of a sulfonic acid group containing compound by the point that productivity is also excellent.
- the catalyst for solid-phase polymerization after adding a nitrogen-containing organic compound, an alkali metal, and an alkaline-earth metal.
- 0.001 to 1 part by weight is preferably added to 100 parts by weight of the aliphatic polyester resin, and the productivity is excellent.
- 0.01 to 0.5 parts by weight is more preferably added, and 0.01 to 0.1 parts by weight is more preferably added.
- finish of a solid-phase polymerization process at the point that the aliphatic polyester resin excellent in hydrolysis resistance can be obtained.
- the method of adding the nitrogen-containing organic compound, alkali metal, or alkaline earth metal is not particularly limited, and is a method of melt-kneading at or above the melting point of the aliphatic polyester resin or after dissolving and mixing in a solvent,
- the method of melt kneading at a temperature equal to or higher than the melting point of the aliphatic polyester resin is preferable in that it can be produced efficiently.
- the melt-kneading method may be a batch method or a continuous method, and as a device, a single-screw extruder, a twin-screw extruder, a multi-screw extruder, a plastmill, a kneader, a stirring reactor equipped with a decompression device, or the like is used. It is preferable to use a single screw extruder or a twin screw extruder in that it can be kneaded efficiently and uniformly.
- the temperature at which the nitrogen-containing organic compound, alkali metal, or alkaline earth metal is added is preferably from 170 ° C. to 250 ° C., more preferably from 180 ° C. to 240 ° C., and in terms of excellent mechanical properties, 190 to A temperature of 230 ° C. is more preferred.
- the pressure at which the nitrogen-containing organic compound, alkali metal, or alkaline earth metal is added may be any of reduced pressure, normal pressure, and pressurized pressure, and the reduced pressure is that the generated gas can be removed during melt-kneading. Is preferred.
- the atmospheric conditions at the time of melt kneading may be either an air atmosphere or an inert gas atmosphere such as nitrogen, but in an inert gas atmosphere in that the amount of gas generated at the time of melt kneading can be reduced. It is preferable to carry out with.
- a solvent in which the polymer and monomer are dissolved When mixing in a solvent, use a solvent in which the polymer and monomer are dissolved.
- the solvent for example, chloroform, methylene chloride, acetonitrile and the like can be used.
- the method for removing the solvent when it is necessary to remove the solvent after mixing is not particularly limited.
- the solvent is volatilized at room temperature and the solvent is volatilized at a temperature equal to or higher than the boiling point of the solvent under reduced pressure. Or the like can be used.
- ammonia can be used instead of the nitrogen-containing organic compound.
- a stabilizer at any stage from the start of the melt polymerization process to the end of the solid phase polymerization process in terms of excellent thermal stability.
- Examples of the stabilizer in the present invention include hindered phenol compounds, thioether compounds, vitamin compounds, triazole compounds, hydrazine derivative compounds, phosphorus compounds, and the like, and these may be used in combination. Among them, it is preferable to include at least one phosphorus compound, and it is more preferable to use a phosphate compound or a phosphite compound.
- ADEKA STAB AX-71 (dioctadecyl phosphate), PEP-8 (distearyl pentaerythritol diphosphite), PEP-36 (cyclic neopentatetrayl bis (2,6) manufactured by ADEKA) -T-butyl-4-methylphenyl) phosphite).
- hindered phenol compounds include n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) -propionate, n-octadecyl-3- (3′-methyl).
- hindered phenol compounds include “ADEKA STAB” AO-20, AO-30, AO-40, AO-50, AO-60, AO-70, AO-80, AO-330 manufactured by ADEKA.
- thioether compounds include dilauryl thiodipropionate, ditridecyl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, pentaerythritol tetrakis (3-lauryl thiopropionate) Pentaerythritol-tetrakis (3-dodecylthiopropionate), pentaerythritol-tetrakis (3-octadecylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3- Stearylthiopropionate).
- thioether compounds include “ADEKA STAB” AO-23, AO-412S, AO-503A manufactured by ADEKA, “Irganox” PS802 manufactured by Ciba Specialty Chemicals, “Sumilyzer” TPL-R manufactured by Sumitomo Chemical, Examples thereof include TPM, TPS, TP-D, DSTP manufactured by API, DLTP, DLTOIB, DMTP, “Sinox” 412S manufactured by Cypro Kasei, and “Sianox” 1212 manufactured by Cyamide.
- vitamin compounds include d- ⁇ -tocopherol acetate, d- ⁇ -tocopherol succinate, d- ⁇ -tocopherol, d- ⁇ -tocopherol, d- ⁇ -tocopherol, d- ⁇ -tocopherol, d- Natural products such as ⁇ -tocotrienol, d- ⁇ -tocofetrienol, d- ⁇ -tocofetrienol, d- ⁇ -tocofetrienol, dl- ⁇ -tocopherol, dl- ⁇ -tocopherol acetate, succinic acid Examples thereof include synthetic products such as dl- ⁇ -tocopherol calcium and dl- ⁇ -tocopherol nicotinate. Specific product names of vitamin compounds include “Tocopherol” manufactured by Eisai, “Irganox” E201 manufactured by Ciba Specialty Chemicals, and the like.
- triazole compounds include benzotriazole, 3- (N-salicyloyl) amino-1,2,4-triazole, and the like.
- hydrazine derivative compounds include decamethylene dicarboxyl acid-bis (N′-salicyloyl hydrazide), bis (2-phenoxypropionyl hydrazide) isophthalate, N-formyl-N′-salicyloyl hydrazine.
- Examples of phosphorus compounds include phosphite compounds and phosphate compounds.
- Specific examples of such phosphite compounds include tetrakis [2-tert-butyl-4-thio (2′-methyl-4′-hydroxy-5′-tert-butylphenyl) -5-methylphenyl] -1, 6-hexamethylene-bis (N-hydroxyethyl-N-methylsemicarbazide) -diphosphite, tetrakis [2-tert-butyl-4-thio (2′-methyl-4′-hydroxy-5′-tert-butylphenyl) -5-methylphenyl] -1,10-decamethylene-di-carboxylic acid-di-hydroxyethylcarbonylhydrazide-diphosphite, tetrakis [2-tert-butyl-4-thio (2'-methyl-4'-hydroxy-) 5'-t-butylphenyl) -5-methylphenyl]
- Tris (2,4-di-t-butylphenyl) phosphite, 2,2-methylenebis (4,6-di- -Butylphenyl) octyl phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol di-phosphite, tetrakis (2,4-di-t-butylphenyl) -4,4 '-Biphenylenephosphonite can be preferably used.
- phosphite compounds include “ADEKA STAB” C, PEP-4C, PEP-8, PEP-11C, PEP-24G, PEP-36, HP-10, 2112, 260, 522A, manufactured by ADEKA, 329A, 1178, 1500, C, 135A, 3010, TPP, Ciba Specialty Chemicals “Irgaphos” 168, Sumitomo Chemical “Smilizer” P-16, Clariant “Sand Stub” P-EPQ, GE “Weston” 618, 619G, 624 and the like.
- the phosphate compound examples include monostearyl acid phosphate, distearyl acid phosphate, methyl acid phosphate, isopropyl acid phosphate, butyl acid phosphate, octyl acid phosphate, isodecyl acid phosphate, etc., among them monostearyl acid phosphate Distearyl acid phosphate is preferred.
- Specific product names of phosphate compounds include “Irganox” MD1024 from Ciba Specialty Chemicals, “Inhibitor” OABH from Eastman Kodak, “Adekastab” CDA-1, CDA-6, AX-71 from ADEKA, etc. Can be mentioned.
- the addition amount of the stabilizer is not particularly limited, but is preferably 0.001 to 2 parts by weight, preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the aliphatic polyester resin in terms of excellent thermal stability. More preferred are parts by weight, more preferred are 0.05 to 0.5 parts by weight, and most preferred are 0.08 to 0.3 parts by weight.
- the addition timing of the stabilizer is not particularly limited, and may be any before and after the start of each of the melt polymerization step and the solid phase polymerization step, but a high melting point, high molecular weight polylactic acid resin can be obtained.
- it is preferably added at the stage of the melt polymerization step, and is more preferably added immediately before the end of the condition 1 of the melt polymerization step or at the start of the condition 2 in terms of excellent productivity. More preferably, it is added immediately before the end of condition 1 and at the start of condition 2.
- the catalyst for solid-phase polymerization after adding a stabilizer.
- 0.001 to 1 part by weight is preferably added to 100 parts by weight of the aliphatic polyester resin, and the productivity is excellent.
- 0.01 to 0.5 parts by weight is more preferably added, and 0.01 to 0.1 parts by weight is more preferably added.
- the method of adding the stabilizer is not particularly limited, and examples thereof include a method of melt-kneading above the melting point of the aliphatic polyester resin, a method of removing the solvent after being dissolved in a solvent and mixing.
- a method of melt-kneading at a melting point or higher of the polylactic acid resin is preferable in that it can be produced efficiently.
- the melt-kneading method may be a batch method or a continuous method.
- a single-screw extruder, a twin-screw extruder, a multi-screw extruder, a plastmill, a kneader, a stirring reactor equipped with a decompression device, or the like is used. It is preferable to use a single screw extruder or a twin screw extruder in that it can be kneaded efficiently and uniformly.
- the temperature at which the stabilizer is added is preferably 170 ° C. to 250 ° C., more preferably 180 ° C. to 240 ° C., and more preferably 190 ° C. to 230 ° C. in terms of excellent mechanical properties.
- the pressure at which the stabilizer is added may be any of reduced pressure, normal pressure, and increased pressure, and is preferably reduced in that the generated gas can be removed during melt-kneading.
- the atmospheric conditions at the time of melt kneading may be either an air atmosphere or an inert gas atmosphere such as nitrogen, but in an inert gas atmosphere in that the amount of gas generated at the time of melt kneading can be reduced. It is preferable to carry out with.
- a solvent in which the polymer and the monomer are dissolved is used.
- the solvent for example, chloroform, methylene chloride, acetonitrile and the like can be used.
- the method for removing the solvent when it is necessary to remove the solvent after mixing is not particularly limited.
- the solvent is volatilized at room temperature and the solvent is volatilized at a temperature equal to or higher than the boiling point of the solvent under reduced pressure. Or the like can be used.
- the aliphatic polyester resin composition of the present invention contains 300 to 3000 ppm of a sulfonic acid group-containing compound having two or more sulfonic acid groups in one molecule in terms of sulfur atom in the aliphatic polyester resin.
- a sulfonic acid group-containing compound having two or more sulfonic acid groups in one molecule in terms of sulfur atom in the aliphatic polyester resin is preferred.
- the above-mentioned compounds can be used. Specifically, 1,5-naphthalenedisulfonic acid, 1,6-naphthalenedisulfonic acid, 2,6-naphthalenedisulfonic acid, 2,7-naphthalenedisulfonic acid, 1,3,6-naphthalenetrisulfonic acid, 4,4-biphenyldisulfonic acid, o-benzenedisulfonic acid, m-benzenedisulfonic acid, p-benzene Disulfonic acid, 2,5-diamino-1,3-benzenedisulfonic acid, aniline-2,4-disulfonic acid, anthraquinone-1,5-disulfonic acid, polystyrene sulfonic acid, 1,2-ethanedisulfonic acid, 1,3 -Propanedisulfonic acid, methanedisul
- methane disulfonic acid methane disulfonic acid, ethane disulfonic acid, propane disulfonic acid, butane disulfonic acid, benzene disulfonic acid, naphthalene disulfonic acid, biphenyl disulfonic acid, phenol disulfonic acid, catechol disulfonic acid, benzidine disulfonic acid, naphthol disulfonic acid, benzene trisulfone
- acids are preferred.
- a sulfonic acid group-containing compound having two or more sulfonic acid groups in one molecule is characterized by containing 300 to 3000 ppm in terms of sulfur atom, and preferably 350 to 2500 ppm, more preferably 400 to 2000 ppm. 500 to 1500 ppm is particularly preferable.
- the aliphatic polyester resin composition of the present invention may further contain one or more compounds selected from nitrogen-containing organic compounds, alkali metal compounds, and alkaline earth metal compounds.
- the nitrogen-containing organic compound in the present invention is one or more compounds selected from aliphatic amine compounds, aromatic amine compounds, nitrogen-containing heterocyclic compounds and the like.
- nitrogen-containing organic compounds include methylethylamine, triethylamine, dimethylpropylamine, ethylamine, isoamylamine, butylamine, propylamine, ethylenediamine, butanediamine, hexamethylenediamine, 1,2,3-triaminopropane, tetraethylammonium.
- alkali metal compound examples include lithium compounds such as lithium isopropoxide, lithium chloride, lithium acetate, lithium lactate, lithium octylate, lithium stearate, lithium naphthenate, tert-butyllithium carbonate, lithium sulfate, and lithium oxide.
- potassium compound it is preferred among them comprising at least one of the number 4 or more organic carboxylic acids alkali metal compound carbon.
- alkaline earth metal compounds include magnesium compounds such as magnesium diisopropoxide, magnesium chloride, magnesium acetate, magnesium lactate, magnesium stearate, magnesium carbonate, magnesium sulfate, magnesium oxide, diisopropoxy calcium, calcium chloride Calcium compounds such as calcium acetate, calcium octylate, calcium naphthenate, calcium lactate, calcium stearate, calcium sulfate, diisopropoxy barium, barium chloride, barium acetate, barium octylate, barium naphthenate, barium lactate, barium stearate And barium compounds such as barium sulfate. Among them, it contains at least one organic carboxylic acid alkaline earth metal compound having 4 or more carbon atoms. Masui.
- the addition amount of the nitrogen-containing organic compound, alkali metal, and alkaline earth metal is not particularly limited, but is 0.001 to 2 parts by weight with respect to 100 parts by weight of the aliphatic polyester resin in terms of excellent hydrolysis resistance. It is preferably 0.01 to 1 part by weight, more preferably 0.05 to 0.5 part by weight, most preferably 0.08 to 0.3 part by weight. preferable. Moreover, when using a nitrogen-containing organic compound, in the polymer after solid-phase polymerization, the nitrogen-containing organic compound relative to the molar amount of sulfur atoms of the sulfonic acid group-containing compound having two or more sulfonic acid groups in one molecule.
- the nitrogen atom molar ratio is preferably 0.2 to 5, more preferably 0.25 to 4, particularly preferably 0.3 to 3.3, and 0.4 to 2. More preferably, it is 5.
- the nitrogen-containing organic compound is an aliphatic amine, it is preferably 0.3 to 0.9.
- the weight average molecular weight of the aliphatic polyester resin in the aliphatic polyester resin composition of the present invention is not particularly limited, but is preferably 30,000 or more, particularly 100,000 or more, preferably 100,000 to 1,200,000. Preferably, it is 120,000 to 300,000, more preferably 140,000 to 250,000.
- a weight average molecular weight is a value of a weight average molecular weight in terms of standard polymethyl methacrylate by gel permeation chromatography (GPC) measurement using hexafluoroisopropanol as a solvent, or by GPC measurement using chloroform as a solvent. It is a value of weight average molecular weight in terms of standard polystyrene.
- the ratio of the weight average molecular weight to the number average molecular weight is preferably 1.4 to 3 from the viewpoint of uniformity of polymer physical properties, and more preferably 1.5 to 2.5.
- the weight loss rate when held at 200 ° C. for 20 minutes under a nitrogen stream is preferably 2% or less, particularly preferably 1% or less, and more preferably 0.6% or less in view of excellent heat resistance, more preferably. It is 0.4% or less, more preferably 0.1% or less.
- the thermal weight reduction rate is 0.1% by weight / min or less, particularly 0.05% by weight / min or less, more preferably 0.03% by weight / min or less, more preferably 0.02% by weight / min or less.
- the weight reduction rate can be measured, for example, with a thermogravimetric apparatus (TGA), and the nitrogen flow rate is preferably 20 to 200 ml / min, more preferably 60 to 120 ml / min.
- TGA thermogravimetric apparatus
- the weight average molecular weight is 100,000 or more, the ratio of the weight average molecular weight to the number average molecular weight is 1.4 to 3, and it is kept at 200 ° C. for 20 minutes under a nitrogen stream. It is preferable that the weight reduction rate is 0.6% or less.
- ordinary additives such as fillers (glass fiber, carbon fiber, metal fiber, natural fiber, organic fiber, glass flake, Glass beads, ceramic fibers, ceramic beads, asbestos, wollastonite, talc, clay, mica, sericite, zeolite, bentonite, montmorillonite, synthetic mica, dolomite, kaolinite, fine silicic acid, feldspar powder, potassium titanate, shirasu Balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide, aluminum oxide, titanium oxide, aluminum silicate, silicon oxide, gypsum, novacurite, dosonite or clay, ultraviolet absorbers (resorcinol, salicylate, benzotria) , Benzophenone, etc.), heat stabilizers (including the above-mentioned stabilizers such as hindered phenols, hydroquinones, phosphites and their substitutes), lubricants, mold release agents (mont
- the aliphatic polyester resin composition of the present invention includes other thermoplastic resins (for example, polyethylene, polypropylene, acrylic resin, polyamide, polyphenylene sulfide resin, polyether ether ketone resin, as long as the object of the present invention is not impaired.
- thermoplastic resins for example, polyethylene, polypropylene, acrylic resin, polyamide, polyphenylene sulfide resin, polyether ether ketone resin, as long as the object of the present invention is not impaired.
- Polyester polysulfone, polyphenylene oxide, polyacetal, polyimide, polyetherimide, etc.
- thermosetting resin eg phenol resin, melamine resin, polyester resin, silicone resin, epoxy resin etc.
- soft thermoplastic resin eg ethylene / Glycidyl methacrylate copolymer, polyester elastomer, polyamide elastomer, ethylene / propylene terpolymer, ethylene / butene-1 copolymer, etc.
- the aliphatic polyester resin composition of the present invention has a high molecular weight even after it is once melted and solidified when processed into a molded article or the like, and in a preferred embodiment, it has a high melting point and is thermally stable. In addition, it is easy to form an aliphatic polyester resin composition having excellent hue.
- the aliphatic polyester resin composition obtained by the production method of the present invention can be widely used as a molded product.
- molded products include films, sheets, fibers / clothes, non-woven fabrics, injection molded products, extrusion molded products, vacuum / pressure molded products, blow molded products, and composites with other materials.
- the article is useful for agricultural materials, horticultural materials, fishery materials, civil engineering / architectural materials, stationery, medical supplies, automotive parts, electrical / electronic components or other uses.
- Weight average molecular weight It is a value of weight average molecular weight in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) manufactured by Waters using hexafluoroisopropanol as a solvent.
- thermogravimetric measuring device manufactured by PerkinElmer Co., Ltd. was held in a nitrogen stream at 200 ° C. for 20 minutes, and a weight retention rate and a weight reduction rate were measured. It can be said that the greater the weight retention, the better the thermal stability. Note that 100-weight retention is the weight reduction rate.
- Example 1 In a reaction vessel equipped with a stirrer and a reflux apparatus, 100 parts of a 90% L-lactic acid (D content 0.4%) aqueous solution was placed, 1,3-propanedisulfonic acid was added as a catalyst, and L-lactic acid was removed from water. The amount was adjusted to 800 ppm in terms of sulfur atom with respect to the amount, the temperature was adjusted to 150 ° C., the pressure was gradually reduced to 800 Pa, the reaction was carried out for 3.5 hours while removing water, the temperature was 170 ° C., the pressure Polymerization was performed at 400 Pa for 6 hours to obtain a prepolymer. The obtained prepolymer was pulverized and subjected to crystallization treatment at 110 ° C.
- Examples 2 to 7, Comparative Examples 1 to 5 The same procedure as in Example 1 was carried out except that the type and amount of catalyst used were as shown in Tables 1 and 2. The results are shown in Tables 1 and 2.
- Example 8 100 parts by weight of the polylactic acid-based resin obtained in Example 1 was mixed with 0.2 parts by weight of pyrimidine, which is a nitrogen-containing organic compound, and an evaporator was used in an eggplant flask at 140 ° C. under normal pressure and a nitrogen gas atmosphere. After the impregnation treatment while rotating at, the hydrolysis resistance was evaluated. Table 3 shows the characteristics of the obtained polylactic acid resin (composition).
- Example 9 to 10 The same procedure as in Example 8 was conducted except that the type and amount of nitrogen-containing organic compound used were as shown in Table 3. The results are shown in Table 3.
- Example 11 to 14 To 100 parts by weight of the polylactic acid resin obtained in Example 1, the nitrogen-containing organic compound of the type shown in Table 3 was mixed in the addition amount shown in Table 3, and then melted at 190 ° C. using a twin screw extruder. After kneading, the hydrolysis resistance was evaluated. The results are shown in Table 3.
- Example 15 to 16 The alkaline earth metal shown in Table 3 was mixed with 100 parts by weight of the polylactic acid-based resin obtained in Example 1 and then melt-kneaded at 190 ° C. using a twin-screw extruder. Thereafter, hydrolysis resistance was evaluated. The results are shown in Table 3.
- Weight average molecular weight It is a value of weight average molecular weight in terms of standard polymethyl methacrylate, measured by gel permeation chromatography (GPC) LC solution manufactured by Shimadzu Corporation using chloroform as a solvent.
- Thermal stability (thermal weight loss rate) The weight loss rate was measured by holding at 200 ° C. in an atmosphere of 100 ml / min of nitrogen with a thermogravimetric measuring device (TGA) manufactured by TA Instruments.
- TGA thermogravimetric measuring device
- Nitrogen compound content (nitrogen atom content) The content was calculated from the amount of the nitrogen compound added and the yield of the polymer on the assumption that the residual ratio of the nitrogen compound was 100%.
- Example 17 After adding 200 g of 90 wt% L-lactic acid aqueous solution to a 500 mL four-necked flask, the flask was immersed in an oil bath. Attach a stirrer to the flask, insert a thermocouple in the thermometer, connect the vacuum line and nitrogen gas line, repeat decompression and nitrogen gas introduction three times, and replace the atmosphere with nitrogen, then the oil bath temperature up to 120 ° C The temperature was raised and dehydration was started. In the initial 60 minutes of dehydration, the internal pressure was reduced from normal pressure to 5 kPa, dehydrated at 5 kPa for 1.5 hours (total dehydration time was 2.5 hours), and then the internal pressure was increased to normal pressure with nitrogen gas.
- 1,3-propanedisulfonic acid (addition amount was 632 ppm relative to the raw material L-lactic acid in terms of sulfur atom) was added as a catalyst under a nitrogen atmosphere. Subsequently, the system temperature was raised to 160 ° C., the pressure was lowered from normal pressure to 0.3 kPa in 2 hours, maintained at 0.3 kPa as it was, and discharged after melt polymerization for 4 hours (total 6 hours). And cooled to obtain a polylactic acid prepolymer. The prepolymer was crystallized in a vacuum dryer at 100 ° C. for 2 hours, pulverized after cooling to room temperature.
- Examples 18 to 22, Comparative Examples 6 to 9 The same procedure as in Example 17 was conducted except that the type and amount of catalyst used and the melt polymerization conditions were as shown in Table 4. The results are shown in Table 4. [Examples 23 to 26] Examples except for the types and addition amounts of monomers used, the types and addition amounts of catalysts, the types and amounts of talc and antioxidants, dehydration conditions, melt polymerization conditions, and solid phase polymerization conditions, as shown in Table 5. The same as 17 was performed. The results are shown in Table 5.
- Example 27 After adding 200 g of 90 wt% L-lactic acid aqueous solution to a 500 mL four-necked flask, the flask was immersed in an oil bath. Attach a stirrer to the flask, insert a thermocouple in the thermometer, connect the vacuum line and nitrogen gas line, repeat decompression and nitrogen gas introduction three times, and replace the atmosphere with nitrogen, then the oil bath temperature up to 120 ° C The temperature was raised and dehydration was started. In the initial 60 minutes of dehydration, the internal pressure was reduced from normal pressure to 5 kPa, dehydrated at 5 kPa for 1.5 hours (total dehydration time was 2.5 hours), and then the internal pressure was increased to normal pressure with nitrogen gas.
- Example 28 After cooling to room temperature and introducing nitrogen gas to return to normal pressure, 280.5 mg of 2-amino-4-methoxy-6-methylpyrimidine was added to the pear-shaped flask, and then the pear-shaped flask was heated to 180 ° C. It was immersed in a silicone oil bath for 30 minutes and cooled to obtain a polylactic acid resin. The apparent yield Y% in the process of dehydration and polymerization was 70%. Table 6 shows the physical properties of the obtained polylactic acid-based resin (composition). [Example 28] A polymer was synthesized in the same manner as in Example 27 except that the type and amount of catalyst used, dehydration conditions, melt polymerization conditions, and solid phase polymerization conditions were as shown in Table 5.
- solid phase polymerization is performed by putting 20 g of a prepolymer having a particle diameter of 1 to 3 mm into a stainless steel pipe (inner diameter 2 cm, length 10 cm), introducing heated nitrogen gas (100 L / h) from the bottom of the pipe, Put the nitrogen heating pipe into the oil bath.
- 10 g of the obtained polymer and 9.6 mg of pyrimidine and 10.9 mg of methylimidazole were premixed for 50 minutes with a high-speed mixer, and this mixture was put into a twin-screw kneader and pelletized.
- the temperature setting of the kneader was 120 ° C. for the raw material charging part, 175 ° C. for the mixing part, 180 ° C.
- Example 29 The polymer was synthesized in the same manner as in Example 27 except that the type and amount of catalyst used, dehydration conditions, melt polymerization conditions, and solid phase polymerization conditions were as shown in Table 6, and this was melted at 175 ° C. A nitrogen-containing compound was added and allowed to cool after 30 minutes of stirring. The results are shown in Table 5. [Example 30, 35 to 38] Except that the type and addition amount of the catalyst used, dehydration conditions, melt polymerization conditions, solid phase polymerization conditions are as shown in Table 6 and that the nitrogen compound was added to the melted dehydration reaction simultaneously with the catalyst, Example 27 It carried out similarly.
- Example 31 A polymer was synthesized in the same manner as in Example 27 except that the type and amount of catalyst used, dehydration conditions, melt polymerization conditions, and solid phase polymerization conditions were as shown in Table 6.
- the pear-shaped flask was charged with 10 g of the polymer and the nitrogen-containing compound, and the pear-shaped flask was immersed in an oil bath at 180 ° C. for 30 minutes and then taken out and cooled. The results are shown in Table 6.
- Example 32 The same procedure as in Example 27 was performed except that the type and amount of catalyst used, dehydration conditions, melt polymerization conditions, and solid phase polymerization conditions were as shown in Table 6. The results are shown in Table 6.
- Examples 33 and 34 A polymer was synthesized in the same manner as in Example 27 except that the type and addition amount of the catalyst used, dehydration conditions, melt polymerization conditions, and solid phase polymerization conditions were as shown in Table 6, and 10 g of the polymer and nitrogen-containing compound were synthesized. After sealing in a glass tube, it was allowed to stand for 30 minutes in a constant temperature dryer at 180 ° C. The results are shown in Table 6. [Example 39, Comparative Example 10] The same procedure as in Example 27 was conducted except that the type and amount of catalyst used, dehydration conditions, melt polymerization conditions, and solid phase polymerization conditions were as shown in Table 6. The results are shown in Table 6.
- the present invention there is provided a method for efficiently producing an aliphatic polyester resin having a high molecular weight, a high melting point, and excellent thermal stability and hue, and the composition obtained by the present invention comprises fibers, films, It is useful as a raw material for molded products.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Description
(1)スルホン酸基含有化合物を触媒として、溶融重合工程とそれに続く固相重合工程を含む脂肪族ポリエステル樹脂の製造方法であって、溶融重合時のスルホン酸基含有化合物の添加量が、硫黄原子換算で原料モノマー対比300~3000ppmであり、固相重合後のスルホン酸基含有化合物の含有量が、硫黄原子換算で生成ポリマー対比300~3000ppmであり、かつ固相重合後のスルホン酸基含有化合物の残存率が50%超であることを特徴とする脂肪族ポリエステル樹脂の製造方法、
(2)固相重合後のスルホン酸基含有化合物の含有量が、硫黄原子換算で生成ポリマー対比300~3000ppmであり、かつ固相重合後のスルホン酸基含有化合物の残存率が80%以上であることを特徴とする前記(1)に記載の脂肪族ポリエステル樹脂の製造方法、
(3) スルホン酸基含有化合物が、1分子中に2個以上のスルホン酸基を有することを特徴とする前記(1)に記載の脂肪族ポリエステル樹脂の製造方法、
(4)1分子中に2個以上のスルホン酸基を有するスルホン酸基含有化合物が、メタンジスルホン酸、エタンジスルホン酸、プロパンジスルホン酸、ブタンジスルホン酸、ベンゼンジスルホン酸、ナフタレンジスルホン酸、ビフェニルジスルホン酸、フェノールジスルホン酸、カテコールジスルホン酸、ベンシジンジスルホン酸、ナフトールジスルホン酸、ベンゼントリスルホン酸から選ばれる1種以上であることを特徴とする前記(3)に記載の脂肪族ポリエステル樹脂の製造方法、
(5)溶融重合工程開始前から固相重合工程開始前までのいずれかの段階で、スルホン酸基含有化合物を添加することを特徴とする前記(1)に記載の脂肪族ポリエステル樹脂の製造方法、
(6)さらに、含窒素有機化合物、アルカリ金属化合物、アルカリ土類金属化合物から選ばれる1種以上の化合物を添加することを特徴とする前記(1)に記載の脂肪族ポリエステル樹脂の製造方法、
(7)含窒素有機化合物が、芳香族アミン化合物、炭素数4以上のアルキルアミン化合物、ピリミジン骨格を有する化合物から選ばれる1種以上、アルカリ金属化合物が、炭素数4以上の有機カルボン酸アルカリ金属化合物から選ばれる1種以上、アルカリ土類金属化合物が、炭素数4以上の有機カルボン酸アルカリ土類金属化合物から選ばれる1種以上であることを特徴とする前記(6)に記載の脂肪族ポリエステル樹脂の製造方法、
(8)含窒素有機化合物、アルカリ金属化合物、アルカリ土類金属化合物から選ばれる1種以上の化合物を、スルホン酸基含有化合物の添加後に、添加することを特徴とする前記(6)に記載の脂肪族ポリエステル樹脂の製造方法、
(9)さらに、スズ化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物から選ばれる1種以上の金属化合物を添加することを特徴とする前記(1)に記載の脂肪族ポリエステル樹脂の製造方法、
(10)固相重合後の、スズ化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物の総金属モル量に対するスルホン酸基含有化合物の硫黄原子モル量との比が、3.0~50であることを特徴とする前記(9)に記載の脂肪族ポリエステル樹脂の製造方法、
(11)溶融重合工程を少なくとも下記の2段階を含む条件で連続的に行い、かつ固相重合工程を少なくとも下記の2段階を含む条件で連続的に行うことを特徴とする前記(1)に記載の脂肪族ポリエステル樹脂の製造方法、
溶融重合工程 条件1 140℃~160℃、13.3~66.6kPa
条件2 160℃~180℃、1.3~6.5kPa
固相重合工程 条件1 130℃~150℃
条件2 150℃超~165℃
(12)溶融重合工程開始前から固相重合工程終了後のいずれかの段階において、安定剤を添加することを特徴とする前記(1)に記載の脂肪族ポリエステル樹脂の製造方法、
(13)溶融重合工程および固相重合工程それぞれの重合反応を連続法により行うことを特徴とする前記(1)に記載の脂肪族ポリエステル樹脂の製造方法、
(14)脂肪族ポリエステル樹脂がポリ乳酸系樹脂であることを特徴とする前記(1)に記載の脂肪族ポリエステル樹脂の製造方法、
(15)脂肪族ポリエステルに、1分子中に2個以上のスルホン酸基を有するスルホン酸基含有化合物を硫黄原子換算で生成ポリマー対比300~3000ppm含有することを特徴とする脂肪族ポリエステル樹脂組成物、
(16)1分子中に2個以上のスルホン酸基を有するスルホン酸基含有化合物が、メタンジスルホン酸、エタンジスルホン酸、プロパンジスルホン酸、ブタンジスルホン酸、ベンゼンジスルホン酸、ナフタレンジスルホン酸、ビフェニルジスルホン酸、フェノールジスルホン酸、カテコールジスルホン酸、ベンシジンジスルホン酸、ナフトールジスルホン酸、ベンゼントリスルホン酸から選ばれる1種以上であることを特徴とする前記(15)に記載の脂肪族ポリエステル樹脂組成物、
(17)さらに、含窒素有機化合物、アルカリ金属化合物、アルカリ土類金属化合物から選ばれる1種以上の化合物を含有することを特徴とする前記(15)に記載の脂肪族ポリエステル樹脂組成物、
(18)1分子中に2個以上のスルホン酸基を有するスルホン酸基含有化合物の硫黄原子モル量に対する含窒素有機化合物の窒素原子モル量の比が0.3~3.3であることを特徴とする前記(17)に記載の脂肪族ポリエステル樹脂組成物、
(19)重量平均分子量が10万以上であり、数平均分子量に対する重量平均分子量の比が1.4~3であり、窒素気流下200℃で20分保持した時の重量減少率が0.6%以下であることを特徴とする前記(15)に記載の脂肪族ポリエステル樹脂組成物、
(20)脂肪族ポリエステル樹脂がポリ乳酸系樹脂であることを特徴とする前記(15)に記載の脂肪族ポリエステル樹脂組成物、
である。
テトライソプロポキシゲルマン、酸化ゲルマニウム(IV)等のゲルマニウム化合物、
トリイソプロポキシマンガン(III)、
三塩化マンガン、酢酸マンガン、オクチル酸マンガン(II)、ナフテン酸マンガン(II)、硫酸第一マンガン等のマンガン化合物、塩化ビスマス(III)、ビスマス粉末、酸化ビスマス(III)、酢酸ビスマス、オクチル酸ビスマス、ネオデカン酸ビスマス等のビスマス化合物なども挙げることができる。また、錫酸ナトリウム、錫酸マグネシウム、錫酸カリウム、錫酸カルシウム、錫酸マンガン、錫酸ビスマス、錫酸バリウム、錫酸ストロンチウム、チタン酸ナトリウム、チタン酸マグネシウム、チタン酸アルミニウム、チタン酸カリウム、チタン酸カルシウム、チタン酸コバルト、チタン酸亜鉛、チタン酸マンガン、チタン酸ジルコニウム、チタン酸ビスマス、チタン酸バリウム、チタン酸ストロンチウムなどの2種以上の金属元素からなる化合物なども好ましい。
挙げられる。また、スルホン酸基含有化合物以外の酸触媒としては、形状は特に限定されず、固体酸触媒および液体酸触媒のいずれでもよく、例えば、固体酸触媒としては、酸性白土、カオリナイト、ベントナイト、モンモリロナイト、タルク、ケイ酸ジルコニウムおよびゼオライトなどの天然鉱物、シリカ、アルミナ、チタニアおよびジルコニアなどの酸化物またはシリカアルミナ、シリカマグネシア、シリカボリア、アルミナボリア、シリカチタニアおよびシリカジルコニアなどの酸化物複合体、塩素化アルミナ、フッ素化アルミナ、陽イオン交換樹脂などが挙げられる。また、立体選択重合性を有する触媒を用いて、L-乳酸およびD-乳酸の等量混合物であるラセミ体を原料として、ポリ乳酸系樹脂の重合を行う場合においては、ポリ-L-乳酸およびポリ-D-乳酸をそれぞれ同時に製造することもできる。
条件2 160℃~180℃、1.3~6.5kPa
本発明において、高分子量を有する脂肪族ポリエステル樹脂を効率的に得ることができるという点で、溶融重合工程は、実質的な反応温度として、120~220℃が好ましく、130~200℃がさらに好ましく、140~180℃が特に好ましく、高融点を有し、色相にも優れる脂肪族ポリエステル樹脂を効率的に得ることができるという点で、145~175℃の温度で行うことが好ましく、140~170℃の温度で行うことがより好ましい。また、溶融重合工程の温度は、1段階でもよく、2段階以上の多段階でもよいが、高分子量および高融点を有するポリ乳酸系樹脂を効率的に得ることができるという点で、2段階以上の多段階とすることが好ましく、例えば、140~160℃の温度で反応を行った後、160~180℃の温度で反応を行う方法などが挙げられる。
条件2 150℃超~165℃
本発明において、固相重合工程は、プレポリマーの融点以下の温度で行うことが好ましく、高分子量および高融点を有し、色相にも優れる脂肪族ポリエステル樹脂を効率的に得ることができるという点で、90℃~170℃の温度で行うことが好ましく、130℃~165℃の温度で行うことがより好ましく、135℃~160℃の温度で行うことがより好ましく、140℃~160℃の温度で行うことがさらに好ましい。また、固相重合工程の温度は、1段階でもよく、2段階以上の多段階でもよいが、短時間で高分子量化しやすく、色相にも優れるという点で、2段階以上の多段階とすることが好ましく、反応の進行とともに温度を段階的に上げることがより好ましく、例えば、130℃~150℃の温度で反応を行った後、150℃超~165℃の温度で反応を行う方法などが挙げられる。
(Cb:式(2)により算出される添加された触媒が全てポリマー中に残存する場合の理論触媒濃度、Ca:式(3)により算出される重合反応後のポリマー中に残存する実際の触媒濃度)
Cb[ppm] = Wb[g] / Wp [g] × 106 (2)
(Wb:重合工程に添加された触媒の重量、Wp:重合反応後のポリマーの重量)
Ca[ppm] = Wa[g] / Wp [g] × 106 (3)
(Wa:重合反応後のポリマー中触媒の重量、Wp:重合反応後のポリマーの重量)
固相重合後のスルホン酸基含有化合物の含有量は、硫黄原子換算で生成ポリマー対比350~2500ppmが好ましく、400~2000ppmがさらに好ましく、500~1500ppmが特に好ましい。
(m0は重合過程で入れたモノマーの重量であり、mpは重合した後得られたポリマーの重量であり、Cs0は重合時、モノマーに対する硫黄の濃度であり、Cspは重合後の硫黄の濃度である)。
本発明において、含窒素有機化合物、アルカリ金属、アルカリ土類金属を添加する温度は、170℃~250℃が好ましく、180~240℃の温度がさらに好ましく、機械物性に優れるという点で、190~230℃の温度がより好ましい。
本発明における含窒素有機化合物とは、脂肪族アミン化合物、芳香族アミン化合物、含窒素複素環化合物などから選ばれる1種又はそれ以上の化合物である。
5-フルオロアニリン、6-ベンジルアミノプリン、9-アミノアクリジン、m-フェニレンジアミン、N-ベンジルピロ-ル、N-メチルイミダゾ-ル、o-フェニレンジアミン、p-トルイジン、p-フェニレンジアミン、アクリジン、イソキノリン、イミダゾ-ル、インド-ル、エイコシルジアミン、エタノ-ルアミン、オキサミド、キノリン、ジイソプロピルアミン、ジエタノ-ルアミン、ジクロロアニリン、ジシクロヘキシルアミン、ジデシルアミン、ジフェニルアミン、デカメチレンジアミン、テトラブチルアンモニウムブロミド、テトラメチレンジアミン、ドデシルアニリン、ドデシルジアミン、トリエタノ-ルアミン、トリスヒドロキシメチルアミノメタン、トリヘキシルアミン、トリラウリルアミン、ピラジン、ピリジン、ピロ-ル、プテリン、プリン、ヘキシルアミン、ベンジルアミン、メチルアミン、1,2-ジ(2,2,6,6-テトラメチル-4-ピペリジノオキシ)-エタン、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル基)プロピオニルオキシ}-ブチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、4-(エチルアミノフォルミルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルアミノフォルミルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルアミノフォルミルオキシ)-2,2,6,6-テトラメチルピペリジン、4-プロピレンアシロキシ-2,2,6,6-テトラメチルピペリジン、アミノピリミジン、ジ(2,2,6,6-テトラメチル-4-ピペリジノ)-アジピン酸エステル、ジ(2,2,6,6-テトラメチル-4-ピペリジノ)-シュウ酸エステル、ジ(2,2,6,6-テトラメチル-4-ピペリジノ)-セバシン酸エステル、ジ(2,2,6,6-テトラメチル-4-ピペリジノ)-テレフタル酸エステル、ジ(2,2,6,6-テトラメチル-4-ピペリジノ)-ヘキサメチレン-1,6-ジカルバミン酸エステル、ジ(2,2,6,6-テトラメチル-4-ピペリジノ)-マロン酸エステル、ジ(2,2,6,6-テトラメチル-4-ピペリジノ)-炭酸エステル、ジ(2,2,6,6-テトラメチル-4-ピペリジノフェニレン-2,4-カルバミン酸エステル、ジアミノデカン、ジデシルアミン、ジヘキシルアミン、ジメチルピリミジン、トリブチルアミン、ヒドロキシルピリミジンが挙げられ、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルアセトキシ)-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-(エチルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(シクロヘキシルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-カーボネイト、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-テレフタレート、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-エタン、α、α’-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)-ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β’,β’,-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6,-テトラメチルピペリジンの重縮合物などのヒンダードアミン化合物も挙げられ、3,9-ビス[2-(3,5-ジアミノ-2,4,6-トリアザフェニル)エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、エチレンジアミン-テトラアセチックアシッド、エチレンジアミン-テトラアセチックアシッドのアルカリ金属塩(Li,Na,K)塩、N,N’-ジサリシリデン-エチレンジアミン、N,N’-ジサリシリデン-1,2-プロピレンジアミン、N,N’’-ジサリシリデン-N’-メチル-ジプロピレントリアミン、3-サリシロイルアミノ-1,2,4-トリアゾールなどの多価アミンも挙げられ、中でも芳香族アミン化合物、炭素数4以上のアルキルアミン化合物、ピリミジン骨格を有するアミン化合物を少なくとも1種含むことが好ましい。
また、窒素気流下200℃で20分保持した時の重量減少率が2%以下、特に1%以下、さらに0.6%以下であることが、耐熱性に優れるという点で好ましく、より好ましくは0.4%以下であり、さらに好ましくは0.1%以下である。熱重量減少速度としては、0.1重量%/min以下、特に0.05重量%/min以下、さらに0.03重量%/min以下が好ましく、より好ましくは0.02重量%/min以下であり、さらに好ましくは0.005重量%/min以下である。重量減少率は、例えば熱重量測定装置(TGA)で測定することができ、窒素の流速としては20~200ml/minであることが好ましく、60~120ml/minであることがより好ましい。
本発明で用いた測定方法および判定方法を以下に示す。
〈1〉実施例1~16、比較例1~5
実施例1~16、比較例1~5で用いた測定方法および判定方法を以下に示す。
溶媒にヘキサフルオロイソプロパノールを用いウォーターズ社製ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリメチルメタクリレート換算の重量平均分子量の値である。
パーキンエルマー社製示差走査型熱量計(DSC)DSC7により窒素雰囲気下中、200℃で2分間保持後、120℃/分で30℃まで降温し、その後昇温速度20℃/分で200℃まで昇温し、融点を測定した。
ポリマーを水酸化ナトリウム溶液下で加水分解し、その後塩酸で中和し、次いで光学分割カラムを取り付けた液体クロマトグラフィーにより測定した。
パーキンエルマー社製熱重量測定装置(TGA)により窒素気流下中、200℃で20分保持し、重量保持率、重量減少率を測定した。重量保持率が大きいものほど熱安定性に優れると言える。なお、100-重量保持率が重量減少率である。
エスペック社製恒温恒湿槽中、温度60℃、相対湿度95%の条件で24時間湿熱処理を行い、処理前後の重量平均分子量からの分子量保持率を測定した。
目視判断より、下記基準を用いて判断した。
5:無着色
4:3と5の中間
3:黄色に着色
2:1と3の中間
1:茶色に着色。
三菱化学社製自動試料燃焼装置を用い、試料を密閉系にて900~1000℃に加熱し(Ar/酸素)、灰化した際に発生するガスを定容した吸収液(90ppm-過酸化水素溶液)に吸収させ、イオンクロマトグラフィーにより定量した。
撹拌装置、還流装置のついた反応容器中に、90%L-乳酸(D体量0.4%)水溶液100部を入れ、触媒として1,3-プロパンジスルホン酸を、水を除くL-乳酸量に対して硫黄原子換算で800ppmとなるように加え、温度を150℃にした後、徐々に減圧して800Paとし、水を除去しながら3.5時間反応させた後、温度170℃、圧力400Paで、6時間重合反応させ、プレポリマーを得た。得られたプレポリマーを粉砕後、窒素下110℃で1時間結晶化処理を行った後、50Paの圧力下、140℃で3時間、150℃で3時間、160℃で18時間固相重合を行い、ポリ乳酸系樹脂を得た。得られたポリ乳酸系樹脂(組成物)の特性について、表1に示す。
使用する触媒の種類および添加量を表1と表2に示すようにした以外は、実施例1と同様に行った。結果を表1と表2に示す。
実施例1で得られたポリ乳酸系樹脂100重量部に、含窒素有機化合物であるピリミジン0.2重量部を混合し、エバポレーターを用いてナスフラスコ中で140℃、常圧、窒素ガス雰囲気下で回転させながら含浸処理した後、耐加水分解性の評価を行った。得られたポリ乳酸系樹脂(組成物)の特性を表3に示す。
使用する含窒素有機化合物の種類、添加量を表3に示すようにした以外は、実施例8と同様に行った。結果を表3に示す。
実施例1で得られたポリ乳酸系樹脂100重量部に、表3で示した種類の含窒素有機化合物を、表3で示した添加量混合し、次いで2軸押出機を用い190℃で溶融混練した後、耐加水分解性の評価を行った。結果を表3に示す。
実施例1で得られたポリ乳酸系樹脂100重量部に、表3で示したアルカリ土類金属を、表3で示した添加量混合し、次いで2軸押出機を用い190℃で溶融混練した後、耐加水分解性の評価を行った。結果を表3に示す。
実施例17~39、比較例6~10で用いた測定方法および判定方法を以下に示す。
溶媒にクロロホルムを用い、島津製作所社製ゲルパーミエーションクロマトグラフィー(GPC)LC solutionにより測定した、標準ポリメチルメタクリレート換算の重量平均分子量の値である。
ティー・エイ・インスツルメント社製示差走査型熱量計(DSC) Q-100により、200℃で2分間保持後、20℃/分で0℃まで降温し、その後昇温速度20℃/分で200℃まで昇温し、融点を測定した。
ポリマーを水酸化ナトリウム溶液下で加水分解し、その後塩酸で中和し、次いで光学分割カラムを取り付けた液体クロマトグラフィーにより測定した。
TAインスツルメント社製熱重量測定装置(TGA)により窒素100ml/min雰囲気中、200℃で保持し、重量減少率を測定した。
エスペック社製恒温恒湿槽GL-04KA中、温度60℃、相対湿度95%の条件で5日間湿熱処理を行い、処理前後の重量平均分子量からの分子量保持率を測定した。
溶融時の色調を目視により、観察を行った。
三菱化学社製自動試料燃焼装置AQF-100を用い、試料を密閉系にて900~1000℃に加熱し(Ar/酸素)、灰化した際に発生するガスを定容した吸収液(90ppm-過酸化水素溶液)に吸収させ、その後Dionex社製イオンクロマトグラフィーICS-2000により定量した。
窒素化合物の残存率が100%との前提で、窒素化合物添加量とポリマーの収量から含有量を計算した。
500mLの四つ口フラスコに90重量%L-乳酸水溶液200gを入れた後、このフラスコを油浴に浸した。フラスコに攪拌器を取り付け、温度計の熱電対を差込み、真空ラインと窒素ガスラインを接続して減圧と窒素ガス導入を3回繰り返し、雰囲気を窒素に置換した後、油浴温度を120℃まで昇温させ、脱水を開始した。脱水初期の60分間で系内圧力を常圧から5kPaまで下げ、そのまま5kPaで1.5時間脱水させ(総計脱水時間が2.5時間)、次いで窒素ガスで系内圧力を常圧まで上げた後、窒素雰囲気下で触媒として1,3-プロパンジスルホン酸362.7mg(添加量は硫黄原子換算で原料L-乳酸に対して632ppm)を添加した。続いて、系内温度を160℃まで昇温させ、圧力を2時間で常圧から0.3kPaまで下げ、そのまま0.3kPaに保持し、4時間(総計が6時間)の溶融重合後に吐出し、冷却してポリ乳酸プレポリマーを得た。プレポリマーを100℃の真空ドライヤ内で2時間結晶化させ、常温まで冷却後に粉砕した。粒径が100~250μmの結晶化プレポリマーの粉末100gを1Lの梨型フラスコに入れ、ロータリーエバポレータに取り付けた後、減圧と窒素ガス導入を2回繰り返して雰囲気を窒素に置換し、60分間で圧力を0.2kPaまで下げた。そのまま0.2kPaで保持し、梨型フラスコを油浴中に浸して回転させながら、油浴温度を110℃まで昇温させて2時間に保持し、さらに158℃まで昇温して24時間固相重合させた。常温まで冷却後、窒素ガスを導入して常圧に戻し、粉末状の脂肪族ポリエステル樹脂を得た。脱水と重合の過程における見掛けの収率Y%は71%であった。得られた脂肪族ポリエステル樹脂(組成物)の物性を表4に示した。
使用する触媒の種類および添加量、溶融重合条件を表4に示すようにした以外は、実施例17と同様に行った。結果を表4に示す。
[実施例23~26]
使用するモノマーの種類および添加量、触媒の種類および添加量、タルクと抗酸化剤の種類と量、脱水条件、溶融重合条件、固相重合条件を表5に示すようにした以外は、実施例17と同様に行った。結果を表5に示す。
500mLの四つ口フラスコに90重量%L-乳酸水溶液200gを入れた後、このフラスコを油浴に浸した。フラスコに攪拌器を取り付け、温度計の熱電対を差込み、真空ラインと窒素ガスラインを接続して減圧と窒素ガス導入を3回繰り返し、雰囲気を窒素に置換した後、油浴温度を120℃まで昇温させ、脱水を開始した。脱水初期の60分間で系内圧力を常圧から5kPaまで下げ、そのまま5kPaで1.5時間脱水させ(総計脱水時間が2.5時間)、次いで窒素ガスで系内圧力を常圧まで上げた後、窒素雰囲気下で1分子中に2個のスルホン酸基を有する1,3-プロパンジスルホン酸226.4mg(添加量は硫黄原子換算でモノマー重量に対して395ppm)を触媒として添加した。続いて、系内温度を160℃まで昇温させ、圧力を2時間で常圧から0.3kPaまで下げ、そのまま0.3kPaに保持し、4時間(総計が6時間)の溶融重合後に吐出し、冷却してポリ乳酸プレポリマーを得た。プレポリマーを100℃の真空ドライヤ内で2時間結晶化させ、常温まで冷却後に粉砕した。粒径が100~250μmの結晶化プレポリマーの粉末100gを1Lの梨型フラスコに入れ、ロータリーエバポレータに取り付けた後、減圧と窒素ガス導入を2回繰り返して雰囲気を窒素に置換し、60分間で圧力を0.2kPaまで下げた。そのまま0.2kPaで保持し、梨型フラスコを油浴中に浸して回転させながら、油浴温度を110℃まで昇温させて2時間に保持し、さらに155℃まで昇温して24時間固相重合させた。常温まで冷却後、窒素ガスを導入して常圧に戻した後、梨型フラスコに280.5mgの2-アミノ-4-メトキシ-6-メチルピリミジンを入れた後、梨型フラスコを180℃のシリコンオイルバスに30分間の浸漬し、冷却してポリ乳酸系樹脂を得た。脱水と重合の過程における見掛けの収率Y%は70%であった。得られたポリ乳酸系樹脂(組成物)の物性を表6に示した。
[実施例28]
使用する触媒の種類および添加量、脱水条件、溶融重合条件、固相重合条件を表5に示すようにした以外は、実施例27と同様にポリマーを合成した。この際、固相重合は、粒径が1~3mmのプレポリマー20gをステンレスパイプ(内径2cm、長さ10cm)に入れ、パイプの底から加熱した窒素ガス(100L/h)を導入し、パイプと窒素加熱用パイプをオイルバスに入れて。次いで、得られたポリマーから10gと、9.6mgのピリミジン、10.9mgのメチルイミダゾールを高速混合機で50分間予備混合させ、この混合物を2軸混練機に入れてペレット化した。なお、混練機の温度設定は、原料投入部が120℃、混合部が175℃、溶融部が180℃、ヘッド部が175℃であった。結果を表6に示す。
[実施例29]
使用する触媒の種類および添加量、脱水条件、溶融重合条件、固相重合条件を表6に示すようにした以外は、実施例27と同様にポリマーを合成し、これを175℃で溶融させ、窒素含有化合物を添加し、30分間の撹拌後、冷却させた。結果を表5に示す。
[実施例30、35~38]
使用する触媒の種類および添加量、脱水条件、溶融重合条件、固相重合条件を表6に示すようにし、さらに触媒と同時に窒素化合物を溶融した脱水反応物へ添加した以外は、実施例27と同様に実施した。結果を表6に示す。
[実施例31]
使用する触媒の種類および添加量、脱水条件、溶融重合条件、固相重合条件を表6に示すようにした以外は、実施例27と同様にポリマーを合成した。梨型フラスコに、ポリマー10gと窒素含有化合物を入れ、梨型フラスコを180℃のオイルバスに30分間浸した後取り出し冷却させた。結果を表6に示す。
[実施例32]
使用する触媒の種類および添加量、脱水条件、溶融重合条件、固相重合条件を表6に示すようにした以外は、実施例27と同様に実施した。結果を表6に示す。
[実施例33、34]
使用する触媒の種類および添加量、脱水条件、溶融重合条件、固相重合条件を表6に示すようにした以外は、実施例27と同様にポリマーを合成し、10gのポリマーと窒素含有化合物をガラス管に入れて密封した後、180℃の恒温乾燥器の中で30分間静置した。結果を表6に示す。
[実施例39、比較例10]
使用する触媒の種類および添加量、脱水条件、溶融重合条件、固相重合条件を表6に示すようにした以外は、実施例27と同様に行った。結果を表6に示す。
Claims (20)
- スルホン酸基含有化合物を触媒として、溶融重合工程とそれに続く固相重合工程を含む脂肪族ポリエステル樹脂の製造方法であって、溶融重合時のスルホン酸基含有化合物の添加量が、硫黄原子換算で原料モノマーに対し300~3000ppmであり、固相重合後のスルホン酸基含有化合物の含有量が、硫黄原子換算で生成する脂肪族ポリエステル樹脂に対し300~3000ppmであり、かつ固相重合後のスルホン酸基含有化合物の残存率が50%超であることを特徴とする脂肪族ポリエステル樹脂の製造方法。
- 固相重合後のスルホン酸基含有化合物の含有量が、硫黄原子換算で生成する脂肪族ポリエステル樹脂に対し300~3000ppmであり、かつ固相重合後のスルホン酸基含有化合物の残存率が80%以上であることを特徴とする請求項1に記載の脂肪族ポリエステル樹脂の製造方法。
- スルホン酸基含有化合物が、1分子中に2個以上のスルホン酸基を有することを特徴とする請求項1に記載の脂肪族ポリエステル樹脂の製造方法。
- 1分子中に2個以上のスルホン酸基を有するスルホン酸基含有化合物が、メタンジスルホン酸、エタンジスルホン酸、プロパンジスルホン酸、ブタンジスルホン酸、ベンゼンジスルホン酸、ナフタレンジスルホン酸、ビフェニルジスルホン酸、フェノールジスルホン酸、カテコールジスルホン酸、ベンシジンジスルホン酸、ナフトールジスルホン酸、ベンゼントリスルホン酸から選ばれる1種以上であることを特徴とする請求項3に記載の脂肪族ポリエステル樹脂の製造方法。
- 溶融重合工程開始前から固相重合工程開始前までのいずれかの段階で、スルホン酸基含有化合物を添加することを特徴とする請求項1に記載の脂肪族ポリエステル樹脂の製造方法。
- さらに、含窒素有機化合物、アルカリ金属化合物、アルカリ土類金属化合物から選ばれる1種以上の化合物を添加することを特徴とする請求項1に記載の脂肪族ポリエステル樹脂の製造方法。
- 含窒素有機化合物が、芳香族アミン化合物、炭素数4以上のアルキルアミン化合物、ピリミジン骨格を有する化合物から選ばれる1種以上、アルカリ金属化合物が、炭素数4以上の有機カルボン酸アルカリ金属化合物から選ばれる1種以上、アルカリ土類金属化合物が、炭素数4以上の有機カルボン酸アルカリ土類金属化合物から選ばれる1種以上であることを特徴とする請求項6に記載の脂肪族ポリエステル樹脂の製造方法。
- 含窒素有機化合物、アルカリ金属化合物、アルカリ土類金属化合物から選ばれる1種以上の化合物を、スルホン酸基含有化合物の添加後に、添加することを特徴とする請求項6に記載の脂肪族ポリエステル樹脂の製造方法。
- さらに、スズ化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物から選ばれる1種以上の金属化合物を添加することを特徴とする請求項1に記載の脂肪族ポリエステル樹脂の製造方法。
- 固相重合後の、スズ化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物の総金属モル量に対するスルホン酸基含有化合物の硫黄原子モル量との比が、3.0~50であることを特徴とする請求項9に記載の脂肪族ポリエステル樹脂の製造方法。
- 溶融重合工程を少なくとも下記の2段階を含む条件で連続的に行い、かつ固相重合工程をすくなくとも下記の2段階を含む条件で連続的に行うことを特徴とする請求項1に記載の脂肪族ポリエステル樹脂の製造方法。
溶融重合工程 条件1 140℃~160℃、13.3~66.6kPa
条件2 160℃~180℃、1.3~6.5kPa
固相重合工程 条件1 130℃~150℃
条件2 150℃超~165℃ - 溶融重合工程開始前から固相重合工程終了後のいずれかの段階において、安定剤を添加することを特徴とする請求項1に記載の脂肪族ポリエステル樹脂の製造方法。
- 溶融重合工程および固相重合工程それぞれの重合反応を連続法により行うことを特徴とする請求項1に記載の脂肪族ポリエステル樹脂の製造方法。
- 脂肪族ポリエステルがポリ乳酸系樹脂であることを特徴とする請求項1に記載の脂肪族ポリエステル樹脂の製造方法。
- 脂肪族ポリエステル樹脂に、1分子中に2個以上のスルホン酸基を有するスルホン酸基含有化合物を硫黄原子換算で脂肪族ポリエステル樹脂に対し300~3000ppm含有することを特徴とする脂肪族ポリエステル樹脂組成物。
- 1分子中に2個以上のスルホン酸基を有するスルホン酸基含有化合物が、メタンジスルホン酸、エタンジスルホン酸、プロパンジスルホン酸、ブタンジスルホン酸、ベンゼンジスルホン酸、ナフタレンジスルホン酸、ビフェニルジスルホン酸、フェノールジスルホン酸、カテコールジスルホン酸、ベンシジンジスルホン酸、ナフトールジスルホン酸、ベンゼントリスルホン酸から選ばれる1種以上であることを特徴とする請求項15に記載の脂肪族ポリエステル樹脂組成物。
- さらに、含窒素有機化合物、アルカリ金属化合物、アルカリ土類金属化合物から選ばれる1種以上の化合物を含有することを特徴とする請求項15に記載の脂肪族ポリエステル樹脂組成物。
- 1分子中に2個以上のスルホン酸基を有するスルホン酸基含有化合物の硫黄原子モル量に対する含窒素有機化合物の窒素原子モル量の比が0.3~3.3であることを特徴とする請求項17に記載の脂肪族ポリエステル樹脂組成物。
- 重量平均分子量が10万以上であり、数平均分子量に対する重量平均分子量の比が1.4~3であり、窒素気流下200℃で20分保持した時の重量減少率が0.6%以下であることを特徴とする請求項15に記載の脂肪族ポリエステル樹脂組成物。
- 脂肪族ポリエステル樹脂がポリ乳酸系樹脂であることを特徴とする請求項15に記載の脂肪族ポリエステル樹脂組成物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/991,715 US8173753B2 (en) | 2008-05-21 | 2009-05-19 | Method for producing aliphatic polyester resin, and an aliphatic polyester resin composition |
JP2009525810A JP4678066B2 (ja) | 2008-05-21 | 2009-05-19 | 脂肪族ポリエステル樹脂の製造方法および脂肪族ポリエステル樹脂組成物 |
EP09750558.0A EP2280036B1 (en) | 2008-05-21 | 2009-05-19 | Method for producing aliphatic polyester resin, and an aliphatic polyester resin composition |
CN200980119025.0A CN102046693B (zh) | 2008-05-21 | 2009-05-19 | 脂肪族聚酯树脂的制备方法及脂肪族聚酯树脂组合物 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810024944 | 2008-05-21 | ||
CN200810024944.7 | 2008-05-21 | ||
CN200910025002.5 | 2009-02-13 | ||
JP2009032001 | 2009-02-13 | ||
CN2009100250025A CN101805498B (zh) | 2009-02-13 | 2009-02-13 | 一种含有磺酸化合物和含氮有机化合物的聚乳酸组合物及其制备方法 |
JP2009-032001 | 2009-02-13 | ||
CN 200910004176 CN101585913B (zh) | 2008-05-21 | 2009-02-16 | 含有二元磺酸或多元磺酸的聚酯及利用二元或多元磺酸作催化剂制备聚酯的方法 |
CN200910004176.3 | 2009-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009142196A1 true WO2009142196A1 (ja) | 2009-11-26 |
Family
ID=43384703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059177 WO2009142196A1 (ja) | 2008-05-21 | 2009-05-19 | 脂肪族ポリエステル樹脂の製造方法および脂肪族ポリエステル樹脂組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8173753B2 (ja) |
EP (1) | EP2280036B1 (ja) |
JP (2) | JP4678066B2 (ja) |
KR (1) | KR101577318B1 (ja) |
MY (1) | MY154053A (ja) |
WO (1) | WO2009142196A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011201946A (ja) * | 2010-03-24 | 2011-10-13 | Toray Ind Inc | 脂肪族ポリエステル樹脂の製造方法および組成物 |
CN102268131A (zh) * | 2010-06-01 | 2011-12-07 | 东丽纤维研究所(中国)有限公司 | 一种聚乳酸共聚物及其制备方法 |
WO2012042993A1 (ja) * | 2010-09-28 | 2012-04-05 | 東レ株式会社 | ポリ乳酸系樹脂の製造方法およびポリ乳酸系プレポリマー |
CN102807670A (zh) * | 2011-05-31 | 2012-12-05 | 东丽纤维研究所(中国)有限公司 | 一种聚乳酸共聚物及其制备方法 |
US9080008B2 (en) | 2011-07-28 | 2015-07-14 | Toray Industries, Inc. | Polylactic acid resin and method for producing same |
US10075961B2 (en) | 2013-03-25 | 2018-09-11 | British Telecommunications Public Limited Company | Channel selection in a wireless network |
JPWO2021172303A1 (ja) * | 2020-02-27 | 2021-09-02 | ||
US11267951B2 (en) * | 2010-12-13 | 2022-03-08 | Cytec Technology Corp. | Stabilizer compositions containing substituted chroman compounds and methods of use |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7892993B2 (en) | 2003-06-19 | 2011-02-22 | Eastman Chemical Company | Water-dispersible and multicomponent fibers from sulfopolyesters |
US20040260034A1 (en) | 2003-06-19 | 2004-12-23 | Haile William Alston | Water-dispersible fibers and fibrous articles |
US8513147B2 (en) * | 2003-06-19 | 2013-08-20 | Eastman Chemical Company | Nonwovens produced from multicomponent fibers |
US8512519B2 (en) * | 2009-04-24 | 2013-08-20 | Eastman Chemical Company | Sulfopolyesters for paper strength and process |
US9273417B2 (en) | 2010-10-21 | 2016-03-01 | Eastman Chemical Company | Wet-Laid process to produce a bound nonwoven article |
CN102807671A (zh) | 2011-05-31 | 2012-12-05 | 东丽纤维研究所(中国)有限公司 | 一种制备高分子量脂肪族聚酯的固相聚合方法 |
US8840757B2 (en) | 2012-01-31 | 2014-09-23 | Eastman Chemical Company | Processes to produce short cut microfibers |
NZ743055A (en) | 2013-03-08 | 2020-03-27 | Xyleco Inc | Equipment protecting enclosures |
US9617685B2 (en) | 2013-04-19 | 2017-04-11 | Eastman Chemical Company | Process for making paper and nonwoven articles comprising synthetic microfiber binders |
WO2014173958A1 (de) | 2013-04-24 | 2014-10-30 | Technische Universität Berlin | Verfahren zur herstellung von poly-l-milchsäure durch direkte polykondensation von l-milchsäure |
US9605126B2 (en) | 2013-12-17 | 2017-03-28 | Eastman Chemical Company | Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion |
US9598802B2 (en) | 2013-12-17 | 2017-03-21 | Eastman Chemical Company | Ultrafiltration process for producing a sulfopolyester concentrate |
US10227446B2 (en) | 2014-11-06 | 2019-03-12 | Teknologian Tutkimuskeskus Vtt Oy | Method of producing glycolic acid polymers |
CN105801824A (zh) * | 2016-04-13 | 2016-07-27 | 金发科技股份有限公司 | 一种液晶聚酯组合物 |
EP3412698A1 (en) * | 2017-06-09 | 2018-12-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for manufacturing aliphatic polyesters, aliphatic polyes-ter and use of phosphorous-containing organic additives |
US11370880B1 (en) * | 2018-10-30 | 2022-06-28 | Florida Atlantic University Board Of Trustees | Growth factor-loaded elastic poly(xylitol-dodecanedioic acid) polymer for tissue engineering |
CN113999378B (zh) * | 2021-12-20 | 2023-05-12 | 黄山正杰新材料有限公司 | 一种低成本、热转印效果优的粉末涂料用聚酯树脂及其制备方法 |
CN114437321B (zh) * | 2021-12-30 | 2023-03-21 | 康辉新材料科技有限公司 | 一种聚丁二酸丁二醇酯及其制备方法 |
CN114790282B (zh) * | 2021-12-30 | 2023-03-21 | 康辉新材料科技有限公司 | 一种纳米微颗粒原位聚合催化剂的制备方法及其应用 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08183840A (ja) | 1994-12-28 | 1996-07-16 | Shigematsu Boeki Kk | 高分子量ポリエステルの重合方法 |
JP2000297143A (ja) | 1999-04-15 | 2000-10-24 | Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai | ポリ乳酸の製造方法 |
JP2000297145A (ja) | 1999-04-15 | 2000-10-24 | Mitsui Chemicals Inc | ポリヒドロキシカルボン酸の製造方法 |
JP2000302852A (ja) | 1998-04-28 | 2000-10-31 | Mitsui Chemicals Inc | ポリエステルの製造方法 |
JP2001192444A (ja) * | 1999-10-27 | 2001-07-17 | Mitsui Chemicals Inc | 脂肪族ポリエステルの固相重合方法 |
JP2001192445A (ja) * | 1999-10-27 | 2001-07-17 | Mitsui Chemicals Inc | ポリエステルの製造方法 |
JP2001192446A (ja) * | 1999-10-27 | 2001-07-17 | Mitsui Chemicals Inc | 安定性に優れた脂肪族ポリエステルの製造方法 |
JP2001192443A (ja) * | 1999-10-27 | 2001-07-17 | Mitsui Chemicals Inc | ポリエステルの製造方法 |
JP2003519111A (ja) * | 1999-12-28 | 2003-06-17 | ロケット・フルーレ | 乳酸エステル組成物の調製方法、及び溶媒としてのその使用 |
JP2004043722A (ja) * | 2002-07-15 | 2004-02-12 | Hitachi Chem Co Ltd | 塗料用ポリエステル樹脂及びこれを用いた塗料 |
WO2007145195A1 (ja) | 2006-06-15 | 2007-12-21 | National University Corporation Kyoto Institute Of Technology | ポリ乳酸合成のための有機酸系触媒 |
JP2008260893A (ja) | 2007-04-13 | 2008-10-30 | Japan Steel Works Ltd:The | ポリ乳酸の製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0357826B1 (de) * | 1988-09-09 | 1993-04-21 | Tyre Consult Venlo B.V. | Gürteleinlage für Luftreifen |
JP3075607B2 (ja) * | 1991-10-18 | 2000-08-14 | 三井化学株式会社 | ラクチドの製造法 |
US5726220A (en) * | 1995-08-30 | 1998-03-10 | Shin-Etsu Chemical Co., Ltd. | Biodegradable polymer compositions and shrink films |
US6140458A (en) * | 1998-04-28 | 2000-10-31 | Mitsui Chemicals, Inc. | Preparation process of polyester |
EP1153954B1 (en) * | 1999-07-09 | 2007-08-22 | Mitsui Chemicals, Inc. | Process for producing aliphatic polyester |
US6528617B1 (en) * | 1999-10-27 | 2003-03-04 | Mitsui Chemicals, Inc. | Process for producing aliphatic polyester excellent in stability |
JP2002053649A (ja) * | 2000-08-09 | 2002-02-19 | Mitsubishi Gas Chem Co Inc | ポリエステル製造用触媒及びポリエステルの製造方法 |
JP2002249953A (ja) * | 2001-02-22 | 2002-09-06 | Toyobo Co Ltd | ポリエステル繊維を用いた機能性布帛 |
JP2003105073A (ja) * | 2001-09-27 | 2003-04-09 | Asahi Kasei Corp | 脂肪族ポリエステルの製造方法 |
JP2005336238A (ja) * | 2004-05-24 | 2005-12-08 | Mitsui Chemicals Inc | 脂肪族ポリエステルの製造方法 |
-
2009
- 2009-05-19 WO PCT/JP2009/059177 patent/WO2009142196A1/ja active Application Filing
- 2009-05-19 EP EP09750558.0A patent/EP2280036B1/en active Active
- 2009-05-19 JP JP2009525810A patent/JP4678066B2/ja active Active
- 2009-05-19 MY MYPI2010005282A patent/MY154053A/en unknown
- 2009-05-19 US US12/991,715 patent/US8173753B2/en active Active
- 2009-05-19 KR KR1020107024327A patent/KR101577318B1/ko active IP Right Grant
-
2010
- 2010-11-29 JP JP2010264614A patent/JP5482634B2/ja active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08183840A (ja) | 1994-12-28 | 1996-07-16 | Shigematsu Boeki Kk | 高分子量ポリエステルの重合方法 |
JP2000302852A (ja) | 1998-04-28 | 2000-10-31 | Mitsui Chemicals Inc | ポリエステルの製造方法 |
JP2000297143A (ja) | 1999-04-15 | 2000-10-24 | Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai | ポリ乳酸の製造方法 |
JP2000297145A (ja) | 1999-04-15 | 2000-10-24 | Mitsui Chemicals Inc | ポリヒドロキシカルボン酸の製造方法 |
JP2001192444A (ja) * | 1999-10-27 | 2001-07-17 | Mitsui Chemicals Inc | 脂肪族ポリエステルの固相重合方法 |
JP2001192445A (ja) * | 1999-10-27 | 2001-07-17 | Mitsui Chemicals Inc | ポリエステルの製造方法 |
JP2001192446A (ja) * | 1999-10-27 | 2001-07-17 | Mitsui Chemicals Inc | 安定性に優れた脂肪族ポリエステルの製造方法 |
JP2001192443A (ja) * | 1999-10-27 | 2001-07-17 | Mitsui Chemicals Inc | ポリエステルの製造方法 |
JP2003519111A (ja) * | 1999-12-28 | 2003-06-17 | ロケット・フルーレ | 乳酸エステル組成物の調製方法、及び溶媒としてのその使用 |
JP2004043722A (ja) * | 2002-07-15 | 2004-02-12 | Hitachi Chem Co Ltd | 塗料用ポリエステル樹脂及びこれを用いた塗料 |
WO2007145195A1 (ja) | 2006-06-15 | 2007-12-21 | National University Corporation Kyoto Institute Of Technology | ポリ乳酸合成のための有機酸系触媒 |
JP2008260893A (ja) | 2007-04-13 | 2008-10-30 | Japan Steel Works Ltd:The | ポリ乳酸の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2280036A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011201946A (ja) * | 2010-03-24 | 2011-10-13 | Toray Ind Inc | 脂肪族ポリエステル樹脂の製造方法および組成物 |
CN102268131A (zh) * | 2010-06-01 | 2011-12-07 | 东丽纤维研究所(中国)有限公司 | 一种聚乳酸共聚物及其制备方法 |
WO2012042993A1 (ja) * | 2010-09-28 | 2012-04-05 | 東レ株式会社 | ポリ乳酸系樹脂の製造方法およびポリ乳酸系プレポリマー |
JP2015034304A (ja) * | 2010-09-28 | 2015-02-19 | 東レ株式会社 | ポリ乳酸系樹脂の製造方法およびポリ乳酸系プレポリマーペレット |
US9023953B2 (en) | 2010-09-28 | 2015-05-05 | Toray Industries, Inc. | Process for production of poly(lactic acid)-type resin, and poly(lactic acid)-type prepolymer |
JP5737182B2 (ja) * | 2010-09-28 | 2015-06-17 | 東レ株式会社 | ポリ乳酸系樹脂の製造方法 |
US11267951B2 (en) * | 2010-12-13 | 2022-03-08 | Cytec Technology Corp. | Stabilizer compositions containing substituted chroman compounds and methods of use |
CN102807670A (zh) * | 2011-05-31 | 2012-12-05 | 东丽纤维研究所(中国)有限公司 | 一种聚乳酸共聚物及其制备方法 |
US9080008B2 (en) | 2011-07-28 | 2015-07-14 | Toray Industries, Inc. | Polylactic acid resin and method for producing same |
US10075961B2 (en) | 2013-03-25 | 2018-09-11 | British Telecommunications Public Limited Company | Channel selection in a wireless network |
JPWO2021172303A1 (ja) * | 2020-02-27 | 2021-09-02 | ||
WO2021172303A1 (ja) * | 2020-02-27 | 2021-09-02 | ユニチカ株式会社 | ポリエステル樹脂およびその製造方法 |
JP7067730B2 (ja) | 2020-02-27 | 2022-05-16 | ユニチカ株式会社 | ポリエステル樹脂およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5482634B2 (ja) | 2014-05-07 |
JP4678066B2 (ja) | 2011-04-27 |
KR20110021738A (ko) | 2011-03-04 |
MY154053A (en) | 2015-04-30 |
EP2280036A4 (en) | 2011-07-06 |
EP2280036B1 (en) | 2013-11-13 |
JP2011068902A (ja) | 2011-04-07 |
US8173753B2 (en) | 2012-05-08 |
EP2280036A1 (en) | 2011-02-02 |
KR101577318B1 (ko) | 2015-12-14 |
JPWO2009142196A1 (ja) | 2011-09-29 |
US20110065871A1 (en) | 2011-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4678066B2 (ja) | 脂肪族ポリエステル樹脂の製造方法および脂肪族ポリエステル樹脂組成物 | |
JP5737182B2 (ja) | ポリ乳酸系樹脂の製造方法 | |
JP5682309B2 (ja) | 結晶化ポリエステルの製造方法 | |
JP2010209313A (ja) | 脂肪族ポリエステル樹脂の製造方法および組成物 | |
JP5387433B2 (ja) | ポリ乳酸系樹脂の製造方法 | |
JP5732710B2 (ja) | ポリ乳酸系樹脂の製造方法 | |
CN102046693B (zh) | 脂肪族聚酯树脂的制备方法及脂肪族聚酯树脂组合物 | |
JP5504586B2 (ja) | ポリ乳酸ブロック共重合体の製造方法 | |
JP5477100B2 (ja) | 脂肪族ポリエステル樹脂の製造方法および組成物 | |
JP5292775B2 (ja) | ポリ乳酸系樹脂の製造方法 | |
JP5109757B2 (ja) | ポリ乳酸ブロック共重合体の製造方法 | |
JP2010077350A (ja) | ポリ乳酸系樹脂の製造方法 | |
JP2009242443A (ja) | ポリ乳酸ブロック共重合体、その製造方法および成形品 | |
JP5812947B2 (ja) | ポリ乳酸の製造方法およびその成形体 | |
JP2012072303A (ja) | 脂肪族ポリエステル樹脂の製造方法 | |
JP2009242442A (ja) | ポリ乳酸またはその共重合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980119025.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009525810 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09750558 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20107024327 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009750558 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12991715 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8159/CHENP/2010 Country of ref document: IN |