WO2009133874A1 - 多孔質シートおよびその製造方法、並びに断熱シート - Google Patents

多孔質シートおよびその製造方法、並びに断熱シート Download PDF

Info

Publication number
WO2009133874A1
WO2009133874A1 PCT/JP2009/058326 JP2009058326W WO2009133874A1 WO 2009133874 A1 WO2009133874 A1 WO 2009133874A1 JP 2009058326 W JP2009058326 W JP 2009058326W WO 2009133874 A1 WO2009133874 A1 WO 2009133874A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
porous sheet
porous
laminated
heat insulating
Prior art date
Application number
PCT/JP2009/058326
Other languages
English (en)
French (fr)
Inventor
和野隆司
樋口浩之
河辺雅義
松嶋良一
山本佳位
山下浩一郎
Original Assignee
日東電工株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, トヨタ自動車株式会社 filed Critical 日東電工株式会社
Priority to US12/989,151 priority Critical patent/US9017817B2/en
Priority to CN2009801154733A priority patent/CN102015855B/zh
Priority to EP20090738811 priority patent/EP2272902B8/en
Publication of WO2009133874A1 publication Critical patent/WO2009133874A1/ja
Priority to US14/668,457 priority patent/US20150203646A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/283Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum a discontinuous liquid phase emulsified in a continuous macromolecular phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/26Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/30Making multilayered or multicoloured articles
    • B29C43/305Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/001Electrostatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Definitions

  • the present invention relates to a porous sheet, a method for producing the same, and a heat insulating sheet.
  • Insulating materials are applied to various products such as precision equipment, home appliances such as refrigerators, walls and ceilings of clean rooms, etc., in which temperature changes greatly affect their functions.
  • a heat insulating material for example, a polymer foam such as urethane foam or glass wool is used. Since these materials are excellent in heat insulating properties, and are light and inexpensive, they are used as heat insulating materials in a wide range of fields.
  • a fiber reinforced plastic heat insulating material (see Patent Document 1) formed by impregnating a woven fabric or a non-woven fabric with a matrix resin has also been proposed as a high strength heat insulating material.
  • heat insulating materials have a problem that static electricity is generated. Therefore, as a heat insulating material for preventing the generation of static electricity, for example, a heat insulating material in which a metal plate is inserted between heat insulating layers or a heat insulating material to which an antistatic agent is applied (see Patent Document 2 and Patent Document 3) are proposed.
  • a heat insulating material in which a metal plate is inserted between heat insulating layers for example, a heat insulating material in which a metal plate is inserted between heat insulating layers, an adhesion step is required to insert the metal plate, and it is also necessary to reinforce the adhesive strength between layers. For this reason, there existed a problem that the number of manufacturing processes increased.
  • a heat insulating material using an antistatic agent there is a problem that the number of manufacturing steps increases because an antistatic agent coating step is required. Furthermore, there has been a problem that the antistatic ability changes with time.
  • an object of the present invention is to provide a sheet material that can suppress the generation of static electricity and has sufficient heat insulating properties and can be used as a heat insulating material.
  • the method for producing the porous sheet of the present invention comprises: (I) a step of preparing a plurality of sheet-like molded bodies containing polytetrafluoroethylene (hereinafter referred to as PTFE) and carbon particles; (II) a step of superposing and rolling a plurality of the sheet-like molded bodies, including.
  • PTFE polytetrafluoroethylene
  • the porous sheet of the present invention contains PTFE and carbon particles, has a thermal conductivity in the thickness direction of 0.05 w / mK or more and 0.1 w / mK or less, and a volume resistivity in the thickness direction of 0. .5 ⁇ ⁇ cm or more and 2 ⁇ ⁇ cm or less.
  • the present invention further provides a porous sheet obtained by the method for producing a porous sheet of the present invention or a heat insulating sheet produced using the porous sheet of the present invention.
  • a porous sheet having low thermal conductivity and high electrical conductivity can be obtained. Moreover, the porous sheet of the present invention has sufficient heat insulation and high electrical conductivity. Therefore, according to this invention, the porous sheet which can suppress generation
  • the method for producing the porous sheet of the present embodiment is as follows: (I) a step of preparing a plurality of sheet-like molded bodies containing PTFE and carbon particles; (II) a step of superposing and rolling a plurality of the sheet-like molded bodies, including.
  • a sheet-like molded body prepared in step (I) First, an example of a sheet-like molded body prepared in step (I) will be described.
  • PTFE fine powder, carbon particles and a molding aid are mixed to prepare a paste-like mixture. It is desirable that this mixing be performed under conditions that suppress fiber formation of PTFE as much as possible. Specifically, it is desirable to reduce the number of rotations, shorten the mixing time, and mix without kneading. By mixing in this way, processing of a sheet-like material having PTFE as a matrix becomes easy.
  • the carbon particles are not particularly limited as long as they are supported on the PTFE matrix without falling off and can provide sufficient electrical conductivity to the obtained porous sheet, but those having a particle size of 20 to 60 nm are desirable. .
  • the particle size here is a method of calculating an average value by observing 10 arbitrary locations with a scanning electron microscope (SEM), measuring 10 particle sizes (100 particles in total) at each location. This is the value obtained.
  • carbon black can be used as the carbon particles.
  • the amount of carbon particles added is, for example, 60 to 90% by weight.
  • the molding aid for example, saturated hydrocarbons such as dodecane and decane can be used.
  • the amount of the molding aid added is, for example, 1 to 1.4 times (weight ratio) with respect to the solid content.
  • a mother sheet obtained by forming such a mixture into a sheet by extrusion and rolling can be used as a sheet-like molded article of the present invention (first example of a sheet-like molded article).
  • the thickness of the sheet-like molded body thus obtained is, for example, 0.5 to 10 mm.
  • a laminated sheet (second example of the sheet-like molded body) obtained by rolling a plurality of the above-described mother sheets is also given. It is done.
  • the number of laminated sheets is not particularly limited, and can be appropriately determined in consideration of the number of constituent layers of the porous sheet to be manufactured (the number of layers constituting the porous sheet).
  • a sheet-like molded body can be prepared.
  • step (II) Next, an example of step (II) will be described.
  • step (II) a plurality of sheet-like molded bodies prepared in step (I) are overlaid and rolled. Specifically, a plurality of sheet-like molded bodies prepared in step (I) are laminated, and the laminate is rolled to obtain a laminated sheet.
  • the sheet-like molded body may be the mother sheet (sheet-like molded body of the first example) or a laminated sheet (first sheet) obtained by rolling a plurality of mother sheets.
  • the sheet-like molded body of the example of 2) may be used.
  • the number of sheet-like molded bodies to be overlaid in step (II) is not particularly limited, and can be, for example, about 2 to 6 sheets. In order to achieve high strength, it is desirable to roll the sheet-like molded bodies on top of each other.
  • step (I) and the step (II) may be alternately repeated.
  • a specific example in this case will be described below.
  • step (I) a plurality of (for example, 2 to 6) mother sheets are prepared (step (I)).
  • a plurality of mother sheets are laminated, and the laminate is rolled to obtain a laminated sheet (first laminated sheet) (step (II)).
  • a plurality of (for example, 2 to 6) first laminated sheets obtained here are prepared, and the first laminated sheet is used as a sheet-like molded body in step (I).
  • a plurality of (for example, 2 to 6) first laminated sheets are laminated, and the laminated product is rolled to obtain a laminated sheet (second laminated sheet) (step (II)).
  • step (I) a plurality of (for example, 2 to 6) second laminated sheets obtained are prepared, and the second laminated sheet is used as a sheet-like molded body in the step (I).
  • a plurality of (for example, 2 to 6) second laminated sheets are laminated, and the laminated product is rolled to obtain a laminated sheet (third laminated sheet) (step (II)).
  • the step (I) and the step (II) can be alternately repeated until the desired number of constituent layers of the porous sheet is reached.
  • the lamination sheets having the same number of laminations first lamination sheets, second lamination sheets, etc.
  • the lamination numbers are different from each other. It is also possible to roll the sheets by overlapping them.
  • the rolling direction may be changed by 90 degrees from the direction of rolling performed to obtain the first laminated sheet.
  • the number of constituent layers of the porous sheet is represented by the total number of mother sheets included in the porous sheet
  • the number of constituent layers can be, for example, 100 to 800 layers.
  • the number of layers is preferably 100 or more.
  • the number of layers is desirably 800 or less. The greater the number of constituent layers, the higher the strength of the resulting sheet.
  • the laminated structure (number of constituent layers) is also related to the heat insulating property and compression resistance of the obtained sheet. Accordingly, in order to obtain a sheet having sufficient heat insulation and compression resistance, the number of constituent layers is preferably 200 to 600.
  • a porous sheet of the present invention can be obtained by preparing a sheet having a thickness of about 0.5 to 2 mm and then removing the molding aid by heating.
  • the thermal conductivity in the thickness direction is 0.05 w / mK or more and 0.1 w / mK or less, and the volume resistivity in the thickness direction is 0.5 ⁇ ⁇ cm or more.
  • a porous sheet of 2 ⁇ ⁇ cm or less can be produced.
  • a porous sheet having a porosity of 70 to 80 vol% can be produced.
  • this porous sheet can make the compression elastic modulus at the time of 5% strain in the thickness direction within a range of 0.5 MPa or more and 2 MPa or less by appropriately adjusting the number of laminated sheet-like molded bodies.
  • heat insulating materials are likely to have poor heat insulation properties due to compression deformation.
  • the porous sheet produced by the method of the present embodiment can achieve the high compression elastic modulus as described above, there is little deformation due to compression, and it is possible to suppress a decrease in heat insulation due to compression deformation. Furthermore, since such a porous sheet has a restoring force even if it is compressed, the thermal conductivity hardly changes even after the compressive force is applied in the thickness direction.
  • Patent Document 1 As a heat insulating material capable of preventing a decrease in heat insulation due to compression, for example, Patent No. 2709371 (Patent Document 1) includes a woven fabric or a nonwoven fabric impregnated with a matrix resin and a woven fabric or a nonwoven fabric not impregnated with a matrix resin.
  • a fiber-reinforced plastic heat insulating material produced by alternately laminating and pressing has been proposed.
  • such a heat insulating material has problems such as a complicated manufacturing process and low flexibility.
  • the porous sheet produced by the method of the present embodiment can be produced by laminating and rolling a sheet-like molded body containing PTFE and carbon particles, the production process is simple. Furthermore, since this porous sheet is highly flexible, it has the property of being resistant to bending.
  • the porous sheet of the present embodiment further has self-adhesiveness, for example, when it is installed as a heat insulating sheet at a predetermined position of an apparatus or the like, the problem that the sheet is displaced from the predetermined position hardly occurs.
  • the porous sheet produced by the method of the present embodiment is formed by laminating a sheet-like molded body containing PTFE and carbon particles, the thermal conductivity in the thickness direction, The volume resistivity and compression modulus can satisfy the above ranges.
  • the porous sheet obtained by the present embodiment can be used as a heat insulating sheet. Since this porous sheet has good heat insulation and good electrical conductivity as described above, the heat insulation sheet of the present embodiment produced using this porous sheet has good heat insulation. The generation of static electricity can also be suppressed. Furthermore, since the heat insulation sheet of this Embodiment can also be provided with a high compressive elasticity modulus, even if compressive force is applied to the thickness direction, heat insulation is hard to fall.
  • Example 1 PTFE fine powder (trade name “F104”, manufactured by Daikin Industries, Ltd.) 15 parts by mass, acetylene black (trade name “Denka Black (powdered product)”, manufactured by Denki Kagaku Kogyo Co., Ltd.) 85 parts by mass, as molding aid 140 parts by mass of a saturated hydrocarbon (trade name “NS Clean 220”, manufactured by Japan Energy Co., Ltd.) was mixed with a mixer. The mixing conditions were a rotation speed of 100 rpm, a temperature of 20 ° C., and a mixing time of 2 minutes. The mixture was compressed and preformed at a pressure of 0.3 MPa. Next, this preform was extruded at about 10 MPa to form a round bar having a diameter of 15 mm. Furthermore, this round bar was rolled between a pair of metal rolling rolls (surface temperature 40 ° C.) to obtain a mother sheet (sheet-like formed body) having a thickness of 5 mm and a width of 25 mm.
  • a saturated hydrocarbon
  • first laminated sheet two mother sheets were laminated, and this laminate was rolled to produce a laminated sheet (first laminated sheet).
  • first laminated sheet two sheets of the obtained first laminated sheet were prepared as sheet-like molded bodies. These two first laminated sheets were superposed and laminated, and this laminate was rolled to produce a new laminated sheet (second laminated sheet).
  • second laminated sheet two sheets of the obtained second laminated sheet were prepared as sheet-like molded bodies. These two second laminated sheets were superposed and laminated, and the laminate was rolled to produce a new laminated sheet (third laminated sheet).
  • third laminated sheet three laminated sheet
  • step (II) in the present invention was repeated 8 times, but the rolling direction in each rolling process was changed to 90 degrees from the rolling direction in the previous rolling process.
  • changing the rolling direction when repeating the rolling process, and that the change angle is 90 degrees do not limit the gist of the present invention.
  • the finally obtained sheet had a thickness of 1 mm, a width of 250 mm, and a length of 2 m. The sheet was then heated to 150 ° C. to remove the molding aid.
  • the porous sheet of Example 1 produced as described above was measured for thermal conductivity, volume resistivity, and compression modulus.
  • the measurement method is as follows. The measurement results are as shown in Table 1.
  • the thermal conductivity in the thickness direction was measured using a hot wire thermal conductivity measuring device (trade name “QTM-500”, manufactured by Kyoto Electronics Industry Co., Ltd.).
  • volume resistivity was obtained by flowing a current of 100 mA in the thickness direction of the porous sheet and measuring the voltage. The measurement was performed by pressing the electrode probe against the porous sheet at a pressure of 0.2 MPa.
  • Example 2 30 parts by mass of PTFE fine powder (trade name “F104”, manufactured by Daikin Industries, Ltd.), 70 parts by mass of acetylene black (trade name “Denka Black (powdered product)”, manufactured by Denki Kagaku Kogyo Co., Ltd.), as molding aid 100 parts by mass of a saturated hydrocarbon (trade name “NS Clean 220”, manufactured by Japan Energy Co., Ltd.) was mixed with a mixer. Otherwise, the porous sheet of Example 2 was produced in the same manner as in Example 1.
  • PTFE fine powder (trade name “F104”, manufactured by Daikin Industries, Ltd.) 15 parts by mass
  • acetylene black trade name “Denka Black (powdered product)”, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • molding aid 140 parts by mass of a saturated hydrocarbon (trade name “NS Clean 220”, manufactured by Japan Energy Co., Ltd.) was mixed with a mixer.
  • the mixing conditions were a rotation speed of 100 rpm, a temperature of 20 ° C., and a mixing time of 2 minutes.
  • the mixture was compressed and preformed at a pressure of 0.3 MPa.
  • this preform was extruded into a plate having a thickness of 5 mm and a width of 30 mm at about 10 MPa. Furthermore, this plate-shaped compact was passed through a pair of metal rolling rolls (surface temperature 40 ° C.) and rolled in the extrusion direction to obtain a sheet having a thickness of 1 mm and a width of 50 mm. The sheet was then heated to 150 ° C. to remove the molding aid.
  • Comparative Example 1 prepared with the same material ratio (PTFE: 15 parts by mass, carbon particles: 85 parts by mass, molding aid: 140 parts by mass) as the porous sheet of Example 1 and the porous sheet of Example 1
  • PTFE 15 parts by mass
  • carbon particles 85 parts by mass
  • molding aid 140 parts by mass
  • the porous sheet of Example 1 was able to simultaneously realize a low volume resistivity (high electrical conductivity) and a low thermal conductivity (good heat insulation).
  • the porous sheet of Example 2 manufactured by the same method also realizes low volume resistivity and low thermal conductivity at the same time as in Example 1. We were able to.
  • the porous sheets of Examples 1 and 2 had a higher compression elastic modulus than the porous sheet of Comparative Example 1.
  • the porous sheet produced by the production method of the present invention has high electrical conductivity, so that generation of static electricity can be suppressed and sufficient heat insulation is provided.
  • the porous sheet obtained by the present invention has low thermal conductivity and high electrical conductivity, it can be suitably used for precision equipment and the like as a heat insulating material that can suppress the generation of static electricity. Moreover, the porous sheet obtained by this invention can be used also as a material which suppresses the noise generation by static electricity, or a dustproof material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 本発明の多孔質シートの製造方法は、(I)ポリテトラフルオロエチレンとカーボン粒子とを含むシート状成形体を複数準備する工程と、(II)複数の前記シート状成形体を重ね合わせて圧延する工程と、を含む。本発明の多孔質シートの製造方法では、工程(I)と工程(II)とが交互に繰り返されてもよい。また、本発明の製造方法において用いられるシート状成形体として、例えば、ポリテトラフルオロエチレンとカーボン粒子とを含む混合物をシート状に成形した母シートを用いることもできるし、母シートを複数重ね合わせて圧延することによって得られる積層シートを用いることもできる。

Description

多孔質シートおよびその製造方法、並びに断熱シート
 本発明は、多孔質シートとその製造方法、並びに断熱シートに関する。
 断熱材は、温度変化がその機能に大きな影響を及ぼす精密機器、冷蔵庫等の家電製品、クリーンルームの壁や天井等、様々な製品に適用されている。従来、断熱材として、例えばウレタンフォーム等のポリマーの発泡体や、グラスウールが用いられている。これらの材料は断熱性に優れ、さらに軽量および安価であるため、幅広い分野で断熱材として使用されている。また、織布や不織布にマトリックス樹脂を含浸させることによって形成された繊維強化プラスチック断熱材(特許文献1参照)等も、高強度の断熱材として提案されている。
 しかし、これらの断熱材には、静電気が発生するという問題があった。そこで、静電気の発生を防止する断熱材として、例えば、断熱層の間に金属板が挿入された断熱材や、帯電防止剤が塗布された断熱材(特許文献2および特許文献3参照)が提案されている。しかし、断熱層の間に金属板が挿入された断熱材の場合、金属板を挿入するために接着工程が必要となり、さらに層間の接着強度を強化する必要もある。このため、製造工程数が増加するという問題があった。一方、帯電防止剤を用いた断熱材の場合、帯電防止剤の塗布工程が必要となるため、製造工程数が増加するという問題があった。さらに、帯電防止能力が経時的に変化するという問題もあった。
特許第2709371号公報 特公平3-8248号公報 特公平5-25668号公報
 以上のように、従来は、静電気の発生を抑制できる断熱材を、簡便な方法で提供することが困難であった。
 そこで、本発明では、静電気の発生を抑制でき、且つ、十分な断熱性を備えた、断熱材に使用可能なシート材を提供することを目的とする。
 本発明の多孔質シートの製造方法は、
 (I)ポリテトラフルオロエチレン(以下、PTFEと記載する。)とカーボン粒子とを含むシート状成形体を複数準備する工程と、
 (II)複数の前記シート状成形体を重ね合わせて圧延する工程と、
を含む。
 本発明の多孔質シートは、PTFEとカーボン粒子とを含み、厚さ方向における熱伝導率が0.05w/mK以上0.1w/mK以下であり、且つ、厚さ方向における体積抵抗率が0.5Ω・cm以上2Ω・cm以下である。
 本発明は、上記本発明の多孔質シートの製造方法によって得られる多孔質シートまたは上記本発明の多孔質シートを用いて作製された断熱シートを、さらに提供する。
 本発明の多孔質シートの製造方法によれば、熱伝導率が低く、且つ、高い電気伝導性を備えた多孔質シートを得ることができる。また、本発明の多孔質シートは、十分な断熱性と高い電気伝導性とを備えている。したがって、本発明によれば、静電気の発生を抑制でき、且つ、十分な断熱性を備えた、断熱材として使用可能な多孔質シートを、簡便な方法で提供できる。
 以下、本発明の実施の形態について説明する。なお、以下の記載は本発明を限定するものではない。
 本実施の形態の多孔質シートの製造方法は、
 (I)PTFEとカーボン粒子とを含むシート状成形体を複数準備する工程と、
 (II)複数の前記シート状成形体を重ね合わせて圧延する工程と、
を含む。
 工程(I)の例について説明する。
 まず、工程(I)において準備するシート状成形体の一例について説明する。PTFEファインパウダー、カーボン粒子および成形助剤を混合して、ペースト状の混合物を作製する。この混合は、PTFEの繊維化を極力抑制する条件で行うことが望ましい。具体的には、回転数を小さくし、混合時間を短くして、混練せずに混合することが望ましい。このように混合することによって、PTFEをマトリックスとするシート状物の加工が容易となる。カーボン粒子は、脱落することなくPTFEマトリックスに担持され、且つ、得られる多孔質シートに十分な電気伝導性を付与することができればよいため、特には限定されないが、粒径20~60nmものが望ましい。なお、ここでの粒径とは、SEM(Scanning Electron Microscope)で任意の10箇所を観察し、各箇所で10個(合計100個)の粒径を測定して、平均値を算出する方法で得られる値である。カーボン粒子としては、例えばカーボンブラックが使用できる。カーボン粒子の添加量は、例えば60~90重量%である。成形助剤には、例えばドデカンやデカン等の飽和炭化水素を使用できる。成形助剤の添加量は、例えば固形分に対して1~1.4倍(重量比)である。このような混合物を、押出しおよび圧延によってシート状に成形して得られる母シートを、本発明のシート状成形体(シート状成形体の第1の例)として用いることができる。このようにして得られるシート状成形体の厚みは、例えば0.5~10mmである。
 また、工程(I)において準備するシート状成形体の別の例として、上記母シートが複数重ね合わされて圧延されることによって得られた積層シート(シート状成形体の第2の例)も挙げられる。積層シートの積層数は、特には限定されず、製造しようとする多孔質シートの構成層数(多孔質シートを構成する層の数)を考慮して、適宜決定することができる。
 以上のようにして、シート状成形体を準備できる。
 次に、工程(II)の例について説明する。
 工程(II)では、工程(I)で準備した複数のシート状成形体を重ね合わせて圧延する。具体的には、工程(I)で準備した複数のシート状成形体を積層し、この積層物を圧延して積層シートを得る。上述したように、シート状成形体は、上記母シート(第1の例のシート状成形体)であってもよいし、母シートを複数重ね合わせて圧延することによって得られた積層シート(第2の例のシート状成形体)であってもよい。工程(II)において重ね合わせるシート状成形体の数は、特には限定されず、例えば2~6枚程度が可能である。高い強度を実現するために、シート状成形体を1つずつ重ね合わせて圧延することが望ましい。
 本実施の形態の多孔質シートの製造方法では、工程(I)と工程(II)とが交互に繰り返されてもよい。この場合の具体例を、以下に説明する。
 まず、複数(例えば2~6枚)の母シートを準備する(工程(I))。次に、複数の母シートを積層し、この積層物を圧延して積層シート(第1の積層シート)を得る(工程(II))。ここで得られた第1の積層シートを複数(例えば2~6枚)準備し、当該第1の積層シートを工程(I)におけるシート状成形体として用いる。次に、複数(例えば2~6枚)の第1の積層シートを積層し、この積層物を圧延して積層シート(第2の積層シート)を得る(工程(II))。さらに、得られた第2の積層シートを複数(例えば2~6枚)準備し、当該第2の積層シートを工程(I)におけるシート状成形体として用いる。次に、複数(例えば2~6枚)の第2の積層シートを積層し、この積層物を圧延して積層シート(第3の積層シート)を得る(工程(II))。このように、目的とする多孔質シートの構成層数になるまで、工程(I)と工程(II)とを交互に繰り返すことができる。なお、ここで説明した例では、積層数が同じである積層シート同士(第1の積層シート同士、第2の積層シート同士等)を重ね合わせて圧延しているが、積層数が互いに異なる積層シート同士を重ね合わせて圧延することも可能である。
 工程(II)を繰り返す際に、圧延方向を変更することが望ましい。例えば、第2の積層シートを得るために行う圧延では、その圧延方向を、第1の積層シートを得るために行った圧延の方向から90度変更するとよい。このように方向を変えながら圧延することによって、PTFEのネットワークが縦横に延び、シート強度の向上およびカーボン粒子のPTFEマトリックスへの強固な固定が可能になる。
 多孔質シートの構成層数を、当該多孔質シートに含まれる母シートの総数で表すとき、構成層数は、例えば100~800層とできる。シート強度を上げるためには、層数は100層以上が望ましい。また、薄膜化(例えば1mm以下のシートとする)ためには、層数は800層以下が望ましい。構成層数を多くするほど、得られるシートの強度を高くできる。
 圧延初期(含まれる母シートの総数が少ない段階)は、強度が低く高倍率の圧延に耐えることが困難であるが、シート状成形体の積層および圧延を繰り返すにしたがって圧延倍率が上がり、シート強度の向上およびカーボン粒子のPTFEマトリックスへの強固な固定が可能になる。また、積層構造(構成層数)は、得られるシートの断熱性や耐圧縮性にも関係する。したがって、十分な断熱性と耐圧縮性とを備えたシートを得るために、構成層数は200~600層が好ましい。
 最終的に、厚さ0.5~2mm程度のシートを作製し、その後、成形助剤を加熱して除去することによって、本発明の多孔質シートを得ることができる。
 本実施の形態の製造方法によれば、厚さ方向における熱伝導率が0.05w/mK以上0.1w/mK以下であり、且つ、厚さ方向における体積抵抗率が0.5Ω・cm以上2Ω・cm以下の多孔質シートを作製できる。また、本実施の形態の製造方法によれば、70~80vol%の気孔率を有する多孔質シートを作製することができる。
 さらに、この多孔質シートは、シート状成形体の積層数等を適宜調整することによって、厚さ方向における5%歪み時の圧縮弾性率を0.5MPa以上2MPa以下の範囲にすることができる。一般に用いられている断熱材は、圧縮変形により断熱性が低下しやすい。しかし、本実施の形態の方法によって作製される多孔質シートは、上記のような高い圧縮弾性率を実現できるので、圧縮による変形が少なく、圧縮変形による断熱性の低下を抑制できる。さらに、このよう多孔質シートは、圧縮されても復元力があるため、厚み方向に圧縮力が加えられた後でも熱伝導率が変化しにくい。圧縮による断熱性の低下を防ぐことができる断熱材として、例えば特許第2709371号(特許文献1)に、マトリックス樹脂を含浸させた織布または不織布と、マトリックス樹脂を含浸させない織布または不織布とを、交互に積層してプレスすることによって作製された繊維強化プラスチック断熱材が提案されている。しかし、このような断熱材は、電気伝導性を備えていないことに加えて、製造工程が煩雑であることや可撓性が低い等の問題もあった。これに対し、本実施の形態の方法によって作製される多孔質シートは、PTFEとカーボン粒子とを含むシート状成形体を積層および圧延することによって作製できるため、製造工程が簡便である。さらにこの多孔質シートは、可撓性が高いため、曲げにも強いという特性を有する。
 本実施の形態の多孔質シートは、さらに自己接着性も有しているため、例えば断熱シートとして機器等の所定の位置に設置した際に、所定の位置からシートがずれるといった問題も生じにくい。
 以上のように、本実施の形態の方法によって作製される多孔質シートは、PTFEとカーボン粒子とを含むシート状成形体を積層させることによって形成されているので、厚さ方向における熱伝導率、体積抵抗率および圧縮弾性率が上記範囲を満たすことができる。
 本実施の形態によって得られる多孔質シートは、断熱シートとして使用することが可能である。この多孔質シートは、上記のとおり良好な断熱性と良好な電気伝導性とを有しているので、この多孔質シートを用いて作製された本実施の形態の断熱シートは、良好な断熱性を備えつつ、静電気の発生も抑制できる。さらに、本実施の形態の断熱シートは、高い圧縮弾性率も備えることができるので、厚み方向に圧縮力が加えられても、断熱性が低下しにくい。
 次に、本発明の多孔質シートの製造方法および多孔質シートについて、実施例を用いて具体的に説明する。
 (実施例1)
 PTFEファインパウダー(商品名「F104」、ダイキン工業株式会社製)15質量部、アセチレンブラック(商品名「デンカブラック(粉状品)」、電気化学工業株式会社製)85質量部、成形助剤としての飽和炭化水素(商品名「NSクリーン220」、ジャパンエナジー社製)140質量部を、ミキサーにて混合した。混合条件は、回転数100rpm、温度20℃、混合時間2分間とした。混合物を、圧力0.3MPaで圧縮し予備成形した。次に、この予備成形体を約10MPaで押出して、直径15mmの丸棒を成形した。さらにこの丸棒を一対の金属製圧延ロール(表面温度40℃)間に通して圧延し、厚さ5mm、幅25mmの母シート(シート状成形体)を得た。
 まず、母シートを2枚積層し、この積層物を圧延して、積層シート(第1の積層シート)を作製した。次に、得られた第1の積層シートをシート状成形体として2枚準備した。これら2枚の第1の積層シートを重ね合わせて積層し、この積層物を圧延して、新たな積層シート(第2の積層シート)を作製した。次に、得られた第2の積層シートをシート状成形体として2枚準備した。これら2枚の第2の積層シートを重ね合わせて積層し、この積層物を圧延して新たな積層シート(第3の積層シート)を作製した。このように、得られた積層シートをシート状成形体として用いて、重ね合わせて圧延する工程を8回繰り返すことによって、積層数が256層のシートを作製した。本実施例では、本発明における工程(II)の圧延工程を8回繰り返したが、各圧延工程における圧延方向は、一つ前の圧延工程での圧延方向から90度変更した方向とした。なお、圧延工程を繰り返す際に圧延方向を変更すること、さらにその変更角度が90度であることは、本発明の趣旨を限定するものではない。最終的に得られたシートは、厚さ1mm、幅250mm、長さ2mであった。次いで、このシートを150℃に加熱して成形助剤を除去した。
 以上のように作製された実施例1の多孔質シートについて、熱伝導率、体積抵抗率および圧縮弾性率を測定した。測定方法は以下のとおりである。また、測定結果は、表1に示すとおりである。
 <熱伝導率の測定>
 熱線法熱伝導率測定装置(商品名「QTM-500」、京都電子工業株式会社製)を用いて、厚み方向における熱伝導率を測定した。
 <体積抵抗率の測定>
 4端子法で測定した。100mAの電流を多孔質シートの厚さ方向に流して、電圧を測定することによって体積抵抗率を求めた。電極プローブを0.2MPaの圧力で多孔質シートに押し当てて、測定を行った。
 <圧縮弾性率の測定>
 テンシロン万能試験機(株式会社エー・アンド・デイ製)を用いて、多孔質シートを厚さ方向に0.5mm/minの速度で圧縮し、変位と応力とを測定した。20kPa応力荷重点を変位0とし、5%歪み時の応力(δ)の測定値を用いて、以下の式を用いて圧縮弾性率(E)を算出した。
  E=δ/0.05
 (実施例2)
 PTFEファインパウダー(商品名「F104」、ダイキン工業株式会社製)30質量部、アセチレンブラック(商品名「デンカブラック(粉状品)」、電気化学工業株式会社製)70質量部、成形助剤としての飽和炭化水素(商品名「NSクリーン220」、ジャパンエナジー社製)100質量部を、ミキサーにて混合した。それ以外は実施例1と同様の方法を用いて、実施例2の多孔質シートを作製した。
 得られた実施例2の多孔質シートについて、実施例1と同様の方法で、熱伝導率、体積抵抗率および圧縮弾性率を測定した。測定結果は、表1に示すとおりである。
 (比較例1)
 PTFEファインパウダー(商品名「F104」、ダイキン工業株式会社製)15質量部、アセチレンブラック(商品名「デンカブラック(粉状品)」、電気化学工業株式会社製)85質量部、成形助剤としての飽和炭化水素(商品名「NSクリーン220」、ジャパンエナジー社製)140質量部を、ミキサーにて混合した。混合条件は、回転数100rpm温度20℃、混合時間2分間とした。混合物を、圧力0.3MPaで圧縮し予備成形した。次に、この予備成形体を約10MPaで、厚さ5mm、幅30mmの板状に押出し成形した。さらにこの板状成形体を一対の金属製圧延ロール(表面温度40℃)間に通して押出し方向に圧延し、厚さ1mm、幅50mmのシートを得た。次いで、このシートを150℃に加熱して成形助剤を除去した。
 得られた比較例1の多孔質シートについて、実施例1と同様の方法で、熱伝導率、体積抵抗率および圧縮弾性率を測定した。測定結果は、表1に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
 実施例1の多孔質シートと、実施例1の多孔質シートと同様の材料比率(PTFE:15質量部、カーボン粒子:85質量部、成形助剤:140質量部)で作製した比較例1とを比較すると、多層構造を有していない比較例1の多孔質シートは、体積抵抗率は低い(電気伝導性は高い)ものの、熱伝導率が高く、断熱性が不十分であった。これに対し、実施例1の多孔質シートは、低い体積抵抗率(高い電気伝導性)と低い熱伝導率(良好な断熱性)とを同時に実現することができた。また、実施例1とは材料の比率が異なるものの、同様の方法で作製された実施例2の多孔質シートも、実施例1と同様に、低い体積抵抗率と低い熱伝導率とを同時に実現することができた。また、実施例1および2の多孔質シートは、比較例1の多孔質シートよりも、高い圧縮弾性率を有していた。
 以上の結果から、本発明の製造方法によって作製された多孔質シートは、電気伝導性が高いので静電気の発生を抑制でき、且つ、十分な断熱性を備えていることが確認された。
 本発明によって得られる多孔質シートは、熱伝導率が低く、且つ、高い電気伝導性を有するので、静電気の発生を抑制できる断熱材として、精密機器等に好適に使用できる。また、本発明によって得られる多孔質シートは、静電気によるノイズ発生を抑制する材料や、防塵用材料としても使用可能である。

Claims (7)

  1.  (I)ポリテトラフルオロエチレンとカーボン粒子とを含むシート状成形体を複数準備する工程と、
     (II)複数の前記シート状成形体を重ね合わせて圧延する工程と、
    を含む、多孔質シートの製造方法。
  2.  前記工程(I)と前記工程(II)とが交互に繰り返される、請求項1に記載の多孔質シートの製造方法。
  3.  前記工程(II)を繰り返す際に、圧延方向を変更する、請求項2に記載の多孔質シートの製造方法。
  4.  請求項1に記載の方法によって得られる多孔質シートを用いて作製された断熱シート。
  5.  ポリテトラフルオロエチレンとカーボン粒子とを含み、
     厚さ方向における熱伝導率が0.05w/mK以上0.1w/mK以下であり、且つ、厚さ方向における体積抵抗率が0.5Ω・cm以上2Ω・cm以下である、多孔質シート。
  6.  厚さ方向における5%歪み時の圧縮弾性率が0.5MPa以上2MPa以下である、請求項5に記載の多孔質シート。
  7.  請求項5に記載の多孔質シートを用いて作製された断熱シート。
PCT/JP2009/058326 2008-04-30 2009-04-28 多孔質シートおよびその製造方法、並びに断熱シート WO2009133874A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/989,151 US9017817B2 (en) 2008-04-30 2009-04-28 Method for producing laminated porous sheet comprising polytetrafluoroethylene and carbon particles
CN2009801154733A CN102015855B (zh) 2008-04-30 2009-04-28 多孔片材及其制造方法以及隔热片
EP20090738811 EP2272902B8 (en) 2008-04-30 2009-04-28 Porous sheet, process for production thereof, and heat-insulating sheet
US14/668,457 US20150203646A1 (en) 2008-04-30 2015-03-25 Method for producing laminated porous sheet comprising polytetrafluoroethylene and carbon particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-119278 2008-04-30
JP2008119278A JP4842294B2 (ja) 2008-04-30 2008-04-30 多孔質シートおよびその製造方法、並びに断熱シート

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/989,151 A-371-Of-International US9017817B2 (en) 2008-04-30 2009-04-28 Method for producing laminated porous sheet comprising polytetrafluoroethylene and carbon particles
US14/668,457 Division US20150203646A1 (en) 2008-04-30 2015-03-25 Method for producing laminated porous sheet comprising polytetrafluoroethylene and carbon particles

Publications (1)

Publication Number Publication Date
WO2009133874A1 true WO2009133874A1 (ja) 2009-11-05

Family

ID=41255090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058326 WO2009133874A1 (ja) 2008-04-30 2009-04-28 多孔質シートおよびその製造方法、並びに断熱シート

Country Status (5)

Country Link
US (2) US9017817B2 (ja)
EP (1) EP2272902B8 (ja)
JP (1) JP4842294B2 (ja)
CN (1) CN102015855B (ja)
WO (1) WO2009133874A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459489A (zh) * 2011-03-23 2013-12-18 日东电工株式会社 散热构件及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102216047A (zh) * 2008-11-12 2011-10-12 日东电工株式会社 绝缘性导热片的制造方法、绝缘性导热片及散热构件
JP2013221130A (ja) * 2012-04-18 2013-10-28 Nitto Denko Corp 多孔質シートの製造方法、蓄熱シート及び化学蓄熱システム
CN104603926B (zh) * 2012-08-29 2017-03-01 夏普株式会社 基板处理装置和液晶显示面板制造装置
SG11201607053XA (en) * 2014-02-26 2016-10-28 Hitachi Chemical Co Ltd Aerogel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385865A (en) * 1977-01-06 1978-07-28 Tokyo Tokushu Densen Kk Multi lamination of polytetrafluoroethylene film
JPS618102A (ja) * 1984-06-21 1986-01-14 Asahi Chem Ind Co Ltd 導電性ミクロフイルタ−
JPH038248B2 (ja) 1983-07-26 1991-02-05 Mitsubishi Petrochemical Co
JPH0525668B2 (ja) 1988-10-06 1993-04-13 Daido Steel Sheet Corp
JPH05154928A (ja) * 1991-12-10 1993-06-22 Nippon Pillar Packing Co Ltd 断熱カバー及びその製造方法
JP2709371B2 (ja) 1993-11-10 1998-02-04 ニチアス株式会社 繊維強化プラスチック断熱材の製造方法
JPH10219013A (ja) * 1997-02-03 1998-08-18 Japan Gore Tex Inc 制電性材料
JP2004051772A (ja) * 2002-07-19 2004-02-19 Teijin Ltd 層間隔が制御された多層を有する多孔質シートおよびその製造方法
WO2005063864A1 (en) * 2003-12-19 2005-07-14 Jang Won Park Crosslinked foam which has inner-cavity structure, and process of forming thereof
WO2008035682A1 (fr) * 2006-09-22 2008-03-27 Kurabe Industrial Co., Ltd. Corps poreux à base de ptfe, mélange de ptfe, procédé de production de corps poreux à base de ptfe, et fil/câble électrique utilisant le corps poreux à base de ptfe

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1468355A (en) * 1973-07-18 1977-03-23 Ici Ltd Making porous diaphragms in electrolytic cells
BE504311A (ja) * 1950-06-30 1900-01-01
GB1081046A (en) * 1965-08-31 1967-08-31 Ici Ltd Manufacture of porous diaphragms
US3935029A (en) * 1971-11-18 1976-01-27 Energy Research Corporation Method of fabricating a carbon - polytetrafluoroethylene electrode - support
BE794889A (fr) * 1972-02-04 1973-08-02 Ici Ltd Procede de fabrication d'un diaphragme poreux
US4049589A (en) * 1973-03-19 1977-09-20 Sumitomo Electric Industries, Ltd. Porous films of polytetrafluoroethylene and process for producing said films
JPS5079563A (ja) * 1973-11-16 1975-06-28
US4129470A (en) 1974-10-17 1978-12-12 Homsy Charles A Method of preparing a porous implantable material from polytetrafluoroethylene and carbon fibers
JPS5825368B2 (ja) 1979-02-14 1983-05-27 日東電工株式会社 多孔質ポリテトラフルオロエチレンフィルムの製造法
US4551220A (en) * 1982-08-03 1985-11-05 Asahi Glass Company, Ltd. Gas diffusion electrode material
JPS59221902A (ja) 1983-05-31 1984-12-13 日本バイリーン株式会社 熱伝導性に優れた絶縁シ−ト
US4500597A (en) 1983-07-26 1985-02-19 Mitsubishi Petrochemical Co., Ltd. Composite heat-insulating material and process for the production thereof
US4563488A (en) 1984-08-20 1986-01-07 Japan Vilene Co. Ltd. Insulator with high thermal conductivity
JPS6346524A (ja) 1986-08-13 1988-02-27 Mitsubishi Heavy Ind Ltd 弁制御装置
DE3878899T2 (de) * 1987-07-30 1993-07-22 Toray Industries Poroese polytetrafluoraethylen-membran, trennvorrichtung unter verwendung dieser membran sowie verfahren zur herstellung.
US4985296A (en) 1989-03-16 1991-01-15 W. L. Gore & Associates, Inc. Polytetrafluoroethylene film
JPH03212987A (ja) 1990-01-17 1991-09-18 Matsushita Electric Works Ltd 電気用複合材料、積層板およびプリント配線板
US5300366A (en) * 1990-05-09 1994-04-05 Oiles Corporation Fluororesin composition for a sliding member and a sliding member
US5738936A (en) 1996-06-27 1998-04-14 W. L. Gore & Associates, Inc. Thermally conductive polytetrafluoroethylene article
US5945217A (en) 1997-10-14 1999-08-31 Gore Enterprise Holdings, Inc. Thermally conductive polytrafluoroethylene article
AU2787399A (en) * 1998-03-03 1999-09-20 Ppg Industries Ohio, Inc. Glass fiber strands coated with thermally conductive inorganic particles and products including the same
US6103172A (en) 1998-04-07 2000-08-15 Pall Corporation Method of preparaing a porous polytetrafluoroethylene membranne
JP2003060134A (ja) 2001-08-17 2003-02-28 Polymatech Co Ltd 熱伝導性シート
US7118801B2 (en) * 2003-11-10 2006-10-10 Gore Enterprise Holdings, Inc. Aerogel/PTFE composite insulating material
JP2005228955A (ja) 2004-02-13 2005-08-25 Denki Kagaku Kogyo Kk 放熱部材、その製造方法及び用途
JP2007044994A (ja) 2005-08-10 2007-02-22 Taika:Kk グラファイト複合構造体、それを用いた放熱部材及び電子部品
JP4807302B2 (ja) 2006-08-03 2011-11-02 パナソニック株式会社 放熱部品
CN101140915B (zh) 2006-09-08 2011-03-23 聚鼎科技股份有限公司 散热衬底
JP2008078380A (ja) 2006-09-21 2008-04-03 Kaneka Corp 放熱シート
JP2008150595A (ja) 2006-11-24 2008-07-03 Techno Polymer Co Ltd 放熱性樹脂組成物及び成形品
WO2008084512A1 (ja) 2006-12-26 2008-07-17 Asahi Kasei E-Materials Corporation 放熱材料及び放熱材料で成形した放熱シート
JP2008208159A (ja) 2007-02-23 2008-09-11 Teijin Ltd 耐熱性熱伝導複合材料、耐熱性熱伝導シート
CN102216047A (zh) 2008-11-12 2011-10-12 日东电工株式会社 绝缘性导热片的制造方法、绝缘性导热片及散热构件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385865A (en) * 1977-01-06 1978-07-28 Tokyo Tokushu Densen Kk Multi lamination of polytetrafluoroethylene film
JPH038248B2 (ja) 1983-07-26 1991-02-05 Mitsubishi Petrochemical Co
JPS618102A (ja) * 1984-06-21 1986-01-14 Asahi Chem Ind Co Ltd 導電性ミクロフイルタ−
JPH0525668B2 (ja) 1988-10-06 1993-04-13 Daido Steel Sheet Corp
JPH05154928A (ja) * 1991-12-10 1993-06-22 Nippon Pillar Packing Co Ltd 断熱カバー及びその製造方法
JP2709371B2 (ja) 1993-11-10 1998-02-04 ニチアス株式会社 繊維強化プラスチック断熱材の製造方法
JPH10219013A (ja) * 1997-02-03 1998-08-18 Japan Gore Tex Inc 制電性材料
JP2004051772A (ja) * 2002-07-19 2004-02-19 Teijin Ltd 層間隔が制御された多層を有する多孔質シートおよびその製造方法
WO2005063864A1 (en) * 2003-12-19 2005-07-14 Jang Won Park Crosslinked foam which has inner-cavity structure, and process of forming thereof
WO2008035682A1 (fr) * 2006-09-22 2008-03-27 Kurabe Industrial Co., Ltd. Corps poreux à base de ptfe, mélange de ptfe, procédé de production de corps poreux à base de ptfe, et fil/câble électrique utilisant le corps poreux à base de ptfe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2272902A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459489A (zh) * 2011-03-23 2013-12-18 日东电工株式会社 散热构件及其制造方法

Also Published As

Publication number Publication date
EP2272902B8 (en) 2014-01-08
EP2272902A1 (en) 2011-01-12
US20150203646A1 (en) 2015-07-23
US9017817B2 (en) 2015-04-28
EP2272902B1 (en) 2013-08-07
CN102015855A (zh) 2011-04-13
JP4842294B2 (ja) 2011-12-21
EP2272902A4 (en) 2012-10-17
JP2009269214A (ja) 2009-11-19
CN102015855B (zh) 2013-04-10
US20110039091A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
Wen et al. Topological design of ultrastrong and highly conductive graphene films
JP4842294B2 (ja) 多孔質シートおよびその製造方法、並びに断熱シート
JP5322894B2 (ja) 絶縁性熱伝導シートの製造方法、絶縁性熱伝導シート及び放熱部材
JP6866610B2 (ja) 熱伝導シートの製造方法
WO2007013705A1 (en) Thermally improve conductive carbon sheet base on mixed carbon material of expanded graphite powder and carbon nano tube powder
JP6465368B2 (ja) 混合グラファイトを用いた放熱材およびその製造方法
JP6969090B2 (ja) 積層体のスライス方法および複合シートの製造方法
WO2013017231A1 (en) Use of an anisotropic fluoropolymer for the conduction of heat
KR20180048557A (ko) 코팅된 분말로부터 제조된 전도성 복합재
JP7233564B2 (ja) 放熱シート及びその製造方法
JPWO2017018493A1 (ja) 混合グラファイトを用いた放熱材およびその製造方法
Liu et al. Three-dimensional network of hexagonal boron nitride filled with polydimethylsiloxane with high thermal conductivity and good insulating properties for thermal management applications
Ni et al. Lightweight, radiation-resistant, and flexible polyimide foams with an anisotropic porous structure for efficient thermal insulation applications
JP5041843B2 (ja) 低熱伝導性耐熱性発泡体及びその製造方法
Rao et al. Manufacturing and characterization of multifunctional polymer-reduced graphene oxide nanocomposites
Lv et al. Highly compressible graphene aerogel with high thermal conductivity along both in-plane and through-plane directions
KR20220024793A (ko) 망상 탄소 복합체
JP2016050662A (ja) 制振材
JP2017061714A (ja) 高熱伝導性複合材料
US20200079931A1 (en) Plate-like composite material containing polytetrafluoroethylene and filler
JP7334597B2 (ja) 複合シートの製造方法
US20170028675A1 (en) Heat radiating material comprising mixed graphite
WO2014103327A1 (ja) 熱伝導性粘着シート及びその製造方法
TW202339936A (zh) 成形基材、多孔質體、皮芯結構體和結構構件
JP2007273889A (ja) 電気二重層キャパシタ用電極及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115473.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12989151

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009738811

Country of ref document: EP