WO2009139172A1 - 有機発光素子とその製造方法 - Google Patents

有機発光素子とその製造方法 Download PDF

Info

Publication number
WO2009139172A1
WO2009139172A1 PCT/JP2009/002121 JP2009002121W WO2009139172A1 WO 2009139172 A1 WO2009139172 A1 WO 2009139172A1 JP 2009002121 W JP2009002121 W JP 2009002121W WO 2009139172 A1 WO2009139172 A1 WO 2009139172A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
hole transport
light emitting
transport layer
Prior art date
Application number
PCT/JP2009/002121
Other languages
English (en)
French (fr)
Inventor
片山雅之
小島和重
加藤哲弥
明渡邦夫
佐藤敏一
野田浩司
森朋彦
菊澤良弘
坂口幸一
Original Assignee
株式会社デンソー
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008128207A external-priority patent/JP2009277917A/ja
Priority claimed from JP2008243435A external-priority patent/JP5217835B2/ja
Priority claimed from JP2009021390A external-priority patent/JP5453824B2/ja
Priority claimed from JP2009033935A external-priority patent/JP5218131B2/ja
Application filed by 株式会社デンソー, 株式会社豊田中央研究所 filed Critical 株式会社デンソー
Priority to KR1020107026933A priority Critical patent/KR101237831B1/ko
Priority to KR1020127027530A priority patent/KR101314704B1/ko
Priority to US12/736,214 priority patent/US8461572B2/en
Publication of WO2009139172A1 publication Critical patent/WO2009139172A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present application includes Japanese Patent Application 2008-128207 filed on May 15, 2008 and 2008-243435 and 2009 filed on September 23, 2008, the disclosures of which are incorporated herein by reference. Based on Japanese Patent Application 2009-21390 filed on February 2, 2009 and Japanese Patent Application 2009-33935 filed on February 17, 2009.
  • the present invention relates to an organic light emitting device using a polymer light emitting material and a method for producing the same.
  • Patent Documents 1 and 2 disclose organic EL elements having a structure in which a light emitting layer is directly formed on a hole transport layer or an anode.
  • the hole transport layer is composed of a polymer thin film
  • the light-emitting layer is composed of a polymer phosphor and an electron-donating and / or electron-accepting organic compound.
  • Patent Document 3 discloses a structure in which a low molecular hole transport layer formed by a vapor deposition method and a polymer light emitting layer formed by a coating method are stacked.
  • the organic EL element when used in a harsh environment, such as when the organic EL element is applied as an in-vehicle display element, it is important to configure the hole transport layer with a low molecular material. As in the structures described in 1 and 2, it is not preferable to form the hole transport layer with a polymer thin film.
  • hole transport is performed by repeating oxidation ⁇ reduction of the polymer material.
  • the oxidized polymer material does not always return to its original state, and it is considered that the oxidized polymer material deteriorates due to the generation of a part that becomes another reactant when it is oxidized and does not function as a hole transport layer.
  • the polymer hole transport layer is considered to be significantly deteriorated compared to the low molecular hole transport material, and the hole transport layer made of the polymer material has a problem in durability.
  • Patent Document 3 since the hole transport layer is made of a low molecular material, there is no problem in terms of durability. However, when the light emitting layer is made of a simple polymer material, the hole transport layer, the light emitting layer, Since this interface becomes an interface between a low-molecular material and a high-molecular material, there is a problem that adhesion is low due to a difference in physical state such as film density at the interface, and carrier injection property is also low.
  • an organic EL element having a low cost, high temperature durability and a long life is required. Therefore, it is difficult to use both as it is.
  • an organic EL device that solves each of the above problems by adopting a laminated structure of a low molecular hole transport layer formed by a vacuum deposition method and a polymer light emitting layer formed by a coating method is considered. ing. However, when the low molecular hole transport layer and the polymer light emitting layer are in contact with each other, the low molecular material constituting the low molecular hole transport layer is dissolved in the solvent of the polymer coating solution.
  • Patent Document 3 proposes an organic EL element having a structure in which the low molecular material constituting the low molecular hole transport layer is hardly dissolved in the solvent of the polymer coating solution.
  • the low molecular weight hole transport material contains a crosslinkable organic compound having a siloxane skeleton, a crosslinkable organic compound containing a silane coupling compound, or at least one of a double bond group, an epoxy group and a cyclic ether group.
  • a crosslinkable organic compound is mixed and vapor-deposited, and after vapor deposition, it is hardly soluble by thermal polymerization, photopolymerization, and electron beam polymerization, so that the low molecular weight material is hardly dissolved in the solvent of the polymer coating solution.
  • self-luminous elements such as EL (electroluminescence) elements are capable of emitting light with high brightness, reducing power consumption and reducing the thickness of the apparatus, and are attracting attention as next-generation display devices and light source devices.
  • EL electroluminescence
  • an organic EL element which is a kind of self-luminous element, an organic material is used for a light emitting layer provided between a hole injection electrode and an electron injection electrode, and the degree of freedom of emission color is high.
  • problems such as low durability due to the fact that the light emitting layer is a very thin film and the coverage is low, and the durability of the organic material itself is low, in order to increase durability R & D is underway.
  • a low molecular organic EL element using a low molecular material as a light emitting organic material and a high molecular organic EL element using a high molecular material have been proposed.
  • low molecular organic materials are used not only for the light-emitting layer but also for the hole transport layer and the electron transport layer, and each layer can be sequentially laminated on the substrate by a vacuum deposition method or the like. it can.
  • Such low molecular organic EL devices have already been put into practical use, and their reliability is being improved not only for the individual low molecular materials used but also for the entire device.
  • an EL element using a polymer material as a light emitting material a method such as coating or printing can be adopted as a method of laminating the polymer material on the substrate.
  • a method such as coating or printing can be adopted as a method of laminating the polymer material on the substrate.
  • a single polymer organic material often has both a light emitting function and a carrier transport function, it is easy to obtain an organic EL element having a simple configuration in which a single layer of a polymer organic material layer is formed between electrodes. It has become.
  • the polymer organic material can be formed by the printing method as described above, it is easy to pattern the polymer organic material for each of the RGB pixels.
  • Patent Document 4 a first electrode is formed on a substrate, a first organic film layer is formed on the first electrode from a low molecular light emitting material, and a polymer electron transport material is formed on the first organic film layer.
  • An organic EL element in which a second organic film layer to be formed is formed and a second electrode is formed on the second organic film layer is shown.
  • the first and second organic film layers are not laminated in order on the first electrode, but the second organic film layer and the first organic film are arranged in order from the film side on the donor film separately adopted.
  • a first organic film layer (low molecular light emitting material layer) and a second organic layer film (polymer electron transport) on the first electrode of the substrate by laser thermal transfer (LITI) method from the donor film. Material) at the same time.
  • LITI laser thermal transfer
  • an organic EL element provided with the functional layer which contains a light emitting layer at least between the 1st electrode and the 2nd electrode, Comprising: As a functional layer, the light emitting layer using the polymeric organic material from the 1st electrode side It has been proposed to provide an electron transport layer formed of a low molecular organic material on the light emitting layer. Further, it has been proposed that a hole injection / transport layer using a polymer organic material is formed between the first electrode and the light emitting layer in the same manner as the light emitting layer, and hole injection / transport using a polymer organic material is proposed. The layer and the light emitting layer are formed by an ink jet printing method.
  • Patent Document 6 is an organic EL element in which a hole injection / transport layer and a light emitting layer are laminated from the anode side between an anode and a cathode.
  • a polymer material is used for the hole injection / transport layer. Is formed by a wet method. It has been proposed to use a low-molecular light-emitting material for the light-emitting layer and to laminate it using a wet method.
  • a light emitting medium laminate is provided between the first electrode layer and the second electrode layer, and the light emitting medium laminate includes a low molecular material layer made of a low molecular material having a weight average molecular weight of 1000 or less. And a layer formed as a polymer material layer made of a polymer material having a weight average molecular weight of 1000 or more. Furthermore, at least one low molecular material layer and at least one high molecular material layer are laminated so that their surfaces are in contact with each other, that is, the high molecular material layer and the low molecular material layer are alternately arranged. It is stated that the laminated structure can suppress the occurrence of crystallization and aggregation on the surface of the low molecular material layer.
  • the low-molecular-weight organic EL element has a high temperature durability and can form an organic EL element having a long lifetime.
  • the film formation using the vacuum evaporation method needs to be evaporated in a vacuum chamber, and in the case of forming a different light emitting layer for each RGB pixel, patterning using an evaporation mask is required.
  • a single low molecular weight organic material a material having all functions of hole transport, light emission, and electron transport has not been developed, and it is necessary to form a device by stacking multiple layers. For this reason, a large-scale apparatus in which a number of vacuum deposition apparatuses (vacuum deposition chambers) are connected is required, and the manufacturing cost tends to be very high.
  • the vacuum vapor deposition process is only the cathode forming process, and other than that, a non-vacuum process can be used, so that the manufacturing cost can be reduced. Further, as described above, patterning is easy, which is advantageous in terms of reducing manufacturing costs.
  • an organic EL element using a polymer organic material has many problems in terms of low high-temperature durability, short life, voltage increase due to driving, and the like as compared with a low-molecular organic EL element.
  • JP 09-59614 A Japanese Patent No. 4045691 JP 2008-16336 A Japanese Patent Laid-Open No. 2005-63977 JP 2005-285617 A JP 2006-190759 A JP 2007-242816 A
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide an organic EL element having high durability and high adhesion at the interface between the hole transport layer and the light emitting layer.
  • An object of the present invention is to provide an organic EL device that can be achieved and a method for manufacturing the same.
  • an object of the present invention is to provide an organic light-emitting device that is low in cost, durable at high temperature, and has a long lifetime.
  • the organic EL element includes an electrode substrate, a hole injection electrode disposed on the electrode substrate, a hole transport layer disposed on the hole injection electrode, and the hole transport.
  • a light emitting layer disposed on the layer, and an electron injection electrode disposed on the light emitting layer.
  • the hole transport layer is formed of a first low molecular weight material having a molecular weight smaller than a predetermined first molecular weight
  • the light emitting layer includes a high molecular material having a molecular weight larger than a predetermined second molecular weight and a predetermined third molecular weight. It is formed from a mixture of second low molecular weight materials having a molecular weight less than the molecular weight.
  • the durability can be increased by using the low molecular hole transport layer.
  • the light emitting layer is composed of a mixture of a high molecular material and a low molecular material
  • the low molecular material added to the high molecular material acts as a binder to fill the gap of steric hindrance, and the low molecular material and the low molecular material are low. Form entanglement of molecular material. For this reason, the adhesiveness of the interface of a low molecular hole transport layer and a light emitting layer can be made high. Therefore, an organic EL device having high durability and high adhesion at the interface between the low molecular hole transport layer and the light emitting layer can be obtained.
  • the organic EL element includes an electrode substrate, a hole injection electrode disposed on the electrode substrate, a hole transport layer disposed on the hole injection electrode, and the hole transport.
  • a poorly soluble layer disposed on the surface of the layer, a light emitting layer disposed on the surface of the poorly soluble layer, and an electron injection electrode disposed on the light emitting layer, wherein the hole transport layer is a predetermined layer Is formed from a low molecular material having a molecular weight smaller than the first molecular weight, the poorly soluble layer is formed from a surface-treated film obtained by treating the surface of the hole transport layer with an ether compound, It is formed from a polymer material having a molecular weight larger than a predetermined second molecular weight.
  • the poorly soluble layer can be formed by surface-treating the low molecular hole transport layer with an ether compound.
  • This hardly soluble layer can prevent the constituent material of the low molecular hole transport layer from being dissolved into the polymer light emitting layer. Therefore, while adopting a structure in which a low molecular hole transport layer and a polymer light emitting layer are laminated, the low molecular hole transport layer is prevented from being dissolved in the polymer light emitting layer, and the device characteristics are stabilized and the lifetime is improved. be able to.
  • the method of manufacturing an organic EL element includes a step of forming a hole injection electrode on an electrode substrate, a step of forming a hole transport layer on the hole injection electrode, and the hole transport. Treating the surface of the layer with an ether compound to form a poorly soluble layer on the surface of the hole transport layer; forming a light emitting layer on the surface of the poorly soluble layer; and electrons on the light emitting layer.
  • the hole transport layer is formed of a low molecular material having a molecular weight smaller than a predetermined first molecular weight, and the light emitting layer has a molecular weight larger than a predetermined second molecular weight. It is formed from the polymeric material which has.
  • the poorly soluble layer can be formed by surface-treating the low molecular hole transport layer with an ether compound.
  • the ether compound is formed in the low molecular hole transport layer in a state where the ether compound is coated in the form of a film on the surface of the low molecular hole transport layer. Either a state in which molecules are taken in to form a mixture with a low molecular material or a state in which an ether compound has been chemically reacted with the low molecular material constituting the low molecular hole transport layer is assumed. With such a manufacturing method, the organic EL element of the second aspect of the present disclosure can be manufactured.
  • the organic EL element includes an electrode substrate, a hole injection electrode disposed on the electrode substrate, a hole transport layer disposed on the hole injection electrode, and the hole transport.
  • a poorly soluble layer disposed on the surface of the layer, a light emitting layer disposed on the surface of the poorly soluble layer, and an electron injection electrode disposed on the light emitting layer, wherein the hole transport layer is a predetermined layer Is formed from a low molecular material having a molecular weight smaller than the first molecular weight, the poorly soluble layer is formed from a surface treatment film obtained by treating the surface of the hole transport layer with an organic acid, It is formed from a polymer material having a molecular weight larger than a predetermined second molecular weight.
  • a poorly soluble layer can be formed by surface-treating the low molecular hole transport layer with an organic acid.
  • This hardly soluble layer can prevent the constituent material of the low molecular hole transport layer from being dissolved into the polymer light emitting layer. Therefore, while adopting a structure in which a low molecular hole transport layer and a polymer light emitting layer are laminated, the low molecular hole transport layer is prevented from being dissolved in the polymer light emitting layer, and the device characteristics are stabilized and the lifetime is improved. be able to.
  • a method for manufacturing an organic EL element includes a step of forming a hole injection electrode on an electrode substrate, a step of forming a hole transport layer on the hole injection electrode, and the hole transport. Treating the surface of the layer with an organic acid to form a poorly soluble layer on the surface of the hole transport layer; forming a light emitting layer on the surface of the poorly soluble layer; and electrons on the light emitting layer.
  • the hole transport layer is formed of a low molecular material having a molecular weight smaller than a predetermined first molecular weight, and the light emitting layer has a molecular weight larger than a predetermined second molecular weight. It is formed from the polymeric material which has.
  • a poorly soluble layer can be formed by surface-treating the low molecular hole transport layer with an organic acid.
  • the organic acid is formed in the low molecular hole transport layer in a state where the organic acid is coated on the surface of the low molecular hole transport layer in the form of a film. Either a state in which molecules are taken in to form a mixture with a low molecular material or a state in which an organic acid compound is formed by chemical reaction with the low molecular material constituting the low molecular hole transport layer is assumed. With such a manufacturing method, the organic EL element described in the fourth aspect of the present disclosure can be manufactured.
  • the organic light emitting device includes a hole injection electrode, an electron injection electrode, a light emitting layer disposed between the hole injection electrode and the electron injection electrode, the hole injection electrode, and the light emitting layer.
  • the hole transport layer is formed of a low molecular material having a molecular weight smaller than a predetermined first molecular weight, and the hole transport layer is formed of a vacuum deposited film.
  • the light emitting layer covers the hole transport layer, and the light emitting layer includes a polymer material having a molecular weight higher than a predetermined second molecular weight as a light emitting material.
  • a vacuum evaporation layer of a low molecular hole transport material is used as a hole transport layer, and a light emitting layer using a polymer material as a light emitting material is formed by covering the hole transport layer.
  • FIG. 1 is a cross-sectional view of an organic EL device described in the first embodiment of the present invention.
  • FIG. 2 is a table summarizing the initial drive voltage V0, the luminance half-life LT50, and the number N of dark spots that were examined for the samples manufactured in each example and the sample of Comparative Example 1.
  • FIG. 3 is a graph showing the results of examining the change in I / I 0 when the maximum light emission efficiency is I 0 (cd / A) for Example 1 and Comparative Example 1.
  • FIG. 4 shows a triphenylamine derivative material corresponding to Chemical Formula 3, FIG.
  • FIG. 5 shows a triphenylamine derivative material corresponding to Chemical Formula 4
  • FIG. 6 shows a triphenylamine derivative material corresponding to Chemical Formula 5
  • FIG. 7 shows a triphenylamine derivative material corresponding to Chemical Formula 6
  • FIG. 8 shows a triphenylamine derivative material corresponding to Chemical Formula 7
  • FIG. 9 shows a hole transporting material corresponding to Chemical Formula 8
  • FIG. 10 shows a hole transporting material corresponding to Chemical Formula 9
  • FIG. 11 shows a hole transport material corresponding to Chemical Formula 10
  • FIG. 12 shows a hole transporting material corresponding to Chemical Formula 11
  • FIG. 13 shows a hole transporting material corresponding to Chemical Formula 12
  • FIG. 14 shows a hole transporting material corresponding to Chemical Formula 13
  • FIG. 15 shows an electron transporting material corresponding to Chemical Formula 14, FIG.
  • FIG. 16 shows an electron transporting material corresponding to Chemical Formula 15
  • FIG. 17 shows an electron transporting material corresponding to Chemical Formula 16
  • FIG. 18 shows an electron transporting material corresponding to Chemical Formula 17
  • FIG. 19 shows an electron transporting material corresponding to Chemical Formula 18
  • FIG. 20 shows an electron transporting material corresponding to Chemical Formula 19
  • FIG. 21 shows an electron transporting material corresponding to Chemical Formula 20
  • FIG. 22 shows the fullerene corresponding to Chemical Formula 21
  • FIG. 23 is a cross-sectional view of an organic EL element described in the second embodiment of the present invention.
  • FIG. 23 is a cross-sectional view of an organic EL element described in the second embodiment of the present invention.
  • FIG. 24 shows an X-ray electron spectroscopy spectrum of the surface of a hardly soluble layer formed by forming a low molecular hole transport layer made of a low molecular material by vacuum deposition and then surface-treating with 1,1′-dibutyl ether. It is a figure shown, FIG. 25 is a chart showing the ratio of the maximum luminous efficiency of the sample shown in each example and the sample of the comparative example, FIG. 26 is a diagram showing a change in luminance over time when Example 8 and Comparative Example 1 are driven at a constant current in an environment of 25 ° C. at an initial luminance of 600 cd / m 2 . FIG.
  • FIG. 27 is a cross-sectional view of an organic EL element 300 described in the third embodiment of the present invention.
  • FIG. 28 is a chart showing the ratio of the maximum luminous efficiency of the sample shown in each example and the sample of the comparative example in the third embodiment of the present invention
  • FIG. 29 is a diagram showing the temporal change in luminance when Example 21 and Comparative Example 6 were driven at a constant current in an environment of 25 ° C. at an initial luminance of 600 cd / m 2 .
  • FIG. 30 shows a schematic cross-sectional structure of an organic EL element according to the fourth embodiment of the present invention.
  • FIG. 31 shows an example of a display using an organic EL element.
  • FIG. 32 shows the time dependence of the drive voltage ratio with respect to the initial drive voltage when the organic EL elements according to Example 26 and Comparative Example 9 were driven at a constant current at a current density of 50 mA / cm 2 .
  • FIG. 33 shows the time dependency of the emission luminance ratio with respect to the initial luminance when the organic EL elements according to Example 26 and Comparative Example 9 were driven at a constant current at a current density of 50 mA / cm 2 .
  • FIG. 34 shows the time dependency of the drive voltage ratio with respect to the initial drive voltage when the organic EL elements according to Example 27 and Comparative Example 9 were driven at a constant current density of 50 mA / cm 2 .
  • FIG. 33 shows the time dependency of the emission luminance ratio with respect to the initial luminance when the organic EL elements according to Example 26 and Comparative Example 9 were driven at a constant current at a current density of 50 mA / cm 2 .
  • FIG. 34 shows the time dependency of the drive voltage ratio with respect to the initial drive voltage when
  • FIG. 35 shows the time dependence of the drive voltage ratio with respect to the initial drive voltage when the organic EL elements according to Example 28 and Comparative Example 9 are driven at a constant current at a current density of 50 mA / cm 2 .
  • FIG. 36 shows the time dependency of the drive voltage ratio with respect to the initial drive voltage when the elements of Example 29 and Comparative Example 9 were driven at a constant current at a current density of 50 mA / cm 2 .
  • FIG. 37 shows the time dependence of the drive voltage ratio with respect to the initial drive voltage when the elements of Example 30 and Comparative Example 9 were driven at a constant current density of 50 mA / cm 2 .
  • FIG. 38 shows a hole transporting material corresponding to Chemical Formula 22
  • FIG. 39 shows a hole transporting material corresponding to Chemical Formula 23, FIG.
  • FIG. 40 shows a hole transporting material corresponding to Chemical Formula 24, FIG. 41 shows a hole transporting material corresponding to Chemical Formula 25, FIG. 42 shows a hole transporting material corresponding to Chemical Formula 26, FIG. 43 shows a hole transporting material corresponding to Chemical Formula 27, FIG. 44 shows a hole transporting material corresponding to Chemical Formula 28, FIG. 45 shows a hole transporting material corresponding to Chemical Formula 29.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an organic EL element 100 according to an embodiment of the present invention.
  • a hole injection electrode 2 a low molecular hole transport layer 3 including a hardly soluble layer 3 a, a light emitting layer 4 and an electron injection electrode 5 are sequentially laminated on a substrate 1.
  • the structure covered with the can 6 constitutes the organic EL element 100 according to the present embodiment.
  • the organic EL element 100 having such a structure is manufactured as follows, for example. First, after forming the hole injection electrode 2 on the substrate 1, the low molecular hole transport layer 3 is formed by a vacuum deposition method. Subsequently, the surface of the low molecular hole transport layer 3 is subjected to a surface treatment with an ether compound or an organic acid, so that the low molecular hole transport layer 3 is formed on the surface of the low molecular hole transport layer 3 serving as an interface with the light emitting layer 4. The slightly soluble layer 3a formed by mixing the constituent material and the ether compound or organic acid is formed. And after forming the light emitting layer 4 by the apply
  • the surface treatment with an ether compound or an organic acid, the formation of the light emitting layer 4 and the sealing step are not limited, but it is preferable to be performed in a dry inert gas atmosphere such as a glove box.
  • various sealing methods such as sealing by bonding of glass or a film with a barrier or thin film sealing method for directly forming a thin film such as a silicon nitride film can be applied. Is possible.
  • the substrate 1 is composed of, for example, an electrode substrate made of transparent glass, quartz glass, a resin substrate with a barrier film, a metal substrate, or the like.
  • the hole injection electrode 2 is formed of any conductive material that can form a transparent or translucent electrode. Specifically, indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide, zinc oxide, indium oxide, zinc aluminum oxide, zinc gallium oxide, niobium titanium oxide, or the like can be used as the oxide. However, among them, ITO is a suitable material having advantages such as low resistance, solvent resistance, and excellent transparency. Further, there are a method of depositing a metal material such as aluminum, gold and silver to form a translucent layer, a method of using an organic semiconductor such as polyaniline, and other methods can also be used. The hole injection electrode 2 may be patterned by etching as necessary, or the surface may be activated by UV treatment or plasma treatment.
  • the low molecular hole transport layer 3 is desirably a triphenylamine derivative material having a high hole transport property among low molecular materials.
  • heating is usually performed at about 120 ° C.
  • the heating step exceeds the glass transition point of the low molecular material, the aggregation of the low molecular material is performed.
  • the surface roughness of the low molecular weight material will be deteriorated due to the increase in the roughness of the interface and the mixing of both. It is preferable to use as the transport layer 3.
  • the constituent material of the low molecular hole transport layer 3 is desirably 300 ° C. or higher at a vacuum degree of 1 Pa.
  • the deposition temperature becomes 200 ° C. or less when the deposition film is formed under a high vacuum of 10 ⁇ 5 Pa or less, and it becomes difficult to control the deposition rate. This is because a high-density vapor deposition film cannot be formed.
  • materials represented by chemical formulas 3 to 7 can be cited.
  • FIGS. 4-8 show the chemical formulas 3-7, respectively.
  • Formula 3 is N, N, N ′, N ′, N ′′, N ′′ -Hexakis- (4′-methyl-biphenyl-4-yl) -benzene-1,3,5-triamine (molecular weight 1119, glass transition point not observed, melting point 402 ° C.), chemical formula 4 Is N, N, N ', N',-Tetrakis- (4'-methyl-biphenyl-4-yl)-N ⁇ , N '',-biskis- (4'-methyl-phenyl) benzene-1,3,5-triamine (molecular weight 967, glass transition point 180 degrees), chemical formula 5 is t-Bu-TBATA (N, N, N ', N', N '',N''-Hexakis(4'-tert-butylbiphenyl -4-yl) -tris (4-aminophenyl) amine) (molecular weight 1540, glass transition point 203 degrees), chemical
  • Such a low molecular hole transport layer 3 can be formed by, for example, a vacuum deposition method in which a low molecular material is heated and evaporated in a vacuum to form a thin film.
  • the vacuum vapor deposition method was mentioned as an example of the formation method of the low molecular hole transport layer 3, in addition to the vacuum vapor deposition method, a coating method such as ink jet, printing, spin coating, laser transfer (LITI) method, vapor phase growth method, etc. May be used.
  • the quality of the low-molecular hole transport layer 3 is important for mounting an organic EL element on the vehicle, and vacuum deposition that provides the highest quality film is possible considering the purity, density, and flatness of the formed film. Formation by law is most desirable.
  • heat treatment may be performed in order to further improve the quality of the formed low molecular hole transport layer.
  • the single layer structure is not necessarily required.
  • a low molecular hole transport layer having a high effect of treatment with an ether compound or an organic acid is disposed on the light emitting layer 4 side, and a low molecular hole transport layer having a lower cost or higher hole mobility is disposed under this layer.
  • a structure in which a hole injection layer having higher hole injection efficiency is stacked may be used. With such a structure, the organic EL element can be further reduced in cost and drive voltage.
  • triphenylamine derivative materials materials having a center of symmetry, among them, starburst amine is particularly preferable because it can be more hardly solubilized because the molecules are easily arranged and the solvent resistance is improved.
  • the hardly soluble layer 3a is formed by subjecting the surface of the low molecular hole transport layer 3 to a surface treatment with an ether compound or an organic acid.
  • This hardly soluble layer 3a has a relatively strong bond due to intermolecular interaction between ether and amine in the case of surface treatment with an ether compound, and in the case of surface treatment with an organic acid, it has an acid-base reaction. Configured as having a strong bond.
  • the ether compound When an ether compound is used for the surface treatment for forming the hardly soluble layer 3a, the ether compound preferably has 5 to 15 carbon atoms. Furthermore, in the compound represented by Chemical Formula 1 or Chemical Formula 2, it is preferable that R1, R2, and R3 are alkyl groups having 2 to 6 carbon atoms.
  • ether compound that satisfies this condition exhibits a high intermolecular interaction with the constituent material of the low molecular hole transport layer 3, and thus the surface of the low molecular hole transport layer 3 treated thereby exhibits a high solvent solubility.
  • the boiling point of the ether compound is desirably 50 ° C. or higher and 250 ° C. or lower. If the boiling point is less than 50 ° C., the ether compound is volatilized immediately, so that there is a possibility that a sufficiently poorly soluble layer 3a cannot be formed. If the boiling point is higher than 250 ° C., the excess ether compound is removed after the surface treatment. This is because the treatment at a high temperature for a long time is required and the productivity is lowered.
  • dipropyl ether dibutyl ether, dipentyl ether, dihexyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, and the like. More specifically, 1,1'-dipropyl ether, di-iso-propyl ether, etc. as dipropyl ether, 1,1'-dibutyl ether, 2,2'-dibutyl ether, di-tert-butyl ether as dibutyl ether 1,1,1′-dipentyl ether, 2,2′-dipentyl ether, 3,3′-dipentyl ether, etc.
  • dipentyl ether 1,1′-dihexyl ether, 2,2′-dihexyl ether, 3 , 3'-dihexyl ether, etc., ethylene glycol-1,1'-dipropyl ether, ethylene glycol di-iso-propyl ether, etc., ethylene glycol 1,1'-diethylene, ethylene glycol dibutyl ether, etc.
  • the organic acid when using an organic acid for the surface treatment for forming the poorly soluble layer 3a, includes a sulfonic acid compound, a carboxylic acid compound, a hydroxy compound, a thiol compound, an enol compound, or an organic phosphoric acid compound. It is done.
  • a highly acidic sulfonic acid compound is desirable, and then a carboxylic acid compound and an organic phosphoric acid compound are desirable.
  • the sulfonic acid compound include benzenesulfonic acid, paratoluenesulfonic acid, dodecylbenzenesulfonic acid, and ethanesulfonic acid.
  • Examples of the carboxylic acid compound include 4-methylbenzoic acid, acetic acid, formic acid, oxalic acid, phthalic acid, and malonic acid.
  • Examples of the hydroxy compound include phenol and picric acid.
  • Examples of the thiol compound include 1-propanethiol, examples of the enol compound include pentanedione, and examples of the organic phosphate compound include bis (2-ethylhexyl) phosphate.
  • a solution containing an ether compound or an organic acid is applied by a spin coating method, a dip method, a spray method, or the like.
  • the method include a method and a method of exposing to a vapor containing an ether compound or an organic acid, but the method is not limited thereto.
  • the above-described method is desirable in consideration of mass productivity.
  • the surface of the low molecular hole transport layer 3 is washed with an alcohol or a hydrocarbon solvent or the low molecular hole transport layer is removed in order to remove surplus ether compounds or surplus organic acids present on the surface. 3 may be heated.
  • the concentration of the solution containing the ether compound or organic acid or the vapor concentration of the ether compound or organic acid depends on the material of the low molecular hole transport layer 3. As long as the molecular structure is not altered, there is no particular limitation.
  • the ether compound or the organic acid may be volatilized and removed by performing a heat treatment.
  • the heat treatment temperature is desirably below the glass transition point of the low molecular hole transport material, and below the melting point when there is no glass transition point.
  • heat treatment may be performed to further strengthen the poorly soluble effect.
  • the heat treatment temperature at this time and the heating temperature for removing the above-described excess ether compound or excess organic acid are equal to or lower than the glass transition point of the low-molecular material constituting the low-molecular hole transport layer 3, and there is no glass transition point. Is preferably below the melting point.
  • the film thickness of the hardly soluble layer 3a is preferably 10 nm or less. This is because the poorly soluble layer 3a has a lower hole mobility than the low molecular hole transport layer 3, and when the thickness of the hardly soluble layer 3a is greater than 10 nm, the driving voltage is increased.
  • the light emitting layer 4 is composed of a mixture of a polymer material (polymer organic light emitting material) and a low molecular material.
  • a polymer material polymer organic light emitting material
  • a polyfluorene (PFO) polymer a polyfluorene (PFO) polymer, a polyphenylene vinylene (PPV) polymer, a polyvinyl carbazole (PVK) polymer, or the like
  • a fluorescent dye or a phosphorescent dye can be used as the polymer.
  • those dispersed in polystyrene-based polymers, polythiophene-based polymers, polymethylmethacrylate-based polymers, and the like can be used.
  • These polymer materials are, for example, toluene, xylene, acetone, anisole, methylanisole, dimethylanisole, tetralin, ethyl benzoate, methyl benzoate, methyl ethyl ketone, cyclohexanone, methanol, ethanol, isopropyl alcohol, ethyl acetate, butyl acetate, water
  • the light-emitting layer 4 can be formed by a coating method using the coating solution prepared by dissolving together with a low molecular weight material alone or in a mixed solvent such as the above.
  • aromatic solvents such as toluene, xylene, anisole, methylanisole, dimethylanisole, tetralin, ethyl benzoate and methyl benzoate have high solubility of polymer materials and are easy to handle. Therefore, it is a more preferable solvent.
  • a spin coating method, an ink jet method, a printing method, a dip coating method, a spray method, or the like can be used.
  • a high temperature drying process is performed in order to volatilize the solvent. If this processing temperature exceeds the glass transition point of the low molecular hole transport layer material, the mixture of both at the interface Since deterioration of characteristics occurs, it is desirable that the glass transition point of the constituent material of the low molecular hole transport layer 3 is 120 ° C. or higher, which is a commonly used drying temperature.
  • the low molecular material added to the polymer material may be either a hole transport material, an electron transport material or both.
  • the light emitting layer 4 It is desirable that the HOMO-LUMO gap of the low molecular weight material contained in is larger than the light emission energy of the light emitted from the light emitting layer 4.
  • the hole transporting material include materials represented by Chemical Formulas 8 to 13
  • examples of the electron transporting material include materials represented by Chemical Formulas 14 to 20.
  • Chemical formula 8 is NPB (N, N′-Bis (naphthalen-1-yl) -N, N′-bis (phenyl) -benzidine) (molecular weight 588, glass transition point 98 ° C.)
  • chemical formula 9 is TPTE (N , N′-bis (4-diphenylamino-4′-biphenyl) -N, N′-diphenyl-4,4′-diaminobiphenyl), (molecular weight 975, glass transition point 143 ° C.)
  • chemical formula 10 is TAPC (Di- [4- (N, N-ditolyl-amino) -phenyl] cyclohexane)
  • chemical formula 11 is NTNPB (N, N′-di-phenyl-N, N′-di- [4- (N, N-di-tolyl-amino) phenyl] benzidine)
  • chemical formula 12 is TCTA (4,4 '
  • the chemical formula 14 is TPBi (2,2 ', 2 "-(1,3,5 -Benzinetriyl) -tris (1-phenyl-1-H-benzimidazole))
  • chemical formula 15 is Bphen (4,7-Diphenyl-1,10-phenanthroline)
  • chemical formula 16 is OXD-7 (1,3-Bis [2- (4-tert-butylphenyl) 1,3,4-oxadiazo-5-yl] benzene)
  • Chemical Formula 17 is PADN (2-phenyl-9,10-di (naphthalen-2-yl) -anthracene)
  • Chemical Formula 18 is TAZ (3- ( 4-Biphenylyl) -4-phenyl-5-tert-butylphenyl-1,2,4-triazole)
  • chemical formula 19 is TPB3 (1,3,5-Tri (pyren-1-yl) benzene)
  • chemical formula 20 is , TPBA (2,2′-Bi (9,
  • the present invention is not limited to these specific examples.
  • the mixing amount of such a low molecular material is 1% by weight or more of the total amount of the high molecular material and the low molecular material constituting the light emitting layer 4, the binder effect can be surely obtained.
  • the mixing amount of the low molecular weight material is 50% by weight or more, the added low molecular weight material itself works as a quenching site, so that the efficiency is lowered.
  • the mixing amount of the low molecular weight material is preferably less than 50% by weight.
  • the low molecular material contained in the light emitting layer 4 may be either a hole transporting material or an electron transporting material or both, but it is more desirable that at least the hole transporting material is contained. Both hole transport material and electron transport material can be expected to improve the reliability by improving the interfacial adhesion due to the binder effect, but the hole transport material improves the hole injection property from the hole transport layer to the light emitting layer 4 This is because it can be expected to have a higher efficiency. Further, by further adding a luminescent dye to the light emitting layer 4, it is possible to further improve the light emission efficiency and the color rendering properties.
  • the electron injection electrode 5 has a low work function electrode structure, for example.
  • an alkali metal or alkaline earth metal a laminate of an alkali metal or alkaline earth metal and a metal electrode such as aluminum, or an alkali metal or alkaline earth metal halide and a metal electrode such as aluminum.
  • Al / Ca, Al / Ba, Al / Li, Al / LiF, Al / CsF, Al / Ca / LiF, and Al / BaO can be used.
  • the organic EL element 100 is configured and manufactured. Next, the operation and effect of such an organic EL element 100 will be described.
  • the organic EL element 100 employs a laminated structure of a low molecular hole transport layer 3 formed by a vacuum vapor deposition method and a light emitting layer 4 configured by mixing a high molecular material and a low molecular material. . That is, a polymer / low molecule stacked organic EL device in which a light emitting layer 4 made of a polymer material is disposed on the low molecular hole transport layer 3, and a low molecular material is mixed with the polymer material constituting the light emitting layer 4. State. By adopting such a structure, the following effects can be obtained.
  • a low molecular weight organic EL device with a hole transport layer made of a low molecular weight material can be used to form organic EL devices that are durable at high temperatures and have a long lifetime, but a number of vacuum deposition devices (vacuum deposition chambers) are connected.
  • vacuum deposition devices vacuum deposition chambers
  • the vacuum deposition process is only a cathode formation process, and other than that, a non-vacuum process can be used, so that low cost formation is possible.
  • the hole transport layer is not composed of a polymer material so as to be a problem in the polymer organic EL element, but a vacuum deposition method having high temperature durability and stable characteristics. It is replaced with a hole transport layer made of low molecular weight material. That is, a polymer / low molecule stacked organic EL element in which the light emitting layer 4 containing a polymer material is disposed on the low molecular hole transport layer 3 is formed. For this reason, like a low molecular organic EL element, it becomes possible to improve high temperature durability, lifetime, and voltage increase accompanying driving.
  • the formation process of the low molecular hole transport layer 3 and the formation process of the electron injection electrode 5 are performed in a vacuum deposition process, the formation of the low molecular hole transport layer 3 is smaller than that of the polymer organic EL element.
  • the number of vacuum deposition steps will increase, resulting in a slightly higher manufacturing cost.
  • the manufacturing method of the present embodiment can reduce the cost as compared with a low molecular organic EL element that requires vacuum evaporation in all steps. Thereby, the organic EL element which can be used suitably as a vehicle-mounted display element can be formed.
  • the light emitting layer 4 made of a polymer material is formed on the low molecular hole transport layer 3 by a coating method, so that the low molecular hole transport is
  • the low molecular weight material constituting the layer 3 is dissolved in the solvent of the coating solution in which the high molecular weight material is dissolved, and the interface mixed layer is formed, resulting in a problem that the light emission efficiency is lowered.
  • a technique for improving this problem a technique using a poorly soluble material for the low molecular hole transport layer 3, a technique for forming a poorly soluble layer 3 a by surface treatment with an organic acid or an ether compound, and making the surface hardly soluble can be considered. .
  • the low molecular weight material can be prevented from dissolving in the solvent of the coating solution to form an interfacial mixed layer, the device characteristics can be stabilized and the life can be improved, and the decrease in the luminous efficiency can be suppressed. An effect is obtained.
  • the polymer / low molecule stacked organic EL element using the mixture of the polymer material and the low molecular material for the light emitting layer 4 as in the present embodiment is a low molecular material added to the polymer material. Plays the role of a binder that fills the gap between steric hindrances and forms a entanglement between a high molecular material and a low molecular material. For this reason, the interface between the low molecular hole transport layer 3 and the light emitting layer 4 is an interface with high adhesion and high carrier injection properties. Further, it is possible to achieve higher reliability and longer life by optimizing the formation conditions and materials.
  • the low molecular weight material added to the high molecular weight material works to suppress the crystallization of the high molecular weight material, it becomes possible to dry the light emitting layer 4 at a higher temperature than before after forming the coating. Thus, the remaining solvent concentration can be reduced, and the life can be further extended.
  • concentration of the low molecular material added to the polymer material to be equal to or less than the above-described efficiency reduction concentration due to the interfacial mixing, an interface structure with no efficiency reduction can be obtained.
  • the poorly soluble layer 3a is formed by surface treatment with an organic acid or an ether compound to make the hardly soluble surface
  • the light emitting layer 4 is a mixture of a high molecular material and a low molecular material. Combine that.
  • the problem which arises in this case can be solved, obtaining the effect at the time of poorly surface-solubilizing by forming the poorly soluble layer 3a by surface treatment with an organic acid or an ether compound. That is, the hardly soluble layer 3a can prevent the constituent material of the low molecular hole transport layer 3 from being dissolved into the light emitting layer 4, thereby stabilizing the device characteristics and improving the lifetime, and suppressing the decrease in the light emission efficiency. It is possible to obtain an organic EL element having higher durability and high adhesion at the interface between the low molecular hole transport layer 3 and the light emitting layer 4.
  • Example 1 First, a glass substrate was used as the substrate 1, and an ITO electrode serving as the hole injection electrode 2 was formed on the glass substrate to a thickness of 150 nm. Next, as the low molecular hole transport layer 3, N, N, N ′, N ′, N ′′, N ′′ -Hexakis (4′-methyl-biphenyl-4-yl)- Benzene-1,3,5-triamine (molecular weight 1119, glass transition point not observed, melting point 402 ° C.) was formed to 60 nm by vacuum deposition.
  • the surface of the low molecular hole transport layer 3 thus formed on the substrate 1 is dipped in a 1,1′-dibutyl ether solution for 10 minutes to be applied, thereby forming a hardly soluble layer 3a.
  • Heat treatment was performed at 0 ° C.
  • Comparative Example 1 a sample having the same configuration as Example 1 was prepared except that the low molecular weight material was not added to the light emitting layer 4.
  • Example 1 The luminance when the drive current density in the sample and the sample of Comparative Example 1 Example 1 was carried out at room temperature constant current driving at 10 mA / initial driving voltage when the cm 2 V0 (V), the initial luminance 2,400 cd / m 2
  • the half life LT50 (hour) and the number N (number) of dark spots generated per 1 cm 2 when the luminance was reduced to half were examined.
  • Example 1 since the initial driving voltage V0 was lower than that in Comparative Example 1, the addition of the low molecular material to the light emitting layer 4 increased the adhesion at the polymer / low molecule interface, and improved the carrier injection property. It can be said. In addition, dark spots are thought to be formed by peeling at the polymer / low molecular interface, but the drive life has been dramatically improved and no dark spots have been generated. It can be said that a stable polymer / low molecular interface is obtained.
  • a high molecular / low molecular interface having high adhesion and stability and good carrier injection properties can be obtained, and has a long lifetime and high reliability. It can be seen that the element can be formed.
  • Example 2 TAPA (Di- [4- (N, N-diphenyl-amino) -phenyl] adamantane) of chemical formula 13 is used as a low-molecular material different from Example 1, specifically, as the low-molecular material of the light emitting layer 4.
  • a sample of the organic EL element 100 was manufactured in the same manner as in Example 1 using the hole transporting low molecular weight material represented.
  • Example 3 In this example, OXD-7 (1,3-Bis [2- (4-tert-butylphenyl) -1, represented by the chemical formula 16 is used as a low molecular weight material different from Example 1, specifically, as the low molecular weight material of the light emitting layer 4.
  • a sample of the organic EL device 100 was produced in the same manner as in Example 1 using an electron transporting low molecular weight material represented by 3,4-oxadiazo-5-yl] benzene).
  • Example 4 In this example, TPTE (N, N′-bis (4-diphenylamino-4′-biphenyl) -N, N of the formula 9 is used as a low molecular weight material different from that in Example 1; A hole transporting low molecular weight material represented by '-diphenyl-4,4'-diaminobiphenyl) and OXD-7 (1,3-Bis [2- (4-tert-butylphenyl) -1,3,4 - oxadiazo-5-yl] benzene), and the weight mixing ratio of the hole transporting low molecular weight material to the electron transporting low molecular weight material is 1: 1, and the polymer A sample of the organic EL device 100 was manufactured in the same manner as in Example 1 with the weight mixing ratio of the total amount of the material and the low molecular material set to 3: 1.
  • the initial drive voltage V0, the luminance half life LT50, and the number N of dark spots generated were examined in the same manner as in Example 1.
  • V0 6.0
  • LT50 134
  • N 0.
  • FIG. 2 is a table summarizing the initial driving voltage V0, the luminance half life LT50, and the number N of dark spots generated for the samples manufactured in the above examples and the sample of Comparative Example 1.
  • the initial drive voltage V0 is lowered and the drive life is also improved as compared with Comparative Example 1.
  • no dark spots are generated.
  • the light emitting layer 4 is made of the polymer.
  • a high molecular / low molecular interface with high adhesion and stability and good carrier injection properties can be obtained, and a highly durable and highly reliable organic EL device can be obtained. It becomes possible. In particular, when a hole transporting low molecular weight material is added, it is significantly reduced. For improving the hole injection property from the low molecular hole transporting layer 3 to the light emitting layer 4, the polymer material constituting the light emitting layer 4 is used. It is particularly effective to add a hole transporting low molecular weight material.
  • Example 5 In this example, the effect of inhibiting crystallization during high-temperature drying by a low-molecular material added to a high-molecular material is confirmed.
  • the drying temperature after applying the light emitting layer 4 is set to 180 ° C. Dried.
  • a sample of the organic EL element 100 was manufactured by the same method as in Example 1.
  • Comparative Example 3 a sample having the same configuration as that of Comparative Example 1 was prepared except that the drying temperature after applying the light emitting layer 4 was 180 ° C.
  • Example 5 As a result of driving the room temperature constant current in Example 5 and Comparative Example 3 at an initial luminance of 2400 cd / m 2 , in Example 5, the luminance half-life LT50 was not short-circuited during driving in 215 hours, whereas Comparative Example 3 Then, before the half-life was reached, the device was short-circuited in 20 hours, and light emission could not be obtained. In Comparative Example 3, the light emitting layer 4 was crystallized due to high temperature drying, and thus the device was easily short-circuited. In Example 5, the added low molecular weight material acts to inhibit polymer crystallization. Furthermore, no crystallization occurred and no short circuit occurred even when drying at high temperature. Further, Example 5 has a longer life than Example 1, and it was confirmed that the life was extended due to the effect of reducing the residual solvent concentration in the film by high-temperature drying.
  • Example 6 the efficiency was examined when the HOMO-LUMO gap of the low molecular material added to the polymer material was smaller than the emission energy.
  • fullerene C 60 represented by the following chemical formula 21 is used as the low molecular material included in the light emitting layer 4, and the weight mixing ratio of the high molecular material and the low molecular material is 10: 1.
  • a sample of the organic EL element 100 was manufactured in the same manner as in Example 1.
  • the HOMO-LUMO gap of fullerene C 60 represented by Chemical Formula 21 is 1.7 eV, which is smaller than the emission energy.
  • Example 1 When the maximum luminous efficiency per unit current density in Example 1 was I1 (cd / A) and the maximum luminous efficiency in this example was I6 (cd / A), the value of I6 / I1 was 0.45. That is, it was found that when a material having a small HOMO-LUMO gap is added, the light emitted from the light emitting layer 4 is absorbed by the low molecular weight material and the efficiency is lowered.
  • the HOMO-LUMO gap of the low molecular material contained in the light emitting layer 4 is the light emitting layer as in Example 1 or the like. It can be said that it is desirable to be larger than the light emission energy of the light emitted from 4.
  • Example 7 In this example, the effect of changing the concentration of the low molecular material added to the polymer material was examined.
  • Example 1 various samples in which the concentration of the low molecular material in the light emitting layer 4 was changed in Example 1 were manufactured. Then, the maximum luminous efficiency I (cd / A) of each sample, in the case where the maximum luminous efficiency of Comparative Example 1 low molecular weight material concentration is 0% by weight was I 0 (cd / A) I / I 0 I examined the changes. As a result, the graph shown in FIG. 3 was obtained.
  • the efficiency becomes larger at 1% by weight or more than at 0% by weight, but at 50% by weight or more, the efficiency becomes lower than at 0% by weight. It can be said that a concentration of less than 50% by weight is desirable.
  • the said embodiment comprises by mixing a high molecular material and a low molecular material on the low molecular hole transport layer 3, achieving surface insolubilization by forming the poorly soluble layer 3a by surface treatment by an organic acid or an ether compound.
  • the structure in which the light emitting layer 4 is arranged is shown, which shows a better combination. For this reason, it is good also as a structure which has arrange
  • FIG. 23 is a schematic cross-sectional view showing the configuration of the organic EL element 200 according to the embodiment of the present invention.
  • An organic EL element 200 according to the embodiment is configured.
  • the organic EL element 200 having such a structure is manufactured as follows, for example. First, after forming the hole injection electrode 2 on the substrate 1, the low molecular hole transport layer 3 is formed by a vacuum deposition method. Subsequently, a surface treatment with an ether compound is performed on the surface of the low molecular hole transport layer 3 to form a hardly soluble layer 3 a at the interface between the low molecular hole transport layer 3 and the polymer light emitting layer 4. Then, after the polymer light emitting layer 4 is formed by a coating method, the electron injection electrode 5 is formed by a vacuum deposition method. Finally, the organic EL element 200 shown in FIG. 23 is manufactured by sealing by bonding a metal can (not shown) in a dry nitrogen atmosphere. Although the conveyance method between each process is not specifically limited, It is desirable that it is conveyance in a dry atmosphere.
  • the low molecular hole transport layer 3 is desirably a triphenylamine derivative material having a high hole transport property that can obtain a relatively high intermolecular interaction effect with the ether compound.
  • heating is usually performed at about 120 ° C. If the heating process exceeds the glass transition point of the low molecular material, the low molecular material Because the interface roughness increases due to the coagulation of the particles and the mixing of the two causes deterioration of the properties, the glass transition point of the low molecular material is lower than the solvent drying temperature after applying the polymer material, that is, the material having a temperature of 120 ° C. or higher.
  • the molecular hole transport layer 3 is preferably used.
  • the sublimation temperature of the constituent material of the low molecular hole transport layer 3 is desirably 300 ° C. or higher at a vacuum degree of 1 Pa. This is because when the sublimation temperature is lower than 300 ° C., the vapor deposition temperature becomes 200 ° C. or lower when forming a vapor deposition film under a high vacuum of 10 ⁇ 5 Pa or less, and it becomes difficult to control the vapor deposition rate, This is because a deposited film having a uniform film density cannot be formed.
  • the hardly soluble layer 3a is formed by subjecting the surface of the low molecular hole transport layer 3 to a surface treatment with an ether compound.
  • FIG. 24 shows the surface of a hardly soluble layer formed by forming a low molecular hole transport layer 3 made of a low molecular material represented by Chemical Formula 3 by vacuum deposition and then performing surface treatment with 1,1′-dibutyl ether. X-ray electron spectroscopy spectrum is shown. In addition to the peak derived from the ether compound, since the peak derived from the reaction between the ether compound and the low molecular material was detected, the reaction compound of the ether compound and the low molecular material constituting the low molecular hole transport layer 3 was hardly soluble. It is considered to be a constituent material.
  • the polymer light emitting layer 4 is composed of a polymer organic light emitting material.
  • a polymer organic light emitting material polyfluorene (PFO) polymer, polyphenylene vinylene (PPV) polymer, polyvinyl carbazole (PVK) polymer, etc. can be used. Those dispersed in a polymer, polystyrene polymer, polythiophene polymer, polymethyl methacrylate polymer, or the like can also be used.
  • polymeric organic light-emitting materials are, for example, toluene, xylene, acetone, anisole, methylanisole, dimethylanisole, tetralin, ethyl benzoate, methylbenzoate, methylethylketone, cyclohexanone, methanol, ethanol, isopropyl alcohol, ethyl acetate, butyl acetate.
  • the polymer light emitting layer can be formed by a coating method using a coating solution prepared by dissolving in water or the like alone or in a mixed solvent.
  • aromatic solvents such as toluene, xylene, anisole, methylanisole, dimethylanisole, tetralin, ethyl benzoate, and methyl benzoate are particularly easy to handle because of their high solubility in high-molecular organic light-emitting materials. Therefore, it is a more preferable solvent.
  • the organic EL element 200 is configured and manufactured. Next, the operation and effect of such an organic EL element 200 will be described.
  • a low molecular organic material is adopted by adopting a laminated structure of a low molecular hole transport layer 3 formed by a vacuum deposition method and a polymer light emitting layer 4 formed by a coating method. It becomes possible to solve the respective problems of the EL element and the polymer type organic EL element.
  • the polymer / hole transport layer which is a problem in the polymer type organic EL device, is replaced with a low molecular hole transport layer 3 formed by a vacuum deposition method having high temperature durability and stable characteristics.
  • a vacuum deposition method having high temperature durability and stable characteristics.
  • the manufacturing cost is slightly higher than that of a polymer organic EL device, but the manufacturing cost is lower than that of a low molecular weight organic EL device that requires vacuum evaporation in all steps. It becomes possible to do.
  • the organic EL element 200 of the present embodiment can be used as, for example, an in-vehicle display element, particularly a segment display element.
  • the polymer light emitting layer 4 is formed on the low molecular hole transport layer 3 by a coating method. Since the material dissolves in the solvent of the coating solution for the polymer light emitting layer 4 and an interface mixed layer is formed, the light emission efficiency may be lowered.
  • the low molecular hole transport layer 3 is surface-treated with an ether compound.
  • the poorly soluble layer 3a by the reactive compound can be formed at the interface between the low molecular hole transport layer 3 and the polymer light emitting layer 4.
  • the surface treatment of the low molecular hole transport layer 3 with an ether compound can suppress a decrease in light emission efficiency, and the organic EL element 200 can be formed with a highly efficient polymer / low molecular stack.
  • Type organic EL elements higher efficiency leads to longer life of the device.
  • the method of poorly solubilizing with an ether compound is stable over a long period of time because it does not contain unstable crosslinkable functional groups and cannot be completely polymerized compared to the method of polymerizing a crosslinkable organic compound to make it poorly soluble.
  • the lifetime of the device can be extended because the phenomenon of shortening the lifetime due to radicals does not occur.
  • the organic EL element 200 can be used as an in-vehicle display element, particularly a segment display element, which is low in cost and has high temperature durability and a long life.
  • Example 8 First, a glass substrate was used as the substrate 1, and an ITO electrode serving as the hole injection electrode 2 was formed on the glass substrate to a thickness of 150 nm. Next, as the low-molecular hole transport layer 3, N, N, N ′, N ′, N ′′, N ′′ -Hexakis (4′-methyl-biphenyl-4-yl) -benzene-1,3,5-triamine (molecular weight 1119, glass transition point not observed, melting point 402 ° C.) was formed to 60 nm by vacuum deposition. .
  • the surface of the low molecular hole transport layer 3 thus formed on the substrate 1 is dipped in a 1,1′-dibutyl ether solution for 10 minutes to be applied, thereby forming a hardly soluble layer 3a.
  • Heat treatment was performed at 0 ° C.
  • the polymer light emitting layer 4 was prepared by applying a spin coat method using a coating solution in which a polymer light emitting material having a weight average molecular weight of about 40000 was purified by dissolving (ADS233YE) in a xylene solvent and then drying at 120 ° C. Was formed to 100 nm.
  • Comparative Example 3 a sample having the same configuration as Example 8 was prepared except that the surface treatment with an ether compound was not performed.
  • Example 9 a sample of the organic EL element 200 was manufactured in the same manner as in Example 8 using an ether compound different from that in Example 8. Specifically, di-iso-propyl ether was used as the ether compound.
  • Example 10 a sample of the organic EL element 200 was manufactured by the same method as in Example 8 using an ether compound different from that in Example 8. Specifically, 1,1′-dihexyl ether was used as the ether compound.
  • Example 11 Also in this example, a sample of the organic EL element 200 was manufactured by the same method as in Example 8 using an ether compound different from that in Example 8. Specifically, ethylene glycol diethyl ether was used as the ether compound.
  • the poorly soluble layer 3a is formed by exposing the surface of the low molecular hole transport layer 3 to a vapor containing an ether compound, and a sample of the organic EL element 200 is manufactured by the same method as in Example 8 except for that. did. Specifically, 1,1'-dibutyl ether is used as the ether compound, and as a treatment method, 1,1'-dibutyl ether is heated to 80 ° C in nitrogen gas to reduce the pressure in the saturated vapor pressure state. A method of exposing the surface of the molecular hole transport layer 3 for 4 hours was performed.
  • Example 13 In this example, after the surface treatment with the ether compound was performed to form the polymer layer, the ether compound was volatilized and removed by performing the heat treatment. Otherwise, the organic EL was conducted in the same manner as in Example 8. A sample of the device 200 was manufactured. Specifically, the ether compound was ethylene glycol diethyl ether, and after the polymer light emitting layer 4 was formed, a heat treatment at 150 ° C. was performed.
  • FIG. 25 is a chart summarizing comparison results I / I 0 between the maximum luminous efficiency I (cd / A) per unit current density in each of the above examples and the maximum luminous efficiency I 0 (cd / A) in Comparative Example 3. is there.
  • each example has a higher luminous efficiency than the comparative example 3, and therefore the organic EL element 200 shown in the above embodiment can be made highly efficient. I understand.
  • Example 13 since the ether compound is volatilized and removed by heat treatment, it is possible to further improve the light emission efficiency as compared with Example 11 having the same configuration. This shows that it is effective to volatilize and remove the ether compound by performing a heat treatment or the like.
  • FIG. 26 is a diagram showing temporal changes in each luminance when Example 8 and Comparative Example 3 are driven at a constant current in an environment of 25 ° C. at an initial luminance of 600 cd / m 2 . From this figure, it can be seen that Example 8 is a stable and long-life element with less decrease in luminance than Comparative Example 3. Here, Example 8 is taken as an example, but the same result is obtained in other examples. This also shows that the organic EL element 200 shown in the above embodiment has a long life.
  • the low molecular hole transport layer 3 is made of a constituent material different from that of Example 8, and the other samples of the organic EL element 200 were manufactured by the same method as in Example 8. Specifically, N, N, N ′, N ′, -Tetrakis- (4′-methyl-biphenyl-4-yl) -N ′′, represented by the chemical formula 4 described above, N ′′,-biskis- (4′-methyl-phenyl) benzene-1,3,5-triamine (molecular weight 976, glass transition point 180 ° C.) was used as a constituent material of the low molecular hole transport layer 3.
  • Comparative Example 4 a sample having the same configuration as in Example 14 was prepared except that the surface treatment with an ether compound was not performed.
  • the low-molecular hole transport layer 3 is made of a material different from that of Example 8, and the other samples of the organic EL element 200 were manufactured in the same manner as in Example 8. Specifically, t-Bu-TBATA (N, N, N ′, N ′, N ′′, N ′′ -Hexakis (4′-tert-butylbiphenyl-4-yl) -tris (4-aminophenyl) amine) (molecular weight 1540, glass transition point 203 ° C.) was used as a constituent material of the low molecular hole transport layer 3.
  • Comparative Example 5 a sample having the same configuration as in Example 15 was prepared except that the surface treatment with an ether compound was not performed.
  • FIG. 27 is a schematic cross-sectional view showing the configuration of the organic EL element 300 according to the embodiment of the present invention. As shown in this figure, a structure in which a hole injection electrode 2, a low molecular hole transport layer 3, a hardly soluble layer 3 a, a polymer light emitting layer 4 and an electron injection electrode 5 are laminated on a substrate 1 in this order. An organic EL element 300 according to the embodiment is configured.
  • the organic EL element 300 having such a structure is manufactured as follows, for example. First, after forming the hole injection electrode 2 on the substrate 1, the low molecular hole transport layer 3 is formed by a vacuum deposition method. Subsequently, a surface treatment with an organic acid is performed on the surface of the low molecular hole transport layer 3 to form a hardly soluble layer 3 a at the interface between the low molecular hole transport layer 3 and the polymer light emitting layer 4. Then, after the polymer light emitting layer 4 is formed by a coating method, the electron injection electrode 5 is formed by a vacuum deposition method. Finally, the organic EL element 300 shown in FIG. 27 is manufactured by sealing by bonding a metal can (not shown) in a dry nitrogen atmosphere. Although the conveyance method between each process is not specifically limited, It is desirable that it is conveyance in a dry atmosphere.
  • the surface treatment with an organic acid, the formation of the polymer light emitting layer, and the sealing step are not limited, but are preferably performed in a dry inert gas atmosphere such as a glove box.
  • various sealing methods such as sealing by bonding glass or a film with a barrier, and thin film sealing methods for directly forming a thin film such as a silicon nitride film can be applied. It is.
  • the low-molecular hole transport layer 3 is desirably a triphenylamine derivative material that has an acid-base reaction effect with an organic acid and has a high hole transport property.
  • heating is usually performed at about 120 ° C. If the heating process exceeds the glass transition point of the low molecular material, the low molecular material Because the interface roughness increases due to the coagulation of the particles and the mixing of the two causes deterioration of the properties, the glass transition point of the low molecular material is lower than the solvent drying temperature after applying the polymer material, that is, the material having a temperature of 120 ° C. or higher.
  • the molecular hole transport layer 3 is preferably used. Specifically, materials satisfying these conditions include materials represented by chemical formulas 3 to 7 and 9.
  • the single layer structure is not necessarily required.
  • a low molecular hole transport layer having a high organic acid treatment effect is arranged on the most polymer light emitting layer 4 side, and a low molecular hole transport layer having a lower cost or higher hole mobility is disposed under the low molecular hole transport layer, A structure in which hole injection layers having higher hole injection efficiency are stacked may be employed. With such a structure, the organic EL element can be further reduced in cost and drive voltage.
  • the hardly soluble layer 3a is formed by subjecting the surface of the low molecular hole transport layer 3 to a surface treatment with an organic acid.
  • the organic acid is contained in the low molecular hole transport layer 3 in a state where the organic acid is coated on the surface of the low molecular hole transport layer 3 in the form of a film. It is assumed that the molecule constituting the compound is incorporated into a mixture with a low-molecular material or the organic acid compound is chemically reacted with the low-molecular material constituting the low-molecular hole transport layer 3 Is done.
  • Examples of the organic acid used for the surface treatment for forming the hardly soluble layer 3a include sulfonic acid compounds, carboxylic acid compounds, hydroxy compounds, thiol compounds, enol compounds, and organic phosphoric acid compounds.
  • a highly acidic sulfonic acid compound is desirable, and then a carboxylic acid compound and an organic phosphoric acid compound are desirable.
  • examples of the sulfonic acid compound include benzenesulfonic acid, paratoluenesulfonic acid, dodecylbenzenesulfonic acid, and ethanesulfonic acid.
  • Examples of the carboxylic acid compound include 4-methylbenzoic acid, acetic acid, formic acid, oxalic acid, phthalic acid, and malonic acid.
  • Examples of the hydroxy compound include phenol and picric acid.
  • Examples of the thiol compound include 1-propanethiol, examples of the enol compound include pentanedione, and examples of the organic phosphate compound include bis (2-ethylhexyl) phosphate.
  • the surface treatment method of the low molecular hole transport layer 3 with an organic acid for forming the hardly soluble layer 3a includes a method of applying a solution containing an organic acid by a spin coating method, a dip method, a spray method, or the like. Examples include, but are not limited to, exposure to steam. However, considering the mass productivity, the above two methods are desirable. Further, after the surface treatment, in order to remove excess organic acid, rinsing with an organic solvent such as alcohol or hydrocarbon solvent or an aqueous solution may be performed, or the low molecular hole transport layer 3 may be heated.
  • an organic solvent such as alcohol or hydrocarbon solvent or an aqueous solution
  • the concentration of the solution containing the organic acid and the vapor concentration of the organic acid are not particularly limited unless the molecular structure of the material of the low molecular hole transport layer is altered. It is not limited.
  • the organic acid may be volatilized and removed by performing a heat treatment.
  • the heat treatment temperature is desirably below the glass transition point of the constituent material of the low molecular hole transport layer 3, and below the melting point when there is no glass transition point.
  • the low molecular hole transport layer 3 is surface-treated with an organic acid.
  • the poorly soluble layer 3a can be formed in the interface of the low molecular hole transport layer 3 and the polymer light emitting layer 4 by surface treatment.
  • the poorly soluble layer 3a is composed of a chemical reaction product of the constituent material of the low molecular hole transport layer 3 and an organic acid
  • an organic acid compound having a strong bond by an acid-base reaction is formed near the surface.
  • the organic acid compound is extremely hardly soluble in the solvent of the coating solution, and it is considered that the above result was obtained.
  • the surface of the low molecular hole transport layer 3 is coated with an organic acid in the form of a film, or the molecules constituting the organic acid are incorporated into the low molecular hole transport layer 3 and the mixture with the low molecular material. Even in such a state, it is considered that the above result is obtained because it is extremely hardly soluble in the solvent of the coating solution.
  • the surface treatment of the low molecular hole transport layer 3 with an organic acid can suppress a decrease in light emission efficiency, and the organic EL element 300 can be formed with a highly efficient polymer / low molecular stack.
  • Type organic EL elements higher efficiency leads to longer life of the device.
  • the method is difficult to polymerize because it does not contain unstable crosslinkable functional groups and has stable characteristics over a long period of time.
  • the lifetime of the device can be extended because the phenomenon of shortening the lifetime due to radicals does not occur.
  • the organic EL element 300 can be used as an in-vehicle display element, particularly a segment display element, which is low in cost and has high temperature durability and a long life.
  • Example 16 First, a glass substrate was used as the substrate 1, and an ITO electrode serving as the hole injection electrode 2 was formed on the glass substrate to a thickness of 150 nm. Next, N, N, N ′, N ′, N ′′, N ′′ -Hexakis (4′-methyl-biphenyl-4-yl)-represented by the above chemical formula 1 is used as the low molecular hole transport layer 3. Benzene-1,3,5-triamine (molecular weight 1119, glass transition point not observed, melting point 402 ° C.) was formed to 60 nm by a vacuum deposition method, on which dodecylbenzenesulfonic acid was added to 2-propanol as an organic acid. A hardly soluble layer 3a was formed by applying a solution of 7% by weight dissolved by spin coating, and further rinsed with 2-propanol, followed by heat treatment at 120 ° C.
  • Comparative Example 6 a sample having the same configuration as that of Example 16 was prepared except that the surface treatment with an organic acid was not performed.
  • the concentration of the dodecylbenzene sulfonic acid solution is 0.7% by weight, but this concentration is not particularly limited, and even when a concentration of 30% by weight is used, a result similar to the above is obtained. It is confirmed that it can be obtained.
  • Example 17 a sample of the organic EL element 300 was manufactured in the same manner as in Example 16 using an organic acid different from that in Example 16. Specifically, paratoluenesulfonic acid was used as the organic acid.
  • Example 18 Also in this example, a sample of the organic EL element 300 was manufactured in the same manner as in Example 16 using an organic acid different from that in Example 16. Specifically, ethanesulfonic acid was used as the organic acid.
  • Example 19 Also in this example, a sample of the organic EL element 300 was manufactured in the same manner as in Example 16 using an organic acid different from that in Example 16. Specifically, acetic acid was used as the organic acid.
  • Example 20 Also in this example, a sample of the organic EL element 300 was manufactured in the same manner as in Example 16 using an organic acid different from that in Example 16. Specifically, bis (2-ethylhexyl) phosphate was used as the organic acid.
  • the poorly soluble layer 3a is formed by exposing the surface of the low molecular hole transport layer 3 to a vapor containing an organic acid.
  • the sample of the organic EL element 300 is manufactured by the same method as in Example 16. did. Specifically, ethanesulfonic acid is used as the organic acid, and the surface of the low-molecular hole transport layer 3 is placed in an atmosphere in which saturated vapor pressure is obtained by heating ethanesulfonic acid to 80 ° C. in nitrogen gas as a treatment method. The method of exposing for 2 hours was performed.
  • the poorly soluble layer 3a is formed by the method of exposing the surface of the low molecular hole transport layer 3 in the vapor containing the organic acid, and the sample of the organic EL element 300 is manufactured by the same method as in Example 16 except for that. did. Specifically, acetic acid is used as the organic acid, and the method of exposing the surface of the low molecular hole transport layer to a saturated vapor pressure state by heating the acetic acid to 50 ° C. in nitrogen gas for 2 hours as a treatment method. went.
  • Example 23 In this example, the surface treatment with an organic acid was performed to form a polymer layer, and then a heat treatment was performed to volatilize and remove the organic acid. Otherwise, the organic EL was processed in the same manner as in Example 16. A sample of the device 300 was manufactured. Specifically, an organic acid was used as acetic acid, and after the polymer light emitting layer 4 was formed, a heat treatment was performed at 150 ° C. for 10 minutes.
  • FIG. 28 is a table summarizing comparison results I / I0 between the maximum light emission efficiency I (cd / A) per unit current density in each of the above examples and the maximum light emission efficiency I0 (cd / A) in Comparative Example 6.
  • each example has a higher luminous efficiency than the comparative example 6, and therefore, the organic EL element 300 shown in the above embodiment can be made highly efficient. I understand.
  • Example 23 since acetic acid is volatilized and removed by heat treatment, it is possible to further improve the luminous efficiency as compared with Example 19 having the same configuration. From this, it can be seen that it is effective to volatilize and remove the organic acid by heat treatment or the like.
  • any organic acid used in each example showed improvement in luminous efficiency
  • ethanesulfonic acid of Examples 18 and 6 among them obtained particularly high luminous efficiency. This is probably because ethanesulfonic acid has high volatility, and ethanesulfonic acid that was excessive in the formation of the hardly soluble layer 3a volatilized during the formation of the device.
  • Example 22 when the acetic acid vapor of Example 22 was used, it is considered that high luminous efficiency was obtained because excess acetic acid was volatilized during device formation. As described above, when a highly volatile organic acid is used, the low-molecular hole transport material can be hardly solubilized, and the organic EL element 300 can be manufactured at low cost with high temperature durability, high efficiency, and long life. It becomes possible to make it.
  • FIG. 29 is a diagram showing the time change of each luminance when Example 21 and Comparative Example 6 are driven at a constant current in an environment of 25 ° C. at an initial luminance of 600 cd / m 2 . From this figure, it can be seen that Example 21 is a stable and long-life element with less decrease in luminance than Comparative Example 6. Here, Example 21 is taken as an example, but the same result is obtained in other examples. This also shows that the organic EL element 300 shown in the above embodiment has a long life.
  • the low molecular hole transport layer 3 is made of a constituent material different from that of Example 16, and the other samples of the organic EL element 300 were manufactured by the same method as in Example 16. Specifically, the TPT represented by the chemical formula 2 described above was used as a constituent material of the low molecular hole transport layer 3.
  • Comparative Example 7 a sample having the same configuration as in Example 24 was prepared except that the surface treatment with an organic acid was not performed.
  • the low-molecular hole transport layer 3 is made of a material different from that of Example 16, and the sample of the organic EL element 300 was manufactured in the same manner as in Example 16 with respect to others. Specifically, TBPB represented by the above chemical formula 3 was used as a constituent material of the low molecular hole transport layer 3.
  • Comparative Example 8 a sample having the same configuration as Example 25 was prepared except that the surface treatment with an organic acid was not performed.
  • the hole transport layer the high temperature durability of the organic light emitting device as described above is obtained by using a low molecular hole transport layer formed by a vacuum deposition method having high temperature durability and stable characteristics. It is possible to improve the lifetime and the voltage rise accompanying driving. In addition, the light-emitting layer manufacturing cost can be reduced as compared with the case where all layers are formed by vacuum deposition in a low molecular weight organic light-emitting device having a multilayer laminated structure between electrodes. As a result, it is possible to form an organic EL element that can be suitably used as an in-vehicle display element.
  • a material having a molecular weight of 700 or more as a low-molecular material for the hole transport layer, it is difficult to dissolve in a solvent used for forming a light-emitting layer made of a polymer material, and exhibits some solubility. In addition, it becomes easy to suppress the diffusion of the low molecular weight material into the light emitting layer.
  • the low molecular weight material of the hole transport layer a material having a glass transition point or a melting point equal to or higher than the temperature of the drying treatment for volatilizing the solvent after coating or printing formation of the polymer material of the light emitting layer.
  • heat treatment is performed at a temperature equal to or higher than the glass transition point of the low molecular weight material of the hole transport layer, or when there is no glass transition point.
  • the durability of the hole transport layer in forming the light emitting layer for example, the durability to the solvent used for forming the light emitting layer.
  • the current efficiency of the organic EL device can be improved by reducing the driving voltage by forming a structure in which a low molecular hole transport layer that is soluble in a solvent is laminated under a low molecular hole transport layer that is insoluble in a solvent. Is possible.
  • the first layer low molecular weight material in contact with the light emitting layer of the hole transport layer is more resistant to the solvent used when forming the high molecular weight material of the light emitting layer than the second layer low molecular weight material covered by the first layer.
  • the solvent resistance of the hole transport layer can be improved at a low cost.
  • the thickness of the first hole transport layer is made thinner than that of the second layer, so that the low-molecular material for the first layer, which is often expensive due to high solvent resistance, is used. While reducing the amount used, it is possible to achieve both the improvement of the solvent property of the hole transport layer and the reduction of the production cost.
  • the organic light emitting device of this embodiment is driven at a duty ratio of 1/3 or less during one frame period, or emits light during the display period of one frame period between the hole injection electrode and the electron injection electrode.
  • DC driving is performed in which a predetermined DC voltage is supplied.
  • FIG. 30 shows a schematic cross-sectional structure of an organic EL element 400 employed as an example of the organic light emitting element according to this embodiment.
  • the organic EL element 400 includes at least a light emitting layer 4 using a polymer light emitting material between a hole injection electrode 2 functioning as an anode and an electron injection electrode 5 functioning as a cathode.
  • at least a hole transport layer 3 is formed between the light emitting layer 4 and the hole injection electrode 2, and a hole injection / transport low molecular material is formed in the hole transport layer 3 by a vacuum deposition method. The deposited film is adopted.
  • a polymer light emitting material is formed on the hole transport layer 3 as a light emitting layer 4 by a coating method or a printing method.
  • the cathode 5 is laminated
  • a sealing can (not shown) is finally bonded to the element forming side of the substrate 1 and sealed in a dry nitrogen atmosphere.
  • the substrate 1 is a transparent substrate such as glass, but is not limited to glass, and various substrates such as a resin substrate with a barrier film and a metal substrate can be used.
  • the anode 2 can be any conductive material that can form a transparent or translucent electrode.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • tin oxide zinc oxide
  • indium oxide zinc aluminum oxide
  • zinc gallium oxide titanium niobium oxide
  • ITO is a material having advantages such as low resistance, solvent resistance, and excellent transparency.
  • a semi-transparent conductive layer may be formed by vapor-depositing a metal material such as aluminum, gold or silver on the surface of a conductive layer such as ITO or on the substrate 1, or an organic semiconductor such as polyaniline is used. And may be used as an anode. Furthermore, the anode 2 may be formed using other methods.
  • the anode 2 may be patterned into a shape required for a display or the like by etching after film formation, or may be activated by UV treatment or plasma treatment, if necessary.
  • the cathode 5 is desirably made of a material having a low work function, and in particular, the interface with the light emitting layer 4 is desired to have a low work function.
  • a material having a low work function for example, an alkali metal or an alkaline earth metal, an alkali metal or an alkaline earth metal is used.
  • a laminate of a metal electrode such as aluminum, a laminate of an alkali metal or alkaline earth metal halide and a metal electrode such as aluminum, or the like can be used.
  • a laminated structure such as Al / CaF (light emitting layer side) or Al / Ca / LiF (light emitting layer side) can be employed, and these laminated structures can be formed by, for example, a vacuum deposition method.
  • the material of the low molecular hole transport layer 3 will be described in detail later, but the hole transport layer 3 is excellent in purity, density, and flatness by forming a low molecular material using a vacuum deposition method. High quality film can be obtained.
  • the hole transport layer 3 can be formed by a printing method such as an inkjet method, a general pressure transfer method and a laser transfer (LITI) method, a coating method such as spin coating, and vapor phase growth.
  • a printing method such as an inkjet method, a general pressure transfer method and a laser transfer (LITI) method, a coating method such as spin coating, and vapor phase growth.
  • LITI laser transfer
  • the film quality of the hole transport layer 3 is important from the viewpoint of improving the high temperature and high humidity durability of the organic EL element, and as described above, from the viewpoint of the purity, density, flatness of the film, the vacuum deposition method. It is most desirable to use
  • the low molecular material is deposited by vacuum deposition
  • heat treatment is performed before the light emitting layer 4 using the polymer material is formed as described later.
  • the surface serving as the interface with the hole transport layer 3, particularly the light emitting layer 4 can be made smooth and dense, and the resistance (solvent resistance) to the solvent used for forming the light emitting layer can be improved. Can do.
  • the heat treatment temperature is higher than the glass transition point of the low molecular material of the hole transport layer 3 or higher than the melting point in the case of a material having no glass transition point.
  • the heat treatment may be performed in a vacuum deposition film formation chamber or may be performed separately by being transported to a heating unit. In any case, in order to prevent deterioration of low molecular materials due to oxygen, moisture, etc., non-oxidation is performed. It is desirable to heat in an atmosphere, for example, in an atmosphere of an inert gas such as nitrogen gas or argon gas.
  • the hole transport layer 3 when it is necessary to pattern the hole transport layer 3 into a desired shape for each pixel, for example, an opening is formed in a target pattern between the deposition source and the substrate to be deposited.
  • the deposited vapor deposition mask is disposed, and the low molecular hole transport layer 3 is patterned simultaneously with the vapor deposition.
  • This wet treatment is a method in which a polymer material is dispersed in a solvent and this solvent is adhered to the surface to be formed, such as a spin coating method, a dip coating method, a spraying method, an ink jet method as described above, Examples thereof include transfer and printing methods such as the LITI method.
  • transport between the respective steps when forming each layer of the organic EL element 400 described above is not particularly limited, it is desirable to transport in a dry atmosphere.
  • the element sealing method includes a sealing method in which glass or a film with a barrier is bonded to the element forming side of the substrate 1, and a protective thin film such as a silicon nitride film is formed on the cathode 5.
  • a method of sealing the element from the outside by forming it so as to directly cover the entire rear substrate can be applied.
  • such a sealing process and the film-forming process of the polymer light emitting layer 4 are not limited, they can be performed, for example, in a glove box.
  • the molecular weight of the low molecular hole transport material is preferably 700 or more and 2000 or less.
  • the molecular weight is 700 or more, even when a small amount is dissolved in the solvent of the polymer light emitting material dispersion for coating or printing the polymer material, diffusion of the low molecular material into the light emitting layer can be suppressed.
  • the molecular weight is 2000 or less, when a film is formed by a vacuum vapor deposition method, it is easy to heat vapor deposit this material.
  • a solvent drying process is performed.
  • the film is heated to about 120 ° C.
  • the temperature in this drying step is higher than the melting point of the low-molecular material of the hole transport layer 3 when there is no glass transition point or no glass transition point, an increase in interface roughness due to aggregation of the low-molecular material, The mixing of the material and the polymer material occurs, and the device characteristics deteriorate.
  • a material having a glass transition point or melting point equal to or higher than the solvent drying temperature after application of the polymer material for example, 120 ° C. or higher is used as the low molecular weight material of the hole transport layer 3.
  • the hole transport layer 3 since a low molecular material is used as the hole transport layer 3, it is necessary that the material has a high hole transport property.
  • a triphenylamine derivative material As an example, it is desirable to employ a triphenylamine derivative material.
  • Specific examples of the triphenylamine derivative material include, but are not limited to, compounds represented by chemical formulas 5-7 and 9.
  • the triphenylamine derivative material as described above can form the low molecular hole transport layer 3 by a vacuum deposition method.
  • the glass transition temperature Tg of the exemplified triphenylamine derivative material is as follows: TPT of chemical formula (9) is 143 ° C., TBPB of chemical formula (7) is 131.8 ° C., and Spio-1-TAD of chemical formula (6) is 133 When t-Bu-TBATA in the chemical formula (5) is 203 ° C. and these materials are used for the hole transport layer 3, the heat treatment after vacuum deposition is set to be equal to or higher than Tg of these materials.
  • any of the above materials has a glass transition temperature equal to or higher than the heating temperature, and the drying step Thus, alteration of the hole transport layer 3 can be prevented.
  • the material having the center of symmetry has a molecular shape that is relatively close to a sphere, and when it is made into a thin film, the molecules are easily arranged and the solvent resistance is improved. Therefore, it is preferable.
  • starburst amine is particularly preferable because molecules are easily arranged and a thin film excellent in solvent resistance is formed.
  • the triphenylamine derivative materials represented by the chemical formulas 5-7 and 9 each have a portion in which the triphenylamine is arranged in a star shape.
  • the molecular weight of the low-molecular hole transport material is preferably 2000 or less.
  • the molecular weight of t-Bu-TBATA in the above chemical formula (5) is 1540.
  • the compound represented by the chemical formula (22) has the same basic skeleton as t-Bu-TBATA but has a molecular weight of 2165.
  • FIG. 38 shows a compound represented by the chemical formula (22).
  • the evaporation temperature for performing vacuum deposition tends to increase.
  • the temperature at which the compound of the chemical formula (22) is deposited needs to be higher than the t-Bu-TBATA of the chemical formula (5).
  • the sublimation temperature is 300 ° C. or higher at a vacuum degree of 1 Pa. Therefore, when the molecular weight exceeds 2000, the efficiency of vapor deposition is reduced and the sublimation temperature is further increased. Thus, not only the sublimation occurs due to heating, but also molecular decomposition may occur. When the decomposition occurs, the hole transport ability is adversely affected, leading to an increase in the driving voltage of the organic EL element. Therefore, it is preferable to employ a material having a molecular weight of 2000 or less.
  • the hole transport layer 3 is a multilayer of two or more layers, the side in contact with the light emitting layer 4 is a first layer, and the lower layer covered with the first layer is a second layer. At least the first layer and the second layer are different. Low molecular hole transport materials can be employed.
  • the low-molecular material of the first layer at least a material having low solubility (poorly soluble) in a solvent substance used as a solvent for the polymer material is used, and the second layer is hardly soluble in a solvent substance. It is also possible to adopt materials that are not.
  • the material of the hole transport layer 3 has resistance to dissolution of the polymer material of the light emitting layer 4 in a solvent.
  • the second layer of the low molecular weight material covered by the first layer has a low dissolution resistance even if the dissolution resistance is low. Elution of low molecular weight materials can be prevented. For this reason, the freedom degree of selection of the material of a 2nd layer is high.
  • the hole transport layer 3 having a multilayer structure has a relationship that the solubility of the first layer is lower than the solubility of the second layer in the polymer light emitting material solvent of the second layer.
  • the first layer employs a triphenylamine derivative material as shown in the above chemical formulas 5-7 and 9, while the second layer shows an ⁇ -NPB represented by the following chemical formula (8) as an example.
  • a material having low solvent resistance can be employed.
  • ⁇ -NPB of the above chemical formula (8) has a molecular weight of 588 and a glass transition temperature of 98 ° C. Even when this material is used for the second layer, a highly stable organic EL device can be obtained.
  • the low molecular hole transport material of the second layer is not limited to this ⁇ -NPB.
  • the first layer can be formed thinner than the other layers (for example, the second layer).
  • the thickness of the first layer should be at least enough to prevent elution of the second layer when it is not resistant to the solvent of the polymer light-emitting layer 4.
  • the thickness may be less than, for example, 10 nm.
  • the low-molecular hole transport material of the first layer that is hardly soluble in the solvent of the polymer light-emitting layer 4 for example, a triphenylamine derivative material such as the above-mentioned starburst amine
  • a triphenylamine derivative material such as the above-mentioned starburst amine
  • each layer of the hole transport layer 3 having a multilayer structure is formed by a vacuum deposition method, as in the case of a single layer.
  • the boundary between the second layer and the first layer is not necessarily clear. From the laminated region of only the second layer component, the mixed region gradually with the first layer component by co-evaporation, only the first layer component A layer structure in which the stacking region and the concentration change stepwise may be used.
  • a hole injection layer may be further provided between the hole transport layer 3 and the anode 2 described above.
  • a material for the hole injection layer a material having a smaller hole injection barrier from the anode 2 than the hole transport layer 3 can be used to increase the efficiency of hole injection into the light emitting layer 4 and reduce the driving voltage. To do.
  • Examples of the material for the hole injection layer include copper phthalocyanine, Tetracanoethylene, 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane, 2- [4-((Bis (2-hydroxyethylethyl) thynephenyl) ) -2,5-cyclohexadiene-1-yldiene] malonitril, 2,3-Dichroro-5,6-dicyano-1,4-benzoquinone, 2,6-Dimethylbenzoquinone, polyaniline and the like.
  • hole injection layers can also be formed by a vacuum deposition method with high film formation quality.
  • hole transport layer materials As the material of the hole transport layer 3 having a single layer structure or the material of the first layer in contact with the light emitting layer 4 in the case of the multilayer structure, in addition to the above chemical formulas 5-7 and 9, the following chemical formula 12, It is possible to use compounds as shown in 23-29 (TCTA, (DNA) PP, TFLFL, TNFL, NPB-CH 2 -NPB, (PTB) DNPP, s-TPT, TBATA material), respectively.
  • the polymer light-emitting material desirably has an average molecular weight of 10,000 or more in consideration of surface flatness after coating and formation of a low element driving voltage.
  • a polyfluorene (PF) polymer for example, a polyfluorene (PF) polymer, a polyphenylene vinylene (PPV) polymer, a polyvinyl carbazole (PVK) polymer, or the like can be used, and a fluorescent dye or a phosphorescent dye can be used.
  • PF polyfluorene
  • PPV polyphenylene vinylene
  • PVK polyvinyl carbazole
  • a fluorescent dye or a phosphorescent dye can be used.
  • Those dispersed in the polymer, polystyrene polymer, polythiophene polymer, polymethyl methacrylate polymer, or the like can also be used.
  • polysilane polymers such as polyphenylene ethynylene (PPE) polymers, polyphenylene (PP) polymers, polyparaphenylene (PPP) polymers, polymethylphenylsilane (PMPS), etc. It is also possible to adopt. These polymers may be used alone, or may be used as a mixture of two or more, or may be used as a mixture with a low molecular material or the like.
  • solvents for these high molecular organic light emitting materials include toluene, xylene, acetone, anisole, methylanisole, dimethylanisole, tetralin, ethyl benzoate, methyl benzoate, methyl ethyl ketone, cyclohexanone, methanol, ethanol, isopropyl alcohol, and ethyl acetate.
  • Butyl acetate, water or the like, or a single or mixed solvent (solvent) can be used.
  • a luminescent layer solution is prepared by dissolving in these solvents, and the obtained luminescent layer solution is adhered onto the hole transport layer 3 by wet treatment such as coating or printing as described above. Thereafter, the polymer light-emitting layer 4 can be formed so as to cover the hole transport layer 3 by removing the solvent by drying.
  • aromatic solvents such as toluene, xylene, anisole, methylanisole, dimethylanisole, tetralin, ethyl benzoate, and methyl benzoate are particularly easy to handle due to the high solubility of the polymer organic light-emitting material. Therefore, it is a more preferable solvent.
  • a coating method a spin coating method, a dip coating method, a spray method, or the like can be used, and as a printing method, a method such as an ink jet method or a transfer method can be used.
  • polyfluorene polymer is a poly [9,9-di- (2'-ethylhexylfluorenyl-2,7'-diyl)] polymer luminescent material, which is a kind of luminescent material.
  • This luminescent material can be dissolved in, for example, a xylene solvent.
  • polyphenylene vinylene polymer is a poly (2-methyl-5- (2'-ethylhexyloxy) -1,4-phenylene vinylene) polymer light-emitting material, which is a kind of light-emitting material.
  • This luminescent material can also be dissolved in, for example, a xylene solvent.
  • the polyvinyl carbazole-based polymer material can be used by mixing with 2- (4-Biphenylyl) -5-phenyl-1,3,4-oxadiazole low molecular weight material and dissolving in a solvent.
  • a solvent for example, dichloroethane can be used.
  • a drying process for removing the solvent is performed.
  • the drying process is performed at about 120 ° C. in a non-oxidizing atmosphere such as an inert gas such as nitrogen gas or argon gas.
  • FIG. 31 shows an example of a display using the organic EL element according to this embodiment.
  • the organic EL device according to the present embodiment can be manufactured at a low cost and has extremely high durability in a high temperature and high humidity environment. For this reason, it is very useful as an in-vehicle display as an example, and FIG. 31 shows an example of this in-vehicle segment type display.
  • the display can be broadly classified into an active matrix type with each pixel having a switch element and a passive matrix type without a switch element.
  • the passive matrix type has a method in which the anode and the cathode are formed in stripes so as to be orthogonal to each other with a light emitting layer interposed therebetween, or one of the anode and the cathode has a shape that is displayed from the beginning, and the other is
  • a segment system which is a common electrode and has a shape displayed by a pixel (a segment type display may be distinguished from a passive matrix type display).
  • the EL element formed in each pixel has almost the entire period in one field period, or 1
  • the display period continues to be selected for a period of about / 3 period.
  • a constant voltage corresponding to the display content is supplied to the EL element of each pixel.
  • a constant voltage is supplied to the EL element during the display period depending on the circuit configuration in the pixel.
  • the EL element according to the present embodiment can display with high reliability for a long time in a driving method (DC driving) in which a constant voltage is applied during such a display period.
  • Example 26 As Example 26 of this patent, an ITO electrode having a thickness of 150 nm was formed on the glass substrate 1 as the anode 2. Next, as the hole transport layer 3, t-Bu-TBATA represented by the chemical formula (5) was deposited to a thickness of 60 nm by a vacuum deposition method.
  • a light emitting layer solution in which an ADS233YE polymer light emitting material manufactured by American Dye Source was dissolved in a xylene solvent was used, and this solution was formed as a polymer light emitting layer on the hole transport layer 3 by spin coating to a thickness of 100 nm.
  • an Al / Ca electrode was formed as a cathode 5 on the light emitting layer 4 by a vacuum deposition method.
  • a metal can and a glass substrate on which the organic EL element 400 was formed were bonded with a photo-curing resin in a glove box, and a sample in which the organic EL element was sealed was created.
  • Example 9 a sample was prepared under the same conditions as in Example 26 except that a PEDOT: PSS polymer material layer formed to 100 nm by spin coating was used as the material for the hole transport layer 3.
  • FIG. 32 shows the time dependence of the drive voltage ratio with respect to the initial drive voltage when the organic EL elements of Example 26 and Comparative Example 9 are driven at a constant current at a current density of 50 mA / cm 2 .
  • the driving voltage ratio increased by 20% or more in 10 hours, whereas in Example 26, stable driving characteristics were obtained without exceeding 20% even after driving for 100 hours.
  • FIG. 33 shows the time dependence of the emission luminance ratio with respect to the initial luminance when the elements of Example 26 and Comparative Example 9 were driven at a constant current at a current density of 50 mA / cm 2 .
  • the luminance was reduced by half in 10 hours, whereas in Example 26, the luminance decreased only by about 20% even when driven for 10 hours, and it can be understood that stable light emission characteristics were obtained.
  • Example 26 was durable for a longer time than Comparative Example 9 and was excellent in high temperature durability. Therefore, the organic EL element having the structure of Example 26 can be suitably used as an element for applications requiring high temperature durability, for example, in-vehicle applications.
  • Example 27 As Example 27, an organic EL element was produced under the same conditions as in Example 26 except that TBPB represented by the chemical formula (7) was used as the material of the hole transport layer 3.
  • FIG. 34 shows the time dependence of the drive voltage ratio with respect to the initial drive voltage when the elements of Example 27 and Comparative Example 9 are driven at a constant current of 50 mA / cm 2 .
  • Example 27 it can be seen that the rate of voltage increase due to driving is suppressed as compared with Comparative Example 9, and stable driving characteristics are obtained. Moreover, the light emission characteristic and high temperature durability showed the same tendency. From this result, it was shown that even if the materials were different, the effect could be obtained if the conditions as in Example 26 were satisfied.
  • Example 28 As Example 28, t-Bu-TBATA represented by the chemical formula (5) was used as the material of the hole transport layer 3, and an organic EL device was produced under the same conditions as in Example 26 described above.
  • an ITO electrode having a thickness of 150 nm was formed on a glass substrate, and t-Bu-TBATA of the chemical formula (5) was formed to 60 nm as the hole transport layer 3 by a vacuum deposition method.
  • a poly [9,9-di- (2′-ethylhexylfluorenyl-2,7′-diyl)] polymer light-emitting material which is a kind of polyfluorene-based light-emitting material, was dissolved in a xylene solvent. It formed in thickness of 100 nm with the spin coat method using the light emitting layer liquid.
  • an Al / Ca electrode is formed on the light emitting layer 4 by vacuum deposition, and finally the metal can and the glass substrate on which the element is formed are bonded with a photo-curing resin in the glove box.
  • a sample in which the fabricated element was sealed was prepared.
  • FIG. 35 shows the time dependency of the drive voltage ratio with respect to the initial drive voltage when the elements of Example 28 and Comparative Example 9 are driven at a constant current density of 50 mA / cm 2 .
  • Comparative Example 9 it increased by 20% or more in 10 hours, whereas in Example 28, stable driving characteristics were obtained without exceeding 20% even when driven for 100 hours.
  • Example 29 As Example 29, an ITO electrode having a thickness of 150 nm was formed on the glass substrate 1 as the anode 2, and a material represented by the chemical formula (5) was used as the hole transport layer 3 to a thickness of 60 nm by a vacuum deposition method.
  • the light-emitting layer 4 As the light-emitting layer 4, a coating solution in which a poly (2-methyl-5- (2′-ethylhexyloxy) -1,4-phenylenevinylene) polymer light-emitting material, which is a kind of polyphenylene vinylene-based light-emitting material, is dissolved in a xylene solvent is used. The film was formed to a thickness of 100 nm by spin coating.
  • an Al / Ca electrode is formed on the light emitting layer 4 as a cathode 5 by a vacuum deposition method, and finally a glass substrate on which a metal can and an element are formed in a glove box A sample was prepared by laminating the film with a photo-curing resin and sealing the fabricated element.
  • FIG. 36 shows the time dependency of the drive voltage ratio with respect to the initial drive voltage when the elements of Example 29 and Comparative Example 9 are driven at a constant current density of 50 mA / cm 2 .
  • Comparative Example 9 it increased by 20% or more in 10 hours, whereas in Example 29, even when driven for 100 hours, it did not exceed 20% and stable driving characteristics were obtained.
  • Example 30 As Example 30, an ITO electrode having a thickness of 150 nm was formed as an anode 2 on a glass substrate, and t-Bu-TBATA represented by the chemical formula (5) was formed as a hole transport layer 3 by 60 nm by a vacuum deposition method.
  • the light-emitting layer 4 spin coating is performed using a coating solution in which 2- (4-Biphenyl) -5-phenyl-1,3,4-oxadiazole low molecular weight material and Polyvinylcarbazole high molecular weight material are dissolved in dichloroethane solvent in equal weight. The thickness was 100 nm by the method.
  • an Al / Ca electrode is formed on the polymer light emitting layer 4 by a vacuum deposition method, and finally a glass can on which a metal can and an element are formed in a glove box is a photo-curing resin.
  • the sample which bonded together and sealed the preparation element was prepared.
  • FIG. 37 shows the time dependency of the drive voltage ratio with respect to the initial drive voltage when the elements of Example 30 and Comparative Example 9 are driven at a constant current density of 50 mA / cm 2 .
  • Comparative Example 9 it increased by 20% or more in 10 hours, whereas in Example 30, even if it was driven for 30 hours, it did not exceed 20% and stable driving characteristics were obtained.
  • Example 31 As Example 31, a sample in which the material represented by the chemical formula (5) was formed at a deposition rate of 5 nm / min as the hole transport layer 3 under the same conditions as in Example 26 was prepared. As Comparative Example 2, a sample in which the material represented by the above chemical formula (22) was formed at a deposition rate of 5 nm / min as the hole transport layer 3 under the same conditions as in Example 26 was prepared.
  • Example 31 and Comparative Example 2 were driven at a current density of 50 mA / cm 2 , the drive voltage of Comparative Example 2 was 30% higher than Example 31.
  • the molecular weight of t-Bu-TBATA represented by the chemical formula (5) is 1540, whereas the molecular weight of the compound of the chemical formula (22) is 2165.
  • the sublimation temperature for vapor-depositing the compound of chemical formula (22) needs to be higher than that of the compound of chemical formula (5), and this sublimation temperature exceeds the decomposition temperature of the material of chemical formula (22). It is thought that the characteristics of the hole transport layer deteriorated and the voltage increased.
  • the molecular weight of the low molecular weight material exceeds 2000, the deposition temperature (sublimation temperature) may exceed the decomposition temperature. Therefore, the molecular weight of the low molecular weight material is preferably 2000 or less. Can understand.
  • the above disclosure includes the following aspects.
  • the organic EL element includes an electrode substrate, a hole injection electrode disposed on the electrode substrate, a hole transport layer disposed on the hole injection electrode, and the hole transport.
  • a light emitting layer disposed on the layer, and an electron injection electrode disposed on the light emitting layer.
  • the hole transport layer is formed of a first low molecular weight material having a molecular weight smaller than a predetermined first molecular weight
  • the light emitting layer includes a high molecular material having a molecular weight larger than a predetermined second molecular weight and a predetermined third molecular weight. It is formed from a mixture of second low molecular weight materials having a molecular weight less than the molecular weight.
  • the durability can be increased by using the low molecular hole transport layer.
  • the light emitting layer is composed of a mixture of a high molecular material and a low molecular material
  • the low molecular material added to the high molecular material acts as a binder to fill the gap of steric hindrance, and the low molecular material and the low molecular material are low. Form entanglement of molecular material. For this reason, the adhesiveness of the interface of a low molecular hole transport layer and a light emitting layer can be made high. Therefore, an organic EL device having high durability and high adhesion at the interface between the low molecular hole transport layer and the light emitting layer can be obtained.
  • the light emitting layer is formed of a coating film
  • the hole transport layer is formed of a vacuum deposited film.
  • the second low molecular weight material has a HOMO-LUMO gap, and the HOMO-LUMO gap is larger than light emission energy of light emitted from the light emitting layer.
  • the light emitting layer includes 1% by weight or more and less than 50% by weight of the second low molecular material of the total amount of the polymer material and the second low molecular material.
  • the binder effect can be reliably obtained by setting the mixing amount of the low molecular weight material to 1% by weight or more.
  • the added low molecular weight material itself works as a quenching site by making the mixing amount of the low molecular weight material less than 50% by weight, it is possible to prevent the efficiency from being lowered.
  • the second low molecular weight material is formed of a hole transport material, an electron transport material, or both.
  • the light emitting layer further has a light emitting dye. In this manner, by adding a luminescent dye to the light emitting layer, it is possible to further increase the light emission efficiency and the color rendering properties.
  • the hole transport layer has a poorly soluble layer.
  • the hardly soluble layer is disposed on the surface of the hole transport layer, and the hardly soluble layer is formed of a surface-treated film obtained by treating the surface of the hole transport layer with an ether compound or an organic acid.
  • a poorly soluble layer can be formed by surface-treating the low molecular hole transport layer with an ether compound or an organic acid. With this hardly soluble layer, it is possible to prevent the constituent material of the low molecular hole transport layer from dissolving into the light emitting layer, and it is possible to stabilize the device characteristics and improve the lifetime, and to suppress the decrease in the light emitting efficiency. Obtainable.
  • the poorly soluble layer is disposed in a portion of the hole transport layer in contact with the light emitting layer.
  • the hole transport layer other than the contacting portion is made of only the second low molecular weight material.
  • the molecular formula of the ether compound includes 5 to 15 carbon atoms.
  • the ether compound is a compound represented by the chemical formula R1-O-R2 or the chemical formula R1-O-R2-O-R3, and R1, R2, and R3 each have 2 to 6 carbon atoms. It is an alkyl group.
  • the ether compound has a boiling point of 50 ° C. or higher and 250 ° C. or lower.
  • the ether compound is any of dipropyl ether, dibutyl ether, dipentyl ether, dihexyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, and ethylene glycol dibutyl ether.
  • the organic acid is a sulfonic acid compound, a carboxylic acid compound, a hydroxy compound, a thiol compound, an enol compound, or an organic phosphoric acid compound.
  • the hardly soluble layer has a thickness of 10 nm or less.
  • the poorly soluble layer has a lower hole mobility than the low molecular hole transport layer. For this reason, when the film thickness of the poorly soluble layer is thicker than 10 nm, the driving voltage must be increased. Therefore, the film thickness of the hardly soluble layer is preferably 10 nm or less.
  • the low molecular material constituting the low molecular hole transport layer has a glass transition point of 120 ° C. or higher, or a melting point of 120 ° C. or higher when there is no glass transition point. That is, when a solvent drying step is performed after application of a polymer material for forming a light emitting layer, heating is usually performed at about 120 ° C. If the heating step exceeds the glass transition point of the low molecular material, the low molecular material is heated. Interfacial roughness increases due to agglomeration and mixing of the two causes the characteristics to deteriorate. For this reason, it is preferable to use a material having a glass transition point equal to or higher than the solvent drying temperature after application of the polymer material, that is, 120 ° C. or higher, as the constituent material of the low molecular hole transport layer.
  • the first low molecular weight material has a sublimation temperature of 300 ° C. or higher when the degree of vacuum is 1 Pa.
  • the sublimation temperature is lower than 300 ° C.
  • the vapor deposition temperature becomes 200 ° C. or lower when the vapor deposition film is formed under a high vacuum of 10 ⁇ 5 Pa or less, and it becomes difficult to control the vapor deposition rate. It is impossible to form a vapor-deposited film having a density. Therefore, it is preferable to use a material having a sublimation temperature of 300 ° C. or higher at a vacuum degree of 1 Pa as a constituent material of the low molecular hole transport layer.
  • the first low molecular weight material is a triphenylamine derivative material.
  • the structure of the triphenylamine derivative material has a center of symmetry.
  • the triphenylamine derivative material is a starburst amine.
  • the organic EL element includes an electrode substrate, a hole injection electrode disposed on the electrode substrate, a hole transport layer disposed on the hole injection electrode, and the hole transport.
  • a poorly soluble layer disposed on the surface of the layer, a light emitting layer disposed on the surface of the poorly soluble layer, and an electron injection electrode disposed on the light emitting layer, wherein the hole transport layer is a predetermined layer Is formed from a low molecular material having a molecular weight smaller than the first molecular weight, the poorly soluble layer is formed from a surface-treated film obtained by treating the surface of the hole transport layer with an ether compound, It is formed from a polymer material having a molecular weight larger than a predetermined second molecular weight.
  • the poorly soluble layer can be formed by surface-treating the low molecular hole transport layer with an ether compound.
  • This hardly soluble layer can prevent the constituent material of the low molecular hole transport layer from being dissolved into the polymer light emitting layer. Therefore, while adopting a structure in which a low molecular hole transport layer and a polymer light emitting layer are laminated, the low molecular hole transport layer is prevented from being dissolved in the polymer light emitting layer, and the device characteristics are stabilized and the lifetime is improved. be able to.
  • the ether compound has a boiling point of 50 ° C. or more and 250 ° C. or less. If the boiling point is less than 50 ° C, the ether compound will volatilize immediately, so there is a possibility that a sufficiently poorly soluble layer cannot be formed. If the boiling point is higher than 250 ° C, excess ether compound is removed after surface treatment. This is because the treatment at a high temperature for a long time is required and the productivity is lowered.
  • the low molecular weight material has a glass transition point of 120 ° C. or higher, or a melting point of 120 ° C. or higher when there is no glass transition point. That is, when the solvent drying step is performed after the application of the polymer material for forming the polymer light-emitting layer, heating at about 120 ° C. is usually performed, but if the heating step exceeds the glass transition point of the low-molecular material, Increased surface roughness due to the aggregation of molecular materials, mixing of the two, and the like will deteriorate the properties. For this reason, it is preferable to use a material having a glass transition point equal to or higher than the solvent drying temperature after coating the polymer material, that is, 120 ° C. or higher, as the constituent material of the low molecular hole transport layer.
  • the low-molecular material has a sublimation temperature of 300 ° C. or higher when the degree of vacuum is 1 Pa.
  • the vapor deposition temperature becomes 200 ° C. or lower when the vapor deposition film is formed under a high vacuum of 10 ⁇ 5 Pa or less, and it becomes difficult to control the vapor deposition rate. It is impossible to form a vapor-deposited film having a density. Therefore, it is preferable to use a material having a sublimation temperature of 300 ° C. or higher at a vacuum degree of 1 Pa as a constituent material of the low molecular hole transport layer.
  • the poorly soluble layer has a thickness of 10 nm or less.
  • the poorly soluble layer has a lower hole mobility than the low molecular hole transport layer. For this reason, when the film thickness of the poorly soluble layer is thicker than 10 nm, the driving voltage must be increased. Therefore, the film thickness of the hardly soluble layer is preferably 10 nm or less.
  • the method of manufacturing an organic EL element includes a step of forming a hole injection electrode on an electrode substrate, a step of forming a hole transport layer on the hole injection electrode, and the hole transport. Treating the surface of the layer with an ether compound to form a poorly soluble layer on the surface of the hole transport layer; forming a light emitting layer on the surface of the poorly soluble layer; and electrons on the light emitting layer.
  • the hole transport layer is formed of a low molecular material having a molecular weight smaller than a predetermined first molecular weight, and the light emitting layer has a molecular weight larger than a predetermined second molecular weight. It is formed from the polymeric material which has.
  • the poorly soluble layer can be formed by surface-treating the low molecular hole transport layer with an ether compound.
  • the ether compound is formed in the low molecular hole transport layer in a state where the ether compound is coated in the form of a film on the surface of the low molecular hole transport layer. Either a state in which molecules are taken in to form a mixture with a low molecular material or a state in which an ether compound has been chemically reacted with the low molecular material constituting the low molecular hole transport layer is assumed. With such a manufacturing method, the organic EL element of the second aspect of the present disclosure can be manufactured.
  • the method for manufacturing an organic EL device further includes a step of volatilizing and removing the ether compound by performing a heat treatment after forming the light emitting layer.
  • the organic EL element includes an electrode substrate, a hole injection electrode disposed on the electrode substrate, a hole transport layer disposed on the hole injection electrode, and the hole transport.
  • a poorly soluble layer disposed on the surface of the layer, a light emitting layer disposed on the surface of the poorly soluble layer, and an electron injection electrode disposed on the light emitting layer, wherein the hole transport layer is a predetermined layer Is formed from a low molecular material having a molecular weight smaller than the first molecular weight, the poorly soluble layer is formed from a surface treatment film obtained by treating the surface of the hole transport layer with an organic acid, It is formed from a polymer material having a molecular weight larger than a predetermined second molecular weight.
  • a poorly soluble layer can be formed by surface-treating the low molecular hole transport layer with an organic acid.
  • This hardly soluble layer can prevent the constituent material of the low molecular hole transport layer from being dissolved into the polymer light emitting layer. Therefore, while adopting a structure in which a low molecular hole transport layer and a polymer light emitting layer are laminated, the low molecular hole transport layer is prevented from being dissolved in the polymer light emitting layer, and the device characteristics are stabilized and the lifetime is improved. be able to.
  • the organic acid is a sulfonic acid compound, a carboxylic acid compound, a hydroxy compound, a thiol compound, an enol compound, or an organic phosphoric acid compound.
  • a method for manufacturing an organic EL element includes a step of forming a hole injection electrode on an electrode substrate, a step of forming a hole transport layer on the hole injection electrode, and the hole transport. Treating the surface of the layer with an organic acid to form a poorly soluble layer on the surface of the hole transport layer; forming a light emitting layer on the surface of the poorly soluble layer; and electrons on the light emitting layer.
  • the hole transport layer is formed of a low molecular material having a molecular weight smaller than a predetermined first molecular weight, and the light emitting layer has a molecular weight larger than a predetermined second molecular weight. It is formed from the polymeric material which has.
  • a poorly soluble layer can be formed by surface-treating the low molecular hole transport layer with an organic acid.
  • the organic acid is formed in the low molecular hole transport layer in a state where the organic acid is coated on the surface of the low molecular hole transport layer in the form of a film. Either a state in which molecules are taken in to form a mixture with a low molecular material or a state in which an organic acid compound is formed by chemical reaction with the low molecular material constituting the low molecular hole transport layer is assumed. With such a manufacturing method, the organic EL element described in the fourth aspect of the present disclosure can be manufactured.
  • the step of forming the sparingly soluble layer includes a step of applying a solution containing an organic acid to the hole transport layer.
  • the step of forming the poorly soluble layer includes a step of exposing the surface of the hole transport layer to a vapor containing an organic acid.
  • the manufacturing method of an organic EL element is characterized by further volatilizing and removing the said organic acid by performing the heat processing after forming the said light emitting layer.
  • the organic light emitting device includes a hole injection electrode, an electron injection electrode, a light emitting layer disposed between the hole injection electrode and the electron injection electrode, the hole injection electrode, and the light emitting layer.
  • the hole transport layer is formed of a low molecular material having a molecular weight smaller than a predetermined first molecular weight, and the hole transport layer is formed of a vacuum deposited film.
  • the light emitting layer covers the hole transport layer, and the light emitting layer includes a polymer material having a molecular weight higher than a predetermined second molecular weight as a light emitting material.
  • a vacuum evaporation layer of a low molecular hole transport material is used as a hole transport layer, and a light emitting layer using a polymer material as a light emitting material is formed by covering the hole transport layer.

Abstract

 ホール輸送層(3)の上に形成される発光層(4)を高分子材料と低分子材料との混合にて構成した高分子/低分子積層型有機EL素子とする。このような構成では、高分子材料に加えられた低分子材料が立体障害の隙間を埋めるバインダーの役割をして高分子材料と低分子材料の絡まりを形成する。このために、ホール輸送層(3)と発光層(4)との界面は、密着性が高く、キャリア注入性も高い界面となる。また、形成条件や材料の最適化によって更なる高信頼化・長寿命化を達成することも可能となる。

Description

有機発光素子とその製造方法 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2008年5月15日に出願された日本特許出願2008-128207および2008年9月23日に出願された2008-243435および2009年2月2日に出願された日本特許出願2009-21390および2009年2月17日に出願された日本特許出願2009-33935を基にしている。
 本発明は、高分子発光材料を用いた有機発光素子およびその製造方法に関するものである。
 従来、特許文献1、2において、ホール輸送層上もしくは陽極上に発光層を直接形成した構造の有機EL素子が開示されている。この有機EL素子では、ホール輸送層を高分子薄膜で構成すると共に、発光層を高分子蛍光体と電子供与性及び/又は電子受容性の有機化合物で構成している。また、特許文献3において、蒸着法で形成された低分子ホール輸送層と塗布法で形成された高分子発光層とを積層した構造が開示されている。
 しかしながら、有機EL素子を車載用表示素子として適用する場合のように、有機EL素子が厳しい環境下で用いられる場合には、ホール輸送層を低分子材料で構成することが重要であり、特許文献1、2に記載の構造のように、ホール輸送層を高分子薄膜で構成することは好ましくない。高分子ホール輸送層がホールを輸送するメカニズムとしては、高分子材料が酸化⇒還元繰り返すことによりホール輸送が行われる。しかしながら酸化された高分子材料が必ず元に戻るわけではなく、酸化したときに別の反応物になってホール輸送層として機能しなくなる部分が発生することにより劣化すると考えられる。特に高分子ホール輸送層は低分子ホール輸送材料に比べてこの劣化が著しいと考えられ、高分子材料で構成したホール輸送層は耐久性に問題がある。
 また、特許文献3では、ホール輸送層を低分子材料で構成していることから、耐久性の面では問題ないが、発光層を単なる高分子材料で構成した場合、ホール輸送層と発光層との界面が低分子材料と高分子材料の界面となるため、界面での膜密度等の物理状態の違いにより密着性が低く、キャリア注入性も低いという問題がある。
 さらには、従来より、低分子型有機EL素子と高分子型有機EL素子がある。低分子型有機EL素子とする場合、高温耐久性が高く長寿命な有機EL素子の形成が可能である反面、真空蒸着装置(真空蒸着チャンバー)が何台も連なった大型の装置が必要となるため、製造コストが非常に高くなるという問題がある。一方、高分子型有機EL素子とする場合、製造プロセス中必要となる真空蒸着工程は陰極形成工程のみであり、それ以外は非真空プロセスを用いることができるので製造コストを低くすることが可能になる。しかしながら、その反面、PEDOT:PSSなどの高分子ホール輸送層の不安定さに起因した高温耐久性の低さ、短寿命、駆動に伴う電圧上昇といった問題が存在する。
 車載表示素子、特にセグメント表示素子として用いるには低コストで高温耐久性が高く長寿命な有機EL素子が必要であるため、このままでは双方共に用いることは困難である。
 このため、真空蒸着法で形成される低分子ホール輸送層と塗布法で形成される高分子発光層との積層構造を採用することにより、上記したそれぞれの問題を解決した有機EL素子が考えられている。ところが、低分子ホール輸送層と高分子発光層とが接触した状態になっていると、高分子塗布液の溶媒に低分子ホール輸送層を構成する低分子材料が溶けてしまう。
 そこで、特許文献3において、高分子塗布液の溶媒に低分子ホール輸送層を構成する低分子材料が溶け難くなる構造の有機EL素子が提案されている。具体的には、低分子ホール輸送材料にシロキサン骨格を有する架橋性有機化合物、シランカップリング化合物を含む架橋性有機化合物、もしくは二重結合基、エポキシ基及び環状エーテル基のうち少なくとも1種類を含む架橋性有機化合物を混合させて蒸着し、蒸着後に熱重合、光重合、電子線重合させることで難溶化して、高分子塗布液の溶媒に低分子材料が溶け難くなるようにしている。
 また、有機塗布膜の溶媒への難溶化技術としては、フォトリソグラフィー法で用いられている感光性塗布液を用いた光重合による難溶化も知られている。
 しかしながら、特許文献3に示されるように蒸着後に熱重合、光重合、電子線重合させることによる難溶化や、感光性塗布液を用いた光重合による難溶化の手法では、不安定な架橋性官能基を含む材料を用いる必要があるために素子特性が不安定になり易い。また、重合し切れなかったラジカルが膜中に残存してしまうために短寿命化し易い。さらに、例えば、難溶化したとしても、上記方法では、溶け出しが完全に抑制される訳ではないため、改善されるとはいえ低分子ホール輸送層の構成材料が高分子塗布液の溶媒に溶け出すという問題は依然として残存している。
 さらに、EL(エレクトロルミネセンス)素子などの自発光素子は、高輝度発光が可能であると共に、低消費電力化、装置の薄型化が可能であり、次世代表示装置、光源装置として注目されている。この自発光素子の一種である有機EL素子では、ホール注入電極と電子注入電極の間に設けられる発光層に有機材料を用いており、発光色の自由度が高い。一方で、発光層などが非常に薄膜であって被覆性が低かったりすることによる耐久性の低さや、採用される有機材料自体の耐久性の低さなどの課題があり、耐久性を高めるための研究開発が行われている。
 このような有機EL素子において、発光有機材料として低分子材料を用いた低分子型有機EL素子と、高分子材料を用いた高分子型有機EL素子とが提案されている。低分子型有機EL素子の場合、発光層だけでなく、ホール輸送層や電子輸送層用にもそれぞれ低分子有機材料が用いられ、各層は、真空蒸着法等によって順次基板上に積層することができる。このような低分子型有機EL素子は、既に実用化が始まっており、用いられる個別の低分子材料だけでなく素子全体として、その信頼性の向上が進みつつある。
 一方、高分子材料を発光材料として用いたEL素子では、高分子材料の基板上への積層方法として、塗布や印刷などの方法を採用することができる。また、単独の高分子有機材料が発光機能およびキャリア輸送機能の両方を備えることが多く、電極間に単層の高分子有機材料層を形成した簡易な構成の有機EL素子を得ることが容易となっている。また、上記のように印刷法によって高分子有機材料を形成することができるため、RGBの画素毎に高分子有機材料をパターニングすることが容易である。
 さらに低分子有機材料と高分子有機材料の両方を有機EL素子に採用する試みもある。例えば、特許文献4では、基板上に第1電極が形成され、第1電極上に低分子発光材料から形成される第1有機膜層、第1有機膜層の上に高分子電子輸送材料から形成される第2有機膜層が形成され、この第2有機膜層の上に第2電極が形成された有機EL素子が示されている。この有機EL素子では、第1電極の上に第1および第2有機膜層を順に積層するのではなく、別途採用したドナーフィルムの上にフィルム側から順に第2有機膜層と、第1有機膜層とが設けられ、このドナーフィルムからレーザ熱転写(LITI)法によって、基板の第1電極上に、第1有機膜層(低分子発光物質層)と第2有機層膜(高分子電子輸送物質)とを同時に転写している。
 特許文献5では、第1電極と第2電極の間に少なくとも発光層を含む機能層を備える有機EL素子であって、機能層として、第1電極側から、高分子有機材料を用いた発光層、この発光層の上に、低分子有機材料で形成された電子輸送層を備えることが提案されている。また、第1電極と発光層との間には、発光層と同様に高分子有機材料を用いたホール注入/輸送層を形成することが提案され、高分子有機材料を用いたホール注入/輸送層および発光層はインクジェット印刷法によって形成されている。
 特許文献6では、陽極と陰極の間に、陽極側からホール注入・輸送層、発光層が積層されて構成された有機EL素子であり、ホール注入・輸送層には高分子材料を用い、これを湿式法によって形成する。発光層には低分子発光材料を用い、かつ湿式法を用いて積層することが提案されている。
 また、特許文献7では、第1電極層と第2電極層の間に発光媒体積層体を備え、この発光媒体積層体には、重量平均分子量が1000以下の低分子材料から成る低分子材料層として形成された層と、重量平均分子量が1000以上の高分子材料から成る高分子材料層として形成された層とを含んでいる。さらに、少なくとも1層の低分子材料層と、少なくとも1層の高分子材料層とが、それらの表面を互いに接して積層されており、つまり、高分子材料層と低分子材料層とが交互に積層された構成により、低分子材料層の表面に結晶化及び凝集が発生することが抑制できると述べている。
 上述のように低分子型有機EL素子は高温耐久性が高く長寿命な有機EL素子の形成が可能である。しかし、真空蒸着法を用いた成膜は、真空チャンバー内で蒸着する必要があり、RGBの画素毎に異なる発光層を形成する場合には、蒸着マスクを用いたパターニングが必要である。また、単独の低分子有機材料として、ホール輸送、発光、電子輸送の全ての機能を有する材料は開発されておらず、多層を積層して素子を形成する必要がある。このため、真空蒸着装置(真空蒸着チャンバー)が何台も連なった大型の装置が必要となり非常に製造コストが高くなる傾向がある。
 一方、高分子型有機EL素子では真空蒸着工程は陰極形成工程のみであり、それ以外は非真空プロセスを用いることができるので製造コストの低減が図れる。また、上述のようにパターニングが容易であり、その点でも製造コストの低減において有利である。しかし、高分子有機材料を用いた有機EL素子は、低分子型有機EL素子と比較して高温耐久性の低さ、短寿命、駆動に伴う電圧上昇等の点で課題が多い。
 特許文献4~特許文献7のように、有機EL素子において、低分子材料と高分子材料の両方を用いることで、高分子/低分子の利点を得られる可能性はあるが、実際には、実用化を目指す上で、耐久性、安定性などの課題や、電圧上昇の抑制等、課題が多い。特に、耐久性、とりわけ、高温、高湿度環境下などにおける耐久性は、高分子/低分子の積層構造を単に採用しても要求を満たすことができない。
特開平09-59614号公報 特許第4045691号公報 特開2008-16336号公報 特開2005-63977号公報 特開2005-285617号公報 特開2006-190759号公報 特開2007-242816号公報
 本開示は、上記問題に鑑みてなされたものであり、耐久性が高く、かつ、ホール輸送層と発光層との界面の密着性も高い有機EL素子を提供することを目的とする。
 さらには、低分子ホール輸送層と高分子発光層とを積層する構造を採用しつつ、低分子ホール輸送層が高分子発光層に溶けることを抑制すると共に、素子特性の安定化および寿命向上を図ることができる有機EL素子およびその製造方法を提供することを目的とする。
 さらには、本発明は、低コストで高温耐久性が高く長寿命な有機発光素子を提供することを目的としている。
 本開示の第一の態様において、有機EL素子は、電極基板と、前記電極基板の上に配置されたホール注入電極と、前記ホール注入電極の上に配置されたホール輸送層と、前記ホール輸送層の上に配置された発光層と、前記発光層の上に配置された電子注入電極とを有する。前記ホール輸送層は、所定の第一分子量より小さい分子量を有する第一低分子材料から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料と所定の第三分子量より小さい分子量を有する第二低分子材料の混合物から形成されている。
 このように、低分子ホール輸送層を用いることにより、耐久性を高くすることができる。そして、発光層を高分子材料と低分子材料の混合にて構成しているため、高分子材料に加えられた低分子材料が立体障害の隙間を埋めるバインダーの役割をして高分子材料と低分子材料の絡まりを形成する。このために、低分子ホール輸送層と発光層との界面の密着性を高くすることができる。したがって、耐久性が高く、かつ、低分子ホール輸送層と発光層との界面の密着性も高い有機EL素子とすることができる。
 本開示の第二の態様において、有機EL素子は、電極基板と、前記電極基板の上に配置されたホール注入電極と、前記ホール注入電極の上に配置されたホール輸送層と、前記ホール輸送層の表面に配置された難溶化層と、前記難溶化層の表面に配置された発光層と、前記発光層の上に配置された電子注入電極とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記難溶化層は、該ホール輸送層の表面をエーテル化合物で処理した表面処理膜から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
 このように、低分子ホール輸送層をエーテル化合物にて表面処理することで難溶化層を形成することができる。この難溶化層により、低分子ホール輸送層の構成材料が高分子発光層に溶け出すことを防止できる。したがって、低分子ホール輸送層と高分子発光層とを積層する構造を採用しつつ、低分子ホール輸送層が高分子発光層に溶けることを抑制すると共に、素子特性の安定化および寿命向上を図ることができる。
 本開示の第三の態様において、有機EL素子の製造方法は、電極基板の上にホール注入電極を形成する工程と、前記ホール注入電極の上にホール輸送層を形成する工程と、前記ホール輸送層の表面をエーテル化合物で処理することにより、前記ホール輸送層の表面に難溶化層を形成する工程と、前記難溶化層の表面に発光層を形成する工程と、前記発光層の上に電子注入電極を形成する工程とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
 このように、低分子ホール輸送層をエーテル化合物にて表面処理することで難溶化層を形成することができる。表面処理によって構成される難溶化層の詳細構造に関しては定かではないが、低分子ホール輸送層の表面にエーテル化合物がフィルム状にコーティングされた状態、低分子ホール輸送層内にエーテル化合物を構成する分子が取り込まれて低分子材料との混合物となっている状態、もしくは、低分子ホール輸送層を構成する低分子材料と化学反応してエーテル化合物となった状態のいずれかと想定される。このような製造方法により、本開示の第二の態様の有機EL素子を製造することができる。
 本開示の第四の態様において、有機EL素子は、電極基板と、前記電極基板の上に配置されたホール注入電極と、前記ホール注入電極の上に配置されたホール輸送層と、前記ホール輸送層の表面に配置された難溶化層と、前記難溶化層の表面に配置された発光層と、前記発光層の上に配置された電子注入電極とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記難溶化層は、該ホール輸送層の表面を有機酸で処理した表面処理膜から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
 このように、低分子ホール輸送層を有機酸にて表面処理することで難溶化層を形成することができる。この難溶化層により、低分子ホール輸送層の構成材料が高分子発光層に溶け出すことを防止できる。したがって、低分子ホール輸送層と高分子発光層とを積層する構造を採用しつつ、低分子ホール輸送層が高分子発光層に溶けることを抑制すると共に、素子特性の安定化および寿命向上を図ることができる。
 本開示の第五の態様において、有機EL素子の製造方法は、電極基板の上にホール注入電極を形成する工程と、前記ホール注入電極の上にホール輸送層を形成する工程と、前記ホール輸送層の表面を有機酸で処理することにより、前記ホール輸送層の表面に難溶化層を形成する工程と、前記難溶化層の表面に発光層を形成する工程と、前記発光層の上に電子注入電極を形成する工程とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
 このように、低分子ホール輸送層を有機酸にて表面処理することで難溶化層を形成することができる。表面処理によって構成される難溶化層の詳細構造に関しては定かではないが、低分子ホール輸送層の表面に有機酸がフィルム状にコーティングされた状態、低分子ホール輸送層内に有機酸を構成する分子が取り込まれて低分子材料との混合物となっている状態、もしくは、低分子ホール輸送層を構成する低分子材料と化学反応して有機酸化合物となった状態のいずれかと想定される。このような製造方法により、本開示の第四の態様に記載の有機EL素子を製造することができる。
 本開示の第六の態様において、有機発光素子は、ホール注入電極と、電子注入電極と、ホール注入電極と電子注入電極の間に配置された発光層と、前記ホール注入電極と前記発光層との間に配置されたホール輸送層とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記ホール輸送層は、真空蒸着膜から形成され、前記発光層は、前記ホール輸送層を覆っており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料を発光材料として有していることを特徴とする。
 本発明によれば、有機発光素子において、ホール輸送層として低分子ホール輸送材料の真空蒸着層を用い、このホール輸送層を覆って、高分子材料を発光材料とした発光層を形成することで、低コストで高温耐久性が高く長寿命な有機EL素子を得ることができる。例えば、車載用表示素子等、高温高湿度環境下における耐久性が要求される用途においても好適に採用することができる。また、低コストでの製造が可能であるため、安価であることが強く要求されるセグメント型表示素子等にも採用することも可能となる。
 本発明における上記あるいは他の目的、構成、利点は、下記の図面を参照しながら、以下の詳細説明から、より明白となる。図面において、
図1は、本発明の第1実施形態で説明する有機EL素子の断面図であり、 図2は、各例で製造した試料および比較例1の試料に対して調べた初期駆動電圧V0、輝度半減寿命LT50、およびダークスポット発生数Nをまとめた図であり、 図3は、例1と比較例1について最大発光効率をI0(cd/A)とした場合のI/I0の変化を調べた結果を示すグラフであり、 図4は、化学式3に対応するトリフェニルアミン誘導体材料を示し、 図5は、化学式4に対応するトリフェニルアミン誘導体材料を示し、 図6は、化学式5に対応するトリフェニルアミン誘導体材料を示し、 図7は、化学式6に対応するトリフェニルアミン誘導体材料を示し、 図8は、化学式7に対応するトリフェニルアミン誘導体材料を示し、 図9は、化学式8に対応するホール輸送性材料を示し、 図10は、化学式9に対応するホール輸送性材料を示し、 図11は、化学式10に対応するホール輸送性材料を示し、 図12は、化学式11に対応するホール輸送性材料を示し、 図13は、化学式12に対応するホール輸送性材料を示し、 図14は、化学式13に対応するホール輸送性材料を示し、 図15は、化学式14に対応する電子輸送性材料示し、 図16は、化学式15に対応する電子輸送性材料を示し、 図17は、化学式16に対応する電子輸送性材料を示し、 図18は、化学式17に対応する電子輸送性材料を示し、 図19は、化学式18に対応する電子輸送性材料を示し、 図20は、化学式19に対応する電子輸送性材料を示し、 図21は、化学式20に対応する電子輸送性材料を示し、 図22は、化学式21に対応するフラーレンを示し、 図23は、本発明の第2実施形態で説明する有機EL素子の断面図であり、 図24は、低分子材料からなる低分子ホール輸送層を真空蒸着法で形成した後、1,1'-ジブチルエーテルにより表面処理を行って形成された難溶化層表面のX線電子分光スペクトルを示した図であり、 図25は、各例で示した試料と比較例の試料それぞれの最大発光効率の比を示した図表であり、 図26は、例8及び比較例1を初期輝度600cd/m2にて25℃環境下で定電流駆動した場合の輝度の時間変化を示した図であり、 図27は、本発明の第3実施形態で説明する有機EL素子300の断面図であり、 図28は、本発明の第3実施形態において、各例で示した試料と比較例の試料それぞれの最大発光効率の比を示した図表であり、 図29は、例21及び比較例6を初期輝度600cd/m2にて25℃環境下で定電流駆動した場合の輝度の時間変化を示した図であり、 図30は、本発明の第4実施形態に係る有機EL素子の概略断面構造を示し、 図31は、有機EL素子を用いたディスプレイの一例を示し、 図32は、例26及び比較例9に係る有機EL素子を、電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示し、 図33は、例26及び比較例9に係る有機EL素子を電流密度50mA/cm2で定電流駆動した場合の初期輝度に対する発光輝度比の時間依存性を示し、 図34は、例27及び比較例9に係る有機EL素子を、電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示し、 図35は、例28及び比較例9に係る有機EL素子を電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示し、 図36は、例29及び比較例9の素子を電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示し、 図37は、例30及び比較例9の素子を電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示し、 図38は、化学式22に対応するホール輸送性材料を示し、 図39は、化学式23に対応するホール輸送性材料を示し、 図40は、化学式24に対応するホール輸送性材料を示し、 図41は、化学式25に対応するホール輸送性材料を示し、 図42は、化学式26に対応するホール輸送性材料を示し、 図43は、化学式27に対応するホール輸送性材料を示し、 図44は、化学式28に対応するホール輸送性材料を示し、 図45は、化学式29に対応するホール輸送性材料を示す。
(第1実施形態)
 図1は、本発明の実施形態に係る有機EL素子100の構成を示す概略断面図である。この図に示されるように、基板1の上に、ホール注入電極2、難溶化層3aを含む低分子ホール輸送層3、発光層4および電子注入電極5が順に積層され、さらにこれら各部が金属缶6によって覆われた構造により、本実施形態にかかる有機EL素子100が構成されている。
 このような構造の有機EL素子100は、例えば次のようにして製造される。まず、基板1の上にホール注入電極2を形成したのち、低分子ホール輸送層3を真空蒸着法により形成する。続いて、低分子ホール輸送層3の表面にエーテル化合物もしくは有機酸による表面処理を行うことにより、低分子ホール輸送層3のうち発光層4との界面となる表面に、低分子ホール輸送層3の構成材料とエーテル化合物もしくは有機酸が混合して構成された難溶化層3aを形成する。そして、発光層4を塗布法にて形成したのち、電子注入電極5を真空蒸着法にて形成する。最後に、乾燥窒素雰囲気中にて金属缶6の貼り合わせによる封止を行うことにより、図1に示す有機EL素子100が製造される。各工程間の搬送方法は特に限定されるものではないが、乾燥雰囲気中での搬送であることが望ましい。
 なお、エーテル化合物もしくは有機酸による表面処理、発光層4の形成及び封止工程は限定されるものではないがグローブボックス等の乾燥不活性ガス雰囲気中で行われることが望ましい。また、封止方法は金属缶6による封止以外にも、ガラスもしくはバリア付きフィルムの貼り合わせによる封止やシリコン窒化膜などの薄膜を直接形成する薄膜封止手法など様々な封止手法が適用可能である。
 基板1は、例えば、透明なガラス、石英ガラス、バリア膜付きの樹脂基板や金属基板等よりなる電極基板で構成されている。
 ホール注入電極2は、透明または半透明の電極を形成することのできる任意の導電性物質にて形成されている。具体的には、酸化物として酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化錫、酸化亜鉛、酸化インジウム、酸化亜鉛アルミニウム、酸化亜鉛ガリウム、酸化チタンニオブ等を使用することができる。ただし、それらのうちでも特にITOは、低抵抗であること、耐溶剤性があること、透明性に優れていることなどの利点を有する好適な材料である。更に、アルミニウム、金、銀等の金属材料を蒸着して半透明の層を成膜する方法や、ポリアニリン等の有機半導体を用いる方法もあり、更にその他の方法を用いることも可能である。ホール注入電極2に対しては、必要に応じてエッチングによりパターニングを行っても良いし、UV処理やプラズマ処理などにより表面の活性化を行ってもよい。
 低分子ホール輸送層3は、低分子材料の中でもホール輸送性の高いトリフェニルアミン誘導体材料であることが望ましい。発光層4を形成するための高分子材料塗布後に行われる溶媒乾燥工程において通常は120℃程度の加熱が行われるが、この加熱工程が低分子材料のガラス転移点を超えると低分子材料の凝集による界面荒さの増大や両者の混合などが起こって特性が悪化してしまうので、低分子材料のガラス転移点が高分子材料塗布後の溶媒乾燥温度以上、すなわち120℃以上の材料を低分子ホール輸送層3として用いるのが好ましい。また、低分子ホール輸送層3の構成材料は、真空度1Pa時において300℃以上であることが望ましい。昇華温度が300℃より低いと、10-5Pa以下の高真空下で蒸着膜を形成する場合に蒸着温度は200℃以下になり、蒸着速度を制御することが困難になるため、均一な膜密度の蒸着膜を形成することができないためである。これら条件を満たすものとして、例えば化学式3~7に示す材料があげられる。図4―8に、各々、化学式3―7を示す。
 化学式3は、N, N, N', N',
N'', N''- Hexakis- (4'-methyl-biphenyl-4-yl)- benzene-1,3,5- triamine (分子量1119、ガラス転移点 観測されず、融点402度)、化学式4は、N, N, N', N',- Tetrakis- (4'-methyl-biphenyl-4-yl)- N'',N'',- biskis-
(4'-methyl-phenyl)benzene- 1,3,5-triamine(分子量967、ガラス転移点180度)、化学式5は、t-Bu-TBATA(N,N,N', N',N'',N''- Hexakis (4'-tert-butylbiphenyl
-4-yl)- tris(4-aminophenyl)amine)(分子量1540、ガラス転移点203度)、化学式6は、Spiro-1-TAD(2,2',7,7'-tetrakis(diphenylamino)spiro-9,9'-bifluorene)(分子量973、ガラス転移点133度)、化学式7は、TBPB (N, N, N', N'-
tetrakis (4-biphenyl)- 4,4'-diaminobiphenyl) (分子量793、ガラス転移点131.8度)を表している。なお、ここでは化学式3~7に示されたトリフェニルアミン誘導体材料の具体例に挙げたが、これら具体例に限定されるものではない。このような低分子ホール輸送層3に関しては、例えば、真空中にて低分子材料を加熱蒸発させて薄膜を形成する真空蒸着法により形成することができる。
 低分子ホール輸送層3の形成手法として真空蒸着法を例に挙げたが、真空蒸着法以外にも、インクジェットや印刷やスピンコート等の塗布法、レーザー転写(LITI)法、気相成長法などを用いても構わない。ただし、有機EL素子の車載化のためには低分子ホール輸送層3の品質が重要であり、形成された膜の純度・密度・平坦性などを考えると最も高品質な膜が得られる真空蒸着法での形成が最も望ましい。さらに、形成された低分子ホール輸送層をさらに高品質化するために熱処理を行っても良い。
 なお、ここでは、低分子ホール輸送層3を単層ホール注入電極2の上に形成した場合について説明したが、必ずしも単層構造にする必要はない。例えば、最も発光層4側にエーテル化合物もしくは有機酸による処理効果の高い低分子ホール輸送層を配置すると共に、この下に、より低コストもしくはホール移動度のより高い低分子ホール輸送層を配置したり、ホール注入効率のより高いホール注入層を積層した構造としても良い。このような構造にすることで有機EL素子のさらなる低コスト化や駆動電圧低減が可能となる。また、トリフェニルアミン誘導体材料の中でも対称中心を有する材料、その中でも特にスターバーストアミンは、薄膜にした場合に分子が配列しやすく耐溶剤性が向上するのでより難溶化が可能であり好ましい。
 難溶化層3aは、上述したように、低分子ホール輸送層3の表面にエーテル化合物もしくは有機酸による表面処理を行うことにより形成される。この難溶化層3aは、エーテル化合物による表面処理の場合にはエーテルとアミンとの分子間相互作用による比較的強固な結合を持ったもの、有機酸による表面処理の場合には酸-塩基反応による強固な結合を持ったものとして構成される。
 難溶化層3aを形成するための表面処理にエーテル化合物を用いる場合、そのエーテル化合物としては、含まれる炭素原子数が5以上15以下であることが望ましい。さらに、化学式1もしくは化学式2で示される化合物であって、R1、R2、R3が炭素原子数2以上6以下のアルキル基であることが望ましい。
  (化1) R1-O-R2
  (化2) R1-O-R2-O-R3
 この条件を満たすエーテル化合物は、低分子ホール輸送層3の構成材料に対して高い分子間相互作用を示し、そのためこれにより処理された低分子ホール輸送層3の表面は高い溶媒難溶性を示す。また、エーテル化合物の沸点は50℃以上250℃以下であることが望ましい。沸点が50℃未満ではエーテル化合物がすぐ揮発してしまうため、十分な難溶化層3aを形成できない可能性があり、沸点が250℃より高いと表面処理を行った後余分なエーテル化合物を除去するのに長時間高温での処理が必要となり生産性が低下するためである。
 これらの条件を満たす具体例としてはジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル等が挙げられる。さらに具体的にはジプロピルエーテルとして1,1'-ジプロピルエーテル、ジ-iso-プロピルエーテル等、ジブチルエーテルとして1,1'-ジブチルエーテル、2,2'-ジブチルエーテル、ジ-tert-ブチルエーテル等、ジペンチルエーテルとして1,1'-ジペンチルエーテル、2,2'-ジペンチルエーテル、3,3'-ジペンチルエーテル等、ジヘキシルエーテルとして1,1'-ジヘキシルエーテル、2,2'-ジヘキシルエーテル、3,3'-ジヘキシルエーテル等、エチレングリコールジプロピルエーテルとしてエチレングリコール-1,1'-ジプロピルエーテル、エチレングリコールジ-iso-プロピルエーテル等、エチレングリコールジブチルエーテルとしてエチレングリコール-1,1'-ジブチルエーテル、エチレングリコール-2,2'-ジブチルエーテル、エチレングリコールジ-tert-ブチルエーテル等が挙げられる。
 また、難溶化層3aを形成するための表面処理に有機酸を用いる場合、その有機酸としては、スルホン酸化合物、カルボン酸化合物、ヒドロキシ化合物、チオール化合物、エノール化合物、もしくは有機リン酸化合物が挙げられる。特に、酸性の強いスルホン酸化合物が望ましく、次にカルボン酸化合物、有機リン酸化合物が望ましい。具体的には、スルホン酸化合物としては、ベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、エタンスルホン酸が挙げられる。カルボン酸化合物としては、4-メチル安息香酸、酢酸、蟻酸、シュウ酸、フタル酸、マロン酸が挙げられる。ヒドロキシ化合物としては、フェノール、ピクリン酸が挙げられる。チオール化合物としては、1-プロパンチオール、エノール化合物としてはペンタンジオン、有機リン酸化合物としてはビス(2-エチルヘキシル)フォスフェイトなどが挙げられる。
 難溶化層3aを形成するためのエーテル化合物もしくは有機酸による低分子ホール輸送層3の表面処理方法としては、エーテル化合物もしくは有機酸を含む溶液をスピンコート法、ディップ法、スプレー法等で塗布する手法やエーテル化合物もしくは有機酸を含む蒸気中に曝す手法などが挙げられるが、これらに限定されるものではない。ただし、量産性などを考慮すると前述の手法が望ましい。
 また、表面処理を行った後、表面に存在する余剰エーテル化合物もしくは余剰有機酸を除去するために、アルコールや炭化水素系溶媒で低分子ホール輸送層3の表面を洗浄するか低分子ホール輸送層3を加熱しても良い。このように、余剰エーテル化合物もしくは余剰有機酸を除去することも可能であるため、エーテル化合物もしくは有機酸を含む溶液の濃度やエーテル化合物もしくは有機酸の蒸気濃度は、低分子ホール輸送層3の材料の分子構造を変質させない限り、特に限定されない。また、エーテル化合物もしくは有機酸による表面処理を行った低分子ホール輸送層3上に発光層4を形成した後、加熱処理を行うことでエーテル化合物もしくは有機酸を揮発除去してもよい。加熱処理温度は低分子ホール輸送材料のガラス転移点以下、ガラス転移点がない場合は融点以下にすることが望ましい。これにより界面に残存する異種化合物であるエーテル化合物もしくは有機酸の量を減少させられるために、駆動電圧のさらなる低減や長寿命化が可能となる。但し、エーテル化合物もしくは有機酸を揮発させる場合に、低分子ホール輸送材料とエーテル化合物との間の反応性結合、もしくは、低分子ホール輸送材料と有機酸との酸-塩基反応による結合の一部が分解し難溶性が低下する場合があるため、効果を発現させるためには発光層塗布液溶媒への溶解度の低い低分子ホール輸送材料との組み合わせが望ましい。
 さらに、難溶化効果をさらに強固なものにするために、熱処理を行っても良い。ただし、このときの熱処理温度や上述した余剰エーテル化合物もしくは余剰有機酸を除去するための加熱温度は、低分子ホール輸送層3を構成する低分子材料のガラス転移点以下、ガラス転移点がない場合は融点以下にすることが望ましい。
 また、難溶化層3aの膜厚は、10nm以下が好ましい。これは、難溶化層3aは低分子ホール輸送層3と比べてホール移動度が低いためであり、難溶化層3aの膜厚が10nmよりも厚いと駆動電圧を増加させるためである。
 発光層4は、高分子材料(高分子有機発光材料)と低分子材料との混合により構成されている。高分子材料としては、ポリフルオレン(PFO)系高分子、ポリフェニレンビニレン(PPV)系高分子、ポリビニルカルバゾール(PVK)系高分子などを用いることができ、蛍光性色素や燐光性色素を前記高分子やポリスチレン系高分子、ポリチオフェン系高分子、ポリメチルメタクリレート系高分子等に分散させたもの等も用いることができる。これら高分子材料を、例えば、トルエン、キシレン、アセトン、アニソール、メチルアニソール、ジメチルアニソール、テトラリン、安息香酸エチル、安息香酸メチル、メチルエチルケトン、シクロヘキサノン、メタノール、エタノール、イソプロピルアルコール、酢酸エチル、酢酸ブチル、水などの単独または混合溶媒に低分子材料と共に溶解させて塗布液を調製し、その塗布液を使用した塗布法により発光層4を形成することができる。それら溶媒のうちでも特に、トルエン、キシレン、アニソール、メチルアニソール、ジメチルアニソール、テトラリン、安息香酸エチル、安息香酸メチル等の芳香族系溶媒は、高分子材料の溶解性が良く扱いも容易であることから、より好ましい溶媒である。
 発光層4のうちの高分子材料を形成する際の塗布法としては、スピンコート法、インクジェット法、印刷法、ディップコート法、スプレー法等の手法を用いることができる。また、発光層4を塗布法で形成する際に溶媒を揮発させるために高温乾燥処理を行うが、この処理温度が低分子ホール輸送層材料のガラス転移点を超えると界面での両者の混合による特性の悪化などが起こってしまうため、低分子ホール輸送層3の構成材料のガラス転移点は一般的に用いられている乾燥温度である120℃以上であることが望ましい。
 また、高分子材料に加える低分子材料としては、ホール輸送性材料や電子輸送性材料もしくは両方のいずれでも良い。但し、発光層4において放射された光が低分子材料で吸収されて効率が低下したり、低分子材料自体が発光して所望の色度からずれを起こしたりすることを防ぐために、発光層4に含まれる低分子材料のHOMO-LUMOギャップが発光層4より放射される光の発光エネルギーよりも大きいことが望ましい。例えば、ホール輸送性材料としては化学式8~13に示される材料、電子輸送性材料としては化学式14~20に示される材料が挙げられる。
 化学式8は、NPB(N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine)(分子量588、ガラス転移点98℃)、化学式9は、TPTE(N,N'-bis(4-diphenylamino-4'-biphenyl)-N,N'-diphenyl-4,4'-diaminobiphenyl)、(分子量975、ガラス転移点143℃)、化学式10は、TAPC(Di-[4-(N,N-ditolyl-amino)-phenyl]cyclohexane)、化学式11は、NTNPB(N,N'-di-phenyl-N,N'-di-[4-(N,
N-di-tolyl-amino)phenyl]benzidine)、化学式12は、TCTA(4,4',4"-Tris(carbazol-9-yl)triphenylamine) (分子量740、ガラス転移点151℃)、化学式13は、TAPA(Di-[4-(N,N-diphenyl-amino)-phenyl]adamantane)を表している。また、化学式14は、TPBi(2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))、化学式15は、Bphen(4,7-Diphenyl-1,10-phenanthroline)、化学式16は、OXD-7(1,3-Bis[2-(4-tert-butylphenyl)
1,3,4-oxadiazo-5-yl]benzene)、化学式17は、PADN(2-phenyl-9,10-di(naphthalen-2-yl)-anthracene)、化学式18は、TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole)、化学式19は、TPB3(1,3,5-Tri(pyren-1-yl)benzene)、化学式20は、TPBA(2,2'-Bi(9,10-diphenyl-anthracene))を表している。
 なお、ここでは化学式8~13に示されたホール輸送性材料、もしくは、化学式14~20で示された電子輸送性材料を具体例に挙げたが、これら具体例に限定されるものではない。また、このような低分子材料の混合量としては、発光層4を構成する高分子材料と低分子材料の総量のうちの1重量%以上あれば、確実にバインダー効果を得ることができる。ただし、低分子材料の混合量が50重量%以上になると、加えられた低分子材料自体が消光サイトとして働いてしまうために効率が低下する。このため、低分子材料を高分子材料に混合することによる効率低下現象が起こらないようにするために、好ましくは低分子材料の混合量を50重量%未満にすると良い。
 また、発光層4に含まれる低分子材料にホール輸送性材料や電子輸送性材料もしくは両方のいずれでも良いが、少なくともホール輸送性材料が含まれていることがより望ましい。ホール輸送性材料および電子輸送性材料のいずれでもバインダー効果による界面密着性向上による信頼性向上効果が期待できるが、ホール輸送性材料であればホール輸送層から発光層4へのホール注入性を向上させる効果も期待でき、より高効率化が可能となるためである。また、発光層4にさらに発光性色素を添加することで、より発光効率を高めたり演色性を高めたりすることも可能である。
 電子注入電極5は、例えば低仕事関数電極構造で構成される。電子注入電極5としては、アルカリ金属もしくはアルカリ土類金属、アルカリ金属もしくはアルカリ土類金属とアルミニウム等の金属電極との積層、アルカリ金属もしくはアルカリ土類金属のハロゲン化物とアルミニウム等の金属電極との積層などを用いることができ、具体的にはAl/Ca、Al/Ba、Al/Li、Al/LiF、Al/CsF、Al/Ca/LiF、Al/BaOなどで構成される。
 このようにして、本実施形態にかかる有機EL素子100が構成、製造される。次に、このような有機EL素子100の作用および効果について説明する。
 本実施形態にかかる有機EL素子100では、真空蒸着法で形成される低分子ホール輸送層3と高分子材料および低分子材料の混合により構成された発光層4との積層構造を採用している。すなわち、低分子ホール輸送層3の上に高分子材料からなる発光層4を配置した高分子/低分子積層型有機EL素子とし、発光層4を構成する高分子材料に低分子材料を混合した状態としている。このような構造とすることにより、以下の効果を得ることができる。
 ホール輸送層を低分子材料で構成した低分子型有機EL素子は、高温耐久性が高く長寿命な有機EL素子の形成が可能である反面、真空蒸着装置(真空蒸着チャンバー)が何台も連なった大型の装置が必要となり非常に高コストになってしまうという欠点がある。一方、ホール輸送層を高分子材料で構成した高分子型有機EL素子では、真空蒸着工程は陰極形成工程のみであり、それ以外は非真空プロセスを用いることができるので低コスト形成が可能であるが、その反面、PEDOT:PSSなどの高分子材料で構成されたホール輸送層の不安定さに起因した高温耐久性の低さ、短寿命、駆動に伴う電圧上昇といった問題が存在する。有機EL素子を車載用とする場合、特にセグメント表示素子として用いるには低コストで高温耐久性が高く長寿命な有機EL素子が必要であるため、このままでは双方共に用いることは困難である。
 これに対し、本実施形態では、高分子型有機EL素子において問題となっているように高分子材料でホール輸送層を構成するのではなく、高温耐久性が高く安定した特性を有する真空蒸着法で形成された低分子材料のホール輸送層に置き換えている。すなわち、低分子ホール輸送層3の上に高分子材料を含む発光層4が配置された高分子/低分子積層型有機EL素子としている。このため、低分子有機EL素子のように、高温耐久性、寿命、駆動に伴う電圧上昇を改善することが可能となる。なお、低分子ホール輸送層3の形成および電子注入電極5の形成工程を真空蒸着工程にて行うことになるため、高分子型有機EL素子と比較すると低分子ホール輸送層3の形成のための真空蒸着工程が増えることになって若干製造コストが高くなる。しかしながら、全工程真空蒸着が必要な低分子型有機EL素子と比較すれば、本実施形態の製造手法の方が低コスト化を可能にできる。これにより、車載用表示素子として好適に用いることができる有機EL素子を形成することができる。
 但し、このような高分子/低分子積層型有機EL素子は、低分子ホール輸送層3の上に高分子材料にて構成される発光層4が塗布法で形成されるため、低分子ホール輸送層3を構成する低分子材料が高分子材料を溶解した塗布液の溶媒に溶け出し、界面混合層が形成されるため発光効率が低下してしまうという問題が生じる。この問題を改善する手法として、低分子ホール輸送層3に難溶性材料を用いる手法、有機酸やエーテル化合物による表面処理によって難溶化層3aを形成することで表面難溶化を図る手法などが考えられる。これにより、低分子材料が塗布液の溶媒に溶け出して界面混合層が形成されることを抑制でき、素子特性の安定化および寿命向上が図れると共に、発光効率の低下の抑制が可能になるという効果が得られる。
 ところが、このような難溶化表面に高分子材料を積層させた構造では、高分子材料と低分子材料が互いに相分離した状態で積層されるために、高分子材料と低分子材料の絡まりが無い。さらに、高分子材料を溶媒に溶け易くするために導入されているアルキル基などが立体障害となって、密着性が低くキャリア注入性が低い界面となってしまう。このような界面では形成条件や材料を最適化してさらなる高信頼化・長寿命化を試みても、高分子/低分子界面特性律速のために特性を向上させることは困難である。このため、発光効率の低下を抑制できても、耐久性が高く、かつ、低分子ホール輸送層3と発光層4との界面の密着性も高い有機EL素子とすることはできなかった。
 これに対して、本実施形態のように発光層4に高分子材料と低分子材料との混合を用いた高分子/低分子積層型有機EL素子は、高分子材料に加えられた低分子材料が立体障害の隙間を埋めるバインダーの役割をして高分子材料と低分子材料の絡まりを形成する。このために、低分子ホール輸送層3と発光層4との界面は、密着性が高く、キャリア注入性も高い界面となる。また、形成条件や材料の最適化によって更なる高信頼化、長寿命化を達成することも可能となる。さらに、高分子材料に加えられた低分子材料が高分子材料の結晶化を抑止するように働くために、発光層4を塗布形成後に従来よりも高い温度で乾燥させることが可能となり、膜中に残存する溶媒濃度を低下させることができ、更なる長寿命化が可能となる。また、高分子材料に添加する低分子材料の濃度を、上述の界面混合による効率低下濃度以下に調整することにより、効率低下のない界面構造とすることができる。
 そして、さらに本実施形態では、有機酸やエーテル化合物による表面処理によって難溶化層3aを形成することで表面難溶化を図ることと、発光層4に高分子材料と低分子材料との混合を用いることを組み合わせている。このため、有機酸やエーテル化合物による表面処理によって難溶化層3aを形成することで表面難溶化したときの効果を得つつ、この場合に発生する問題を解決できる。すなわち、難溶化層3aにより、低分子ホール輸送層3の構成材料が発光層4に溶け出すことを防止でき、素子特性の安定化および寿命向上が図れると共に、発光効率の低下の抑制が可能になるという効果を得つつ、さらに耐久性が高く、かつ、低分子ホール輸送層3と発光層4との界面の密着性も高い有機EL素子とすることが可能になる。
 以下、上記実施形態に対応した各種例について説明する。
 (例1)
 まず、基板1としてガラス基板を用い、このガラス基板上にホール注入電極2となるITO電極を150nm形成した。次に、低分子ホール輸送層3として、上述した化学式3で示されるN,N,N',N',N'',N''-Hexakis(4'-methyl-biphenyl-4-yl)-benzene-1,3,5-triamine(分子量1119、ガラス転移点観測されず、融点402度)を真空蒸着法で60nm形成した。そして、このように基板1上に形成した低分子ホール輸送層3の表面を、1,1'-ジブチルエーテル溶液中に10分間浸漬させて塗布することで難溶化層3aを形成し、さらに180℃で熱処理を行った。
 続いて、この難溶化層3aの上に、アメリカンダイソース社製Poly[(9,9-dioctylfluorenyl-2,
7-diyl)-co-(1,4-benzo-[2,1',3]-thiadiazole)](ADS233YE)を精製して重量平均分子量約40000とした高分子材料と化学式9のTPTE(N,N'-bis(4-diphenylamino-4'-biphenyl)-N,N'-diphenyl-4,4'-
diaminobiphenyl)で示されるホール輸送性低分子材料を重量混合比3:1(発光層4における低分子材料の濃度が25重量%)でキシレン溶媒に溶解させた塗布液を用いてスピンコート法で塗布したのち、120℃で乾燥させることにより発光層4を100nm形成した。
 さらに、電子注入電極5として、Al/Ca電極を真空蒸着法で形成したのち、最後にグローブボックス中で金属缶6と素子が形成されたガラス基板とを光硬化樹脂で貼り合わせて作製素子を封止した試料を用意した。
 また、比較例1として、発光層4に低分子材料を加えなかったこと以外は本例1と同様の構成の試料を用意した。
 そして、例1の試料および比較例1の試料における駆動電流密度が10mA/cm2の時の初期駆動電圧V0(V)、初期輝度2400cd/m2にて室温定電流駆動を行った場合の輝度半減寿命LT50(時間)、および輝度半減時の1cm2あたりのダークスポット発生数N(個)を調べた。その結果、例1では、V0=5.3、LT50=156、N=0となり、比較例1では、V0=7.3、LT50=16、N=18となった。
 例1は比較例1と比べて初期駆動電圧V0が低下していることから、発光層4への低分子材料添加により高分子/低分子界面において密着性が高くなってキャリア注入性が向上したと言える。また、ダークスポットは高分子/低分子界面での剥離によって形成されると考えられるが、駆動寿命が劇的に改善されており、かつダークスポットも全く発生しなかったことから、密着性が高く安定な高分子/低分子界面が得られていると言える。
 このように、高分子材料と低分子材料の混合を発光層4に用いることで、密着性が高く安定でキャリア注入性の良い高分子/低分子界面が得られ、長寿命で信頼性の高い素子の形成が可能であることが判る。
 (例2)
 本例では、例1とは異なる低分子材料、具体的には発光層4の低分子材料として化学式13のTAPA(Di-[4-(N,N-diphenyl-amino)-phenyl]adamantane)で表されるホール輸送性低分子材料を用いて、例1と同様の手法により有機EL素子100の試料を製造した。
 そして、本例の試料について、例1と同様に、初期駆動電圧V0、輝度半減寿命LT50、およびダークスポット発生数Nを調べた。その結果、本例では、V0=6.2、LT50=73、N=0となった。
 このように、本例においても、比較例1と比べて初期駆動電圧V0が低下していることから、高分子/低分子界面において密着性が高くなってキャリア注入性が向上したと言える。また、駆動寿命も劇的に改善されており、かつダークスポットも全く発生しなかったことから、密着性が高く安定な高分子/低分子界面が得られていると言える。したがって、例1と同様の効果を得ることができる。
 (例3)
 本例では、例1とは異なる低分子材料、具体的には発光層4の低分子材料として化学式16のOXD-7(1,3-Bis[2-(4-tert-butylphenyl)-1,3,4-oxadiazo-5-yl]benzene)で表される電子輸送性低分子材料を用いて、例1と同様の手法により有機EL素子100の試料を製造した。
 そして、本例の試料について、例1と同様に、初期駆動電圧V0、輝度半減寿命LT50、およびダークスポット発生数Nを調べた。その結果、本例では、V0=6.9、LT50=108、N=0となった。
 このように、本例においても、比較例1と比べて初期駆動電圧V0が低下していることから、高分子/低分子界面において密着性が高くなってキャリア注入性が向上したと言える。また、駆動寿命も劇的に改善されており、かつダークスポットも全く発生しなかったことから、密着性が高く安定な高分子/低分子界面が得られていると言える。したがって、例1と同様の効果を得ることができる。
 (例4)
 本例では、例1とは異なる低分子材料、具体的には発光層4の低分子材料として化学式9のTPTE(N,N'-bis(4-diphenylamino-4'-biphenyl)-N,N'-diphenyl-4,4'-diaminobiphenyl)で表されるホール輸送性低分子材料と化学式16のOXD-7(1,3-Bis[2-(4-tert-butylphenyl)-1,3,4-
oxadiazo-5-yl]benzene)で表される電子輸送性低分子材料の混合を用い、ホール輸送性低分子材料と電子輸送性低分子材料の重量混合比を1:1とし、かつ、高分子材料と低分子材料の総量の重量混合比を3:1として、例1と同様の手法により有機EL素子100の試料を製造した。
 そして、本例の試料について、例1と同様に、初期駆動電圧V0、輝度半減寿命LT50、およびダークスポット発生数Nを調べた。その結果、本例では、V0=6.0、LT50=134、N=0となった。
 このように、本例においても、比較例1と比べて初期駆動電圧V0が低下していることから、高分子/低分子界面において密着性が高くなってキャリア注入性が向上したと言える。また、駆動寿命も劇的に改善されており、かつダークスポットも全く発生しなかったことから、密着性が高く安定な高分子/低分子界面が得られていることと言える。したがって、例1と同様の効果を得ることができる。
 (例1~4についての考察)
 図2は、上記各例で製造した試料および比較例1の試料に対して調べた初期駆動電圧V0、輝度半減寿命LT50、およびダークスポット発生数Nをまとめた図表である。この図表からも分かるように、各例すべてにおいて、比較例1と比較して、初期駆動電圧V0が低下していると共に、駆動寿命も向上している。また、ダークスポットも発生していない。このため、上記形態において説明したように、低分子ホール輸送層3の上に高分子材料が含まれる発光層4を配置した高分子/低分子積層型有機EL素子において、発光層4を高分子材料と低分子材料とを混合したもので構成することで、密着性が高く安定でキャリア注入性のよい高分子/低分子界面が得られ、耐久性が高く信頼性の高い有機EL素子とすることが可能となる。特に、ホール輸送性低分子材料を添加した場合に顕著に低下しており、低分子ホール輸送層3から発光層4へのホールの注入性の向上には、発光層4を構成する高分子材料にホール輸送性低分子材料を添加することが特に有効となる。
 (例5)
 本例は高分子材料に加えられた低分子材料による高温乾燥時の結晶化抑止効果を確認した例である。
 本例では、発光層4に含まれる低分子材料として例1とは同じ材料を用いて発光層4を塗布したのち、発光層4を塗布した後の乾燥温度を180℃にして発光層4を乾燥させた。その他に関しては、例1と同様の手法により有機EL素子100の試料を製造した。
 また、比較例3として、発光層4を塗布した後の乾燥温度を180℃にした以外は上記比較例1と同様の構成の試料を用意した。
 例5および比較例3を初期輝度2400cd/m2にて室温定電流駆動した結果、例5では輝度半減寿命LT50が215時間で駆動中に短絡することはなかったのに対して、比較例3では半減寿命に達する前に20時間で素子が短絡して発光が得られなくなった。比較例3では高温乾燥による発光層4の結晶化が起こったために素子が短絡しやすくなったのに対して、例5では添加した低分子材料が高分子の結晶化を阻害するように働くために、高温乾燥を行っても結晶化せず短絡も起こらなかった。また、例5は例1よりも長寿命化しており、高温乾燥による膜中残存溶媒濃度の低下効果による長寿命化が確認された。
 (例6)
 本例では、高分子材料に加えられた低分子材料のHOMO-LUMOギャップが発光エネルギーよりも小さい場合について効率を調べた。具体的には、本例では、発光層4に含まれる低分子材料として下記の化学式21で表されるフラーレンC60を用い、高分子材料と低分子材料との重量混合比を10:1として、例1と同様の手法により有機EL素子100の試料を製造した。化学式21で示されるフラーレンC60のHOMO-LUMOギャップは1.7eVと発光エネルギーよりも小さい。例1の単位電流密度当りの最大発光効率をI1(cd/A)、本例の最大発光効率をI6(cd/A)とした時のI6/I1の値は0.45となった。すなわち、HOMO-LUMOギャップの小さな材料を添加すると発光層4において放射された光が低分子材料で吸収されてしまうため効率が低下することがわかった。
 このように、発光層4において放射された光が低分子材料で吸収されて効率が低下するため、例1等のように、発光層4に含まれる低分子材料のHOMO-LUMOギャップが発光層4より放射される光の発光エネルギーよりも大きいことが望ましいと言える。
 (例7)
 本例では、高分子材料に加えられた低分子材料の濃度を変化させた場合の影響について調べた。
 具体的には、例1において発光層4における低分子材料の濃度を変化させた様々な試料を製造した。そして、それぞれの試料の最大発光効率をI(cd/A)、低分子材料濃度が0重量%である比較例1の最大発光効率をI0(cd/A)とした場合のI/I0の変化を調べた。その結果、図3に示すグラフが得られた。
 この図に示されるように、1重量%以上で0重量%の時より効率が大きくなるが、50重量%以上では逆に0重量%の時より効率が小さくなったことから、1重量%以上50重量%未満の濃度が望ましいと言える。
 (他の実施形態)
 上記実施形態では、有機酸やエーテル化合物による表面処理によって難溶化層3aを形成することで表面難溶化を図りつつ、低分子ホール輸送層3の上に高分子材料と低分子材料の混合によって構成された発光層4を配置した構造としたが、これはより良い組み合わせを示したものである。このため、難溶化層3aを形成せずに、単に低分子ホール輸送層3の上に高分子材料と低分子材料の混合によって構成された発光層4を配置した構造としても良い。
(第2実施形態)
 図23は、本発明の実施形態に係る有機EL素子200の構成を示す概略断面図である。この図に示されるように、基板1の上に、ホール注入電極2、低分子ホール輸送層3、難溶化層3a、高分子発光層4および電子注入電極5が順に積層された構造により、本実施形態にかかる有機EL素子200が構成されている。
 このような構造の有機EL素子200は、例えば次のようにして製造される。まず、基板1の上にホール注入電極2を形成したのち、低分子ホール輸送層3を真空蒸着法により形成する。続いて、低分子ホール輸送層3の表面にエーテル化合物による表面処理を行うことにより、低分子ホール輸送層3と高分子発光層4の界面に難溶化層3aを形成する。そして、高分子発光層4を塗布法にて形成したのち、電子注入電極5を真空蒸着法にて形成する。最後に、乾燥窒素雰囲気中にて図示しない金属缶の貼り合わせによる封止を行うことにより、図23に示す有機EL素子200が製造される。各工程間の搬送方法は特に限定されるものではないが、乾燥雰囲気中での搬送であることが望ましい。
 低分子ホール輸送層3は、エーテル化合物と比較的高い分子間相互作用効果が得られるホール輸送性の高いトリフェニルアミン誘導体材料であることが望ましい。高分子発光層4を形成するための高分子材料塗布後に行われる溶媒乾燥工程において通常は120℃程度の加熱が行われるが、この加熱工程が低分子材料のガラス転移点を超えると低分子材料の凝集による界面荒さの増大や両者の混合などが起こって特性が悪化してしまうので、低分子材料のガラス転移点が高分子材料塗布後の溶媒乾燥温度以上、すなわち120℃以上の材料を低分子ホール輸送層3として用いるのが好ましい。
 また、低分子ホール輸送層3の構成材料の昇華温度は、真空度1Pa時において300℃以上であることが望ましい。これは、昇華温度が300℃より低いと、10-5Pa以下の高真空下で蒸着膜を形成する場合に蒸着温度が200℃以下になり、蒸着速度を制御することが困難になって、均一な膜密度の蒸着膜を形成することができないためである。
 難溶化層3aは、上述したように、低分子ホール輸送層3の表面にエーテル化合物による表面処理を行うことにより形成される。図24に、化学式3で示される低分子材料からなる低分子ホール輸送層3を真空蒸着法で形成した後、1,1'-ジブチルエーテルにより表面処
理を行って形成された難溶化層表面のX線電子分光スペクトルを示す。エーテル化合物由来のピークに加えて、エーテル化合物と低分子材料の反応由来のピークが検出されたことから、エーテル化合物と低分子ホール輸送層3を構成する低分子材料との反応化合物が難溶化層構成材料であると考えられる。
 高分子発光層4は、高分子有機発光材料により構成されている。高分子有機発光材料としては、ポリフルオレン(PFO)系高分子、ポリフェニレンビニレン(PPV)系高分子、ポリビニルカルバゾール(PVK)系高分子などを用いることができ、蛍光性色素や燐光性色素を前記高分子やポリスチレン系高分子、ポリチオフェン系高分子、ポリメチルメタクリレート系高分子等に分散させたもの等も用いることができる。これら高分子有機発光材料を、例えば、トルエン、キシレン、アセトン、アニソール、メチルアニソール、ジメチルアニソール、テトラリン、安息香酸エチル、安息香酸メチル、メチルエチルケトン、シクロヘキサノン、メタノール、エタノール、イソプロピルアルコール、酢酸エチル、酢酸ブチル、水などの単独または混合溶媒に溶解させて塗布液を調製し、その塗布液を使用した塗布法により高分子発光層を形成することができる。それら溶媒のうちでも特に、トルエン、キシレン、アニソール、メチルアニソール、ジメチルアニソール、テトラリン、安息香酸エチル、安息香酸メチル等の芳香族系溶媒は、高分子有機発光材料の溶解性が良く扱いも容易であることから、より好ましい溶媒である。
 このようにして、本実施形態にかかる有機EL素子200が構成、製造される。次に、このような有機EL素子200の作用および効果について説明する。
 本実施形態にかかる有機EL素子200では、真空蒸着法で形成される低分子ホール輸送層3と塗布法で形成される高分子発光層4との積層構造を採用することにより、低分子型有機EL素子や高分子型有機EL素子それぞれの問題を解決することが可能となる。
 すなわち、高分子型有機EL素子において問題となっている高分子ホール輸送層を、高温耐久性が高く安定した特性を有する真空蒸着法で形成された低分子ホール輸送層3に置き換えた高分子/低分子積層型有機EL素子とすることで、高温耐久性、寿命、駆動に伴う電圧上昇を改善することが可能となる。また、真空蒸着工程が2工程に増えるために高分子型有機EL素子よりは若干製造コストが高くなるものの、全工程真空蒸着が必要な低分子型有機EL素子と比較すれば、製造コストを低くすることが可能となる。
 このため、本実施形態の有機EL素子200を例えば車載表示素子、特にセグメント表示素子として用いることが可能となる。
 このような高分子/低分子積層型有機EL素子とする場合、低分子ホール輸送層3の上に高分子発光層4を塗布法で形成することになるため、低分子ホール輸送層3の構成材料が高分子発光層4の塗布液の溶媒に溶け出し、界面混合層が形成されるため発光効率が低下してしまう可能性がある。
 しかしながら、本実施形態では、低分子ホール輸送層3をエーテル化合物で表面処理している。これにより、低分子ホール輸送層3と高分子発光層4との界面において反応化合物による難溶化層3aを形成することができる。この難溶化層3aを形成した状態で実験を行ったところ、難溶化層3aの表面に高分子発光層4を塗布法で形成しても、低分子ホール輸送材料の高分子発光層塗布液の溶媒への溶け出しはほとんど無いことが確認された。
 したがって、本実施形態のように、低分子ホール輸送層3をエーテル化合物で表面処理することにより、発光効率の低下を抑制することができ、有機EL素子200を高効率な高分子/低分子積層型有機EL素子とすることが可能となる。また、高効率化はさらなる素子の長寿命化に繋がる。さらに、エーテル化合物による難溶化手法は、架橋性有機化合物を重合させて難溶化する手法に比べて、不安定な架橋性官能基を含まないために特性が長期にわたって安定であり、重合しきれなかったラジカルによる短寿命化現象も起こらないために素子の長寿命化も可能となる。このため、有機EL素子200を低コストで高温耐久性が高く長寿命が要求される車載用表示素子、特にセグメント表示素子として用いることが可能となる。
 なお、エーテル化合物の代わりに有機酸を用いる場合についても、同様の効果を得ることが可能であるが、有機酸を用いる場合には、有機酸を取り扱うために、有機酸に耐え得る容器が必要になるなど、装置コストが高くなる。これに対し、本実施形態のようにエーテル化合物による表面処理手法を用いる場合には、そのような制約がなく、安価な容器を使用できるため、装置コストを低減することが可能となる。
 以下、上記実施形態に対応した各種例について説明する。
 (例8)
 まず、基板1としてガラス基板を用い、このガラス基板上にホール注入電極2となるITO電極を150nm形成した。次に、低分子ホール輸送層3として、上述した化学式3で示されるN, N, N', N', N'',
N''-Hexakis(4'-methyl-biphenyl-4-yl)-benzene-1,3,5-triamine(分子量1119、ガラス転移点観測されず、融点402℃)を真空蒸着法で60nm形成した。そして、このように基板1上に形成した低分子ホール輸送層3の表面を、1,1'-ジブチルエーテル溶液中に10分間浸漬させて塗布することで難溶化層3aを形成し、さらに180℃で熱処理を行った。
 続いて、この難溶化層3aの上に、アメリカンダイソース社製Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-[2,1',3]-thiadiazole)]
(ADS233YE)を精製して重量平均分子量約40000とした高分子発光材料をキシレン溶媒に溶解させた塗布液を用いてスピンコート法で塗布したのち、120℃で乾燥させることにより高分子発光層4を100nm形成した。
 さらに、電子注入電極5として、Al/Ca電極を真空蒸着法で形成したのち、最後にグローブボックス中で金属缶と素子が形成されたガラス基板とを光硬化樹脂で貼り合わせて作製素子を封止した試料を用意した。
 また、比較例3として、エーテル化合物による表面処理を行わなかった以外は本例8と同様の構成の試料を用意した。
 そして、例8の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例3の試料の最大発光効率をI0(cd/A)とした時のI/I0の値は、5.0となった。この結果より、エーテル化合物による表面処理を行わず、難溶化層3aが形成されていない場合と比べて、大きな発光効率が得られており、高効率化が可能であることが確認された。
 (例9)
 本例では、例8とは異なるエーテル化合物を用い、例8と同様の手法により有機EL素子200の試料を製造した。具体的には、エーテル化合物としてジ-iso-プロピルエーテルを用いた。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例3の試料の最大発光効率をI0(cd/A)とした時のI/I0の値は、1.5となった。この結果から、エーテル化合物の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例10)
 本例でも、例8とは異なるエーテル化合物を用い、例8と同様の手法により有機EL素子200の試料を製造した。具体的には、エーテル化合物として1,1'-ジヘキシルエーテルを用いた。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例3の試料の最大発光効率をI0(cd/A)とした時のI/I0の値は、4.0となった。この結果から、エーテル化合物の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例11)
 本例でも、例8とは異なるエーテル化合物を用い、例8と同様の手法により有機EL素子200の試料を製造した。具体的には、エーテル化合物としてエチレングリコールジエチルエーテルを用いた。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例3の試料の最大発光効率をI0(cd/A)とした時のI/I0の値は、2.0となった。この結果から、エーテル化合物としてエーテル化合物の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例12)
 本例では、エーテル化合物を含む蒸気中に低分子ホール輸送層3の表面を曝す手法により難溶化層3aを形成し、それ以外に関しては例8と同様の手法により有機EL素子200の試料を製造した。具体的には、エーテル化合物として1,1'-ジブチルエーテルを用い、処理法として窒素ガス中で1,1'-ジブチルエーテルを80℃に熱することで飽和蒸気圧状態にした雰囲気中に低分子ホール輸送層3の表面を4時間暴露させる手法を行った。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例3の試料の最大発光効率をI0(cd/A)とした時のI/I0の値は、4.2となった。この結果から、エーテル化合物の種類やエーテル化合物を用いた難溶化層3aの形成手法を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例13)
 本例では、エーテル化合物による表面処理を行い高分子層を形成した後、加熱処理を行うことでエーテル化合物を揮発除去する工程を行ったが、それ以外に関しては例8と同様の手法により有機EL素子200の試料を製造した。具体的には、エーテル化合物をエチレングリコールジエチルエーテルとし、高分子発光層4を形成後150℃の加熱処理を行った。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例3の試料の最大発光効率をI0(cd/A)とした時のI/I0の値は、2.5となった。この結果から、エーテル化合物の種類を変更したり難溶化層3aを形成した後にエーテル化合物を揮発除去しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例8~13についての考察)
 図25は、上記各例の単位電流密度あたりの最大発光効率I(cd/A)と比較例3の最大発光効率I0(cd/A)との比較結果I/I0をまとめた図表である。
 この図から分かるように、いずれの例も比較例3に比べて大きな発光効率が得られていることから、上記実施形態に示した有機EL素子200にて、高効率化が可能であることが分かる。
 また、例13では加熱処理によりエーテル化合物を揮発除去しているため、同様構成の例11と比較して更に発光効率を向上させることが可能になっている。このことから、加熱処理などを行ってエーテル化合物を揮発除去することが有効であることが分かる。
 また、図26は、例8及び比較例3を初期輝度600cd/m2にて25℃環境下で
定電流駆動した場合の各輝度の時間変化を示した図である。この図から、例8は比較例3と比べて輝度の低下が少なく、安定で長寿命な素子であることが分かる。ここでは、例8を例に挙げたが、他の例においても同様の結果となる。このことからも、上記実施形態に示した有機EL素子200は長寿命化が図れていることが判る。
 (例14)
 本例では、例8とは異なる構成材料によって低分子ホール輸送層3を構成したもおのであり、その他関しては、例8と同様の手法により有機EL素子200の試料を製造した。具体的には、上述した化学式4で示されたN, N, N', N',-Tetrakis-(4'-methyl-biphenyl-4-yl)- N'',
N'',-biskis-(4'-methyl-phenyl)benzene -1,3,5-triamine (分子量976、ガラス転移点180℃)を低分子ホール輸送層3の構成材料として用いた。
 また、比較例4として、エーテル化合物による表面処理を行わなかった以外は本例14と同様の構成の試料を用意した。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例4の試料の最大発光効率をI0(cd/A)とした時のI/I0の値は、3.3となった。この結果から、低分子ホール輸送層3の構成材料を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例15)
 本例でも、例8とは異なる構成材料によって低分子ホール輸送層3を構成したもおのであり、その他関しては、例8と同様の手法により有機EL素子200の試料を製造した。具体的には、上述した化学式5で示されたt-Bu-TBATA(N, N, N', N', N'',
N''-Hexakis(4'-tert-butylbiphenyl-4-yl)-tris(4-aminophenyl)amine)(分子量1540、ガラス転移点203℃)を低分子ホール輸送層3の構成材料として用いた。
 また、比較例5として、エーテル化合物による表面処理を行わなかった以外は本例15と同様の構成の試料を用意した。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例5の試料の最大発光効率をI0(cd/A)とした時のI/I0の値は、2.9となった。この結果から、低分子ホール輸送層3の構成材料を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 以上の結果より、上記実施形態に示した有機EL素子200の低分子ホール輸送層3の構成材料として複数のトリフェニルアミン誘導体材料が有効であると言える。
(第3実施形態)
図27は、本発明の実施形態に係る有機EL素子300の構成を示す概略断面図である。この図に示されるように、基板1の上に、ホール注入電極2、低分子ホール輸送層3、難溶化層3a、高分子発光層4および電子注入電極5が順に積層された構造により、本実施形態にかかる有機EL素子300が構成されている。
 このような構造の有機EL素子300は、例えば次のようにして製造される。まず、基板1の上にホール注入電極2を形成したのち、低分子ホール輸送層3を真空蒸着法により形成する。続いて、低分子ホール輸送層3の表面に有機酸による表面処理を行うことにより、低分子ホール輸送層3と高分子発光層4の界面に難溶化層3aを形成する。そして、高分子発光層4を塗布法にて形成したのち、電子注入電極5を真空蒸着法にて形成する。最後に、乾燥窒素雰囲気中にて図示しない金属缶の貼り合わせによる封止を行うことにより、図27に示す有機EL素子300が製造される。各工程間の搬送方法は特に限定されるものではないが、乾燥雰囲気中での搬送であることが望ましい。
 なお、有機酸による表面処理、高分子発光層の形成及び封止工程は限定されるものではないがグローブボックス等の乾燥不活性ガス雰囲気中で行われることが望ましい。また、封止方法は金属缶による封止以外にも、ガラスもしくはバリア付きフィルムの貼り合わせによる封止やシリコン窒化膜などの薄膜を直接形成する薄膜封止手法など様々な封止手法が適用可能である。
 低分子ホール輸送層3は、有機酸との酸-塩基反応効果が得られ、ホール輸送性の高いトリフェニルアミン誘導体材料であることが望ましい。高分子発光層4を形成するための高分子材料塗布後に行われる溶媒乾燥工程において通常は120℃程度の加熱が行われるが、この加熱工程が低分子材料のガラス転移点を超えると低分子材料の凝集による界面荒さの増大や両者の混合などが起こって特性が悪化してしまうので、低分子材料のガラス転移点が高分子材料塗布後の溶媒乾燥温度以上、すなわち120℃以上の材料を低分子ホール輸送層3として用いるのが好ましい。これら条件を満たすものとして、具体的には、化学式3~7、9に示す材料があげられる。
 なお、ここでは、低分子ホール輸送層3を単層ホール注入電極2の上に形成した場合について説明したが、必ずしも単層構造にする必要はない。例えば、最も高分子発光層4側に有機酸処理効果の高い低分子ホール輸送層を配置すると共に、この下に、より低コストもしくはホール移動度のより高い低分子ホール輸送層を配置したり、ホール注入効率のより高いホール注入層を積層した構造としても良い。このような構造にすることで有機EL素子のさらなる低コスト化や駆動電圧低減が可能となる。
 難溶化層3aは、上述したように、低分子ホール輸送層3の表面に有機酸による表面処理を行うことにより形成される。表面処理によって構成される難溶化層3aの詳細構造に関しては定かではないが、低分子ホール輸送層3の表面に有機酸がフィルム状にコーティングされた状態、低分子ホール輸送層3内に有機酸を構成する分子が取り込まれて低分子材料との混合物となっている状態、もしくは、低分子ホール輸送層3を構成する低分子材料と化学反応して有機酸化合物となった状態のいずれかと想定される。
 難溶化層3aを形成するための表面処理に用いられる有機酸としては、スルホン酸化合物、カルボン酸化合物、ヒドロキシ化合物、チオール化合物、エノール化合物、もしくは有機リン酸化合物が挙げられる。特に、酸性の強いスルホン酸化合物が望ましく、次にカルボン酸化合物、有機リン酸化合物が望ましい。具体的には、スルホン酸化合物としては、ベンゼンスルホン酸、パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、エタンスルホン酸が挙げられる。カルボン酸化合物としては、4-メチル安息香酸、酢酸、蟻酸、シュウ酸、フタル酸、マロン酸が挙げられる。ヒドロキシ化合物としては、フェノール、ピクリン酸が挙げられる。チオール化合物としては、1-プロパンチオール、エノール化合物としてはペンタンジオン、有機リン酸化合物としてはビス(2-エチルヘキシル)フォスフェイトなどが挙げられる。
 難溶化層3aを形成するための有機酸による低分子ホール輸送層3の表面処理方法としては、有機酸を含む溶液をスピンコート法、ディップ法、スプレー法等で塗布する手法や有機酸を含む蒸気中に曝す手法などが挙げられるが、これらに限定されるものではない。ただし、量産性などを考慮すると前述の二つの手法が望ましい。また、表面処理を行った後、余剰有機酸を除去するために、アルコールや炭化水素系溶媒等の有機溶媒や水溶液によるリンスを行ったり、低分子ホール輸送層3を加熱しても良い。このように、余剰有機酸を後で除去することも可能であるため、有機酸を含む溶液の濃度や有機酸の蒸気濃度は、低分子ホール輸送層の材料の分子構造を変質させない限り、特に限定されない。また、加熱処理を行うことにより有機酸を揮発除去しても良い。加熱処理温度は低分子ホール輸送層3の構成材料のガラス転移点以下、ガラス転移点がない場合は融点以下にすることが望ましい。これにより界面に異種化合物である有機酸を低下させられるために、駆動電圧のさらなる低減や長寿命化が可能となる。但し、有機酸を揮発させる場合に、低分子ホール輸送材料と有機酸との酸-塩基反応による結合の一部が分解し難溶性が低下する場合があるため、効果を発現させるためには発光層塗布液溶媒への溶解度の低い低分子ホール輸送材料との組み合わせが望ましい。
 しかしながら、本実施形態では、低分子ホール輸送層3を有機酸で表面処理している。これにより、詳細構造に関しては定かではないが、表面処理によって低分子ホール輸送層3と高分子発光層4との界面において難溶化層3aを形成することができる。この難溶化層3aを形成した状態で実験を行ったところ、難溶化層3aの表面に高分子発光層4を塗布法で形成しても、低分子ホール輸送材料の高分子発光層塗布液の溶媒への溶け出しはほとんど無いことが確認された。例えば、難溶化層3aが低分子ホール輸送層3の構成材料と有機酸との化学反応物によって構成されているのであれば、酸-塩基反応による強固な結合を持った有機酸化合物が表面近傍の薄い領域に形成された状態となり、この有機酸化合物が塗布液の溶媒に対して極めて難溶であるために、上記のような結果となったと考えられる。同様に、低分子ホール輸送層3の表面に有機酸がフィルム状にコーティングされた状態、もしくは、低分子ホール輸送層3内に有機酸を構成する分子が取り込まれて低分子材料との混合物となっている状態であっても、塗布液の溶媒に対して極めて難溶であるために、上記のような結果になると考えられる。
 したがって、本実施形態のように、低分子ホール輸送層3を有機酸で表面処理することにより、発光効率の低下を抑制することができ、有機EL素子300を高効率な高分子/低分子積層型有機EL素子とすることが可能となる。また、高効率化はさらなる素子の長寿命化に繋がる。さらに、有機酸による難溶化手法は、架橋性有機化合物を重合させて難溶化する手法に比べて、不安定な架橋性官能基を含まないために特性が長期にわたって安定であり、重合しきれなかったラジカルによる短寿命化現象も起こらないために素子の長寿命化も可能となる。このため、有機EL素子300を低コストで高温耐久性が高く長寿命が要求される車載用表示素子、特にセグメント表示素子として用いることが可能となる。
 以下、上記実施形態に対応した各種例について説明する。
 (例16)
 まず、基板1としてガラス基板を用い、このガラス基板上にホール注入電極2となるITO電極を150nm形成した。次に、低分子ホール輸送層3として、上述した化学式1で示されるN, N, N', N', N'', N''-Hexakis(4'-methyl-biphenyl-4-yl)-benzene-1,3,5-triamine(分子量1119、ガラス転移点観測されず、融点402℃)を真空蒸着法で60nm形成し、この上に2-プロパノールに有機酸としてドデシルベンゼンスルホン酸を0.7重量%溶解させた溶液をスピンコート法で塗布することで難溶化層3aを形成し、さらに2-プロパノールでリンスした後120℃で熱処理を行った。
 続いて、この難溶化層3aの上に、アメリカンダイソース社製Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-[2,1',3]-thiadiazole)]
(ADS233YE)を精製して重量平均分子量40000とした高分子発光材料をキシレン溶媒に溶解させた塗布液を用いてスピンコート法で塗布したのち、120℃で乾燥させることにより高分子発光層4を100nm形成した。
 さらに、電子注入電極5として、Al/Ca電極を真空蒸着法で形成したのち、最後にグローブボックス中で金属缶と素子が形成されたガラス基板とを光硬化樹脂で貼り合わせて作製素子を封止した試料を用意した。
 また、比較例6として、有機酸による表面処理を行わなかった以外は本例16と同様の構成の試料を用意した。
 そして、例16の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例6の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、2.9となった。この結果より、有機酸による表面処理を行わず、難溶化層3aが形成されていない場合と比べて、大きな発光効率が得られており、高効率化が可能であることが確認された。
 なお、ここではドデシルベンゼンスルホン酸溶液の濃度を0.7重量%としたが、この濃度については特に限定されるものではなく、濃度30重量%のものを用いても上記とほぼ同様の結果が得られることを確認している。
 (例17)
 本例では、例16とは異なる有機酸を用い、例16と同様の手法により有機EL素子300の試料を製造した。具体的には、有機酸としてパラトルエンスルホン酸を用いた。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例6の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、1.3となった。この結果から、有機酸として有機酸の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例18)
 本例でも、例16とは異なる有機酸を用い、例16と同様の手法により有機EL素子300の試料を製造した。具体的には、有機酸として有機酸をエタンスルホン酸を用いた。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例6の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、3.1となった。この結果から、有機酸として有機酸の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例19)
 本例でも、例16とは異なる有機酸を用い、例16と同様の手法により有機EL素子300の試料を製造した。具体的には、有機酸として有機酸を酢酸を用いた。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例6の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、1.5となった。この結果から、有機酸として有機酸の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例20)
 本例でも、例16とは異なる有機酸を用い、例16と同様の手法により有機EL素子300の試料を製造した。具体的には、有機酸として有機酸をビス(2-エチルヘキシル)フォスフェイトを用いた。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例6の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、2.0となった。この結果から、有機酸として有機酸の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例21)
 本例では、有機酸を含む蒸気中に低分子ホール輸送層3の表面を曝す手法により難溶化層3aを形成し、それ以外に関しては例16と同様の手法により有機EL素子300の試料を製造した。具体的には、有機酸としてエタンスルホン酸を用い、処理法として窒素ガス中でエタンスルホン酸を80℃に熱することで飽和蒸気圧状態にした雰囲気中に低分子ホール輸送層3の表面を2時間暴露させる手法を行った。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例6の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、3.4となった。この結果から、有機酸として有機酸の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例22)
 本例でも、有機酸を含む蒸気中に低分子ホール輸送層3の表面を曝す手法により難溶化層3aを形成し、それ以外に関しては例16と同様の手法により有機EL素子300の試料を製造した。具体的には、有機酸として酢酸を用い、処理法として窒素ガス中で酢酸を50℃に熱することで飽和蒸気圧状態にした雰囲気中に低分子ホール輸送層表面を2時間暴露させる手法を行った。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例6の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、3.0となった。この結果から、有機酸として有機酸の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例23)
 本例では、有機酸による表面処理を行い高分子層を形成した後、加熱処理を行うことで有機酸を揮発除去する工程を行ったが、それ以外に関しては例16と同様の手法により有機EL素子300の試料を製造した。具体的には、有機酸を酢酸とし、高分子発光層4を形成後150℃10分の加熱処理を行った。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例6の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、2.3となった。この結果から、有機酸として有機酸の種類を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例16~8についての考察)
 図28は、上記各例の単位電流密度あたりの最大発光効率I(cd/A)と比較例6の最大発光効率I0(cd/A)との比較結果I/I0をまとめた図表である。
 この図から分かるように、いずれの例も比較例6に比べて大きな発光効率が得られていることから、上記実施形態に示した有機EL素子300にて、高効率化が可能であることが分かる。
 また、例23では加熱処理により酢酸を揮発除去しているため、同様構成の例19と比較して更に発光効率を向上させることが可能になっている。このことから、加熱処理などを行って有機酸を揮発除去することが有効であることが分かる。
 また、各例で使用したいずれの有機酸でも発光効率の向上が見られたが、その中でも例18及び6のエタンスルホン酸が特に高い発光効率が得られた。これは、エタンスルホン酸は揮発性が高く、難溶化層3aの形成において過剰であったエタンスルホン酸が素子形成中に揮発したためと思われる。
 また、例22の酢酸の蒸気を用いた場合も同様に、過剰の酢酸が素子形成中に揮発したため、高い発光効率が得られたものと思われる。このように、揮発性の高い有機酸を用いると、低分子ホール輸送材料の難溶化処理をより最適に行うことができ、有機EL素子300を低コストで高温耐久性が高く高効率で長寿命なものにすることが可能となる。
 また、図29は、例21及び比較例6を初期輝度600cd/m2にて25℃環境下で
定電流駆動した場合の各輝度の時間変化を示した図である。この図から、例21は比較例6と比べて輝度の低下が少なく、安定で長寿命な素子であることが分かる。ここでは、例21を例に挙げたが、他の例においても同様の結果となる。このことからも、上記実施形態に示した有機EL素子300は長寿命化が図れていることが判る。
 (例24)
 本例では、例16とは異なる構成材料によって低分子ホール輸送層3を構成したもおのであり、その他関しては、例16と同様の手法により有機EL素子300の試料を製造した。具体的には、上述した化学式2で示されたTPTを低分子ホール輸送層3の構成材料として用いた。
 また、比較例7として、有機酸による表面処理を行わなかった以外は本例24と同様の構成の試料を用意した。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例7の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、1.4となった。この結果から、低分子ホール輸送層3の構成材料を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 (例25)
 本例でも、例16とは異なる構成材料によって低分子ホール輸送層3を構成したもおのであり、その他関しては、例16と同様の手法により有機EL素子300の試料を製造した。具体的には、上述した化学式3で示されたTBPBを低分子ホール輸送層3の構成材料として用いた。
 また、比較例8として、有機酸による表面処理を行わなかった以外は本例25と同様の構成の試料を用意した。
 そして、本例の試料の単位電流密度あたりの最大発光効率をI(cd/A)、比較例8の試料の最大発光効率をI0(cd/A)とした時のI/IOの値は、1.8となった。この結果から、低分子ホール輸送層3の構成材料を変更しても、大きな発光効率が得られ、高効率化が可能であることが確認された。
 以上の結果より、上記実施形態に示した有機EL素子300の低分子ホール輸送層3の構成材料として複数のトリフェニルアミン誘導体材料が有効であると言える。
(第4実施形態)
 本願発明者らの研究の結果、高分子材料を用いた有機発光素子においては、高分子ホール輸送機能材料として現在提案されているPEDOT:PSS(poly (3, 4-ethylenedioxythiophene)-poly-(styrenesulfonate))などの高分子ホール輸送材料の不定さに起因して素子の劣化が生じていることが判明した。しかし、本実施形態では、ホール輸送層として、高温耐久性が高く安定した特性を有する真空蒸着法で形成された低分子ホール輸送層を用いることで、上記のように有機発光素子の高温耐久性、寿命、駆動に伴う電圧上昇を改善することができる。また、電極間に多層積層構造からなる低分子型有機発光素子において全層を真空蒸着によって形成した場合と比較し、発光層製造コストの削減が実現される。これにより車載用表示素子として好適に用いることができる有機EL素子の形成を可能とした。
 ホール輸送層の低分子材料として、その分子量が、700以上の材料を用いることにより、高分子材料からなる発光層の形成に用いられる溶剤に対して溶けにくく、また、多少の溶解性を示しても発光層中への低分子材料の拡散を抑制することが容易となる。
 本実施形態において、ホール輸送層の低分子材料として、そのガラス転移点又は融点が、発光層の高分子材料の塗布又は印刷形成後において、溶媒を揮発させるための乾燥処理の温度以上の材料を採用することで、発光層乾燥処理における特性劣化を防止できる。
 本実施形態において、ホール輸送層の上に発光層を積層する前に、ホール輸送層の低分子材料のガラス転移点以上、又はガラス転移点がない場合は融点以上の温度で加熱処理を施すことで、発光層の形成に際してのホール輸送層の耐久性、例えば発光層の形成に利用される溶剤への耐久性などを更に向上させることが可能となる。
 また、溶剤に溶けない低分子ホール輸送層の下に、溶剤に溶ける低分子ホール輸送層を積層した構造にすることで有機EL素子の電流効率を向上させることができ、駆動電圧を低減させることが可能である。
 さらに、ホール輸送層の発光層に接する側の第1層の低分子材料として、第1層に覆われる第2層の低分子材料よりも、発光層の高分子材料形成時に採用される溶剤に対する溶解性が低い材料を用いることで、ホール輸送層の耐溶剤性の向上を低コストにて実現できる。
 また、本実施形態において、第1層のホール輸送層の膜厚を、第2層よりも薄くすることで、耐溶剤性が高いことから高価なことが多い第1層用の低分子材料の使用量を削減しつつ、ホール輸送層の上記溶剤性向上と、製造コストの低減とを両立することができる。
 本実施形態の有機発光素子は、1フレーム期間中に1/3以下のデューティー比で駆動され、又はホール注入電極と電子注入電極との間に1フレーム期間の中の表示期間中に発光輝度に応じた所定DC電圧が供給されるDC駆動が行われる。このような駆動方法を採用することで、高分子材料の発光層と、低分子材料のホール輸送層との界面での変質を抑制でき、輝度低下を防止して素子寿命を延ばすことが容易となる。
 図30は、本実施形態に係る有機発光素子の例として採用した有機EL素子400の概略断面構造を示している。
 この有機EL素子400は、陽極として機能するホール注入電極2と陰極として機能する電子注入電極5との間に、少なくとも、高分子発光材料を用いた発光層4を備える。本実施形態では、この発光層4とホール注入電極2との間に、少なくとも、ホール輸送層3が形成され、ホール輸送層3にはホール注入・輸送性の低分子材料を真空蒸着法によって形成した蒸着膜を採用している。
 陽極2の上に、上記ホール輸送層3を真空蒸着によって積層した後、ホール輸送層3の上に、発光層4として高分子発光材料を塗布法又は印刷法によって形成する。発光層4の上には、陰極5が、例えば真空蒸着法によって積層されている。このような素子400は、陰極5まで形成した後、最後に乾燥窒素雰囲気中にて図示しない封止缶を基板1の素子形成側に貼り合わせ、封止している。
 基板1は、例えばガラスなどの透明基板であるが、ガラスには限られず、バリア膜付きの樹脂基板や金属基板等様々なものを用いることができる。
 陽極2は、透明または半透明の電極を形成することのできる任意の導電性物質とすることができる。具体的には、酸化物として酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化錫、酸化亜鉛、酸化インジウム、酸化亜鉛アルミニウム、酸化亜鉛ガリウム、酸化チタンニオブ等を使用し、スパッタリングなどによって積層することができる。このうち、ITOは、特に、低抵抗であること、耐溶剤性があること、透明性に優れていることなどの利点を有する材料である。
 ITOなどの導電性層の表面に、又は、基板1の上に、アルミニウム、金、銀等の金属材料を蒸着して半透明導電層を形成しても良いし、ポリアニリン等の有機半導体を用いて陽極としても良い。また、更にその他の方法を用いて陽極2としても良い。
 また、陽極2は、必要に応じて、成膜後にエッチングによってディスプレイなどにおいて要求される形状にパターニングしたり、UV処理やプラズマ処理などにより表面の活性化を行ってもよい。
 陰極5は、仕事関数の低い材料を用いること、特に、発光層4との界面が低仕事関数であることが望まれ、例えば、アルカリ金属もしくはアルカリ土類金属、アルカリ金属もしくはアルカリ土類金属とアルミニウム等の金属電極との積層、アルカリ金属もしくはアルカリ土類金属のハロゲン化物とアルミニウム等の金属電極との積層などを用いることができる。具体的には、Al/Ca(発光層側)、Al/Ba(発光層側)、Al/Li(発光層側)、Al/LiF(発光層側)、Al/CsF(発光層側)、Al/CaF(発光層側)、Al/Ca/LiF(発光層側)とする積層構造などが採用可能であり、これらの積層構造は、例えば真空蒸着法などによって形成することができる。
 低分子ホール輸送層3の材料については後に詳しく説明するが、このホール輸送層3には、低分子材料を真空蒸着法を用いて成膜することで、膜の純度・密度・平坦性に優れた高品質な膜を得ることができる。
 ホール輸送層3の形成方法としては、真空蒸着法以外にも、インクジェット法や一般的な押圧による転写法及びレーザー転写(LITI)法などによる印刷法や、スピンコート等による塗布法、気相成長法などもある。但し、有機EL素子の高温度高湿度耐久性の向上の観点から、ホール輸送層3の膜質が重要であり、上記のように、膜の純度・密度・平坦性などの観点より、真空蒸着法を用いることが最も望ましい。
 また、真空蒸着法によって低分子材料を蒸着形成した後、後述するように高分子材料を用いた発光層4を形成する前に、熱処理をする。この熱処理により、ホール輸送層3、特に発光層4との界面となる表面を平滑かつ緻密な状態とすることができ、発光層形成に用いられる溶剤への耐性(耐溶剤性)を向上させることができる。
 熱処理温度は、ホール輸送層3の低分子材料のガラス転移点以上か、ガラス転移点がない材料の場合には、融点以上の温度とする。なお、熱処理は、真空蒸着の成膜室内でも良いし、別途加熱部に搬送されて実行されてもよいが、いずれの場合も、低分子材料の酸素、水分などによる劣化を防ぐため、非酸化雰囲気で加熱することが望ましく、例えば窒素ガス、アルゴンガスなどの不活性ガスの雰囲気中で実行する。
 なお、真空蒸着において、ホール輸送層3を例えば画素毎の所望形状にパターニングする必要がある場合には、蒸着源と被蒸着対象である基板との間に、目的とするパターンに開口部が形成された蒸着マスクを配し、蒸着と同時に低分子ホール輸送層3をパターニングする。
 ホール輸送層3の上に形成する高分子材料を用いた発光層4の形成方法としては、いわゆるウエット処理と呼ばれる方法が採用できる。このウエット処理は、溶剤に高分子材料を分散させてこの溶剤を被形成面に付着させる方法であり、スピンコート法、ディップコート法、スプレー法などの塗布法や、上述のようなインクジェット法、転写、LITI法などの印刷法などがあげられる。
 以上に説明した有機EL素子400の各層を形成する際の各工程間の搬送は、特に限定されるものではないが、乾燥雰囲気中で搬送することが望ましい。
 素子の封止方法は、封止缶による封止以外にも、ガラスもしくはバリア付きフィルムを基板1の素子形成側に貼り合わせる封止方法や、シリコン窒化膜などの保護薄膜を、陰極5の形成後基板全体を直接覆うように形成して外界から素子を封止する方法などが適用可能である。このような封止工程及び上記高分子発光層4の成膜工程は、限定されるものではないが例えばグローブボックス中で行うことができる。
 次にホール輸送層3及び発光層4について具体的に説明する。
 (低分子ホール輸送材料)
 低分子ホール輸送材料の分子量は700以上、2000以下が好適である。分子量が700以上であることで、高分子材料を塗布または印刷するための高分子発光材料分散液の溶媒に少量溶解した場合でも、低分子材料の発光層中への拡散を抑制することができる。分子量が2000以下であることで、真空蒸着法で膜を形成する場合に、この材料を加熱蒸着させることが容易となる。
 また、発光層4の高分子材料の積層後、溶媒乾燥工程が施されるが、この乾燥工程では120℃程度に加熱される。この乾燥工程における温度が、ホール輸送層3の低分子材料のガラス転移点又はガラス転移点がない場合の融点より高いと、乾燥工程において、低分子材料の凝集による界面荒さの増大や、低分子材料と高分子材料との混合などが発生し、素子特性が悪化する。本実施形態においては、ホール輸送層3の低分子材料として、そのガラス転移点又は融点が、高分子材料塗布後溶媒乾燥温度以上、例えば120℃以上の材料を採用する。
 更に、本実施形態において、低分子材料はホール輸送層3として用いられるため、ホール輸送性の高い材料であることが必要である。一例として、トリフェニルアミン誘導体材料を採用することが望ましい。このトリフェニルアミン誘導体材料の具体例としては、その具体例に限定されるものではないが、化学式5-7、9に示すような化合物が挙げられる。
 以上のようなトリフェニルアミン誘導体材料は、真空蒸着法により低分子ホール輸送層3を形成することができる。なお、例示したトリフェニルアミン誘導体材料のガラス転移温度Tgは、化学式(9)のTPTが143℃、化学式(7)のTBPBが131.8℃、化学式(6)のSpio-1-TADが133℃、化学式(5)のt-Bu-TBATAが203℃であり、これらの材料がホール輸送層3に用いられる場合には、真空蒸着後の熱処理は、これら、用いる材料のTg以上とする。なお、上述のように高分子発光層4の積層後の加熱乾燥工程における加熱温度が、例えば120℃であれば、上記のいずれの材料も加熱温度以上のガラス転移温度を備えており、乾燥工程においてホール輸送層3の変質を防止できる。
 低分子ホール輸送層材料として、上記トリフェニルアミン誘導体材料の内、対称中心を有する材料は、比較的球体に近い分子形状となり、薄膜にした場合に分子が配列しやすく、耐溶剤性が向上するので好ましい。その中でも特にスターバーストアミンは分子が配列しやすく、耐溶剤性に優れた薄膜が形成されるのでより好ましい。なお、上記化学式5―7、9に示すトリフェニルアミン誘導体材料はいずれもこのトリフェニルアミンが星形に配列した部分を持つ。
 上述のように低分子ホール輸送材料の分子量は2000以下であることが好適である。
 上述の化学式(5)のt-Bu-TBATAは、分子量が1540である。一方、化学式(22)で示される化合物は、t-Bu-TBATAと基本骨格が同じであるが分子量は2165である。図38に化学式(22)で示す化合物を示す。特定の分子構造の影響以外に、上記化学式(5)と(22)のように、基本骨格が同じで分子量が増えると、真空蒸着を実行するための蒸発温度が高くなる傾向がある。実際、化学式(22)の化合物を蒸着する時の温度は、化学式(5)のt-Bu-TBATAより高くする必要がある。
 ここで、本実施形態において、低分子材料の真空蒸着において、その昇華温度は、真空度1Pa時において、300℃以上である。したがって、分子量が2000を超えると、蒸着の効率性が低下すると共に、昇華温度はさらに高温となるため、加熱により昇華するだけでなく、分子の分解が発生する可能性がある。分解が起きる場合、ホール輸送能力などに悪影響を及ぼし、有機EL素子の駆動電圧上昇等につながる。したがって、分子量は、2000以下の材料を採用することが好ましい。
 (ホール輸送層の多層構造)
 ホール輸送層3は、2層以上の多層とし、発光層4に接する側を第1層、この第1層に覆われる下層を第2層とし、少なくともこの第1層と第2層とで異なる低分子ホール輸送材料を採用することができる。
 例えば、第1層の前記低分子材料として、少なくとも、高分子材料の溶剤として用いられる溶剤物質に対する溶解性が低い(難溶性)材料を用い、第2層には溶剤物質に対して難溶性ではない材料を採用することもできる。
 ホール輸送層3として単層構造を採用した場合には、このホール輸送層3の材料として、発光層4の高分子材料の溶剤への耐溶解性を備えることが求められる。一方、多層構造の場合、少なくとも、発光層4に接する第1層にこの耐溶解性があれば、第1層に覆われる第2層の低分子材料の耐溶解性が低くとも第2層の低分子材料の溶出を防止できる。このため、第2層の材料の選択の自由度が高い。つまり、発光層4に接する側の第1層に溶剤物質に対する難溶性材料を利用すれば、第2層の材料として、特に難溶性でない材料を用いることも可能である。この場合、多層構造のホール輸送層3は、その第2層の高分子発光材料溶剤に対する第2層の溶解性よりも第1層の溶解性が低いという関係となる。
 一例として、第1層には、上記化学式5―7、9に示すようなトリフェニルアミン誘導体材料などを採用するが、第2層には、一例として、下記化学式(8)に示すα-NPBような低分子ホール輸送材料としてよく知られているが、耐溶剤性の低い材料を採用することができる。
 上記化学式(8)のα-NPBは、分子量588、ガラス転移温度98℃であるが、この材料を第2層に用いても安定性の高い有機EL素子が得られる。もちろん、第2層の低分子ホール輸送材料としては、このα-NPBには限定されない。例えば、他のホール輸送性に優れ、真空蒸着によって、純度・密度・平坦性に優れた安定した膜を形成することができる材料を採用して、耐久性に優れた有機EL素子を得ることができる。
 また、ホール輸送層3の多層構造の内、第1層は、他の層(例えば第2層)よりも薄く形成することもできる。この第1層の厚さは、少なくとも、高分子発光層4の溶剤に対し、耐溶解性のない場合の第2層の溶出を防止できる程度の厚さが有れば良く、5nm以上~50nm未満の範囲、例えば10nmの厚さとすることができる。上述のように、高分子発光層4の溶剤に対して難溶性を示す第1層の低分子ホール輸送材料(例えば上述のスターバーストアミンなどのトリフェニルアミン誘導体材料)は、分子が嵩高く、高価であることも多い。しかし、溶出防止の効果を得られる程度で、できるだけ薄く形成することにより、材料使用量を最小限に抑えることが可能となり、製造コストの上昇を抑制することができる。
 なお、多層構造のホール輸送層3の各層は、単層の場合と同様に、いずれも真空蒸着法によって形成することが膜の純度・密度・平坦性の観点から好ましい。この場合、第2層と第1層の境界は必ずしも明確でなくとも良く、第2層成分のみの積層領域から、共蒸着により徐々に第1層成分との混合領域、第1層成分のみの積層領域と濃度が段階的に変化する層構造であっても良い。
 (ホール注入層)
 図30の有機EL素子400において、上述のホール輸送層3と、陽極2との間に、さらにホール注入層を設けても良い。ホール注入層の材料としては、ホール輸送層3よりも陽極2からのホール注入障壁の小さい材料を用いることで発光層4へのホール注入効率を高め、駆動電圧の低減などを図ることを可能とする。
 ホール注入層の材料としては、銅フタロシアニン、Tetracyanoethylene、2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane、2-[4-((Bis(2-hydroxyethyl)aminophenyl)-cyanomethylene)-2,5-cyclohexadien-1-yldiene]malononitrile、2,3-Dichloro-5,6-dicyano-1,4-benzoquinone、2,6-Dimethylbenzoquinone、ポリアニリン等があげられる。
 なお、これらのホール注入層についても、成膜品質の高い真空蒸着法によって形成することができる。
 (ホール輸送層材料の他の例)
 単層構造のホール輸送層3の材料又は上記多層構造とする場合の発光層4に接する側の第1層の材料としては、上記化学式5-7、9の他にも、以下の化学式12、23-29に示されるような化合物(TCTA、(DNA)PP、TFLFL、TNFL、NPB-CH2-NPB、(PTB)DNPP、s-TPT、TBATA材料)を、それぞれ用いることが可能である。
 (高分子発光材料)
 高分子発光材料は塗布形成後の表面平坦性や低素子駆動電圧化を考えて、平均分子量が10000以上であることが望ましい。高分子発光材料としては、例えば、ポリフルオレン(PF)系高分子、ポリフェニレンビニレン(PPV)系高分子、ポリビニルカルバゾール(PVK)系高分子などを用いることができ、蛍光性色素や燐光性色素を前記高分子やポリスチレン系高分子、ポリチオフェン系高分子、ポリメチルメタクリレート系高分子等に分散させたもの等も用いることができる。
 更に、他の高分子としては、ポリフェニレンエチニレン(PPE)系高分子、ポリフェニレン(PP)系高分子、ポリパラフェニレン(PPP)系高分子、ポリメチルフェニルシラン(PMPS)などのポリシラン系高分子などを採用することも可能である。なお、これらの高分子は、単独で用いても良いが、2種以上を混合して用いても良いし、低分子材料などと混合して用いても良い。
 これら高分子有機発光材料の溶剤としては、例えば、トルエン、キシレン、アセトン、アニソール、メチルアニソール、ジメチルアニソール、テトラリン、安息香酸エチル、安息香酸メチル、メチルエチルケトン、シクロヘキサノン、メタノール、エタノール、イソプロピルアルコール、酢酸エチル、酢酸ブチル、水などの、単独または混合溶媒(溶剤)を用いることができる。これら溶剤に溶解させて発光層溶液を調製し、得られた発光層溶液を、上述のように、塗布法や印刷法などのウエット処理によってホール輸送層3の上に付着させる。その後、溶媒を乾燥除去することで高分子発光層4をホール輸送層3を覆って形成することができる。
 上記溶媒のうちでも特に、トルエン、キシレン、アニソール、メチルアニソール、ジメチルアニソール、テトラリン、安息香酸エチル、安息香酸メチル等の芳香族系溶媒は、高分子有機発光材料の溶解性が良く扱いも容易であることから、より好ましい溶媒である。また、塗布法としてはスピンコート法、ディップコート法、スプレー法など、印刷法としては、インクジェット法、転写法等の手法を用いることができる。
 ポリフルオレン系高分子の一例としては、発光材料の一種であるPoly[9,9-di-(2’-ethylhexylfluorenyl-2,7’-diyl)]高分子発光材料が挙げられる。この発光材料は、例えばキシレン溶媒に溶解させることができる。
 ポリフェニレンビニレン系高分子の一例としては、発光材料の一種であるPoly(2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylenevinylene)高分子発光材料が挙げられる。この発光材料も、例えばキシレン溶媒に溶解させることができる。
 ポリビニルカルバゾール系高分子材料は、例えば、2-(4-Biphenylyl)-5-phenyl-1,3,4-oxadiazole低分子材料と混合して溶媒に溶かして用いることができる。この場合の溶媒としては、例えば、ジクロロエタンを用いることができる。
 なお、いずれの高分子及びこれを溶かした溶媒を用いて、発光材料層をホール輸送層3の上に形成した後には、溶媒を除去するための乾燥処理を実行する。乾燥処理は120℃程度で、窒素ガスやアルゴンガスなどの不活性ガスなど非酸化雰囲気中にて実行される。
 図31は、本実施形態に係る有機EL素子を利用したディスプレイの一例を示す。本実施形態に係る有機EL素子は、低コストにて製造可能であって、かつ、高温高湿度環境への耐久性が非常に高い。このため、一例として、車載用のディスプレイなどとしても非常に有用であり、図31は、この車載用のセグメント型ディスプレイの例を表している。
 ディスプレイは、大別すると各画素にスイッチ素子の付いたアクティブマトリクス型と、スイッチ素子のないパッシブマトリクス型がある。パッシブマトリクス型は、陽極と陰極とがそれぞれ間に発光層等を挟んで互いに直交するようにストライプ状に形成された方式や、陽極と陰極の一方が、最初から表示する形状を備え、他方が共通電極となり、画素が表示する形状を備えているセグメント方式がある(セグメント型ディスプレイは、パッシブマトリクス型ディスプレイと区別して分類される場合もある)。
 このようなセグメント型ディスプレイや、画素数の少ないストライプ電極(例えば1/3デューティー比)によるパッシブマトリクス型ディスプレイは、各画素に構成されるEL素子が、1フィールド期間中のほぼ全期間、または1/3期間程度の期間、選択され続けて表示期間となる。
 このため、各表示期間中、各画素のEL素子には、表示内容に応じた一定の電圧が供給される。なお、アクティブマトリクス型ディスプレイの場合も、画素内の回路構成などによりEL素子に表示期間中一定の電圧が供給される。本実施形態に係るEL素子は、このような表示期間中一定の電圧が印加されるような駆動方法(DC駆動)において、長時間、高い信頼性で表示を行うことができる。
 以下に本実施形態の例及び比較例について、図30に示す素子構成を参照して説明する。
 (例26)
 本特許の例26として、ガラス基板1上に陽極2としてITO電極を150nm形成した。次に、ホール輸送層3として、化学式(5)で示されるt-Bu-TBATAを、真空蒸着法で60nmの厚さ蒸着形成した。
 次に、アメリカンダイソース社製ADS233YE高分子発光材料をキシレン溶媒に溶解させた発光層溶液を用い、この液をスピンコート法でホール輸送層3の上に高分子発光層として100nm形成した。溶剤の乾燥工程を経て、この発光層4の上に、陰極5として、Al/Ca電極を真空蒸着法で形成した。
 最後にグローブボックス中で金属缶と有機EL素子400が形成されたガラス基板とを光硬化樹脂で貼り合わせ、有機EL素子を封止した試料を作成した。
 比較例9としては、ホール輸送層3の材料として、スピンコート法で100nm形成したPEDOT:PSS高分子材料層を用い、それ以外は、例26と同様の条件で試料を作成した。
 図32は、例26及び比較例9の有機EL素子を、電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示す。比較例9では10時間で、駆動電圧比が20%以上増加したのに対し、例26では100時間駆動しても20%を超えることはなく安定した駆動特性が得られた。
 図33は、例26及び比較例9の素子を電流密度50mA/cm2で定電流駆動した場合の初期輝度に対する発光輝度比の時間依存性を示す。比較例9では10時間で輝度が半減したのに対して例26では10時間駆動でも20%程度しか輝度は低下せず、安定した発光特性が得られていることが理解できる。
 また、85℃環境下で駆動した場合においても、例26は比較例9よりも長い時間、耐久可能であり、高温耐久性にも優れていることがわかった。したがって、例26の構造の有機EL素子は、高温耐久性が強く要求される用途、例えば車載用途などの素子としても好適に用いることが可能である。
 (例27)
 例27として、ホール輸送層3の材料として、化学式(7)で示されるTBPBを用いたこと以外は、上記例26と同一の条件にて、有機EL素子を作成した。図34に、例27及び比較例9の素子を、電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示す。
 例27は比較例9よりも駆動に伴う電圧上昇率が抑制されており、安定した駆動特性が得られていることがわかる。また、発光特性及び高温耐久性も同様の傾向を示した。この結果から、材料が異なっても例26のような条件を満たしていれば効果が得られることが示された。
 (例28)
 例28として、ホール輸送層3の材料として、化学式(5)で示されるt-Bu-TBATAを用い、他の条件は、上記例26と共通する条件にて、有機EL素子を作成した。
 具体的には、ガラス基板上にITO電極を150nm形成し、ホール輸送層3として化学式(5)のt-Bu-TBATAを、真空蒸着法で60nm形成した。高分子発光層4としては、ポリフルオレン系発光材料の一種であるPoly[9,9-di-(2’-ethylhexylfluorenyl-2,7’-diyl)]高分子発光材料をキシレン溶媒に溶解させた発光層液を用いてスピンコート法にて100nmの厚さに形成した。
 溶剤の乾燥工程の後、発光層4の上に、Al/Ca電極を真空蒸着法で形成し、最後にグローブボックス中で金属缶と素子が形成されたガラス基板とを光硬化樹脂で貼り合わせて作製素子を封止した試料を用意した。
 図35に例28及び比較例9の素子を電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示す。比較例9では10時間で20%以上増加したのに対して例28では100時間駆動しても20%を超えることはなく安定した駆動特性が得られた。
 (例29)
 例29として、ガラス基板1上に陽極2としてITO電極を150nm形成し、ホール輸送層3として化学式(5)で示される材料を用い、真空蒸着法で60nmの厚さに形成した。
 発光層4としては、ポリフェニレンビニレン系発光材料の一種であるPoly(2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylenevinylene)高分子発光材料をキシレン溶媒に溶解させた塗布液を用いてスピンコート法で100nm形成した。溶剤の乾燥工程を施した後、発光層4の上に、陰極5としては、Al/Ca電極を真空蒸着法で形成し、最後にグローブボックス中で金属缶と素子が形成されたガラス基板とを光硬化樹脂で貼り合わせて作製素子を封止した試料を用意した。
 図36に、例29及び比較例9の素子を電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示す。比較例9では10時間で20%以上増加したのに対して例29では100時間駆動しても20%を超えることはなく安定した駆動特性が得られた。
 (例30)
 例30として、ガラス基板上に陽極2としてITO電極を150nm形成し、ホール輸送層3として化学式(5)で示されるt-Bu-TBATAを真空蒸着法で60nm形成した。発光層4としては、2-(4-Biphenylyl)-5-phenyl-1,3,4-oxadiazole低分子材料とPolyvinylcarbazole高分子材料を等重量、ジクロロエタン溶媒に溶解させた塗布液を用い、スピンコート法にて100nm形成した。溶剤乾燥工程を行った後、高分子発光層4の上に、Al/Ca電極を真空蒸着法で形成し、最後にグローブボックス中で金属缶と素子が形成されたガラス基板とを光硬化樹脂で貼り合わせて作製素子を封止した試料を用意した。
 図37に例30及び比較例9の素子を電流密度50mA/cm2で定電流駆動した場合の初期駆動電圧に対する駆動電圧比の時間依存性を示す。
 比較例9では10時間で20%以上増加したのに対して例30では30時間駆動しても20%を超えることはなく安定した駆動特性が得られた。
 (例31)
 例31として、例26と同様の条件で、ホール輸送層3として、化学式(5)で示される材料を蒸着速度5nm/分で形成した試料を用意した。比較例2としては、例26と同様の条件で、ホール輸送層3として、上述の化学式(22)で示される材料を蒸着速度5nm/分で形成した試料を用意した。
 例31及び比較例2を電流密度50mA/cm2で駆動したところ、比較例2の駆動電圧は、例31よりも30%上昇していた。上記化学式(5)で示されるt-Bu-TBATAの分子量が1540であるのに対して、化学式(22)の化合物の分子量は2165である。このため、化学式(22)の化合物を蒸着するための昇華温度は、化学式(5)の化合物の場合より高くする必要があり、この昇華温度が、化学式(22)の材料の分解温度を超えており、ホール輸送層の特性が低下し、高電圧化したと考えられる。
 このことから低分子材料の分子量が2000を超えてしまうと蒸着温度(昇華温度)が分解温度を超えてしまう恐れがあるために、低分子材料の分子量は2000以下とすることが好適であることが理解できる。
 上記の開示は、次の態様を含んでいる。
 本開示の第一の態様において、有機EL素子は、電極基板と、前記電極基板の上に配置されたホール注入電極と、前記ホール注入電極の上に配置されたホール輸送層と、前記ホール輸送層の上に配置された発光層と、前記発光層の上に配置された電子注入電極とを有する。前記ホール輸送層は、所定の第一分子量より小さい分子量を有する第一低分子材料から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料と所定の第三分子量より小さい分子量を有する第二低分子材料の混合物から形成されている。
 このように、低分子ホール輸送層を用いることにより、耐久性を高くすることができる。そして、発光層を高分子材料と低分子材料の混合にて構成しているため、高分子材料に加えられた低分子材料が立体障害の隙間を埋めるバインダーの役割をして高分子材料と低分子材料の絡まりを形成する。このために、低分子ホール輸送層と発光層との界面の密着性を高くすることができる。したがって、耐久性が高く、かつ、低分子ホール輸送層と発光層との界面の密着性も高い有機EL素子とすることができる。
 代案としては、前記発光層が塗布膜で形成され、前記ホール輸送層が真空蒸着膜で形成されている。または、前記第二低分子材料は、HOMO-LUMOギャップを有し、前記HOMO-LUMOギャップは、該発光層より放射される光の発光エネルギーよりも大きい。これにより、発光層において放射された光が低分子材料で吸収されて効率が低下したり、低分子材料自体が発光して所望の色度からずれを起こしたりすることを防ぐことが可能となる。
 代案としては、前記発光層は、前記高分子材料と前記第二低分子材料の総量のうちの1重量%以上50重量%未満の第二低分子材料を含む。このように、低分子材料の混合量を1重量%以上にすることで確実にバインダー効果を得ることができる。また、低分子材料の混合量を50重量%未満にすることで、加えられた低分子材料自体が消光サイトとして働いてしまうために効率が低下することを防止することができる。
 代案としては、前記第二低分子材料が、ホール輸送性材料、電子輸送性材料、またはその両方から形成されている。または、前記発光層は、さらに発光性色素を有する。このように、発光層に対して発光性色素を添加することで、より発光効率を高めたり演色性を高めたりすることも可能である。
 代案としては、前記ホール輸送層は、難溶化層を有する。難溶化層は、前記ホール輸送層の表面に配置され、難溶化層は、該ホール輸送層の表面をエーテル化合物もしくは有機酸で処理した表面処理膜から形成されている。このように、低分子ホール輸送層をエーテル化合物や有機酸にて表面処理することで難溶化層を形成することができる。この難溶化層により、低分子ホール輸送層の構成材料が発光層に溶け出すことを防止でき、素子特性の安定化および寿命向上が図れると共に、発光効率の低下の抑制が可能になるという効果も得ることができる。
 代案としては、前記難溶化層は、前記ホール輸送層のうち、前記発光層と接する部分に配置される。前記接する部分以外の前記ホール輸送層は、前記第二低分子材料のみからなる。または、前記エーテル化合物の分子式は、5以上15以下の炭素原子数を含む。具体的には、前記エーテル化合物が、化学式 R1-O-R2、または、化学式 R1-O-R2-O-R3で示される化合物であり、R1、R2、R3が炭素原子数2以上6以下のアルキル基である。さらに、前記エーテル化合物は、50℃以上かつ250℃以下の沸点を有する。この場合、沸点が50℃未満ではエーテル化合物がすぐ揮発してしまうため、十分な難溶化層を形成できない可能性があり、沸点が250℃より高いと表面処理を行った後余分なエーテル化合物を除去するのに長時間高温での処理が必要となり生産性が低下するためである。さらには、前記エーテル化合物が、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテルのいずれかである。または、前記有機酸がスルホン酸化合物、カルボン酸化合物、ヒドロキシ化合物、チオール化合物、エノール化合物、もしくは有機リン酸化合物である。
 代案としては、前記難溶化層は、10nm以下の膜厚を有する。難溶化層は低分子ホール輸送層と比べてホール移動度が低くなる。このため、難溶化層の膜厚が10nmよりも厚いと駆動電圧を増加させなければならない。したがって、難溶化層の膜厚を10nm以下にすると良い。
 代案としては、前記低分子ホール輸送層を構成する前記低分子材料は、120℃以上のガラス転移点、または、ガラス転移点がない場合は120℃以上の融点を有することを特徴とする。すなわち、発光層を形成するための高分子材料塗布後に溶媒乾燥工程を行うとき、通常は120℃程度の加熱が行われるが、この加熱工程が低分子材料のガラス転移点を超えると低分子材料の凝集による界面荒さの増大や両者の混合などが起こって特性が悪化してしまう。このため、低分子ホール輸送層の構成材料として、ガラス転移点が高分子材料塗布後の溶媒乾燥温度以上、すなわち120℃以上の材料を用いるのが好ましい。
 代案としては、前記第一低分子材料は、真空度1Pa時の昇華温度が300℃以上である。昇華温度が300℃より低いと、10-5Pa以下の高真空下で蒸着膜を形成する場合に蒸着温度が200℃以下になり、蒸着速度を制御することが困難になって、均一な膜密度の蒸着膜を形成することができない。したがって、低分子ホール輸送層の構成材料として、真空度1Pa時の昇華温度が300℃以上のものを用いると良い。
 代案としては、前記第一低分子材料が、トリフェニルアミン誘導体材料である。さらには、前記トリフェニルアミン誘導体材料の構造が対称中心を有する。また、さらには、前記トリフェニルアミン誘導体材料がスターバーストアミンである。
 本開示の第二の態様において、有機EL素子は、電極基板と、前記電極基板の上に配置されたホール注入電極と、前記ホール注入電極の上に配置されたホール輸送層と、前記ホール輸送層の表面に配置された難溶化層と、前記難溶化層の表面に配置された発光層と、前記発光層の上に配置された電子注入電極とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記難溶化層は、該ホール輸送層の表面をエーテル化合物で処理した表面処理膜から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
 このように、低分子ホール輸送層をエーテル化合物にて表面処理することで難溶化層を形成することができる。この難溶化層により、低分子ホール輸送層の構成材料が高分子発光層に溶け出すことを防止できる。したがって、低分子ホール輸送層と高分子発光層とを積層する構造を採用しつつ、低分子ホール輸送層が高分子発光層に溶けることを抑制すると共に、素子特性の安定化および寿命向上を図ることができる。
 代案として、前記エーテル化合物は、50℃以上かつ250℃以下の沸点を有する。沸点が50℃未満ではエーテル化合物がすぐ揮発してしまうため、十分な難溶化層を形成できない可能性があり、沸点が250℃より高いと表面処理を行った後余分なエーテル化合物を除去するのに長時間高温での処理が必要となり生産性が低下するためである。
 代案として、前記低分子材料は、120℃以上のガラス転移点、またはガラス転移点がない場合は120℃以上の融点を有する。すなわち、高分子発光層を形成するための高分子材料塗布後に溶媒乾燥工程を行うとき、通常は120℃程度の加熱が行われるが、この加熱工程が低分子材料のガラス転移点を超えると低分子材料の凝集による界面荒さの増大や両者の混合などが起こって特性が悪化してしまう。このため、低分子ホール輸送層の構成材料として、ガラス転移点が高分子材料塗布後の溶媒乾燥温度以上、すなわち120℃以上の材料を用いるのが好ましい。
 代案として、前記低分子材料は、真空度1Pa時の昇華温度が300℃以上である。昇華温度が300℃より低いと、10-5Pa以下の高真空下で蒸着膜を形成する場合に蒸着温度が200℃以下になり、蒸着速度を制御することが困難になって、均一な膜密度の蒸着膜を形成することができない。したがって、低分子ホール輸送層の構成材料として、真空度1Pa時の昇華温度が300℃以上のものを用いると良い。
 代案として、前記難溶化層は、10nm以下の膜厚を有する。難溶化層は低分子ホール輸送層と比べてのホール移動度が低くなる。このため、難溶化層の膜厚が10nmよりも厚いと駆動電圧を増加させなければならない。したがって、難溶化層の膜厚を10nm以下にすると良い。
 本開示の第三の態様において、有機EL素子の製造方法は、電極基板の上にホール注入電極を形成する工程と、前記ホール注入電極の上にホール輸送層を形成する工程と、前記ホール輸送層の表面をエーテル化合物で処理することにより、前記ホール輸送層の表面に難溶化層を形成する工程と、前記難溶化層の表面に発光層を形成する工程と、前記発光層の上に電子注入電極を形成する工程とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
 このように、低分子ホール輸送層をエーテル化合物にて表面処理することで難溶化層を形成することができる。表面処理によって構成される難溶化層の詳細構造に関しては定かではないが、低分子ホール輸送層の表面にエーテル化合物がフィルム状にコーティングされた状態、低分子ホール輸送層内にエーテル化合物を構成する分子が取り込まれて低分子材料との混合物となっている状態、もしくは、低分子ホール輸送層を構成する低分子材料と化学反応してエーテル化合物となった状態のいずれかと想定される。このような製造方法により、本開示の第二の態様の有機EL素子を製造することができる。
 代案として、有機EL素子の製造方法は、さらに、前記発光層を形成したのち、加熱処理を行うことにより、前記エーテル化合物を揮発除去する工程を有する。このように、加熱処理によってエーテル化合物を揮発除去することで、加熱処理を行っていない同様構成の有機EL素子と比較して、更に発光効率を向上させることが可能になる。
 本開示の第四の態様において、有機EL素子は、電極基板と、前記電極基板の上に配置されたホール注入電極と、前記ホール注入電極の上に配置されたホール輸送層と、前記ホール輸送層の表面に配置された難溶化層と、前記難溶化層の表面に配置された発光層と、前記発光層の上に配置された電子注入電極とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記難溶化層は、該ホール輸送層の表面を有機酸で処理した表面処理膜から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
 このように、低分子ホール輸送層を有機酸にて表面処理することで難溶化層を形成することができる。この難溶化層により、低分子ホール輸送層の構成材料が高分子発光層に溶け出すことを防止できる。したがって、低分子ホール輸送層と高分子発光層とを積層する構造を採用しつつ、低分子ホール輸送層が高分子発光層に溶けることを抑制すると共に、素子特性の安定化および寿命向上を図ることができる。
 代案として、前記有機酸がスルホン酸化合物、カルボン酸化合物、ヒドロキシ化合物、チオール化合物、エノール化合物、もしくは有機リン酸化合物であることを特徴とする。
 本開示の第五の態様において、有機EL素子の製造方法は、電極基板の上にホール注入電極を形成する工程と、前記ホール注入電極の上にホール輸送層を形成する工程と、前記ホール輸送層の表面を有機酸で処理することにより、前記ホール輸送層の表面に難溶化層を形成する工程と、前記難溶化層の表面に発光層を形成する工程と、前記発光層の上に電子注入電極を形成する工程とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
 このように、低分子ホール輸送層を有機酸にて表面処理することで難溶化層を形成することができる。表面処理によって構成される難溶化層の詳細構造に関しては定かではないが、低分子ホール輸送層の表面に有機酸がフィルム状にコーティングされた状態、低分子ホール輸送層内に有機酸を構成する分子が取り込まれて低分子材料との混合物となっている状態、もしくは、低分子ホール輸送層を構成する低分子材料と化学反応して有機酸化合物となった状態のいずれかと想定される。このような製造方法により、本開示の第四の態様に記載の有機EL素子を製造することができる。
 代案として、前記難溶化層を形成する工程は、前記ホール輸送層に対して有機酸を含む溶液を塗布する工程を含むことを特徴とする。また、前記難溶化層を形成する工程は、前記ホール輸送層の表面を、有機酸を含む蒸気中に曝す工程を含むことを特徴とする。または、有機EL素子の製造方法は、さらに、前記発光層を形成したのち、加熱処理を行うことにより、前記有機酸を揮発除去することを特徴とする。このように、加熱処理によって有機酸を揮発除去することで、加熱処理を行っていない同様構成の有機EL素子と比較して、更に発光効率を向上させることが可能になる。
 本開示の第六の態様において、有機発光素子は、ホール注入電極と、電子注入電極と、ホール注入電極と電子注入電極の間に配置された発光層と、前記ホール注入電極と前記発光層との間に配置されたホール輸送層とを有し、前記ホール輸送層は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、前記ホール輸送層は、真空蒸着膜から形成され、前記発光層は、前記ホール輸送層を覆っており、前記発光層は、所定の第二分子量より大きい分子量を有する高分子材料を発光材料として有していることを特徴とする。
 本発明によれば、有機発光素子において、ホール輸送層として低分子ホール輸送材料の
真空蒸着層を用い、このホール輸送層を覆って、高分子材料を発光材料とした発光層を形
成することで、低コストで高温耐久性が高く長寿命な有機EL素子を得ることができる。
例えば、車載用表示素子等、高温高湿度環境下における耐久性が要求される用途において
も好適に採用することができる。また、低コストでの製造が可能であるため、安価である
ことが強く要求されるセグメント型表示素子等にも採用することも可能となる。
 本発明は、好適な実施例を参照して開示されたが、本発明が当該好適な実施例やその構造に限られるわけではないと理解される。本発明は、種々の変形例や等価な配列を包含することを意図している。加えて、単に一要素を多くあるいは少なく含むような、好適な、あるいは、他の種々の組み合わせや形態もまた、本発明の範疇と射程内に入る。

Claims (73)

  1.  有機EL素子は、
     電極基板(1)と、
     前記電極基板(1)の上に配置されたホール注入電極(2)と、
     前記ホール注入電極(2)の上に配置されたホール輸送層(3)と、
     前記ホール輸送層(3)の上に配置された発光層(4)と、
     前記発光層(4)の上に配置された電子注入電極(5)とを有し、
     前記ホール輸送層(3)は、所定の第一分子量より小さい分子量を有する第一低分子材料から形成されており、
     前記発光層(4)は、所定の第二分子量より大きい分子量を有する高分子材料と所定の第三分子量より小さい分子量を有する第二低分子材料の混合物から形成されていることを特徴とする。
  2.  請求項1に記載の有機EL素子は、
     前記発光層(4)が塗布膜で形成され、
     前記ホール輸送層(3)が真空蒸着膜で形成されていることを特徴とする。
  3.  請求項1または2に記載の有機EL素子は、
     前記第二低分子材料は、HOMO-LUMOギャップを有し、
     前記HOMO-LUMOギャップは、該発光層(4)より放射される光の発光エネルギーよりも大きいことを特徴とする。
  4.  請求項1ないし3のいずれか1つに記載の有機EL素子は、
     前記発光層(4)は、前記高分子材料と前記第二低分子材料の総量のうちの1重量%以上50重量%未満の第二低分子材料を含むことを特徴とする。
  5.  請求項1ないし4のいずれか1つに記載の有機EL素子は、
     前記第二低分子材料が、ホール輸送性材料、電子輸送性材料、またはその両方から形成されていることを特徴とする。
  6.  請求項1ないし5のいずれか1つに記載の有機EL素子は、
     前記発光層(4)は、さらに発光性色素を有することを特徴とする。
  7.  請求項1ないし6のいずれか1つに記載の有機EL素子は、
     前記ホール輸送層(3)は、難溶化層(3a)を有し、
     難溶化層(3a)は、前記ホール輸送層(3)の表面に配置され、
     難溶化層(3a)は、該ホール輸送層(3)の表面をエーテル化合物もしくは有機酸で処理した表面処理膜から形成されていることを特徴とする。
  8.  請求項7に記載の有機EL素子は、
     前記難溶化層(3a)は、前記ホール輸送層(3)のうち、前記発光層(4)と接する部分に配置され、
     前記接する部分以外の前記ホール輸送層(3)は、前記第二低分子材料のみからなることを特徴とする。
  9.  請求項7または8に記載の有機EL素子は、
     前記エーテル化合物の分子式は、5以上15以下の炭素原子を含むことを特徴とする。
  10.  請求項9に記載の有機EL素子は、
     前記エーテル化合物が、化学式 R1-O-R2、または、化学式 R1-O-R2-O-R3で示される化合物であり、
     R1、R2、R3が炭素原子数2以上6以下のアルキル基であることを特徴とする。
  11.  請求項10に記載の有機EL素子は、
     前記エーテル化合物は、50℃以上かつ250℃以下の沸点を有することを特徴とする。
  12.  請求項11に記載の有機EL素子は、
     前記エーテル化合物が、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテルのいずれかであることを特徴とする。
  13.  請求項7または8に記載の有機EL素子は、
     前記有機酸がスルホン酸化合物、カルボン酸化合物、ヒドロキシ化合物、チオール化合物、エノール化合物、もしくは有機リン酸化合物であることを特徴とする。
  14.  請求項7ないし13のいずれか1つに記載の有機EL素子は、
     前記難溶化層(3a)は、10nm以下の膜厚を有することを特徴とする。
  15.  請求項1ないし14のいずれか1つに記載の有機EL素子は、
     前記第一低分子材料は、120℃以上のガラス転移点、または、ガラス転移点がない場合は120℃以上の融点を有することを特徴とする。
  16.  請求項1ないし15のいずれか1つに記載の有機EL素子は、
     前記第一低分子材料は、真空度1Pa時の昇華温度が300℃以上であることを特徴とする。
  17.  請求項1ないし16のいずれか1つに記載の有機EL素子は、
     前記第一低分子材料が、トリフェニルアミン誘導体材料であることを特徴とする。
  18.  請求項17に記載の有機EL素子は、
     前記トリフェニルアミン誘導体材料の構造が対称中心を有することを特徴とする。
  19.  請求項18に記載の有機EL素子は、
     前記トリフェニルアミン誘導体材料がスターバーストアミンであることを特徴とする。
  20.  有機EL素子は、
     電極基板(1)と、
     前記電極基板(1)の上に配置されたホール注入電極(2)と、
     前記ホール注入電極(2)の上に配置されたホール輸送層(3)と、
     前記ホール輸送層(3)の表面に配置された難溶化層(3a)と、
     前記難溶化層(3a)の表面に配置された発光層(4)と、
     前記発光層(4)の上に配置された電子注入電極(5)とを有し、
     前記ホール輸送層(3)は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、
     前記難溶化層(3a)は、該ホール輸送層(3)の表面をエーテル化合物で処理した表面処理膜から形成されており、
     前記発光層(4)は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
  21.  請求項20に記載の有機EL素子は、
     前記エーテル化合物の分子式は、5以上15以下の炭素原子を含むことを特徴とする。
  22.  請求項21に記載の有機EL素子は、
     前記エーテル化合物が化学式 R1-O-R2、または、化学式 R1-O-R2-O-R3で示される化合物であり、
     R1、R2、R3が炭素原子数2以上6以下のアルキル基であることを特徴とする。
  23.  請求項22に記載の有機EL素子
     前記エーテル化合物は、50℃以上かつ250℃以下の沸点を有することを特徴とする。
  24.  請求項23に記載の有機EL素子は、
     前記エーテル化合物が、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテルのいずれかであることを特徴とする。
  25.  請求項20ないし24のいずれか1つに記載の有機EL素子は、
     前記ホール輸送層(3)が真空蒸着膜で形成され、
     前記発光層(4)が塗布膜で形成されていることを特徴とする。
  26.  請求項20ないし25のいずれか1つに記載の有機EL素子は、
     前記ホール輸送層(3)がトリフェニルアミン誘導体材料で構成されていることを特徴とする。
  27.  請求項20ないし26のいずれか1つに記載の有機EL素子は、
     前記低分子材料は、120℃以上のガラス転移点、またはガラス転移点がない場合は120℃以上の融点を有することを特徴とする。
  28.  請求項20ないし27のいずれか1つに記載の有機EL素子は、
     前記低分子材料は、真空度1Pa時の昇華温度が300℃以上であることを特徴とする。
  29.  請求項20ないし28のいずれか1つに記載の有機EL素子は、
     前記難溶化層(3a)は、10nm以下の膜厚を有することを特徴とする。
  30.  有機EL素子の製造方法は、
     電極基板(1)の上にホール注入電極(2)を形成する工程と、
     前記ホール注入電極(2)の上にホール輸送層(3)を形成する工程と、
     前記ホール輸送層(3)の表面をエーテル化合物で処理することにより、前記ホール輸送層(3)の表面に難溶化層(3a)を形成する工程と、
     前記難溶化層(3a)の表面に発光層(4)を形成する工程と、
     前記発光層(4)の上に電子注入電極(5)を形成する工程とを有し、
     前記ホール輸送層(3)は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、
     前記発光層(4)は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
  31.  請求項30に記載の有機EL素子の製造方法は、
     前記難溶化層(3a)を形成する工程は、前記ホール輸送層(3)の表面に対してエーテル化合物を含む溶液を塗布もしくはその溶液に浸漬する工程を含むことを特徴とする。
  32.  請求項30に記載の有機EL素子の製造方法は、
     前記難溶化層(3a)を形成する工程は、前記ホール輸送層(3)の表面を、エーテル化合物を含む蒸気中に曝す工程を含むことを特徴とする。
  33.  請求項30ないし32のいずれか1つに記載の有機EL素子の製造方法は、
     前記難溶化層(3a)を形成する工程では、エーテル化合物の分子式は、5以上15以下の炭素原子を含むことを特徴とする。
  34.  請求項33に記載の有機EL素子の製造方法は、
     前記エーテル化合物が化学式 R1-O-R2、または、化学式 R1-O-R2-O-R3で示される化合物であり、
     R1、R2、R3が炭素原子数2以上6以下のアルキル基であることを特徴とする。
  35.  請求項34に記載の有機EL素子の製造方法は、
     前記エーテル化合物は、50℃以上かつ250℃以下の沸点を有することを特徴とする。
  36.  請求項35に記載の有機EL素子の製造方法は、
     前記エーテル化合物が、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジヘキシルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテルのいずれかであることを特徴とする。
  37.  請求項30ないし36のいずれか1つに記載の有機EL素子の製造方法は、
     前記ホール輸送層(3)を形成する工程では、前記ホール輸送層(3)を真空蒸着法にて形成し、
     前記発光層(4)を形成する工程では、前記発光層(4)を塗布法で形成することを特徴とする。
  38.  請求項30ないし37のいずれか1つに記載の有機EL素子の製造方法は、
     前記ホール輸送層(3)を形成する工程では、前記ホール輸送層(3)がトリフェニルアミン誘導体材料で構成されていることを特徴とする。
  39.  請求項30ないし38のいずれか1つに記載の有機EL素子の製造方法は、
     前記ホール輸送層(3)を形成する工程では、前記低分子材料は、120℃以上のガラス転移点、またはガラス転移点がない場合は120℃以上の融点を有することを特徴とする。
  40.  請求項30ないし39のいずれか1つに記載の有機EL素子の製造方法は、
     前記ホール輸送層(3)を形成する工程では、前記低分子材料は、真空度1Pa時の昇華温度が300℃以上であることを特徴とする。
  41.  請求項30ないし40のいずれか1つに記載の有機EL素子の製造方法は、
     前記難溶化層(3a)を形成する工程では、前記難溶化層(3a)は、10nm以下の膜厚を有することを特徴とする。
  42.  請求項30ないし41のいずれか1つに記載の有機EL素子の製造方法は、さらに、
     前記発光層(4)を形成したのち、加熱処理を行うことにより、前記エーテル化合物を揮発除去する工程を有する。
  43.  有機EL素子は、
     電極基板(1)と、
     前記電極基板(1)の上に配置されたホール注入電極(2)と、
     前記ホール注入電極(2)の上に配置されたホール輸送層(3)と、
     前記ホール輸送層(3)の表面に配置された難溶化層(3a)と、
     前記難溶化層(3a)の表面に配置された発光層(4)と、
     前記発光層(4)の上に配置された電子注入電極(5)とを有し、
     前記ホール輸送層(3)は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、
     前記難溶化層(3a)は、該ホール輸送層(3)の表面を有機酸で処理した表面処理膜から形成されており、
     前記発光層(4)は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
  44.  請求項43に記載の有機EL素子は、
     前記有機酸がスルホン酸化合物、カルボン酸化合物、ヒドロキシ化合物、チオール化合物、エノール化合物、もしくは有機リン酸化合物であることを特徴とする。
  45.  請求項43または44に記載の有機EL素子は、
     前記ホール輸送層(3)が真空蒸着膜で形成され、
     前記発光層(4)が塗布膜で形成されていることを特徴とする。
  46.  請求項43ないし45のいずれか1つに記載の有機EL素子は、
     前記ホール輸送層(3)がトリフェニルアミン誘導体材料で構成されていることを特徴とする。
  47.  請求項43ないし46いずれか1つに記載の有機EL素子は、
     前記低分子材料は、120℃以上のガラス転移点、またはガラス転移点がない場合は120℃以上の融点を有することを特徴とする。
  48.  請求項43ないし47のいずれか1つに記載の有機EL素子は、
     前記低分子材料は、真空度1Pa時の昇華温度が300℃以上であることを特徴とする。
  49.  請求項43ないし48のいずれか1つに記載の有機EL素子は、
     前記難溶化層(3a)は、10nm以下の膜厚を有することを特徴とする。
  50.  有機EL素子の製造方法は、
     電極基板(1)の上にホール注入電極(2)を形成する工程と、
     前記ホール注入電極(2)の上にホール輸送層(3)を形成する工程と、
     前記ホール輸送層(3)の表面を有機酸で処理することにより、前記ホール輸送層(3)の表面に難溶化層(3a)を形成する工程と、
     前記難溶化層(3a)の表面に発光層(4)を形成する工程と、
     前記発光層(4)の上に電子注入電極(5)を形成する工程とを有し、
     前記ホール輸送層(3)は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、
     前記発光層(4)は、所定の第二分子量より大きい分子量を有する高分子材料から形成されていることを特徴とする。
  51.  請求項50に記載の有機EL素子の製造方法は、
     前記難溶化層(3a)を形成する工程は、前記ホール輸送層(3)に対して有機酸を含む溶液を塗布する工程を含むことを特徴とする。
  52.  請求項50に記載の有機EL素子の製造方法は、
     前記難溶化層(3a)を形成する工程は、前記ホール輸送層(3)の表面を、有機酸を含む蒸気中に曝す工程を含むことを特徴とする。
  53.  請求項50ないし52のいずれか1つに記載の有機EL素子の製造方法は、
     前記難溶化層(3a)を形成する工程では、有機酸としてスルホン酸化合物、カルボン酸化合物、ヒドロキシ化合物、チオール化合物、エノール化合物、もしくは有機リン酸化合物を用いることを特徴とする。
  54.  請求項50ないし53のいずれか1つに記載の有機EL素子の製造方法は、
     前記ホール輸送層(3)を形成する工程では、前記ホール輸送層(3)を真空蒸着法にて形成し、
     前記発光層(4)を形成する工程では、前記発光層(4)を塗布法で形成することを特徴とする。
  55.  請求項50ないし54のいずれか1つに記載の有機EL素子の製造方法は、
     前記ホール輸送層(3)を形成する工程では、前記ホール輸送層(3)はトリフェニルアミン誘導体材料から形成されていることを特徴とする。
  56.  請求項50ないし55のいずれか1つに記載の有機EL素子の製造方法は、
     前記ホール輸送層(3)を形成する工程では、前記低分子材料は、120℃以上のガラス転移点、またはガラス転移点がない場合は120℃以上の融点を有することを特徴とする。
  57.  請求項50ないし56のいずれか1つに記載の有機EL素子の製造方法は、
     前記ホール輸送層(3)を形成する工程では、前記低分子材料は、真空度1Pa時の昇華温度が300℃以上であることを特徴とする。
  58.  請求項50ないし57のいずれか1つに記載の有機EL素子の製造方法は、
     前記難溶化層(3a)を形成する工程では、前記難溶化層(3a)は、10nm以下の膜厚を有することを特徴とする。
  59.  請求項50ないし58のいずれか1つに記載の有機EL素子の製造方法は、さらに、
     前記発光層(4)を形成したのち、加熱処理を行うことにより、前記有機酸を揮発除去することを特徴とする。
  60.  有機発光素子は、
     ホール注入電極(2)と、
     電子注入電極(5)と、
     ホール注入電極(2)と電子注入電極(5)の間に配置された発光層(4)と、
     前記ホール注入電極(2)と前記発光層(4)との間に配置されたホール輸送層(3)とを有し、
     前記ホール輸送層(3)は、所定の第一分子量より小さい分子量を有する低分子材料から形成されており、
     前記ホール輸送層(3)は、真空蒸着膜から形成され、
     前記発光層(4)は、前記ホール輸送層(3)を覆っており、
     前記発光層(4)は、所定の第二分子量より大きい分子量を有する高分子材料を発光材料として有していることを特徴とする。
  61. 請求項60に記載の有機発光素子において、 前記発光層(4)の該高分子材料は、10000以上の平均分子量を有しており、 前記ホール輸送層(3)の前記低分子材料は、700以上2000以下の分子量を有していることを特徴とする。
  62. 請求項60又は請求項61に記載の有機発光素子において、 前記発光層(4)は、前記高分子材料の塗布膜又は印刷膜から形成され、 前記ホール輸送層(3)の前記低分子材料は、前記発光層(4)の塗布又は印刷形成後に実行される乾燥温度以上のガラス転移点、又は、ガラス転移点のない場合には融点を有していることを特徴とする。
  63. 請求項60~請求項62のいずれか一項に記載の有機発光素子において、 前記ホール輸送層(3)には、該ホール輸送層(3)の上に前記発光層(4)が積層される前に、前記ホール輸送層(3)の前記低分子材料のガラス転移点以上、又はガラス転移点がない場合は融点以上の温度で加熱処理されていることを特徴とする。
  64.  請求項60~請求項63のいずれか一項に記載の有機発光素子において、
     前記低分子材料は、真空蒸着時における真空度1Pa時の昇華温度が300℃以上であることを特徴とする。
  65.  請求項60~請求項64のいずれか一項に記載の有機発光素子において、
     前記低分子材料は、トリフェニルアミン誘導体材料であることを特徴とする。
  66. 請求項65に記載の有機発光素子は、 前記トリフェニルアミン誘導体材料は、対称中心構造を有することを特徴とする。
  67. 請求項66に記載の有機発光素子は、 前記トリフェニルアミン誘導体材料は、スターバーストアミンであることを特徴とする。
  68. 請求項60~請求項67のいずれか一項に記載の有機発光素子は、 前記発光層(4)は、前記高分子材料を含む塗布膜または印刷膜であり、 前記発光層(4)は、前記ホール輸送層(3)の上に積層されており、 前記ホール輸送層(3)は、少なくとも第1層と第2層を有する多層構造を備え、 前記第1層は、前記発光層(4)に接しており、 前記第2層は、第1層で覆われており、 前記第1層は、第一低分子材料から形成され、前記第2層は、第二低分子材料から形成され、 前記第一低分子材料は、前記第二低分子材料より小さい、溶剤物質に対する溶解性を有しており、 前記溶剤物質は、塗布時又は印刷時において前記高分子材料の溶剤として用いられることを特徴とする。
  69. 請求項68に記載の有機発光素子は、 前記第1層の層厚は、前記第2層の層厚よりも薄いことを特徴とする。
  70. 請求項67又は請求項68に記載の有機発光素子は、 前記第1層は、前記第2層の上に形成された真空蒸着膜であることを特徴とする。
  71. 請求項67~請求項70のいずれか一項に記載の有機発光素子において、 前記高分子材料の溶剤は、トルエン、キシレン、アニソール、メチルアニソール、ジメチルアニソール、テトラリン、安息香酸エチル、安息香酸メチルのいずれか1種類、または、2種類以上を含むことを特徴とする。
  72. 請求項60~請求項71のいずれか一項に記載の有機発光素子は、 前記ホール輸送層(3)は、蒸着マスクに応じた形状に前記低分子材料がパターニングされて形成されていることを特徴とする。
  73.  請求項60~請求項72のいずれか一項に記載の有機発光素子において、
     前記有機発光素子は、1フレーム期間中に1/3以下のデューティー比で駆動され、又はホール注入電極(2)と前記電子注入電極(5)との間に1フレーム期間の中の表示期間中に発光輝度に応じた所定DC電圧が供給されるDC駆動が行われることを特徴とする。
PCT/JP2009/002121 2008-05-15 2009-05-14 有機発光素子とその製造方法 WO2009139172A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107026933A KR101237831B1 (ko) 2008-05-15 2009-05-14 유기 발광 소자 및 이의 제조 방법
KR1020127027530A KR101314704B1 (ko) 2008-05-15 2009-05-14 유기 발광 소자 및 이의 제조 방법
US12/736,214 US8461572B2 (en) 2008-05-15 2009-05-14 Organic luminescent device and manufacturing method thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008128207A JP2009277917A (ja) 2008-05-15 2008-05-15 有機発光素子
JP2008-128207 2008-05-15
JP2008-243435 2008-09-23
JP2008243435A JP5217835B2 (ja) 2008-09-23 2008-09-23 有機el素子およびその製造方法
JP2009021390A JP5453824B2 (ja) 2009-02-02 2009-02-02 有機el素子およびその製造方法
JP2009-021390 2009-02-02
JP2009033935A JP5218131B2 (ja) 2009-02-17 2009-02-17 有機el素子
JP2009-033935 2009-02-17

Publications (1)

Publication Number Publication Date
WO2009139172A1 true WO2009139172A1 (ja) 2009-11-19

Family

ID=41318547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002121 WO2009139172A1 (ja) 2008-05-15 2009-05-14 有機発光素子とその製造方法

Country Status (3)

Country Link
US (1) US8461572B2 (ja)
KR (2) KR101314704B1 (ja)
WO (1) WO2009139172A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204739A (ja) * 2010-03-24 2011-10-13 Toyota Central R&D Labs Inc 有機電子素子及び有機電子素子の製造方法
JP2013163708A (ja) * 2012-02-09 2013-08-22 Denso Corp 有機el用インク組成物およびそれを用いた有機el素子の製造方法
JPWO2012098578A1 (ja) * 2011-01-19 2014-06-09 パナソニック株式会社 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
US9153782B2 (en) 2011-01-19 2015-10-06 Joled Inc. Method for producing organic light-emitting element, organic display panel, organic light-emitting device, method for forming functional layer, ink, substrate, organic light-emitting element, organic display device, and inkjet device
US9318722B2 (en) 2011-01-19 2016-04-19 Joled Inc. Method for producing organic light-emitting element, organic display panel, organic light-emitting device, method for forming functional layer, ink, substrate, organic light-emitting element, organic display device, and inkjet device
US9373822B2 (en) 2011-01-19 2016-06-21 Joled Inc. Method for producing organic light-emitting element, organic display panel, organic light-emitting device, method for forming functional layer, ink, substrate, organic light-emitting element, organic display device, and inkjet device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012892B2 (en) 2011-06-21 2015-04-21 Kateeva, Inc. Materials and methods for controlling properties of organic light-emitting device
CN106981582A (zh) * 2011-06-21 2017-07-25 科迪华公司 用于oled微腔和缓冲层的材料和方法
EP2744004B1 (en) * 2012-12-11 2019-02-27 Nissan Chemical Corporation Process for the manufacture of a multilayer structure
WO2014188998A1 (ja) * 2013-05-20 2014-11-27 日産化学工業株式会社 トリフェニルアミン誘導体およびその利用
JP6455126B2 (ja) * 2014-12-17 2019-01-23 株式会社デンソー 有機el素子およびその製造方法
EP3472249B1 (en) * 2016-06-17 2022-02-02 Merck Patent GmbH Formulation of an organic functional material
US10332688B2 (en) * 2016-06-29 2019-06-25 Alliance For Sustainable Energy, Llc Methods for making perovskite solar cells having improved hole-transport layers
KR20200103235A (ko) * 2019-02-22 2020-09-02 삼성디스플레이 주식회사 유기 발광 소자

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357974A (ja) * 2000-06-13 2001-12-26 Tdk Corp 有機el素子の製造方法、および有機el素子
JP2004281251A (ja) * 2003-03-17 2004-10-07 Sharp Corp 有機el装置およびその製造方法
JP2005276802A (ja) * 2004-02-25 2005-10-06 Denso Corp 有機el素子
WO2006070713A1 (ja) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2006233162A (ja) * 2004-03-11 2006-09-07 Mitsubishi Chemicals Corp 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
JP2008016336A (ja) * 2006-07-06 2008-01-24 Seiko Epson Corp 有機半導体装置の製造方法、有機半導体装置、有機エレクトロルミネセンス装置の製造方法及び有機エレクトロルミネセンス装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959614A (ja) 1995-08-25 1997-03-04 Sumitomo Chem Co Ltd 有機エレクトロルミネッセンス素子
JPH11135261A (ja) 1997-10-27 1999-05-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP4045691B2 (ja) 1999-04-27 2008-02-13 住友化学株式会社 高分子発光素子
JP4957669B2 (ja) 2002-03-15 2012-06-20 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
JP2004247161A (ja) 2003-02-13 2004-09-02 Morio Taniguchi 有機エレクトロルミネッセンス素子の製造方法
KR100543000B1 (ko) 2003-08-18 2006-01-20 삼성에스디아이 주식회사 풀칼라 유기 전계 발광 소자용 도너 필름, 도너 필름의제조 방법 및 이 도너 필름을 사용한 풀칼라 유기 전계발광 소자
JP2005093135A (ja) 2003-09-12 2005-04-07 Tdk Corp 有機el素子及び有機elディスプレイ
EP2533610B1 (en) 2004-03-11 2015-04-29 Mitsubishi Chemical Corporation Composition for Charge-Transport Film and Ionic Compound, Charge-Transport Film and Organic Electroluminescence Device Using the Same, and Production Method of the Organic Electruminescence Device and Production Method of the Charge-Transport Film
JP2005285617A (ja) 2004-03-30 2005-10-13 Seiko Epson Corp 有機el装置および電子機器
JP2005302567A (ja) 2004-04-13 2005-10-27 Seiko Epson Corp 有機el素子の製造方法、有機el素子、および電子機器
JP2005302566A (ja) 2004-04-13 2005-10-27 Seiko Epson Corp 有機el素子の製造方法、有機el素子、および電子機器
JP2006190759A (ja) 2005-01-05 2006-07-20 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2007042316A (ja) 2005-08-01 2007-02-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007207655A (ja) 2006-02-03 2007-08-16 Dainippon Printing Co Ltd 有機elディスプレイ
JP2007242816A (ja) 2006-03-07 2007-09-20 Toppan Printing Co Ltd 有機エレクトロルミネッセンスデバイス及びその製造方法
JP4175397B2 (ja) 2006-06-28 2008-11-05 セイコーエプソン株式会社 有機エレクトロルミネセンス装置の製造方法
JP2008078495A (ja) 2006-09-22 2008-04-03 Fuji Xerox Co Ltd 有機電界発光素子およびその製造方法、並びに画像表示媒体
JP2008258641A (ja) 2008-05-09 2008-10-23 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357974A (ja) * 2000-06-13 2001-12-26 Tdk Corp 有機el素子の製造方法、および有機el素子
JP2004281251A (ja) * 2003-03-17 2004-10-07 Sharp Corp 有機el装置およびその製造方法
JP2005276802A (ja) * 2004-02-25 2005-10-06 Denso Corp 有機el素子
JP2006233162A (ja) * 2004-03-11 2006-09-07 Mitsubishi Chemicals Corp 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法
WO2006070713A1 (ja) * 2004-12-28 2006-07-06 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2008016336A (ja) * 2006-07-06 2008-01-24 Seiko Epson Corp 有機半導体装置の製造方法、有機半導体装置、有機エレクトロルミネセンス装置の製造方法及び有機エレクトロルミネセンス装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204739A (ja) * 2010-03-24 2011-10-13 Toyota Central R&D Labs Inc 有機電子素子及び有機電子素子の製造方法
JPWO2012098578A1 (ja) * 2011-01-19 2014-06-09 パナソニック株式会社 有機発光素子の製造方法、有機表示パネル、有機発光装置、機能層の形成方法、インク、基板、有機発光素子、有機表示装置、および、インクジェット装置
US9153782B2 (en) 2011-01-19 2015-10-06 Joled Inc. Method for producing organic light-emitting element, organic display panel, organic light-emitting device, method for forming functional layer, ink, substrate, organic light-emitting element, organic display device, and inkjet device
US9318722B2 (en) 2011-01-19 2016-04-19 Joled Inc. Method for producing organic light-emitting element, organic display panel, organic light-emitting device, method for forming functional layer, ink, substrate, organic light-emitting element, organic display device, and inkjet device
US9373822B2 (en) 2011-01-19 2016-06-21 Joled Inc. Method for producing organic light-emitting element, organic display panel, organic light-emitting device, method for forming functional layer, ink, substrate, organic light-emitting element, organic display device, and inkjet device
JP2013163708A (ja) * 2012-02-09 2013-08-22 Denso Corp 有機el用インク組成物およびそれを用いた有機el素子の製造方法

Also Published As

Publication number Publication date
KR101314704B1 (ko) 2013-10-07
US8461572B2 (en) 2013-06-11
KR101237831B1 (ko) 2013-02-27
KR20120130275A (ko) 2012-11-29
US20110006288A1 (en) 2011-01-13
KR20110009206A (ko) 2011-01-27

Similar Documents

Publication Publication Date Title
WO2009139172A1 (ja) 有機発光素子とその製造方法
JP5757244B2 (ja) 有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
JP5322075B2 (ja) 有機りん光発光デバイスおよびその製造方法
JP5151111B2 (ja) 有機エレクトロルミネッセンス素子
KR20160088440A (ko) 전하수송성 재료 및 전하수송성 바니시
KR20080028212A (ko) 유기발광소자 및 그 제조방법
JP2011129275A (ja) 有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置及び有機el照明
WO2010104183A1 (ja) 有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2011233516A (ja) 有機電界素子用組成物の製造方法、有機電界素子用組成物、有機電界発光素子の製造方法、有機電界発光素子、有機el表示装置および有機el照明
KR101386657B1 (ko) 발광 구성요소
WO2017216557A1 (en) Methods for the production of organic electronic devices
JP2010056364A (ja) 有機発光素子
WO2016125750A1 (ja) 有機el素子
JP5218131B2 (ja) 有機el素子
EP1705729B1 (en) Polymer and small molecule based hybrid light source
JP2010209320A (ja) 有機電界発光素子用組成物、有機電界発光素子の製造方法、有機電界発光素子、有機elディスプレイ及び有機el照明
KR20190135567A (ko) 유기 전계 발광 소자용 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
JP2009277917A (ja) 有機発光素子
JP5402703B2 (ja) 有機電界発光素子、有機elディスプレイ、有機el照明及び有機el信号装置
JP5217835B2 (ja) 有機el素子およびその製造方法
JP5453824B2 (ja) 有機el素子およびその製造方法
JP6455126B2 (ja) 有機el素子およびその製造方法
CN111312914A (zh) 量子点发光器件及其制备方法、显示装置
JP4788370B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP4775118B2 (ja) 有機エレクトロルミネッセンス素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09746379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12736214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107026933

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09746379

Country of ref document: EP

Kind code of ref document: A1