WO2009133833A1 - 光学素子及び反射防止膜 - Google Patents
光学素子及び反射防止膜 Download PDFInfo
- Publication number
- WO2009133833A1 WO2009133833A1 PCT/JP2009/058243 JP2009058243W WO2009133833A1 WO 2009133833 A1 WO2009133833 A1 WO 2009133833A1 JP 2009058243 W JP2009058243 W JP 2009058243W WO 2009133833 A1 WO2009133833 A1 WO 2009133833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- less
- layer
- antireflection film
- optical element
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims description 50
- 239000010408 film Substances 0.000 claims description 75
- 239000000758 substrate Substances 0.000 claims description 35
- 239000012788 optical film Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 8
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 8
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 230000003667 anti-reflective effect Effects 0.000 claims description 2
- 230000005284 excitation Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 102
- 230000000052 comparative effect Effects 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- 230000003595 spectral effect Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 239000004033 plastic Substances 0.000 description 11
- 229920003023 plastic Polymers 0.000 description 11
- 230000000638 stimulation Effects 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- -1 Trade name) Chemical compound 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229920006295 polythiol Polymers 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- NNWNNQTUZYVQRK-UHFFFAOYSA-N 5-bromo-1h-pyrrolo[2,3-c]pyridine-2-carboxylic acid Chemical compound BrC1=NC=C2NC(C(=O)O)=CC2=C1 NNWNNQTUZYVQRK-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 229920002574 CR-39 Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- MDNWOSOZYLHTCG-UHFFFAOYSA-N Dichlorophen Chemical compound OC1=CC=C(Cl)C=C1CC1=CC(Cl)=CC=C1O MDNWOSOZYLHTCG-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 241000511976 Hoya Species 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- JKJWYKGYGWOAHT-UHFFFAOYSA-N bis(prop-2-enyl) carbonate Chemical compound C=CCOC(=O)OCC=C JKJWYKGYGWOAHT-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical group 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 description 1
- 229910001637 strontium fluoride Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000003553 thiiranes Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- FWQVINSGEXZQHB-UHFFFAOYSA-K trifluorodysprosium Chemical compound F[Dy](F)F FWQVINSGEXZQHB-UHFFFAOYSA-K 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- XRADHEAKQRNYQQ-UHFFFAOYSA-K trifluoroneodymium Chemical compound F[Nd](F)F XRADHEAKQRNYQQ-UHFFFAOYSA-K 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229940105963 yttrium fluoride Drugs 0.000 description 1
- RBORBHYCVONNJH-UHFFFAOYSA-K yttrium(iii) fluoride Chemical compound F[Y](F)F RBORBHYCVONNJH-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
Definitions
- the present invention relates to an optical element and an antireflection film in which an antireflection film formed by alternately laminating low refractive index layers and high refractive index layers is formed on at least one surface of a light-transmitting substrate.
- an optical element using a light-transmitting substrate is provided with an antireflection film for suppressing reflected light with respect to incident light.
- an antireflection film for suppressing reflected light with respect to incident light.
- the transmittance of light from the vertical direction can be controlled to be high by controlling the reflectance with respect to incident light that is incident perpendicularly to the substrate.
- the user can be prevented from feeling flicker due to reflection.
- This antireflection film has a problem that the reflection characteristics differ depending on the incident angle of light with respect to the optical element.
- Optical elements such as a spectacle lens and a display plate of a display are more frequently viewed from an oblique direction than from the front. Usually, most of the flickering from the oblique direction is suppressed by controlling the reflectance with respect to the light from the vertical direction.
- the reflected light from the optical element takes into account not only the intensity (reflectance) of the light but also the color tone (interference color) of the light reflected on the optical element.
- the intensity reflectance
- the color tone interference color
- the reflected light from the optical element takes into account not only the intensity (reflectance) of the light but also the color tone (interference color) of the light reflected on the optical element.
- the reflectance is lowered, if the image slightly projected on the surface of the optical element has a unique color, it may feel unsatisfactory.
- the interference color related to the reflection of an optical element such as sunglasses with a color tone has a specific color tone, the fashionability of the sunglasses may deteriorate.
- unnecessary coloring occurs in the displayed image or mark.
- the reflectance is extremely reduced, the color tone of the interference color, specifically, the stimulus purity of the interference color is not considered at all. Therefore, when the viewing angle from the surrounding people changes with the movement of the wearer like a spectacle lens, not only the reflectance of the oblique incident light but also the stimulation purity of the interference color of the oblique incident light is sufficient.
- the spectacle lens has a relatively large curvature compared to other optical elements, that is, the curvature radius is often small, and is composed of a spherical surface or an aspherical curved surface. There is a problem that the color tone such as completely different red is tinged. For this reason, even in an optical element having a small curvature radius, an antireflection film that is unlikely to cause unnecessary coloring when viewed from the lateral direction is required.
- an object of the present invention is to provide an optical element and an antireflection film in which a specific color tone is prevented from appearing in an interference color with respect to incident light from an oblique direction.
- an optical element according to the present invention has an antireflection film in which low refractive index layers and high refractive index layers are alternately laminated on at least one surface of a light-transmitting substrate.
- This antireflection film is for visible light with a wavelength of 380 nm or more and 780 nm or less that is incident at an incident angle in the range of 0 ° or more and 45 ° or less when the direction perpendicular to the surface of the substrate is 0 °.
- the reflectance is 10% or less
- the stimulation purity range is 10% or less.
- the antireflection film according to the present invention has a low refractive index layer and a high refractive index layer alternately laminated, and an incident angle in the range of 0 ° to 45 ° when the direction perpendicular to the surface is 0 °.
- the reflectance is 10% or less and the stimulus purity range is 10% or less for visible light having a wavelength of 380 nm or more and 780 nm or less incident at an angle.
- the optical element and the antireflection film of the present invention are incident at an incident angle in the range of 0 ° to 45 ° when the direction perpendicular to the surface is 0 °, and the wavelength is 380 nm to Since the reflectance is 10% or less for light in the visible region of 780 nm, reflection can be sufficiently suppressed even for incident light from an oblique direction.
- the incident angle is in the range of 0 ° to 45 ° and the stimulation purity range of light in the visible light range of 380 nm to 780 nm is set to 10% or less, the interference color becomes almost white, that is, It is possible to reliably suppress a specific color tone from appearing in the interference color.
- an optical element and an antireflection film in which a specific color tone is prevented from appearing in an interference color with respect to incident light from an oblique direction.
- FIG. 1 is a schematic enlarged sectional view of an optical element according to an embodiment of the present invention.
- FIG. 2 is an explanatory diagram of the incident angle of light.
- FIG. 3 is a diagram showing reflection spectral characteristics at an incident angle of 0 ° of the optical element according to the embodiment of the present invention.
- FIG. 4 is a diagram showing reflection spectral characteristics at an incident angle of 15 ° of the optical element according to the embodiment of the present invention.
- FIG. 5 is a diagram showing reflection spectral characteristics at an incident angle of 30 ° of the optical element according to the embodiment of the present invention.
- FIG. 6 is a diagram showing reflection spectral characteristics at an incident angle of 45 ° of the optical element according to the embodiment of the present invention.
- FIG. 1 is a schematic enlarged sectional view of an optical element according to an embodiment of the present invention.
- FIG. 2 is an explanatory diagram of the incident angle of light.
- FIG. 3 is a diagram showing reflection spectral characteristics at an incident angle of
- FIG. 7 is a diagram showing reflection spectral characteristics at an incident angle of 0 ° of the optical element according to the comparative example of the present invention.
- FIG. 8 is a diagram showing reflection spectral characteristics at an incident angle of 15 ° of the optical element according to the comparative example of the present invention.
- FIG. 9 is a diagram showing the reflection spectral characteristics at an incident angle of 30 ° of the optical element according to the comparative example of the present invention.
- FIG. 10 is a diagram showing reflection spectral characteristics at an incident angle of 45 ° of the optical element according to the comparative example of the present invention.
- FIG. 11 is a diagram showing chromaticity coordinates on the chromaticity diagram of optical elements according to examples and comparative examples of the present invention.
- the present invention is not limited to the following examples.
- an example in which the present invention is applied to a plastic lens for spectacles will be described as an optical element.
- the optical element and the antireflection film according to the present invention are limited to spectacle lenses or an antireflection film for spectacle lenses. Is not to be done.
- FIG. 1 is a schematic enlarged sectional view of an optical element 1 according to an embodiment of the present invention.
- Optical transparency that is, wear resistance, weather resistance, etc. on the substrate 10 that is transparent to light in the visible region (in accordance with JIS (Japanese Industrial Standards) -Z-8701) having a wavelength of 380 nm to 780 nm.
- An antireflection film 2 is formed through a cured film (so-called hard coat) 11 to be strengthened.
- the antireflection film 2 is formed as a laminated film in which a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index are alternately laminated.
- the low refractive index layer 21, the high refractive index layer 22, the low refractive index layer 23, the high refractive index layer 24, the low refractive index layer 25, the high refractive index layer 26, the low refractive index as the antireflection film 2 are illustrated.
- An example composed of seven layers 27 is shown. The total number of each layer of the antireflection film 2 is not limited to this.
- a base layer for enhancing impact resistance may be interposed between the cured film 11 and the substrate 10, and another protective layer or the like is formed on the antireflection film 2. May be.
- a plastic lens material can be used as the substrate 10.
- the constituent material of the plastic lens is not particularly limited, but episulfide resin, thiourethane resin, polyester methacrylate resin, polycarbonate resin, polyurethane methacrylate resin, urethane resin (for example, TRIVEX: registered trademark), allyl diglycol carbonate (CR39) , Trade name), diallyl carbonate and the like.
- an organic silicon compound in which inorganic fine particles are dispersed in a colloidal form can be used as a material of the cured film (hard coat) 11.
- the inorganic fine particles include silica, zirconia, titania, and alumina.
- the inorganic fine particles are selected according to the refractive index of the plastic substrate. For example, when the substrate 10 having a relatively low refractive index is employed, silica that is an inorganic substance having a low refractive index is used. Further, when the substrate 10 having a high refractive index is employed, it is desirable to add titania or zirconia that increases the refractive index.
- the antireflection film 2 is usually alternately laminated in the order of a low refractive index layer, a high refractive index layer, a low refractive index layer, a high refractive index layer,.
- the outermost layer is composed of a low refractive index layer.
- silica or a co-oxide of aluminum and silicon can be used as a material for the low refractive index layer of the antireflection film 2.
- Silica is preferably used in view of properties such as strength, refractive index and cost, and is most commonly used.
- a high refractive index inorganic compound of niobium oxide, tantalum oxide, zirconium oxide, and titanium oxide can be suitably used.
- Other materials for the antireflection film 2 include magnesium fluoride, aluminum fluoride, calcium fluoride, barium fluoride, strontium fluoride, cryolite, thiolite, silicon oxide, neodymium fluoride, lanthanum fluoride, and fluoride.
- a material selected from a mixture group consisting of two or more and a complex compound group is preferably used. These materials are appropriately selected according to the combination of the refractive indexes of the optical substrate and the medium.
- This antireflection film is formed by a vacuum deposition method. Moreover, you may form into a film by the vacuum evaporation method which employ
- the film forming method is not limited to this, and other film forming methods such as an RF sputtering method, an ion beam sputtering method, an ion plating method, a CVD (chemical vapor deposition) method, and a sol-gel method can be adopted. .
- Example a a plastic lens is used as the light-transmitting substrate 10 shown in FIG. 1, and specifically, a plastic lens mainly composed of a polythiol-based resin (trade name: Iias, manufactured by HOYA). Prepared.
- the hard coat material contains metal oxide fine particles mainly composed of tin (Sn) oxide as inorganic fine particles, and ⁇ -glycidoxypropyltrimethoxysilane as a silane coupling agent.
- the composition liquid was used.
- the substrate 10 described above was immersed in the hard coat composition liquid, and then cured by ultraviolet irradiation to form a cured film 11 on the substrate 10 made of a plastic lens.
- the first low-refractive index layer (first layer) 21 that also functions as an underlayer of the antireflection film 2 is formed on the surface of the substrate 10 made of the plastic lens having the cured film 11. did. Subsequently, the second high refractive index layer (second layer) 22, the third low refractive index layer (third layer) 23, the fourth high refractive index layer (fourth layer) 24, The fifth low refractive index layer (fifth layer) 25, the sixth high refractive index layer (sixth layer) 26, and the seventh low refractive index layer (seventh layer) 27 are formed, An antireflection film 2 was formed.
- silicon oxide (SiO 2 ) was used as the low refractive index layers 21, 23, 25 and 27, and niobium oxide (Nb 2 O 3 ) was used as the high refractive index layers 22, 24 and 26.
- niobium oxide (Nb 2 O 3 ) was used as the high refractive index layers 22, 24 and 26.
- Each of the layers 21 to 27 was formed by ion-assisted vapor deposition.
- the layer structure, material, refractive index, optical film thickness, and physical film thickness of the antireflection film 2 formed in this manner are shown in Table 1 below.
- the film thickness management at the time of film-forming of each layer was performed by the optical film thickness measuring method which calculates an optical film thickness from the reflectance measured with a reflectance measuring device.
- the materials of the substrate and the cured film are the same among the configurations of the above examples, and the antireflective film has the same material for the low refractive index layer and the high refractive index layer, but the film thickness Optical elements having different configurations were produced.
- Table 2 below shows the layer structure, material, refractive index, optical film thickness, and physical film thickness of the antireflection film in the comparative example.
- the vertical direction is 0 ° with respect to the surface of the substrate 1 (the surface of the antireflection film 2 is substantially parallel to the surface of the substrate 1).
- the spectral reflectance characteristics when light having a wavelength of 380 nm to 780 nm (visible region) was incident at incident angles of 15 °, 30 °, and 45 ° were evaluated by simulation.
- the results of the examples are shown in FIGS. 3 to 6, and the results of the comparative examples are shown in FIGS.
- the reflectivity for incident light with a wavelength of 380 nm to 780 nm in the range of incident angles of 0 ° to 45 ° in the embodiment is 10% or less from FIG. 3 to FIG. . It can be seen that although there is a region where the reflectance is suppressed in the vicinity of the wavelength of 420 nm, the overall reflectance is maintained substantially flat (plateau). That is, a substantially constant reflectance is maintained in the entire wavelength band in the visible region. For this reason, the interference color is kept white.
- the reflectance for incident light with a wavelength of 380 nm to 780 nm in the incident angle range of 0 ° to 45 ° in the comparative example is 10% or less as shown in FIGS. Is larger than the embodiment and shows a substantially W-shaped distribution with waviness as a whole.
- the antireflection film of the comparative example exhibits a green interference color because the reflectances near 400 nm and 640 nm are extremely suppressed.
- the stimulation purity pt2 and the chromaticity coordinates x2 and y2 were calculated from the spectral characteristics with respect to the light at each incident angle.
- the stimulus purity is an index indicating the color density calculated from chromaticity coordinates obtained from spectral characteristics, and is calculated according to a method defined in JIS-Z-8701. Specifically, the spectral tristimulus net values (X, Y) for the standard light source D65 (representing daylight with color temperature D6504K, a light source determined by CIE (International Commission on Illumination) and ISO (International Organization for Standardization)).
- the intersection of the straight line passing through the chromaticity coordinates (x2, y2) from the origin of the standard light source (indicated by symbol ⁇ ) with the spectral locus S on the chromaticity coordinates is the main in each example.
- the wavelength that is, the dominant wavelength of the reflected light at each incident angle.
- the stimulus purity pt2 can be obtained from the ratio between the distance between the origin of the standard light source and the intersection and the distance between the origin and the chromaticity coordinates (x2, y2).
- the above-described spectral tristimulus pure value is a value in the XYZ color system (CIE color system) based on the two-degree field of view recommended by the CIE.
- Table 4 shows the difference ⁇ pt2 between the stimulation purity pt2 and the incident angle 0 ° (normal incidence) in the examples and comparative examples calculated from the chromaticity coordinates.
- the stimulus purity value is small, it is indicated by a light color (color closer to white), and when the stimulus purity value is large, it indicates a dark color (color farther from white).
- the reflectance is 10% or less in the visible region with a wavelength of 380 nm or more and 780 nm or less, the stimulation purity pt2 is 10 or less, the reflectance is sufficiently low, and the color tone of the interference color Was found to be a pale color.
- ⁇ pt2 indicating the difference for each angle is naturally suppressed to 10 or less, and it has been clarified that the interference color hardly changes depending on the incident angle of light.
- the color tone of the interference color is kept thin. It can be made difficult to change depending on the direction of viewing the impression of the person.
- the spectacle lens worn by the user can be viewed from various angles, and the spectacle lens has a relatively small radius of curvature and is composed of a spherical or aspheric curved surface.
- a phenomenon occurs in which the incident angle of light differs depending on the point.
- the optical element and the antireflection film according to the present invention suppress reflection not only in the vertical direction but also in the oblique direction of 45 ° from the surface, and have low stimulation purity. That is, since the interference color is configured to be closer to white, it is very suitable for a spectacle lens, and an effect of not hindering the color tone of a colored spectacle lens can be obtained. Therefore, it is possible to increase the added value by applying to a spectacle lens colored on the lens substrate.
- the stimulation purity in the vertical direction (0 °) was a very large value of 51.9.
- ⁇ pt2 which indicates the difference for each angle, varies greatly, and it can be seen that the color shade varies greatly depending on the viewing angle.
- the impression of the color of the lens is likely to change due to the interference color, so when the optical element and the antireflection film of the comparative example are applied to such a colored lens, the change in the incident angle of light Since the color tone changes and the color tone of the interference color increases depending on the angle, the impression of the colored lens may change.
- the antireflection film according to the present invention is not limited to this material, the number of layers, and the optical film thickness.
- silicon oxide is used as the low-refractive index layer and niobium oxide is used as the high-refractive index layer, the same applies even if the optical film thickness is changed within the range shown in Table 5 below corresponding to the variation in the refractive index. Therefore, it is considered that the purity of the stimulus can be kept low and the interference color can be suppressed.
- each layer of the antireflection film is formed by ion-assisted vapor deposition.
- the refractive index varies to some extent.
- the refractive index of silicon oxide varies from about 1.46 to 1.48
- the refractive index varies from about 2.2 to 2.3.
- Table 5 in addition to the optical film thickness and physical film thickness (nm) of the design values, the optical film thicknesses for the lower limit and the upper limit where the refractive index varies are shown as “refractive index low” and “refractive index high”, respectively. ".
- optical film thickness when the film thickness control accuracy varies by + 5% and ⁇ 5% is shown as “low refractive index ⁇ 5%” and “high refractive index + 5%”, respectively, and the allowable optical film thickness The lower and upper limits are considered.
- SiO 2 is used as the low refractive index layer and Nb 2 O 3 is used as the high refractive index layer, it is more preferably 0.05 ⁇ or more and 0.08 ⁇ or less.
- the thickness of the third layer is particularly large in the examples and the difference is large.
- the low refractive index layer of the third layer compensates for the thin thickness of the low refractive index layer which is the first layer.
- the reflection characteristics with respect to the incident angle of 0 ° to 45 ° described above may vary depending on the substrate material.
- the refractive index of the substrate is in the range of 1.5 to 1.8. Therefore, it is desirable to use a light-transmitting material having a refractive index of 1.5 to 1.8 as the substrate material.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Eyeglasses (AREA)
Abstract
Description
例えば眼鏡用等のプラスチックレンズの場合、反射防止膜を設けることによって、以下のような利点がある。例えば基板に対して垂直に入射する入射光に対しての反射率を制御することにより、垂直方向からの光の透過率を高く制御することができる。また、目と対面する側のレンズ表面の反射を防止することにより、使用者が反射によるちらつきを感じることを抑制することができる。
プラスチックレンズの構成材料は特に限定されないが、エピスルフィド系樹脂、チオウレタン系樹脂、ポリエステルメタクリレート系樹脂、ポリカーボネート樹脂、ポリウレタンメタクリレート樹脂、ウレタン系樹脂(例えば、TRIVEX:登録商標)、アリルジグリコールカーボネート(CR39、商品名)、ジアリルカーボネート等が挙げられる。
そして反射防止膜2の低屈折率層の材料としては、例えば、シリカ、又は、アルミとケイ素の共酸化物を用いることができる。強度や屈折率、コスト等の特性からシリカを用いることが好ましく、最も一般的に用いられている。
また、反射防止膜2の高屈折率層の材料としては、例えば、ニオブ酸化物、タンタル酸化物、ジルコニウム酸化物、及び、チタン酸化物の高屈折率無機化合物を好適に用いることができる。
(1)実施例
a.基板
この例においては、図1に示す光透過性の基板10として、プラスチック基材を用い、具体的にはポリチオール系樹脂(HOYA(株)製、商品名:アイアス)を主成分としたプラスチックレンズを用意した。
上述したポリチオール系樹脂より成る基板10の上に、ハードコート用組成液を塗布して硬化し、硬化膜11を形成した。
具体的には、ハードコートの材料に、無機微粒子として錫(Sn)酸化物を主体とする金属酸化物微粒子、シランカップリング剤としてγ―グリシドキシプロピルトリメトキシシランが含まれているハードコート用組成液を採用した。ついで、このハードコート用組成液に上述した基板10を漬浸した後、紫外線照射により硬化して、プラスチックレンズより成る基板10上に硬化膜11を成膜した。
上述したように硬化膜11を有するプラスチックレンズより成る基板10の表面に、反射防止膜2の下地層としても機能する1層目の低屈折率層(第1層)21を成膜した。続いてその上に2層目の高屈折率層(第2層)22、3層目の低屈折率層(第3層)23、4層目の高屈折率層(第4層)24、5層目の低屈折率層(第5層)25、6層目の高屈折率層(第6層)26、7層目の低屈折率層(第7層)27を成膜して、反射防止膜2を形成した。この例においては、低屈折率層21,23,25及び27として珪素酸化物(SiO2)を用い、また高屈折率層22,24及び26としてニオブ酸化物(Nb2O3)を用いた。各層21~27はイオンアシスト蒸着法により成膜した。このようにして形成した反射防止膜2の層構成、物質、屈折率、光学膜厚、物理膜厚を下記の表1に示す。なお、各層の成膜時の膜厚管理は、反射率測定器で測定される反射率から光学膜厚を算出する光学膜厚測定法で行った。反射率測定器は、オリンパス光学工業株式会社製のUSPM-RU型を使用した。また、表1中の光学膜厚は、λ=500nmの波長における光学膜厚(計算値nd/λ)を示しており、物理膜厚はこの値から算出される膜厚を示している。
比較例として、上記実施例の構成のうち基板及び硬化膜の材料を同様とし、反射防止膜については低屈折率層及び高屈折率層の材料は同じであるが、膜厚構成が異なる光学素子を作製した。比較例における反射防止膜の層構成、物質、屈折率、光学膜厚及び物理膜厚を下記の表2に示す。
第1層:0.064~0.072
第2層:0.065~0.075
第3層:0.137~0.153
第4層:0.154~0.178
第5層:0.088~0.098
第6層:0.139~0.161
第7層:0.273~0.306
なお、この光学膜厚の値は波長λ=500nmでの計算値(nd/λ)である。
したがって、本発明においては、反射防止膜の基板側の第1層である低屈折率層の光学膜厚を、波長λ=500nmの光に対して0.1λ以下とすることが好ましい。
このため、この第1層の光学膜厚としては、0.03λ以上0.1λ以下(λ=500nm)とすることが好ましいといえる。特に、低屈折率層としてSiO2、高屈折率層としてNb2O3を用いる場合は、0.05λ以上0.08λ以下とすることがより好ましい。
Claims (7)
- 光透過性の基板の少なくとも一方の面に、低屈折率層と高屈折率層とが交互に積層されて成る反射防止膜が形成され、
前記反射防止膜は、前記基板の表面に対して垂直方向を0°とした場合に、0°以上45°以下の範囲の入射角で入射される波長380nm以上780nm以下の可視領域の光に対して、反射率が10%以下とされ、かつ、刺激純度範囲が10%以下とされて成る
光学素子。 - 前記反射防止膜の前記基板側から第1層が低屈折率層であり、その光学膜厚が0.03λ以上0.1λ以下(λ=500nm)である請求項1に記載の光学素子。
- 前記反射防止層の前記基板側から第3層が低屈折率層であり、その光学膜厚が0.1λ以上0.2λ以下(λ=500nm)である請求項2に記載の光学素子。
- 前記反射防止膜は、低屈折率層が珪素酸化物であり、高屈折率層がニオブ酸化物である請求項1乃至請求項3のいずれか1項に記載の光学素子。
- 前記基板の屈折率が1.5以上1.8以下である請求項1乃至請求項4のいずれか1項に記載の光学素子。
- 前記反射防止膜と前記基板との間に、更に、硬化膜が形成されている請求項1乃至請求項5のいずれか1項に記載の光学素子。
- 低屈折率層と高屈折率層とが交互に積層され、
表面に対して垂直方向を0°とした場合に、0°以上45°以下の範囲の入射角で入射される波長380nm以上780nm以下の可視領域の光に対して、反射率が10%以下とされ、かつ、刺激純度範囲が10%以下とされて成る
反射防止膜。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010510103A JPWO2009133833A1 (ja) | 2008-04-30 | 2009-04-27 | 光学素子及び反射防止膜 |
US12/988,754 US8481148B2 (en) | 2008-04-30 | 2009-04-27 | Optical device and antireflection film |
EP09738770A EP2275843A4 (en) | 2008-04-30 | 2009-04-27 | OPTICAL DEVICE AND ANTIREFLECTION FILM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008119081 | 2008-04-30 | ||
JP2008-119081 | 2008-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009133833A1 true WO2009133833A1 (ja) | 2009-11-05 |
Family
ID=41255049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/058243 WO2009133833A1 (ja) | 2008-04-30 | 2009-04-27 | 光学素子及び反射防止膜 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8481148B2 (ja) |
EP (1) | EP2275843A4 (ja) |
JP (1) | JPWO2009133833A1 (ja) |
WO (1) | WO2009133833A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012023371A1 (ja) * | 2010-08-20 | 2012-02-23 | 東海光学株式会社 | 光学製品及び眼鏡プラスチックレンズ |
JP2016186661A (ja) * | 2016-07-19 | 2016-10-27 | Hoya株式会社 | 光学部材 |
JP2020076883A (ja) * | 2018-11-08 | 2020-05-21 | 北川工業株式会社 | 反射防止フィルム |
JP2021167968A (ja) * | 2012-05-16 | 2021-10-21 | エシロール アンテルナショナルEssilor International | 眼用レンズ |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2597496A4 (en) * | 2010-07-24 | 2015-11-11 | Konica Minolta Holdings Inc | NEAR-FRET REFLECTIVE FILM AND SOON-FROSTED REFLECTING BODY THEREWITH |
EP2703851B1 (en) * | 2011-04-28 | 2016-05-25 | Asahi Glass Company, Limited | Antireflection stack |
US9366784B2 (en) | 2013-05-07 | 2016-06-14 | Corning Incorporated | Low-color scratch-resistant articles with a multilayer optical film |
US9359261B2 (en) | 2013-05-07 | 2016-06-07 | Corning Incorporated | Low-color scratch-resistant articles with a multilayer optical film |
US9703011B2 (en) | 2013-05-07 | 2017-07-11 | Corning Incorporated | Scratch-resistant articles with a gradient layer |
US9684097B2 (en) | 2013-05-07 | 2017-06-20 | Corning Incorporated | Scratch-resistant articles with retained optical properties |
US9110230B2 (en) | 2013-05-07 | 2015-08-18 | Corning Incorporated | Scratch-resistant articles with retained optical properties |
AU2014324967B2 (en) | 2013-09-30 | 2018-06-28 | Hoya Lens Thailand Ltd. | Transparent plastic substrate and plastic lens |
ES2536827B1 (es) * | 2013-11-27 | 2015-12-18 | Indo Optical S.L. | Lente oftálmica que comprende una base de material polimérico con un recubrimiento con una estructura multicapa interferencial antireflejante, antiiridiscente y con filtro IR |
JP6451057B2 (ja) * | 2014-02-04 | 2019-01-16 | 東海光学株式会社 | 可視域反射防止近赤外域透過抑制光学製品並びに眼鏡レンズ及び眼鏡 |
US9291746B2 (en) * | 2014-02-25 | 2016-03-22 | iCoat Company, LLC | Visible spectrum anti-reflective coatings with reduced reflections in ultraviolet and infrared spectral bands |
US9471717B2 (en) * | 2014-03-20 | 2016-10-18 | GE Lighting Solutions, LLC | Reflector and optical coating for improved LED lighting system |
US9335444B2 (en) | 2014-05-12 | 2016-05-10 | Corning Incorporated | Durable and scratch-resistant anti-reflective articles |
US11267973B2 (en) | 2014-05-12 | 2022-03-08 | Corning Incorporated | Durable anti-reflective articles |
US9790593B2 (en) | 2014-08-01 | 2017-10-17 | Corning Incorporated | Scratch-resistant materials and articles including the same |
EP3037851B1 (en) * | 2014-12-23 | 2019-07-03 | Essilor International | Adaptation layer for antireflective designs on lenses of various refractive indexes |
JP6582465B2 (ja) * | 2015-03-17 | 2019-10-02 | コニカミノルタ株式会社 | 投影レンズおよびプロジェクター |
JP6581653B2 (ja) * | 2015-05-11 | 2019-09-25 | 株式会社ニコン・エシロール | 眼鏡レンズ |
JP2018536177A (ja) | 2015-09-14 | 2018-12-06 | コーニング インコーポレイテッド | 高光線透過性かつ耐擦傷性反射防止物品 |
EP3151041B1 (en) * | 2015-10-02 | 2019-02-20 | Tokai Optical Co., Ltd. | An optical film and spectacle lens |
CN106855434B (zh) * | 2016-12-29 | 2018-09-04 | 四川旭虹光电科技有限公司 | 玻璃的选择方法 |
KR101926960B1 (ko) * | 2017-02-10 | 2018-12-07 | 주식회사 케이씨씨 | 저반사 코팅 유리 |
CN111936891B (zh) * | 2018-03-02 | 2023-03-24 | 康宁公司 | 抗反射涂层及制品与形成抗反射涂层及制品的方法 |
KR102591065B1 (ko) | 2018-08-17 | 2023-10-19 | 코닝 인코포레이티드 | 얇고, 내구성 있는 반사-방지 구조를 갖는 무기산화물 물품 |
US10830930B1 (en) | 2019-09-09 | 2020-11-10 | Apple Inc. | Antireflective infrared cut filter coatings for electronic devices |
TWI707169B (zh) | 2019-11-29 | 2020-10-11 | 大立光電股份有限公司 | 成像鏡頭、相機模組及電子裝置 |
JP7347203B2 (ja) * | 2019-12-25 | 2023-09-20 | コニカミノルタ株式会社 | 反射防止膜付き光学レンズ、投影レンズ及び投影レンズ光学系 |
CN113866851A (zh) * | 2020-06-30 | 2021-12-31 | 宸美(厦门)光电有限公司 | 膜层结构与透光基板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000280738A (ja) * | 1999-03-31 | 2000-10-10 | Nippon Sheet Glass Co Ltd | 自動車低反射着色膜被覆フロントガラス窓 |
JP2001074903A (ja) | 1999-09-03 | 2001-03-23 | Nikon Corp | 反射防止膜及び光学素子 |
JP2004077989A (ja) * | 2002-08-21 | 2004-03-11 | Hoya Corp | 光学部材及び反射防止膜 |
JP2005215038A (ja) * | 2004-01-27 | 2005-08-11 | Seiko Epson Corp | 眼鏡レンズ |
JP2006126233A (ja) * | 2004-10-26 | 2006-05-18 | Seiko Epson Corp | 反射防止膜付き眼鏡レンズ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5314227B2 (ja) * | 1973-06-18 | 1978-05-16 | ||
EP0918044A1 (en) | 1997-11-19 | 1999-05-26 | Glaverbel | Solar control glazing |
AUPP740798A0 (en) * | 1998-11-30 | 1998-12-24 | Sola International Holdings Ltd | Customised coated lens |
JP2001116921A (ja) * | 1999-10-15 | 2001-04-27 | Sony Corp | 光学部品及びその製造方法並びに光学部品の製造装置 |
-
2009
- 2009-04-27 EP EP09738770A patent/EP2275843A4/en not_active Withdrawn
- 2009-04-27 WO PCT/JP2009/058243 patent/WO2009133833A1/ja active Application Filing
- 2009-04-27 JP JP2010510103A patent/JPWO2009133833A1/ja active Pending
- 2009-04-27 US US12/988,754 patent/US8481148B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000280738A (ja) * | 1999-03-31 | 2000-10-10 | Nippon Sheet Glass Co Ltd | 自動車低反射着色膜被覆フロントガラス窓 |
JP2001074903A (ja) | 1999-09-03 | 2001-03-23 | Nikon Corp | 反射防止膜及び光学素子 |
JP2004077989A (ja) * | 2002-08-21 | 2004-03-11 | Hoya Corp | 光学部材及び反射防止膜 |
JP2005215038A (ja) * | 2004-01-27 | 2005-08-11 | Seiko Epson Corp | 眼鏡レンズ |
JP2006126233A (ja) * | 2004-10-26 | 2006-05-18 | Seiko Epson Corp | 反射防止膜付き眼鏡レンズ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2275843A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012023371A1 (ja) * | 2010-08-20 | 2012-02-23 | 東海光学株式会社 | 光学製品及び眼鏡プラスチックレンズ |
JP2012042830A (ja) * | 2010-08-20 | 2012-03-01 | Tokai Kogaku Kk | 光学製品及び眼鏡プラスチックレンズ |
CN103026268A (zh) * | 2010-08-20 | 2013-04-03 | 东海光学株式会社 | 光学制品和眼镜塑料镜片 |
EP2589992A1 (en) * | 2010-08-20 | 2013-05-08 | Tokai Optical Co., Ltd. | Optical product and plastic eyeglass lens |
KR20130137131A (ko) * | 2010-08-20 | 2013-12-16 | 토카이 옵티칼 주식회사 | 광학 제품 및 안경 플라스틱 렌즈 |
EP2589992A4 (en) * | 2010-08-20 | 2014-01-15 | Tokai Optical Co Ltd | OPTICAL PRODUCT AND LENS OF PLASTIC GOGGLES |
US8908275B2 (en) | 2010-08-20 | 2014-12-09 | Tokai Optical Co., Ltd. | Optical product and spectacle plastic lens |
KR101872906B1 (ko) * | 2010-08-20 | 2018-06-29 | 토카이 옵티칼 주식회사 | 광학 제품 및 안경 플라스틱 렌즈 |
JP2021167968A (ja) * | 2012-05-16 | 2021-10-21 | エシロール アンテルナショナルEssilor International | 眼用レンズ |
JP7279112B2 (ja) | 2012-05-16 | 2023-05-22 | エシロール アンテルナショナル | 眼用レンズ |
JP2016186661A (ja) * | 2016-07-19 | 2016-10-27 | Hoya株式会社 | 光学部材 |
JP2020076883A (ja) * | 2018-11-08 | 2020-05-21 | 北川工業株式会社 | 反射防止フィルム |
Also Published As
Publication number | Publication date |
---|---|
EP2275843A1 (en) | 2011-01-19 |
US8481148B2 (en) | 2013-07-09 |
EP2275843A4 (en) | 2013-02-06 |
JPWO2009133833A1 (ja) | 2011-09-01 |
US20110033681A1 (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009133833A1 (ja) | 光学素子及び反射防止膜 | |
US11573431B1 (en) | Optical lens comprising an antireflective coating with multiangular efficiency | |
CN107003545B (zh) | 眼镜镜片及眼镜 | |
JP5586017B2 (ja) | 光学製品及び眼鏡プラスチックレンズ | |
CN106662671B (zh) | 包括在紫外区和可见区内均具有低反射的减反射涂层的光学制品 | |
AU2015227886A1 (en) | Mirror-coated lens | |
JP2016523385A (ja) | 可視領域において非常に低い反射を有する反射防止被覆を含む光学物品 | |
CN110140079B (zh) | 眼镜镜片及眼镜 | |
KR102258691B1 (ko) | 광학 제품 및 안경 렌즈 | |
CN107111000A (zh) | 包括在紫外区域具有高反射率的干涉涂层的光学物品 | |
JP7136909B2 (ja) | 眼鏡レンズ | |
JP6016155B2 (ja) | 光学製品及び眼鏡プラスチックレンズ | |
KR102582202B1 (ko) | 안경 렌즈 | |
WO2018155213A1 (ja) | プラスチック眼鏡レンズ及び眼鏡 | |
WO2020067408A1 (ja) | 眼鏡レンズ | |
CN112534339B (zh) | 眼镜透镜以及眼镜 | |
CN106556882B (zh) | 光学制品和眼镜镜片 | |
WO2020066532A1 (ja) | 眼鏡レンズ及び眼鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09738770 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010510103 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009738770 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12988754 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |