WO2006070713A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2006070713A1
WO2006070713A1 PCT/JP2005/023714 JP2005023714W WO2006070713A1 WO 2006070713 A1 WO2006070713 A1 WO 2006070713A1 JP 2005023714 W JP2005023714 W JP 2005023714W WO 2006070713 A1 WO2006070713 A1 WO 2006070713A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
thin film
wet method
group
Prior art date
Application number
PCT/JP2005/023714
Other languages
English (en)
French (fr)
Inventor
Hirofumi Kondo
Tetsuya Inoue
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to US11/813,040 priority Critical patent/US20080100206A1/en
Priority to JP2006550740A priority patent/JPWO2006070713A1/ja
Priority to EP05842270A priority patent/EP1840990A1/en
Publication of WO2006070713A1 publication Critical patent/WO2006070713A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/421Thermal treatment, e.g. annealing in the presence of a solvent vapour using coherent electromagnetic radiation, e.g. laser annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to an organic electoluminescence element. More specifically, the present invention relates to an organic electroluminescent element that has improved the lifetime of the element by highly removing the residual solvent from the organic thin film layer.
  • electroluminescence organic electroluminescence devices
  • Organic EL devices have the advantages of not only a wide viewing angle and excellent contrast, but also a quick response time as a spontaneous emission type display device.
  • Organic thin film layers such as a light-emitting layer forming an organic EL element are formed by a dry method such as a vacuum evaporation method or a wet method such as spin coating or ink jet.
  • the dry method has the advantage that the material for forming the organic thin film layer does not need to be dissolved in a solvent, and the solvent does not need to be removed after film formation.
  • the vacuum deposition method is a high-vacuum process that requires large-scale equipment, it has disadvantages such as high manufacturing cost, inability to apply to large screen substrates, and difficulty in mass production.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-17252
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an organic EL element including an organic thin film layer formed by a wet method and having an improved emission lifetime. .
  • the present inventor has heated the organic thin film layer constituting the organic EL element by infrared heating under an ultrahigh vacuum, so that the residual solvent in the layer is not heated to a high temperature. As a result, it was found that the emission lifetime of the organic EL device can be improved, and the present invention has been completed.
  • An organic electoluminescence device in which an organic thin film layer including a light emitting layer is sandwiched between a cathode and an anode, wherein at least one layer of the organic thin film layer is formed by a wet method, and a residual solvent in this layer is , Atsushi Nobori spectrometry: detection limit of measurement by (TDS measurement temperature 80 ° C) (detection partial pressure, 1. 0 X 10_ 12 Pa) or less is an organic elect port eLEMENT.
  • the organic electoluminescence device according to 1, wherein the layer formed by the wet method is a layer dried by heating with infrared rays under an ultrahigh vacuum.
  • the ultra-high vacuum in the vacuum level 10_ 9 Pa ⁇ : 10_ is 6 Pa, the heating temperature by infrared radiation, according to 2 or less glass transition temperature of the material for forming the layer formed by the wet method Organic electroluminescence device.
  • the ultra-high vacuum in the vacuum level 10- 9 Pa ⁇ : 10- 7 is Pa, the heating temperature by infrared rays, a glass transition temperature below 10 ° C or more lower Les formation material of the layer formed by the wet method
  • the organic electoluminescence device according to any one of 1 to 4, which is a low molecular weight compound having at least one force S of a layer forming material formed by the wet method.
  • the organic EL device of the present invention a device having a long emission lifetime can be obtained even if the device includes an organic thin film layer formed by a wet method.
  • the organic thin film layer formed by the wet method can be dried at a low temperature in a short time. Furthermore, the residual solvent in the organic thin film layer can be highly removed. Therefore, it is effective for increasing the area of display panels using organic EL elements.
  • FIG. 1 is an example of a spectrum showing the relationship between the measurement time obtained by thermal desorption analysis and the amount of gas generated.
  • FIG. 2 is a schematic view of an organic layer forming apparatus.
  • FIG. 3 is a cross-sectional view showing one embodiment of the organic EL device of the present invention.
  • an organic thin film layer including a light emitting layer is sandwiched between a cathode and an anode, and at least one of the organic thin film layers is formed by a wet method.
  • the residual solvent in this layer must be below the detection limit (detection partial pressure is 1.0 X 10 _ 12 Pa) measured by thermal desorption analysis (TDS: measurement temperature 80 ° C). It is characterized by.
  • Thermal desorption analysis is a method in which a sample is heated and heated in a high-vacuum vessel, and the residual solvent is desorbed from the sample and gasified while the temperature is rising, and detected by a quadrupole mass spectrometer. Yes, it is a measurement method that can detect the residual solvent contained in the sample with high sensitivity.
  • the measurement conditions for temperature programmed desorption analysis in the present invention are as follows: the vacuum level is 1.0 to 9.9 X 10 " 7 Pa, the sample temperature is about 80 ° C (fixed), and the sample is 5 mm X 5 mm square. If the maximum detected partial pressure of the gas generated by the residual solvent detected during measurement under this condition is 1.0 X 10 " 12 Pa or less, the device will be deteriorated by the residual solvent during wet film formation. It can be effectively prevented. Incidentally, preferably, the highest detection partial pressure 1. is under 0 X 10- 12 Pa or less when the temperature of the sample was approximately 100 ° C.
  • FIG. 1 is an example of a spectrum showing the relationship between the measurement time obtained by temperature programmed desorption analysis and the amount of gas generated.
  • the vertical axis represents the amount of gas generated (detected partial pressure: unit Pa) and the measurement temperature
  • the horizontal axis represents the measurement time.
  • a peak indicating that a large amount of toluene was desorbed was observed during the measurement time of 10 minutes to 30 minutes. It can be confirmed that the generation of toluene gas was completed in about 40 minutes.
  • “Below detection limit” means that the above peaks in Fig. 1 are not observed, that is, about 40 minutes have passed (gas desorption cannot be observed (detection partial pressure: 1.0 X 10_ 12 Pa or less) )).
  • Examples of a method for setting the residual solvent of a layer formed by a wet method to be equal to or lower than the detection limit of measurement by a temperature programmed desorption analysis method include, for example, a layer formed by a wet method, which is the production method of the present invention.
  • a method of drying by heating with infrared rays under an ultra-high vacuum is mentioned. This will be described below with reference to the drawings.
  • FIG. 2 is a schematic view of an organic layer forming apparatus.
  • the organic layer forming apparatus 10 includes a vacuum chamber 20, an infrared ray generator 30, and a vacuum pump (not shown) as main components.
  • the vacuum chamber 20 is a sealed container that keeps the inside of the chamber in an ultra-high vacuum, and a quartz glass window 22 for introducing infrared rays irradiated from the infrared ray generator 30 into the chamber is provided at the upper part thereof. .
  • a sample stage 24 Inside the chamber 20, there is a sample stage 24, on which a sample 26 of an organic EL element in which a layer formed by a wet method is applied is installed.
  • a vacuum pump is connected to the vacuum chamber 20 to bring the inside of the vacuum chamber 20 into an ultra-high vacuum state.
  • these components can use the member normally used industrially.
  • a magnetic levitation turbo pump manufactured by Leibold, TYP TURBO VAC 340M
  • a halogen lamp can be used for the infrared ray generator.
  • a sample 26 having a layer applied by a wet method is placed on a sample table 24.
  • the inside of the vacuum chamber 20 is evacuated by operating a vacuum pump, and an ultra-high vacuum state is set (arrow A indicates the evacuation direction).
  • red light is emitted from the infrared generator 30 as shown by arrow B.
  • a sample 26 in the vacuum chamber 20 is irradiated with an external line.
  • the heating temperature of sample 26 is adjusted by controlling the amount of infrared irradiation. Infrared rays may be irradiated before the chamber is in a vacuum state.
  • the layer formed by the wet method with infrared rays, not only the surface of the layer but also the inside of the layer can be quickly heated. For this reason, even if the heating temperature is set to a relatively low temperature, the drying time of the layer can be shortened. Then, by performing infrared heating under an ultra-high vacuum, the residual solvent in the layer can be made below the detection limit of measurement by temperature programmed desorption analysis.
  • the vacuum level of the ultrahigh vacuum Shi preferred that it is particularly good Mashigu a 10_ 9 Pa ⁇ 10_ 6 Pa, a 10_ 9 Pa ⁇ 10_ 7 Pa les. Vacuum level adversely les than 10_ 6 Pa, and or summer drying time is long, there is a possibility that the solvent can not be sufficiently removed, also better than 10- 9Pa, it becomes difficult to maintain the vacuum state.
  • the heating temperature by infrared rays is equal to or lower than the glass transition temperature of the forming material of the layer formed by the wet method.
  • the heating temperature is 10 ° C or more lower than the glass transition temperature of the forming material. It is preferable.
  • the glass transition temperature of the forming material varies depending on the compound, and is generally about 60 ° C to 200 ° C.
  • the drying time of the organic thin film layer may be appropriately adjusted in consideration of the layer thickness and the glass transition temperature of the material used. For example, in the case of the organic thin film layer to be measured in FIG. 21, the drying time is about 40 minutes at a drying temperature of 80 ° C.
  • the layers formed by the wet method may be dried one by one, or after a plurality of layers, for example, a hole injection layer and a light emitting layer are formed in succession, You can dry them all at once. In this case, the previously formed layer may be preliminarily dried.
  • the organic EL device of the present invention adopts a known configuration for other configurations as long as the residual solvent of the layer formed by the wet method is removed at a high level as described above. Is possible.
  • embodiments of the organic EL element of the present invention will be described.
  • FIG. 3 is a cross-sectional view showing an embodiment of the organic EL element of the present invention.
  • This organic EL device has a hole injection layer 62, a light emitting layer 64, an electron injection layer between the cathode 70 and the anode 50.
  • An organic thin film layer 60 composed of an inner layer 66 is sandwiched.
  • one or a plurality of layers sandwiched between the anode and the cathode correspond to the organic thin film layer, but all of these layers may not be composed of an organic compound. Or a layer containing an inorganic compound.
  • an organic EL element is fabricated on a light-transmitting substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • the anode of the organic EL device of the present invention plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include tin-doped indium oxide alloy (ITO), tin oxide (NESA), gold, silver, platinum, copper, and the like.
  • the anode can be manufactured by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness of the anode is a force depending on the material, and is usually selected in the range of 10 nm to l z m, preferably 10 to 200 nm.
  • the light emitting layer of the organic EL device has the following functions.
  • injection function a function capable of injecting holes from the anode or hole injection layer when an electric field is applied and a function of injecting electrons from the negative electrode or electron injection layer;
  • Transport function function to move injected charges (electrons and holes) by the force of electric field
  • light emission function function to provide a field for recombination of electrons and holes and connect this to light emission
  • a method for forming the light emitting layer for example, a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied. Further, as disclosed in Japanese Patent Application Laid-Open No. 57-51781, after a binder such as a resin and a composite material are dissolved in a solvent to form a solution, this is subjected to spin coating or the like.
  • the light emitting layer can also be formed by reducing the thickness.
  • the light emitting layer is preferably composed of a host compound and a dopant.
  • the phosphine H compound transports at least one charge of electrons or holes.
  • the host compound include a known force rubazole derivative, a compound having an anthracene skeleton, a compound having a condensed heterocyclic skeleton having a nitrogen atom, and the like.
  • the host compound may be a polymer compound. Examples of the polymer compound as a host include monomers containing rubazole, oligomers such as dimers and trimers, and carbazols. And a polymer compound having a ruthenium group.
  • the light emitting layer may contain a fluorescent or phosphorescent dopant.
  • a styrylamine compound represented by the following formula (1) or an arylamine compound represented by the formula (2) can be preferably used.
  • Ar 1 is a group selected from phenyl, biphenyl, terphenyl, stilbene, distylinolealino and Ar 2 and Ar 3 are each a hydrogen atom or an aromatic group having 6 to 20 carbon atoms. And 8 to 8! ” 3 may be substituted.
  • P is an integer of:! To 4 and more preferably Ar 2 and / or Ar 3 is substituted with a styryl group.
  • the aromatic group having 6 to 20 carbon atoms is preferably a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a terphenyl group, or the like.
  • Ar 4 to Ar ′′ are aryl groups having 5 to 40 nuclear atoms which may be substituted.
  • Q is an integer of:! To 4)
  • aryl groups having 5 to 40 nucleus atoms include phenyl, naphthyl, anthranyl, phenanthryl, pyrenyl, coronyl, biphenyl, terphenyl, pyrrolyl, furanol, thiophenyl, benzothiof Preferred are enil, oxadiazolyl, diphenylanthranyl, indolyl, carbazolyl, pyridinole, benzoquinolyl, fluoranthur, isenaft fluoranthur, stilbene.
  • the aryl group having 5 to 40 nucleus atoms may be substituted with a substituent.
  • Preferred substituents are alkyl groups having 6 to 6 carbon atoms (ethyl group, methyl group, i_propyl group). Group, n_propyl group, s_butyl group, t-butyl Group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.), alkoxy group having 1 to 6 carbon atoms (ethoxy group, methoxy group, i-propoxy group, n-propoxy group, s-butoxy group, t Butoxy group, pentoxy group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 5 to 40 nuclear atoms, amino group substituted with aryl group having 5 to 40 nuclear atoms And an ester group having an aryl group having 5 to 40 nuclear atoms, an ester group having an alkyl group having 1 to 6 carbon atoms, a cyan group,
  • the phosphorescent dopant is at least one selected from iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os) and rhenium (Re).
  • the ligand that is preferably a metal complex containing one metal preferably has at least one skeleton selected from the group consisting of a phenylpyridine skeleton, a bibilidyl skeleton, and a phenantorin phosphorus skeleton.
  • metal complexes include, for example, tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum. , Tris (2-phenyl pyridine) Osmium, tris (2-phenyl pyridine) rhenium, ota-ethyl platinum porphyrin, ota-phenyl platinum porphyrin, ota-ethyl palladium porphyrin, octaphenyl para dip porphyrin, etc.
  • a suitable complex is selected from the relationship with the required emission color, device performance, and host compound.
  • the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and transmits ion energy with high hole mobility. Usually 5. Smaller than 5eV.
  • a material that transports holes to the light emitting layer with a lower electric field strength is preferred.
  • the hole mobility is, for example, 10 4 to: 10 6 V / cm. sometimes, preferably it is at least 10- 4 cm 2 / V 's.
  • the material for forming the hole injecting and transporting layer is not particularly limited as long as it has the above-mentioned preferred properties, and has been conventionally used as a charge transporting material for holes in photoconductive materials.
  • any known medium force used for the hole injection layer of the organic EL element can be selected and used.
  • aromatic tertiary amines, hydrazone derivatives, force rubazole derivatives, triazole derivatives, imidazole derivatives, Examples include dicarbazole, polyethylene dioxythiophene 'polysulfonic acid (PEDOT' PS S), and the like. Specific examples include triazole derivatives (see US Pat. No. 3,112,197), oxadiazole derivatives (see US Pat. No.
  • the materials described above can be used as the material for the hole injection layer.
  • S porphyrin compound, aromatic tertiary amine compound and styrylamine compound (US Pat. No. 4,127,412 Meito Ida , JP-A-53-27033, 54-58445, 54-149634, 54-64299, 55-79450, 55-144250, 5 6- 119132, 61-295558, 61-98353, 63-295, 695, etc.), in particular, an aromatic tertiary amine compound is preferably used.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
  • the hole injection and transport layer can be formed by thinning the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the hole injection or transport layer is not particularly limited, but is usually 5 nm to 5 zm. It may be composed of one or two or more layers of the above materials, or may be a laminate of hole injection and transport layers composed of a compound different from the hole injection and transport layer. Good.
  • the organic semiconductor layer is a layer for helping the injection of holes or electrons into the emitting layer, and is preferably a layer having 10 _ 1 ° S / cm or more conductivity .
  • the material of the organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive properties such as arylamine dendrimers. Dendrimers and the like can be used.
  • the electron injection layer is a layer that assists the injection of electrons into the light emitting layer.
  • the electron mobility is high and the adhesion improving layer is included in the electron injection layer.
  • it is a layer made of a material that adheres well to the cathode.
  • 8-hydroxyquinoline and its metal complex, oxadiazole derivative are preferable.
  • metal complex of 8-hydroxyquinoline or a derivative thereof include metal chelate oxinoid compounds containing a chelate of oxine (generally 8_quinolinol or 8-hydroxyquinoline).
  • metal chelate oxinoid compounds containing a chelate of oxine generally 8_quinolinol or 8-hydroxyquinoline.
  • tris (8-quinolinol) aluminum (Alq) can be used for the electron injection layer.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following formula.
  • Ar 1 ′, Ar 2 ′, Ar 3 ′, Ar 5 ′, Ar 6 ′, Ar 9 ′ each represent a substituted or unsubstituted aryl group, and each may be the same or different.
  • Ar 4 ′, Ar 7 ′, Ar 8 ′ are substituted or unsubstituted arylene groups, which may be the same or different.
  • the aryl group includes a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, a pyrenyl group, and the like.
  • the arylene group includes a phenylene group and a naphthylene group. , Biphenylene group, anthranylene group, peryleneylene group, pyrenylene group and the like.
  • examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a cyan group.
  • This electron transfer compound is preferably a thin film-forming compound.
  • electron transfer compound include the following.
  • Me represents a methyl group
  • Bu represents a butyl group
  • a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic thin film layer.
  • the reducing dopant is defined as a substance capable of reducing an electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths.
  • Na (work function: 2. 36 eV)
  • K (work function: 2. 28 eV)
  • Rb (work function: 2. 16 eV)
  • Cs (work function: 1. 95 eV) force at least one alkali metal selected from the group consisting of Ca (work function: 2 9eV), Sr (work function: 2.0 to 2.5 eV) and Ba (work function: 2.52 eV).
  • a more preferred reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals can improve emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
  • a reducing dopant having a work function of 2.9 eV or less a combination of these two or more alkali metals is also preferred.
  • combinations containing Cs for example, Cs and Na, Cs and K, Cs and A combination of Rb or Cs, Na and ⁇ is preferred.
  • the organic EL device of the present invention it is possible to effectively prevent leakage of current, which can be provided by further providing an electron injection layer composed of an insulator or a semiconductor between the cathode and the organic thin film layer. It is possible to improve the fit.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. . Electron injection layer force S It is preferable that the material is composed of these alkali metal chalcogenides and the like because the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, LiO, LiO, Na S, Na Se and NaO.
  • potash earth metal chalcogenide examples include CaO, BaO, SrO, BeO, BaS, and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
  • Preferred alkaline earth metal halides include fluorides such as CaF, BaF, SrF, MgF, and BeF.
  • halides other than fluoride are other than fluoride.
  • the semiconductor Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta,
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the aforementioned alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides.
  • a metal, an alloy, an electrically conductive compound and a mixture thereof having a small work function (4 eV or less) are used as the cathode of the organic EL device of the present invention.
  • a metal, an alloy, an electrically conductive compound and a mixture thereof having a small work function (4 eV or less) are used as the cathode of the organic EL device of the present invention.
  • an electrode material include sodium, sodium monopotassium alloy, magnesium, lithium, magnesium'silver alloy, aluminum / aluminum oxide, aluminum'lithium alloy, indium, rare earth metal, and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is preferably greater than 10%.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually 10 ⁇ to 1 ⁇ , preferably 50 to 2 OOnm.
  • the organic EL device of the present invention applies an electric field to an ultra-thin film, pixel defects due to leakage or short-circuiting are likely to occur. In order to prevent this, it is preferable to insert an insulating thin film layer between a pair of electrodes.
  • Examples of the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, oxidizing power, subsequentlyium, calcium fluoride, aluminum nitride, titanium oxide, Examples thereof include silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide. Moreover, you may use these mixtures and laminates.
  • each organic thin film layer forming the organic thin film layer of the organic EL device of the present invention is particularly limited. In general, however, if the film thickness is too thin, defects such as pinholes occur, and conversely, if it is too thick, a high applied voltage is required and the efficiency deteriorates. Therefore, the range of several nm to 1 / m is usually preferable.
  • An organic EL element can be produced by forming an anode, an organic thin film layer such as a light emitting layer, and a cathode by the materials and methods exemplified above.
  • the organic EL device can be fabricated from the cathode to the anode in the reverse order.
  • the organic EL device of the present invention at least one of the organic thin film layers described above is formed by a wet method.
  • solvents used in preparing solutions include methanol, ethanol, propanol, isopropanol, n-butanol, t-butanol, pentanole, hexanol, cyclohexanol, methyl caffeosolve, ethyl caffeosolve, and ethylene glycol.
  • Alcohol solvents such as dichloromethane, dichloromethane, chloroform, carbon tetrachloride, tetrachloroethane, trichloroethane, chloroform benzene, dichlorobenzene, chlorotolenene, and other halogenated hydrocarbon solvents, dibutyl ether tetrahydrofuran, dioxane Ether solvents such as anisole, aromatic solvents such as benzene, toluene, xylene and ethylbenzene, paraffinic solvents such as hexane, octane, decane and tetralin, ethyl acetate, butyl acetate, acetic acid Ester solvents such as mill, amide solvents such as N, N-dimethylformamide, N, N-dimethylolacetamide, N-methylpyrrolidinone, ketone solvents such as acetone, methyl ethy
  • the solution of the forming material preferably dissolves 0.1% by weight or more of the forming material.
  • the thickness of the light-emitting layer of the organic EL element is usually 10 to: OOnm. In general, it is often 50 nm.
  • the thickness of the light-emitting layer of the organic EL element is usually 10 to: OOnm. In general, it is often 50 nm.
  • the preferable concentration of the coating solution is 0.1% by weight or more, and it is desirable that the concentration of the solution is 0.5% by weight or more in order to form a film thickness of 50 nm, which is a more general thickness.
  • An organic thin film layer can be formed by applying a solution of the forming material to the forming site by spin coating, ink jetting, or the like and drying.
  • low molecular weight compounds are those having a molecular weight of 10,000 or less, preferably 3000 or less.
  • anthracene compounds or pyrene compounds described in PCT / JP03 / 10402, PCT / JP2004 / 018111, Japanese Patent Application No. 2004-157571 can be used. These compounds can be suitably used, for example, as a host material for the light emitting layer.
  • a glass substrate with a 25 mm ⁇ 75 mm ⁇ l. 1 mm thick IT ⁇ transparent electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • the measurement sample was cut to 5 mm ⁇ 5 mm and measured.
  • N, N, ⁇ ', N'-tetrakis (4-biphenyl) having a thickness of 20 nm was formed on this film.
  • BPTPD film 4, 4'_benzidine film (BPTPD film) was formed by vapor deposition.
  • This BPTPD film functions as a hole transport layer.
  • PAVB doping material
  • Alq film having a thickness of 10 nm was formed on this film. This Alq film functions as an electron transport layer.
  • reducing dopant Li Li source: manufactured by Saergetta Co., Ltd.
  • Alq Alq: L (10 nm) as an electron injection layer (cathode).
  • A1 was deposited on the Alq: Li film to form a metal cathode, and an organic EL device was fabricated.
  • An organic EL device was prepared in the same manner as in Example 1 except that the PEDOT'PSS thin film was formed as follows.
  • PEDOT. PSS Polyethylene dioxythiophene ⁇ Polystyrene sulfonate
  • the cause of this dark spot is thought to be due to the residual moisture in the PEDOT'PSS film because the drying power of the PEDOT 'PSS film was not sufficient by heating with a hot plate.
  • a glass substrate with a 25 mm ⁇ 75 mm ⁇ l. 1 mm thick IT ⁇ transparent electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after cleaning is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the transparent electrode is covered on the surface on which the transparent electrode line is formed.
  • 'Bis (4 diphenylaminophenyl) 1 N, N, 1 diphenyl 1 4, 4'-diaminobiphenyl film (TPD232 film) was deposited by vacuum evaporation. This TPD232 film functions as a hole injection layer.
  • N, N, ⁇ ', ⁇ , and one tetrakis (4 bif ⁇ il) —4, 4' _ benzidine film (BPTPD film) with a film thickness of 40nm are deposited by vacuum evaporation. did.
  • This BP TPD film functions as a hole transport layer.
  • the substrate in vacuum at 10_ 6 Pa stand, by an infrared heating source (halogen lamp), and heated so that the substrate temperature is 120 ° C, and dried for 30 minutes.
  • an infrared heating source halogen lamp
  • the substrate was transferred into the vacuum deposition device using the substrate transfer device, and tris (8-hydroxyquinoline) aluminum (Alq) having a thickness of 30 nm was vacuum evaporated.
  • Alq (8-hydroxyquinoline) aluminum
  • a film was formed by a deposition method. This Alq film functions as an electron transport layer.
  • lithium fluoride having a thickness of 1 nm was formed by a vacuum evaporation method to form an electron injection layer.
  • an aluminum cathode was formed by vacuum deposition to produce an organic EL device.
  • An organic EL device was produced in the same manner as in Example 2, except that the light emitting layer was formed as follows.
  • Example 2 Using the same coating solution as in Example 2, a 40 nm thick light emitting layer was formed on the previously formed BPTPD film by spin coating. This substrate was heated at 120 ° C. for 30 minutes on a hot plate and dried to form a light emitting layer.
  • Comparative Example 3 An organic EL device was produced in the same manner as in Example 2, except that the light emitting layer was dried at 140 ° C. for 30 minutes on a hot plate.
  • a glass substrate having a thickness of 5 mm X 5 mm X lmm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes.
  • This substrate was mounted on a spinner (manufactured by Active Co., Ltd.), and a thin film having a film thickness of 40 nm was coated using an lwt% toluene solution of the above compound A.
  • the organic EL device of the present invention can improve the light emission lifetime even when it includes an organic thin film layer formed by a wet method.
  • the organic EL device manufacturing method of the present invention can remove the residual solvent of the organic thin film layer formed by the wet method to a high degree, and further, the drying process can be performed at a low temperature and in a short time, so that the organic thin film layer is formed. It is possible to prevent deterioration of the material to be used.
  • the present invention is an effective technique for achieving a large screen of a display device using an organic EL element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 陰極(70)と陽極(50)の間に発光層(64)を含む有機薄膜層(60)を狭持した有機エレクトロルミネッセンス素子であって、有機薄膜層(60)の少なくとも一層が湿式法で形成され、この層中の残留溶媒が、昇温脱離分析法(TDS:測定温度80°C)による測定の検出限界(検知分圧が、1.0×10-12Pa)以下である有機エレクトロルミネッセンス素子。

Description

明 細 書
有機エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子に関する。さらに詳しくは、有機薄膜 層の残留溶媒を高度に除去することにより、素子の寿命を向上した有機エレクトロル ミネッセンス素子に関する。
背景技術
[0002] 情報通信産業の発達が加速するにつれて、高度の性能を有する表示素子が要求 されている。そのなかで、次世代表示素子として有機エレクト口ルミネッセンス素子( 以下、エレクト口ルミネッセンスを ELと略記する。)が注目されている。
有機 EL素子は自発発光型表示素子として視野角が広くてコントラストが優秀なだ けでなく応答時間が速いという長所がある。
[0003] 有機 EL素子を形成する発光層等の有機薄膜層は、真空蒸着法等の乾式法、又は スピンコーティング、インクジェット等の湿式法により成膜されている。
乾式法は、有機薄膜層の形成材料を溶媒に溶解させる必要がなぐまた、成膜後 に溶媒を除去する必要がないという利点がある。しかしながら、真空蒸着法は大型の 設備を必要とする高真空プロセスであるため、製造コストが高い、大画面基板に適用 できない、量産に難がある等の欠点を有していた。
[0004] これに対し、湿式法による成膜では、表示画面の大面積化が比較的容易であるが 、成膜後の膜内に残存する溶媒の影響により、有機 EL素子の発光寿命が短くなる 等の問題があった。
湿式法によって発光層を形成する技術として、発光層の形成材料を塗布した後、 発光層を乾燥させる際に超音波振動を与える方法が開示されている (例えば、特許 文献 1参照。)。この方法により、膜の均一性を向上できるが、発光層からの溶媒の除 去は十分とは言えなかった。
[0005] また、成膜した有機薄膜層をなるベく高温で処理することが、乾燥時間の短縮及び 残留溶媒の低減のため好ましい。しかしながら、形成材料の熱による劣化が問題とな るため、高温による乾燥処理には限界があり、乾燥時間も長時間を要していた。 特許文献 1 :特開 2003— 17252号公報
[0006] 本発明は上述の問題に鑑みなされたものであり、湿式法で形成した有機薄膜層を 含む有機 EL素子であって、発光寿命を改善した有機 EL素子を提供することを目的 とする。
発明の開示
[0007] 本発明者は、上記課題について研究を重ねた結果、有機 EL素子を構成する有機 薄膜層を、超高真空下、赤外線加熱することで、高温に加熱することなく層中の残留 溶媒を高度に除去でき、その結果、有機 EL素子の発光寿命を向上できることを見出 し、本発明を完成させた。
[0008] 本発明によれば、下記の有機 EL素子及びその製造方法が提供される。
1.陰極と陽極の間に発光層を含む有機薄膜層を狭持した有機エレクト口ルミネッセ ンス素子であって、 前記有機薄膜層の少なくとも一層が湿式法で形成され、この層 中の残留溶媒が、昇温脱離分析法 (TDS:測定温度 80°C)による測定の検出限界( 検知分圧が、 1. 0 X 10_12Pa)以下である有機エレクト口ルミネッセンス素子。
2.前記湿式法で形成した層が、超高真空下、赤外線で加熱して乾燥された層であ る 1に記載の有機エレクト口ルミネッセンス素子。
[0009] 3.前記超高真空の真空レベルが 10_9Pa〜: 10_6Paであり、赤外線による加熱温度 が、前記湿式法で形成した層の形成材料のガラス転移温度以下である 2に記載の有 機エレクト口ルミネッセンス素子。
4.前記超高真空の真空レベルが 10— 9Pa〜: 10— 7Paであり、赤外線による加熱温度 が、前記湿式法で形成した層の形成材料のガラス転移温度より 10°C以上低レ、温度 である 2に記載の有機エレクト口ルミネッセンス素子。
[0010] 5.前記湿式法で形成した層の形成材料の少なくとも 1つ力 S、低分子化合物である 1 〜4のいずれかに記載の有機エレクト口ルミネッセンス素子。
6.陰極と陽極間に発光層を含む有機薄膜層を形成した有機エレ外口ルミネッセン ス素子の製造方法であって、前記有機薄膜層の少なくとも一層を湿式法で形成し、 前記湿式法で形成した層を、超高真空下、赤外線加熱で乾燥する有機エレクトロル ミネッセンス素子の製造方法。
[0011] 本発明の有機 EL素子においては、湿式法で成膜した有機薄膜層を含む素子であ つても、発光寿命の長い素子を得ることができる。
本発明の有機 EL素子の製造方法により、湿式法で成膜した有機薄膜層の乾燥を 、低温かつ短時間で行なうことができる。さらに、有機薄膜層中の残留溶媒を高度に 除去できる。従って、有機 EL素子を使用した表示パネルの大面積化に有効である。 図面の簡単な説明
[0012] [図 1]図 1は、昇温脱離分析により得られる測定時間とガス発生量の関係を示すスぺ タトルの一例である。
[図 2]有機層形成装置の概略図である。
[図 3]本発明の有機 EL素子の一実施形態を示す断面図である。
発明を実施するための最良の形態
[0013] 以下、本発明の有機 EL素子について具体的に説明する。
本発明の有機 EL素子は、陰極と陽極の間に、発光層を含む有機薄膜層が狭持さ れ、この有機薄膜層の少なくとも一層が湿式法で形成されている。そして、この層中 の残留溶媒が、昇温脱離分析法 (TDS:測定温度 80°C)による測定の検出限界 (検 知分圧が、 1. 0 X 10_ 12Pa)以下であることを特徴とする。
[0014] 昇温脱離分析法は、試料を高真空容器内で加熱 ·昇温し、昇温中に試料から残留 溶媒を脱離、ガス化して四重極質量分析計で検出するものであり、試料中に含まれ る残留溶媒を高感度で検出できる測定法である。
本発明における昇温脱離分析の測定条件は、真空レベルを 1. 0〜9. 9 X 10"7Pa とし、試料の温度を約 80°C (固定)とし、試料は 5mm X 5mm方形とする。この条件で 測定中に検知される残留溶媒による発生ガスの検知分圧の最高値が 1. 0 X 10"12P a以下であれば、湿式成膜中の残留溶媒による素子の劣化を有効に防止できる。尚 、好ましくは、試料の温度を約 100°Cとしたときの最高検知分圧が 1. 0 X 10— 12Pa以 下である。
[0015] 図 1は、昇温脱離分析により得られる測定時間とガス発生量の関係を示すスぺタト ルの一例である。 図 1において、縦軸はガスの発生量 (検知分圧:単位 Pa)及び測定温度であり、横 軸は測定時間である。尚、本例の実施条件については、後述する評価例に記載する このスペクトルでは、測定時間が 10分〜 30分の間に、トルエンが多量に脱離したこ とを示すピークが観測されている。そして、 40分程度でトルエンガスの発生が終了し たことが確認できる。
「検出限界以下」とは、図 1において上記ピーク等が観測されない状態、即ち、 40 分程度経過した状態 (ガスの脱離が観測できないこと(検知分圧: 1. 0 X 10_12Pa以 下))を意味する。
[0016] 湿式法で形成した層の残留溶媒を、昇温脱離分析法による測定の検出限界以下 にする方法としては、例えば、本発明の製造方法である、湿式法で形成した層を、超 高真空下、赤外線で加熱して乾燥する方法が挙げられる。以下、図面を用いて説明 する。
[0017] 図 2は、有機層形成装置の概略図である。
有機層形成装置 10は、真空チャンバ 20、赤外線発生部 30、真空ポンプ(図示せ ず)を主な構成要素としてレ、る。
真空チャンバ 20は、チャンバ内を超高真空に保つ密閉容器であり、この上部には、 赤外線発生部 30から照射される赤外線をチャンバ内部に導入するための石英ガラ ス窓 22が設けられている。チャンバ 20の内部には、試料台 24があり、その上に湿式 法で形成した層を塗布した有機 EL素子の試料 26が設置される。真空チャンバ 20内 を超高真空状態にするため、真空チャンバ 20には真空ポンプが接続されている。 尚、これらの構成要素は、通常工業的に用いられている部材が使用できる。例えば 、真空ポンプには磁気浮上型ターボポンプ(ライボルト社製、 TYP TURBO VAC 340M)、赤外線発生部にはハロゲンランプが使用できる。
[0018] 続いて、有機層形成装置 10を用いた有機 EL素子の製造工程について説明する。
まず、湿式法により塗布した層を有する試料 26を試料台 24に置く。次いで、真空 チャンバ 20内を、真空ポンプを作動させることにより脱気し、超高真空状態とする(矢 印 Aは脱気方向を示す)。この状態で、赤外線発生部 30から矢印 Bに示すように赤 外線を真空チャンバ 20内の試料 26に照射する。赤外線の照射量を制御することに よって試料 26の加熱温度を調整する。尚、赤外線はチャンバ内が真空状態になる以 前より照射してもよい。
このように、湿式法で形成した層を赤外線により加熱することによって、層の表層面 のみならず、層内部もすばやく加熱することができる。このため、加熱温度を比較的 低温に設定しても、層の乾燥時間を短縮することができる。そして、超高真空下、赤 外線加熱を実施することによって、層中の残留溶媒を昇温脱離分析法による測定の 検出限界以下とすることができる。
[0019] 本発明においては、超高真空の真空レベルは、 10_9Pa〜10_6Paであることが好 ましぐ特に、 10_9Pa〜10_7Paであることが好ましレ、。真空レベルが 10_6Paより悪 レ、と乾燥時間がながくなつたり、溶媒が十分に除去できないおそれがあり、また、 10— 9Paよりも良いと、真空状態を維持することが困難となる。
[0020] 赤外線による加熱温度は、湿式法で形成した層の形成材料のガラス転移温度以下 であることが好ましぐ特に、形成材料のガラス転移温度より 10°C以上低い温度であ るであることが好ましい。加熱温度が形成材料のガラス転移温度より高いと、形成材 料が劣化し、発光色や素子寿命に影響を与えるおそれがある。尚、形成材料のガラ ス転移温度は各化合物によって異なる力 一般には 60°C〜200°C程度である。 尚、有機薄膜層の乾燥時間は、層の厚さ、使用材料のガラス転移温度を考慮して、 適宜調整すればよい。例えば、図 21の測定対象である有機薄膜層の場合、 80°Cの 乾燥温度で、 40分程度の乾燥時間となる。
[0021] 本発明の有機 EL素子の製造方法では、湿式法で形成した層を 1層ずつ乾燥して もよいし、複数層、例えば、正孔注入層、発光層を続けて形成した後に、一括して乾 燥してもよレ、。この場合、先に形成した層を予備的に乾燥してもよい。
[0022] 本発明の有機 EL素子は、湿式法で成膜した層の残留溶媒が、上述したように、高 度に除去されていればよぐ他の構成については公知の構成を採用することができる 。以下、本発明の有機 EL素子の実施形態について説明する。
[0023] 図 3は、本発明の有機 EL素子の一実施形態を示す断面図である。
この有機 EL素子は、陰極 70と陽極 50間に、正孔注入層 62、発光層 64、電子注 入層 66からなる有機薄膜層 60が挟持されている。
尚、本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極/ /発光層/陰極
(2)陽極/ /正孔注入層/発光層/陰極
(3)陽極/ /発光層/電子注入層/陰極
(4)陽極/ /正孔注入層/発光層/電子注入層/陰極(図 3)
(5)陽極/ /有機半導体層/発光層/陰極
(6)陽極/ /有機半導体層/電子障壁層/発光層 /陰極
(7)陽極/ /有機半導体層/発光層/付着改善層 /陰極
(8)陽極/ /正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(9)陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極 等の構造を挙げることができる力 これらに限定されるものではない。
これらの中で通常(8)の構成が好ましく用いられる。
[0024] 上記の素子において、陽極と陰極に挟持される 1又は複数の層が有機薄膜層に相 当するが、これらの層の全てが有機化合物から構成されていなくてもよぐ無機化合 物からなる層又は無機化合物を含む層が含まれてレ、てもよレ、。
[0025] 一般に有機 EL素子は透光性の基板上に作製する。ここでいう透光性基板は有機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50%以 上で、平滑な基板が好ましい。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフアイ ド、ポリサルフォン等を挙げることができる。 [0026] 本発明の有機 EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割 を担うものであり、 4. 5eV以上の仕事関数を有することが効果的である。本発明に用 レ、られる陽極材料の具体例としては、錫ドープ酸化インジウム合金 (ITO)、酸化錫( NESA)、金、銀、白金、銅等が適用できる。
陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させ ることにより作製すること力 Sできる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また陽極のシート抵抗は、数百 Ω /口以下が 好ましレ、。陽極の膜厚は材料にもよる力 通常 10nm〜l z m、好ましくは 10〜200n mの範囲で選択される。
[0027] 有機 EL素子の発光層は、以下の機能を併せ持つものである。
(i)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、陰 極又は電子注入層より電子を注入することができる機能、
(ii)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能、(iii)発光 機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能
ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた 正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電 荷を移動することが好ましレ、。
[0028] この発光層を形成する方法としては、例えば、蒸着法、スピンコート法、 LB法等の 公知の方法を適用することができる。また、特開昭 57— 51781号公報に開示されて いるように、樹脂等の結着剤と材料ィ匕合物とを溶剤に溶力して溶液とした後、これを スピンコート法等により薄膜化することによつても、発光層を形成することができる。
[0029] 本発明の有機 EL素子において、発光層は、ホストイ匕合物とドーパントからなるもの が好ましい。ホス H匕合物は、電子又は正孔の少なくとも一方の電荷を輸送する。ホ ストィ匕合物の好ましい例として、公知の力ルバゾール誘導体、アントラセン骨格を有 する化合物、窒素原子を有する縮合へテロ環骨格を有する化合物等を挙げることが できる。ホストイ匕合物は高分子化合物であってもよい。ホストになる高分子化合物とし ては、力ルバゾールを含むモノマー、ダイマー、トリマー等のオリゴマー、カルバゾー ル基を有する高分子化合物等を挙げることができる。
[0030] 発光層は、蛍光性又はりん光性のドーパントを含有していてもよい。
蛍光性ドーパントとしては、好ましくは以下の式(1)で表わされるスチリルアミンィ匕合 物や、式(2)で表わされるァリールァミン化合物を用いることができる。
[0031] [化 1]
Figure imgf000010_0001
(式中、 Ar1は、フエニル、ビフエニル、ターフェニル、スチルベン、ジスチリノレアリーノレ から選ばれる基であり、 Ar2及び Ar3は、それぞれ水素原子又は炭素数が 6〜20の 芳香族基であり、八 〜八!"3は置換されてもよい。 pは、:!〜 4の整数である。さらに好 ましくは Ar2及び/又は Ar3はスチリル基で置換されている。 )
ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラニ ル基、フエナンスリル基、ターフェニル基等が好ましい。
[化 2]
Figure imgf000010_0002
(式中、 Ar4〜Ar "は、置換されていてもよい核原子数 5〜40のァリール基である。 q は、:!〜 4の整数である。 )
[0033] ここで、核原子数が 5〜40のァリール基としては、フエニル、ナフチル、アントラニル 、フエナンスリル、ピレニル、コロニル、ビフエ二ル、ターフェニル、ピロ一リル、フラニ ノレ、チォフエニル、ベンゾチォフエニル、ォキサジァゾリル、ジフエ二ルアントラニル、 インドリル、カルバゾリル、ピリジノレ、ベンゾキノリル、フルオランテュル、ァセナフトフ ルオランテュル、スチルベン等が好ましレ、。尚、核原子数が 5〜40のァリール基は、 置換基により置換されていてもよぐ好ましい置換基としては、炭素数:!〜 6のアルキ ル基(ェチル基、メチル基、 i_プロピル基、 n_プロピル基、 s_ブチル基、 t—ブチ ル基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)、炭素数 1 〜6のアルコキシ基(エトキシ基、メトキシ基、 i—プロポキシ基、 n—プロポキシ基、 s— ブトキシ基、 t ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペントキシ基、シ クロへキシルォキシ基等)、核原子数 5〜40のァリール基、核原子数 5〜40のァリー ル基で置換されたァミノ基、核原子数 5〜40のァリール基を有するエステル基、炭素 数 1〜6のアルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原子(塩素、 臭素、ヨウ素等)が挙げられる。
[0034] また、りん光性のドーパントとしては、イリジウム(Ir)、ルテニウム(Ru)、パラジウム( Pd)、白金(Pt)、オスミウム(〇s)及びレニウム(Re)の中から選ばれる少なくとも一つ の金属を含む金属錯体であることが好ましぐ配位子としては、フエニルピリジン骨格 、ビビリジル骨格及びフエナント口リン骨格からなる群から選ばれる少なくとも一つの 骨格を有することが好ましい。このような金属錯体の具体例は、例えば、トリス(2—フ ェニルピリジン)イリジウム、トリス(2—フエ二ルビリジン)ルテニウム、トリス(2—フエ二 ルビリジン)パラジウム、ビス(2—フエ二ルビリジン)白金、トリス(2—フエ二ルビリジン) オスミウム、トリス(2—フエ二ルビリジン)レニウム、オタタエチル白金ポルフィリン、オタ タフェニル白金ポルフィリン、オタタエチルパラジウムポルフィリン、ォクタフエニルパラ ジゥムポルフィリン等が挙げられる力 これらに限定されるものではなぐ要求される発 光色、素子性能、ホストィヒ合物との関係から適切な錯体が選ばれるものである。
[0035] 本発明の有機 EL素子において、正孔注入、輸送層は発光層への正孔注入を助け 、発光領域まで輸送する層であって、正孔移動度が大きぐイオンィ匕エネルギーが通 常 5. 5eV以下と小さい。このような正孔注入、輸送層としてはより低い電界強度で正 孔を発光層に輸送する材料が好ましぐさらに正孔の移動度が、例えば 104〜: 106V /cmの電界印加時に、少なくとも 10— 4cm2/V'秒であれば好ましい。
[0036] 正孔注入、輸送層を形成する材料としては、前記の好ましい性質を有するものであ れば特に制限はなぐ従来、光導伝材料において正孔の電荷輸送材料として慣用さ れているものや、有機 EL素子の正孔注入層に使用される公知のものの中力 任意 のものを選択して用いることができる。例えば、芳香族第三級ァミン、ヒドラゾン誘導 体、力ルバゾール誘導体、トリァゾール誘導体、イミダゾール誘導体、さらにはポリビ 二ルカルバゾール、ポリエチレンジォキシチォフェン'ポリスルフォン酸(PEDOT' PS S)等が挙げられる。さらに、具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォキサジァゾール誘導体 (米国特許 3, 189, 447号明細書 等参照)、イミダゾール誘導体(特公昭 37— 16096号公報等参照)、ポリアリールァ ルカン誘導体(米国特許 3, 615, 402号明細書、同第 3, 820, 989号明細書、同第 3, 542, 544号明糸田書、特公昭 45— 555号公報、同 51— 10983号公報、特開昭 5 1— 93224号公報、同 55— 17105号公報、同 56— 4148号公報、同 55— 108667 号公報、同 55— 156953号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体 及びピラゾロン誘導体 (米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明 糸田書、特開昭 55— 88064号公報、同 55— 88065号公報、同 49— 105537号公報 、同 55— 51086号公報、同 56— 80051号公報、同 56— 88141号公報、同 57— 4 5545号公報、同 54— 112637号公報、同 55— 74546号公報等参照)、フエ二レン ジァミン誘導体(米国特許第 3, 615, 404号明細書、特公昭 51— 10105号公報、 同 46— 3712号公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 119925号公報等参照)、ァリールァミン誘導体(米国特許 3, 567, 450 明糸田 、 ^^3, 180, 703 明糸田 、同 ^3, 240, 597 明糸田 、同:^ 3, 658, 520 明糸田 、 232, 103 明糸田 、同:^ 4, 175, 961 号明糸田書、同第 4, 012, 376号明糸田書、特公昭 49 35702号公報、同 39— 2757 7号公報、特開昭 55— 144250号公報、同 56— 119132号公報、同 56— 22437号 公報、西独特許第 1 , 110, 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国 特許第 3, 526, 501号明細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示のもの)、スチリルアントラセン誘導体 (特開昭 56— 46234号 公報等参照)、フルォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン 誘導体 (米国特許第 3, 717, 462号明細書、特開昭 54— 59143号公報、同 55 _ 5 2063号公報、同 55— 52064号公報、同 55— 46760号公報、同 55— 85495号公 報、同 57— 11350号公報、同 57— 148749号公報、特開平 2_ 311591号公報等 参照)、スチルベン誘導体(特開昭 61— 210363号公報、同第 61— 228451号公報 、同 61— 14642号公報、同 61— 72255号公報、同 62— 47646号公報、同 62— 3 6674号公報、同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公 報、同 60— 94462号公報、同 60— 174749号公報、同 60— 175052号公報等参 照)、シラザン誘導体 (米国特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2 一 204996号公報)、ァニリン系共重合体 (特開平 2— 282263号公報)、特開平 1一 211399号公報に開示されている導電性高分子オリゴマー(特にチォフェンオリゴマ 一)等を挙げることができる。
[0037] 正孔注入層の材料としては上記のものを使用することができる力 S、ポルフィリン化合 物、芳香族第三級ァミン化合物及びスチリルアミン化合物(米国特許第 4, 127, 412 号明糸田書、特開昭 53— 27033号公報、同 54— 58445号公報、同 54— 149634号 公報、同 54— 64299号公報、同 55— 79450号公報、同 55— 144250号公報、同 5 6— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295 695号公報等参照)、特に芳香族第三級アミンィ匕合物を用レ、ることが好ましい。
[0038] また、米国特許第 5, 061 , 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば 4, 4'—ビス(N— (1—ナフチル) N フエニルァミノ)ビフエ二ル (以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ二 ルァミンユニットが 3つスターバースト型に連結された 4, 4' , 4"—トリス(N— (3—メ チルフエニル)—N—フエニルァミノ)トリフエニルァミン(以下 MTDATAと略記する) 等を挙げることができる。
また、発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、 p型 Si 、p型 SiC等の無機化合物も正孔注入層の材料として使用することができる。
[0039] 正孔注入、輸送層は、上述した化合物を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、 LB法等の公知の方法により薄膜化することにより形成することができる。正 孔注入、輸送層としての膜厚は特に制限はなレ、が、通常は 5nm〜5 z mである。上 述した材料の一種又は二種以上からなる一層で構成されてもよいし、又は前記正孔 注入、輸送層とは別種の化合物からなる正孔注入、輸送層を積層したものであっても よい。
[0040] 本発明の有機 EL素子において、有機半導体層は発光層への正孔注入又は電子 注入を助ける層であって、 10_ 1°S/cm以上の導電率を有するものが好適である。こ のような有機半導体層の材料としては、含チォフェンオリゴマーゃ特開平 8— 19319 1号公報に開示してある含ァリールァミンオリゴマー等の導電性オリゴマー、含ァリー ルァミンデンドリマー等の導電性デンドリマー等を用いることができる。
[0041] 本発明の有機 EL素子において、電子注入層は発光層への電子の注入を補助す る層であって、電子移動度が大きぐまた付着改善層は、この電子注入層の中で特 に陰極との付着が良い材料からなる層である。電子注入層に用いられる材料として は、 8—ヒドロキシキノリン、その誘導体の金属錯体ゃォキサジァゾール誘導体が好 適である。
[0042] この 8—ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、ォキシン( 一般に 8 _キノリノール又は 8—ヒドロキシキノリン)のキレートを含む金属キレートォキ シノイド化合物が挙げられる。例えば、トリス(8—キノリノール)アルミニウム (Alq)を電 子注入層に用いることができる。
また、ォキサジァゾール誘導体としては、下記式で表される電子伝達化合物が挙げ られる。
[化 3]
N-N
1' ^Ar2'
0
N-N N-N o o
N-N N-N
Ar6'- ^Ar7-0-Ar8'- ^Ar5'
O O
[0043] (式中 Ar1', Ar2' , Ar3' , Ar5' , Ar6', Ar9'はそれぞれ置換又は無置換のァリール基 を示し、それぞれ互いに同一であっても異なっていてもよレ、。また、 Ar4' , Ar7', Ar8' は置換又は無置換のァリーレン基を示し、それぞれ同一であっても異なっていてもよ い)
ここで、ァリール基としてはフエ二ル基、ビフヱニル基、アントラニル基、ペリレニル基 、ピレニル基等が挙げられる。また、ァリーレン基としてはフエ二レン基、ナフチレン基 、ビフエ二レン基、アントラニレン基、ペリレニレン基、ピレニレン基等が挙げられる。ま た、置換基としては炭素数 1〜: 10のアルキル基、炭素数 1〜: 10のアルコキシ基又は シァノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましい。
[0044] この電子伝達性化合物の具体例としては下記のものを挙げることができる。
[化 4]
Figure imgf000015_0001
式中、 Meはメチル基を、 Buはブチル基を示す。
[0045] 本発明の有機 EL素子の好ましい形態に、電子を輸送する領域又は陰極と有機薄 膜層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパ ントとは、電子輸送性化合物を還元ができる物質と定義される。従って、一定の還元 性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土 類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アル力 リ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は 希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯 体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適 に使用することができる。
[0046] また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV) 力 なる群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV) 、Sr (仕事関数: 2. 0〜2. 5eV)及び Ba (仕事関数: 2. 52eV)からなる群から選択さ れる少なくとも一つのアルカリ土類金属が挙げられ、仕事関数が 2. 9eV以下のもの が特に好ましい。
[0047] これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csからなる群から選択さ れる少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb又は Csであり、最も好 ましくは、 Csである。これらのアルカリ金属は、特に還元能力が高ぐ電子注入域へ の比較的少量の添加により、有機 EL素子における発光輝度の向上や長寿命化が図 られる。また、仕事関数が 2. 9eV以下の還元性ドーパントとして、これら 2種以上のァ ルカリ金属の組合わせも好ましぐ特に、 Csを含んだ組み合わせ、例えば、 Csと Na、 Csと K、 Csと Rb又は Csと Naと Κとの組み合わせであることが好ましレ、。 Csを組み合 わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添 加により、有機 EL素子における発光輝度の向上や長寿命化が図られる。
[0048] 本発明の有機 EL素子において、陰極と有機薄膜層の間に絶縁体や半導体で構 成される電子注入層をさらに設けてもよぐ電流のリークを有効に防止して、電子注 入性を向上させることができる。
このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲ ナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる 群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層 力 Sこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子注入性をさらに 向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲナイ ドとしては、例えば、 Li〇、 Li〇、 Na S、 Na Se及び Na〇が挙げられ、好ましいアル
2 2 2
カリ土類金属カルコゲナイドとしては、例えば、 Ca〇、 Ba〇、 Sr〇、 BeO、 BaS及び C aSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、 LiF 、 NaF、 KF、 LiCl、 KC1及び NaCl等が挙げられる。また、好ましいアルカリ土類金属 のハロゲン化物としては、例えば、 CaF、 BaF、 SrF、 MgF及び BeF等のフッ化
2 2 2 2 2
物や、フッ化物以外のハロゲン化物が挙げられる。 [0049] また、半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、
Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種 単独又は二種以上の組み合わせが挙げられる。また、電子輸送層を構成する無機 化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子輸送層がこ れらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダーク スポット等の画素欠陥を減少させることができる。尚、このような無機化合物としては、 上述したアルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金 属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
[0050] 本発明の有機 EL素子の陰極としては、電子輸送層又は発光層に電子を注入する 目的で、仕事関数の小さい (4eV以下)金属、合金、電気伝導性化合物及びこれら の混合物を電極物質とするものが用いられる。このような電極物質の具体例としては 、ナトリウム、ナトリウム一カリウム合金、マグネシウム、リチウム、マグネシウム '銀合金 、アルミニウム/酸化アルミニウム、アルミニウム 'リチウム合金、インジウム、希土類金 属等が挙げられる。
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させる ことにより、作製することができる。発光層力 の発光を陰極から取り出す場合、陰極 の発光に対する透過率は 10%より大きくすることが好ましい。また、陰極としてのシー ト抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 10ηιη〜1 μ ΐη、好ましくは 50〜2 OOnmである。
[0051] 本発明の有機 EL素子は、超薄膜に電界を印可するために、リークやショートによる 画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を 揷入することが好ましい。
絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リ チウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化力 ノレシゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマ二 ゥム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられる。また、これらの混合物や積層物を用いてもよい。
[0052] 本発明の有機 EL素子の有機薄膜層を形成する各有機薄膜層の膜厚は特に制限 されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎ ると高い印加電圧が必要となり効率が悪くなるため、通常は数 nmから 1 / mの範囲 が好ましい。
[0053] 以上例示した材料及び方法により陽極、発光層等の有機薄膜層、さらに陰極を形 成することにより有機 EL素子を作製することができる。また、陰極から陽極へ、前記と 逆の順序で有機 EL素子を作製することもできる。
[0054] 本発明の有機 EL素子では、上述した有機薄膜層の少なくとも一層が湿式法で成 膜される。
湿式法による素子作製の場合、有機薄膜層の形成材料を有機溶媒に溶かした溶 液を使用する。
溶液調製時に用いる溶媒例としては、メタノール、エタノール、プロパノール、イソプ ロパノーノレ、 n—ブタノーノレ、 t—ブタノ一ノレ、ペンタノ一ノレ、へキサノーノレ、シクロへキ サノール、メチルセ口ソルブ、ェチルセ口ソルブ、エチレングリコール等のアルコール 系溶媒、ジクロロメタン、ジクロロェタン、クロ口ホルム、四塩化炭素、テトラクロロェタン 、トリクロロェタン、クロ口ベンゼン、ジクロロベンゼン、クロロトノレェン等のハロゲン系炭 化水素系溶媒、ジブチルエーテルテトラヒドロフラン、ジォキサン、ァニソール等のェ 一テル系溶媒、ベンゼン、トルエン、キシレン、ェチルベンゼン等の芳香族系溶媒、 へキサン、オクタン、デカン、テトラリン等のパラフィン系溶媒、酢酸ェチル、酢酸プチ ノレ、酢酸アミル等のエステル系溶媒、 N, N—ジメチルホルムアミド、 N, N—ジメチノレ ァセトアミド、 N—メチルピロリジノン等のアミド系溶媒、アセトン、メチルェチルケトン、 シクロへキサノン、イソホロン等のケトン系溶媒、ピリジン、キノリン、ァニリン等のアミン 系溶媒、ァセトニトリル、バレロ二トリル等の二トリル系溶媒、チオフヱン、二硫化炭素 等の硫黄系溶媒等が挙げられる。尚、使用可能な溶媒はこれらに限定されるもので はなぐ例えば、水も使用できる場合がある。
[0055] 形成材料の溶液は、 0. 1重量%以上の形成材料を溶解していることが好ましい。
種々の素子構成においては通常、有機 EL素子の発光層の膜厚は 10〜: !OOnmで ある。また、一般的には 50nmの場合が多い。この膜厚を形成するときには、最低で も 0. 1重量%以上の形成材料が溶けていることが望まれる。 0. 1重量%未満であれ ば、有機薄膜層を形成するのに十分な膜厚が得られず、性能低下や、大幅な色調 のずれといった不具合を生じてしまう。好ましい塗布溶液の濃度は 0. 1重量%以上 であり、さらに一般的な厚みである 50nmの膜厚を形成するには 0· 5重量%以上の 溶液濃度であることが望ましレ、。
[0056] この形成材料の溶液を形成部位に、スピンコーティング、インクジェット等により塗布 •乾燥することによって、有機薄膜層を形成できる。
有機薄膜層の形成材料の少なくとも 1つに、低分子化合物を使用することが好まし レ、。有機薄膜層が低分子化合物を含有することによって、有機薄膜層の乾燥時に溶 媒が飛びやすくなるため、乾燥時間の短縮及び乾燥温度を低く設定することができ る。尚、低分子化合物とは、分子量が 10000以下、好ましくは 3000以下のものをレ、う
[0057] 低分子化合物としては、例えば、 PCT/JP03/10402, PCT/JP2004/0181 11、特願 2004— 157571号記載のアントラセン化合物又はピレン化合物を用いるこ とができる。これらの化合物は、例えば、発光層のホスト材料として好適に使用できる
[実施例]
[0058] 実施例 1
25mm X 75mm X l . 1mm厚の IT〇透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。
洗浄後の透明電極付きガラス基板の透明電極が形成されている面上に、ポリェチ レンジォキシチォフェン 'ポリスチレンスルフォン酸塩(PED〇T' PSS、 Tg : 230°C) 水溶液を用いて、スピンコート法により膜厚 30nmの PEDOT'PSS薄膜を成膜した。
[0059] その後、 10_7Pa台の真空下で、赤外線加熱源 (ハロゲンランプ)にて、基板温度が 100°Cになるように加熱して 40分間乾燥した。この PEDOT' PSS薄膜は正孔注入 層として機能する。
この膜について、昇温脱離分析 (昇温脱離分析装置:電子科学株式会社製、 EM D—WA1000S)を行ったところ、膜中の水分は検出限界(検知分圧: 1. 0 X 10"12P a)以下に除去されていた。尚、測定条件は 100°C、 10_7Paである。
尚、測定試料は、 5mm X 5mmにカットして測定を行った。
[0060] その後、この膜の上に膜厚 20nmの N, N, Ν' , N'—テトラキス(4ービフエニル)
4, 4' _ベンジジン膜 (BPTPD膜)を蒸着法により成膜した。この BPTPD膜は正孔 輸送層として機能する。さらに、この BPTPD膜上に膜厚 40nmの下記化合物 (A)と 下記ドーピング材料 (PAVB)を 40 : 2の蒸着速度比で共蒸着した。この膜は発光層 として機能する。
この膜上に膜厚 10nmのトリス(ヒドロキシキノリン)アルミニウム(下記 Alq)膜を成膜 した。この Alq膜は電子輸送層として機能する。
この後、還元性ドーパント Li (Li源:サエルゲッタ一社製)と Alqを二元蒸着し電子注 入層(陰極)として Alq : L (10nm)を形成した。
この Alq : Li膜上に A1を蒸着して金属陰極を形成し、有機 EL素子を作製した。
[0061] [化 5]
Figure imgf000020_0001
化合物 (A)
[0062] この素子は、直流電圧 5Vで 1. 2mA/ cm2の電流が流れ、 99cd/m2の青色発光 が観測された。このときの CIE色度座標は(0. 15, 0. 29)であり、発光効率は 8. 2c d/A、 5. 31m/Wであった。また 500cd/m2からの輝度半減寿命を測定したところ 3000時間であった。
[0063] 比較例 1
実施例 1において、 PEDOT'PSS薄膜を下記のようにして成膜した他は、同様にし て有機 EL素子を作製した。
[PEDOT. PSS薄膜の形成]
ポリエチレンジォキシチオフヱン ·ポリスチレンスルフォン酸塩(PEDOT. PSS)水 溶液を用いて、スピンコート法により膜厚 30nmの PEDOT'PSS薄膜を成膜した。そ の後、ホットプレート上で、基板温度 200°Cで、 2時間加熱して乾燥させて、 PEDOT •PSS薄膜を形成した。
この膜について昇温脱離分析を行ったところ、水の検知分圧の最高値が 1. 0 X 10 6 Paであった。
[0064] この素子に電流をかけ発光させたところ、発光面にダークスポットが多く発生した。
この素子では、直流電圧 7Vで 1. 2mAZcm2の電流が流れ、 60cdZm2の青色発 光が観測された。このときの CIE色度座標は(0. 15, 0. 29)であり、発光効率は 5. 0 cd/A、 2. 31m/Wであった。また、 500cdZm2からの輝度半減寿命を測定したと ころ 500時間であった。
このダークスポットの要因は、 PEDOT' PSS膜の乾燥力 ホットプレートによる加熱 では不十分であったため、 PEDOT'PSS膜中の残留水分によるものと考えられる。
[0065] 実施例 2
25mm X 75mm X l . 1mm厚の IT〇透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し 、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして、 膜厚 40nmの Ν, N' ビス(4 ジフエ二ルァミノフエ二ル)一 N, N,一ジフエニル一 4 , 4'ージアミノビフエニル膜 (TPD232膜)を真空蒸着法により成膜した。この TPD2 32膜は正孔注入層として機能する。
続けて、この TPD232膜上に、膜厚 40nmの N, N, Ν' , Ν,一テトラキス(4 ビフ ヱ二ル)— 4, 4' _ベンジジン膜 (BPTPD膜)を真空蒸着法により成膜した。この BP TPD膜は正孔輸送層として機能する。
[0066] 次に、 9, 10 ビス(3— (1—ナフチル)フエ二ル)一 2_ (2—ビフエ二リル)アントラ セン (Tg : 130°C)と 1, 6 _ビス(ジフエニルァミノ)ピレンを、重量比 20 : 1でジォキサ ン:イソプロピルアルコール (容量比 1: 8)の混合溶媒に溶かし、 3重量%の塗布溶液 を調整した。 この塗布溶液を用いて、先に成膜した BPTPD膜上にスピンコート法により膜厚 40 nmの発光層を成膜した。
この基板を、 10_6Pa台の真空下で、赤外線加熱源 (ハロゲンランプ)にて、基板温 度が 120°Cになるように加熱し、 30分間乾燥した。
この膜について、実施例 1と同様に昇温脱離分析を行ったところ、膜中の残留溶媒 は検出限界以下に除去されていた。
[0067] 続いて、この基板を大気に出さずに、基板搬送装置を用い、真空蒸着装置内に基 板を移送し、膜厚 30nmのトリス(8—ヒドロキシキノリン)アルミニウム (Alq)を真空蒸 着法により成膜した。この Alq膜は電子輸送層として機能する。
さらに、膜厚 lnmのふつ化リチウムを真空蒸着法により成膜し、電子注入層とした。 最後にアルミニウム陰極を真空蒸着法により成膜し、有機 EL素子を作製した。
[0068] この素子に 5. 0Vの電圧を印加したところ、 2. 5mA/cm2の電流が流れ、色度(0 . 15, 0. 26)で 92cd/m2の青色発光が得られた。発光効率は 3. 7cd/A及び 2. 31m/Wであった。また、この素子を 100cd/m2から室温で定電流駆動したところ輝 度半減寿命は 10800時間であった。
[0069] 比較例 2
実施例 2において、発光層を下記のようにして形成した他は、同様にして有機 EL素 子を作製した。
[発光層の形成]
実施例 2と同じ塗布溶液を用いて、先に成膜した BPTPD膜上にスピンコート法に より膜厚 40nmの発光層を成膜した。この基板を、ホットプレート上で 120°C、 30分間 加熱し乾燥を行レ、発光層を形成した。
[0070] この素子に 5. OVの電圧を印加したところ、 2. 5mA/cm2の電流が流れ、色度(0 . 15, 0. 26)で 92cd/m2の青色発光が得られた。発光効率は 3. 7cdZA及び 2. 31m/Wであった。また、この素子を 100cd/m2から室温で定電流駆動したところ輝 度半減寿命は 2600時間であった。この素子の寿命が短い要因は、発光層中の残留 溶媒によると考えられる。
[0071] 比較例 3 実施例 2において、発光層の乾燥条件をホットプレート上で 140°C、 30分間とした 他は、同様にして有機 EL素子を作製した。
この素子に 8. 0Vの電圧を印加したところ、 2. 5mA/cm2の電流が流れ、色度(0 . 27, 0. 48)で 42cd/m2の青色発光が得られた。発光効率は 1. 7cdZA及び 0. 71m/Wであった。また、この素子を 100cd/m2から室温で定電流駆動したところ輝 度半減寿命は 5300時間であった。
[0072] この素子の寿命は、実施例 1よりも長いが、これは、発光層中の残留溶媒がより少な い為と考えられる。し力 ながら、加熱温度が発光材料(9, 10—ビス(3— (1—ナフ チル)フエニル) _ 2_ (2—ビフエ二リル)アントラセン)の Tg以上であるため、発光材 料の熱による劣化により、発光の色度が変化してしまい、この素子は実用上使用でき ないものであった。
このように、残留溶媒を除去するために塗布膜の乾燥温度を上げ過ぎてしまうと材 料の熱による劣化の為、素子性能を劣化させてしまうことが確認できた。
[0073] 評価例
5mm X 5mm X lmm厚のガラス基板をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 30分間行なった。この基板をスピナ一 (株式会 社アクティブ社製)に装着し、上記の化合物 Aの lwt%トルエン溶液を用い、膜厚 40 nmの薄膜を塗布成膜した。
その後、昇温脱離分析装置 (電子科学株式会社製、 EMD— WA1000S)にて、こ の塗布膜中のトルエン溶媒の昇温脱離過程を分析した。
本装置の測定条件は、 10— 7Paの真空下で、この薄膜を 80°Cに加熱し、トルエン溶 媒の昇温脱離過程、即ち、薄膜中の残留トルエンの除去過程を四重極質量分析装 置 (M/z = 91、 92)にて分析した。図 1に昇温脱離分析により得られる測定時間とガ ス発生量 (検知分圧: Pa)の関係を示すスペクトル示す。尚、図 1中、縦軸の「E_ 11 」は「 X 10— "」、「E_ 12」は「 X 10 12」を意味する。
[0074] 図 1から、 40分程度の加熱で薄膜中にある残留トルエンの脱離が完了していること が確認できた。即ち、 10— 7Pa台の真空下で、 40分間の 80°C加熱で塗布膜の乾燥( 残留溶媒の除去)が完了していることが言える。 産業上の利用可能性
本発明の有機 EL素子は、湿式法で形成した有機薄膜層を含んでいても発光寿命 を向上できる。また、本発明の有機 EL素子の製造方法は、湿式法で成膜した有機 薄膜層の残留溶媒を高度に除去でき、しかも、乾燥処理を低温化、短時間化できる ので、有機薄膜層を形成する材料の劣化を防止できる。
以上より本発明は、有機 EL素子を使用した表示装置の大画面化を達成するため に有効な技術である。

Claims

請求の範囲
[1] 陰極と陽極の間に発光層を含む有機薄膜層を狭持した有機エレクト口ルミネッセン ス素子であって、
前記有機薄膜層の少なくとも一層が湿式法で形成され、この層中の残留溶媒が、 昇温脱離分析法 (TDS :測定温度 80°C)による測定の検出限界 (検知分圧が、 1. 0
X 10_ 12Pa)以下である有機エレクト口ルミネッセンス素子。
[2] 前記湿式法で形成した層が、超高真空下、赤外線で加熱して乾燥された層である 請求項 1に記載の有機エレクト口ルミネッセンス素子。
[3] 前記超高真空の真空レベルが 10_9Pa〜: 10_6Paであり、赤外線による加熱温度が
、前記湿式法で形成した層の形成材料のガラス転移温度以下である請求項 2に記載 の有機エレクト口ルミネッセンス素子。
[4] 前記超高真空の真空レベルが 10_9Pa〜: 10_7Paであり、赤外線による加熱温度が
、前記湿式法で形成した層の形成材料のガラス転移温度より 10°C以上低レ、温度で ある請求項 2に記載の有機エレクト口ルミネッセンス素子。
[5] 前記湿式法で形成した層の形成材料の少なくとも 1つが、低分子化合物である請 求項 1〜4のいずれかに記載の有機エレクト口ルミネッセンス素子。
[6] 陰極と陽極間に発光層を含む有機薄膜層を形成した有機エレ外口ルミネッセンス 素子の製造方法であって、
前記有機薄膜層の少なくとも一層を湿式法で形成し、
前記湿式法で形成した層を、超高真空下、赤外線加熱で乾燥する有機エレクト口 ノレミネッセンス素子の製造方法。
PCT/JP2005/023714 2004-12-28 2005-12-26 有機エレクトロルミネッセンス素子 WO2006070713A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/813,040 US20080100206A1 (en) 2004-12-28 2005-12-26 Organic Electroluminescent Device
JP2006550740A JPWO2006070713A1 (ja) 2004-12-28 2005-12-26 有機エレクトロルミネッセンス素子
EP05842270A EP1840990A1 (en) 2004-12-28 2005-12-26 Organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-380368 2004-12-28
JP2004380368 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070713A1 true WO2006070713A1 (ja) 2006-07-06

Family

ID=36614830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023714 WO2006070713A1 (ja) 2004-12-28 2005-12-26 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20080100206A1 (ja)
EP (1) EP1840990A1 (ja)
JP (1) JPWO2006070713A1 (ja)
KR (1) KR20070093076A (ja)
CN (1) CN101088181A (ja)
TW (1) TW200631462A (ja)
WO (1) WO2006070713A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244424A (ja) * 2006-11-02 2008-10-09 Mitsubishi Chemicals Corp 有機電界蛍光発光素子、有機電界蛍光発光層塗布溶液、カラーディスプレイ表示装置
JP2009152033A (ja) * 2007-12-20 2009-07-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009139172A1 (ja) * 2008-05-15 2009-11-19 株式会社デンソー 有機発光素子とその製造方法
JP2010055864A (ja) * 2008-08-27 2010-03-11 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2010528427A (ja) * 2007-05-18 2010-08-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 閉じ込め層の製造方法
JP2011049028A (ja) * 2009-08-27 2011-03-10 Seiko Epson Corp 有機el装置の製造方法、及びカラーフィルターの製造方法
WO2011074550A1 (ja) * 2009-12-15 2011-06-23 三菱化学株式会社 有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
US8309376B2 (en) 2007-10-26 2012-11-13 E I Du Pont De Nemours And Company Process and materials for making contained layers and devices made with same
US8592239B2 (en) 2009-07-27 2013-11-26 E I Du Pont De Nemours And Company Process and materials for making contained layers and devices made with same
WO2013180036A1 (ja) * 2012-05-28 2013-12-05 三菱化学株式会社 導電性薄膜積層体の製造方法
WO2016208596A1 (ja) * 2015-06-22 2016-12-29 住友化学株式会社 有機電子素子の製造方法及び正孔注入層の形成方法
WO2016208597A1 (ja) * 2015-06-22 2016-12-29 住友化学株式会社 有機電子素子の製造方法及び有機薄膜の形成方法
JP2019204810A (ja) * 2018-05-21 2019-11-28 パイオニア株式会社 発光装置及び発光装置の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2709274A1 (en) * 2007-12-14 2009-06-25 Photoderma Sa Novel compounds useful in therapeutic and cosmetic methods
KR100870838B1 (ko) * 2008-03-04 2008-11-28 한국철강 주식회사 투명전극이 코팅된 기판의 수분 제거방법
US9331285B2 (en) 2009-12-16 2016-05-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
US8546748B2 (en) * 2011-04-07 2013-10-01 Triad Technology, Inc. Helium barrier atom chamber
CN106981582A (zh) * 2011-06-21 2017-07-25 科迪华公司 用于oled微腔和缓冲层的材料和方法
KR101780621B1 (ko) 2014-09-19 2017-09-21 이데미쓰 고산 가부시키가이샤 신규의 화합물
CN106654056B (zh) * 2016-10-13 2018-08-24 纳晶科技股份有限公司 湿膜处理装置、系统和方法
JP6440802B1 (ja) * 2017-11-08 2018-12-19 住友化学株式会社 有機デバイスの製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982474A (ja) * 1995-07-07 1997-03-28 Fuji Electric Co Ltd 薄膜エレクトロルミネッセンス素子およびその製造方法
JPH11316973A (ja) * 1998-04-28 1999-11-16 Dainichiseika Color & Chem Mfg Co Ltd 光記録媒体の製造方法およびその方法で製造される光記録媒体
JP2001076873A (ja) * 1999-06-28 2001-03-23 Semiconductor Energy Lab Co Ltd 電気光学装置の作製方法
JP2001102207A (ja) * 1999-09-30 2001-04-13 Tdk Corp 圧粉磁心の製造方法
JP2002083688A (ja) * 2000-09-08 2002-03-22 Jsr Corp El表示素子の隔壁形成用感放射線性樹脂組成物、隔壁およびel表示素子
JP2002216957A (ja) * 2001-01-19 2002-08-02 Sharp Corp 転写法を用いた有機led表示パネルの製造方法およびそれにより製造された有機led表示パネル
JP2004039567A (ja) * 2002-07-05 2004-02-05 Seiko Epson Corp 組成物とその製造方法、電気光学装置、及び電子機器
JP2004039566A (ja) * 2002-07-05 2004-02-05 Seiko Epson Corp 組成物とその製造方法、電気光学装置、及び電子機器
JP2004171943A (ja) * 2002-11-20 2004-06-17 Semiconductor Energy Lab Co Ltd 発光装置の作製方法
JP2004171941A (ja) * 2002-11-20 2004-06-17 Semiconductor Energy Lab Co Ltd 発光装置の作製方法
JP2004362930A (ja) * 2003-06-04 2004-12-24 Mitsubishi Chemicals Corp 有機電界発光素子、電荷輸送材料、及び有機電界発光素子材料
JP2005123121A (ja) * 2003-10-20 2005-05-12 Seiko Epson Corp 電気光学装置の製造方法、電気光学装置の製造方法で製造された電気光学装置、電気光学装置を搭載した電子機器、および液滴吐出装置
JP2005310466A (ja) * 2004-04-20 2005-11-04 Toppan Printing Co Ltd 有機el素子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW556357B (en) * 1999-06-28 2003-10-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
US6582504B1 (en) * 1999-11-24 2003-06-24 Sharp Kabushiki Kaisha Coating liquid for forming organic EL element
EP1150165A1 (en) * 2000-04-25 2001-10-31 JSR Corporation Radiation sensitive resin composition for forming barrier ribs for an el display element, barrier ribs and el display element
EP1440959A1 (en) * 2001-10-31 2004-07-28 Idemitsu Kosan Co., Ltd. Novel soluble compound and organic electroluminescent devices

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982474A (ja) * 1995-07-07 1997-03-28 Fuji Electric Co Ltd 薄膜エレクトロルミネッセンス素子およびその製造方法
JPH11316973A (ja) * 1998-04-28 1999-11-16 Dainichiseika Color & Chem Mfg Co Ltd 光記録媒体の製造方法およびその方法で製造される光記録媒体
JP2001076873A (ja) * 1999-06-28 2001-03-23 Semiconductor Energy Lab Co Ltd 電気光学装置の作製方法
JP2001102207A (ja) * 1999-09-30 2001-04-13 Tdk Corp 圧粉磁心の製造方法
JP2002083688A (ja) * 2000-09-08 2002-03-22 Jsr Corp El表示素子の隔壁形成用感放射線性樹脂組成物、隔壁およびel表示素子
JP2002216957A (ja) * 2001-01-19 2002-08-02 Sharp Corp 転写法を用いた有機led表示パネルの製造方法およびそれにより製造された有機led表示パネル
JP2004039567A (ja) * 2002-07-05 2004-02-05 Seiko Epson Corp 組成物とその製造方法、電気光学装置、及び電子機器
JP2004039566A (ja) * 2002-07-05 2004-02-05 Seiko Epson Corp 組成物とその製造方法、電気光学装置、及び電子機器
JP2004171943A (ja) * 2002-11-20 2004-06-17 Semiconductor Energy Lab Co Ltd 発光装置の作製方法
JP2004171941A (ja) * 2002-11-20 2004-06-17 Semiconductor Energy Lab Co Ltd 発光装置の作製方法
JP2004362930A (ja) * 2003-06-04 2004-12-24 Mitsubishi Chemicals Corp 有機電界発光素子、電荷輸送材料、及び有機電界発光素子材料
JP2005123121A (ja) * 2003-10-20 2005-05-12 Seiko Epson Corp 電気光学装置の製造方法、電気光学装置の製造方法で製造された電気光学装置、電気光学装置を搭載した電子機器、および液滴吐出装置
JP2005310466A (ja) * 2004-04-20 2005-11-04 Toppan Printing Co Ltd 有機el素子の製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244424A (ja) * 2006-11-02 2008-10-09 Mitsubishi Chemicals Corp 有機電界蛍光発光素子、有機電界蛍光発光層塗布溶液、カラーディスプレイ表示装置
JP2010528427A (ja) * 2007-05-18 2010-08-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 閉じ込め層の製造方法
US8309376B2 (en) 2007-10-26 2012-11-13 E I Du Pont De Nemours And Company Process and materials for making contained layers and devices made with same
JP2009152033A (ja) * 2007-12-20 2009-07-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009139172A1 (ja) * 2008-05-15 2009-11-19 株式会社デンソー 有機発光素子とその製造方法
JP2010055864A (ja) * 2008-08-27 2010-03-11 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
US9136491B2 (en) 2008-08-27 2015-09-15 Sumitomo Chemical Company, Limited Organic electroluminescent element and method for producing the same
US8592239B2 (en) 2009-07-27 2013-11-26 E I Du Pont De Nemours And Company Process and materials for making contained layers and devices made with same
JP2011049028A (ja) * 2009-08-27 2011-03-10 Seiko Epson Corp 有機el装置の製造方法、及びカラーフィルターの製造方法
WO2011074550A1 (ja) * 2009-12-15 2011-06-23 三菱化学株式会社 有機電界発光素子の製造方法、有機電界発光素子、表示装置及び照明装置
WO2013180036A1 (ja) * 2012-05-28 2013-12-05 三菱化学株式会社 導電性薄膜積層体の製造方法
KR20150016507A (ko) 2012-05-28 2015-02-12 미쓰비시 가가꾸 가부시키가이샤 도전성 박막 적층체의 제조 방법
JP2017216251A (ja) * 2012-05-28 2017-12-07 三菱ケミカル株式会社 導電性薄膜積層体の製造方法
WO2016208596A1 (ja) * 2015-06-22 2016-12-29 住友化学株式会社 有機電子素子の製造方法及び正孔注入層の形成方法
WO2016208597A1 (ja) * 2015-06-22 2016-12-29 住友化学株式会社 有機電子素子の製造方法及び有機薄膜の形成方法
JPWO2016208597A1 (ja) * 2015-06-22 2018-04-05 住友化学株式会社 有機電子素子の製造方法及び有機薄膜の形成方法
JPWO2016208596A1 (ja) * 2015-06-22 2018-04-05 住友化学株式会社 有機電子素子の製造方法及び正孔注入層の形成方法
US10333067B2 (en) 2015-06-22 2019-06-25 Sumitomo Chemical Company, Limited Method for manufacturing organic electronic element, and method for forming electron hole injection layer
JP2019204810A (ja) * 2018-05-21 2019-11-28 パイオニア株式会社 発光装置及び発光装置の製造方法

Also Published As

Publication number Publication date
EP1840990A1 (en) 2007-10-03
TW200631462A (en) 2006-09-01
JPWO2006070713A1 (ja) 2008-06-12
US20080100206A1 (en) 2008-05-01
KR20070093076A (ko) 2007-09-17
CN101088181A (zh) 2007-12-12

Similar Documents

Publication Publication Date Title
WO2006070713A1 (ja) 有機エレクトロルミネッセンス素子
JP4152173B2 (ja) 有機エレクトロルミネッセンス素子
JP5294872B2 (ja) 有機エレクトロルミネッセンス素子
US8168327B2 (en) Imide derivative, material for organic electroluminescent device and organic electroluminescent device using the same
KR101364423B1 (ko) 유기 전계발광 소자
EP1850405A1 (en) Ink for forming organic el coating film and method for production thereof
EP1841291A1 (en) Organic electroluminescent device and method for manufacturing same
WO2006001333A1 (ja) 多環芳香族系化合物、発光性塗膜形成用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2006062078A1 (ja) 有機エレクトロルミネッセンス素子
WO2007018007A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008072586A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
CN102712570A (zh) 单胺衍生物以及使用其的有机电致发光元件
WO2006067931A1 (ja) アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007007464A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007018004A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007132678A1 (ja) 有機エレクトロルミネッセンス素子
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007029806A1 (ja) アザフルオランテン骨格を有するアザ芳香族化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP4002277B2 (ja) 有機エレクトロルミネッセンス素子
WO2007029410A1 (ja) ポリアリールアミンを用いた有機エレクトロルミネッセンス素子
JPWO2008126802A1 (ja) 有機エレクトロルミネッセンス素子
WO2007060795A1 (ja) アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子
WO2006120859A1 (ja) 新規有機エレクトロルミネッセンス材料、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用薄膜形成溶液
CN101317282A (zh) 有机电致发光元件
JP2008258641A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550740

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580044813.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005842270

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077014643

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11813040

Country of ref document: US

Ref document number: 2862/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005842270

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11813040

Country of ref document: US