WO2009122937A1 - エンドミル - Google Patents

エンドミル Download PDF

Info

Publication number
WO2009122937A1
WO2009122937A1 PCT/JP2009/055612 JP2009055612W WO2009122937A1 WO 2009122937 A1 WO2009122937 A1 WO 2009122937A1 JP 2009055612 W JP2009055612 W JP 2009055612W WO 2009122937 A1 WO2009122937 A1 WO 2009122937A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting edge
cutting
end mill
tool
blade
Prior art date
Application number
PCT/JP2009/055612
Other languages
English (en)
French (fr)
Inventor
久雄 岡
達也 志野
一勇 前田
Original Assignee
住友電工ハ-ドメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41135319&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009122937(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友電工ハ-ドメタル株式会社 filed Critical 住友電工ハ-ドメタル株式会社
Priority to DE112009000013.4T priority Critical patent/DE112009000013C5/de
Priority to US12/665,193 priority patent/US8562261B2/en
Priority to JP2009537344A priority patent/JPWO2009122937A1/ja
Publication of WO2009122937A1 publication Critical patent/WO2009122937A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • B23C2210/0492Helix angles different
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/088Cutting edges with a wave form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/54Configuration of the cutting part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/27Composites, e.g. fibre reinforced composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1946Face or end mill
    • Y10T407/1948Face or end mill with cutting edge entirely across end of tool [e.g., router bit, end mill, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1952Having peripherally spaced teeth
    • Y10T407/196Varying in cutting edge profile
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1952Having peripherally spaced teeth
    • Y10T407/1962Specified tooth shape or spacing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1952Having peripherally spaced teeth
    • Y10T407/1962Specified tooth shape or spacing
    • Y10T407/1964Arcuate cutting edge
    • Y10T407/1966Helical tooth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/89Tool or Tool with support
    • Y10T408/909Having peripherally spaced cutting edges

Definitions

  • This invention relates to an end mill used for cutting, grooving, thrusting, etc. of fiber reinforced composite materials and metal materials typified by fiber reinforced plastics.
  • CFRP carbon fiber reinforced composite materials using carbon fibers
  • This CFRP is made by laminating and integrating a carbon fiber woven fabric or a prepreg obtained by impregnating carbon fiber in a unidirectionally oriented material. Since it becomes an unstable region, a method is adopted in which a member in which that portion is expected as a margin is prepared in advance, and the margin is cut off after the resin is cured and molded.
  • the cutting of the margin at this time is known by a water jet method and an end mill method.
  • the latter method using an end mill does not require large-scale equipment, can be used with an existing processing machine, and has the advantage of being able to cut out and cut off margins without a pilot hole, but has a problem with the end mill life.
  • CFRP is a material that tends to generate burrs. Even when it is determined that there is no level, burrs are generated, and at that time, the tool (end mill) is determined to have a lifetime. Therefore, even if the end mill is coated with a film having a high hardness, the life is shortened by the CFRP processing.
  • CFRPs used for aircraft fuselage, blades, etc. are large in size, and the large-size workpieces are limited in fixing points at the time of processing, and the fixing tends to be unstable. For this reason, so-called work chatter during processing occurs, and the tool edge is damaged due to this. This also deteriorates the tool life, and the short tool life results in increased machining costs.
  • Patent Document 1 in order to suppress the occurrence of burrs in the processing of the fiber reinforced composite material, a tip is attached to the tip of the shank, and a right-twisted cutting blade and a left-twisted cutting blade are configured with the tip, A rotary cutting tool in which right-handed and left-twisted cutting edges are alternately arranged in the circumferential direction is disclosed.
  • JP 61-142009 JP 61-142009
  • the rotary cutting tool disclosed in Patent Document 1 is arranged by stepping the right-handed and left-handed cutting edges in the axial direction, and cutting the upper part and the lower part of the work area with both of the cutting edges. In this way, the cutting force in the upper part and the lower part of the work area are both directed toward the center of the plate thickness of the workpiece, and the generation of burrs is suppressed.
  • this tool cuts the upper part and the lower part of the work area separately with the right-handed and left-handed cutting edges, it cannot be said that the burr is sufficiently suppressed.
  • the object of the present invention is to effectively suppress the generation of burrs in processing using an end mill.
  • the first cutting edge twisted in the direction in which the twist angle becomes positive and the second cutting edge twisted in the direction in which the twist angle becomes negative are positioned in the circumferential direction.
  • each of the first cutting edge and the second cutting edge is configured as a continuous cutting edge between effective blade lengths, and further, the tool rotation direction from the first cutting edge at the tool tip.
  • the phase angle from the second cutting edge to the rear and the phase angle from the second cutting edge to the first cutting edge at the rear in the tool rotation direction were varied.
  • the first cutting edge and the second cutting edge may be alternately arranged in the circumferential direction, and the arrangement of the two cutting edges may be, for example, a first cutting edge-second cutting edge-second cutting edge.
  • the blade-first cutting blade may be irregular.
  • the phase angle from the first cutting edge at the tool tip to the second cutting edge behind the tool rotation direction is larger than the phase angle from the second cutting edge to the first cutting edge behind the tool rotation direction Largely set.
  • the twist angle of the first cutting edge is set larger than the twist angle of the second cutting edge.
  • the twist angle of the first cutting edge is set to +3 to + 10 °, and the twist angle of the second cutting edge is set to -3 to -10 °.
  • At least one blade of the first cutting blade is provided with a bottom blade that extends from the outermost diameter of the end mill to a position beyond the rotation center of the tool.
  • the first cutting edge, the second cutting edge or both are provided with a nick groove.
  • the end mill of the present invention includes a phase angle from the first cutting edge to the second cutting edge behind the tool rotation direction, and a phase angle from the second cutting edge to the first cutting edge behind the tool rotation direction (whichever Since the phase angle at the tool tip is also different, the first cutting edge and the second cutting edge whose twist directions are opposite to each other must be configured as a continuous cutting edge between effective blade lengths. Can do. By making the first cutting edge and the second cutting edge a continuous cutting edge, cutting progresses smoothly, intermittent biting of the cutting edge is prevented, and burrs are less likely to occur.
  • the first cutting edge having a positive helix angle is mainly responsible for cutting. However, if cutting is performed with a positive helix angle, it is difficult to sufficiently reduce the generation of burrs.
  • burrs are likely to occur on the upper surface side of the work where a cutting force opposite to the direction toward the thickness center of the work works.
  • burrs are generated by cutting with a cutting edge with a positive helix angle
  • the burrs generated by the subsequent complementary cutting with a cutting edge with a negative helix angle are cut off. Is obtained, and high-quality processing becomes possible.
  • the axial cutting forces by the cutting edges having positive and negative helix angles are opposite to each other and cancel each other.
  • the phase angle from the first cutting edge to the second cutting edge behind the tool rotation direction is different from the phase angle from the second cutting edge to the first cutting edge behind the tool rotation direction.
  • the phase angle at the tool tip from the first cutting edge to the second cutting edge behind the tool rotation direction is set larger than the phase angle from the second cutting edge to the first cutting edge behind the tool rotation direction.
  • the end mill can take a larger amount of the back metal of the first cutting edge portion than that which does not satisfy the condition, and it is easy to ensure the strength of the cutting edge.
  • the phase angle from the first cutting edge to the second cutting edge rearward in the tool rotation direction becomes gradually narrower toward the rear end side (side closer to the shank) of the cutting edge.
  • the distance between the first and second cutting edges is widened on the front end side, and the distance between the cutting edges also increases on the rear end side, so the back metal amount of the first cutting edge is insufficient on the rear end side of the cutting edge. It can be secured without.
  • the twist angle of the first cutting edge is set larger than the twist angle of the second cutting edge, the back metal amount of the first cutting edge is reduced by increasing the twist angle of the first cutting edge.
  • the twist angle of the second cutting edge it can be compensated, and the sharpness of the first cutting edge can be enhanced while maintaining the strength of the edge of the first cutting edge.
  • a tool having a bottom blade beyond the rotation center of the tool can perform grooving and plunging.
  • the first cutting edge and the second cutting edge are alternately formed in the circumferential direction, complementation for cutting with a cutting edge with a positive helix angle and deburring with a cutting edge with a negative helix angle.
  • cutting is preferably performed alternately, the object of the invention can be achieved even if cutting edges twisted in the same direction are continuously arranged in the circumferential direction.
  • the end mill of this invention is used for the processing of a metal material, the above-described effect can be obtained.
  • the end mill is applied to the processing of a fiber reinforced composite material, a particularly remarkable effect can be obtained.
  • the nick groove in the 1st cutting edge and the 2nd cutting edge can reduce the cutting resistance at the time of a process.
  • the end mill of the present invention is set to have a smaller twist angle of the cutting edge than a general end mill, but this structure also has the effect of suppressing burrs by providing a nick groove on the cutting edge to reduce cutting resistance. Can be increased.
  • the nick groove is either the first cutting edge or the second cutting edge, preferably the first cutting edge having a positive helix angle and a large cutting load. It is preferable to provide a nick groove on the blade.
  • FIG. 1st Embodiment of the end mill of this invention Bottom view of the end mill in FIG. Front view of the end mill in FIG. Side view of the end mill in FIG. Sectional view along line XX in FIG.
  • the perspective view which shows 2nd Embodiment of the end mill of this invention Bottom view of the end mill of FIG. Front view of the end mill of FIG. Side view of the end mill of FIG. Sectional view along line yy in FIG.
  • FIG. A Perspective view showing main part of third embodiment of end mill of this invention, (b) Front view of end mill same as above, (c) Side view of first end blade of end mill same as above, (D) Side view of the second end of the end mill as seen from the front
  • A The perspective view which shows the principal part of the modified example of 3rd Embodiment of the end mill of this invention, (b) The front view of an end mill same as the above, (c) The 1st cutting edge of the end mill same as the above was seen in this side Side view, (d) Side view of second end blade of end mill same as above Explanatory drawing of the cutting process by the end mill of this invention
  • FIGS. 1 to 13 show a third embodiment in which the present invention is applied to a solid type four-blade end mill.
  • the end mill of the present invention can be basically formed even with an end mill having two or more blades, but it is advantageous to have a large number of blades in terms of high efficiency machining and tool life.
  • an end mill having a diameter of approximately 6 mm to 12 mm that is commonly used it is considered that the upper limit of the number of blades is limited to approximately 6 mm from the viewpoint of securing the strength of the cutting edge.
  • end mills 1 are composed of a main body part 2 and a shank part 3 integrally connected to the rear of the main body part 2.
  • the first cutting edge 4 having a positive twist angle ⁇ 1 ⁇ see FIGS. 4, 9, 11 (c) and 12 (c) ⁇ on the outer periphery of the main body 2 and a negative twist angle.
  • Second cutting edges 5 having ⁇ 2 ⁇ see FIG. 3, FIG. 8, FIG. 11 (d), FIG. 12 (d) ⁇ are alternately formed in the circumferential direction, and a bottom edge 6 is formed at the tip of the main body 2. Is formed.
  • the twist angle of the first cutting edge 4 (which is the same as the twist angle ⁇ 1) is set larger than the twist angle of the second cutting edge 5 (which is the same as the twist angle ⁇ 2).
  • Each of the illustrated end mills 1 has a first cutting edge 4 twisted to the right and a second cutting edge 5 twisted to the left, and these cutting edges 4, 5 have an effective blade length L (third embodiment). (It is not shown in the figure. This is set to about twice the diameter D of the end mill). Further, a phase angle P1 from the first cutting edge 4 to the second cutting edge 5 at the rear of the tool rotation direction ⁇ see FIG. 2, FIG. 7, FIG. 11 (b), FIG. The phase angle P2 at the tool tip from the cutting edge 5 to the first cutting edge 4 is made different.
  • the phase angles P1 and P2 are phase angles at the tool tip, and here, the relationship of P1> P2 is established.
  • the bottom blade 6 is made into the 1st cutting blade.
  • the bottom blade 6 is provided as an arbitrary one.
  • the first cutting edge 4 is provided so as to extend from the tip of the first cutting edge 4 to a position exceeding the rotation center O of the tool.
  • the end mill of the third embodiment has a nick groove 12 on the cutting edge.
  • a large number of the nick grooves 12 are provided at a constant pitch in the longitudinal direction of the cutting edge. Chips are finely divided by the action of the nick grooves 12 to reduce the cutting resistance during processing.
  • the nick grooves 12 are provided on both the first cutting edge 4 and the second cutting edge 5, a greater effect can be expected in reducing cutting resistance during processing.
  • the first cutting edge 4 By providing the nick groove 12 only in one of the second cutting edge 5, it is possible to improve the surface roughness in the side processing by utilizing the Sarae effect by the cutting edge without the nick groove.
  • the nick groove 12 has a greater cutting load on the first cutting edge 4 with a positive helix angle than the second cutting edge 5 with a negative helix angle and is more likely to induce chatter.
  • the second cutting edge 5 has a small cutting load and is appropriately rich as a Sarae blade. Therefore, it is preferable to provide the first cutting edge 4 on the first cutting edge 4 as shown in FIG.
  • the end mills of the first, second, and third embodiments both process the same region of the workpiece with the first cutting edge 4 and the second cutting edge 5.
  • the role of each cutting edge at this time is that the right-twisted first cutting edge 4 is mainly responsible for cutting, and the left-twisted second cutting edge 5 performs complementary cutting for burr removal. Since the first cutting edge 4 has a positive twist angle, the edge (point A in the figure) of the upper surface of the workpiece (fiber reinforced composite material) 10 shown in FIG. 13 is separated from the thickness center of the workpiece. An upward cutting force is exerted in the direction, that is, in the figure. Therefore, in particular, burrs 11 are likely to be generated at the point A by cutting with the first cutting edge 4.
  • the burr 11 is also generated at the edge (point B in the figure) of the lower surface of the workpiece 10, and the burr 11 is cut by the second cutting edge 5 on which the cutting force works toward the plate thickness center side of the workpiece 10. .
  • the cutting with the first cutting edge 4 and the subsequent removal of the burrs with the second cutting edge 5 are repeated to perform cutting with less generation of burrs, thereby enabling high-quality processing.
  • the end mill according to the present invention has the phase angle P1 from the first cutting edge 4 to the second cutting edge 5 behind the tool rotation direction and the first cutting edge 5 behind the first cutting edge 5 in the tool rotation direction.
  • the phase angle P2 up to the cutting edge 4 different, the first cutting edge 4 twisted in the opposite direction and the second cutting edge 5 are configured as a continuous cutting edge between the effective cutting lengths without crossing them.
  • the continuous cutting edge cutting proceeds smoothly.
  • the axial cutting forces in the opposite directions by the first and second cutting edges 4 and 5 are generated and cancel each other.
  • the phase angle P1 from the first cutting edge 4 to the second cutting edge behind the tool rotation direction and the phase from the second cutting edge 5 to the first cutting edge 4 behind the tool rotation direction are generated and cancel each other.
  • the cutting cycle by the two cutting edges 4 and 5 becomes different, and the chatter during processing is suppressed by these synergistic effects, and the chipping of the tool edge due to the chatter, coating film peeling, etc. And the effect of improving the tool life is further enhanced.
  • the back metal amount in the rearward direction of rotation of the first cutting edge 4 is made larger than that which does not satisfy the condition.
  • the edge strength of the first cutting edge 4 can be ensured without deficiency even at the rear end side of the first cutting edge where the distance from the second cutting edge 5 becomes narrow.
  • the twist angle of the first cutting edge 4 is set to be larger than the twist angle of the second cutting edge 5, and the first cutting edge 4 of the first cutting edge 4 is increased by increasing the twisting angle of the first cutting edge 4. Decreasing the amount of back metal can be compensated for by reducing the twist angle of the second cutting edge 5 and increasing the sharpness of the first cutting edge 4 while maintaining the cutting edge strength of the first cutting edge 4. Can do.
  • the twist angle of the first cutting edge 4 was 3 to 10 °.
  • the twist angle is 3 ° or less, since the first cutting edge 4 and the second cutting edge 5 approach the straight cutting edge, an impact is generated when the cutting edge bites against the workpiece, and the effect of suppressing the generation of burrs is small.
  • the twist angle may be 10 ° or more in terms of cutting performance, but since the force to lift the workpiece strongly acts as the twist angle of the cutting edge increases, the upper limit of the preferable numerical value is 10
  • the upper limit of the twist angle is preferably 15 ° or less.
  • the bottom blade 6 is not an indispensable element for trimming the margin of the workpiece. However, if the bottom blade 6 extends to a position where the inner end exceeds the rotation center of the tool, grooving and thrusting can be performed. As a result, the use of end mills is expanded.
  • a four-flute end mill in which the twist angle ⁇ 1 of the first cutting edge is set to 5 ° and the twist angle ⁇ 2 of the second cutting edge is set to ⁇ 4 °
  • 6-blade end mills both invented with a diameter of 12 mm and an effective blade length of 25 mm
  • Conventional products are arranged by stepping in the axial direction a 4-blade and 6-blade end mill with general shapes with twist angles of 0 ° and 30 °, and right-handed and left-handed cutting blades.
  • a four-blade end mill in which the upper part and the lower part of the work area were divided and cut with a blade was used.
  • P1 P2
  • the first cutting edge and the second cutting edge are too close to each other on the end side, and the back metal amount of the first edge is sufficient on the end side. Although this cannot be ensured, the above arrangement did not cause the problem.

Abstract

 エンドミルを用いた繊維強化複合材などの切削加工において、バリの発生を効果的に抑制することを課題としている。ねじれ角が正となる方向にねじれた第1の切れ刃4と、ねじれ角が負となる方向にねじれた第2の切れ刃5を周方向に位置をずらして形成したエンドミルであり、第1の切れ刃4と第2の切れ刃5の各々を、有効刃長間で連続した切れ刃として構成し、工具先端における第1の切れ刃4から工具回転方向後方の第2の切れ刃5までの位相角P1と、第2の切れ刃5から工具回転方向後方の第1の切れ刃4までの位相角P2を異ならせた。

Description

エンドミル
 この発明は、繊維強化プラスチックスに代表される繊維強化複合材や金属材などの切断や溝加工、突っ込み加工などに利用するエンドミルに関する。
 繊維強化複合材、特に、炭素繊維を使用した炭素繊維強化複合材(以下CFRPと言う)は、構造体の軽量化に有効な材料であり、軽量化による燃費改善を期待して航空機や自動車などでの需要が旺盛になってきている。このCFRPは、炭素繊維の織布や炭素繊維を一方向に配向した材料に樹脂を含浸させて得られるプリプレグを積層一体化して作られるが、CFRPパネルなどは、製法上、外周縁部が品質不安定領域となることから、その部分を予め余縁として見込んだ部材を作製し、樹脂の硬化成形後に余縁を切除して製品化する方法が採られている。
 このときの余縁の切断は、ウォータジェットによる方法とエンドミルによる方法が知られている。エンドミルを使用する後者の方法は、大掛かりな設備が不要、既存の加工機を使用可能、余縁の切り抜き切断を下孔無しで行えると言った利点がある反面、エンドミルの寿命が問題となる。
 寿命対策として硬度の高い膜(例えば、ダイヤモンド膜)を表面にコーティングしたエンドミルが採用されているが、CFRPはいわゆるバリの発生しやすい材料であるため、切れ刃の摩耗量が金属加工では問題のないレベルと判断される場合にもバリが発生し、その時点で工具(エンドミル)は寿命と判定される。従って、硬度の高い膜をコーティングしたエンドミルであっても、CFRPの加工では寿命が短くなる。
 また、航空機の胴体や羽根などに利用するCFRPはサイズの大きなものが多く、その大サイズワークは加工時の固定箇所が限定されて固定が不安定になり易い。そのために、加工中のいわゆるワークビビリが発生し、それに起因した工具刃先の損傷が起こる。このことも工具寿命を悪化させ、工具の短寿命が加工コストを高める結果を招いている。
 ここで、下記特許文献1は、繊維強化複合材の加工においてバリの発生を抑えるために、シャンク先端にチップを装着してそのチップで右ねじれの切れ刃と左ねじれの切れ刃を構成し、その右ねじれと左ねじれの切れ刃を周方向に交互に配置した回転切削工具を開示している。
特開昭61-142009号公報
 特許文献1が開示している回転切削工具は、右ねじれと左ねじれの切れ刃を軸方向にステップさせて配置して双方の切れ刃で被削域の上側部分と下側部分を分担切削するようにしており、被削域の上側部分と下側部分における切削力が共にワークの板厚中心方向を向いてバリの発生が抑制されるものになっている。しかしながら、この工具は、右ねじれの切れ刃と左ねじれの切れ刃で被削域の上側部分と下側部分を別々に切削するので、バリの抑制が十分とは言えなかった。
 この発明は、エンドミルを用いた加工において、バリの発生を効果的に抑えることを課題としている。
 上記の課題を解決するため、この発明においては、ねじれ角が正となる方向にねじれた第1の切れ刃と、ねじれ角が負となる方向にねじれた第2の切れ刃を周方向に位置をずらして形成したエンドミルにおいて、前記第1の切れ刃と第2の切れ刃の各々を有効刃長間で連続した切れ刃として構成し、さらに、工具先端における第1の切れ刃から工具回転方向後方の第2の切れ刃までの位相角と、第2の切れ刃から工具回転方向後方の第1の切れ刃までの位相角を異ならせた。第1の切れ刃と第2の切れ刃は、周方向に交互に配置してもよいし、両切れ刃の配列を、例えば、第1の切れ刃-第2の切れ刃-第2の切れ刃-第1の切れ刃という具合に変則的にしても構わない。
 このエンドミルの好ましい形態を以下に列挙する。
(1)工具先端における第1の切れ刃から工具回転方向後方の第2の切れ刃までの位相角を、第2の切れ刃から工具回転方向後方の第1の切れ刃までの位相角よりも大きく設定したもの。
(2)第1の切れ刃のねじれ角を第2の切れ刃のねじれ角よりも大きく設定したもの。
(3)第1の切れ刃のねじれ角を+3~+10°に設定し、第2の切れ刃のねじれ角を-3~-10°に設定したもの。
(4)第1の切れ刃の少なくとも1刃が、エンドミルの最外径から工具の回転中心を越えた位置まで延び出す底刃を備えさせたもの。
(5)第1の切れ刃、第2の切れ刃或はその両方にニック溝を備えさせたもの。
 この発明のエンドミルは、第1の切れ刃から工具回転方向後方の第2の切れ刃までの位相角と、第2の切れ刃から工具回転方向後方の第1の切れ刃までの位相角(いずれも工具先端における位相角)を異ならせたので、ねじれ方向が逆になっている第1の切れ刃と第2の切れ刃をクロスさせずに有効刃長間で連続した切れ刃として構成することができる。その第1の切れ刃と第2の切れ刃を連続した切れ刃にすることで切削が滑らかに進行し、切れ刃の断続的な喰いつきが防止されてバリが発生し難くなる。また、正のねじれ角を有する第1の切れ刃が主として切削を担当するが、ねじれ角が正の切れ刃で切削を行なうとバリの発生を十分に減少させることが難しい。特に、ワークの板厚中心に向う方向とは反対向きの切削力が働くワークの上面側でバリが発生し易い。しかし、ねじれ角が正の切れ刃による切削でバリが仮に発生したとしても、後続のねじれ角が負の切れ刃による補完切削がなされて発生したバリが切り取られ、これにより、バリの少ない切断面が得られ、高品位加工が可能になる。
 また、ねじれ角が正、負の切れ刃による軸方向切削力が相反する方向を向いて互いに打ち消し合う。これに加えて、第1の切れ刃から工具回転方向後方の第2の切れ刃までの位相角と、第2の切れ刃から工具回転方向後方の第1の切れ刃までの位相角を異ならせたことで両切れ刃による切削周期が異なったものになるため、加工中のビビリが起こり難く、ビビリに起因した工具刃先のチッピングなどが抑制され、これによる工具寿命の向上効果も得られる。
 このような効果は、ワーク固定が不安定になりやすい場合、例えば、大サイズのワークを加工する場合などに特に顕著である。
 なお、第1の切れ刃から工具回転方向後方の第2の切れ刃までの工具先端における位相角を第2の切れ刃から工具回転方向後方の第1の切れ刃までの位相角よりも大きく設定したエンドミルは、その条件を満たしていないものに比べて第1の切れ刃部のバックメタル量を大きくとることができ、刃先強度の確保が容易となる。第1の切れ刃から工具回転方向後方の第2の切れ刃までの位相角は、切れ刃の後端側(シャンクに近い側)に行くに従って次第に狭くなるが、この発明の上記の構成によれば、第1、第2切れ刃間の間隔を先端側で広げた分、後端側でも切れ刃間間隔が広がるため、第1の切れ刃のバックメタル量を切れ刃の後端側でも不足なく確保することができる。
 第1の切れ刃のねじれ角を第2の切れ刃のねじれ角よりも大きく設定したものは、第1の切れ刃のねじれ角を大きくすることによる第1の切れ刃のバックメタル量の減少を、第2の切れ刃のねじれ角を小さくすることによって補うことができ、第1の切れ刃の刃先強度を維持しながらその第1の切れ刃の切れ味を高めることができる。
 このほか、工具の回転中心を越えた底刃を有するものは、溝加工や突っ込み加工が行える。なお、第1の切れ刃と第2の切れ刃は、周方向に交互に形成されていると正のねじれ角の切れ刃による切削と、負のねじれ角の切れ刃によるバリ取りのための補完切削が交互になされて好ましいが、同一向きにねじれた切れ刃が周方向に連続して配置されていても発明の目的は達成される。
 なお、この発明のエンドミルを金属材の加工に使用した場合も上述した効果が得られるが、繊維強化複合材の加工に適用した場合に特に顕著な効果を得ることができる。
 また、第1の切れ刃や第2の切れ刃にニック溝を設けたものは、加工時の切削抵抗を低減することができる。この発明のエンドミルは、一般的なエンドミルに比べて切れ刃のねじれ角が小さく設定されているが、この構造でも、切れ刃にニック溝を設けて切削抵抗を低減することでバリを抑制する効果を高めることができる。そのニック溝は、側面加工での面粗さを考慮する場合は、第1の切れ刃と第2の切れ刃のいずれか一方、好ましくは、ねじれ角が正で切削負担が大きい第1の切れ刃にニック溝を設けるとよい。
この発明のエンドミルの第1実施形態を示す斜視図 図1のエンドミルの底面図 図1のエンドミルの正面図 図1のエンドミルの側面図 図3のX-X線に沿った断面図 この発明のエンドミルの第2実施形態を示す斜視図 図6のエンドミルの底面図 図6のエンドミルの正面図 図6のエンドミルの側面図 図8のy-y線に沿った断面図 (a)この発明のエンドミルの第3実施形態の要部を示す斜視図、(b)同上のエンドミルの正面図、(c)同上のエンドミルの第1の切れ刃を手前に見た側面図、(d)同上のエンドミルの第2の切れ刃を手前に見た側面図 (a)この発明のエンドミルの第3実施形態の変形例の要部を示す斜視図、(b)同上のエンドミルの正面図、(c)同上のエンドミルの第1の切れ刃を手前に見た側面図、(d)同上のエンドミルの第2の切れ刃を手前に見た側面図 この発明のエンドミルによる切削プロセスの説明図
符号の説明
1     エンドミル
2     本体部
3     シャンク部
4     第1の切れ刃
5     第2の切れ刃
6     底刃
7     第1逃げ面
8     第2逃げ面
9     ねじれ溝
10    ワーク
11    バリ
12    ニック溝
P1    第1の切れ刃から工具回転方向後方の第2の切れ刃までの位相角
P2    第2の切れ刃から工具回転方向後方の第1の切れ刃までの位相角
A     ワークの上縁
B     ワークの下縁
θ1    第1切れ刃のねじれ角
θ2    第2切れ刃のねじれ角
L     有効刃長
 以下、添付図面の図1~図13に基づいて、この発明のエンドミルの実施の形態を説明する。図1~図5に示す第1の実施形態は、ソリッドタイプの4枚刃のエンドミルにこの発明を適用したもの、図6~図10に示す第2の実施形態は、ソリッドタイプの6枚刃のエンドミルにこの発明を適用したものである。また、図11、図12は、第3の実施形態であって、ソリッドタイプの4枚刃のエンドミルにこの発明を適用したものである。
 この発明のエンドミルは、基本的には2枚刃以上の刃数を有するエンドミルでも成立するが、高能率加工や工具寿命の面では刃数が多いものが有利である。通常多用されている直径がφ6mm~12mm程度のエンドミルの場合、切れ刃の強度確保の面から、刃数の上限はφ6mm程度に制限されると思われる。
 これらのエンドミル1は、本体部2と、その本体部2の後方に一体に連なるシャンク部3とで構成されている。両エンドミルとも、本体部2の外周に、正のねじれ角θ1{図4、図9、図11(c)、図12(c)参照}を有する第1の切れ刃4と、負のねじれ角θ2{図3、図8、図11(d)、図12(d)参照}を有する第2の切れ刃5が周方向に交互に形成され、さらに、本体部2の先端に底刃6が形成されている。
 7は各切れ刃に沿って設けた第1逃げ面、8は第2逃げ面、9は切屑排出用のねじれ溝である。第1の切れ刃4のねじれ角(これはねじれ角θ1と同一)は、第2の切れ刃5のねじれ角(これはねじれ角θ2と同一)よりも大きく設定されている。これらのエンドミルは、超硬合金などで形成して表面にダイヤモンド膜などの硬質コーティング膜を設けたものが、特に耐久性に優れる。
 図示の各エンドミル1は、第1の切れ刃4が右ねじれ、第2の切れ刃5が左ねじれとなっており、それらの切れ刃4,5は、有効刃長L(第3の実施形態については図示せず。これはエンドミルの直径Dの2倍程度に設定されている)の間でそれぞれに連続した切れ刃として構成されている。また、第1の切れ刃4から工具回転方向後方の第2の切れ刃5までの位相角P1{図2、図7、図11(b)、図12(b)参照}と、第2の切れ刃5から第1の切れ刃4までの工具先端における位相角P2を異ならせている。位相角P1、P2は工具先端における位相角であって、ここではP1>P2の関係が成立するようにしている。また、4枚刃の第1の実施形態と第3の実施形態のエンドミルについては、図2、図11(b)、図12(b)に示すように、底刃6を第1の切れ刃4のエンドミル最外径から工具の回転中心Oを越える位置まで延ばして設け、6枚刃の第2の実施形態のエンドミルについては、図7に示すように、底刃6を、任意のひとつの第1の切れ刃4の先端から工具の回転中心Oを越える位置まで延ばして設けている。
 また、第3の実施形態のエンドミルは、切れ刃にニック溝12を備えさせている。そのニック溝12は、切れ刃の長手方向に定ピッチで多数個設けており、そのニック溝12の働きにより切屑が細かく分断されて加工時の切削抵抗が小さくなる。
 図11に示すように、ニック溝12を第1の切れ刃4と第2の切れ刃5の双方に設けると、加工時の切削抵抗低減についてより大きな効果が望めるが、第1の切れ刃4と第2の切れ刃5のいずれか一方のみにニック溝12を設けることで、ニック溝の無い切れ刃によるサラエ効果を利用して側面加工における面粗さを良くすることができる。この場合のニック溝12は、ねじれ角が正の第1の切れ刃4の方がねじれ角が負の第2の切れ刃5よりも切削負荷が大きくてビビリを誘発しやすいので、また、第2の切れ刃5は切削負荷が小さくてサラエ刃としての適正に富むので、図12に示すように、第1の切れ刃4に設けるのがよい。
 第1、第2、第3の実施形態のエンドミルは、共に、第1の切れ刃4と第2の切れ刃5でワークの同一領域を加工する。このときの各切れ刃の役割は、右ねじれの第1の切れ刃4が主として切削を担当し、左ねじれの第2の切れ刃5は、バリ除去のための補完切削を行なう。第1の切れ刃4は、正のねじれ角を有しているので、図13に示すワーク(繊維強化複合材)10の上面の縁部(図のA点)ではワークの板厚中心から離れる方向、すなわち、図において上向きの切削力が働く。従って、特に、A点には第1の切れ刃4による切削でバリ11が発生し易い。そのバリ11は、ワーク10の下面の縁部(図のB点)にも発生し、そのバリ11を、ワーク10の板厚中心側に向けて切削力が働く第2の切れ刃5で切り取る。この第1の切れ刃4による切削、後続の第2の切れ刃5によるバリの除去が繰り返されてバリ発生の少ない切断がなされ、高品位加工が可能になる。
 上述したように、この発明のエンドミルは、第1の切れ刃4から工具回転方向後方の第2の切れ刃5までの位相角P1と第2の切れ刃5から工具回転方向後方の第1の切れ刃4までの位相角P2を異ならせることで、逆向きにねじれた第1の切れ刃4と第2の切れ刃5をクロスさせずに有効刃長間で連続した切れ刃として構成することを可能にしており、その連続した切れ刃を採用することで切削が滑らかに進行する。また、第1、第2の切れ刃4,5による相反する方向の軸方向切削力が生じて互いに打ち消し合う。これに加えて、第1の切れ刃4から工具回転方向後方の第2の切れ刃までの位相角P1と、第2の切れ刃5から工具回転方向後方の第1の切れ刃4までの位相角P2を異ならせたことで両切れ刃4,5による切削周期が異なったものになり、これらの相乗効果で加工中のビビリが抑えられてビビリに起因した工具刃先のチッピング、コーティング膜剥離などが減少し、工具寿命の向上効果がさらに高められる。
 また、上記の位相角P1とP2について、P1>P2の関係を満足させたので、その条件を満たしていないものに比べて第1の切れ刃4について回転方向後方のバックメタル量を大きくとることができ、第2の切れ刃5との間の間隔が狭くなる第1の切れ刃の後端側でも第1の切れ刃4の刃先強度を不足なく確保することが可能になる。
 さらに、第1の切れ刃4のねじれ角を第2の切れ刃5のねじれ角よりも大きく設定しており、第1の切れ刃4のねじれ角を大きくとることによる第1の切れ刃4のバックメタル量の減少を第2の切れ刃5のねじれ角を小さくすることによって補うことができ、第1の切れ刃4の刃先強度を維持しながらその第1の切れ刃4の切れ味を高めることができる。
 なお、第1の切れ刃4のねじれ角は3~10°が適当であった。そのねじれ角が3°以下では、第1の切れ刃4と第2の切れ刃5が直線切れ刃に近づくためワークに対する切れ刃の喰いつき時に衝撃が発生してバリ発生の抑制効果が小さい。また、そのねじれ角は、切削性能面では10°以上であってもよいが、切れ刃のねじれ角が大きくなるにつれてワークにこれを持ち上げようとする力が強く働くので、好ましい数値の上限は10°、ねじれ角の上限は最大でも15°以下にするのがよい。
 底刃6は、ワークの余縁のトリミングなどでは必須の要素とはならないが、内端が工具の回転中心を越える位置まで延びた底刃6を備えさせると、溝加工、突っ込み加工が可能になってエンドミルの用途が拡大する。
 この発明のエンドミルの性能を評価するために、第1の切れ刃のねじれ角θ1を5°、第2の切れ刃のねじれ角θ2を-4°に設定した4枚刃のエンドミルと、第1の切れ刃と第2の切れ刃のねじれ角を上記と同一に設定した6枚刃のエンドミル(いずれも直径φ12mm、有効刃長25mmの発明品)を試作し、従来品との比較切削を行なった。従来品は、ねじれ角が0°及び30°の一般的な形状の4枚刃と6枚刃のエンドミルと、右ねじれと左ねじれの切れ刃を軸方向にステップさせて配置して双方の切れ刃で被削域の上側部分と下側部分を分担切削するようにした4枚刃のエンドミルを使用した。4枚刃の発明品は、図2の位相角P1=約108°、P2=約72°である。また、6枚刃の発明品は、図7の位相角P1=約75°、P2=約44°である。4枚刃、6枚刃のエンドミルとも、P1=P2の配置では、第1の切れ刃と第2の切れ刃が終端側で近づきすぎて第1の切れ刃のバックメタル量を終端側で十分確保することができないが、上記の配置ではその問題は起こらなかった。
 これらの試料を用いて、プリプレグ積層数8、総板厚8mmのCFRPの余縁の切断を行なった。切削条件は、切削速度V=250m/min、送り量f=0.03mm/刃、
総切削長15mとした。
 このときの発明品による切削状況を、高速度カメラで監視したところ、バリの発生、切除が繰り返され、工具の使用時間の経過に伴うバリの成長が少ないことを確認した。また、加工中のワークのビビリが少なく、切削音が小さくて静かな切削がなされた。
 一方、比較品は、いずれも工具も、使用時間の経過に伴うバリの成長が見られ、また、切削時のワークビビリによる金属音のようなビビリ振動が発生した。
 この試験結果に、ねじれ角が正、負の切れ刃を交互配置にして設けること、それらの切れ刃を有効刃長間で連続した切れ刃とすることの有効性が現われている。

Claims (8)

  1.  ねじれ角(θ1)が正となる方向にねじれた第1の切れ刃(4)と、ねじれ角(θ2)が負となる方向にねじれた第2の切れ刃(5)を周方向に位置をずらして形成したエンドミルにおいて、前記第1の切れ刃(4)と第2の切れ刃(5)の各々を、有効刃長間で連続した切れ刃として構成し、さらに、工具先端における第1の切れ刃(4)から工具回転方向後方の第2の切れ刃(5)までの位相角(P1)と、第2の切れ刃(5)から工具回転方向後方の第1の切れ刃(4)までの位相角(P2)を異ならせたことを特徴とするエンドミル。
  2.  前記第1の切れ刃(4)と第2の切れ刃(5)を周方向に交互に形成した請求項1に記載のエンドミル。
  3.  前記第1の切れ刃(4)から工具回転方向後方の第2の切れ刃(5)までの位相角(P1)を、第2の切れ刃(5)から工具回転方向後方の第1の切れ刃(4)までの位相角(P2)よりも大きく設定した請求項2に記載のエンドミル。
  4.  前記第1の切れ刃(4)のねじれ角(θ1)を第2の切れ刃(5)のねじれ角(θ2)よりも大きく設定した請求項2又は3に記載のエンドミル。
  5.  前記第1の切れ刃(4)のねじれ角(θ1)を3~10°、第2の切れ刃(5)のねじれ角(θ2)を-3~-10°に設定した請求項1~4のいずれかに記載のエンドミル。
  6.  前記第1の切れ刃(4)の少なくとも1刃が、エンドミル最外径から工具の回転中心(O)を越えた位置まで延び出す底刃(6)を備えさせた請求項1~5のいずれかに記載のエンドミル。
  7.  前記第1の切れ刃(4)にニック溝(12)を備えさせた請求項1~6のいずれかに記載のエンドミル。
  8.  前記第2の切れ刃(5)にニック溝(12)を備えさせた請求項7に記載のエンドミル。
PCT/JP2009/055612 2008-03-31 2009-03-23 エンドミル WO2009122937A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112009000013.4T DE112009000013C5 (de) 2008-03-31 2009-03-23 Stirnfräser
US12/665,193 US8562261B2 (en) 2008-03-31 2009-03-23 End mill
JP2009537344A JPWO2009122937A1 (ja) 2008-03-31 2009-03-23 エンドミル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-089892 2008-03-31
JP2008089892 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122937A1 true WO2009122937A1 (ja) 2009-10-08

Family

ID=41135319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055612 WO2009122937A1 (ja) 2008-03-31 2009-03-23 エンドミル

Country Status (4)

Country Link
US (1) US8562261B2 (ja)
JP (1) JPWO2009122937A1 (ja)
DE (1) DE112009000013C5 (ja)
WO (1) WO2009122937A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120099A (ja) * 2008-11-17 2010-06-03 Mitsubishi Materials Corp エンドミルおよびその製造方法
WO2010102605A1 (de) * 2009-03-07 2010-09-16 Gühring Ohg Schaftfräser
JP2010234462A (ja) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp エンドミル
WO2013057237A1 (de) 2011-10-20 2013-04-25 Gühring Ohg Fräswerkzeug
US8562261B2 (en) 2008-03-31 2013-10-22 Sumitomo Electric Hardmetal Corp. End mill
JP2015530273A (ja) * 2012-10-10 2015-10-15 ホフシュミット ツェルシュパヌングシステーメ ゲーエムベーハー 機械加工用加工工具、および繊維強化プラスチック製部品切削方法
JP2015530274A (ja) * 2012-10-10 2015-10-15 ホフシュミット ツェルシュパヌングシステーメ ゲーエムベーハー 機械加工用加工工具、および繊維強化プラスチック製部品切削方法
CN106270702A (zh) * 2016-10-25 2017-01-04 哈尔滨理工大学 一种带有曲线刃的整体式硬质合金成型铣刀
JP2018051750A (ja) * 2016-09-29 2018-04-05 呉明恭 正逆の両方向に回転可能なミル構造
WO2019049252A1 (ja) * 2017-09-07 2019-03-14 住友電工ハードメタル株式会社 回転切削工具
JP2020503180A (ja) * 2016-12-28 2020-01-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ 冷却材流れの溝を有するフライス工具
WO2022113360A1 (ja) 2020-11-30 2022-06-02 オーエスジー株式会社 エンドミル

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526924B2 (ja) * 2010-03-29 2014-06-18 三菱マテリアル株式会社 エンドミル
DE102011012140B4 (de) * 2011-02-24 2020-07-09 Kennametal Inc. Fräser, insbesondere Kugelschaftfräser
JP5853586B2 (ja) * 2011-10-26 2016-02-09 三菱マテリアル株式会社 エンドミル
DE102012000134A1 (de) * 2012-01-06 2013-07-11 Barth Schleiftechnik Gmbh Schaftfräser zur spanenden Bearbeitung von Werkstücken mit gegenläufig spiralisierten Umfangsschneiden
DE102012009328B3 (de) * 2012-03-21 2013-08-14 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Fräsbohrwerkzeug
US20130294852A1 (en) * 2012-05-01 2013-11-07 Seco Tools Ab Compression cutting tool
DE202012012984U1 (de) 2012-10-10 2014-10-15 Hufschmied Zerspanungssysteme Gmbh Stirnfräser zur Bearbeitung von faserverstärkten Werkstoffen wie CFK
DE102013107375A1 (de) * 2013-07-11 2015-01-15 Walter Ag Verfahren und Vorrichtung zur Beschichtung von Schneidwerkzeugen mit stabförmiger Grundform
JP6253533B2 (ja) * 2014-07-01 2017-12-27 株式会社神戸製鋼所 切削工具の製造方法
US20160175944A1 (en) * 2014-12-19 2016-06-23 Metal Industries Research & Development Centre Cutting tool with asymmetric structures on cutting teeth
DE102015113541B3 (de) * 2015-08-17 2016-09-01 Rudolf Wendling Fräswerkzeug
DE102015116624B4 (de) 2015-09-30 2023-06-15 Haimer Gmbh Schaftfräser
DE102015116623A1 (de) 2015-09-30 2017-03-30 Haimer Gmbh Schaftfräser
DE102015119355B4 (de) 2015-11-10 2018-09-20 Albert Knebel Holding Gmbh Zerspanungswerkzeug
DE102016113270A1 (de) * 2016-07-19 2018-01-25 Rudolf Wendling Fräswerkzeug
WO2018076208A1 (zh) * 2016-10-26 2018-05-03 吴明恭 正反旋向铣刀结构
CN106334822A (zh) * 2016-10-28 2017-01-18 成都欧珀琅精密工具有限公司 一种具有提高加工零件光洁度功能的铣刀
JP7024779B2 (ja) * 2017-03-13 2022-02-24 株式会社Moldino ボールエンドミル
CN107309480A (zh) * 2017-07-28 2017-11-03 浙江神钢赛欧科技有限公司 一种二刃键槽铣刀
EP3722033A1 (de) * 2019-04-12 2020-10-14 Hptec GmbH Fräswerkzeug zum fräsen von werkstücken
CN111673157B (zh) * 2020-06-16 2021-06-01 苏州珂玛材料科技股份有限公司 一种氮化铝陶瓷生坯结构件加工铣刀
CN113857540A (zh) * 2021-11-18 2021-12-31 郑州亨睿精密机械科技有限公司 一种减少毛刺产生的切削刀头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119198A (en) * 1978-03-09 1979-09-14 Nippon Kougu Seisakushiyo Kk Rooter tool
JPS61142009A (ja) * 1984-12-17 1986-06-28 Toshiba Corp 回転切削工具
JPS6347007A (ja) * 1986-08-12 1988-02-27 Izumo Sangyo Kk ル−タ−・エンドミル
JPH02256412A (ja) * 1989-03-30 1990-10-17 Mitsubishi Heavy Ind Ltd エンドミル
JPH0447910U (ja) * 1990-08-31 1992-04-23

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US725374A (en) * 1902-04-18 1903-04-14 William G Shaw Reamer.
US2360425A (en) * 1941-10-11 1944-10-17 Kinzbach Frank Milling tool
US2855657A (en) * 1955-10-04 1958-10-14 Nat Tool Company Cutting tool with chip breakers
US3058199A (en) * 1960-05-26 1962-10-16 Dixie Tool Ind Inc Cutting tool
US3736634A (en) * 1971-03-17 1973-06-05 Hicarb Corp Rotary cutting tool
US3863316A (en) * 1973-12-07 1975-02-04 Herbert G Yeo Rotary cutting tool and method of manufacturing same
US3947143A (en) * 1974-07-15 1976-03-30 Shipley Company, Inc. Printed circuit drill
US3913196A (en) * 1974-08-29 1975-10-21 Lear Siegler Inc Rotary cutting tool
CA1097899A (en) * 1979-01-05 1981-03-24 Alfonso Minicozzi Cutting tool
US4285618A (en) * 1979-10-12 1981-08-25 Shanley Stephen E Jr Rotary milling cutter
EP0055142B1 (en) * 1980-12-24 1985-04-17 Fuji Jukogyo Kabushiki Kaisha Router bit
US4475850A (en) * 1981-08-16 1984-10-09 Penoza Frank J Split helix router bit
JPS5856719A (ja) * 1981-09-26 1983-04-04 Katsuhiro Matsushita コンビネ−シヨンドリル
US4480949A (en) * 1982-05-28 1984-11-06 The Boeing Company Combination opposed helix router for routing composite material face sheets having honeycomb core
JPS6085818A (ja) * 1983-10-17 1985-05-15 Toshifumi Takeya カツタ−の軸方向に削設する構成のニツクを千鳥状に配置する方法
US4810136A (en) * 1983-11-09 1989-03-07 The Boeing Company Milling cutter for composite laminates
DE8536123U1 (ja) * 1985-12-21 1987-04-16 Komet Stahlhalter- Und Werkzeugfabrik Robert Breuning Gmbh, 7122 Besigheim, De
DE3602419A1 (de) 1986-01-28 1987-07-30 Joerg Flemming Walzfraeser fuer verbundwerkstoffe
US4721421A (en) * 1986-10-03 1988-01-26 Brubaker Tool Corporation Cutting tool with chip breakers
DE3742942C1 (en) 1987-12-18 1988-12-08 Rolf Klenk Gmbh & Co Kg Milling tool for roughing and smoothing workpieces
US5094573A (en) * 1988-07-21 1992-03-10 Hougen Everett D Multidirectional cutting tool
US5221163A (en) * 1988-10-31 1993-06-22 Gn Tool Co., Ltd. Nicked cutting tool
US4988241A (en) * 1989-09-15 1991-01-29 The Boeing Company Cutter with angled diamond inserts
JPH09277108A (ja) * 1996-02-14 1997-10-28 Sumitomo Electric Ind Ltd ドリル
US5779399A (en) * 1996-03-05 1998-07-14 Mcdonnell Douglas Rotary cutting apparatus
US5685673A (en) * 1996-04-02 1997-11-11 Jarvis; Wayne C. Twist drill with reverse flutes
DE29715192U1 (de) 1997-08-23 1997-12-04 Schuler Technoplan Gmbh & Co K Fräswerkzeug
JP3122878B2 (ja) * 1998-12-29 2001-01-09 祐二 江▲崎▼ フラッシュパネル構造体の外板を切り抜く方法
US6164876A (en) * 1999-10-30 2000-12-26 Tungsten Industries, Inc Cutting tool
US6345941B1 (en) * 2000-02-23 2002-02-12 Ati Properties, Inc. Thread milling tool having helical flutes
US7001113B2 (en) * 2001-09-10 2006-02-21 Flynn Clifford M Variable helix cutting tools
US6991409B2 (en) * 2002-12-24 2006-01-31 Niagara Cutter Rotary cutting tool
DE20304580U1 (de) 2003-03-21 2004-08-12 Gühring, Jörg, Dr. Bohrer
GB0318501D0 (en) * 2003-08-07 2003-09-10 Exactaform Cutting Tools Ltd Cutting tool
FR2861001B1 (fr) * 2003-10-16 2007-06-22 Snecma Moteurs Foret ceramique pour percage grande vitesse
US7223053B2 (en) * 2004-09-01 2007-05-29 Berkshire Precision Tool, Llc Helical flute end mill with multi-section cutting edge
US20060188345A1 (en) * 2005-02-18 2006-08-24 Greenwood Mark L Rotary cutting tool with pairs of helical cutting edges having different helix angles
US7544021B2 (en) * 2005-11-01 2009-06-09 Berkshire Precision Tool. Llc Rotary cutting tool with non-uniform distribution of chip-breaking features
US8414228B2 (en) * 2006-01-04 2013-04-09 Sgs Tool Company Rotary cutting tool
DE102006022572B4 (de) 2006-05-15 2016-11-17 Gühring KG Fräswerkzeug
US7367754B1 (en) * 2006-07-07 2008-05-06 Greenwood Mark L Variable helix rotary cutting tool
DE112009000013C5 (de) 2008-03-31 2018-08-09 Sumitomo Electric Hardmetal Corp. Stirnfräser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119198A (en) * 1978-03-09 1979-09-14 Nippon Kougu Seisakushiyo Kk Rooter tool
JPS61142009A (ja) * 1984-12-17 1986-06-28 Toshiba Corp 回転切削工具
JPS6347007A (ja) * 1986-08-12 1988-02-27 Izumo Sangyo Kk ル−タ−・エンドミル
JPH02256412A (ja) * 1989-03-30 1990-10-17 Mitsubishi Heavy Ind Ltd エンドミル
JPH0447910U (ja) * 1990-08-31 1992-04-23

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562261B2 (en) 2008-03-31 2013-10-22 Sumitomo Electric Hardmetal Corp. End mill
JP2010120099A (ja) * 2008-11-17 2010-06-03 Mitsubishi Materials Corp エンドミルおよびその製造方法
US9352400B2 (en) 2009-03-07 2016-05-31 Joerg Guehring Shank drill
WO2010102605A1 (de) * 2009-03-07 2010-09-16 Gühring Ohg Schaftfräser
JP2010234462A (ja) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp エンドミル
WO2013057237A1 (de) 2011-10-20 2013-04-25 Gühring Ohg Fräswerkzeug
DE102011054677A1 (de) 2011-10-20 2013-04-25 Gühring Ohg Fräswerkzeug
DE102011054677B4 (de) 2011-10-20 2023-11-16 Gühring KG Fräswerkzeug
KR101727921B1 (ko) 2012-10-10 2017-04-18 후프슈미드 쩨어슈파눙스시스테메 게엠베하 엔드밀링 절단기 및 섬유 강화 플라스틱으로 이루어진 부품 절단을 위한 방법
JP2015530274A (ja) * 2012-10-10 2015-10-15 ホフシュミット ツェルシュパヌングシステーメ ゲーエムベーハー 機械加工用加工工具、および繊維強化プラスチック製部品切削方法
JP2015530273A (ja) * 2012-10-10 2015-10-15 ホフシュミット ツェルシュパヌングシステーメ ゲーエムベーハー 機械加工用加工工具、および繊維強化プラスチック製部品切削方法
JP2018051750A (ja) * 2016-09-29 2018-04-05 呉明恭 正逆の両方向に回転可能なミル構造
CN106270702A (zh) * 2016-10-25 2017-01-04 哈尔滨理工大学 一种带有曲线刃的整体式硬质合金成型铣刀
JP7160812B2 (ja) 2016-12-28 2022-10-25 サンドビック インテレクチュアル プロパティー アクティエボラーグ 冷却材流れの溝を有するフライス工具
JP2020503180A (ja) * 2016-12-28 2020-01-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ 冷却材流れの溝を有するフライス工具
US11491561B2 (en) * 2016-12-28 2022-11-08 Sandvik Intellectual Property Ab Milling tool with coolant flow grooves
JPWO2019049252A1 (ja) * 2017-09-07 2020-10-29 住友電工ハードメタル株式会社 回転切削工具
JP6996066B2 (ja) 2017-09-07 2022-02-04 住友電工ハードメタル株式会社 回転切削工具
US11440108B2 (en) 2017-09-07 2022-09-13 Sumitomo Electric Hardmetal Corp. Rotary cutting tool
CN111050964B (zh) * 2017-09-07 2022-01-11 住友电工硬质合金株式会社 旋转切削工具
CN111050964A (zh) * 2017-09-07 2020-04-21 住友电工硬质合金株式会社 旋转切削工具
WO2019049252A1 (ja) * 2017-09-07 2019-03-14 住友電工ハードメタル株式会社 回転切削工具
WO2022113360A1 (ja) 2020-11-30 2022-06-02 オーエスジー株式会社 エンドミル

Also Published As

Publication number Publication date
JPWO2009122937A1 (ja) 2011-07-28
US8562261B2 (en) 2013-10-22
DE112009000013B4 (de) 2012-06-14
US20100196108A1 (en) 2010-08-05
DE112009000013T5 (de) 2010-09-23
DE112009000013C5 (de) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2009122937A1 (ja) エンドミル
JP5945283B2 (ja) ドリル
JP5519723B2 (ja) 刃先交換式ドリル
WO2019047557A1 (zh) 微齿排布可设计的碳纤维复合材料专用带端刃立铣刀
JP5135614B2 (ja) 複合材料用ドリル並びにそれを用いた機械加工方法及び機械加工装置
JP5451831B2 (ja) 繊維強化複合材の穴あけ工具と穴あけ方法
JP6611260B2 (ja) ドリル
JP5184902B2 (ja) 繊維強化複合材の穴あけ工具と穴あけ方法
WO2009139377A1 (ja) ツイストドリル
JP5823840B2 (ja) ドリルおよび切削加工物の製造方法
JP6501374B1 (ja) ドリル
JP2009039811A (ja) 繊維強化複合材の穴あけ工具と穴あけ方法
JP2008000836A (ja) ドリル
JP6378493B2 (ja) ドリル
CN106624080B (zh) 一种阶梯微齿双刃带钻锪一体钻头
WO2012063802A1 (ja) リーマ及び穴の加工方法
JP6918013B2 (ja) 切削工具および切削加工方法
JP6797873B2 (ja) 炭素繊維複合材用ドリル
CN110744108A (zh) 一种加工复合材料具有刃倾槽结构的钻头加工方法
JP5846683B2 (ja) Frpと金属の重ね板加工用ドリル
CN112620760B (zh) 具有pcd镶片及微刃的组合铣刀
JP5750149B2 (ja) 刃先交換式ドリル
JP2009039810A (ja) 繊維強化複合材の穴あけ方法
JP2014083646A (ja) ドリル
JP2014037008A (ja) 穿孔用ドリル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009537344

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12665193

Country of ref document: US

Ref document number: 1120090000134

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112009000013

Country of ref document: DE

Date of ref document: 20100923

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

122 Ep: pct application non-entry in european phase

Ref document number: 09728386

Country of ref document: EP

Kind code of ref document: A1