WO2020067408A1 - 眼鏡レンズ - Google Patents

眼鏡レンズ Download PDF

Info

Publication number
WO2020067408A1
WO2020067408A1 PCT/JP2019/038102 JP2019038102W WO2020067408A1 WO 2020067408 A1 WO2020067408 A1 WO 2020067408A1 JP 2019038102 W JP2019038102 W JP 2019038102W WO 2020067408 A1 WO2020067408 A1 WO 2020067408A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectacle lens
reflectance
lens
wavelength band
less
Prior art date
Application number
PCT/JP2019/038102
Other languages
English (en)
French (fr)
Inventor
聡 宮本
Original Assignee
ホヤ レンズ タイランド リミテッド
聡 宮本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 聡 宮本 filed Critical ホヤ レンズ タイランド リミテッド
Priority to JP2020549425A priority Critical patent/JP7136908B2/ja
Priority to KR1020217011750A priority patent/KR20210054576A/ko
Priority to CN201980063269.5A priority patent/CN112840264B/zh
Priority to US17/279,906 priority patent/US11835800B2/en
Priority to EP19864195.3A priority patent/EP3859435A4/en
Priority to KR1020237042820A priority patent/KR20230172041A/ko
Publication of WO2020067408A1 publication Critical patent/WO2020067408A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/102Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/104Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/107Interference colour filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to spectacle lenses.
  • Patent Document 1 discloses a spectacle lens that suppresses light in the blue region of visible light from entering the eyes of a spectacle lens wearer. According to Patent Document 1, the wavelength in the blue region to be cut off is described as 380 to 500 nm. Strictly speaking, the wavelength of violet is 380 to 450 nm, and the wavelength of blue is 450 to 500 nm.
  • the spectacle lens described in Patent Literature 1 is an optical component including a plastic substrate and a multilayer film provided on at least a convex surface of both surfaces including a convex surface and a concave surface of the plastic substrate, wherein the multilayer film Has an average reflectance of 2 to 10% in a wavelength range of 400 to 500 nm ([0008] of Patent Document 1).
  • the spectacle lens described in Patent Literature 1 In the spectacle lens described in Patent Literature 1, light in the blue region is blocked by increasing the reflectance with respect to the blue region. Therefore, the spectacle lens is also called a blue cut lens.
  • the reflected light in the blue region that has been multiple-reflected within the lens is given to the wearer's eyes despite the fact that the blue-cut lens is named. It has been found that there is a risk of entry.
  • An object of one embodiment of the present invention is to provide a blue-cut lens including reflected light.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems.
  • the multilayer film on each side of the spectacle lens is provided with a blue cut function (reflectance), and the blue cut function having the same tendency in the relationship between the wavelength and the reflectivity is determined as the respective spectacle lens. It has been found that the above problem can be solved by providing a difference between the height of the blue cut function on one surface and the height of the blue cut function on the other surface while using the surface. .
  • a first aspect of the present invention provides: A spectacle lens comprising a multilayer film on both surfaces of a lens substrate, The sum of the average reflectances in the wavelength band of 400 to 440 nm on each surface of the spectacle lens is 20.0% or more; The reflectance of each surface of the spectacle lens has at least one maximum value in the wavelength band, In the spectacle lens, in the wavelength band, there is a difference between the average reflectance on one surface of the spectacle lens and the average reflectance on the other surface.
  • a second aspect of the present invention is an aspect according to the first aspect, wherein In the wavelength band, a ratio of an average reflectance on one surface to an average reflectance on one surface of the spectacle lens is more than 0 and 0.9 or less.
  • a third aspect of the present invention is an aspect according to the first or second aspect, wherein In the wavelength band, the average reflectance on the object-side surface of the eyeglass lens is smaller than the average reflectance on the eyeball-side surface.
  • a fourth aspect of the present invention is an aspect according to any one of the first to third aspects, wherein The sum of the average reflectances in the wavelength band of 500 to 570 nm on each surface of the spectacle lens is 1.0% or less.
  • a fifth aspect of the present invention is an aspect according to any one of the first to fourth aspects, wherein The sum of the luminous reflectances on each surface of the spectacle lens is 2.0% or less.
  • a sixth aspect of the present invention is the aspect according to the fifth aspect, wherein The maximum sum of the maximum values in the reflectance of each surface of the spectacle lens is 60.0% or less.
  • a seventh aspect of the present invention is an aspect according to any one of the first to sixth aspects, wherein:
  • Each multilayer film on each surface of the spectacle lens includes at least one high-refractive-index layer and at least one low-refractive-index layer, and the total number of layers is 10 or less.
  • An eighth aspect of the present invention is an aspect according to any one of the first to seventh aspects, wherein:
  • the sum of the average reflectances in the wavelength band of 500 to 570 nm on each surface of the spectacle lens is preferably less than 1.0%, more preferably 0.5% or less.
  • a ninth aspect of the present invention is an aspect according to any one of the first to eighth aspects, wherein:
  • the sum of the luminous reflectance on each surface of the spectacle lens is preferably less than 2.0%, more preferably 1.8% or less.
  • a tenth aspect of the present invention is an aspect according to any one of the first to ninth aspects, wherein The moving average of the reflectance at 10 points before and after the predetermined point a in the plot of the relationship between the wavelength (horizontal axis) and the reflectance (vertical axis) (that is, 21 points including the point a in total) is calculated.
  • the reflectance of each surface of the spectacle lens preferably has at least one maximum value in a wavelength band of 400 to 440 nm.
  • An eleventh aspect of the present invention is the aspect described in any one of the first to tenth aspects,
  • the maximum value in the wavelength band of 400 to 440 nm (the maximum value when there are a plurality of maximum values) is preferably also the maximum value in the wavelength band of 400 to 440 nm.
  • a twelfth aspect of the present invention is an aspect according to any one of the first to eleventh aspects,
  • Each multilayer film on each surface of the spectacle lens includes at least one high refractive index layer and at least one low refractive index layer, and the total number of layers is preferably 9 or less, more preferably 8 or less.
  • a thirteenth aspect of the present invention is the aspect described in any one of the first to twelfth aspects,
  • the sum of the average reflectances in the wavelength band of 400 to 440 nm on each surface of the spectacle lens is 20.0% or more, preferably more than 20.0%, and more preferably 25% or more.
  • a fourteenth aspect of the present invention is an aspect according to any one of the first to thirteenth aspects,
  • the sum of the average reflectances in the wavelength band of 360 to 400 nm on each surface of the spectacle lens is 6.0% or less, preferably less than 6.0%, and more preferably 5.0% or less.
  • a fifteenth aspect of the present invention is an aspect according to any one of the first to fourteenth aspects,
  • the sum of the average reflectances in the wavelength band of 480 to 680 nm on each surface of the spectacle lens is 2.0% or less, preferably less than 2.0%, and more preferably 1.5% or less.
  • a sixteenth aspect of the present invention is an aspect according to any one of the first to fifteenth aspects, wherein In the wavelength band of 400 to 440 nm, the ratio of the average reflectance on one surface to the average reflectance on one surface of the spectacle lens is 0.3 (or 0.4) to 0.9.
  • a seventeenth aspect of the present invention is an aspect according to any one of the first to sixteenth aspects, In the wavelength band of 400 to 440 nm, the ratio of the average reflectance on one surface to the average reflectance on one surface of the spectacle lens is more than 0 and less than 0.3 (or less than 0.4).
  • An eighteenth aspect of the present invention is an aspect according to any one of the first to seventeenth aspects, wherein In a wavelength band of 400 to 440 nm, the ratio of the average reflectance on one surface to the average reflectance on one surface of the spectacle lens is more than 0.9 and less than 1.0.
  • a blue-cut lens including reflected light can be provided.
  • FIG. 1 is a diagram illustrating a spectral reflection spectrum obtained by measurement on the object-side surface and the eyeball-side surface of the spectacle lens of Example 1.
  • the average reflectance in the present invention and in the present specification refers to an arithmetic average value of the normal incidence reflectance measured at an arbitrary wavelength (at an arbitrary pitch) in a wavelength range of a measurement object at an optical center of a surface of the measurement object.
  • the measurement wavelength interval (pitch) can be arbitrarily set within a range of, for example, 1 to 5 nm.
  • the reflection spectral characteristics such as the reflectance in the present invention and the present specification indicate direct incident reflection spectral characteristics.
  • the “luminous reflectance” is measured in accordance with JIS T 7334: 2011.
  • the "eyeball-side surface” refers to a surface arranged on the eyeball side when spectacles equipped with spectacle lenses are worn by a wearer
  • an "object-side surface” Means a surface arranged on the object side.
  • to indicates a value equal to or more than a predetermined value and equal to or less than a predetermined value.
  • a spectacle lens according to one embodiment of the present invention A spectacle lens according to one embodiment of the present invention, A spectacle lens comprising a multilayer film on both surfaces of a lens substrate, The sum of the average reflectances in the wavelength band of 400 to 440 nm on each surface of the spectacle lens is 20.0% or more; The reflectance of each surface of the spectacle lens has at least one maximum value in the wavelength band, In the spectacle lens, in the wavelength band, there is a difference between the average reflectance on one surface of the spectacle lens and the average reflectance on the other surface.
  • the reflectance of each surface of the spectacle lens has at least one maximum value in a wavelength band of 400 to 440 nm.
  • This maximum value is also preferably the maximum value in the wavelength band of 400 to 440 nm.
  • the definition of the maximum value is the same for the multilayer film on both surfaces in terms of the relationship between wavelength and reflectance (for example, both plots when the horizontal axis is wavelength (nm) and the vertical axis is reflectance (%)). Represents a blue cut function).
  • the multilayer film on both surfaces effectively reflects light in the wavelength band of 400 to 440 nm, so that the effect of blocking light in the blue region is ensured.
  • transmission of visible light can be ensured well.
  • At least one is obtained by smoothing the plots in the wavelength band of 400 to 440 nm in the two plots.
  • a moving average of the reflectance at 10 points before and after the predetermined point a of the plot (that is, a total of 21 points including the point a) is taken, and the moving average value is calculated as a new reflectance at the point a. May be performed. Accordingly, it is possible to exclude a case where a plurality of local maxima exist due to fine vibrations in the plot, and to define that both the plots are upwardly convex macroscopically.
  • a blue cut lens including reflected light can be provided.
  • the sum of the average reflectances in the wavelength band of 500 to 570 nm on each surface of the spectacle lens is 1.0% or less (preferably less than 1.0%, more preferably 0.5% or less). preferable.
  • Light in the wavelength band of 500 to 570 nm is green light. According to the above definition, it is possible to suppress the reflection of green light that greatly contributes to the luminous reflectance.
  • the sum of the luminous reflectances on each surface of the spectacle lens is preferably 2.0% or less (preferably less than 2.0%, more preferably 1.8% or less). According to the above definition, it is possible to suppress the occurrence of glare due to the reflected light on the spectacle lens.
  • the sum of the local maximum values (the maximum local maximum value when there are a plurality of local maximum values) in the wavelength band of 400 to 440 nm in the reflectance of each surface of the spectacle lens is preferably 60.0% or less. According to this definition, as described in the section of the problem, it is possible to suppress a tendency that the reflectance for visible light other than the blue region also increases accompanying the increase in the reflectance for the blue region. As a result, transmission of visible light can be satisfactorily ensured.
  • the following configuration is required. It is preferable to employ it. That is, in the wavelength band of 400 to 440 nm, the other surface (the average reflectance is equal to or lower than the average reflectance on one surface of the spectacle lens (the surface with the higher average reflectance, the surface on the eyeball side in Example 1 described later). It is preferable that the ratio of the average reflectance on the lower side, that is, on the object side in Example 1 described later) is 0.3 (preferably 0.4) to 0.9. As described above, of the light in the blue region, light in the violet region should be particularly blocked.
  • the sum of the average reflectances of the respective surfaces is set to 20.0% or more. Accordingly, by setting the ratio of the average reflectance in the purple region on each surface to 0.3 to 0.9, it is possible to prevent one surface from affecting the transmission of visible light due to a particularly high reflectance. Can be suppressed in advance.
  • the ratio of the average reflectance in the wavelength band of 400 to 440 nm is more than 0 and less than 0.3 (or less than 0.4), the multiple reflection light in the blue region is more reliably eliminated. Can be. With this range, the effect of blocking the light in the blue region is reduced on one surface of the spectacle lens.
  • the one-sided multilayer film may be provided with a property of further reducing the luminous reflectance.
  • the ratio of the average reflectance is more than 0.9 and less than 1.0, the color of the reflected light and the reflection intensity on both surfaces look the same, so that a sense of unity in appearance increases, Is good.
  • the ratio of the average reflectance may be selected depending on which of the above listed advantages is adopted. In other words, in one embodiment of the present invention, there is a degree of freedom in which of the above-listed advantages is adopted.
  • Example 1 in the wavelength band of 400 to 440 nm, the average reflectance of the surface on the object side is smaller than the average reflectance of the surface on the eyeball side.
  • the average reflectance of the surface on the object side is smaller than the average reflectance of the surface on the eyeball side.
  • Each multilayer film on each surface of the spectacle lens includes at least one high-refractive-index layer and at least one low-refractive-index layer, and has a total number of 10 or less (preferably 9 or less, more preferably 8 or less) The following is preferred.
  • the sum of the average reflectances of the respective surfaces is 20.0% or more (preferably more than 20.0%) in the violet region (400 to 440 nm) to be cut off. , More preferably 25% or more). That is, the reflectance may be locally increased in the purple region.
  • the sum of the average reflectances of the respective surfaces is set to 6.0% or less (preferably less than 6.0%, more preferably 5.0% or less). Is also good. That is, contrary to the case of the purple region (400 to 440 nm), the reflectance may be locally reduced.
  • the sum of the average reflectances of the respective surfaces is 2.0% or less (preferably less than 2.0%, more preferably 1% or less). 0.5% or less).
  • the reflectance may be locally reduced particularly in a main wavelength band of visible light.
  • the multilayer films provided on the eyeball-side surface and the object-side surface of the lens substrate can impart the spectroscopic characteristics to the spectacle lens.
  • the multilayer film is provided directly on the surface of the lens substrate or indirectly via one or more other layers.
  • the lens substrate is not particularly limited, but may be glass or allyl carbonate resin such as styrene resin including (meth) acrylic resin, polycarbonate resin, allyl resin, diethylene glycol bisallyl carbonate resin (CR-39), vinyl resin A polyester resin, a polyether resin, a urethane resin obtained by reacting an isocyanate compound with a hydroxy compound such as diethylene glycol, a thiourethane resin obtained by reacting an isocyanate compound with a polythiol compound, and one or more disulfide bonds in the molecule. And a transparent resin obtained by curing a polymerizable composition containing a (thio) epoxy compound. Also, inorganic glass can be used.
  • styrene resin including (meth) acrylic resin, polycarbonate resin, allyl resin, diethylene glycol bisallyl carbonate resin (CR-39), vinyl resin
  • a polyester resin a polyether resin, a urethane resin obtained by reacting an isocyanate compound
  • an unstained one colorless lens
  • a dyed one dyed one
  • the refractive index of the lens substrate is, for example, about 1.60 to 1.75.
  • the refractive index of the lens substrate is not limited to this, and may be within the above range or may be vertically separated from the above range.
  • the spectacle lens can be various lenses such as a single focus lens, a multifocal lens, and a progressive-power lens.
  • the type of lens is determined by the surface shape of both surfaces of the lens substrate.
  • the lens substrate surface may be any of a convex surface, a concave surface, and a flat surface.
  • the surface on the object side is convex
  • the surface on the eyeball side is concave.
  • the present invention is not limited to this.
  • the multilayer film for imparting the above-mentioned reflection spectral characteristics may be provided directly on the surface of the lens substrate, or may be provided indirectly via one or more other layers.
  • the layer that can be formed between the lens substrate and the multilayer film include a hard coat layer (hereinafter, also referred to as “hard coat”).
  • hard coat layer By providing the hard coat layer, the spectacle lens can be provided with scratch resistance (scratch resistance), and the durability (strength) of the spectacle lens can be increased.
  • a primer layer for improving adhesion may be formed between the lens substrate and the coating.
  • the primer layer refer to paragraphs 0029 to 0030 of JP-A-2012-128135, for example.
  • the multilayer films provided on the eyeball-side surface and the object-side surface of the lens substrate are not particularly limited as long as the spectroscopic characteristics described above can be imparted to the surface of the spectacle lens having these multilayer films. is not.
  • Such a multilayer film can be preferably formed by sequentially laminating a high refractive index layer and a low refractive index layer. More specifically, based on the refractive index of the film material for forming the high refractive index layer and the low refractive index layer, and the wavelength of light to be reflected or light to be reduced, each layer is subjected to optical simulation by a known method.
  • the film-forming material may be an inorganic material, an organic material, or an organic-inorganic composite material, and is preferably an inorganic material from the viewpoint of film formation and availability.
  • zirconium oxide for example, ZrO 2
  • tantalum oxide Ta 2 O 5
  • titanium oxide for example, TiO 2
  • aluminum oxide Al 2 O 3
  • yttrium oxide eg, Y 2 O 3
  • hafnium oxide eg, HfO 2
  • niobium oxide eg, Nb 2 O 5
  • the low-refractive-index material for forming the low-refractive-index layer is an oxide selected from the group consisting of silicon oxide (eg, SiO 2 ), magnesium fluoride (eg, MgF 2 ), and barium fluoride (eg, BaF 2 ). Or a mixture of two or more kinds of compounds or fluorides.
  • oxides and fluorides are represented by stoichiometric compositions, but those in which oxygen or fluorine is deficient or excessive from the stoichiometric composition are also high refractive index materials or low refractive index materials. It can be used as a material.
  • the thickness of each layer included in the multilayer film can be determined by optical simulation.
  • the layer configuration of the multilayer film for example, from the lens substrate side to the lens outermost surface side, First layer (low refractive index layer) / second layer (high refractive index layer) / third layer (low refractive index layer) / fourth layer (high refractive index layer) / fifth layer (low refractive index layer) / A configuration in which the sixth layer (high refractive index layer) / the seventh layer (low refractive index layer) are laminated in this order; First layer (high refractive index layer) / second layer (low refractive index layer) / third layer (high refractive index layer) / fourth layer (low refractive index layer) / fifth layer (high refractive index layer) / A configuration in which the sixth layer (low-refractive index layer) is laminated in this order; And the like.
  • a combination of a film containing silicon oxide as a main component and a film containing zirconium oxide as a main component, and a film containing silicon oxide as a main component As an example of a preferred combination of a low refractive index layer and a high refractive index layer, a combination of a film containing silicon oxide as a main component and a film containing zirconium oxide as a main component, and a film containing silicon oxide as a main component.
  • a combination with a film containing niobium oxide as a main component can be mentioned, and a multilayer film including at least one laminated structure in which these two-layer films are adjacent to each other can be exemplified as a preferable example of the multilayer film.
  • each of the above-mentioned layers is a coating mainly composed of the above-mentioned high refractive index material or low refractive index material.
  • the main component is a component that occupies the largest amount in the coating film, and is usually a component that occupies about 50% by mass to 100% by mass, and more preferably about 90% by mass to 100% by mass.
  • Such a film can be formed by performing film formation using a film formation material (for example, an evaporation source) containing the above material as a main component.
  • the main components of the film forming material are the same as above.
  • Coatings and film-forming materials may contain trace amounts of impurities that are inevitably mixed, and also assist other components, such as other inorganic substances and film formation, within a range that does not impair the function of the main component.
  • a known additive component that plays a role may be included.
  • Film formation can be performed by a known film formation method, and is preferably performed by vapor deposition from the viewpoint of easy film formation.
  • the vapor deposition in the present invention includes a dry method, for example, a vacuum vapor deposition method, an ion plating method, a sputtering method and the like. In the vacuum evaporation method, an ion beam assist method in which an ion beam is simultaneously irradiated during the evaporation may be used.
  • the multilayer film is formed by a deposition using a conductive oxide-based coating, preferably a conductive oxide-based deposition source, in addition to the high refractive index layer and the low refractive index layer described above.
  • a conductive oxide-based coating preferably a conductive oxide-based deposition source
  • One or more conductive oxide layers to be formed can be included in any position of the multilayer film.
  • the conductive oxide from the viewpoint of the transparency of the spectacle lens, generally known as a transparent conductive oxide, such as indium oxide, tin oxide, zinc oxide, titanium oxide, and composite oxides thereof. It is preferable to use various conductive oxides.
  • Particularly preferred conductive oxides from the viewpoint of transparency and conductivity include tin oxide and indium-tin oxide (ITO).
  • a further functional film on the multilayer film.
  • a functional film examples include various functional films such as a water-repellent or hydrophilic antifouling film, an antifogging film, a polarizing film, and a light control film.
  • Known techniques can be applied to these functional films without any restrictions.
  • a further aspect of the present invention can also provide eyeglasses including the spectacle lens according to one embodiment of the present invention described above and a frame to which the eyeglass lens is attached.
  • the spectacle lens is as described in detail above.
  • Other configurations of the glasses are not particularly limited, and a known technique can be applied.
  • a further aspect of the present invention can also provide a method for manufacturing a spectacle lens according to one aspect of the present invention described above.
  • the refractive index is a refractive index at a wavelength of 500 nm.
  • Example 1 A plastic lens substrate having a convex surface on the object side and a concave surface on the eyeball side (trade name: HL manufactured by HOYA CORPORATION, refractive index: 1.50, colorless)
  • HL convex surface on the eyeball side
  • N 2 nitrogen gas
  • the multilayer vapor-deposited film is formed from the lens substrate side (hard coat side) toward the surface of the spectacle lens using the vapor deposition sources shown in Table 1 for the first and second layers.
  • the outermost layer on the front side of the spectacle lens is the seventh layer.
  • an evaporation source made of the following oxides was used except for impurities that might be inevitably mixed.
  • the reflection spectral characteristics were controlled by changing the thickness of one or more of the following layers.
  • a spectrophotometer F10-AR manufactured by Filmetrics Co., Ltd. was used in a wavelength range of 280 to 780 nm.
  • the spectral reflection spectrum was measured (measuring pitch: 1 nm).
  • the non-measurement surface was painted in glossless black as described in Section 5.2 of JIS T 7334.
  • FIG. 1 is a diagram showing a spectral reflection spectrum obtained by measurement on the object-side surface and the eyeball-side surface of the spectacle lens of Example 1.
  • Table 2 below summarizes the average reflectance on the object-side surface and the eyeball-side surface for each wavelength band, and the sum of the average reflectance on each surface.
  • each condition of the average reflectance in the spectacle lens of one embodiment of the present invention is satisfied.
  • the wearer did not recognize the multiple reflection light in the blue region.
  • the present invention is useful in the field of manufacturing spectacle lenses and spectacles.

Abstract

レンズ基材の両面に多層膜を備える眼鏡レンズであって、眼鏡レンズの各面における400~440nmの波長帯域での平均反射率の和は20.0%以上であり、眼鏡レンズの各面の反射率は波長帯域に少なくとも一つの極大値を有し、波長帯域において、眼鏡レンズの一面における平均反射率と、もう一面における平均反射率とで差がある、眼鏡レンズを提供する。

Description

眼鏡レンズ
 本発明は、眼鏡レンズに関する。
 眼鏡レンズの装用者の眼に対し、可視光線の青色領域の光が入り込むのを抑制する眼鏡レンズが特許文献1に記載されている。特許文献1だと遮断すべき該青色領域の波長は380~500nmと記載されている。厳密には、紫色の波長が380~450nmであり、青色の波長が450~500nmである。
 特許文献1に記載の眼鏡レンズは、プラスチック基材と、前記プラスチック基材の凸面及び凹面からなる両面の少なくとも凸面上に配設された多層膜とを備えた光学部品であって、前記多層膜は、400~500nmの波長範囲における平均反射率が2~10%である(特許文献1の[0008])。
特開2012-93639号公報
 特許文献1に記載の眼鏡レンズだと、前記青色領域に対する反射率を高くすることにより前記青色領域の光を遮断している。そのため、前記眼鏡レンズはブルーカットレンズとも言われる。その一方、本発明者の調べにより、従来のブルーカットレンズだと、ブルーカットという名前を冠しているにもかかわらず、レンズ内で多重反射した前記青色領域の反射光が装用者の眼に入り込むおそれがあることが明らかとなった。
 本発明の一実施例は、反射光を含めたうえでのブルーカットレンズを提供することを目的とする。
 本発明者は前記課題を解決すべく鋭意検討を行った。その結果、眼鏡レンズの各面の多層膜を共にブルーカット機能(反射率)を備えたものとし、且つ、前記ブルーカット機能が波長と反射率との関係で同傾向のものを眼鏡レンズの各面にて使用しつつ、一方の面の前記ブルーカット機能の高さと、もう一方の面の前記ブルーカット機能の高さとの間に差を設けることで、上記課題を解決できるということを知見した。
 本発明は、前記知見を基に案出されたものである。
 本発明の第1の態様は、
  レンズ基材の両面に多層膜を備える眼鏡レンズであって、
  前記眼鏡レンズの各面における400~440nmの波長帯域での平均反射率の和は20.0%以上であり、
 前記眼鏡レンズの各面の反射率は前記波長帯域に少なくとも一つの極大値を有し、
 前記波長帯域において、前記眼鏡レンズの一面における平均反射率と、もう一面における平均反射率とで差がある、眼鏡レンズである。
 本発明の第2の態様は、第1の態様に記載の態様であって、
 前記波長帯域において、前記眼鏡レンズの一面における平均反射率に対する、もう一面における平均反射率の割合は、0を超え且つ0.9以下である。
 本発明の第3の態様は、第1または第2の態様に記載の態様であって、
 前記波長帯域において、前記眼鏡レンズの物体側の面における平均反射率は、眼球側の面における平均反射率よりも小さい。
 本発明の第4の態様は、第1~第3のいずれかの態様に記載の態様であって、
 前記眼鏡レンズの各面における500~570nmの波長帯域での平均反射率の和は1.0%以下である。
 本発明の第5の態様は、第1~第4のいずれかの態様に記載の態様であって、
 前記眼鏡レンズの各面における視感反射率の和は2.0%以下である。
 本発明の第6の態様は、第5の態様に記載の態様であって、
 前記眼鏡レンズの各面の反射率における最大の前記極大値の和は60.0%以下である。
 本発明の第7の態様は、第1~第6のいずれかの態様に記載の態様であって、
 前記眼鏡レンズの各面における各多層膜は、高屈折率層および低屈折率層をそれぞれ1層以上含み、且つ、層総数が10層以下である。
 また、上記の態様に組み合わせ可能な他の態様を列挙すると以下のとおりである。
 本発明の第8の態様は、第1~第7のいずれかの態様に記載の態様であって、
 前記眼鏡レンズの各面における500~570nmの波長帯域での平均反射率の和は好適には1.0%未満、更に好適には0.5%以下である。
 本発明の第9の態様は、第1~第8のいずれかの態様に記載の態様であって、
 前記眼鏡レンズの各面における視感反射率の和は好適には2.0%未満、更に好適には1.8%以下である。
 本発明の第10の態様は、第1~第9のいずれかの態様に記載の態様であって、
 波長(横軸)と反射率(縦軸)との関係のプロットの所定の点aの前後10点(つまり点a含め合計21点)での反射率の移動平均をとり、その移動平均値を点aでの新たな反射率としてプロットの平滑化を行う場合、前記眼鏡レンズの各面の反射率は400~440nmの波長帯域に少なくとも一つの極大値を有するのが好ましい。
 本発明の第11の態様は、第1~第10のいずれかの態様に記載の態様であって、
 前記400~440nmの波長帯域の極大値(極大値が複数の場合は最大の極大値)は、好ましくは、前記400~440nmの波長帯域における最大値でもある。
 本発明の第12の態様は、第1~第11のいずれかの態様に記載の態様であって、
 前記眼鏡レンズの各面における各多層膜は、高屈折率層および低屈折率層をそれぞれ1層以上含み、且つ、層総数が好ましくは9層以下であり、更に好ましくは8層以下である。
 本発明の第13の態様は、第1~第12のいずれかの態様に記載の態様であって、
  前記眼鏡レンズの各面における400~440nmの波長帯域での平均反射率の和は20.0%以上、好適には20.0%を超え、更に好適には25%以上である。
 本発明の第14の態様は、第1~第13のいずれかの態様に記載の態様であって、
  前記眼鏡レンズの各面における360~400nmの波長帯域での平均反射率の和は6.0%以下、好適には6.0%未満、更に好適には5.0%以下である。
 本発明の第15の態様は、第1~第14のいずれかの態様に記載の態様であって、
 前記眼鏡レンズの各面における480~680nmの波長帯域での平均反射率の和は2.0%以下、好適には2.0%未満、更に好適には1.5%以下である。
 本発明の第16の態様は、第1~第15のいずれかの態様に記載の態様であって、
 400~440nmの波長帯域において、前記眼鏡レンズの一面における平均反射率に対する、もう一面における平均反射率の割合は、0.3(または0.4)~0.9である。
 本発明の第17の態様は、第1~第16のいずれかの態様に記載の態様であって、
 400~440nmの波長帯域において、前記眼鏡レンズの一面における平均反射率に対する、もう一面における平均反射率の割合は、0を超え且つ0.3未満(または0.4未満)である。
 本発明の第18の態様は、第1~第17のいずれかの態様に記載の態様であって、
 400~440nmの波長帯域において、前記眼鏡レンズの一面における平均反射率に対する、もう一面における平均反射率の割合は、0.9を超え且つ1.0未満である。
 本発明の一実施例によれば、反射光を含めたうえでのブルーカットレンズを提供できる。
図1は、実施例1の眼鏡レンズの物体側の面および眼球側の面における測定により得られた分光反射スペクトルを示す図である。
 本発明および本明細書における平均反射率とは、測定対象表面の光学中心において、測定対象の波長域において任意の波長毎に(任意のピッチで)測定された直入射反射率の算術平均値をいう。測定にあたり、測定波長間隔(ピッチ)は、例えば1~5nmの範囲で、任意に設定可能である。また、本発明および本明細書における反射率等の反射分光特性は、直入射反射分光特性を指すものとする。「視感反射率」は、JIS T 7334:2011に従い測定される。
 また、本発明および本明細書において、「眼球側の面」とは、眼鏡レンズを備えた眼鏡が装用者に装用された際に眼球側に配置される面をいい、「物体側の面」とは、物体側に配置される面をいう。
 本明細書において「~」は所定の値以上且つ所定の値以下を指す。
 以下、本発明の実施形態について述べる。
[本発明の一態様に係る眼鏡レンズ]
  本発明の一態様に係る眼鏡レンズは、
  レンズ基材の両面に多層膜を備える眼鏡レンズであって、
  前記眼鏡レンズの各面における400~440nmの波長帯域での平均反射率の和は20.0%以上であり、
 前記眼鏡レンズの各面の反射率は前記波長帯域に少なくとも一つの極大値を有し、
 前記波長帯域において、前記眼鏡レンズの一面における平均反射率と、もう一面における平均反射率とで差がある、眼鏡レンズである。
 前記眼鏡レンズの各面の反射率は400~440nmの波長帯域に少なくとも一つの極大値を有する。この極大値は、好ましくは、400~440nmの波長帯域における最大値でもある。前記極大値に係る規定は、両面の多層膜に対し、波長と反射率との関係で同傾向の(例えば横軸を波長(nm)、縦軸を反射率(%)としたときの両プロットがマクロ的には上に凸を描く)ブルーカット機能を備えさせることを表す。この規定を満たすことにより、両面の多層膜にて400~440nmの波長帯域の光を効果的に反射させるため、前記青色領域の光に対する遮断効果が確保される。また、後述の実施例が示すように、可視光線の透過も良好に確保できる。
 ちなみに、前記両プロットがマクロ的には上に凸を描くことを規定すべく、前記両プロットにおける400~440nmの波長帯域でのプロットを平滑化したものにおいては少なくとも一つ(例えば一つ)の極大値を有する、という規定を設けてもよい。この平滑化は、例えば、プロットの所定の点aの前後10点(つまり点a含め合計21点)での反射率の移動平均をとり、その移動平均値を点aでの新たな反射率とすることにより行ってもよい。これにより、プロットにおける細かい振動により極大値が複数存在する場合を除外し、前記両プロットがマクロ的には上に凸を描くことを規定できる。
 前記極大値に係る規定に加え、前記波長帯域において、前記眼鏡レンズの一面における平均反射率と、もう一面における平均反射率とで差を設ける。これにより、前記青色領域の反射光をレンズ内で多重反射させずに済む、または多重反射したとしても装用者が多重反射光を認識しにくくなる。
 このような本発明の一態様ならば、反射光を含めたうえでのブルーカットレンズを提供できる。
[本発明の一態様に係る眼鏡レンズの好適例]
 以下、本発明の一態様の好適例について説明し、本発明の一態様に係る眼鏡レンズの構成の詳細について説明する。
 前記眼鏡レンズの各面における500~570nmの波長帯域での平均反射率の和は1.0%以下(好適には1.0%未満、更に好適には0.5%以下)であるのが好ましい。500~570nmの波長帯域の光は緑色光である。前記規定により、視感反射率に大きく寄与する緑色光の反射を抑制できる。
 前記眼鏡レンズの各面における視感反射率の和は2.0%以下(好適には2.0%未満、更に好適には1.8%以下)であるのが好ましい。前記規定により、眼鏡レンズにおける反射光によるぎらつきの発生を抑制できる。
 前記眼鏡レンズの各面の反射率における、400~440nmの波長帯域での前記極大値(極大値が複数の場合は最大の極大値)の和は60.0%以下であるのが好ましい。この規定により、課題の欄にて説明したように、前記青色領域に対する反射率を高くすることによる、前記青色領域以外の可視光線に対する反射率も付随して高くなる傾向を抑制することができる。その結果、可視光線の透過を良好に確保できる。
 前記青色領域の反射光をレンズ内で多重反射させずに済む、または多重反射したとしても装用者が多重反射光を認識しにくくなるという利点を更に効果的に享受するには、以下の構成を採用するのが好ましい。すなわち、400~440nmの波長帯域において、前記眼鏡レンズの一面(平均反射率が高い方、後述の実施例1だと眼球側の面)における平均反射率に対する、もう一面(平均反射率が等しいまたは低い方、後述の実施例1だと物体側の面)における平均反射率の割合は、0.3(好適には0.4)~0.9であるのが好ましい。先に述べたように、前記青色領域の光のうち、紫色領域の光は特に遮断すべきである。だからこそ、紫色領域では各面の平均反射率の和を20.0%以上としている。そこで、各面での紫色領域での平均反射率の割合を0.3~0.9に収めることで、一つの面が特に反射率が高すぎることにより可視光線の透過に影響を与えることを事前に抑制できる。
 ちなみに、400~440nmの波長帯域での前記平均反射率の割合を0を超え且つ0.3未満(または0.4未満)とすることにより、前記青色領域の多重反射光をより確実に無くすことができる。この範囲とすることにより、前記青色領域の光に対する遮断効果は眼鏡レンズの一面では小さくなる。ただ、言い方を変えると、前記遮断効果以外の機能または特性を、該一面の多層膜に備えさせることが可能となる。例えば、該一面の多層膜に対し、視感反射率が更に減少する特性を備えさせてもよい。
 逆に、平均反射率の割合を0.9を超え且つ1.0未満とすることにより、両面における反射光の色と反射強度とが同じように見えるため、外観での統一感が増し、外観が良好となる。
 つまり、前記平均反射率の割合は、前記列挙した各利点のどれを採用するかによって選択すればよい。言い方を変えると、本発明の一態様だと、前記列挙した各利点のどれを採用するかという自由度がある。
 なお、後述の実施例1だと、400~440nmの波長帯域において、物体側の面の平均反射率を、眼球側の面の平均反射率よりも小さくしている。この波長帯域において物体側の面の平均反射率を抑制することにより、眼鏡レンズの装用者の正面に相対する第三者から前記眼鏡レンズを見た時のギラつき感が抑制される。つまり、他者からの見栄え(すなわち外観)が良くなるという利点がある。逆に、400~440nmの波長帯域において、眼球側の面の平均反射率を、物体側の面の平均反射率よりも小さくする場合、裏面である眼球側の面におけるUV低反射を実現できる。
 前記眼鏡レンズの各面における各多層膜は、高屈折率層および低屈折率層をそれぞれ1層以上含み、且つ、層総数が10層以下(好適には9層以下、更に好適には8層以下)であるのが好ましい。
 更に、以下の構成を採用してもよい。
 特許文献1で言うところの青色領域の光のうち、特に遮断すべき紫色領域(400~440nm)では各面の平均反射率の和を20.0%以上(好適には20.0%を超え、更に好適には25%以上)としてもよい。つまり、前記紫色領域にて局所的に反射率を増大させてもよい。
 紫外領域ないし紫色領域の低波長側(360~400nm)では各面の平均反射率の和を6.0%以下(好適には6.0%未満、更に好適には5.0%以下)としてもよい。つまり、紫色領域(400~440nm)の場合とは逆に、局所的に反射率を減少させるてもよい。
 更に、青色の波長領域のうちの高波長側ないし赤色領域(480~680nm)では各面の平均反射率の和を2.0%以下(好適には2.0%未満、更に好適には1.5%以下)としてもよい。可視光線の透過を狙うべく、可視光の主な波長帯域では特に局所的に反射率を減少させてもよい。
 以下、前記内容以外の具体的内容について述べる。
[本発明の一態様に係る眼鏡レンズの構成の詳細]
  上記眼鏡レンズにおいて、レンズ基材の眼球側の面および物体側の面にそれぞれ設けられた多層膜は、眼鏡レンズに上記の反射分光特性を付与することができる。上記多層膜は、レンズ基材の表面上に、直接または一層以上の他の層を介して間接的に設けられる。レンズ基材は、特に限定されないが、ガラス、または、(メタ)アクリル樹脂をはじめとするスチレン樹脂、ポリカーボネート樹脂、アリル樹脂、ジエチレングリコールビスアリルカーボネート樹脂(CR-39)等のアリルカーボネート樹脂、ビニル樹脂、ポリエステル樹脂、ポリエーテル樹脂、イソシアネート化合物とジエチレングリコールなどのヒドロキシ化合物との反応で得られたウレタン樹脂、イソシアネート化合物とポリチオール化合物とを反応させたチオウレタン樹脂、分子内に1つ以上のジスルフィド結合を有する(チオ)エポキシ化合物を含有する重合性組成物を硬化して得られる透明樹脂等を挙げることができる。また、無機ガラスも使用可能である。なおレンズ基材としては、染色されていないもの(無色レンズ)を用いてもよく、染色されているもの(染色レンズ)を用いてもよい。レンズ基材の屈折率は、例えば、1.60~1.75程度である。ただしレンズ基材の屈折率は、これに限定されるものではなく、上記の範囲内でも、上記の範囲から上下に離れていてもよい。
  上記眼鏡レンズは、単焦点レンズ、多焦点レンズ、累進屈折力レンズ等の各種レンズであることができる。レンズの種類は、レンズ基材の両面の面形状により決定される。また、レンズ基材表面は、凸面、凹面、平面のいずれであってもよい。通常のレンズ基材および眼鏡レンズでは、物体側の面は凸面、眼球側の面は凹面である。ただし、本発明は、これに限定されるものではない。
  上記の反射分光特性を付与するための多層膜は、レンズ基材表面に直接設けてもよく、一層以上の他の層を介して間接的に設けてもよい。レンズ基材と上記多層膜との間に形成され得る層としては、例えば、ハードコート層(以下、「ハードコート」とも記載する。)を挙げることができる。ハードコート層を設けることにより、眼鏡レンズに防傷性(耐擦傷性)を付与することができ、また眼鏡レンズの耐久性(強度)を高めることもできる。ハードコート層の詳細については、例えば特開2012-128135号公報段落0025~0028、0030を参照できる。また、レンズ基材と上記被膜との間には、密着性向上のためのプライマー層を形成してもよい。プライマー層の詳細については、例えば特開2012-128135号公報段落0029~0030を参照できる。
  レンズ基材の眼球側の面上、物体側の面上にそれぞれ設ける多層膜は、これら多層膜を有する眼鏡レンズ表面に先に記載した反射分光特性を付与できるものであれば特に限定されるものではない。そのような多層膜は、好ましくは、高屈折率層と低屈折率層を順次積層することにより形成することができる。より詳しくは、高屈折率層および低屈折率層を形成するための膜材料の屈折率と、反射すべき光や反射を低減すべき光の波長に基づき、公知の手法による光学的シミュレーションにより各層の膜厚を決定し、決定した膜厚となるように定めた成膜条件下で高屈折率層と低屈折率層を順次積層することにより、上記多層膜を形成することができる。成膜材料としては、無機材料であっても有機材料であっても有機無機複合材料であってもよく、成膜や入手容易性の観点からは、無機材料が好ましい。成膜材料の種類、膜厚、積層順等を調整することにより、青色光、紫外線、緑色光、赤色光のそれぞれに対する反射分光特性を制御することができる。
  高屈折率層を形成するための高屈折率材料としては、ジルコニウム酸化物(例えばZrO)、タンタル酸化物(Ta)、チタン酸化物(例えばTiO)、アルミニウム酸化物(Al)、イットリウム酸化物(例えばY)、ハフニウム酸化物(例えばHfO)、およびニオブ酸化物(例えばNb)からなる群から選ばれる酸化物の一種または二種以上の混合物を挙げることができる。一方、低屈折率層を形成するための低屈折率材料としてはケイ素酸化物(例えばSiO)、フッ化マグネシウム(例えばMgF)およびフッ化バリウム(例えばBaF)からなる群から選ばれる酸化物またはフッ化物の一種または二種以上の混合物を挙げることができる。なお上記の例示では、便宜上、酸化物およびフッ化物を化学量論組成で表示したが、化学量論組成から酸素またはフッ素が欠損もしくは過多の状態にあるものも、高屈折率材料または低屈折率材料として使用可能である。
  多層膜に含まれる各層の膜厚は、上述の通り、光学的シミュレーションにより決定することができる。多層膜の層構成としては、例えば、レンズ基材側からレンズ最表面側に向かって、
  第一層(低屈折率層)/第二層(高屈折率層)/第三層(低屈折率層)/第四層(高屈折率層)/第五層(低屈折率層)/第六層(高屈折率層)/第七層(低屈折率層)の順に積層された構成;
  第一層(高屈折率層)/第二層(低屈折率層)/第三層(高屈折率層)/第四層(低屈折率層)/第五層(高屈折率層)/第六層(低屈折率層)の順に積層された構成、
  等を挙げることができる。好ましい低屈折率層と高屈折率層の組み合わせの一例としては、ケイ素酸化物を主成分とする被膜とジルコニウム酸化物を主成分とする被膜との組み合わせ、ケイ素酸化物を主成分とする被膜とニオブ酸化物を主成分とする被膜との組み合わせを挙げることができ、これら二層の被膜が隣接する積層構造を少なくとも1つ含む多層膜を、多層膜の好ましい一例として例示することができる。
  好ましくは、上記の各層は、前述の高屈折率材料または低屈折率材料を主成分とする被膜である。ここで主成分とは、被膜において最も多くを占める成分であって、通常は全体の50質量%程度~100質量%、更には90質量%程度~100質量%を占める成分である。上記材料を主成分とする成膜材料(例えば蒸着源)を用いて成膜を行うことにより、そのような被膜を形成することができる。なお成膜材料に関する主成分も、上記と同様である。被膜および成膜材料には、不可避的に混入する微量の不純物が含まれる場合があり、また、主成分の果たす機能を損なわない範囲で他の成分、例えば他の無機物質や成膜を補助する役割を果たす公知の添加成分が含まれていてもよい。成膜は、公知の成膜方法により行うことができ、成膜の容易性の観点からは、蒸着により行うことが好ましい。本発明における蒸着には、乾式法、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法等が含まれる。真空蒸着法では、蒸着中にイオンビームを同時に照射するイオンビームアシスト法を用いてもよい。
  上記の多層膜は、以上説明した高屈折率層および低屈折率層に加えて、導電性酸化物を主成分とする被膜、好ましくは導電性酸化物を主成分とする蒸着源を用いる蒸着により形成される一層以上の導電性酸化物層を、多層膜の任意の位置に含むこともできる。導電性酸化物としては、眼鏡レンズの透明性の観点から、インジウム酸化物、スズ酸化物、亜鉛酸化物、チタン酸化物、およびこれらの複合酸化物等の、一般に透明導電性酸化物として知られる各種導電性酸化物を用いることが好ましい。透明性および導電性の観点から特に好ましい導電性酸化物としては、スズ酸化物、インジウム-スズ酸化物(ITO)を挙げることができる。導電性酸化物層を含むことにより、眼鏡レンズが帯電し塵や埃が付着することを防ぐことができる。
  更に、多層膜上に、更なる機能性膜を形成することも可能である。そのような機能性膜としては、撥水性または親水性の防汚膜、防曇膜、偏光膜、調光膜等の各種機能性膜を挙げることができる。これら機能性膜については、いずれも公知技術を何ら制限なく適用することができる。
[本発明の一態様に係る眼鏡]
  本発明の更なる態様は、上記の本発明の一態様に係る眼鏡レンズと、この眼鏡レンズを取り付けたフレームとを有する眼鏡を提供することもできる。眼鏡レンズについては、先に詳述した通りである。その他の眼鏡の構成については、特に制限はなく、公知技術を適用することができる。
[本発明の一態様に係る眼鏡レンズの製造方法]
  本発明の更なる態様は、上記の本発明の一態様に係る眼鏡レンズの製造方法を提供することもできる。
  以下、本発明を実施例により更に説明するが、本発明は実施例に示す態様に限定されるものではない。以下において、屈折率とは、波長500nmにおける屈折率である。
[実施例1]
  両面が光学的に仕上げられ予めハードコートが施された、物体側の面が凸面、眼球側の面が凹面であるプラスチックレンズ基材(HOYA株式会社製商品名HL、屈折率1.50、無色レンズ)の凸面側(物体側)のハードコート表面に、アシストガスとして酸素ガス(O)および窒素ガス(N)を用いて、イオンアシスト蒸着により合計7層の多層蒸着膜を順次形成した。
  凹面側(眼球側)のハードコート表面にも同様の条件でイオンアシスト蒸着により合計7層の多層蒸着膜を積層して眼鏡レンズを得た。
  本実施例では、凸面側、凹面側とも、多層蒸着膜は、レンズ基材側(ハードコート側)から眼鏡レンズ表面に向かって、表1に示す蒸着源を用いて第1層、第2層…の順に積層し、眼鏡レンズ表面側最外層が第7層となるように形成した。本実施例では、不可避的に混入する可能性のある不純物を除けば下記酸化物からなる蒸着源を使用した。本実施例において、下記層の1層以上の膜厚を変えることにより、反射分光特性を制御した。
 以下の表1には、蒸着源の他に、物体側の面および眼球側の面の多層膜の膜厚、蒸着条件(イオン銃条件である電流(mA)および電圧(V)ならびにアシストガス導入量であるO(cc)およびN(cc))を記載する。
Figure JPOXMLDOC01-appb-T000001
  本実施例の眼鏡レンズの物体側の面(凸面側)、眼球側の面(凹面側)の光学中心において、フィルメトリクス社製分光光度計F10-ARを用いて、280~780nmの波長域における分光反射スペクトルを測定した(測定ピッチ:1nm)。非測定面からの反射を抑えるため、JIS T 7334の5.2節の通り、非測定面は光沢のない黒色で塗装した。
 図1は、実施例1の眼鏡レンズの物体側の面および眼球側の面における測定により得られた分光反射スペクトルを示す図である。
 以下の表2は、波長帯域ごとの、物体側の面および眼球側の面における平均反射率、および各面の平均反射率の合計をまとめた表である。
Figure JPOXMLDOC01-appb-T000002
 本実施例では表2に示すように本発明の一態様の眼鏡レンズにおける平均反射率の各条件を満たしている。そして、本実施例の眼鏡レンズを装用した結果、装用者は前記青色領域の多重反射光を認識することはなかった。
 多重反射光に係る効果に加え、以下の利点も享受できる。すなわち図1に示すように、特許文献1で言うところの青色領域の光のうち特に遮断すべき紫色領域(400~440nm)の光に対する遮断効果が確保されている。更には、可視光線の透過も十分確保できている。さらにこの時の光学多層膜における視感反射率の両面の和は1.11%であり、両面において反射が十分に抑えられ、眼鏡レンズとして良好な装用感が実現されていることがわかる。
  今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
  本発明は、眼鏡レンズおよび眼鏡の製造分野において有用である。

Claims (7)

  1.   レンズ基材の両面に多層膜を備える眼鏡レンズであって、
      前記眼鏡レンズの各面における400~440nmの波長帯域での平均反射率の和は20.0%以上であり、
     前記眼鏡レンズの各面の反射率は前記波長帯域に少なくとも一つの極大値を有し、
     前記波長帯域において、前記眼鏡レンズの一面における平均反射率と、もう一面における平均反射率とで差がある、眼鏡レンズ。
  2.  前記波長帯域において、前記眼鏡レンズの一面における平均反射率に対する、もう一面における平均反射率の割合は、0を超え且つ0.9以下である、請求項1に記載の眼鏡レンズ。
  3.  前記波長帯域において、前記眼鏡レンズの物体側の面における平均反射率は、眼球側の面における平均反射率よりも小さい、請求項1または2に記載の眼鏡レンズ。
  4.  前記眼鏡レンズの各面における500~570nmの波長帯域での平均反射率の和は1.0%以下である、請求項1~3のいずれかに記載の眼鏡レンズ。
  5.  前記眼鏡レンズの各面における視感反射率の和は2.0%以下である、請求項1~4のいずれかに記載の眼鏡レンズ。
  6.  前記眼鏡レンズの各面の反射率における前記極大値の和は60.0%以下である、請求項5に記載の眼鏡レンズ。
  7.  前記眼鏡レンズの各面における各多層膜は、高屈折率層および低屈折率層をそれぞれ1層以上含み、且つ、層総数が10層以下である、請求項1~6のいずれかに記載の眼鏡レンズ。
PCT/JP2019/038102 2018-09-28 2019-09-27 眼鏡レンズ WO2020067408A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020549425A JP7136908B2 (ja) 2018-09-28 2019-09-27 眼鏡レンズ
KR1020217011750A KR20210054576A (ko) 2018-09-28 2019-09-27 안경 렌즈
CN201980063269.5A CN112840264B (zh) 2018-09-28 2019-09-27 眼镜镜片
US17/279,906 US11835800B2 (en) 2018-09-28 2019-09-27 Spectacle lens
EP19864195.3A EP3859435A4 (en) 2018-09-28 2019-09-27 Spectacle lens
KR1020237042820A KR20230172041A (ko) 2018-09-28 2019-09-27 안경 렌즈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-184883 2018-09-28
JP2018184883 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067408A1 true WO2020067408A1 (ja) 2020-04-02

Family

ID=69950729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038102 WO2020067408A1 (ja) 2018-09-28 2019-09-27 眼鏡レンズ

Country Status (6)

Country Link
US (1) US11835800B2 (ja)
EP (1) EP3859435A4 (ja)
JP (1) JP7136908B2 (ja)
KR (2) KR20210054576A (ja)
CN (1) CN112840264B (ja)
WO (1) WO2020067408A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067408A1 (ja) 2018-09-28 2020-04-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093639A (ja) 2010-10-28 2012-05-17 Fuji Xerox Co Ltd 画像形成装置
JP2012128135A (ja) 2010-12-15 2012-07-05 Seiko Epson Corp 光学物品およびその製造方法
WO2016088763A1 (ja) * 2014-12-01 2016-06-09 ホヤ レンズ タイランド リミテッド 眼鏡レンズおよび眼鏡
WO2017090128A1 (ja) * 2015-11-25 2017-06-01 株式会社ジェイアイエヌ 光学部材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586017B2 (ja) * 2010-08-20 2014-09-10 東海光学株式会社 光学製品及び眼鏡プラスチックレンズ
EP2602654B1 (en) * 2011-12-08 2023-04-19 Essilor International Ophthalmic filter
IN2014DN09596A (ja) * 2012-05-16 2015-07-31 Essilor Int
CN104838305A (zh) 2012-11-05 2015-08-12 株式会社尼康依视路 光学元件、光学元件的制造方法、及重影光的定量方法
ES2964693T3 (es) * 2016-03-31 2024-04-09 Hoya Lens Thailand Ltd Lente de gafas y gafas
WO2020067408A1 (ja) 2018-09-28 2020-04-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093639A (ja) 2010-10-28 2012-05-17 Fuji Xerox Co Ltd 画像形成装置
JP2012128135A (ja) 2010-12-15 2012-07-05 Seiko Epson Corp 光学物品およびその製造方法
WO2016088763A1 (ja) * 2014-12-01 2016-06-09 ホヤ レンズ タイランド リミテッド 眼鏡レンズおよび眼鏡
WO2017090128A1 (ja) * 2015-11-25 2017-06-01 株式会社ジェイアイエヌ 光学部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3859435A4

Also Published As

Publication number Publication date
EP3859435A4 (en) 2022-06-29
EP3859435A1 (en) 2021-08-04
CN112840264B (zh) 2023-03-14
JP7136908B2 (ja) 2022-09-13
KR20210054576A (ko) 2021-05-13
US11835800B2 (en) 2023-12-05
US20210397021A1 (en) 2021-12-23
JPWO2020067408A1 (ja) 2021-08-30
CN112840264A (zh) 2021-05-25
KR20230172041A (ko) 2023-12-21

Similar Documents

Publication Publication Date Title
CN107003545B (zh) 眼镜镜片及眼镜
JP6415587B2 (ja) 眼鏡レンズおよび眼鏡
JP7265983B2 (ja) 眼鏡レンズおよび眼鏡
WO2020067408A1 (ja) 眼鏡レンズ
JP7136907B2 (ja) 眼鏡レンズ
JP7136909B2 (ja) 眼鏡レンズ
JP7303613B2 (ja) 眼鏡レンズおよび眼鏡
WO2021065758A1 (ja) 眼鏡レンズ
JP2022157712A (ja) 眼鏡レンズ及び眼鏡
JP2022157713A (ja) 眼鏡レンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217011750

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019864195

Country of ref document: EP

Effective date: 20210428