WO2009139377A1 - ツイストドリル - Google Patents

ツイストドリル Download PDF

Info

Publication number
WO2009139377A1
WO2009139377A1 PCT/JP2009/058829 JP2009058829W WO2009139377A1 WO 2009139377 A1 WO2009139377 A1 WO 2009139377A1 JP 2009058829 W JP2009058829 W JP 2009058829W WO 2009139377 A1 WO2009139377 A1 WO 2009139377A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting edge
drill
angle
groove
secondary cutting
Prior art date
Application number
PCT/JP2009/058829
Other languages
English (en)
French (fr)
Inventor
直宏 中村
阿部 誠
Original Assignee
住友電工ハ-ドメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハ-ドメタル株式会社 filed Critical 住友電工ハ-ドメタル株式会社
Priority to EP09746583.5A priority Critical patent/EP2286945B1/en
Priority to CN2009801169279A priority patent/CN102026754B/zh
Priority to JP2010511981A priority patent/JP5526361B2/ja
Priority to US12/992,181 priority patent/US20110081215A1/en
Publication of WO2009139377A1 publication Critical patent/WO2009139377A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites
    • B23B2226/275Carbon fibre reinforced carbon composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/04Angles, e.g. cutting angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/08Side or plan views of cutting edges
    • B23B2251/085Discontinuous or interrupted cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/14Configuration of the cutting part, i.e. the main cutting edges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/909Having peripherally spaced cutting edges
    • Y10T408/9095Having peripherally spaced cutting edges with axially extending relief channel
    • Y10T408/9097Spiral channel

Definitions

  • the cutting edge is constituted by a primary cutting edge disposed on the rotation center side and a secondary cutting edge (outer peripheral side cutting edge) connected to the outer end of the primary cutting edge.
  • the present invention relates to a double angle type twist drill having different tip angles.
  • the double angle type twist drill of the basics prevents an increase in the length of the cutting edge by providing an angle difference between the tip angles of the primary cutting edge and the secondary cutting edge, and also the tip angle of the secondary cutting edge It is a drill that achieves comparable processing quality compared to a drill whose tip angle is made smaller by making the tip angle of the primary cutting edge smaller than that of the primary cutting edge, and is used for drilling fiber reinforced composites and the like.
  • this double angle type twist drill (hereinafter simply referred to as a drill), those disclosed in Patent Document 1 and Patent Documents 2 and 3 below are known.
  • the primary cutting edge 4a at the ridge line of the position where the groove surface of the helical groove 6 and the flank 7 of the first relief intersect The secondary cutting edge 4b is respectively constituted by the ridge line of the position where the groove surface of 6 and the flank surface 8 of the second relief intersect, and the secondary cutting edge 4b with respect to the rotation axis O in side view of the drill.
  • a shift angle ⁇ of an angle close to the twist angle of the twist groove 6 is obtained.
  • a flat rake face 10 -1 parallel to the axis of the drill is provided in the twist groove 6, and the rake face 10 -1 and the tip
  • the secondary cutting edge 4b is formed by the ridge line at a position where the flank surface 8 of the secondary relief intersects, and the deviation angle of the secondary cutting edge with the rotation axis is 0 °.
  • the drill of Patent Document 3 also has a similar structure to the drill of Patent Document 2, and the deviation angle of the secondary cutting edge with the rotation axis O is small.
  • the secondary cutting edge causes a shift angle of ⁇ with respect to the rotation axis in side view of the drill and is greatly inclined in the twisting direction of the twist groove, and therefore the length of the secondary cutting edge
  • a force to pull up the work material at the time of processing acts on the work material, and in the case of a thin plate-like work material which can not be firmly fixed, so-called chattering occurs during processing and chatter marks appear And burrs are generated in the processing of fiber reinforced composites.
  • drill Patent Documents 2 and 3 disclose is cutting the groove surface of the helical flute 6 provided rake face 10 -1 plane to reduce the deviation angle between the rotation axis of the secondary cutting edge, As a result, the rake angle of the secondary cutting edge 4b is smaller than that of the drill in which the rake surface of the secondary cutting edge is formed by the groove surface of the helical groove, so that the sharpness of the secondary cutting edge is reduced.
  • burrs may be generated at the entrance and exit of the processing hole, and fuzzing of reinforcing fibers may occur, resulting in deterioration of processing quality. Further, it is necessary labor and time to separately process the rake face 10 -1 plane.
  • This invention makes it a subject to provide the double angle type twist drill which raised processing quality, without making the effort etc. of manufacture increase.
  • the secondary cutting edge is made approximately parallel to the rotation axis of the drill, and at least the secondary cutting edge
  • the rake face was composed of the groove face of the twist groove.
  • almost parallel said here refers to the range in which the shift
  • the distance (core height H) between the outer end (point located at the outermost periphery) E2 of the secondary cutting edge and the rotation axis O of the drill is the core thickness It refers to a state equal to half the length (see W in FIG. 5).
  • the twist angle of the twist groove is set in the range of 10 ° to 40 °
  • the rake face of the secondary cutting edge is constituted by the groove face of the twist groove, or the tip angle ⁇ 2 of the secondary cutting edge It is preferable that the angle is made smaller than the tip angle ⁇ 1 of the primary cutting edge and the tip angle ⁇ 2 is set in the range of 90 ° to 20 °.
  • the diameter d of the outer end of the primary cutting edge be 70% or more of the drill diameter D, and further, in the helical groove, the groove surface of the groove has an acute angle with the peripheral margin surface of the main body. It is also preferable to make it a groove that intersects.
  • the shift angle of the secondary cutting edge with the rotation axis is within ⁇ 5 °, the length of the secondary cutting edge is short, and the pulling force acting on the work material during machining is small. Even when the work material is a thin plate or the like which can not be firmly fixed, high-quality hole machining without chattering is possible.
  • the rake face of the secondary cutting edge is constituted by the groove face of the helical groove, and the rake angle of the secondary cutting edge does not become small.
  • the rake angle of the secondary cutting edge is larger than that of the conventional drill of FIG. 8 to ensure good sharpness. Thereby, fuzzing in processing of a fiber reinforced composite material is suppressed, and cutting resistance also becomes small.
  • cutting edges 4 and 4 having a point-symmetrical shape with respect to the rotation center (rotational axis O) and a thinning groove 5 attached to each cutting edge are provided.
  • Two twist grooves 6 are provided on the outer periphery.
  • the cutting edge 4 is a primary cutting edge 4a extending halfway from the rotation center (rotational axis O) radially outward, and a secondary cutting edge 4b extending from the outer end of the primary cutting edge 4a to the outer periphery of the main body 2 It consists of two parties.
  • the tip angle ⁇ 2 of the secondary cutting edge 4b is smaller than the tip angle ⁇ 1 of the primary cutting edge 4a.
  • the tip angle ⁇ 2 of the secondary cutting edge 4b is preferably smaller in terms of machining quality, but as the tip angle ⁇ 2 becomes smaller, the tip wear tends to occur and the length of the cutting edge becomes longer.
  • the upper limit is preferably 90 ° in order to secure the processing quality, and the lower limit is preferably about 20 ° for blade edge protection.
  • the shift angle ⁇ (see FIG. 3) of the secondary cutting edge 4b to the rotation axis O in the drill side view is set to ⁇ 5 ° to + 5 °
  • the rake face 10 of at least the secondary cutting edge 4b is a helical groove 6
  • the groove surface of the In FIG. 2 to FIG. 7, 7 is the most relief flank surface
  • 8 is the second relief flank surface
  • the primary cutting edge 4a is taken along the ridge line where the former flank surface 7 and the groove surface of the twist groove 6 intersect.
  • the secondary cutting edges 4b are respectively formed by ridge lines at positions where the flanks 8 of the latter and the groove surfaces of the twist grooves 6 intersect.
  • the groove surface of the portion along the leading edge 9 is concavely curved with respect to the normal direction of the drill to make an acute angle with the margin surface 11 of the outer periphery of the main body 2
  • the grooves have an intersecting shape, so that the deviation angle ⁇ of the secondary cutting edge 4b with the rotation axis O of -5 ° to + 5 ° is provided without providing a flat rake surface on the groove surface of the helical groove 6. Is possible. In this regard, the difference from the conventional drill will be further described.
  • Drill 9 is also a part of the primary cutting edge 4a, it is the rake angle in the portion where the rake face 10 -1 planes provided becomes sharp and decreases small.
  • the shift angle ⁇ of the secondary cutting edge 4b from the rotation axis is, for example, 5 °, and in this state the entire secondary cutting edge 4b is
  • the rake face 10 of the secondary cutting edge 4b intersects with the groove face of the twist groove 6 so as to be constituted by the groove face of the twist groove 6 ⁇ in FIG. 7 (b) corresponds to that of the secondary cutting edge 4b
  • the twist amount (rotation angle) of the twist groove 6 from the inner end E1 to the outer end E2 ⁇ is not provided. Therefore, the reduction of the rake angle of the secondary cutting edge 4b does not occur by providing a flat rake surface.
  • the blade angle ⁇ is sharpened by forming the rake surface 10 with the concavely curved groove surface of the twist groove 6, and the rake angle of the secondary cutting edge 4b becomes larger than that of the conventional drill of FIG.
  • twist angle ⁇ (see FIG. 2) of the twist groove 6 is too small, it becomes difficult to set the rake angle of the cutting edge large, and if the twist angle ⁇ is too large, the true rake angle becomes large.
  • the twist angle ⁇ should be about 10 ° to 40 ° because the cutting strength of the cutting edge increases while the strength of the cutting edge decreases.
  • the tip angle ⁇ 2 of the secondary cutting edge 4b tends to reduce fuzzing of the reinforcing fiber as the angle becomes smaller, and if it is an angle of 90 ° or less, there is a problem in hole quality Can be processed without
  • the tip angle ⁇ 2 is preferably 20 ° or more and 90 ° or less.
  • represents no chattering
  • represents chattering slightly
  • x represents chattering present.
  • the ⁇ in the fuzz column indicates no fuzz and the quality of the inner surface of the processed hole is good
  • indicates little fuzz and the quality of the inner surface of the processed hole is slightly good
  • x indicates the quality of the inner surface of the processed hole Represents a bad thing.
  • chattering during machining was confirmed when the deviation angle ⁇ of the secondary cutting edge was 10 ° or more, and stable machining without chattering was performed from -5 ° to + 5 °. In addition, at -10 °, slight chattering and fuzz were observed.
  • the ⁇ in the fuzz column of Table 2 indicates that there is no fuzzing and the quality of the inner surface of the processed hole is good, and x indicates that the fuzzing is present and the quality of the inner surface of the processed hole is poor.
  • the edge wear is an evaluation at the time of 500 hole machining, and the edge wear amount in the column of evaluation represents the maximum flank wear amount (mm).
  • the tip angle ⁇ 2 of the secondary cutting edge is prevented from fuzzing at 90 ° or less.
  • the tip end wear was suppressed even at 10 ° in the test, it is considered that 20 ° is an appropriate value of the lower limit in terms of wear control.
  • a hard coating such as a diamond coating on the surface of the blade portion or forming the blade portion with a hard sintered body has a lifetime It is effective in terms of improvement.

Abstract

 製造の手間などを増加させずに加工品位を高めたダブルアングル型ツイストドリルを提供する。二次切れ刃4bを、ドリルの回転軸Oとほぼ平行にし、少なくともその二次切れ刃のすくい面10をねじれ溝6の溝面で構成した。ねじれ溝のリーディングエッジ9に沿う位置の溝面をドリルの正転方向に対して凹形に湾曲させることで、その溝面と二番逃げの逃げ面とが交差した位置の稜線で回転軸とのずれ角が小さい二次切れ刃4bを構成することができる。

Description

ツイストドリル
 この発明は、切れ刃を、回転中心側に配置される一次切れ刃と、その一次切れ刃の外端に連ならせた二次切れ刃(外周側切れ刃)とで構成して両切れ刃の先端角を異ならせたダブルアングル型のツイストドリルに関する。
 CFRP(炭素繊維強化プラスチック)をはじめとした繊維強化複合材の穴あけ加工に用いるドリルは、先端角が小さいほど被削材の補強繊維の毛羽立ちが抑制されて少なくなる傾向がある。しかしながら、先端角を小さくしたドリルは切れ刃の長さが長くなっていわゆるビビリが発生しやすくなり、また、貫通穴の加工では特に、ドリルを深く突っ込む必要が生じて加工時間を多く要することになる。
 首記のダブルアングル型のツイストドリルは、一次切れ刃と二次切れ刃の先端角に角度差をつけることで切れ刃の長さが長くなることを抑え、また、二次切れ刃の先端角を一次切れ刃の先端角よりも小さくすることで先端角を小さくしたドリルと比較して遜色のない加工品位を実現するドリルであり、繊維強化複合材などの穴あけに利用されている。このダブルアングル型ツイストドリル(以下では単にドリルという)については、下記特許文献1や特許文献2、3に開示されたものが知られている。
 特許文献1に記載されたドリルは、図8に示すように、ねじれ溝6の溝面と先端の一番逃げの逃げ面7とが交差した位置の稜線で一次切れ刃4aを、前記ねじれ溝6の溝面と二番逃げの逃げ面8とが交差した位置の稜線で二次切れ刃4bをそれぞれ構成しており、二次切れ刃4bに、ドリルの側面視で回転軸Oに対してねじれ溝6のねじれ角に近い角度のずれ角γがつく。
 一方、特許文献2に記載されたドリルは、図9に示すように、ねじれ溝6内にドリルの軸心と平行な平面のすくい面10-1を設け、そのすくい面10-1と先端の二番逃げの逃げ面8とが交差した位置の稜線で二次切れ刃4bを形成しており、二次切れ刃の回転軸とのずれ角は0°になっている。特許文献3のドリルも、特許文献2のドリルと類似の構造を有しており、二次切れ刃の回転軸Oとのずれ角は小さい。
特開平9-277109号公報 特開昭63-306812号公報 実開平6-75612号公報
 上記特許文献1のドリルは、二次切れ刃がドリルの側面視において回転軸に対してγのずれ角を生じてねじれ溝のねじれ方向に大きく傾き、そのために、二次切れ刃の長さが長くなると同時に、加工時に被削材に対してこれを引き上げる力が働き、強固な固定が行なえない薄板状の被削材では加工中のいわゆるビビリが発生して加工穴の内面にビビリ痕がついたり、繊維強化複合材の加工ではバリが発生したりする。
 一方、特許文献2、3が開示しているドリルは、二次切れ刃の回転軸とのずれ角を小さくする平面のすくい面10-1を設けてねじれ溝6の溝面を削っており、そのことによって二次切れ刃4bのすくい角が二次切れ刃のすくい面をねじれ溝の溝面で構成するドリルよりも小さくなるため、二次切れ刃の切れ味が低下し、繊維強化複合材の加工では加工穴の出入り口部にバリが生じたり、補強繊維の毛羽立ちが発生したりして加工品位の低下を招く。また、平面のすくい面10-1を別途加工するための手間や時間が必要になる。
 この発明は、製造の手間などを増加させずに加工品位を高めたダブルアングル型ツイストドリルを提供することを課題としている。
 上記の課題を解決するため、この発明においては、上述したダブルアングル型のツイストドリルを改善の対象にして、前記二次切れ刃を、ドリルの回転軸とほぼ平行にし、少なくともその二次切れ刃のすくい面をねじれ溝の溝面で構成した。なお、ここで言うほぼ平行とは、二次切れ刃のドリル側面視における回転軸とのずれ角が±5°程度までは許容される範囲を指す。ここで、「ねじれ溝の溝面で構成する」とは、特許文献2のようにすくい面10-1を別に形成するのではなく、一次切れ刃を形成するねじれ溝と同一の曲面で構成したことをいう。また、ドリル側面視とは、図3の状態において、二次切れ刃の外端(最外周に位置する点)E2とドリルの回転軸Oとの間の距離(芯高量H)が芯厚(図5のW参照)の半分の長さに等しくなった状態を指す。ねじれ溝のリーディングエッジに沿う位置の溝面をドリルの正転方向に対して凹形に湾曲させることで、その溝面と二番逃げの逃げ面とが交差した位置の稜線でドリル側面視における回転軸とのずれ角が、-5°~+5°程度になった二次切れ刃を構成することができる。
 このドリルは、ねじれ溝のねじれ角を10°~40°の範囲に設定してそのねじれ溝の溝面で二次切れ刃のすくい面を構成したものや、二次切れ刃の先端角α2を一次切れ刃の先端角α1よりも小さくし、その先端角α2を90°~20°の範囲に設定したものが好ましい。
 また、一次切れ刃の外端部の直径dをドリル径Dの70%以上にしたものも好ましく、さらに、前記ねじれ溝を、その溝の溝面が本体部の外周のマージン面に対して鋭角に交わる溝にするのも好ましい。
 この発明のドリルは、二次切れ刃の回転軸とのずれ角が±5°以内であるので、二次切れ刃の長さが短く、また、加工時に被削材に働く引き上げ力が小さく、被削材が強固な固定を行なえない薄板などである場合にも、ビビリを伴わない高品位の穴加工が可能である。
 また、このドリルは、二次切れ刃のすくい面がねじれ溝の溝面で構成されたものになって二次切れ刃のすくい角が小さくなることがない。ねじれ溝の形状次第では、二次切れ刃のすくい角が図8の従来ドリルよりもむしろ大きくなって良好な切れ味が確保される。これにより、繊維強化複合材の加工での毛羽立ちが抑制され、切削抵抗も小さくなる。
 さらに、平面のすくい面を加工する必要がないので、製造の手間や時間が増加しない。
この発明のドリルの実施の形態を示す側面図 図1のドリルの先端部の拡大側面図 図1のドリルの二次切れ刃の回転軸とのずれ角を示す拡大側面図 図1のドリルの拡大正面図 図2のX-Xに沿った部分の拡大断面図 二次切れ刃の刃物角を表す断面図 (a)平面のすくい面の設置による二次切れ刃内端の変位状況を示す図、(b)この発明のドリルの二次切れ刃とねじれ溝の溝面との関係を示す図 (a)一般的なダブルアングル型ツイストドリルの要部の側面図、(b)同上のドリルの二次切れ刃の回転軸とのずれ角を示す側面図、(c)同上のドリルの正面図 (a)平面のすくい面を設けたダブルアングル型ツイストドリルの要部の側面図、(b)同上のドリルの二次切れ刃の回転軸とのずれ角を示す側面図、(c)同上のドリルの正面図
 以下、この発明のドリルの実施の形態を添付図面の図1~図6に基づいて説明する。図1~図4に示すドリル(ダブルアングル型ツイストドリル)1は、2枚刃のツイストドリルにこの発明を適用したものである。図示のドリル1は、本体部2の後部にシャンク3を一体に連設したソリッドであるが、先ムクドリルや刃先部に硬質の被膜が形成された被覆ドリル、刃先部を硬質焼結体で形成したドリルなどもこの発明の適用対象に含まれる。また、刃数も2枚に限定されず、3枚刃や4枚刃のツイストドリルにも適用することができる。
 本体部2の先端には、回転中心(回転軸O)を基準にして点対称形状をなす切れ刃4、4と、各切れ刃に付属するシンニング溝5が設けられ、さらに、本体部2の外周に2条のねじれ溝6が設けられている。
 切れ刃4は、回転中心(回転軸O)から径方向外側に向けて途中まで延びだす一次切れ刃4aと、その一次切れ刃4aの外端から本体部2の外周に至る二次切れ刃4bの2者によって構成されている。二次切れ刃4bの先端角α2は、一次切れ刃4aの先端角α1よりも小さい。その二次切れ刃4bの先端角α2は、加工品位の面では小さいほどよいが、その先端角α2が小さくなるにつれて刃先摩耗が起こり易くなり、切れ刃の長さも長くなるので、先端角α2の上限は加工品位を確保するために90°、下限は刃先保護のために20°程度にするのがよい。
 また、二次切れ刃4bのドリル側面視における回転軸Oとのずれ角γ(図3参照)を-5°~+5°にし、さらに、少なくとも二次切れ刃4bのすくい面10がねじれ溝6の溝面で構成されるようにしている。図2~図4の7は一番逃げの逃げ面、8は二番逃げの逃げ面であり、前者の逃げ面7とねじれ溝6の溝面とが交差した位置の稜線によって一次切れ刃4aが、後者の逃げ面8とねじれ溝6の溝面とが交差した位置の稜線によって二次切れ刃4bがそれぞれ形成されている。
 ねじれ溝6は、図5に示すように、リーディングエッジ9に沿う部分の溝面がドリルの正転方向に対して凹形に湾曲して本体部2の外周のマージン面11に対して鋭角に交わる形状の溝にしてあり、そのために、ねじれ溝6の溝面に平面のすくい面を設けずに二次切れ刃4bの回転軸Oとのずれ角γを-5°~+5°にすることが可能になっている。この点に関して、従来ドリルとの相違をさらに説明する。
 図7(a)に、図9のドリルにおいて平面のすくい面10-1を設けたことによる二次切れ刃4bの径方向内端(一次切れ刃との接点)の変位状況を示す。ねじれ溝6の溝面に平面のすくい面10-1を設けると、二次切れ刃4bの内端が、図7(a)及び図9(b)のIの位置(平面のすくい面を設ける前の位置)からIIの位置に移動する。これによって二次切れ刃4bの上述した回転軸Oとのずれ角γを0°にすることが可能になるが、平面のすくい面10-1を設けると二次切れ刃4bのすくい角が必然的に小さくなるため、その切れ刃の切れ味が低下する。図9のドリルは、一次切れ刃4aの一部も、平面のすくい面10-1が設けられた部分ですくい角が小さくなって切れ味が低下する。
 これに対し、この発明のドリルは、図7(b)に示すように、二次切れ刃4bの回転軸とのずれ角γを例えば5°にし、この状態で二次切れ刃4bの全域がねじれ溝6の溝面と交差して二次切れ刃4bのすくい面10がねじれ溝6の溝面で構成されるようにしており{図7(b)のΔθは、二次切れ刃4bの内端E1から外端E2に至る間のねじれ溝6のねじれ量(回転角)を表す}、平面のすくい面は設置されていない。そのために、平面のすくい面を設けることによる二次切れ刃4bのすくい角の減少が起こらない。図6は二次切れ刃4bの刃物角βを表している。その刃物角βは、ねじれ溝6の凹形に湾曲した溝面ですくい面10を構成したことによって鋭くなり、二次切れ刃4bのすくい角が図8の従来ドリルよりも大きくなる。
 なお、ねじれ溝6のねじれ角θ(図2参照)が小さ過ぎると切れ刃のすくい角を大きく設定することが難しくなり、また、そのねじれ角θが大き過ぎると真のすくい角が大きくなって切れ刃の切れ味が高まる反面、刃先強度の低下が起こるので、ねじれ角θは、10°~40°程度にするのがよい。
 また、二次切れ刃4bの先端角α2は、繊維強化複合材の加工では、その角度が小さいほど補強繊維の毛羽立ちが少なくなる傾向があり、90°以下の角度であれば穴品位面で問題のない加工が行える。その一方で、この角度が小さ過ぎると切れ刃の外端側の摩耗が激しくなるので、先端角α2は、20°以上、90°以下にするのがよい。
 このほか、一次切れ刃4aの外端部の直径dをドリル径Dの70%以上にすると、二次切れ刃4bによる加工品位向上の効果を得ながら切れ刃長さが必要以上に長くなることを抑制することができる。
-実施例1-
 ダブルアングル型ドリルにおいて二次切れ刃の回転軸とのずれ角γが穴加工に及ぼす影響を調べた。この試験は、ドリル径D=φ10mm、一次切れ刃先端角120°、二次切れ刃先端角60°、一次切れ刃外端部の直径d=0.9Dで、二次切れ刃の前記ずれ角γを表1の通りに変化させたドリルを使用して行なった。
 被削材は板厚3mmのCFRPプレートである。切削条件は、切削速度Vc=100m/min、送りf=0.05mm/revとした。その結果を表1に併記する。
 なお、表1のビビリの欄の○はビビリ無し、△はビビリ若干あり、×はビビリ有りを表す。また、毛羽立ちの欄の○は、毛羽立ちが無くて加工穴の内面の品位良好、△は毛羽立ちが少なくて加工穴の内面の品位がやや良好、×は毛羽立ちがあって加工穴の内面の品位が悪いことを表す。
Figure JPOXMLDOC01-appb-T000001
 この試験では、二次切れ刃の前記ずれ角γが10°以上では加工時のビビリが確認され、-5°から+5°ではビビリの無い安定した加工がなされた。また、-10°では若干のビビリと毛羽立ちが確認された。
-実施例2-
 次に、ダブルアングル型ドリルにおける二次切れ刃の先端角α2の違いが加工品位と刃先摩耗に与える影響を調べた。この試験は、ドリル径D=φ6mm、一次切れ刃の先端角α1=140°、一次切れ刃外端部の直径d=0.83Dのドリルを使用して行なった。
 被削材は板厚10mmのCFRPプレートである。切削条件は、切削速度Vc=100m/min、送りf=0.05mm/revとした。その結果を表2に示す。
 表2の毛羽立ちの欄の○は、毛羽立ちが無くて加工穴の内面の品位良好、×は毛羽立ちがあって加工穴の内面の品位が悪いことを表す。また、刃先摩耗は、500穴加工時での評価であり、評価の欄の刃先摩耗量は最大逃げ面摩耗量(mm)を表す。
Figure JPOXMLDOC01-appb-T000002
 二次切れ刃の先端角α2は、90°以下で毛羽立ちが防止されている。この先端角α2は、試験では10°でも刃先摩耗が抑えられていたが、摩耗抑制の面では20°が下限の適正値と考える。
 なお、刃先摩耗を生じやすいCFRPなどの被削材の加工に利用するドリルでは、ダイヤモンド被膜などの硬質被膜を刃先部の表面に設けることや刃先部を硬質焼結体で形成することが、寿命向上の面で有効になる。
1      ドリル
2      本体部
3      シャンク
4      切れ刃
4a     一次切れ刃
4b     二次切れ刃
5      シンニング溝
6      ねじれ溝
7      一番逃げの逃げ面
8      二番逃げの逃げ面
9      リーディングエッジ
10,10-1 すくい面
11     マージン面
O      回転軸
E1     二次切れ刃の内端
E2     二次切れ刃の外端
γ      二次切れ刃のドリル側面視における回転軸とのずれ角
α1     一次切れ刃の先端角
α2     二次切れ刃の先端角
β      刃物角
θ      ねじれ溝のねじれ角
Δθ     二次切れ刃の内端から外端に至る間のねじれ溝のねじれ量
H      芯高量
W      芯厚

Claims (6)

  1.  切れ刃を、回転中心から径方向外側に向けて途中まで延びだす一次切れ刃(4a)と、その一次切れ刃(4a)の外端から本体部(2)の外周に至る二次切れ刃(4b)とで構成し、前記二次切れ刃(4b)の先端角(α2)と一次切れ刃(4a)の先端角(α1)を異ならせたダブルアングル型のツイストドリルであって、
     前記二次切れ刃(4b)がドリルの回転軸(O)とほぼ平行であり、少なくともその二次切れ刃(4b)のすくい面をねじれ溝(6)の溝面で構成したツイストドリル。
  2.  前記二次切れ刃(4b)のドリル側面視における回転軸(O)とのずれ角(γ)が、-5°~+5°の範囲にある請求項1に記載のツイストドリル。
  3.  前記ねじれ溝(6)のねじれ角(θ)を10°~40°の範囲に設定してそのねじれ溝(6)の溝面で前記二次切れ刃(4b)のすくい面を構成した請求項1又は2に記載のツイストドリル。
  4.  前記二次切れ刃(4b)の先端角(α2)を一次切れ刃(4a)の先端角(α1)よりも小さくし、その先端角(α2)を90°~20°の範囲に設定した請求項1~3のいずれかに記載のツイストドリル。
  5.  前記一次切れ刃(4a)の外端部の直径(d)をドリル径(D)の70%以上にした請求項1~4のいずれかに記載のツイストドリル。
  6.  前記ねじれ溝(6)を、その溝の溝面が本体部(2)の外周のマージン面(11)に対して鋭角に交わる溝にした請求項1~5のいずれかに記載のツイストドリル。
PCT/JP2009/058829 2008-05-15 2009-05-12 ツイストドリル WO2009139377A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09746583.5A EP2286945B1 (en) 2008-05-15 2009-05-12 Twist drill bit
CN2009801169279A CN102026754B (zh) 2008-05-15 2009-05-12 麻花钻
JP2010511981A JP5526361B2 (ja) 2008-05-15 2009-05-12 ツイストドリル
US12/992,181 US20110081215A1 (en) 2008-05-15 2009-05-12 Twist drill

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-128417 2008-05-15
JP2008128417 2008-05-15

Publications (1)

Publication Number Publication Date
WO2009139377A1 true WO2009139377A1 (ja) 2009-11-19

Family

ID=41318744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058829 WO2009139377A1 (ja) 2008-05-15 2009-05-12 ツイストドリル

Country Status (5)

Country Link
US (1) US20110081215A1 (ja)
EP (1) EP2286945B1 (ja)
JP (1) JP5526361B2 (ja)
CN (1) CN102026754B (ja)
WO (1) WO2009139377A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186251A (zh) * 2017-07-24 2017-09-22 江苏飞达钻头股份有限公司 一种双顶尖角分屑钻
JP2021151681A (ja) * 2020-03-24 2021-09-30 三菱マテリアル株式会社 ドリル

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040178B4 (de) * 2007-08-25 2011-06-22 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG, 73431 Bohrer
DE102008023856A1 (de) * 2008-05-16 2009-11-19 Gühring Ohg Mehrschneidiges Vollhartmetall-Bohrwerkzeug
US9539652B2 (en) * 2010-04-30 2017-01-10 Kennametal Inc. Rotary cutting tool having PCD cutting tip
ITTO20100839A1 (it) * 2010-10-15 2012-04-16 Utensileria Navone S N C Di Navone Giovanni & C Punta per utensile di foratura.
SE536296C2 (sv) * 2011-02-08 2013-08-06 Sandvik Intellectual Property Borr med spånkanaler utformade för förbättrad spånevakuering
US9505064B2 (en) 2011-11-16 2016-11-29 Kennametal Inc. Cutting tool having at least partially molded body and method of making same
CN102601438A (zh) * 2012-04-09 2012-07-25 合肥波林新材料有限公司 二刃通槽专用立铣刀
WO2013179417A1 (ja) * 2012-05-30 2013-12-05 オーエスジー株式会社 3枚刃ドリル
JP6268809B2 (ja) * 2013-08-22 2018-01-31 三菱マテリアル株式会社 ドリル
IL232079B (en) * 2014-04-10 2018-05-31 Hanita Metal Works Ltd A cutting tool with improved chip removal capability and a method for its preparation
EP3175943A4 (en) * 2014-07-29 2018-03-14 KYOCERA Corporation Drill and method of manufacturing cut product using same
JP6428406B2 (ja) * 2015-03-18 2018-11-28 三菱マテリアル株式会社 ドリル
CN107520487A (zh) * 2016-06-20 2017-12-29 江苏天工工具有限公司 钻锪一体匕首钻
CN111448334B (zh) * 2017-11-29 2022-10-04 欧瑞康表面处理解决方案股份公司普费菲孔 用于双头刀具的涂覆的夹具
CN108057918A (zh) * 2017-12-29 2018-05-22 广东工业大学 一种pcb微型钻头
WO2019244106A1 (en) * 2018-06-22 2019-12-26 Maestro Logistics, Llc A drill bit and method for making a drill bit
CN108580982A (zh) * 2018-06-28 2018-09-28 苏州大学 一种微织构内冷麻花钻及其制造方法
USD878437S1 (en) * 2018-08-06 2020-03-17 Peter L. Bono Helical fluted forward and reverse rotation cutting tool
USD878438S1 (en) * 2018-08-06 2020-03-17 Peter L. Bono Helical fluted forward and reverse rotation cutting tool
JP1622531S (ja) * 2018-08-07 2019-01-21
DE102020204035A1 (de) 2020-03-27 2021-09-30 Kennametal Inc. Bohrer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306812A (ja) 1987-06-05 1988-12-14 Fuji Heavy Ind Ltd 複合材穿孔用ドリル
JPH0675612U (ja) 1993-04-06 1994-10-25 富士重工業株式会社 ダブルアングルドリル
JPH0871824A (ja) * 1994-09-12 1996-03-19 O S G Kk 複合材料加工用ドリル
JPH09277109A (ja) 1996-04-11 1997-10-28 Nachi Fujikoshi Corp ツイストドリル
JP2001328016A (ja) * 2000-05-19 2001-11-27 Hitachi Tool Engineering Ltd ツイスト用ドリル
JP2005153023A (ja) * 2002-09-05 2005-06-16 Hitachi Tool Engineering Ltd 深穴加工用ドリル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160009A (ja) * 1982-03-19 1983-09-22 Toshiaki Hosoi ドリル
US6126367A (en) * 1998-03-31 2000-10-03 Reed; Gary Jack Precision drill bit
JP2000198011A (ja) * 1998-10-27 2000-07-18 Nachi Fujikoshi Corp ツイストドリル
JP2001341022A (ja) * 2000-03-31 2001-12-11 Hitachi Tool Engineering Ltd 高硬度材穴あけ用ドリル
CN100417479C (zh) * 2004-03-17 2008-09-10 钴碳化钨硬质合金公司 麻花钻
DE102004026198A1 (de) * 2004-05-28 2005-12-22 Kästner Präzisionswerkzeuge GmbH Einschneidiges Bohrwerkzeug
JP4746969B2 (ja) * 2005-11-24 2011-08-10 Next I&D株式会社 ツイストドリル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306812A (ja) 1987-06-05 1988-12-14 Fuji Heavy Ind Ltd 複合材穿孔用ドリル
JPH0675612U (ja) 1993-04-06 1994-10-25 富士重工業株式会社 ダブルアングルドリル
JPH0871824A (ja) * 1994-09-12 1996-03-19 O S G Kk 複合材料加工用ドリル
JPH09277109A (ja) 1996-04-11 1997-10-28 Nachi Fujikoshi Corp ツイストドリル
JP2001328016A (ja) * 2000-05-19 2001-11-27 Hitachi Tool Engineering Ltd ツイスト用ドリル
JP2005153023A (ja) * 2002-09-05 2005-06-16 Hitachi Tool Engineering Ltd 深穴加工用ドリル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186251A (zh) * 2017-07-24 2017-09-22 江苏飞达钻头股份有限公司 一种双顶尖角分屑钻
CN107186251B (zh) * 2017-07-24 2023-09-05 江苏飞达钻头股份有限公司 一种双顶尖角分屑钻
JP2021151681A (ja) * 2020-03-24 2021-09-30 三菱マテリアル株式会社 ドリル

Also Published As

Publication number Publication date
US20110081215A1 (en) 2011-04-07
JPWO2009139377A1 (ja) 2011-09-22
EP2286945A4 (en) 2017-05-17
CN102026754A (zh) 2011-04-20
JP5526361B2 (ja) 2014-06-18
EP2286945B1 (en) 2018-08-29
EP2286945A1 (en) 2011-02-23
CN102026754B (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2009139377A1 (ja) ツイストドリル
JP5945283B2 (ja) ドリル
WO2009122937A1 (ja) エンドミル
DE112009002613B4 (de) Kugelkopffräser
US9511424B2 (en) Drill
RU2422252C1 (ru) Концевая фреза для орбитального сверления материалов из армированной волокном пластмассы
JP5762547B2 (ja) ドリル
JP5816364B2 (ja) 3枚刃ドリル
KR101514474B1 (ko) 드릴
WO2012141194A1 (ja) ドリル
US20020044843A1 (en) Hole forming tool
WO2018221737A1 (ja) 回転工具
WO2019044791A1 (ja) テーパーリーマ
WO2010086988A1 (ja) ダブルアングルドリル
WO2018180775A1 (ja) 回転工具
WO2018003684A1 (ja) 切削インサート及び刃先交換式回転切削工具
WO2014188603A1 (ja) ねじ切削用タップ
JP4561054B2 (ja) ボールエンドミル
WO2012053090A1 (ja) 3枚刃ドリル
JP4053295B2 (ja) 穴明け工具
WO2010050390A1 (ja) ボールエンドミル
WO2022158514A1 (ja) 回転工具及び切削加工物の製造方法
CN210548318U (zh) 一种变径阶梯钻
WO2022113359A1 (ja) エンドミル
US20240001463A1 (en) End mill

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116927.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746583

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511981

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009746583

Country of ref document: EP