WO2009133957A1 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
WO2009133957A1
WO2009133957A1 PCT/JP2009/058629 JP2009058629W WO2009133957A1 WO 2009133957 A1 WO2009133957 A1 WO 2009133957A1 JP 2009058629 W JP2009058629 W JP 2009058629W WO 2009133957 A1 WO2009133957 A1 WO 2009133957A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
diffusion layer
type diffusion
state imaging
imaging device
Prior art date
Application number
PCT/JP2009/058629
Other languages
English (en)
French (fr)
Inventor
富士雄 舛岡
広記 中村
Original Assignee
日本ユニサンティスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ユニサンティスエレクトロニクス株式会社 filed Critical 日本ユニサンティスエレクトロニクス株式会社
Priority to EP09738894A priority Critical patent/EP2290692A4/en
Priority to CN2009801158772A priority patent/CN102017151B/zh
Priority to JP2010510180A priority patent/JP5283235B2/ja
Priority to KR1020107024780A priority patent/KR101113905B1/ko
Publication of WO2009133957A1 publication Critical patent/WO2009133957A1/ja
Priority to US12/700,315 priority patent/US8097907B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14679Junction field effect transistor [JFET] imagers; static induction transistor [SIT] imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Definitions

  • the present invention relates to a solid-state image sensor.
  • CMOS image sensor that has an amplification function for each pixel and reads out by a scanning circuit
  • a CMOS image sensor a photoelectric conversion unit, an amplification unit, a pixel selection unit, and a reset unit are formed in one pixel, and three MOS transistors are used in addition to the photoelectric conversion unit formed of a photodiode (for example, Patent Documents). 1). That is, the conventional CMOS image sensor is composed of four elements.
  • the CMOS sensor accumulates electric charges generated by a photoelectric conversion unit made of a photodiode, amplifies the accumulated electric charges by an amplification unit, and reads the amplified electric charges using a pixel selection unit.
  • FIG. 1 shows a unit pixel of a conventional CMOS image sensor.
  • 001 is a photoelectric conversion photodiode
  • 006 is an amplification transistor
  • 007 is a reset transistor
  • 008 is a selection transistor
  • 004 is a signal line
  • 002 is a pixel selection clock line
  • 003 is a reset clock line
  • 005 is a power supply line.
  • 009 are reset power lines.
  • a unit pixel of a conventional CMOS image sensor has three MOS transistors, a total of four elements, in addition to a photodiode. That is, it is difficult to increase the ratio of the surface area of the light receiving portion (photodiode) to the surface area of one pixel.
  • Non-patent Document 1 the ratio of the light receiving portion (photodiode) to the surface area of one pixel is reported to be 17% ( Non-patent document 1). Further, it has been reported that when the 0.15 ⁇ m wiring-rule process is used, the ratio of the surface area of the light receiving portion (photodiode) to the surface area of one pixel is 30% (Non-patent Document 2). When the ratio of the surface area of the light receiving portion (photodiode) to the surface area of one pixel is 30%, a microlens is formed for condensing light (Non-Patent Document 2). That is, if the ratio of the surface area of the light receiving portion (photodiode) to the surface area of one pixel is low, a microlens is required for condensing light.
  • an object is to provide an image sensor in which the ratio of the surface area of the light receiving portion to the surface area of one pixel is large.
  • a solid-state imaging device comprising a signal line formed on a substrate, an island-shaped semiconductor disposed on the signal line, and a pixel selection line connected to an upper portion of the island-shaped semiconductor,
  • the island-shaped semiconductor is A first semiconductor layer disposed under the island-shaped semiconductor and connected to the signal line; A second semiconductor layer adjacent to the upper side of the first semiconductor layer; A gate connected to the second semiconductor layer via an insulating film;
  • the charge accumulating unit comprising a third semiconductor layer connected to the second semiconductor layer, the charge amount of which changes upon receiving light;
  • the pixel selection line is formed of a transparent conductive film,
  • a solid-state imaging device is provided in which a part of the gate is disposed inside a recess formed in a side wall of the second semiconductor layer.
  • the signal line is an n + -type diffusion layer
  • the first semiconductor layer is an n + -type diffusion layer
  • the second semiconductor layer is a p-type impurity doped region
  • the semiconductor layer 3 is an n-type diffusion layer
  • the fourth semiconductor layer is a p + -type diffusion layer.
  • the p + -type diffusion layer and the n-type diffusion layer function as the photoelectric conversion photodiode
  • the p + -type diffusion layer, the n-type diffusion layer, and the p-type impurity added region function as the amplification transistor
  • the n + -type diffusion layer, the p-type impurity doped region, the n-type diffusion layer and the gate of the first semiconductor layer function as the reset transistor
  • the p-type impurity doped region and the n + -type diffusion layer function as the diode.
  • the island-shaped semiconductor in the solid-state imaging device, has a quadrangular prism shape.
  • the island-shaped semiconductor in the solid-state imaging device, has a hexagonal column shape.
  • the island-shaped semiconductor in the solid-state imaging device, has a cylindrical shape.
  • a solid-state imaging device in which the solid-state imaging elements are arranged on an n-row m-column (n and m are 1 or more) substrate.
  • a solid-state imaging device in which the solid-state imaging elements in which the island-shaped semiconductor has a quadrangular prism shape are arranged on an n-row m-column (n and m are 1 or more) substrate.
  • a solid-state imaging device in which the solid-state imaging device in which the island-shaped semiconductor is cylindrical is arranged on an n-row m-column (n and m are 1 or more) substrate.
  • a solid-state imaging device in which the solid-state imaging elements are arranged in a honeycomb shape on a substrate.
  • the island-shaped semiconductor in the solid-state imaging device in which the solid-state imaging elements are arranged in a honeycomb shape on a substrate, the island-shaped semiconductor has a hexagonal column shape.
  • the island-shaped semiconductor in the solid-state imaging device in which the solid-state imaging elements are arranged in a honeycomb shape on a substrate, the island-shaped semiconductor has a cylindrical shape.
  • a method for manufacturing a solid-state imaging device An oxide film is formed on the silicon substrate, p-type silicon is formed on the oxide film, a nitride film is deposited on the p-type silicon, an oxide film is deposited, a resist for a silicon pillar is formed, and an oxidation film is formed.
  • a unit pixel of a conventional CMOS image sensor has three MOS transistors, a total of four elements, in addition to a photodiode. That is, it is difficult to increase the ratio of the surface area of the light receiving portion (photodiode) to the surface area of one pixel. When a 0.15 ⁇ m wiring-rule process is used, the ratio of the surface area of the light receiving portion (photodiode) to the surface area of one pixel is reported to be 30%.
  • a solid-state imaging device comprising a signal line formed on a substrate, an island-shaped semiconductor disposed on the signal line, and a pixel selection line connected to an upper portion of the island-shaped semiconductor,
  • the island-shaped semiconductor is A first semiconductor layer disposed under the island-shaped semiconductor and connected to the signal line; A second semiconductor layer adjacent to the upper side of the first semiconductor layer; A gate connected to the second semiconductor layer via an insulating film;
  • the charge accumulating unit comprising a third semiconductor layer connected to the second semiconductor layer, the charge amount of which changes upon receiving light;
  • the pixel selection line is formed of a transparent conductive film,
  • a solid-state imaging device is provided in which a part of the gate is disposed inside a recess formed in a side wall of the second semiconductor layer.
  • the third semiconductor layer and the fourth semiconductor layer function as the photoelectric conversion photodiode
  • the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer function as the amplification transistor
  • the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, and the gate function as the reset transistor
  • the second semiconductor layer and the first semiconductor layer function as the diode.
  • Metals such as aluminum and copper that are conventionally used in the semiconductor manufacturing process reflect light, and thus need to be connected to the side wall of the fourth semiconductor layer.
  • a transparent conductive film such as indium tin oxide (ITO), zinc oxide (ZnO), and tin oxide (SnO 2 ) is used for the pixel selection line, thereby connecting the pixel selection line to the upper portion of the fourth semiconductor layer.
  • the use of the transparent conductive film enables an image sensor having a large ratio of the surface area of the light receiving portion to the surface area of one pixel.
  • the gate is connected to the side wall of the second semiconductor layer via an insulating film, the surface area of one pixel is the sum of the area of the photodiode, the area of the gate, and the area between the elements.
  • the gate is formed by disposing a part thereof in the recess formed in the side wall of the second semiconductor layer, whereby the surface area of one pixel is equal to the area of the photodiode and the area between the elements. This makes it possible to achieve an image sensor in which the ratio of the surface area of the light receiving portion to the surface area of one pixel is large.
  • FIG. 3 is a plan view of one solid-state imaging device according to the present invention.
  • 4A is a cross-sectional view taken along the line X 1 -X 1 ′ of FIG. 3
  • FIG. 4B is an equivalent circuit diagram of FIG. 4A
  • FIG. 5 is a cross-sectional view taken along the line 1- Y 1 ′
  • FIG. 5B is an equivalent circuit diagram of FIG.
  • the oxide film 108 is formed on the silicon substrate 107, the signal line 106 is formed on the oxide film 108, An island semiconductor is formed on the signal line 106, and the island semiconductor is An n + -type diffusion layer 105 connected to the signal line below the island-shaped semiconductor; a p-type impurity doped region 111 adjacent to the upper side of the n + -type diffusion layer; a gate 104 connected to the p-type impurity doped region via an insulating film; a charge accumulating portion 103 made of an n-type diffusion layer connected to the p-type impurity doped region and changing the charge amount when receiving light; a p-type impurity doped region and a p + -type diffusion layer 102 adjacent to the upper side of the n-type diffusion layer, A pixel selection line 101 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is
  • the p + -type diffusion layer 102 and the n-type diffusion layer 103 function as a photoelectric conversion photodiode 109
  • the p + -type diffusion layer 102, the n-type diffusion layer 103, and the p-type impurity added region 111 function as an amplifying transistor 113.
  • the n + -type diffusion layer 105, the p-type impurity added region 111, the n-type diffusion layer 103, and the gate 104 function as a reset transistor 112
  • the p-type impurity doped region 111 and the n + -type diffusion layer 105 function as the diode 114.
  • An oxide film 110 is formed as an interlayer insulating film.
  • FIG. 6 is a bird's-eye view of a solid-state image sensor matrix in which the solid-state image sensors are arranged in a matrix.
  • a plan view is shown in FIG. 8 'is a cross-sectional view
  • FIG. 9 X 3 -X 3 in Fig. 7' X 2 -X 2 in Fig. 7 is a cross-sectional view
  • FIG. 10 is an X 4 -X 4 'sectional view of FIG. 7 11 is a sectional view taken along the line Y 2 -Y 2 ′ of FIG.
  • An oxide film 241 is formed on the silicon substrate 242, and a signal line 225 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 225, and the island-shaped semiconductor is An n + -type diffusion layer 237 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 234 adjacent to the upper side of the n + -type diffusion layer; a gate 219 connected to the p-type impurity doped region via an insulating film; a charge storage portion 231 formed of an n-type diffusion layer connected to the p-type impurity doped region and changing the amount of charge when receiving light; a p-type impurity doped region and a p + -type diffusion layer 228 adjacent to the upper side of the n-type diffusion layer, A pixel selection line 201 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is disposed inside a recess formed in a side wall of the p-type impurity doped region.
  • An oxide film 241 is formed on the silicon substrate 242, and a signal line 225 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 225, and the island-shaped semiconductor is An n + -type diffusion layer 238 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 235 adjacent to the upper side of the n + -type diffusion layer; a gate 220 connected to the p-type impurity doped region through an insulating film; a charge storage portion 232 made of an n-type diffusion layer connected to the p-type impurity doped region and changing its charge amount when receiving light; a p-type impurity doped region and a p + -type diffusion layer 229 adjacent to the upper side of the n-type diffusion layer, A pixel selection line 202 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is
  • An oxide film 241 is formed on the silicon substrate 242, and a signal line 225 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 225, and the island-shaped semiconductor is An n + -type diffusion layer 239 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 236 adjacent to the upper side of the n + -type diffusion layer; a gate 221 connected to the p-type impurity doped region via an insulating film; a charge storage portion 233 made of an n-type diffusion layer connected to the p-type impurity doped region and changing its charge amount when receiving light; a p type impurity doped region and a p + type diffusion layer 230 adjacent to the upper side of the n type diffusion layer, A pixel selection line 203 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is disposed inside
  • an oxide film 241 is formed on the silicon substrate 242, and a signal line 226 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 226.
  • An n + -type diffusion layer 252 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 249 adjacent to the upper side of the n + -type diffusion layer; a gate 219 connected to the p-type impurity doped region via an insulating film; a charge storage unit 246 formed of an n-type diffusion layer connected to the p-type impurity doped region and changing its charge amount when receiving light; a p-type impurity doped region and a p + -type diffusion layer 243 adjacent to the upper side of the n-type diffusion layer,
  • a pixel selection line 201 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is disposed inside
  • An oxide film 241 is formed on the silicon substrate 242, and a signal line 226 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 226.
  • An n + -type diffusion layer 253 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 250 adjacent to the upper side of the n + -type diffusion layer; a gate 220 connected to the p-type impurity doped region through an insulating film; a charge storage unit 247 made of an n-type diffusion layer connected to the p-type impurity doped region and changing the amount of charge when receiving light; a p-type impurity doped region and a p + -type diffusion layer 244 adjacent to the upper side of the n-type diffusion layer,
  • a pixel selection line 202 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is disposed inside
  • An oxide film 241 is formed on the silicon substrate 242, and a signal line 226 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 226.
  • An n + -type diffusion layer 254 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 251 adjacent to the upper side of the n + -type diffusion layer; a gate 221 connected to the p-type impurity doped region via an insulating film; a charge storage unit 248 made of an n-type diffusion layer connected to the p-type impurity doped region and changing its charge amount when receiving light; a p-type impurity doped region and a p + -type diffusion layer 245 adjacent to the upper side of the n-type diffusion layer,
  • a pixel selection line 203 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is disposed inside
  • an oxide film 241 is formed on the silicon substrate 242, and a signal line 227 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 227, and the island-shaped semiconductor is An n + -type diffusion layer 222 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 255 adjacent to the upper side of the n + -type diffusion layer; a gate 219 connected to the p-type impurity doped region via an insulating film; a charge storage unit 216 connected to the p-type impurity doped region and made of an n-type diffusion layer whose charge amount changes upon receiving light; a p-type impurity doped region and a p + -type diffusion layer 213 adjacent to the upper side of the n-type diffusion layer, A pixel selection line 201 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof
  • An oxide film 241 is formed on the silicon substrate 242, and a signal line 227 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 227, and the island-shaped semiconductor is An n + -type diffusion layer 223 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 256 adjacent to the upper side of the n + -type diffusion layer; a gate 220 connected to the p-type impurity doped region through an insulating film; a charge storage section 217 made of an n-type diffusion layer connected to the p-type impurity doped region and changing the charge amount when receiving light; a p type impurity doped region and a p + type diffusion layer 214 adjacent to the upper side of the n type diffusion layer, A pixel selection line 202 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is disposed inside
  • An oxide film 241 is formed on the silicon substrate 242, and a signal line 227 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 227, and the island-shaped semiconductor is An n + -type diffusion layer 224 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 257 adjacent to the upper side of the n + -type diffusion layer; a gate 221 connected to the p-type impurity doped region via an insulating film; a charge storage unit 218 connected to the p-type impurity doped region and made of an n-type diffusion layer whose amount of charge changes when receiving light; a p-type impurity doped region and a p + -type diffusion layer 215 adjacent to the upper side of the n-type diffusion layer, A pixel selection line 203 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part
  • an oxide film 241 is formed on the silicon substrate 242, and a signal line 227 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 227, and the island-shaped semiconductor is An n + -type diffusion layer 223 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 256 adjacent to the upper side of the n + -type diffusion layer; a gate 220 connected to the p-type impurity doped region through an insulating film; a charge storage section 217 made of an n-type diffusion layer connected to the p-type impurity doped region and changing the charge amount when receiving light; a p type impurity doped region and a p + type diffusion layer 214 adjacent to the upper side of the n type diffusion layer, A pixel selection line 202 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is disposed inside
  • An oxide film 241 is formed on the silicon substrate 242, and a signal line 226 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 226.
  • An n + -type diffusion layer 253 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 250 adjacent to the upper side of the n + -type diffusion layer; a gate 220 connected to the p-type impurity doped region through an insulating film; a charge storage unit 247 made of an n-type diffusion layer connected to the p-type impurity doped region and changing the amount of charge when receiving light; a p-type impurity doped region and a p + -type diffusion layer 244 adjacent to the upper side of the n-type diffusion layer,
  • a pixel selection line 202 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is disposed inside
  • An oxide film 241 is formed on the silicon substrate 242, and a signal line 225 is formed on the oxide film 241.
  • An island-shaped semiconductor is formed over the signal line 225, and the island-shaped semiconductor is An n + -type diffusion layer 238 connected to the signal line under the island-shaped semiconductor; a p-type impurity doped region 235 adjacent to the upper side of the n + -type diffusion layer; a gate 220 connected to the p-type impurity doped region through an insulating film; a charge storage portion 232 made of an n-type diffusion layer connected to the p-type impurity doped region and changing its charge amount when receiving light; a p-type impurity doped region and a p + -type diffusion layer 229 adjacent to the upper side of the n-type diffusion layer, A pixel selection line 202 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, The gate is formed such that a part thereof is
  • an oxide film 241 is formed on a silicon substrate 242, a p-type silicon 301 is formed on the oxide film 241, a nitride film is deposited on the p-type silicon 301, an oxide film is deposited, and a silicon pillar is formed.
  • the resist film is formed, the oxide film and the nitride film are etched, the resist is peeled off, and the nitride film masks 302, 303, 304, 308, 309 and the oxide film masks 305, 306, 307, 310, 311 are formed (FIG. 12 (a), (b)).
  • a nitride film is deposited, etched, and left on the sidewalls 312, 313, 314, 315, and 316 on the side walls of the silicon pillar (FIGS. 14A and 14B).
  • the silicon is etched using isotropic etching to form a depression on the side wall of the p-type impurity addition region (FIGS. 15A and 15B).
  • Silicon is etched to form island-shaped semiconductors 317, 318, 319, 320, and 321 having depressions on the sidewalls of the p-type impurity addition region (FIGS. 16A and 16B).
  • a thin oxide film 322 is formed to prevent ion channeling during ion implantation (FIGS. 17A and 17B).
  • Implant phosphorus and anneal to form an n + -type diffusion layer 323 (FIGS. 18A and 18B).
  • Resist 324, 325, 326 for signal lines is formed (FIGS. 19A and 19B).
  • the thin oxide film is etched and silicon is etched to form n + diffusion layers 237, 238, 239, 223, 253 and signal lines 225, 226, 227 (FIGS. 20A and 20B).
  • the resist is removed, the nitride film is removed, and the thin oxide film is removed (FIGS. 21A and 21B).
  • An oxide film 327 is deposited, planarized, and etched back (FIGS. 22A and 22B).
  • Gate insulating films 328, 329, 330, 332, and 333 are formed, polysilicon 331 is deposited, planarized, and etched back (FIGS. 23A and 23B).
  • Resist 334, 335, and 336 for gates are formed (FIGS. 24A and 24B).
  • the polysilicon is etched to form gates 219, 220 and 221 and the resist is peeled off (FIGS. 25A and 25B).
  • Implant phosphorus to form charge storage portions 231, 232, 233, 217, and 247 (FIGS. 26A and 26B).
  • An oxide film 240 is deposited, planarized, etched back, and the nitride film is peeled off (FIGS. 27A and 27B).
  • Oxide films 337, 338, 339, 340, 341 are formed, boron is implanted, and annealing is performed to form p + -type diffusion layers 228, 229, 230, 214, 244 (FIGS. 28A and 28B). ).
  • the oxide film is peeled off and a transparent conductive film 342 is deposited (FIGS. 29A and 29B).
  • a resist for pixel selection lines is formed, the transparent conductive film is etched, the resist is peeled off, and pixel selection lines 201, 202, and 203 are formed (FIGS. 30A and 30B).
  • a surface protective film 343 is formed.
  • FIG. 32 is a sectional view showing another embodiment according to the present invention.
  • An oxide film 708 is formed on the silicon substrate 707, and a signal line 706 is formed on the oxide film 708.
  • An island-shaped semiconductor is formed over the signal line 706, and the island-shaped semiconductor is An n + -type diffusion layer 705 connected to the signal line below the island-shaped semiconductor; a p-type impurity doped region 711 adjacent to the upper side of the n + -type diffusion layer; a gate 704 connected to the p-type impurity doped region via an insulating film; a charge storage portion 703 connected to the p-type impurity doped region and made of an n-type diffusion layer whose amount of charge changes upon receiving light; a p-type impurity doped region and a p + -type diffusion layer 702 adjacent to the upper side of the n-type diffusion layer, A pixel selection line 701 made of a transparent conductive film connected to the upper part of the p + type diffusion layer on the island-like semiconductor is formed, A cross-sectional shape formed on the side wall of the p-type impurity doped region is formed by arranging a part of the gate inside a rectangular depression.
  • the island-shaped semiconductor used a solid-state imaging device having a quadrangular prism shape
  • the island-shaped semiconductor 401 may be a solid-state imaging device having a hexagonal prism shape.
  • the solid-state imaging device matrix in which the solid-state imaging devices in which the island-shaped semiconductor has a quadrangular prism shape is arranged on the n rows and m columns (n and m are 1 or more) substrates is shown. As shown in FIG.
  • a first solid-state imaging device array in which solid-state imaging elements 402, 403, and 404 in which island-shaped semiconductors have a hexagonal column shape, and a solid-state imaging element 405 in which island-shaped semiconductors have a hexagonal column shape
  • the second solid-state image pickup element array in which 406 and 407 are arranged and the third solid-state image pickup element array in which the solid-state image pickup elements 408, 409 and 410 in which the island-shaped semiconductors are hexagonal columns are arranged have a vertical pixel pitch of ⁇ 3.
  • the solid-state image pickup elements may be arranged in a so-called honeycomb-like structure, which is arranged at an interval of two times (horizontal pixel pitch HP).
  • the solid-state imaging device having a quadrangular prism shape is used as the island-shaped semiconductor.
  • the island-shaped semiconductor 501 may be a solid-state imaging device having a cylindrical shape.
  • a solid-state imaging device comprising a signal line formed on a substrate, an island-shaped semiconductor disposed on the signal line, and a pixel selection line connected to an upper portion of the island-shaped semiconductor,
  • the island-shaped semiconductor is A first semiconductor layer disposed under the island-shaped semiconductor and connected to the signal line; A second semiconductor layer adjacent to the upper side of the first semiconductor layer; A gate connected to the second semiconductor layer via an insulating film;
  • the charge accumulating unit comprising a third semiconductor layer connected to the second semiconductor layer, the charge amount of which changes upon receiving light;
  • the pixel selection line is formed of a transparent conductive film,
  • a solid-state imaging device is provided in which a part of the gate is disposed inside a recess formed in a side wall of the second semiconductor layer.
  • the third semiconductor layer and the fourth semiconductor layer function as the photoelectric conversion photodiode
  • the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer function as the amplification transistor
  • the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, and the gate function as the reset transistor
  • the second semiconductor layer and the first semiconductor layer function as the diode.
  • Metals such as aluminum and copper that are conventionally used in the semiconductor manufacturing process reflect light, and thus need to be connected to the side wall of the fourth semiconductor layer.
  • a transparent conductive film such as indium tin oxide (ITO), zinc oxide (ZnO), or tin oxide (SnO 2 ) for the pixel selection line, the pixel selection line can be connected to the upper portion of the fourth semiconductor layer.
  • the use of the transparent conductive film enables an image sensor having a large ratio of the surface area of the light receiving portion to the surface area of one pixel.
  • the surface area of one pixel is the sum of the area of the photodiode, the area of the gate, and the area between the elements.
  • the surface area of one pixel is the sum of the area of the photodiode and the area between the elements.
  • FIG. 36 is a plan view in which the image sensors 601, 602, 603, 604, 605, 606, 607, 608, and 609 according to the present invention having a square pillar-shaped island-shaped semiconductor are arranged in a matrix, and FIG. Is an enlarged plan view showing the light receiving unit 610.
  • F is a wiring rule.
  • the surface area per pixel was 2 ⁇ m ⁇ 2 ⁇ m, and a 0.15 ⁇ m ⁇ wiring rule process was used.
  • the surface area of the light receiving part (photodiode) is 1.925 ⁇ m ⁇ 1.925 ⁇ m.
  • the ratio of the surface area of the light-receiving portion (photodiode) to the surface area of one pixel when the image sensors of the present invention having a quadrangular prism-shaped island-shaped semiconductor are arranged in a matrix is 92.6%. That is, since the unit pixel of the image sensor is realized by the area of the photodiode, an image sensor in which the ratio of the surface area of the light receiving unit to the surface area of one pixel is made possible.
  • FIG. 2 is a cross-sectional view of one solid-state imaging device according to the present invention, taken along X 1 -X 1 ′.
  • Fig.4 (a) is a Y 1 -Y 1 ′ sectional view of one solid-state imaging device according to the present invention.
  • FIG. 5 (a) It is a bird's-eye view of the solid-state image sensor matrix which arranged the solid-state image sensor concerning this invention in matrix form.
  • FIG. 2 is a cross-sectional plan view taken along the line X 2 -X 2 ′ of a solid-state image sensor matrix in which solid-state image sensors according to the present invention are arranged in a matrix.
  • FIG. 3 is a cross-sectional plan view taken along the line X 3 -X 3 ′ of a solid-state image sensor matrix in which solid-state image sensors according to the present invention are arranged in a matrix.
  • FIG. 4 is a cross-sectional plan view taken along the line X 4 -X 4 ′ of a solid-state image sensor matrix in which solid-state image sensors according to the present invention are arranged in a matrix.
  • FIG. 4 is a plan view of a Y 2 -Y 2 ′ sectional view of a solid-state image sensor matrix in which solid-state image sensors according to the present invention are arranged in a matrix.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention.
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example
  • FIG. 6 is an X 2 -X 2 ′ sectional process diagram showing a manufacturing example of a solid-state imaging device according to the present invention. It is a Y 2 -Y 2 'cross-sectional process drawing showing a manufacturing example of a solid-state imaging device according to the present invention. It is sectional drawing which shows the other Example which concerns on this invention. It is a bird's-eye view which shows the other Example which concerns on this invention. It is a bird's-eye view which shows the other Example which concerns on this invention. It is a bird's-eye view which shows the other Example which concerns on this invention. It is a bird's-eye view which shows the other Example which concerns on this invention. It is the top view which has arrange
  • p + type diffusion layer 216. Charge storage unit 217. Charge storage unit 218. Charge storage section 219.
  • Gate 220. Gate 221.
  • Gate 222. n + type diffusion layer 223.
  • n + type diffusion layer 224. n + type diffusion layer 225.
  • Signal line 226. Signal line 227.
  • Charge storage section 232. Charge storage section 233. Charge storage section 234.
  • p-type impurity doped region 236. p-type impurity doped region 237.
  • n + type diffusion layer 240 Oxide film 241. Oxide film 242. Substrate 243. p + type diffusion layer 244. p + type diffusion layer 245. p + type diffusion layer 246. Charge storage unit 247. Charge storage section 248. Charge storage unit 249. p-type impurity doped region 250. p-type impurity added region 251. p-type impurity added region 252,. n + type diffusion layer 253. n + type diffusion layer 254. n + type diffusion layer 255. p-type impurity doped region 256. p-type impurity doped region 257. p-type impurity doped region 301. p-type silicon 302. Nitride film mask 303. Nitride film mask 304.
  • Nitride film mask 305 Oxide film mask 306. Oxide film mask 307. Oxide film mask 308. Nitride film mask 309. Nitride film mask 310. Oxide film mask 311. Oxide film mask 312. Nitride film side wall 313. Nitride film side wall 314. Nitride film sidewall 315. Nitride film side wall 316. Nitride film side wall 317. Island-shaped semiconductor 318. Island-shaped semiconductor 319. Island-like semiconductor 320. Island-shaped semiconductor 321. Island-shaped semiconductor 322. Oxide film 323. n + type diffusion layer 324. Resist 325. Resist 326. Resist 327. Oxide film 328. Gate insulating film 329. Gate insulating film 330. Gate insulating film 331.
  • Polysilicon 332 Gate insulating film 333. Gate insulating film 334. Resist 335. Resist 336. Resist 337. Oxide film 338. Oxide film 339. Oxide film 340. Oxide film 341. Oxide film 342. Transparent conductive film 343. Surface protective film 401. Hexagonal columnar island-shaped semiconductor 402. Hexagonal columnar island-shaped semiconductor 403. Hexagonal columnar island-shaped semiconductor 404. Hexagonal columnar island-shaped semiconductor 405. Hexagonal columnar island-shaped semiconductor 406. Hexagonal columnar island-shaped semiconductor 407. Hexagonal columnar island-shaped semiconductor 408. Hexagonal columnar island-shaped semiconductor 409.
  • Hexagonal columnar island-shaped semiconductor 410 Hexagonal columnar island-shaped semiconductor 501. Cylindrical island-shaped semiconductor 601. Image sensor 602. Image sensor 603. Image sensor 604. Image sensor 605. Image sensor 606. Image sensor 607. Image sensor 608. Image sensor 609. Image sensor 610. Light receiving unit 701. Pixel selection line 702. p + type diffusion layer 703. Charge storage unit 704. Gate 705. n + type diffusion layer 706. Signal line 707. Substrate 708. Oxide film 709. Light receiver (photodiode) 710. Oxide film 711. p-type impurity doped region

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

1画素の表面積に対する受光部の表面積の割合が大きいイメージセンサを提供することを課題とする。基板上に形成された信号線と、前記信号線の上に配置される島状半導体と、前記島状半導体の上部に接続された画素選択線とを備えた固体撮像素子であって、前記島状半導体は、前記島状半導体の下部に配置され、前記信号線に接続された第1の半導体層と、前記第1の半導体層の上側に隣接する第2の半導体層と、前記第2の半導体層に絶縁膜を介して接続されたゲートと、前記第2の半導体層に接続された、受光すると電荷量が変化する第3の半導体層からなる前記電荷蓄積部と、前記第2の半導体層と前記第3の半導体層の上側に隣接し、前記画素選択線に接続された第4の半導体層とを備え、前記画素選択線は、透明導電膜により形成されており、前記ゲートの一部は、前記第2の半導体層の側壁に形成された窪みの内部に配置されている固体撮像素子により、上記課題を解決する。

Description

固体撮像素子
この発明は、固体撮像素子に関するものである。
各画素毎に増幅機能を持たせ、走査回路により読み出す増幅型固体撮像装置すなわちCMOSイメージセンサが提案されている。CMOSイメージセンサでは、1画素内に、光電変換部と増幅部と画素選択部及びリセット部が形成され、フォトダイオードからなる光電変換部の他に3個のMOSトランジスタが用いられる(例えば、特許文献1)。すなわち、従来のCMOSイメージセンサは、4つの素子からなる。CMOSセンサは、フォトダイオードからなる光電変換部で生成された電荷を蓄積し、蓄積した電荷を増幅部にて増幅し、画素選択部を用いて増幅した電荷を読み出す。
図1に、従来のCMOSイメージセンサの単位画素を示す。図1において、001は光電変換用フォトダイオード、006は増幅用トランジスタ、007はリセットトランジスタ、008は選択トランジスタ、004は信号線、002は画素選択クロックライン、003はリセットクロックライン、005は電源線、009はリセット用の電源線である。従来のCMOSイメージセンサの単位画素は、フォトダイオードの他に、3個のMOSトランジスタ、計4素子を平面に持つ。すなわち、1画素の表面積に対する、受光部(フォトダイオード)の表面積の割合を大きくすることは、困難であった。
0.35μm, 1ポリシリコン層, 2金属層CMOSプロセスを用いた、従来のCMOSイメージセンサにおいて、1画素の表面積に対する受光部(フォトダイオード)の割合は17%であると、報告されている(非特許文献1)。また、0.15μm wiring-ruleプロセスを用いたとき、1画素の表面積に対する、受光部(フォトダイオード)の表面積の割合は30%であると、報告されている(非特許文献2)。1画素の表面積に対する、受光部(フォトダイオード)の表面積の割合が30%のとき、集光のためにマイクロレンズが形成されている(非特許文献2)。すなわち、1画素の表面積に対する、受光部(フォトダイオード)の表面積の割合が低いと、集光のためマイクロレンズが必要となる。
特開2000-244818 H.Takahashi, M. Kinoshita, K. Morita, T. Shirai, T. Sato, T. Kimura, H. Yuzurihara, S. Inoue, "A 3.9μm Pixel Pitch VGA Format 10b Digital Image Sensor with 1.5-Transistor/Pixel", ISSCC Dig. Tech. Papers, pp.108-109, 2004. M. Kasano, Y. Inaba, M. Mori, S. Kasuga, T. Murata, T. Yamaguchi, "A 2.0μm Pixel Pitch MOS Image Sensor with an Amorphous Si Film Color Filter", ISSCC Dig. Tech. Papers, pp.348-349, 2005.
そこで、1画素の表面積に対する受光部の表面積の割合が大きいイメージセンサを提供することを課題とする。
本発明の1態様では、
 基板上に形成された信号線と、前記信号線の上に配置される島状半導体と、前記島状半導体の上部に接続された画素選択線とを備えた固体撮像素子であって、
 前記島状半導体は、
 前記島状半導体の下部に配置され、前記信号線に接続された第1の半導体層と、
 前記第1の半導体層の上側に隣接する第2の半導体層と、
 前記第2の半導体層に絶縁膜を介して接続されたゲートと、
 前記第2の半導体層に接続された、受光すると電荷量が変化する第3の半導体層からなる前記電荷蓄積部と、
 前記第2の半導体層と前記第3の半導体層の上側に隣接し、前記画素選択線に接続された第4の半導体層とを備え、
 前記画素選択線は、透明導電膜により形成されており、
 前記ゲートの一部は、前記第2の半導体層の側壁に形成された窪みの内部に配置されている固体撮像素子が提供される。
また、本発明の好ましい態様では、
 前記固体撮像素子において、前記信号線はn+型拡散層であり、前記第1の半導体層はn+型拡散層であり、前記第2の半導体層はp型不純物添加領域であり、前記第3の半導体層はn型拡散層であり、前記第4の半導体層はp+型拡散層である。
また、本発明の好ましい態様では、
 前記固体撮像素子において、前記p+型拡散層と、n型拡散層とは、前記光電変換用フォトダイオードとして機能し、
 前記p+型拡散層と、n型拡散層と、p型不純物添加領域とは、前記増幅用トランジスタとして機能し、
 前記第1の半導体層のn+型拡散層と、p型不純物添加領域と、n型拡散層とゲートとは、前記リセットトランジスタとして機能し、
前記p型不純物添加領域と、n+型拡散層とは、前記ダイオードとして機能する。
また、本発明の好ましい態様では、前記固体撮像素子において、前記島状半導体は四角柱形状である。
また、本発明の好ましい態様では、前記固体撮像素子において、前記島状半導体は六角柱形状である。
また、本発明の好ましい態様では、前記固体撮像素子において、前記島状半導体は円柱形状である。
また、本発明の好ましい態様では、前記固体撮像素子をn行m列(n、mは1以上)基板に対して配列した固体撮像装置が提供される。
また、本発明の好ましい態様では、前記島状半導体が四角柱形状である前記固体撮像素子をn行m列(n、mは1以上)基板に対して配列した固体撮像装置が提供される。
また、本発明の好ましい態様では、前記島状半導体が円柱形状である前記固体撮像素子をn行m列(n、mは1以上)基板に対して配列した固体撮像装置が提供される。
また、本発明の好ましい態様では、前記固体撮像素子を基板上にハニカム状に配列した固体撮像装置が提供される。
また、本発明の好ましい態様では、前記固体撮像素子を基板上にハニカム状に配列した固体撮像装置において、前記島状半導体が六角柱形状である。
また、本発明の好ましい態様では、前記固体撮像素子を基板上にハニカム状に配列した固体撮像装置において、前記島状半導体が円柱形状である。
 また、本発明の別の態様によると、固体撮像素子の製造方法であって、
シリコン基板上に、酸化膜が形成され、酸化膜上に、p型シリコンが形成され、p型シリコン上に、窒化膜を堆積し、酸化膜を堆積し、シリコン柱のレジストを形成し、酸化膜、窒化膜をエッチングし、レジストを剥離し、窒化膜マスク、酸化膜マスクを形成する工程と、
シリコンをエッチングし、窒化膜を堆積し、エッチングし、シリコン柱側壁にサイドウォール状に残し、等方性エッチングを用いシリコンをエッチングし、p型不純物添加領域の側壁に窪みを形成する工程と、
シリコンをエッチングし、p型不純物添加領域の側壁に窪みを有する島状半導体を形成し、イオンインプラ時のイオンチャネリング防止のため、薄い酸化膜を形成し、リンをインプラントし、アニールし、n+型拡散層を形成し、信号線のためのレジストを形成し、薄い酸化膜をエッチングし、シリコンをエッチングし、n+拡散層と信号線を形成する工程と、
レジストを剥離し、窒化膜を剥離し、薄い酸化膜を剥離し、酸化膜を堆積し、平坦化し、エッチバックし、ゲート絶縁膜を形成し、ポリシリコンを堆積し、平坦化し、エッチバックし、ゲートのためのレジストを形成し、ポリシリコンをエッチングし、ゲートを形成する工程と、
レジストを剥離し、リンをインプラントし、電荷蓄積部を形成する工程と、
酸化膜を堆積し、平坦化し、エッチバックし、窒化膜を剥離し、酸化膜を形成し、ボロンをインプラントし、アニールを行い、p+型拡散層を形成する工程と、
酸化膜を剥離し、透明導電膜を堆積し、画素選択線のためのレジストを形成し、透明導電膜をエッチングし、レジストを剥離し、画素選択線を形成する工程と、
表面保護膜を形成する工程と
を含む固体撮像素子の製造方法が提供される。
 従来のCMOSイメージセンサの単位画素は、フォトダイオードの他に、3個のMOSトランジスタ、計4素子を平面に持つ。すなわち、1画素の表面積に対する、受光部(フォトダイオード)の表面積の割合を大きくすることは難しい。0.15μm wiring-ruleプロセスを用いたとき、1画素の表面積に対する、受光部(フォトダイオード)の表面積の割合は30%であると、報告されている。
 本発明では、
 基板上に形成された信号線と、前記信号線の上に配置される島状半導体と、前記島状半導体の上部に接続された画素選択線とを備えた固体撮像素子であって、
 前記島状半導体は、
 前記島状半導体の下部に配置され、前記信号線に接続された第1の半導体層と、
 前記第1の半導体層の上側に隣接する第2の半導体層と、
 前記第2の半導体層に絶縁膜を介して接続されたゲートと、
 前記第2の半導体層に接続された、受光すると電荷量が変化する第3の半導体層からなる前記電荷蓄積部と、
 前記第2の半導体層と前記第3の半導体層の上側に隣接し、前記画素選択線に接続された第4の半導体層とを備え、
 前記画素選択線は、透明導電膜により形成されており、
 前記ゲートの一部は、前記第2の半導体層の側壁に形成された窪みの内部に配置されている固体撮像素子が提供される。
 前記第3の半導体層と前記第4の半導体層は、前記光電変換用フォトダイオードとして機能し、
 前記第2の半導体層と前記第3の半導体層と前記第4の半導体層とは、前記増幅用トランジスタとして機能し、
 前記第1の半導体層と前記第2の半導体層と前記第3の半導体層と前記ゲートとは前記リセットトランジスタとして機能し、
前記第2の半導体層と前記第1の半導体層とは、前記ダイオードとして機能する。
 従来半導体製造工程に使用されているアルミニウム、銅といった金属は、光を反射するため、第4の半導体層の側壁に接続する必要がある。本発明では、酸化インジウム錫(ITO)、酸化亜鉛(ZnO)、酸化錫(SnO2)といった透明導電膜を画素選択線に用いることにより、画素選択線を第4の半導体層の上部に接続することができる。すなわち、透明導電膜を用いることにより1画素の表面積に対する受光部の表面積の割合が大きいイメージセンサを可能とする。
 また、ゲートを第2の半導体層の側壁に絶縁膜を介して接続すると、1画素の表面積は、フォトダイオードの面積とゲートの面積と素子間の面積の和になる。本発明では、ゲートが、前記第2の半導体層の側壁に形成された窪みの内部にその一部を配置してなることにより、1画素の表面積は、フォトダイオードの面積と素子間の面積の和となり、1画素の表面積に対する受光部の表面積の割合が大きいイメージセンサを可能とする。
以下、図面に示す実施形態に基づいてこの発明を記述する。なお、この発明は、これによって限定されるものではない。
 この発明に係る固体撮像素子1個の鳥瞰図を図2に示す。また、図3は、この発明に係る固体撮像素子1個の平面図である。図4(a)は、図3のX1-X1'断面図であり、図4(b)は図4(a)の等価回路図であり、図5(a)は、図3のY1-Y1'断面図であり、図5(b)は図5(a)の等価回路図である。
 本発明では、シリコン基板107上に、酸化膜108が形成され、酸化膜108上に信号線106が形成され、
 信号線106の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層105と、
 n+型拡散層の上側に隣接するp型不純物添加領域111と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート104と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部103と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層102と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線101が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 p+型拡散層102と、n型拡散層103とは、光電変換用フォトダイオード109として機能し、
 p+型拡散層102と、n型拡散層103と、p型不純物添加領域111とは、増幅用トランジスタ113として機能し、
 n+型拡散層105と、p型不純物添加領域111と、n型拡散層103とゲート104とは、リセットトランジスタ112として機能し、
p型不純物添加領域111と、n+型拡散層105とは、ダイオード114として機能する。
 層間絶縁膜として、酸化膜110が形成される。
 また、上記固体撮像素子を、行列状に配置した固体撮像素子行列の鳥瞰図を図6に示す。また、平面図を図7に示す。図8は図7のX2-X2'断面図であり、図9は図7のX3-X3'断面図であり、図10は図7のX4-X4'断面図であり、図11は図7のY2-Y2'断面図である。
 シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線225が形成され、
 信号線225の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層237と、
 n+型拡散層の上側に隣接するp型不純物添加領域234と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート219と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部231と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層228と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線201が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 また、
シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線225が形成され、
 信号線225の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層238と、
 n+型拡散層の上側に隣接するp型不純物添加領域235と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート220と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部232と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層229と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線202が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 また、
シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線225が形成され、
 信号線225の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層239と、
 n+型拡散層の上側に隣接するp型不純物添加領域236と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート221と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部233と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層230と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線203が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 層間絶縁膜として、酸化膜240が形成される。
 また、シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線226が形成され、
 信号線226の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層252と、
 n+型拡散層の上側に隣接するp型不純物添加領域249と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート219と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部246と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層243と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線201が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 また、
シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線226が形成され、
 信号線226の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層253と、
 n+型拡散層の上側に隣接するp型不純物添加領域250と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート220と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部247と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層244と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線202が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 また、
シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線226が形成され、
 信号線226の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層254と、
 n+型拡散層の上側に隣接するp型不純物添加領域251と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート221と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部248と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層245と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線203が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 層間絶縁膜として、酸化膜240が形成される。
 また、シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線227が形成され、
 信号線227の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層222と、
 n+型拡散層の上側に隣接するp型不純物添加領域255と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート219と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部216と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層213と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線201が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 また、
シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線227が形成され、
 信号線227の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層223と、
 n+型拡散層の上側に隣接するp型不純物添加領域256と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート220と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部217と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層214と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線202が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 また、
シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線227が形成され、
 信号線227の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層224と、
 n+型拡散層の上側に隣接するp型不純物添加領域257と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート221と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部218と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層215と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線203が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 層間絶縁膜として、酸化膜240が形成される。
 また、シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線227が形成され、
 信号線227の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層223と、
 n+型拡散層の上側に隣接するp型不純物添加領域256と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート220と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部217と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層214と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線202が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 また、
シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線226が形成され、
 信号線226の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層253と、
 n+型拡散層の上側に隣接するp型不純物添加領域250と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート220と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部247と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層244と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線202が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 また、
シリコン基板242上に、酸化膜241が形成され、酸化膜241上に信号線225が形成され、
 信号線225の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層238と、
 n+型拡散層の上側に隣接するp型不純物添加領域235と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート220と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部232と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層229と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線202が形成され、
前記ゲートが、前記p型不純物添加領域の側壁に形成された窪みの内部にその一部を配置してなるよう形成される。
 以下に、この発明に係る固体撮像素子の構造を形成するための製造工程の一例を図12~図31を参照して説明する。
 はじめに、シリコン基板242上に、酸化膜241が形成され、酸化膜241上に、p型シリコン301が形成され、p型シリコン301上に、窒化膜を堆積し、酸化膜を堆積し、シリコン柱のレジストを形成し、酸化膜、窒化膜をエッチングし、レジストを剥離し、窒化膜マスク302、303、304、308、309、酸化膜マスク305、306、307、310、311を形成する(図12(a)、(b))。
 シリコンをエッチングする(図13(a)、(b))。
 窒化膜を堆積し、エッチングし、シリコン柱側壁にサイドウォール状312、313、314、315、316に残す(図14(a)、(b))。
 等方性エッチングを用いシリコンをエッチングし、p型不純物添加領域の側壁に窪みを形成する(図15(a)、(b))。
 シリコンをエッチングし、p型不純物添加領域の側壁に窪みを有する島状半導体317、318、319、320、321を形成する(図16(a)、(b))。
 イオンインプラ時のイオンチャネリング防止のため、薄い酸化膜322を形成する(図17(a)、(b))。
 リンをインプラントし、アニールし、n+型拡散層323を形成する(図18(a)、(b))。
 信号線のためのレジスト324、325、326を形成する(図19(a)、(b))。
 薄い酸化膜をエッチングし、シリコンをエッチングし、n+拡散層237、238、239、223、253、と信号線225、226、227を形成する(図20(a)、(b))。
 レジストを剥離し、窒化膜を剥離し、薄い酸化膜を剥離する(図21(a)、(b))。
 酸化膜327を堆積し、平坦化し、エッチバックする(図22(a)、(b))。
 ゲート絶縁膜328、329、330、332、333を形成し、ポリシリコン331を堆積し、平坦化し、エッチバックする(図23(a)、(b))。
 ゲートのためのレジスト334、335、336を形成する(図24(a)、(b))。
 ポリシリコンをエッチングし、ゲート219、220、221を形成し、レジストを剥離する(図25(a)、(b))。
 リンをインプラントし、電荷蓄積部231、232、233、217、247を形成する(図26(a)、(b))。
 酸化膜240を堆積し、平坦化し、エッチバックし、窒化膜を剥離する(図27(a)、(b))。
 酸化膜337、338、339、340、341を形成し、ボロンをインプラントし、アニールを行い、p+型拡散層228、229、230、214、244を形成する(図28(a)、(b))。
 酸化膜を剥離し、透明導電膜342を堆積する(図29(a)、(b))。
 画素選択線のためのレジストを形成し、透明導電膜をエッチングし、レジストを剥離し、画素選択線201、202、203を形成する(図30(a)、(b))。
 表面保護膜343を形成する。
 また、実施例では、
p型不純物添加領域側面の窪みの断面形状が半円であったが、図32に示すように、四角形など他の形状でもよい。
 図32は、この発明に係る他の実施例を示す断面図である。
 シリコン基板707上に、酸化膜708が形成され、酸化膜708上に信号線706が形成され、
 信号線706の上に島状半導体が形成され、島状半導体は、
 島状半導体下部の、信号線に接続されたn+型拡散層705と、
 n+型拡散層の上側に隣接するp型不純物添加領域711と、
 p型不純物添加領域に絶縁膜を介して接続されたゲート704と、
 p型不純物添加領域に接続された、受光すると電荷量が変化するn型拡散層からなる電荷蓄積部703と、
 p型不純物添加領域と前記n型拡散層の上側に隣接するp+型拡散層702と、を備え、
 島状半導体上部のp+型拡散層の上部に接続する透明導電膜からなる画素選択線701が形成され、
前記p型不純物添加領域の側壁に形成された断面形状が四角形の窪みの内部に、前記ゲートの一部を配置してなるよう形成される。
 p+型拡散層702と、n型拡散層703とは、光電変換用フォトダイオード709として機能する。また、層間絶縁膜として、酸化膜710が形成される。
 また、実施例では、島状半導体は四角柱形状である固体撮像素子を用いたが、
図33に示すように、島状半導体401は六角柱形状である固体撮像素子でもよい。
 また、実施例では、島状半導体が四角柱形状である固体撮像素子をn行m列(n、mは1以上)基板に対して配列した固体撮像素子行列を示したが、
図34に示すように、島状半導体が六角柱形状である固体撮像素子402、403、404を配列した第1の固体撮像素子列、及び島状半導体が六角柱形状である固体撮像素子405、406、407を配列した第2の固体撮像素子列、及び島状半導体が六角柱形状である固体撮像素子408、409、410を配列した第3の固体撮像素子列は、垂直画素ピッチを√3/2倍した間隔(水平画素ピッチHP)で配置され、即ち、固体撮像素子は、いわゆるハニカム状に配列されている構造の固体撮像素子行列としてもよい。
 また、実施例では、島状半導体は四角柱形状である固体撮像素子を用いたが、図35に示すように、島状半導体501は円柱形状である固体撮像素子でもよい。
 本発明では、
 基板上に形成された信号線と、前記信号線の上に配置される島状半導体と、前記島状半導体の上部に接続された画素選択線とを備えた固体撮像素子であって、
 前記島状半導体は、
 前記島状半導体の下部に配置され、前記信号線に接続された第1の半導体層と、
 前記第1の半導体層の上側に隣接する第2の半導体層と、
 前記第2の半導体層に絶縁膜を介して接続されたゲートと、
 前記第2の半導体層に接続された、受光すると電荷量が変化する第3の半導体層からなる前記電荷蓄積部と、
 前記第2の半導体層と前記第3の半導体層の上側に隣接し、前記画素選択線に接続された第4の半導体層とを備え、
 前記画素選択線は、透明導電膜により形成されており、
 前記ゲートの一部は、前記第2の半導体層の側壁に形成された窪みの内部に配置されている固体撮像素子が提供される。
 前記第3の半導体層と前記第4の半導体層は、前記光電変換用フォトダイオードとして機能し、
 前記第2の半導体層と前記第3の半導体層と前記第4の半導体層とは、前記増幅用トランジスタとして機能し、
 前記第1の半導体層と前記第2の半導体層と前記第3の半導体層と前記ゲートとは前記リセットトランジスタとして機能し、
前記第2の半導体層と前記第1の半導体層とは、前記ダイオードとして機能する。
 従来半導体製造工程に使用されているアルミニウム、銅といった金属は、光を反射するため、第4の半導体層の側壁に接続する必要がある。酸化インジウム錫(ITO)、酸化亜鉛(ZnO)、酸化錫(SnO2)といった透明導電膜を画素選択線に用いることにより、画素選択線を第4の半導体層の上部に接続することができる。すなわち、透明導電膜を用いることにより1画素の表面積に対する受光部の表面積の割合が大きいイメージセンサを可能とする。
 また、ゲートを第2の半導体層の側壁に絶縁膜を介して接続すると、1画素の表面積は、フォトダイオードの面積とゲートの面積と素子間の面積の和になる。ゲートが、前記第2の半導体層の側壁に形成された窪みの内部にその一部を配置してなることにより、1画素の表面積は、フォトダイオードの面積と素子間の面積の和となり、1画素の表面積に対する受光部の表面積の割合が大きいイメージセンサを可能とする。
 従来のCMOSイメージセンサの1画素の表面積に対する、受光部(フォトダイオード)の表面積の割合は30%であった。本発明のイメージセンサを行列状に配置したときの1画素の表面積に対する、受光部(フォトダイオード)の表面積の割合を見積もる。図36は四角柱形状の島状半導体を持つ本発明のイメージセンサ601、602、603、604、605、606、607、608、609を行列状に配置した平面図であり、図37は一画素を拡大した平面図であり、受光部610が示される。Fは、wiring ruleである。1画素当たりの表面積を2μm×2μmとし、0.15μm wiring ruleプロセスを用いた。受光部(フォトダイオード)の表面積は、1.925μm×1.925μmである。四角柱形状の島状半導体を持つ本発明のイメージセンサを行列状に配置したときの1画素の表面積に対する、受光部(フォトダイオード)の表面積の割合は、92.6%となる。すなわち、イメージセンサの単位画素をフォトダイオードの面積で実現するため、1画素の表面積に対する受光部の表面積の割合が大きいイメージセンサを可能とする。
従来のCMOSイメージセンサの単位画素である。 この発明に係る固体撮像素子1個の鳥瞰図である。 この発明に係る固体撮像素子1個の平面図である。 この発明に係る固体撮像素子1個のX1-X1’断面図である。 図4(a)の等価回路である。 この発明に係る固体撮像素子1個のY1-Y1’断面図である。 図5(a)の等価回路である。 この発明に係る固体撮像素子を行列状に配置した固体撮像素子行列の鳥瞰図である。 この発明に係る固体撮像素子を行列状に配置した固体撮像素子行列の平面図である。 この発明に係る固体撮像素子を行列状に配置した固体撮像素子行列のX2-X2’断面図平面図である。 この発明に係る固体撮像素子を行列状に配置した固体撮像素子行列のX3-X3’断面図平面図である。 この発明に係る固体撮像素子を行列状に配置した固体撮像素子行列のX4-X4’断面図平面図である。 この発明に係る固体撮像素子を行列状に配置した固体撮像素子行列のY2-Y2’断面図平面図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すX2-X2’断面工程図である。 この発明に係る固体撮像素子の製造例を示すY2-Y2’断面工程図である。 この発明に係る他の実施例を示す断面図である。 この発明に係る他の実施例を示す鳥瞰図である。 この発明に係る他の実施例を示す鳥瞰図である。 この発明に係る他の実施例を示す鳥瞰図である。 四角柱形状の島状半導体を持つ本発明のイメージセンサを行列状に配置した平面図である。 一画素を拡大した平面図である。
001.光電変換用フォトダイオード
002.画素選択クロックライン
003.リセットクロックライン
004.信号線
005.電源線
006.増幅用トランジスタ
007.リセットトランジスタ
008.選択トランジスタ
009.リセット用の電源線
101.画素選択線
102.p+型拡散層
103.電荷蓄積部
104.ゲート
105.n+型拡散層
106.信号線
107.基板
108.酸化膜
109.受光部(フォトダイオード)
110.酸化膜
111.p型不純物添加領域
112.リセットトランジスタ
113.増幅用トランジスタ
114.ダイオード
201.画素選択線
202.画素選択線
203.画素選択線
213.p+型拡散層
214.p+型拡散層
215.p+型拡散層
216.電荷蓄積部
217.電荷蓄積部
218.電荷蓄積部
219.ゲート
220.ゲート
221.ゲート
222.n+型拡散層
223.n+型拡散層
224.n+型拡散層
225.信号線
226.信号線
227.信号線
228.p+型拡散層
229.p+型拡散層
230.p+型拡散層
231.電荷蓄積部
232.電荷蓄積部
233.電荷蓄積部
234.p型不純物添加領域
235.p型不純物添加領域
236.p型不純物添加領域
237.n+型拡散層
238.n+型拡散層
239.n+型拡散層
240.酸化膜
241.酸化膜
242.基板
243.p+型拡散層
244.p+型拡散層
245.p+型拡散層
246.電荷蓄積部
247.電荷蓄積部
248.電荷蓄積部
249.p型不純物添加領域
250.p型不純物添加領域
251.p型不純物添加領域
252.n+型拡散層
253.n+型拡散層
254.n+型拡散層
255.p型不純物添加領域
256.p型不純物添加領域
257.p型不純物添加領域
301.p型シリコン
302.窒化膜マスク
303.窒化膜マスク
304.窒化膜マスク
305.酸化膜マスク
306.酸化膜マスク
307.酸化膜マスク
308.窒化膜マスク
309.窒化膜マスク
310.酸化膜マスク
311.酸化膜マスク
312.窒化膜サイドウォール
313.窒化膜サイドウォール
314.窒化膜サイドウォール
315.窒化膜サイドウォール
316.窒化膜サイドウォール
317.島状半導体
318.島状半導体
319.島状半導体
320.島状半導体
321.島状半導体
322.酸化膜
323.n+型拡散層
324.レジスト
325.レジスト
326.レジスト
327.酸化膜
328.ゲート絶縁膜
329.ゲート絶縁膜
330.ゲート絶縁膜
331.ポリシリコン
332.ゲート絶縁膜
333.ゲート絶縁膜
334.レジスト
335.レジスト
336.レジスト
337.酸化膜
338.酸化膜
339.酸化膜
340.酸化膜
341.酸化膜
342.透明導電膜
343.表面保護膜
401.六角柱状島状半導体
402.六角柱状島状半導体
403.六角柱状島状半導体
404.六角柱状島状半導体
405.六角柱状島状半導体
406.六角柱状島状半導体
407.六角柱状島状半導体
408.六角柱状島状半導体
409.六角柱状島状半導体
410.六角柱状島状半導体
501.円柱状島状半導体
601.イメージセンサ
602.イメージセンサ
603.イメージセンサ
604.イメージセンサ
605.イメージセンサ
606.イメージセンサ
607.イメージセンサ
608.イメージセンサ
609.イメージセンサ
610.受光部
701.画素選択線
702.p+型拡散層
703.電荷蓄積部
704.ゲート
705.n+型拡散層
706.信号線
707.基板
708.酸化膜
709.受光部(フォトダイオード)
710.酸化膜
711.p型不純物添加領域

Claims (13)

  1.  基板上に形成された信号線と、前記信号線の上に配置される島状半導体と、前記島状半導体の上部に接続された画素選択線とを備えた固体撮像素子であって、
     前記島状半導体は、
     前記島状半導体の下部に配置され、前記信号線に接続された第1の半導体層と、
     前記第1の半導体層の上側に隣接する第2の半導体層と、
     前記第2の半導体層に絶縁膜を介して接続されたゲートと、
     前記第2の半導体層に接続された、受光すると電荷量が変化する第3の半導体層からなる前記電荷蓄積部と、
     前記第2の半導体層と前記第3の半導体層の上側に隣接し、前記画素選択線に接続された第4の半導体層とを備え、
     前記画素選択線は、透明導電膜により形成されており、
     前記ゲートの一部は、前記第2の半導体層の側壁に形成された窪みの内部に配置されている固体撮像素子。
  2.  前記信号線はn+型拡散層であり、前記第1の半導体層はn+型拡散層であり、前記第2の半導体層はp型不純物添加領域であり、前記第3の半導体層はn型拡散層であり、前記第4の半導体層はp+型拡散層である請求項1の固体撮像素子。
  3.  前記p+型拡散層と、n型拡散層とは、前記光電変換用フォトダイオードとして機能し、
     前記p+型拡散層と、n型拡散層と、p型不純物添加領域とは、前記増幅用トランジスタとして機能し、
     前記第1の半導体層のn+型拡散層と、p型不純物添加領域と、n型拡散層とゲートとは、前記リセットトランジスタとして機能し、
     前記p型不純物添加領域と、n+型拡散層とは、前記ダイオードとして機能する請求項2の固体撮像素子。
  4.  前記島状半導体は四角柱形状である請求項1の固体撮像素子。
  5.  前記島状半導体は六角柱形状である請求項1の固体撮像素子。
  6.  前記島状半導体は円柱形状である請求項1の固体撮像素子。
  7.  請求項1の固体撮像素子をn行m列(n、mは1以上)として行列状に基板に対して配列した固体撮像装置。
  8.  請求項4の固体撮像素子をn行m列(n、mは1以上)として行列状に基板に対して配列した固体撮像装置。
  9.  請求項6の固体撮像素子をn行m列(n、mは1以上)として行列状に基板に対して配列した固体撮像装置。
  10.  請求項1に記載の固体撮像素子を基板上にハニカム状に配列した固体撮像装置。
  11.  請求項5に記載の固体撮像素子を基板上にハニカム状に配列した固体撮像装置。
  12.  請求項6に記載の固体撮像素子を基板上にハニカム状に配列した固体撮像装置。
  13.  前記固体撮像素子の製造方法であって、
     シリコン基板上に、酸化膜が形成され、酸化膜上に、p型シリコンが形成され、p型シリコン上に、窒化膜を堆積し、酸化膜を堆積し、シリコン柱のレジストを形成し、酸化膜、窒化膜をエッチングし、レジストを剥離し、窒化膜マスク、酸化膜マスクを形成する工程と、
     シリコンをエッチングし、窒化膜を堆積し、エッチングし、シリコン柱側壁にサイドウォール状に残し、等方性エッチングを用いシリコンをエッチングし、p型不純物添加領域の側壁に窪みを形成する工程と、
     シリコンをエッチングし、p型不純物添加領域の側壁に窪みを有する島状半導体を形成し、イオンインプラ時のイオンチャネリング防止のため、酸化膜を形成し、リンをインプラントし、アニールし、n+型拡散層を形成し、信号線のためのレジストを形成し、酸化膜をエッチングし、シリコンをエッチングし、n+拡散層と信号線を形成する工程と、
     レジストを剥離し、窒化膜を剥離し、酸化膜を剥離し、酸化膜を堆積し、平坦化し、エッチバックし、ゲート絶縁膜を形成し、ポリシリコンを堆積し、平坦化し、エッチバックし、ゲートのためのレジストを形成し、ポリシリコンをエッチングし、ゲートを形成する工程と、
     レジストを剥離し、リンをインプラントし、電荷蓄積部を形成する工程と、
     酸化膜を堆積し、平坦化し、エッチバックし、窒化膜を剥離し、酸化膜を形成し、ボロンをインプラントし、アニールを行い、p+型拡散層を形成する工程と、
     酸化膜を剥離し、透明導電膜を堆積し、画素選択線のためのレジストを形成し、透明導電膜をエッチングし、レジストを剥離し、画素選択線を形成する工程と、
     表面保護膜を形成する工程と
    を含むことを特徴とする請求項1に記載の固体撮像素子の製造方法。
PCT/JP2009/058629 2008-05-02 2009-05-07 固体撮像素子 WO2009133957A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09738894A EP2290692A4 (en) 2008-05-02 2009-05-07 SOLID STATE IMAGE ANALYSIS ELEMENT
CN2009801158772A CN102017151B (zh) 2008-05-02 2009-05-07 固态摄像元件
JP2010510180A JP5283235B2 (ja) 2008-05-02 2009-05-07 固体撮像素子
KR1020107024780A KR101113905B1 (ko) 2008-05-02 2009-05-07 고체촬상소자
US12/700,315 US8097907B2 (en) 2008-05-02 2010-02-04 Solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/058412 WO2009133623A1 (ja) 2008-05-02 2008-05-02 固体撮像素子
JPPCT/JP2008/058412 2008-05-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/700,315 Continuation US8097907B2 (en) 2008-05-02 2010-02-04 Solid-state imaging device

Publications (1)

Publication Number Publication Date
WO2009133957A1 true WO2009133957A1 (ja) 2009-11-05

Family

ID=41254853

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/058412 WO2009133623A1 (ja) 2008-05-02 2008-05-02 固体撮像素子
PCT/JP2009/058629 WO2009133957A1 (ja) 2008-05-02 2009-05-07 固体撮像素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058412 WO2009133623A1 (ja) 2008-05-02 2008-05-02 固体撮像素子

Country Status (5)

Country Link
EP (1) EP2290692A4 (ja)
KR (1) KR101113905B1 (ja)
CN (1) CN102017151B (ja)
TW (1) TW200947691A (ja)
WO (2) WO2009133623A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769910B1 (ja) * 2011-02-18 2011-09-07 日本ユニサンティスエレクトロニクス株式会社 固体撮像装置
JP4769911B1 (ja) * 2010-10-29 2011-09-07 日本ユニサンティスエレクトロニクス株式会社 固体撮像装置
WO2011111662A1 (ja) * 2010-03-08 2011-09-15 日本ユニサンティスエレクトロニクス株式会社 固体撮像装置
JP2011211161A (ja) * 2010-03-12 2011-10-20 Unisantis Electronics Japan Ltd 固体撮像装置
US8372713B2 (en) 2008-01-29 2013-02-12 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8482041B2 (en) 2007-10-29 2013-07-09 Unisantis Electronics Singapore Pte Ltd. Semiconductor structure and method of fabricating the semiconductor structure
US8486785B2 (en) 2010-06-09 2013-07-16 Unisantis Electronics Singapore Pte Ltd. Surround gate CMOS semiconductor device
US8487357B2 (en) 2010-03-12 2013-07-16 Unisantis Electronics Singapore Pte Ltd. Solid state imaging device having high sensitivity and high pixel density
US8497548B2 (en) 2009-04-28 2013-07-30 Unisantis Electronics Singapore Pte Ltd. Semiconductor device including a MOS transistor and production method therefor
US8564034B2 (en) 2011-09-08 2013-10-22 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
US8610202B2 (en) 2009-10-01 2013-12-17 Unisantis Electronics Singapore Pte Ltd. Semiconductor device having a surrounding gate
US8669601B2 (en) 2011-09-15 2014-03-11 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device having pillar-shaped semiconductor
US8748938B2 (en) 2012-02-20 2014-06-10 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
US8772175B2 (en) 2011-12-19 2014-07-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8916478B2 (en) 2011-12-19 2014-12-23 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9153697B2 (en) 2010-06-15 2015-10-06 Unisantis Electronics Singapore Pte Ltd. Surrounding gate transistor (SGT) structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175775A (ja) * 1987-12-29 1989-07-12 Sharp Corp 光駆動mos型半導体装置
JPH0289368A (ja) * 1988-09-27 1990-03-29 Sony Corp 固体撮像装置
JP2000244818A (ja) 1999-02-24 2000-09-08 Sharp Corp 増幅型固体撮像装置
JP2001339057A (ja) * 2000-05-30 2001-12-07 Mitsumasa Koyanagi 3次元画像処理装置の製造方法
JP2002246580A (ja) * 2001-02-16 2002-08-30 Sharp Corp イメージセンサおよびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417462A (en) * 1987-07-11 1989-01-20 Sony Corp Read-only memory device
DE19945136A1 (de) * 1999-09-21 2001-04-12 Infineon Technologies Ag Vertikale Pixelzellen
JP4714998B2 (ja) 2001-02-14 2011-07-06 ソニー株式会社 固体撮像素子
JP4218894B2 (ja) 2004-07-08 2009-02-04 シャープ株式会社 固体撮像装置およびその製造方法
KR100734313B1 (ko) * 2006-02-09 2007-07-02 삼성전자주식회사 수직 채널을 갖는 반도체 소자 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175775A (ja) * 1987-12-29 1989-07-12 Sharp Corp 光駆動mos型半導体装置
JPH0289368A (ja) * 1988-09-27 1990-03-29 Sony Corp 固体撮像装置
JP2000244818A (ja) 1999-02-24 2000-09-08 Sharp Corp 増幅型固体撮像装置
JP2001339057A (ja) * 2000-05-30 2001-12-07 Mitsumasa Koyanagi 3次元画像処理装置の製造方法
JP2002246580A (ja) * 2001-02-16 2002-08-30 Sharp Corp イメージセンサおよびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. TAKAHASHI; M. KINOSHITA; K. MORITA; T. SHIRAI; T. SATO; T. KIMURA; H.YUZURIHARA; S. INOUE: "A 3.9 µm Pixel Pitch VGA Format 10b Digital Image Sensor with 1.5-Transistor/Pixel", ISSCC DIG. TECH. PAPERS, 2004, pages 108 - 109
M. KASANO; Y. INABA; M. MORI; S. KASUGA; T. MURATA; T. YAMAGUCHI: "A 2.0 µm Pixel Pitch MOS Image Sensor with an Amorphous Si Film Color Filter", ISSCC DIG. TECH. PAPERS, 2005, pages 348 - 349
See also references of EP2290692A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8482041B2 (en) 2007-10-29 2013-07-09 Unisantis Electronics Singapore Pte Ltd. Semiconductor structure and method of fabricating the semiconductor structure
US8598650B2 (en) 2008-01-29 2013-12-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8372713B2 (en) 2008-01-29 2013-02-12 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8647947B2 (en) 2009-04-28 2014-02-11 Unisantis Electronics Singapore Pte Ltd. Semiconductor device including a MOS transistor and production method therefor
US8497548B2 (en) 2009-04-28 2013-07-30 Unisantis Electronics Singapore Pte Ltd. Semiconductor device including a MOS transistor and production method therefor
US8610202B2 (en) 2009-10-01 2013-12-17 Unisantis Electronics Singapore Pte Ltd. Semiconductor device having a surrounding gate
CN102334189A (zh) * 2010-03-08 2012-01-25 新加坡优尼山帝斯电子私人有限公司 固体摄像器件
JP4912513B2 (ja) * 2010-03-08 2012-04-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 固体撮像装置
WO2011111662A1 (ja) * 2010-03-08 2011-09-15 日本ユニサンティスエレクトロニクス株式会社 固体撮像装置
US8575662B2 (en) 2010-03-08 2013-11-05 Unisantis Electronics Singapore Pte Ltd. Solid state imaging device having high pixel density
JP2011211161A (ja) * 2010-03-12 2011-10-20 Unisantis Electronics Japan Ltd 固体撮像装置
US8487357B2 (en) 2010-03-12 2013-07-16 Unisantis Electronics Singapore Pte Ltd. Solid state imaging device having high sensitivity and high pixel density
US8486785B2 (en) 2010-06-09 2013-07-16 Unisantis Electronics Singapore Pte Ltd. Surround gate CMOS semiconductor device
US8609494B2 (en) 2010-06-09 2013-12-17 Unisantis Electronics Singapore Pte Ltd. Surround gate CMOS semiconductor device
US9153697B2 (en) 2010-06-15 2015-10-06 Unisantis Electronics Singapore Pte Ltd. Surrounding gate transistor (SGT) structure
WO2012056782A1 (ja) * 2010-10-29 2012-05-03 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 固体撮像装置
WO2012056586A1 (ja) * 2010-10-29 2012-05-03 日本ユニサンティスエレクトロニクス株式会社 固体撮像装置
JP4769911B1 (ja) * 2010-10-29 2011-09-07 日本ユニサンティスエレクトロニクス株式会社 固体撮像装置
JP4769910B1 (ja) * 2011-02-18 2011-09-07 日本ユニサンティスエレクトロニクス株式会社 固体撮像装置
US8564034B2 (en) 2011-09-08 2013-10-22 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
US8669601B2 (en) 2011-09-15 2014-03-11 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device having pillar-shaped semiconductor
US8916478B2 (en) 2011-12-19 2014-12-23 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8772175B2 (en) 2011-12-19 2014-07-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9035384B2 (en) 2011-12-19 2015-05-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9245889B2 (en) 2011-12-19 2016-01-26 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9362353B2 (en) 2011-12-19 2016-06-07 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9478545B2 (en) 2011-12-19 2016-10-25 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9748244B2 (en) 2011-12-19 2017-08-29 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9806163B2 (en) 2011-12-19 2017-10-31 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having an nMOS SGT and a pMOS SGT
US8748938B2 (en) 2012-02-20 2014-06-10 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device

Also Published As

Publication number Publication date
CN102017151B (zh) 2012-10-10
EP2290692A4 (en) 2012-05-02
CN102017151A (zh) 2011-04-13
KR20110005707A (ko) 2011-01-18
TW200947691A (en) 2009-11-16
EP2290692A1 (en) 2011-03-02
KR101113905B1 (ko) 2012-02-29
WO2009133623A1 (ja) 2009-11-05

Similar Documents

Publication Publication Date Title
WO2009133957A1 (ja) 固体撮像素子
US8097907B2 (en) Solid-state imaging device
TWI443810B (zh) 固態攝像裝置,及固態攝像元件的製造方法
JP5725239B2 (ja) 固体撮像装置の製造方法、及び、カメラ
KR102367384B1 (ko) 이미지 센서 및 그 형성 방법
US8330089B2 (en) Solid-state imaging device
JP2007258684A (ja) 固体撮像装置及びその製造方法、並びにカメラ
US20100148230A1 (en) Trench isolation regions in image sensors
US20120077301A1 (en) Image sensor and method of fabricating the same
US8164127B2 (en) Image sensor including a pixel cell having an epitaxial layer, system having the same, and method of forming a pixel cell
US8773559B2 (en) Solid-state imaging device and method of manufacturing the same, and imaging apparatus
CN103367375A (zh) 固体摄像装置及其制造方法以及电子设备
JP2015220255A (ja) 裏面照射型cmos型撮像素子、及び、裏面照射型cmos型撮像素子の製造方法
US20200227452A1 (en) Image sensor
JP5283235B2 (ja) 固体撮像素子
JP2013138222A (ja) 固体撮像素子
JP5350795B2 (ja) 固体撮像素子
CN118053885A (zh) 图像传感器和制造图像传感器的方法
JP2010199233A (ja) 撮像素子の製造方法
KR20130101809A (ko) 이미지 센서 및 이의 형성 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115877.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010510180

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107024780

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009738894

Country of ref document: EP